H. X. Guo, B. T. Lu, and J. L. Luo, Study on passivation and erosion-enhanced corrosion resistance by Mott-Schottky analysis Electrochimica Acta, vol.52, pp.1108-1116, 2006.

H. R. Habibi and . Bajguirani, The effect of ageing upon the microstructure and mechanical properties of type 15-5 PH stainless steel, Materials Science and Engineering, vol.338, pp.142-159, 2002.

N. Hakiki, S. Boudin, B. Rondot, M. Da-cunha, and . Belo, The electronic structure of passive films formed on stainless steel, Corrosion Science, pp.1809-1822, 1995.

C. N. Hsiao, C. S. Chiou, and J. R. Yang, Aging reactions in a 17-4 PH stainless steel, Materials Chemistry and Physics, vol.74, pp.134-142, 2002.

H. S. Khatak and B. Raj, Corrosion of Austenitic Stainless Steel, Mechanism, Mitigation and Monitoring. Edition Narosa, Chapitre, vol.5, pp.133-134, 2002.

H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino, Crystallographic features of lath martensite in low-carbon steel, Acta Materialia, vol.54, pp.1279-1288, 2006.

G. V. Kurdjumov, Journal of Iron Steel Institut, pp.26-48, 1960.

O. Lavigne, Thèse : Caractérisation des films passifs pour la définition de nouveaux matériaux : Application aux plaques bipolaires métalliques des systèmes PEMFCs, 2009.

T. Maki, Microstructure and Mechanical Behaviour of Ferrous Martensite, Materials Science, vol.56, pp.157-168, 1990.

R. Neuhaus, P. Buchhagen, C. Schwink, and S. Metall, , vol.23, pp.779-784, 1989.

C. P. O'hagana, B. J. O'brienc, S. B. Leen, and R. F. Monaghan, A microstructural investigation into the accelerated corrosion of P91steel during biomass co-firing, Corrosion Science, vol.109, pp.101-114, 2016.

J. Pe?i?ka, A. Dronhofer, and G. Eggeler, Material Science Engineering, pp.176-180, 2004.

K. Reimann and . Wurschum, Distribution of internal strains in nanocrystalline Pd studied by x-ray diffraction, Journal of Applied Physics, pp.7186-7192, 1997.

P. Souliac, B. Bonnefois, and E. Soutif, Chaudronnerie en aciers inoxydables, 2007.

T. L. Sudesh, L. Wijesinghe, and D. J. Blackwood, Photocurrent and capacitance investigations into the nature of the passive films on austenitic stainless steels, Corrosion Science, vol.50, pp.23-34, 2008.

T. Watanabe, The impact of grain boundary character distribution on fracture in polycrystals, Materials Science and Engineering, vol.176, pp.39-49, 1994.

D. Zou, R. Liu, J. Li, W. Zhang, D. Wang et al., Corrosion Resistance and Semiconducting Properties of Passive Films Formed on 00Cr13Ni5Mo2 Supermartensitic Stainless Steel in Cl? Environment, Journal of iron and steel, pp.630-636, 2014.

;. O. Références and . Bartier, Thèse : Effet d'une nitruration par plasma d'ions sur la fragilisation par l'hydrogène d'un acier à haute résistance, 1996.

O. Butenko, Y. Lakhtin, ;. Cabo, S. P. Brühl, L. S. Vaca et al., Plasma nitriding of a precipitation hardening stainless steel to improve erosion and corrosion ressitance, Metal Science and Heat Treatment, vol.11, pp.446-448, 1969.

M. Campos, S. Dionysio-de-souza, L. Martinez, and M. Olzon-dionysio, Study of Expanded Austenite Formed in Plasma Nitrided AISI 316L Samples, Using Synchrotron Radiation Diffraction. Materials Research, pp.1302-1308, 2014.

R. Cardoso, C. Scheuer, and S. Brunatto, Stainless Steel: Low-Temperature Nitriding Kinetics Encyclopedia of Iron, Steel, and Their Alloys, pp.2153-2168, 2016.

P. Cavaliere, A. Perrone, and A. Silvello, Multi-objective optimization of steel nitriding. Engineering Science and Technology, an International Journal, vol.19, pp.292-312, 2016.

E. De-las-heras, G. Ybarra, D. Lamas, A. Cabo, E. L. Dalibon et al., Plasma nitriding of 316L stainless steel in two different N2-H2 atmospheres -Influence on microstructure and corrosion resistance, Surface & Coatings Technology, pp.47-54, 2017.

C. Domain, C. S. Becquart, and . Foct, Ab initio study of foreign interstitial atom. C, N. interactions with intrinsic point defects in ? -Fe, Physical Review B, vol.69, pp.114112-114113, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01828685

G. Fallot, Thèse : Rôle du carbone lors de la nitruration d'aciers de construction et influence sur les propriétés mécaniques, 2015.

A. Farghali and T. Aizawa, Phase Transformation Induced by High Nitrogen Content Solid Solution in the Martensitic Stainless Steels, Materials Transactions, vol.58, issue.4, pp.697-700, 2017.

A. Farghali and T. Aizawa, Nitrogen Supersaturation Process in the AISI420 Martensitic Stainless Steels by Low Temperature Plasma Nitriding, ISIJ International, 2018.

L. Ferreira, . Brunattoa, and . Cardosoa, Martensitic Stainless Steels Low-temperature Nitriding: Dependence of Substrate Composition, Materials Research, pp.622-627, 2015.

C. E. Foerster, F. C. Serbena, S. L. Silva, C. M. Lepienski, C. J. Siqueira et al., Mechanical and tribological properties of AISI 304 stainless steel nitrided by glow discharge compared to ion implantation and plasma immersion ion implantation, Nuclear Instruments and Methods in Physics Research B, vol.257, pp.732-736, 2007.

R. Frandsen, T. Christiansen, and M. Somers, Simultaneous surface engineering and bulk hardening of precipitation hardening stainless steel, Surface & Coatings Technology, vol.200, pp.5160-5169, 2006.

D. Hoeft, B. A. Latella, and K. T. Short, Residual stress and cracking in expanded austenite layers, Journal of Physics: Condensed Matter, vol.17, pp.3547-3558, 2005.

, Chapitre 3 -Impact des paramètres de nitruration ionique sur l'état métallurgique des aciers inoxydables martensitiques 180

K. Jack, The iron-nitrogen system: the preparation and crystal structures of nitrogen-austenite (?) and Nitrogen-Martensite (??), Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, pp.200-215, 1951.

S. K. Kim, J. S. Yoo, J. M. Priest, and M. P. Fewell, Characteristics of martensitic stainless steel nitrided in a low-pressure RF plasma, Surface and Coatings Technology, pp.380-385, 2003.

G. Li, J. Wang, C. Li, Q. Peng, J. Gao et al., Microstructure and dry-sliding wear properties of DC plasma nitrided 17-4 PH stainless steel, Thèse : Caractérisations métallurgiques et mécaniques de couches nitrurées, relation microstructure comportement. ENSAM, vol.266, pp.1964-1970, 1998.

Y. Oh and J. Hong, Nitrogen effect on precipitation and sensitization in cold-worked Type 316L (N) stainless steels, Journal of Nuclear Materials, vol.278, pp.242-250, 2000.

T. Sourmail, Precipitation in creep resistant austenitic stainless steels, Materials Science and Technology, pp.1-14, 2001.

J. Stinville, Thèse : Evolution des microstructures et textures locales par nitruration plasma de l'acier 316L. Repercussion sur sa durabilité en fatigue, 2006.

, Steel Heat Treatment Handbook, p.95, 2006.

, Steel Heat Treatment Handbook, p.731, 2006.

D. N. Wasnik, G. K. Dey, V. Kain, and I. Samajdar, Precipitation stages in a 316L austenitic stainless steel Scripta Materialia, vol.49, pp.135-141, 2003.

C. Weisbecker, Thèse : Amélioration des solveurs multifrontaux à l'aide de représentations algébriques rang-faible par blocs. INP Toulouse, 2013 1.1 -Effet de la température sur le comportement à la corrosion de l'acier

, 190 1.3 -Evolution du comportement en corrosion en fonction de la profondeur

. .. Synthèse, 205 2.1 -Durcissement du matériau lors de la nitruration

. .. Synthèse,

. .. ,

. .. Synthèse,

. .. Synthèse-générale,

. .. Références,

, Chapitre 4 -Propriétés

, En surface (les analyses ont précédemment été présentées dans le paragraphe 1)

, Chapitre 4 -Propriétés 198

, En sous-couche : zone transitoire autour de la limite de solubilité de l'azote, où les phases ?'-Fe4N, ?-Fe2-3N

. Dans, Ceci sera vérifié dans notre cas par des analyses de type SEM-EBSD et nous nous questionnerons s'il existe un impact de ce gradient sur la réactivité électrochimique

, Après le front de diffusion du carbone : l'azote ne se trouve plus saturé en solution solide dans cette zone, n'entraînant pas de précipitation au chrome. L'homogénéité semblant meilleure, une meilleure résistance à la corrosion est attendue

S. Dans-le, des résultats présentent l'impact de la température du traitement de nitruration sur la microstructure de l'alliage de référence

;. S. Références, H. Ahn, and . Kwon, Effects of solution temperature on electronic properties of passive film formed on Fe in pH 8.5 borate buffer solution, Electrochimica Acta, pp.3347-3353, 2004.

H. Aydin and A. Bayram, Effect of different nitriding processes on the friction coefficient of 304 austenitic and 420 martensitic stainless steels. Industrial Lubrication and Tribology, pp.27-36, 2013.

S. P. Brühl, R. Charadia, S. Simison, D. G. Lamas, and A. Cabo, Corrosion behavior of martensitic and precipitation hardening stainless steels treated by plasma nitriding, Surface & Coatings Technology, vol.204, pp.3280-3286, 2010.

R. Cardoso, C. Scheuer, and S. Brunatto, Stainless Steel: Low-Temperature Nitriding Kinetics Encyclopedia of Iron, Steel, and Their Alloys, pp.2153-2168, 2016.

P. Corengia, F. Walther, G. Ybarra, S. Sommadossi, R. Corbari et al., Friction and rolling-sliding wear of DC-pulsed plasma nitrided AISI 410 martensitic stainless steel, Wear, vol.260, p.479, 2006.

G. Fallot, Thèse : Rôle du carbone lors de la nitruration d'aciers de construction et influence sur les propriétés mécaniques, 2015.

A. Farghali and T. Aizawa, Phase Transformation Induced by High Nitrogen Content Solid Solution in the Martensitic Stainless Steels, Materials Transactions, pp.697-700, 2017.

A. Fattah and S. Vafaeian, Comparison of electrochemical behaviour between coarse-grained and fine-grained AISI 430 ferritic stainless steel by Mott-Schottky analysis and EIS measurement, Journal of alloys and compounds, vol.639, pp.201-307, 2015.

M. Júlia, J. Ferreira, M. Da-cunha, and . Belo, Influence of the Chemical Composition of Stainless Steels on the Electronic Structure of Passive Films Formed in Artificial Sea Water, Portugaliae Electrochimica Acta, vol.22, pp.263-278, 2004.

S. K. Kim, J. S. Yoo, J. M. Priest, M. P. Fewell, ;. D. Large et al., Influence of stress-strain field on the dissolution process of polycrystalline nickel in H2SO4 solution: An original in situ method, Surface and Coatings Technology, vol.52, pp.7746-7753, 2003.

O. Lavigne, Thèse : Caractérisation des films passifs pour la définition de nouveaux matériaux : Application aux plaques bipolaires métalliques des systèmes PEMFCs, 2009.

S. Ningshen, U. Mudali, V. K. Mittal, and H. S. Khatak, Semiconducting and passive film properties of nitrogen-containing type 316LN stainless steels, Corrosion Science, vol.49, pp.481-496, 2007.

K. D. Ralston and N. , Birbilis. Effect of Grain Size on Corrosion: A Review. CORROSION, pp.2-13, 2010.

M. Sahal, J. Creus, R. Sabot, and X. Feaugas, Consequences of plastic strain on the dissolution process of polycrystalline nickel in H2SO4 solution, Scripta Materialia, pp.869-873, 2004.

, Chapitre 4 -Propriétés 222

M. Sahal, J. Creus, R. Sabot, and X. Feaugas, The effects of dislocation patterns on the dissolution process of polycrystalline nickel, Acta Materialia, vol.54, pp.2157-2167, 2006.

N. Sato, Anodic Breakdown of Passive Films on Metals, J. Electrochem. Soc, vol.129, p.255, 1982.

M. Somers, E. J. Mittemeijer-;-j-c, and . Stinville, Thèse : Evolution des microstructures et textures locales par nitruration plasma de l'acier 316L. Répercussion sur sa durabilité en fatigue, ASM Heat Treatment and Surface Engineering Conference, 1991.

U. K. Viswanathan, Effects of Aging on the Microstructure of 17-4 PH Stainless Steel, Materials Science and Engineering, A, vol.104, pp.181-189, 1988.

X. Wang, M. Yan, C. Zhang, Y. Zhang, B. Bai et al., Effects of the treating time on microstructure and erosion corrosion behaviour of salt-bath-nitrided 17-4PH stainless steel, Metals & Materials Society and ASM International, vol.44, pp.1010-1016, 2013.

D. N. Wasnik, G. K. Dey, V. Kain, and I. Samajdar, Precipitation stages in a 316L austenitic stainless steel, Scripta Materialia, pp.135-141, 2003.

Y. Xi, D. Liu, and D. Han, Improvement of corrosion and wear resistances of AISI 420 martensitic stainless steel using plasma nitriding at low temperature, Surface & Coatings Technology, vol.202, pp.2577-2583, 2008.

L. Zhang, Y. Jiang, B. Deng, W. Zhang, J. Xua et al., Effect of aging on the corrosion resistance of 2101 lean duplex stainless steel, Materirals Characterization, vol.60, pp.1522-1528, 2009.

D. Zou, R. Liu, J. Li, W. Zhang, D. Wang et al., Corrosion Resistance and Semiconducting Properties of Passive Films Formed on 00Cr13Ni5Mo2 Supermartensitic Stainless Steel in Cl -Environment, Journal of iron and steel, pp.630-636, 2014.

;. J. Références and . ?wiek, Plasma nitriding as a prevention method against hydrogen degradation of steel, Journal of achievements in materials and manufacturing engineering, pp.25-32, 2009.

J. ?wiek and M. Baczyñska, Behaviour of nitrided layers subjected to influence of hydrogen, Archives of Materials Science and Engineering, pp.30-41, 2010.

F. Fernandes, C. Picone, G. Totten, and L. Casteletti, Corrosion Behavior of Plasma Nitrided and Nitrocarburised Supermartensitic Stainless Steel, Materials Research, pp.1-9, 2018.

W. Li, X. Zhu, C. Wang, and X. Jin, Effect of S-phase on the hydrogen induced phase transition and hydrogen embrittlement susceptibility in AISI 304 stainless steel, Materials Today: Proceedings, vol.2, pp.691-695, 2015.

T. Michler, Influence of plasma nitriding on hydrogen environment embrittlement of 1.4301 austenitic stainless steel, Surface & Coatings Technology, vol.202, pp.1688-1695, 2008.