, LOENIE-V1 long counter and efficiency of its 17 3 He tubes, p.107

.. .. Loenie-v2-detector,

, H reaction of a 3 He tube as a function of the incident neutron energy and of the distance from the center

L. Tripoli4-r-simulation-of and . .. Long-counter, 108 6.8 Nomenclature of holes (H), detectors (H), quadrants (G) and channels (CH)

. .. , Counting rate of the 16 3 He tubes sorted by their ring, p.110

. .. , 111 6.11 CFP12 n. 2328, produced at the Laboratory of Dosimetry, Pulse Height Amplitude of the 16 3 He, together with their sum

, Opening and closing steps of the fast shutter

, One of the frames used for the estimation of the fast-shutter speed, p.113

. .. , 114 6.16 Signal transformation in the analog chain, taken from [9, p.115

. .. Caen-v1724-digitizer-;-], , p.115

. Block and . Dpp-pha,

, When the latter crosses the zero, the time stamp is registered and the trigger is sent to the TF, which starts the trapezoidal shaping of the pulse, DPP filters, taken from [67] The TT filter transforms the tail pulse into a bipolar pulse

, Details of the DPP filters, taken from [67]

]. .. , , vol.118

, Pictures of the acquisition system

, The three spectra are shown, corresponding to irradiation, decay, and background phases, Pulse Height Amplitude of one of the four inner counters

. .. , Decay curve in the original and in the optimized mesh, p.126

, Distribution of arrival times for a Poissonian process

. .. , Distribution of arrival time in one of the inner tubes, p.129

. .. Pulser, , p.130

.. .. Dead-time-correction,

.. .. Anisotropy,

, Comparison between simulation and measurement of the efficiency and of the ring ratio for NPL sources

, Distribution of the starting and ending point of the irradiation phase, p.136

, Distribution of the average counting rate during the irradiation phase of the 168 runs of cycle 1

. .. , 139 7.1 From a binary file to a proper decay curve, p.122

. .. Loss-of-counts-correction, 127 7.2.2 Estimation of the electronic dead time with the distribution of arrival times

. .. Pulser, 129 7.2.4 Check on the quality of the correction: ring ratio test, p.131

. .. , Absolute efficiency calibration at NPL, p.133

. .. , 136 7.5.1 F from the spectroscopy of the fission chamber and of a dosimeter137 7.5.2 F from the fission chamber signal

.. .. Alden, , p.142

T. Caen and . For-discovery, , pp.2019-2022

, Chart of Nuclides, pp.2019-2025

P. Wiener and . Electronics, , pp.2019-2022

. Endf/b-vii, 0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology, vol.10, 2006.

, Global Enviroment Facility Evaluation Office, vol.10, 2008.

, The JEFF-3.1/-3.1.1 radioactive decay data and fission yields sub-libraries, 2009.

, Digital Pulse Processing in Nuclear Physics, 2011.

A. Santamarina, Validation of lwr reactivity versus reactor period. feedback on the delayed neutron data (? i , ? i ), Proceedings of the PHYSOR, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02416252

B. Habert, Retroactive Generation of Covariance Matrix of Nuclear Model Parameters Using Marginalization Techniques, Nuclear Science and Engineering, vol.166, pp.276-287, 2010.

M. C. Brady, Evaluation and Application of Delayed Neutron Precursor Data, 1989.

M. C. Brady and T. R. England, , 1989.

C. Jean, Status of conrad, a nuclear reaction analysis tool, International Conference on Nuclear Data for Science and Technology, 2007.

C. Jean, A Monte Carlo Approach to Nuclear Model Parameter Uncertainties Propagation, Nuclear Science and Engineering, vol.161, pp.363-370, 2009.

C. Jean, Evaluation of Neutron-induced Cross Sections and their Related Covariances with Physical Constraints, Nuclear Data Sheets, vol.148, pp.383-419, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01758114

C. B. Besant, Absolute yields and group constants of delayed neutron in the fast fission of 235 U, 238 U and 239 Pu, Journal of the British Nuclear Energy Society, vol.16, issue.2, pp.161-176, 1977.

D. Foligno, Summation calculation of delayed neutron yields for 235 U, 238 U and 239 Pu, based on various fission yield and neutron emission probability databases, EPJ Web of Conferences, vol.193, issue.03004, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02417723

D. Foligno, Uncertainty and covariances of the newly derived 8-groups delayedneutrons abundances set, EPJ Nuclear Science and Technology, vol.4, issue.31, 2018.
URL : https://hal.archives-ouvertes.fr/cea-02305439

H. S. Smith, D. Kreiner, N. Reilly, and . Ensslin, Passive Nondestructive Assay of Nuclear Materials. Nuclear Regulatory Commission, 1991.

A. and J. Rowlands, Conclusions concrning the delayed neutron data for the major actinides, vol.41, pp.391-412, 2002.

A. and D. E. Ivanov, SNEAK 7A and 7B Pu-fueled fast critical assemblies in the Karlsruhe fast critical facility, Nuclear Science Committee, 2006.

T. R. England, LA-11534T(89), 1989.

A. Chebboubi, Impact of fifrelin input parameters on fission observables, 6 th Workshop on Nuclear Fission and Spectroscopy of Neutron-Rich Nuclei, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02417755

S. K. Ayazuddin, Reactor transfer function measurement at PARR by neutron noise analysis, year = 1984, p.3

D. Abriola, Beta-delayed neutron emission evaluation, year =, INDC International Nuclear Data Committee, p.12, 2011.

D. A. Brown, Endf/b-viii.0: The 8 th major release of the nuclear reaction data library with cielo-project cross sections, new standards and thermal scattering data, Nuclear Data Sheets, vol.148, pp.1-142, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01758071

E. J. Henley, Advances in Nuclear Science and Technology -volume, vol.11, 1979.

I. Kodeli, Oecd/nea intercomparison of deterministic and monte carlo crosssection sensitivity codes using sneak-7 benchmarks, 2016.
URL : https://hal.archives-ouvertes.fr/cea-02431813

K. Skrable, A general equation for the kinetics of linear first order phenomena and suggested applications, Health Physics, vol.27, issue.1, pp.155-157, 1974.

L. Mathieu, New neutron long-counter for delayed neutron investigations with the LOHENGRIN fission fragment separator, Journal of Instrumentation, vol.7, issue.8, pp.8029-08029, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00749652

P. Leconte, Reactor transfer function measurement at PARR by neutron noise analysis, year = 1984, p.3

M. B. Chadwick, Endf/b-vii.1 nuclear data for science and technology: Cross sections, covariances, fission product yields and decay data, Nuclear Data Sheets, vol.112, pp.2887-2996, 2011.

A. Santamarina, Calculation of lwr ? ef f kinetic parameter. validation on the mistral experiments, Annals of Nuclear Energy, vol.48, pp.51-59, 2012.

V. M. Piksaikin, Energy Dependence of Relative Abundances and Periods of Delayed Neutrons from Neutron-Induced Fission of 235 U, 238 U, 239 Pu in 6-and 8-group model representation, Progress in Nuclear Energy, vol.41, issue.1-4, pp.203-222, 2002.

W. B. Wilson, A manual for cinder'90 version 07.4 codes and data, 2007.

D. Foligno and J. Lebrat, Bateman-solver validation with darwin, vol.5, 2018.

G. Rudstam, Delayed Neutron Data for the Major Actinides, vol.6, 2002.

G. D. Spriggs, In-Pile Measurement of the Decay Constants and Relative Abundance of Delayed Neutrons, Nuclear Science and Engineering, vol.114, issue.4, pp.342-351, 1993.

J. M. Campbell, G. D. Spriggs, and V. M. Piksaikin, An 8-group delayed neutron model based on a consistent set of half-lives, Progress in Nuclear Energy, vol.41, issue.1-4, pp.223-251, 2002.

G. R. Keepin, Delayed Neutrons from Fissionable Isotopes of Uranium, Plutonium, and Thorium, Physical Review, vol.107, issue.4, pp.1044-1049, 1957.

, Data Formats and Procedures for the Evaluated Nuclear Data File ENDF/B-VI and ENDF/B-VII, vol.6, 2009.

J. K. Shultis, Fundamentals of Nuclear Science and Engineering Third Edition, 2016.

K. Schmidt, Energy Dependence of Fission Product Yields from 235 U, 238 U and 239 Pu for Incident Neutron Energies Between 0.5 and 14.8 MeV, Nuclear Data Sheets, vol.131, pp.319-356, 2016.

K. Schmidt, General description of fission observables: GEF Model Code, Nuclear Data Sheets, vol.131, pp.107-221, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01241907

G. F. Knoll, Radiation Detection and Measurement -Third Edition, 2000.

K. S. Krane, Introductory Nuclear Physics, 1988.

W. R. Leo, Techniques for Nuclear and Particle Physics Experiments. A How-to Approach, CH-1015, 1987.

M. C. Brady and T. R. England, Delayed Neutrons Data and Group Parameters for 43 Fissioning Systems, Nuclear Science and Engineering, vol.103, pp.129-149, 1989.

R. W. Mills, Fission Product Yield Evaluation, vol.3, 1995.

M. S. Krick-&-a and . Evans, The Measurement of Total Delayed-Neutron Yields as a Function of the Energy of the Neutron Inducing Fission, Nuclear Science and Engineering, vol.47, issue.3, pp.311-318, 1972.

A. L. Nichols, Nuclear data requirements for decay heat calculations, Workshop on Nuclear Reaction Data and Nuclear Reactors: Physics, Design and Safety, p.64, 2002.

, The Essential CANDU, A Textbook on the CANDU Nuclear Power Plant Technology -Chapter 5 -Reactor Dynamics, 2016.

P. Schillebeeckx, Determination of Resonance Parameters and their Covariances from Neutron Induced Reaction Cross Section Data. Nuclear Data Sheets, vol.113, pp.3054-3100, 2012.

J. R. Taylor, An introduction to Error Analysis. The study of uncertainties in physical measurements -second edition, University Science Books, 1982.

R. J. Tuttle, Review of delayed neutron yields in nuclear fission, Proceedings of the consultants' meeting on delayed neutron properties, 1979.

E. Rossi, Characterisation of the Spatial Resolution and the Gamma-ray Discrimination of Helium-3 Proportional Counters, 2015.

A. and P. S. Usman, Radiation detector deadtime and pile up: a review of the status of science, Nuclear Engineering and Technology, vol.50, pp.1006-1016, 2018.

L. San-felice, R. Eschbach, and P. Bourdot, Experimental validation of the dar-win2.3 package for fuel cycle applications, Nuclear Technology, vol.184, issue.2, pp.217-232, 2013.

T. Williams, On the choice of delayed neutron parameters for the analysis of kinetics experiments in 235U systems, Annals of Nuclear Energy, vol.23, issue.15, pp.1261-1265, 1996.

K. D. Talley, Beta-Delayed Neutron Data and Models for SCALE, vol.12, 2016.

N. Terranova, Covariance Evaluation for Nuclear Data of Interest to the Reactivity Loss Estimation of the Jules Horowitz Material Testing Reactor, 2016.

B. Pfeiffer, Status of delayed-neutron precursor data: half-lives and neutron emission probabilities, vol.41, pp.39-69, 2002.

G. Audi, The nubase evaluation of nuclear and decay properties, Nuclear Physics A, vol.729, issue.1, pp.3-128, 2003.
URL : https://hal.archives-ouvertes.fr/in2p3-00020241

J. Katakura, Development of jendl fp decay data file, Journal of Nuclear Science and Technology, vol.39, issue.sup2, pp.444-449, 2000.

R. Capote, Ripl -reference input parameter library for calculation of nuclear reactions and nuclear data evaluations, Nuclear Data Sheets, vol.110, issue.12, pp.3107-3214, 2009.

C. Tintori, Digital Pulse Processing for Physics Applications, pp.2019-2025

A. Tobias, Decay heat, Progress in Nuclear Energy, vol.5, pp.1-93, 1980.

V. M. Piksaikin, Measurements of periods, relative abundances and absolute total yields of delayed neutrons from fast neutron induced fission of 235 u and 237 np, International Conference on Nuclear Data for Science and Technology, 1998.

V. Zammit-averlant, Validation Integrale des Estimations du Parametre Beta Effectif pour les Reacteurs MOX et Incinerateurs, 1998.