, Erreurs d'arrondi des méthodes de Runge-Kutta : cas matriciel et formalisation 97

.. .. Hypothèses,

. .. Systèmes, 99 6.2.1 Résolution numérique des systèmes linéaires matriciels par des méthodes de Runge-Kutta, p.99

. .. Approche-choisie-et-méthodologie, 100 6.3.2 Méthodologie pour borner les erreurs d'arrondi, p.102

. Normes-vectorielles and . .. Matricielles-en-coq,

. .. Erreurs-d'arrondi-d'opérations-matricielles, 107 6.6.2 Erreurs d'arrondi de produits matriciels, p.111

. .. Erreurs-locales and . .. Euler, 115 6.7.3 Bornes sur l'erreur locale de la méthode RK2, p.116

. .. Erreurs-globales, 118 6.8.2 Bornes sur l'erreur globale de méthodes de Runge-Kutta, p.119

.. .. Conclusion,

, III Vers la méthode deséléments finis : formalisation de résultats d, p.121

, Espaces de Hilbert et analyse fonctionnelle 123

. Prérequis and . .. Coquelicot, 125 7.1.1 Topologie générales, filtres et limites

, 2À propos

. Propriétés and . .. Hilbert, , p.134

R. Affeldt, C. Cohen, and A. Mahboubi, Damien Rouhling et Pierre Yves Strub: Classical analysis with Coq, 10th Coq Workshop, 2018.

R. Affeldt, C. Cohen, and D. Rouhling, Formalization Techniques for Asymptotic Reasoning in Classical Analysis, Journal of Formalized Reasoning, octobre, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01719918

S. Afshar, V. Khan, O. Aravantinos, S. Hasan, ;. Tahar et al., Formalization of Complex Vectors in Higher-Order Logic, Petr Sojka et Josef Urban (rédacteurs): Intelligent Computer Mathematics, pp.123-137, 2014.

R. Alt and J. Vignes, Validation of results of collocation methods for ODEs with the CADNA library, Applied Numerical Mathematics, vol.21, issue.2, pp.119-139, 1996.
URL : https://hal.archives-ouvertes.fr/hal-01150604

M. Antoñana, J. Makazaga, and A. Murua, Reducing and monitoring round-off error propagation for symplectic implicit Runge-Kutta schemes, Numerical Algorithms, vol.76, issue.4, pp.861-880, 2017.

M. Arnold, B. Burgermeister, C. Führer, G. Hippmann, and G. Rill, Numerical methods in vehicle system dynamics: state of the art and current developments. Vehicle System Dynamics, vol.49, pp.1159-1207, 2011.

A. Assaf, A calculus of constructions with explicit subtyping, Pierre Letouzey et Matthieu Sozeau (rédacteurs): 20th International Conference on Types for Proofs and Programs (TYPES 2014), tome 39 de Leibniz International Proceedings in Informatics, Institut Henri Poincaré, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01097401

C. Baier and J. Pieter-katoen, Principles of model checking, 2008.

D. Bailey, P. Borwein, and S. Plouffe, On the rapid computation of various polylogarithmic constants. Mathematics of Computation of the, vol.66, pp.903-913, 1997.

G. A. Baker, P. Et, and . Graves-morris, Padé approximants, tome 59, 1996.

G. Barrett, Formal methods applied to a floating-point number system, IEEE Transactions on Software Engineering, vol.15, issue.5, pp.611-621, 1989.

H. Bateman, The solution of a system of differential equations occurring in the theory of radio-active transformations, Proceedings of the Cambridge Philosophical Society, vol.15, pp.423-427, 1908.

A. Bauer, J. Gross, M. Peter-lefanu-lumsdaine, and . Shulman, Matthieu Sozeau et Bas Spitters: The HoTT library: a formalization of homotopy type theory in Coq, Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs and Proofs, pp.164-172, 2017.

A. Bauer, . Et-davorin, and . Le?nik, Metric spaces in synthetic topology, Annals of Pure and Applied Logic, vol.163, issue.2, pp.87-100, 2012.

G. Bauer and M. Wenzel, Computer-Assisted Mathematics at Work. Dans International Workshop on Types for Proofs and Programs, pp.61-76

. Springer, , 1999.

M. Ben-ari, The bug that destroyed a rocket, ACM Special Interest Group on Computer Science Education (SIGCSE) Bulletin, vol.33, issue.2, pp.58-59, 2001.

Y. Bertot and P. Castéran, Interactive Theorem Proving and Program Development -Coq'Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. An European Association for Theoretical Computer Science Series, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00344237

Y. Bertot and G. Gonthier, Sidi Ould Biha et Ioana Pa?ca: Canonical Big Operators, Theorem Proving in Higher Order Logics, tome 5170/2008 de Lecture Notes in Computer Science, 2008.

Y. Bertot, L. Rideau, and L. Théry, Distant decimals of ?. Journal of Automated Reasoning, pp.1-45, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01582524

M. Berz and K. Makino, Verified integration of ODEs and flows using differential algebraic methods on high-order Taylor models, Reliable Computing, vol.4, issue.4, pp.361-369, 1998.

. Bodenheimer, G. P. Peter, M. Laughlin, T. Rozyczka, . Plewa et al., Numerical Methods in Astrophysics: An Introduction. Series in Astronomy and Astrophysics, 2006.

B. Bohrer, V. Rahli, and I. Vukotic, Marcus Völp et André Platzer: Formally verified differential dynamic logic, Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs and Proofs, pp.208-221, 2017.

S. Boldo, Floats & Ropes: a case study for formal numerical program verification, 36th International Colloquium on Automata, Languages and Programming, tome 5556 de Lecture Notes in Computer Science -ARCoSS, pp.91-102, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00432718

S. Boldo, Sylvain Conchon et Fatiha Zaïdi (rédacteurs): 17th International Conference on Formal Engineering Methods, tome 9407 de Lecture Notes in Computer Science, pp.17-32, 2015.

S. Boldo, F. Clément, J. C. Filliâtre, M. Mayero, G. Melquiond et al., Wave Equation Numerical Resolution: a Comprehensive Mechanized Proof of a C Program, Journal of Automated Reasoning, vol.50, issue.4, pp.423-456, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00649240

S. Boldo, F. Clément, F. Faissole, V. Martin, and M. Mayero, A Coq Formal Proof of the Lax-Milgram theorem, Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs and Proofs, pp.79-89, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01391578

S. Boldo, F. Clément, F. Faissole, V. Martin, and M. Mayero, Preuve formelle du théorème de Lax-Milgram. Dans 16èmes journées Approches Formelles dans l'Assistance au Développement de Logiciels

S. Boldo, F. Clément, J. C. Filliâtre, M. Mayero, G. Melquiond et al., Formal Proof of a Wave Equation Resolution Scheme: the Method Error, Proceedings of the first Interactive Theorem Proving Conference (ITP), tome 6172 de Lecture Notes in Computer Science, pp.147-162, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00450789

S. Boldo, F. Faissole, and A. Chapoutot, Round-off Error Analysis of Explicit One-Step Numerical Integration Methods, 24th IEEE Symposium on Computer Arithmetic
URL : https://hal.archives-ouvertes.fr/hal-01581794

S. Boldo, F. Faissole, and A. Chapoutot, Round-off error and exceptional behavior analysis of explicit Runge-Kutta methods, IEEE Transactions on Computers, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01883843

S. Boldo, F. Faissole, and V. Tourneur, A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers, 25th IEEE Symposium on Computer Arithmetic, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01772272

S. Boldo and J. C. Filliâtre, Formal Verification of Floating-Point Programs, Proceedings of the 18th IEEE Symposium on Computer Arithmetic, pp.187-194, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01174892

S. Boldo, S. Graillat, and J. M. Muller, On the robustness of the 2Sum and Fast2Sum algorithms, vol.44
URL : https://hal.archives-ouvertes.fr/ensl-01310023

S. Boldo, M. Joldes, J. M. Muller, and V. Popescu, Formal Verification of a Floating-Point Expansion Renormalization Algorithm, Proceedings of the 8th International Conference on Interactive Theorem Proving
URL : https://hal.archives-ouvertes.fr/hal-01512417

S. Boldo, C. Lelay, and G. Melquiond, Coquelicot: A User-Friendly Library of Real Analysis for Coq, Mathematics in Computer Science, vol.9, issue.1, pp.41-62, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00860648

S. Boldo, C. Lelay, and G. Melquiond, Formalization of Real Analysis: A Survey of Proof Assistants and Libraries, Mathematical Structures in Computer Science, vol.26, issue.7, pp.1196-1233, 2016.
URL : https://hal.archives-ouvertes.fr/hal-00806920

S. Boldo and G. Melquiond, Flocq: A Unified Library for Proving Floating-point Algorithms in Coq, David Hough et Paolo Ienne (rédacteurs): 20th IEEE Symposium on Computer Arithmetic, pp.243-252, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00534854

S. Boldo and G. Melquiond, , 2017.

O. Bouissou, A. Chapoutot, and A. Djoudi, Enclosing Temporal Evolution of Dynamical Systems Using Numerical Methods, NASA Formal Methods, numéro 7871 dans Lecture Notes in Computer Science, pp.108-123
URL : https://hal.archives-ouvertes.fr/hal-00819730

. Springer, , 2013.

O. Bouissou and M. Martel, GRKLib: a Guaranteed Runge-Kutta Library, International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics, 2006.

N. Bourbaki, Topologie générale: Chapitres 1à 4. Bourbaki, Nicolas. Springer, 1971.

. Brézis, P. G. Haïm, J. L. Ciarlet, and . Lions, Analyse fonctionnelle: théorie et applications. Collection Mathématiques appliquées pour la maîtrise. Dunod, 1999.

D. Brouwer, On the accumulation of errors in numerical integration, The Astronomical Journal, vol.46, pp.149-153, 1937.

. Brunel, Aloïs: Non-constructive complex analysis in Coq, 18th International Workshop on Types for Proofs and Programs, pp.1-15, 2011.

J. Butcher, N. Charles, and . Goodwin, Numerical methods for ordinary differential equations, tome 2, 2008.

J. Butcher, P. B. Charles, and . Johnston, Estimating local truncation errors for Runge-Kutta methods, Journal of Computational and Applied Mathematics, vol.45, issue.1-2, pp.203-212, 1993.

V. A. Carreño, S. Paul, and . Miner, Specification of the IEEE-854 floating-point standard in HOL and PVS. High Order Logic Theorem Proving and Its Applications, vol.16, 1995.

H. Cartan, Théorie des filtres. Comptes Rendus de l'Académie des Sciences, vol.205, pp.595-598, 1937.

P. G. Ciarlet, The finite element method for elliptic problems, tome 40 de, Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, 2002.

F. Clément and V. Martin, The Lax-Milgram Theorem. A detailed proof to be formalized in Coq

W. J. Cody, T. Jerome, D. M. Coonen, K. Gay, D. Hanson et al., Ris et David Stevenson: A proposed radix-and word-length-independent standard for floatingpoint arithmetic, IEEE Micro, issue.4, pp.86-100, 1984.

C. Cohen, Formalized algebraic numbers: construction and first-order theory, 2012.
URL : https://hal.archives-ouvertes.fr/pastel-00780446

P. Cousot and R. Cousot, Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints, Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming languages, pp.238-252, 1977.

M. F. Cowlishaw, Decimal floating-point: Algorism for computers, 16th IEEE Symposium on Computer Arithmetic, pp.104-111, 2003.

. Cruz-filipe, H. Luís, F. Geuvers, and . Wiedijk, C-CoRN, the constructive Coq repository at Nijmegen. Dans International Conference on Mathematical Knowledge Management, pp.88-103, 2004.

C. Daramy, D. Defour, F. De-dinechin, and J. M. Muller, CR-LIBM: a correctly rounded elementary function library, Advanced Signal Processing Algorithms, Architectures, and Implementations XIII, tome 5205, pp.458-464, 2003.

M. Daumas and G. Melquiond, Certification of bounds on expressions involving rounded operators. Transactions on Mathematical Software, vol.37, pp.1-20, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00127769

T. J. Dekker, A floating-point technique for extending the available precision, Numerische Mathematik, vol.18, issue.3, pp.224-242, 1971.

J. Demailly and . Pierre, Analyse numérique etéquations différentielles. Collection Grenoble sciences, Les Ulis -EDP Sciences, 2016.

O. Desmettre, Coq standard library-RiemannInt, 2002.

F. Dinechin, C. De, G. Lauter, and . Melquiond, Certifying the Floating-point Implementation of an Elementary Function Using Gappa, IEEE Transactions on Computers, vol.60, issue.2, pp.242-253, 2011.
URL : https://hal.archives-ouvertes.fr/ensl-00200830

A. Y. Duale, H. Mark, H. Decker, M. Zipperer, . Aharoni et al., Decimal floating-point in Z9: An implementation and testing perspective, IBM Journal of Research and Development, vol.51, issue.2, pp.217-227, 2007.

D. J. Earn, Symplectic integration without roundoff error, Ergodic Concepts in Stellar Dynamics, tome 430 de LNP, pp.122-130, 1994.

A. Ern and J. Luc-guermond, Theory and practice of finite elements, tome 159 de Applied Mathematical Sciences, 2004.

M. Escardó, Synthetic topology of data types and classical spaces, Electronic Notes in Theoretical Computer Science, vol.87, pp.21-156, 2004.

L. Euler, Institutionum calculi integralis, 3 vols. Petropoli: Impensis Academia Imperialis Scientiarum, vol.1, p.1768

R. Eymard, Thierry Gallouët et Raphaèle Herbin: Finite volume methods, vol.7, pp.713-1018, 2000.

F. Faissole, Formalization and closedness of finite dimensional subspaces, 19th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), pp.121-128, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01630411

F. Faissole, Définir le fini: deux formalisations d'espaces de dimension finie, Journées Francophones des Langages Applicatifs, pp.167-172, 2018.

F. Faissole, Formalisation en Coq des erreurs d'arrondi de méthodes de Runge-Kutta pour les systèmes matriciels, 18èmes journées Approches Formelles dans l'Assistance au Développement de Logiciels, 2019.

F. Faissole and B. Spitters, Synthetic topology in HoTT for probabilistic programming, The Third International Workshop on Coq for Programming Languages, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01405762

F. Faissole and B. Spitters, Un cadre pour la preuve de programmes probabilistes, Journées Francophones des Langages Applicatifs, pp.137-150, 2018.

C. Faure and Y. Papegay, Odyssée user's guide version 1.7, 1998.

E. Fehlberg, Error propagation in Runge-Kutta type integration formulas, NASA Marshall Space Flight Center, 1970.

J. Filliâtre and . Christophe, Deductive software verification, 2011.

J. Filliâtre, A. Christophe, and . Paskevich, Why3-where programs meet provers, European Symposium on Programming, pp.125-128, 2013.

L. Fousse, Intégration numérique avec erreur bornée en précision arbitraire, 2006.

L. Fousse, Accurate Multiple-Precision Gauss-Legendre Quadrature, 18th IEEE Symposium on Computer Arithmetic, pp.150-160, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00769452

L. Fousse, Multiple-Precision Correctly rounded Newton-Cotes quadrature, Informatique Théorique et Applications, vol.41, issue.1, pp.103-121, 2007.
URL : https://hal.archives-ouvertes.fr/inria-00106151

L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann, MPFR: A multiple-precision binary floating-point library with correct rounding, ACM Transactions on Mathematical Software (TOMS), vol.33, issue.2, p.13, 2007.
URL : https://hal.archives-ouvertes.fr/inria-00103655

T. Fukushima, Reduction of Round-off Errors in the Extrapolation Methods and its Application to the Integration of Orbital Motion, Astronomical Journal, vol.112, issue.3, 1996.

H. Geuvers, Proof assistants: History, ideas and future. Sadhana, vol.34, pp.3-25, 2009.

D. Goldberg, What every computer scientist should know about floating-point arithmetic, ACM Computing Surveys, vol.23, issue.1, pp.5-48, 1991.

G. H. Golub, F. Et-charles, and . Van-loan, Matrix Computations. The Johns Hopkins University Press, 3 eé dition, 1996.

G. Gonthier, Formal proof-the four-color theorem, Notices of the American Mathematical Society, vol.55, issue.11, pp.1382-1393, 2008.

G. Gonthier, A. Asperti, J. Avigad, Y. Bertot, C. Cohen et al., A Machine-Checked Proof of the Odd Order Theorem, ITP 2013, 4th Conference on Interactive Theorem Proving, tome 7998 de Lecture Notes in Computer Science, pp.163-179, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00816699

G. Gonthier and A. Mahboubi, An introduction to small scale reflection in Coq, Journal of Formalized Reasoning, vol.3, issue.2, pp.95-152, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00515548

F. Goualard, How Do You Compute the Midpoint of an Interval?, ACM Transactions on Mathematical Software, vol.40, issue.2, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00576641

S. Graillat, V. Lefèvre, and J. M. Muller, On the maximum relative error when computing integer powers by iterated multiplications in floating-point arithmetic, Numerical Algorithms, vol.70, issue.3, pp.653-667, 2015.
URL : https://hal.archives-ouvertes.fr/ensl-00945033

A. Granas and J. Dugundji, Fixed point theory, 2013.

K. R. Grazier, I. William, J. M. Newman, P. W. Hyman, D. J. Sharp et al., Achieving Brouwer's law with high-order Stormer multistep methods, ANZIAM Journal, vol.46, pp.786-804, 2004.

A. Guéneau, A. Charguéraud, and F. Pottier, A fistful of dollars: Formalizing asymptotic complexity claims via deductive program verification, European Symposium on Programming, pp.533-560, 2018.

. Guéneau, Armaël: Procrastination, a proof engineering technique, Coq, 2018.

R. Haberman, Elementary applied partial differential equations, tome 987, 1983.

F. Haftmann and M. Wenzel, Constructive type classes in Isabelle. Dans International Workshop on Types for Proofs and Programs, pp.160-174, 2006.

E. Hairer, C. Lubich, and G. Wanner, Geometric numerical integration illustrated by the Störmer-Verlet method, Acta numerica, vol.12, pp.399-450, 2003.

E. Hairer, R. I. Mclachlan, and A. Razakarivony, Achieving Brouwer's law with implicit Runge-Kutta methods, BIT Numerical Mathematics, vol.48, issue.2, pp.231-243, 2008.

. Hairer, . Ernst, P. Sylvert, G. Norsett, and . Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, tome 8, 1993.

E. Hairer and G. Wanner, Examples of Stiff Equations, pp.2-14, 1996.

J. Harrison, Floating point verification in HOL light: The exponential function, Algebraic Methodology and Software Technology, pp.246-260, 1997.

J. ;. Harrison, Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin et al., A Machine-Checked Theory of Floating Point Arithmetic, 12th International Conference on Theorem Proving in Higher Order Logics, TPHOLs'99, tome 1690 de Lecture Notes in Computer Science, pp.113-130, 1999.

J. Harrison, Formal verification of floating point trigonometric functions, Proceedings of the Third International Conference on Formal Methods in Computer-Aided Design, pp.217-233, 2000.

J. Harrison, A HOL Theory of Euclidean space, 18th International Conference on Theorem Proving in Higher Order Logics, TPHOLs 2005, tome 3603 de Lecture Notes in Computer Science, 2005.

J. Harrison, The HOL Light theory of Euclidean space, Journal of Automated Reasoning, vol.50, pp.173-190, 2013.

P. Henrici, Error propagation for difference methods, 1963.

N. J. Higham, A survey of componentwise perturbation theory, tome 48, 1994.

N. J. Higham, Accuracy and Stability of Numerical Algorithms, Society for Industrial and Applied Mathematics, 2002.

N. J. Higham, Functions of matrices: theory and computation, tome 104, 2008.

J. Hölzl, F. Immler, and B. Huffman, Type Classes and Filters for Mathematical Analysis in Isabelle/HOL, -Mohring et David Pichardie (rédacteurs): Interactive Theorem Proving (ITP 2013), tome 7998 de Lecture Notes in Computer Science, pp.279-294

. Springer, , 2013.

P. Howard and J. E. Rubin, Consequences of the Axiom of Choice, 1998.

H. B. Huskey, On the precision of a certain procedure of numerical integration, Journal of Research of the National Bureau of Standards, vol.42, 1949.

, IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Std, pp.754-1985, 1985.

, IEEE Standard for Floating-Point Arithmetic, IEEE Std, 2008.

F. Immler, Formally verified computation of enclosures of solutions of ordinary differential equations, NASA Formal Methods Symposium, pp.113-127, 2014.

F. Immler, A Verified ODE Solver and the Lorenz Attractor, Journal of Automated Reasoning, vol.61, issue.1, pp.73-111

F. Immler and J. Hölzl, Numerical Analysis of Ordinary Differential Equations in Isabelle/HOL. Dans Beringer, Lennart et Amy P. Felty (rédacteurs): Third International Conference on Interactive Theorem Proving, ITP, tome 7406 de Lecture Notes in Computer Science, pp.377-392, 2012.

F. Immler and C. Traut, The Flow of ODEs. Dans Blanchette, Christian Jasmin et Stephan Merz (rédacteurs): Proceedings of the 7th International Conference on Interactive Theorem Proving, pp.184-199, 2016.

C. Jeannerod, . Pierre, M. Siegfried, and . Rump, Improved error bounds for inner products in floating-point arithmetic, Society for Industrial and Applied Mathematics (SIAM) Journal on Matrix Analysis and Applications, vol.34, issue.2, pp.338-344, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00840926

C. Jeannerod, S. M. Pierre, and . Rump, On relative errors of floatingpoint operations: optimal bounds and applications. Mathematics of Computation, 2016.
URL : https://hal.archives-ouvertes.fr/hal-00934443

E. A. Kalinina, The most precise computations using Euler's method in standard floating-point arithmetic applied to modelling of biological systems, Computer Methods and Programs in Biomedicine, vol.111, issue.2, pp.471-479, 2013.

. Kaneko, Kunihiko: Overview of coupled map lattices, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.2, issue.3, pp.279-282, 1992.

M. Kerjean and A. Mahboubi, A formal , classical proof of the Hahn-Banach theorem, 2019.

D. E. Knuth, The Art of Computer Programming, 1998.

P. Kornerup, V. Lefevre, N. Louvet, and J. M. Muller, On the computation of correctly rounded sums, IEEE Transactions on Computers, vol.61, issue.3, pp.289-298, 2012.
URL : https://hal.archives-ouvertes.fr/inria-00367584

R. Krebbers and B. Spitters, Type classes for efficient exact real arithmetic in Coq, Logical Methods in Computer Science, vol.9, 2011.

U. W. Kulisch, Advanced arithmetic for the digital computer -design of arithmetic units, 2002.

K. Das, S. Et-sandipan, and . Roy, Finite element analysis of aircraft wing using carbon fiber reinforced polymer and glass fiber reinforced polymer, Journal Of Physics (IOP) Conference Series: Materials Science and Engineering, vol.402, p.12077, 2018.

W. Kutta, Beitrag zur naherungsweisen Integration totaler Differentialgleichungen. Zeitschrift für angewandte Mathematik und Physik, vol.46, pp.435-453, 1901.

J. D. Lambert, Numerical Methods for Ordinary Differential Systems: The Initial Value Problem, 1991.

C. Lauter and . Quirin, Arrondi correct de fonctions mathématiques : fonctions univariées et bivariées, certification et automatisation, 2008.

H. Q. Le, J. William, S. Starke, . Fields, P. Francis et al., IBM power6 microarchitecture, vol.51, pp.639-662, 2007.

V. Lefèvre, D. Stehlé, P. Zimmermann, ;. Hertling, C. M. Peter et al., Worst Cases for the Exponential Function in the IEEE 754r decimal64 Format, Reliable Implementation of Real Number Algorithms: Theory and Practice, pp.114-126, 2008.

C. Lelay, How to express convergence for analysis in Coq, The 7th Coq Workshop, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01169321

C. Lelay, Repenser la bibliothèque réelle de Coq : vers une formalisation de l'analyse classique mieux adaptée, 2015.

C. Lelay and G. Melquiond, Différentiabilité et intégrabilité en Coq. Applicationà la formule de d'Alembert. Dans 23èmes Journées Francophones des Langages Applicatifs, pp.119-133, 2012.

P. Letouzey, A new extraction for Coq, Workshop on Types for Proofs and Programs, pp.200-219, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00150914

N. G. Leveson, S. Clark, and . Turner, An investigation of the Therac-25 accidents, Computer, vol.26, issue.7, pp.18-41, 1993.

A. Lyapunov and . Mikhailovich, The general problem of the stability of motion, International journal of control, vol.55, issue.3, pp.531-534, 1992.

. Magron, G. A. Victor, A. F. Constantinides, and . Donaldson, Certified Roundoff Error Bounds Using Semidefinite Programming, 2015.

A. ;. Mahboubi, J. Carette, D. Aspinal, and C. Lange, Petr Sojka et Wolfgang Windsteiger (rédacteurs): CICM 2013 -Conference on Intelligent Computer Mathematics -2013, tome 7961 de Lecture Notes in Artificial Intelligence, pp.1-18, 2013.

A. Mahboubi, G. Melquiond, and T. Sibut-pinote, Proceedings of the 7th Conference on Interactive Theorem Proving, tome 9807 de Lecture Notes in Computer Science, pp.274-289, 2016.

A. Mahboubi, G. Melquiond, and T. Sibut-pinote, Formally Verified Approximations of Definite Integrals, vol.62, pp.281-300, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01289616

A. Mahboubi and E. Tassi, Canonical Structures for the Working Coq User, 4th International Conference on Interactive Theorem Proving, ITP, pp.19-34, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00816703

A. Mahboubi and E. Tassi, , 2017.

M. Mahmoud, V. Yousri, S. Aravantinos, and . Tahar, Formalization of Infinite Dimension Linear Spaces with Application to Quantum Theory, NASA Formal Methods NFM, pp.413-427, 2013.

E. Makarov, B. Spitters, ;. Blazy, C. Sandrine, D. Paulin et al., The Picard Algorithm for Ordinary Differential Equations in Coq, ITP 2013, 4th Conference on Interactive Theorem Proving, tome 7998 de Lecture Notes in Computer Science, pp.463-468, 2013.

É. Martin-dorel and P. Roux, A reflexive tactic for polynomial positivity using numerical solvers and floating-point computations, Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs and Proofs, pp.90-99
URL : https://hal.archives-ouvertes.fr/hal-01510979

M. Mayero, Formalisation et automatisation de preuves en analyses réelle et numérique, 2001.

M. Mayero, Using Theorem Proving for Numerical Analysis. Correctness Proof of al Automatic Differentiation Algorithm, Proceedings of TPHOLs2002 (Theorem Proving in Higher Order Logics), tome 2410, p.246, 2002.

G. ;. Melquiond, A. Armando, P. Baumgartner, and G. Dowek, International Joint Conference on Automated Reasoning, IJCAR 2008, tome 5195 de Lecture Notes in Artifical Intelligence, pp.2-17, 2008.

C. Moler and C. F. Van-loan, Nineteen dubious ways to compute the exponential of a matrix, Society for Industrial and Applied Mathematics (SIAM) review, vol.20, issue.4, pp.801-836, 1978.

E. H. Moore, L. Et-herman, and . Smith, A General Theory of Limits, American Journal of Mathematics, vol.44, issue.2, pp.102-121, 1922.

G. H. Moore, The axiomatization of linear algebra: 1875-1940, Historia Mathematica, vol.22, issue.3, pp.262-303, 1995.

R. E. Moore, Interval analysis, tome 4, 1966.

J. Muller, N. Michel, . Brisebarre, C. P. Florent-de-dinechin, V. Jeannerod et al., Damien Stehlé et Serge Torres: Handbook of Floating-Point Arithmetic. Birkhäuser, 2010.

A. Narkawicz, A Formal Proof Of The Riesz Representation Theorem, Journal of Formalized Reasoning, vol.4, issue.1, pp.1-24, 2011.

A. Naumowicz and A. Korni?, A brief overview of Mizar. Dans International Conference on Theorem Proving in Higher Order Logics, pp.67-72

. Springer, , 2009.

M. Neher, . Kenneth-r-jackson, S. Nedialko, and . Nedialkov, Validated solutions of initial value problems for ODEs, Applied Mathematics and Computation, vol.105, issue.1, pp.21-68, 1999.

S. F. Oberman, Floating point division and square root algorithms and implementation in the AMD-K7/sup TM/microprocessor, Proceedings 14th IEEE Symposium on Computer Arithmetic (Cat. No. 99CB36336), pp.106-115, 1999.

. Owre, J. M. Sam, N. Rushby, and . Shankar, PVS: A Prototype Verification System, 11th International Conference on Automated Deduction, pp.748-752

I. Pa?ca, A Formal Verification for Kantorovitch's Theorem, Journées Francophones des Langages Applicatifs, janvier, 2008.

I. Pa?ca, Formal Proofs for Theoretical Properties of Newton's Method, 2010.

I. Pa?ca, Formal Verification for Numerical Methods, 2010.

I. Pa?ca, Formally verified conditions for regularity of interval matrices, International Conference on Intelligent Computer Mathematics, pp.219-233

. Springer, , 2010.

L. C. Paulson, The foundation of a generic theorem prover, Journal of Automated Reasoning, vol.5, issue.3, pp.363-397, 1989.

F. Pfenning and C. Paulin-mohring, Inductively defined types in the Calculus of Constructions, International Conference on Mathematical Foundations of Programming Semantics, pp.209-228, 1989.

A. Platzer, The Complete Proof Theory of Hybrid Systems, Computer Science, pp.541-550, 2012.

J. Popio?-lek, Introduction to Banach and Hilbert spaces-part III, Journal of Formalized Mathematics, vol.3, p.1, 1991.

V. Prévosto and F. Védrine, Frama-Clang: a Frama-C front-end for C++. EuroLLVM, avril, 2014.

G. D. Quinlan, Round-off error in long-term orbital integrations using multistep methods, Celestial Mechanics and Dynamical Astronomy, vol.58, issue.4, pp.339-351, 1994.

H. A. Rademacher, On the accumulation of errors in processes of integration on high-speed calculating machines, Proceedings of a Symposium on Large Scale Digital Calculating Machinery, vol.16, pp.176-185, 1948.

J. I. Ramos, Linearization methods in classical and quantum mechanics, Physics Communications, vol.153, issue.2, pp.199-208, 2003.

N. Revol, K. Makino, and M. Berz, Taylor models and floating-point arithmetic: proof that arithmetic operations are validated in COSY, The Journal of Logic and Algebraic Programming, vol.64, issue.1, pp.135-154, 2005.
URL : https://hal.archives-ouvertes.fr/inria-00071850

L. Richardson and . Fry, The approximate arithmetical solution by finite differences with an application to stresses in masonry dams, Philosophical Transactions of the Royal Society of America, vol.210, pp.307-357, 1911.

R. D. Richtmyer, W. Et-keith, and . Morton, Difference methods for initial-value problems, 1967.

D. Rouhling, A Formal Proof in Coq of a Control Function for the Inverted Pendulum, CPP 2018 -7th ACM SIGPLAN International Conference on Certified Programs and Proofs, pp.1-14, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01639819

P. Roux, Formal Proofs of Rounding Error Bounds -With Application to an Automatic Positive Definiteness Check, Journal of Automated Reasoning, vol.57, issue.2, pp.135-156, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01091189

W. Rudin, Real and complex analysis. Tata McGraw-hill education, 2006.

S. M. Rump, F. Bünger, and C. P. Jeannerod, Improved error bounds for floating-point products and Horner's scheme. BIT Numerical Mathematics, vol.56, pp.293-307, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01137652

S. M. Rump and C. P. Jeannerod, Improved backward error bounds for LU and Cholesky factorizations, Society Journal on Matrix Analysis and Applications, vol.35, issue.2, pp.684-698, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00841361

C. Runge, Über die numerische Auflösung von Differentialgleichungen. Mathematische Annalen, vol.46, pp.167-178, 1895.

D. M. Russinoff, A Mechanically Checked Proof of IEEE Compliance of the Floating Point Multiplication, Division and Square Root Algorithms of the AMD-K7? Processor, LMS) Journal of Computation and Mathematics, vol.1, pp.148-200, 1998.

. Sandretto, Julien Alexandre dit et Alexandre Chapoutot: Validated Explicit and Implicit Runge-Kutta Methods. Reliable Computing, vol.22, 2016.

J. Sawada, Formal verification of divide and square root algorithms using series calculation, 2002.

G. Scholz and F. Scholz, First-order differential equations in chemistry, ChemTexts, vol.1, issue.1, p.1

Y. Shidama, Banach space of bounded linear operators, Formalized Mathematics, vol.12, issue.1, pp.39-48, 2004.

S. Pinote, Thomas: Investigations in Computer-Aided Mathematics: Experimentation, Computation, and Certification, 2017.

R. D. Skeel, Symplectic integration with floating-point arithmetic and other approximations, Applied Numerical Mathematics, vol.29, issue.1, pp.3-18, 1999.

G. D. Smith, Numerical solution of partial differential equations: finite difference methods, 1985.

I. Smojver and D. Ivan?evi?, Application of numerical methods in the improvement of safety of aeronautical structures, Transportation Research Procedia, vol.28, pp.164-172, 2017.

M. Sozeau and N. Oury, First-class type classes, International Conference on Theorem Proving in Higher Order Logics, pp.278-293, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00628864

M. N. Spijker, Error propagation in Runge-Kutta methods, vol.22, pp.309-325, 1996.

B. Spitters, Constructive and intuitionistic integration theory and functional analysis, 2002.

M. D. Spivak, A Comprehensive Introduction to Differential Geometry, dans A Comprehensive Introduction to Differential Geometry. Publish or Perish, vol.5, 1975.

P. H. Sterbenz, Floating point computation, 1974.

T. E. Sterne, The Accuracy of Numerical Solutions of Ordinary Differential Equations, Mathematical Tables and Other Aids to Computation, vol.7, pp.159-164, 1953.

J. B. Tatum, Physics topics: Electricity and Magnetism, 2007.

C. A. Taylor, J. R. Thomas, . Hughes, and K. Christopher, Zarins: Finite element modeling of blood flow in arteries, Computer methods in applied mechanics and engineering, vol.158, issue.1-2, pp.155-196, 1998.

J. M. Tendler, S. Dodson, and . Fields, Hung Le et Balaram Sinharoy: PO-WER4 system microarchitecture, IBM Journal of Research and Development, vol.46, issue.1, pp.5-25, 2002.

A. Trybulec, Non-Negative Real Numbers. Part I1, Journal of Formalized Mathematics, 1998.

W. Tucker, A rigorous ODE solver and Smale's 14th problem, Foundations of Computational Mathematics, vol.2, issue.1, pp.53-117, 2002.

, US Government Accountability Office: Defense Patriot Missile: Software problem led to system failure at Dhahran, Saudi Arabia, US Government Accountability Office Reports, 1992.

G. Wanner and E. Hairer, Solving ordinary differential equations II. Springer, 1996.

A. Weil, Publications de l'Institut de mathématique de l'Université de Strasbourg. Hermann & cie, Sur les espacesà structure uniforme et sur la topologie générale, 1938.

. Wenzel, Makarius: Isabelle/Isar-a generic framework for human-readable proof documents. From Insight to Proof-Festschrift in Honour of Andrzej Trybulec, vol.10, pp.277-298, 2007.

O. C. Zienkiewicz, L. Robert, J. Z. Taylor, and . Zhu, The finite element method: its basis and fundamentals, 2013.

. /\-h-in, /\ (w1-we1) in [-1b-53,1b-53] /\ w2 -/ we2 in [-6145b-64,6145b-64] /\ (w2-we2) in [-2b-53

, 18 2.2 Tableaux de Butcher de méthodes de Runge-Kutta explicites et implicites 33

. .. Tableau-de-butcher-de-la-méthode-d'euler, , p.34

. .. Tableau-de-butcher-de-la-méthode-rk2, , p.34

, Région de stabilité des méthodes de Runge-Kutta explicites de l'ordre 1 (i.e. Euler)à l'ordre 4

. .. , Borne d'erreur d'arrondi et erreur signée pour RK2, p.95

, Exemple de RK2 : erreur de méthode (en rouge), borne d'erreur d'arrondi (en bleu) et erreur signée (en jaune) sur uneéchelle logarithmique, p.96

.. .. Filtres,

.. .. Hiérarchie-algébrique-de-coquelicot,

, Hiérarchie algébriqueétendue aux espaces PreHilbert et Hilbert, p.133

, Projetés orthogonaux sur un sous-espace ? et sur son complément orthogonal ? ?

. .. , Liste des tableaux 5.1Étapes pour borner l'erreur locale de la méthode RK2, p.85

, Synthèse des constantes d'erreurs locales pour Euler

V. Valeurs-de,

. .. Sous-Étape, 117 6.2Étapes pour borner l'erreur locale de la méthode RK2

?. .. ,

R. .. ,

?. .. ,

?. .. Rd,

?. .. Rn,

?. .. Ru,

?. .. Rz,

. .. ?-[?],

.. .. ,

?. .. ,

?. .. ,

?. .. ,

?. .. ,

. .. Succ-(),

.. .. ,

. .. _[-w-],

. .. _[-w-], 103 (x)_m

R. .. ,

. .. Sc,

. .. Acsl,

. .. Acsl++, 162 analyse d'erreurs par composantes

T. D. Banach-ne?as-babu?ka, , p.141

. .. Bateman, , p.158

B. .. Levi, , vol.20, p.66

. Brouwer and . .. Loi-de, , p.40

. .. Butcher, 32 C calcul des constructions inductives

. .. Cauchy, , p.31

. .. Cauchy-schwarz, , p.134

.. .. Céa,

. .. Cholesky and . .. Isabelle, 49 classe de type d

. .. Completenormedmodule, , p.129

. .. Completespace, 129 complétude (d'un sous-espace) 131, 151 composante fonctionnelle, p.161

. .. Coq, , vol.10, p.24

B. .. Coquelicot, 26, 125 couche d'abstraction, p.17

C. Curry-howard and . .. De-;-d-décade, 47 equation différentielle aux dérivées partielles, vol.57, p.91

.. .. ,

&. .. Euler, , vol.34, p.115

.. .. Fatou-lebesgue,

B. .. Flocq,

-. .. Frama, , vol.161, p.162

. .. Frama-clang,

. .. Functionalextensionality, , vol.29, p.83

. .. Gauss-legendre, 44 grain fin, analyseà, p.44

. Gram-schmidt,

.. .. Hilbert,

. .. Hilbert, , vol.50, p.51

. .. Hol-light,

/. Isabelle and . .. Hol, , vol.124, p.152

. .. Intuitionniste-.-.-.-.-.-.-.-.-.-.-.-.-.-;-m-magnitude, ). Mathcomp, and .. .. , , vol.10, p.159

. .. Mizar,

. .. Modulespace, , p.128

B. .. Mpfr, 44, 94 N NaN (Not-a-Number), vol.18

. .. Newton-cotes, 44 nombre d'étages, d'une méthode, vol.105, p.138

. .. Normedmodule, 144 O opérateur de nettoyage scalaire

, 18 prédécesseur, d'un nombre flottant, p.20

. .. Prehilbert,

. .. Proofirrelevance, , vol.124

. .. Pvs,

. Riesz, , vol.145

. .. Riesz-fréchet, , p.144

T. D. Riesz-markov-kakutani, , p.51

. .. Ring, , vol.73, p.116

M. .. Rk4, , vol.35, p.73

. Runge-kutta and . .. Méthode-de-.-.-;-de, 11, 32, 71 S sensibilité, analyse, p.41

. .. Simulink, , vol.71, p.43

. .. Sterbenz, 14, 127 successeur, d'un nombre flottant

O. .. Twosum,

.. .. Uniformspace,

. .. Validsdp,