C. R. Anderson, E. O. Jensen, D. J. Llewellyn, E. S. Dennis, and W. J. Peacock, A new hemoglobin gene from soybean: a role for hemoglobin in all plants, Proceedings of the National Academy of Sciences of the United States of America, vol.93, pp.5682-5687, 1996.

C. A. Appleby, The origin and functions of haemoglobin in plants, Science Progress, vol.76, pp.365-398, 1992.

R. Bari, B. D. Pant, M. Stitt, and W. Scheible, PHO2, MicroRNA399, and PHR1 Define a Phosphate-Signaling Pathway in Plants, Plant Physiology, vol.141, pp.988-999, 2006.

E. Baudouin, L. Pieuchot, G. Engler, N. Pauly, and A. Puppo, Nitric oxide is formed in Medicago truncatula-Sinorhizobium meliloti functional nodules, Molecular plant-microbe interactions, vol.19, pp.970-975, 2006.

C. A. Appleby, Leghemoglobin and rhizobium respiration, Annual Review of Plant Physiology, vol.35, pp.443-478, 1984.

C. A. Appleby, The origin and functions of haemoglobin in plants, Science Progress, vol.76, 1992.

, Molecular Microbiology, vol.59, pp.1704-1713

J. Leach, M. Keyster, D. Plessis, M. Ludidi, and N. , Nitric oxide synthase activity is required for development of functional nodules in soybean, Journal of Plant Physiology, vol.167, p.1584, 2010.

G. C. Pagnussat, M. Simontacchi, S. Puntarulo, and L. Lamattina, Nitric Oxide Is Required for Root Organogenesis, Plant Physiology, vol.129, pp.954-956, 2002.

M. Parani, S. Rudrabhatla, R. Myers, H. Weirich, B. Smith et al.,

, Microarray analysis of nitric oxide responsive transcripts in Arabidopsis, Plant Biotechnology Journal, vol.2, pp.359-366

R. Pathania, N. K. Navani, A. M. Gardner, P. R. Gardner, and K. L. Dikshit, Nitric oxide scavenging and detoxification by the Mycobacterium tuberculosis haemoglobin, HbN in Escherichia coli. Molecular Microbiologyr, vol.45, pp.1303-1314, 2002.

M. Perazzolli, P. Dominici, M. C. Romero-puertas, E. Zago, J. Zeier et al.,

M. Delledonne, Arabidopsis nonsymbiotic hemoglobin AHb1 modulates nitric oxide bioactivity, The Plant cell, vol.16, pp.2785-94, 2004.

L. Perchepied, C. Balagué, C. Riou, C. Claudel-renard, N. Rivière et al., Nitric Oxide Participates in the Complex Interplay of Defense-Related Signaling Pathways Controlling Disease Resistance to Sclerotinia sclerotiorum in Arabidopsis thaliana, Mol Plant-Microbe Interact, vol.23, pp.846-860, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00697824

P. Guerra, J. C. Coussens, G. , D. Keyser, A. De-rycke et al., Comparison of Developmental and Stress-Induced Nodule Senescence in Medicago truncatula, Plant Physiology, vol.152, pp.1574-1584, 2010.

X. Perret, C. Staehelin, and W. J. Broughton, Molecular Basis of Symbiotic Promiscuity, Microbiology and Molecular Biology Reviews, vol.64, pp.180-201, 2000.

M. Perutz, Hoppe-Seyler, Stokes and haemoglobin, Biol Chem Hoppe Seyler, vol.376, p.449, 1995.

M. F. Perutz, M. G. Rossmann, A. Cullis, H. Muirhead, G. Will et al., Structure of Haemoglobin: A Three-Dimensional Fourier Synthesis at 5.5-Å. Resolution, Obtained by X-Ray Analysis, Nature, vol.185, p.416, 1960.

A. Pesce, M. Couture, S. Dewilde, M. Guertin, K. Yamauchi et al.,

M. , A novel two-over-two alpha-helical sandwich fold is characteristic of the truncated hemoglobin family, The EMBO journal, vol.19, pp.2424-2434, 2000.

O. Pierre, J. Hopkins, M. Combier, F. Baldacci, G. Engler et al., Involvement of papain and legumain proteinase in the senescence process of Medicago truncatula nodules, New Phytologist, vol.202, pp.849-863, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02138588

Y. Pii, M. Crimi, G. Cremonese, A. Spena, and T. Pandolfini, Auxin and nitric oxide control indeterminate nodule formation, Bmc Plant Biology, vol.7, 2007.

E. Planchet, J. Gupta, K. Sonoda, M. Kaiser, and W. M. , Nitric oxide emission from tobacco leaves and cell suspensions: rate limiting factors and evidence for the involvement of mitochondrial electron transport, The Plant Journal, vol.41, pp.732-743, 2005.

W. Polcyn and R. Luci?ski, Functional similarities of nitrate reductase from yellow lupine bacteroids to bacterial denitrification systems, Journal of Plant Physiology, vol.158, pp.829-834, 2001.

A. Polverari, B. Molesini, M. Pezzotti, R. Buonaurio, M. Marte et al., Nitric Oxide-Mediated Transcriptional Changes in Arabidopsis thaliana, Molecular Plant-Microbe Interactions, vol.16, pp.1094-1105, 2003.

J. Priestley, Observations on different kinds of air, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.62, pp.147-264, 1772.

S. G. Pueppke and W. J. Broughton, Rhizobium sp. Strain NGR234 and R. fredii USDA257, 1999.

, Share Exceptionally Broad, Nested Host Ranges, Molecular Plant-Microbe Interactions, vol.12, pp.293-318

A. Puppo, K. Groten, F. Bastian, R. Carzaniga, M. Soussi et al., Legume nodule senescence: Roles for redox and hormone signalling in the orchestration of the natural aging process, New Phytologist, vol.165, p.683, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01943161

A. Puppo, K. Groten, F. Bastian, R. Carzaniga, M. Soussi et al., Legume nodule senescence: roles for redox and hormone signalling in the orchestration of the natural aging process, New Phytologist, vol.165, p.683, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01943161

A. Puppo, N. Pauly, A. Boscari, K. Mandon, and R. Brouquisse, Hydrogen Peroxide and Nitric Oxide: Key Regulators of the Legume-Rhizobium and Mycorrhizal Symbioses, 2013.

, Antioxidants & Redox Signaling, vol.18, pp.2202-2219

Q. Qi, Z. Guo, Y. Liang, K. Li, and H. Xu, Hydrogen sulfide alleviates oxidative damage under excess nitrate stress through MAPK/NO signaling in cucumber, Plant Physiology and Biochemistry, vol.135, pp.1-8, 2019.

Z. L. Qu, N. Q. Zhong, H. Y. Wang, A. P. Chen, G. L. Jian et al., Ectopic expression of the cotton non-symbiotic hemoglobin gene GhHbd1 triggers defense responses and increases disease tolerance in Arabidopsis, Plant and Cell Physiology, vol.47, pp.1058-1068, 2006.

J. Quandt and M. F. Hynes, Versatile suicide vectors which allow direct selection for gene replacement in Gram-negative bacteria, Gene, vol.127, pp.15-21, 1993.

S. R-rasul, C. Dubreuil-maurizi, O. Lamotte, E. Koen, B. Poinssot et al.,

D. and J. S. , Nitric oxide production mediates oligogalacturonide-triggered immunity and resistance to Botrytis cinerea in Arabidopsis thaliana, Plant, Cell and Environment, vol.35, pp.1483-1499, 2012.

H. Rennenberg, A. Polle, N. Martini, and B. Thoene, Interaction of sulfate and glutathione transport in cultured tobacco cells, Planta, vol.176, pp.68-74, 1988.

S. Reumann, L. Babujee, C. Ma, S. Wienkoop, T. Siemsen et al., Proteome Analysis of Arabidopsis Leaf Peroxisomes Reveals Novel Targeting Peptides, Metabolic Pathways, and Defense Mechanisms, The Plant Cell, vol.19, pp.3170-3193, 2007.

P. Ricci, P. Bonnet, J. Huet, M. Sallantin, F. Beauvais-cante et al.,

G. Michel and J. Pernollet, Structure and activity of proteins from pathogenic fungi Phytophthora eliciting necrosis and acquired resistance in tobacco, European Journal of Biochemistry, vol.183, pp.555-563, 1989.

D. Rio and L. A. , ROS and RNS in plant physiology: An overview, Journal of Experimental Botany, vol.66, pp.2827-2837, 2015.

L. A. Del-r?ó, J. Corpas, F. Barroso, and J. B. , Nitric oxide and nitric oxide synthase activity in plants, Phytochemistry, vol.65, pp.783-792, 2004.

J. K. Roberts, J. Callis, D. Wemmer, V. Walbot, and O. Jardetzky, Mechanisms of cytoplasmic pH regulation in hypoxic maize root tips and its role in survival under hypoxia, Proceedings of the National Academy of Sciences, vol.81, pp.3379-3383, 1984.

J. Roberts, P. M. Ray, N. Wade-jardetzky, and O. Jardetzky, Estimation of cytoplasmic and vacuolar pH in higher plant cells by 31P NMR, Nature, vol.283, pp.870-872, 1980.

J. Robertson, M. Warburton, and K. Farnden, Induction of glutamate synthase during nodule development in lupin, FEBS letters, vol.55, pp.33-37, 1975.

C. Roby, J. B. Martin, R. Bligny, and R. Douce, Biochemical changes during sucrose deprivation in higher plant cells. Phosphorus-31 nuclear magnetic resonance studies, Journal of Biological Chemistry, vol.262, pp.5000-5007, 1987.

P. Rockel, F. Strube, A. Rockel, J. Wildt, and W. M. Kaiser, Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro, Journal of Experimental Botany, vol.53, pp.103-110, 2002.

D. N. Rodríguez-navarro, M. S. Dardanelli, and J. E. Ruíz-saínz, Attachment of bacteria to the roots of higher plants, FEMS Microbiology Letters, vol.272, pp.127-136, 2007.

M. Rodríguez-ruiz, P. Mioto, J. M. Palma, and F. J. Corpas, S-nitrosoglutathione reductase (GSNOR) activity is down-regulated during pepper (Capsicum annuum L.) fruit ripening, Nitric Oxide, vol.68, pp.51-55, 2017.

D. B. Rolin, R. T. Boswell, C. Sloger, S. Tu, and P. E. Pfeffer, Vivo 31P NMR Spectroscopic Studies of Soybean Bradyrhizobium Symbiosis, vol.89, pp.1238-1246, 1989.

M. C. Romero-puertas, N. Campostrini, A. Mattè, P. G. Righetti, M. Perazzolli et al., Proteomic analysis of S-nitrosylated proteins in Arabidopsis thaliana undergoing hypersensitive response, Proteomics, vol.8, pp.1459-1469, 2008.

C. Rosnoblet, S. Bourque, V. Nicolas-francès, O. Lamotte, A. Besson-bard et al., NO signalling in plant immunity, Gasotransmitters in Plants: The Rise of a New Paradigm in Cell Signaling, pp.219-238, 2016.

E. Ross, L. Shearman, M. Mathiesen, Y. J. Zhou, R. Arredondo-peter et al., Nonsymbiotic hemoglobins in rice are synthesized during germination and in differentiating cell types, Protoplasma, vol.218, pp.125-133, 2001.

E. Ross, J. M. Stone, C. G. Elowsky, R. Arredondo-peter, R. Klucas et al., Activation of the Oryza sativa non-symbiotic haemoglobin-2 promoter by the cytokininregulated transcription factor, ARR1, Journal of Experimental Botany, vol.55, pp.1721-1731, 2004.

B. Roux, N. Rodde, M. F. Jardinaud, T. Timmers, L. Sauviac et al., An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser-capture microdissection coupled to RNA sequencing, Plant Journal, vol.77, pp.817-837, 2014.

T. W. Rufty, J. F. Thomas, J. L. Remmler, W. H. Campbell, and R. J. Volk, Intercellular Localization of Nitrate Reductase in Roots, Plant Physiology, vol.82, pp.675-680, 1986.

S. Rümer, K. J. Gupta, and W. M. Kaiser, Plant cells oxidize hydroxylamines to NO, Journal of experimental botany, vol.60, pp.2065-2072, 2009.

S. Rümer, J. G. Kapuganti, and W. M. Kaiser, Oxidation of hydroxylamines to NO by plant cells, Plant Signaling and Behavior, vol.4, pp.853-855, 2009.

P. Ruoff and C. Lillo, Molecular oxygen as electron acceptor in the NADH-nitrate reductase system, Biochemical and Biophysical Research Communications, vol.172, pp.1000-1005, 1990.

M. Russwurm and D. Koesling, NO activation of guanylyl cyclase, The EMBO Journal, vol.23, pp.4443-4450, 2004.

B. J. Smagghe, J. A. Hoy, R. Percifield, S. Kundu, M. S. Hargrove et al., Correlations between oxygen affinity and sequence classifications of plant hemoglobins, Biopolymers -Peptide Science Section, vol.91, pp.1083-1096, 2009.

B. J. Smagghe, I. Trent, . Jt, and M. S. Hargrove, NO Dioxygenase Activity in Hemoglobins Is Ubiquitous In Vitro, but Limited by Reduction In Vivo, PLOS ONE, vol.3, p.2039, 2008.

L. P. Solomonson and M. J. Barber, Assimilatory Nitrate Reductase: Functional Properties and Regulation, Annual Review of Plant Physiology and Plant Molecular Biology, vol.41, pp.225-253, 1990.

E. Soupène, M. Foussard, P. Boistard, G. Truchet, and J. Batut, Oxygen as a key developmental regulator of Rhizobium meliloti N2-fixation gene expression within the alfalfa root nodule, Proc Natl Acad Sci U S A, vol.92, pp.3759-3763, 1995.

S. J. De-souza, M. Long, R. J. Klein, S. Roy, L. S. et al., Toward a resolution of the introns early/late debate: Only phase zero introns are correlated with the structure of ancient proteins, Proceedings of the National Academy of Sciences, vol.95, pp.5094-5099, 1998.

A. Sowa, S. Duff, P. Guy, and R. Hill, Altering hemoglobin levels changes energy status in maize cells under hypoxia, Proceedings of the ?, vol.95, pp.10317-10338, 1998.

J. I. Sprent, Nodulation in legumes (K Botanic, London: Royal Gardens, 2001.

G. Stacey, C. Mcalvin, S. Kim, J. Olivares, and M. Soto, Effects of Endogenous Salicylic Acid on Nodulation in the Model Legumes Lotus japonicus and Medicago truncatula, CMS Symbols -Symposia on Communication for Social Development, vol.141, pp.1473-1481, 2006.

J. S. Stamler, S. Lamas, and F. C. Fang, Nitrosylation: The prototypic redox-based signaling mechanism, Cell, vol.106, pp.675-683, 2001.

J. S. Stamler, D. J. Singel, and J. Loscalzo, Biochemistry of nitric oxide and its redox-activated forms, Science, vol.258, pp.1898-902, 1992.

B. D. Stephens and C. A. Neyra, Nitrate and Nitrite Reduction in Relation to Nitrogenase Activity in Soybean Nodules and Rhizobium japonicum Bacteroids, Plant physiology, vol.71, p.731, 1983.

A. M. Stern, A. J. Hay, Z. Liu, F. A. Desland, J. Zhang et al., The NorR regulon is critical for vibrio cholerae resistance to nitric oxide and sustained colonization of the intestines, mBio, vol.3, pp.1-8, 2012.

C. Stöhr and S. Stremlau, Formation and possible roles of nitric oxide in plant roots, Journal of Experimental Botany, vol.57, pp.463-470, 2006.

C. Stöhr, F. Strube, G. Marx, W. R. Ullrich, and P. Rockel, A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite, Planta, vol.212, p.835, 2001.

R. Wang, K. Guegler, S. Labrie, and N. M. Crawford, Genomic Analysis of a Nutrient Response in Arabidopsis Reveals Diverse Expression Patterns and Novel Metabolic and Potential Regulatory Genes Induced by Nitrate, The Plant Cell, vol.12, pp.1491-1510, 2000.

Y. Y. Wang, P. K. Hsu, and Y. F. Tsay, Uptake, allocation and signaling of nitrate, Trends in Plant Science, vol.17, pp.458-467, 2012.

Y. H. Wang, L. V. Kochian, J. J. Doyle, and D. F. Garvin, Two tomato non-symbiotic haemoglobin genes are differentially expressed in response to diverse changes in mineral nutrient status, Plant, Cell and Environment, vol.26, pp.673-680, 2003.

Y. Wang and E. G. Ruby, The roles of NO in microbial symbioses, Cellular microbiology, vol.13, pp.518-526, 2011.

B. L. Wang, X. Y. Tang, L. Y. Cheng, A. Z. Zhang, W. H. Zhang et al., Nitric oxide is involved in phosphorus deficiency-induced clusterroot development and citrate exudation in white lupin, New Phytologist, vol.187, pp.1112-1123, 2010.

S. Wang, J. Zhang, Y. Zhang, S. Kern, and R. L. Danner, Nitric oxide-p38 MAPK signaling stabilizes mRNA through AU-rich element-dependent and -independent mechanisms, Journal of Leukocyte Biology, vol.83, pp.982-990, 2008.

R. A. Watts, P. W. Hunt, A. N. Hvitved, M. S. Hargrove, W. J. Peacock et al., A hemoglobin from plants homologous to truncated hemoglobins of microorganisms, Proceedings of the National Academy of Sciences, vol.98, pp.10119-10124, 2001.

L. Weissman, J. Garty, and A. Hochman, Rehydration of the Lichen Ramalina lacera Results in Production of Reactive Oxygen Species and Nitric Oxide and a Decrease in Antioxidants, Applied and Environmental Microbiology, vol.71, pp.2121-2129, 2005.

E. Weitzberg and J. Lundberg, Nonenzymatic Nitric Oxide Production in Humans, 1998.

, Nitric Oxide, vol.2, pp.1-7

D. Wendehenne, . Gao-q-ming, A. Kachroo, and P. Kachroo, Free radical-mediated systemic immunity in plants, Current Opinion in Plant Biology, vol.20, pp.127-134, 2014.

J. Wery, O. Turc, and L. Salsac, Relationship between growth, nitrogen fixation and assimilation in a legume, Medicago sativa L.). Plant and Soil, vol.96, pp.17-29, 1986.

J. Wildt, D. Kley, A. Rockel, P. Rockel, and H. J. Segschneider, Emission of NO from several higher plant species, Journal of Geophysical Research: Atmospheres, vol.102, pp.5919-5927, 1997.

I. Wilson, S. J. Neill, and J. Hancock, Nitric oxide synthesis and signalling in plants, Plant, Cell & Environment, vol.31, pp.622-631, 2008.

J. B. Wittenberg, M. Bolognesi, B. A. Wittenberg, and M. Guertin, Truncated hemoglobins: A new family of hemoglobins widely distributed in bacteria, unicellular eukaryotes, and plants, 2002.

E. Agüera, P. De-la-haba, A. G. Fontes, and J. M. Maldonado, Nitrate and nitrite uptake and reduction by intact sunflower plants, Planta, vol.182, pp.149-154, 1990.

E. Andrio, D. Marino, A. Marmeys, M. D. De-segonzac, I. Damiani et al., Hydrogen peroxide-regulated genes in the Medicago truncatula-Sinorhizobium meliloti symbiosis, New Phytologist, vol.198, pp.179-189, 2013.

C. A. Appleby, The origin and functions of haemoglobin in plants, Science Progress, vol.76, pp.365-398, 1992.

E. Baudouin, L. Pieuchot, G. Engler, N. Pauly, and A. Puppo, Nitric oxide is formed in Medicago truncatula-Sinorhizobium meliloti functional nodules, Molecular Plant-Microbe Interactions, vol.19, pp.970-975, 2006.

A. Benamar, H. Rolletschek, L. Borisjuk, M. H. Avelange-macherel, G. Curien et al., Nitrite-nitric oxide control of mitochondrial respiration at the frontier of anoxia, Biochimica et Biophysica Acta -Bioenergetics, vol.1777, pp.1268-1275, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00338405

V. A. Benedito, I. Torres-jerez, J. D. Murray, A. Andriankaja, S. Allen et al., A gene expression atlas of the model legume Medicago truncatula, The Plant Journal, vol.55, pp.504-513, 2008.

P. Blanquet, L. Silva, O. Catrice, C. Bruand, H. Carvalho et al., Sinorhizobium meliloti controls NO-mediated post-translational modification of a Medicago truncatula nodule protein, Molecular Plant-Microbe Interactions, vol.28, pp.1353-1363, 2015.

R. Bobbink and W. K. Hicks, Factors affecting nitrogen deposition impacts on biodiversity: An overview, Nitrogen deposition, critical loads and biodiversity, pp.127-138, 2014.

A. Boscari, J. Del-giudice, A. Ferrarini, L. Venturini, A. Zaffini et al., Expression dynamics of the Medicago truncatula transcriptome during the symbiotic interaction with Sinorhizobium meliloti: Which role for nitric oxide?, Plant Physiology, vol.161, pp.425-439, 2013.

A. Boscari, E. Meilhoc, C. Castella, C. Bruand, A. Puppo et al., Which role for nitric oxide in symbiotic N 2 -fixing nodules: Toxic by-product or useful signaling/metabolic intermediate?, Frontiers in Plant Science, vol.4, p.384, 2013.

M. Brunori, E. Forte, M. Arese, D. Mastronicola, A. Giuffrè et al., Nitric oxide and the respiratory enzyme, Biochimica et Biophysica Acta -Bioenergetics, vol.1757, pp.1144-1154, 2006.

P. Bustos-sanmamed, A. Tovar-méndez, M. Crespi, S. Sato, S. Tabata et al., Regulation of nonsymbiotic and truncated hemoglobin genes of Lotus japonicus in plant organs and in response to nitric oxide and hormones, New Phytologist, vol.189, pp.765-776, 2011.

Y. Cam, O. Pierre, E. Boncompagni, D. Hérouart, E. Meilhoc et al., Nitric oxide (NO): A key player in the senescence of Medicago truncatula root nodules, New Phytologist, vol.196, pp.548-560, 2012.

P. R. Castello, P. S. David, T. Mcclure, Z. Crook, and R. O. Poyton, , 2006.

, Mitochondrial cytochrome oxidase produces nitric oxide under hypoxic conditions: Implications for oxygen sensing and hypoxic signaling in eukaryotes, Cell Metabolism, vol.3, pp.277-287

P. R. Castello, D. K. Woo, K. Ball, J. Wojcik, L. Liu et al., Oxygen-regulated isoforms of cytochrome c oxidase have differential effects on its nitric oxide production and on hypoxic signaling, Proceedings of the National Academy of Sciences, vol.105, pp.8203-8208, 2008.

F. J. Corpas and J. B. Barroso, Nitric oxide from a "green" perspective, Nitric Oxide, vol.45, pp.15-19, 2015.

N. Correa-aragunde, M. Graziano, and L. Lamattina, Nitric oxide plays a central role in determining lateral root development in tomato, Planta, vol.218, pp.900-905, 2004.

M. Cueto, O. Hernfindez-perera, R. Martin, M. Luisa, J. Rodrig et al., Presence of nitric oxide synthase activity in roots and nodules of Lupinus albus, FEBS Letters, vol.398, pp.159-164, 1996.

M. Cvetkovska and G. C. Vanlerberghe, Alternative oxidase modulates leaf mitochondrial concentrations of superoxide and nitric oxide, New Phytologist, vol.195, pp.32-39, 2012.

I. Damiani, N. Pauly, A. Puppo, R. Brouquisse, and A. Boscari, Reactive oxygen species and nitric oxide control early steps of the legumerhizobium symbiotic interaction, Frontiers in Plant Science, vol.7, p.454, 2016.

E. A. Davidson and W. Kingerlee, A global inventory of nitric oxide emissions from soils. Nutrient Cycling in Agroecosystems, vol.48, pp.37-50, 1997.

P. Domingos, A. M. Prado, A. Wong, C. Gehring, and J. A. Feijo, Nitric oxide: A multitasked signaling gas in plants, Molecular Plant, vol.8, pp.506-520, 2015.

M. Fukudome, L. Calvo-begueria, T. Kado, K. Osuki, M. C. Rubio et al., Hemoglobin LjGlb1-1 is involved in nodulation and regulates the level of nitric oxide in the Lotus japonicus-Mesorhizobium loti symbiosis, Journal of Experimental Botany, vol.67, pp.5275-5283, 2016.

A. Galván, A. Quesada, and E. Ferna, Nitrate and nitrite are transported by different specific transport systems and by a bispecific transporter in Chlamydomonas reinhardtii, The Journal of Biological Chemistry, vol.271, pp.2088-2092, 1996.

J. Del-giudice, Y. Cam, I. Damiani, F. Fung-chat, E. Meilhoc et al., Nitric oxide is required for an optimal establishment of the Medicago truncatula-Sinorhizobium meliloti symbiosis, New Phytologist, vol.191, pp.405-417, 2011.

A. K. Glyan'ko, N. B. Mitanova, and G. G. Vasil'eva, Effect of nitric oxide and other nitrogen compounds on the adhesion and penetration of nodule bacteria into root tissues and on growth of etiolated pea seedlings, Applied Biochemistry and Microbiology, vol.44, pp.438-441, 2008.

K. J. Gupta, A. R. Fernie, W. M. Kaiser, and J. T. Van-dongen, On the origins of nitric oxide, Trends in Plant Science, vol.16, pp.160-168, 2011.

K. J. Gupta, K. H. Hebelstrup, L. A. Mur, and A. U. Igamberdiev, Plant hemoglobins: Important players at the crossroads between oxygen and nitric oxide, FEBS Letters, vol.585, pp.3843-3849, 2011.

K. J. Gupta and A. U. Igamberdiev, The anoxic plant mitochondrion as a nitrite: NO reductase. Mitochondrion, vol.11, pp.537-543, 2011.

K. J. Gupta and A. U. Igamberdiev, Reactive nitrogen species in mitochondria and their implications in plant energy status and hypoxic stress tolerance, Frontiers in Plant Science, vol.7, p.369, 2016.

K. J. Gupta and W. M. Kaiser, Production and scavenging of nitric oxide by barley root mitochondria, Plant and Cell Physiology, vol.51, pp.576-584, 2010.

K. J. Gupta, C. P. Lee, and R. G. Ratcliffe, Nitrite protects mitochondrial structure and function under hypoxia, Plant and Cell Physiology, vol.58, pp.175-183, 2017.

K. J. Gupta, M. Stoimenova, and W. M. Kaiser, In higher plants, only root mitochondria, but not leaf mitochondria reduce nitrite to NO, in vitro and in situ, Journal of Experimental Botany, vol.56, pp.2601-2609, 2005.

S. Herold and A. Puppo, Oxyleghemoglobin scavenges nitrogen monoxide and peroxynitrite: A possible role in functioning nodules, Journal of Biological Inorganic Chemistry, vol.10, pp.935-945, 2005.

I. Hichri, A. Boscari, C. Castella, M. Rovere, A. Puppo et al., Nitric oxide: A multifaceted regulator of the nitrogen-fixing symbiosis, Journal of Experimental Botany, vol.66, pp.2877-2887, 2015.

I. Hichri, A. Boscari, E. Meilhoc, M. Catalá, E. Barreno et al., Nitric oxide: A multitask player in plant-microorganism symbioses, Gasotransmitters in plants: The rise of a new paradigm in cell signaling, vol.268, pp.239-268, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01608458

I. Hichri, E. Meilhoc, A. Boscari, C. Bruand, P. Frendo et al., Nitric oxide: Jack-of-all-trades of the nitrogen-fixing symbiosis?, Advances in botanical research, vol.77, pp.193-218, 2016.

F. Horchani, M. Prévot, A. Boscari, E. Evangelisti, E. Meilhoc et al., Both plant and bacterial nitrate reductases contribute to nitric oxide production in Medicago truncatula nitrogenfixing nodules, Plant Physiology, vol.155, pp.1023-1036, 2011.

A. U. Igamberdiev, N. V. Bykova, and R. D. Hill, Nitric oxide scavenging by barley hemoglobin is facilitated by a monodehydroascorbate reductase-mediated ascorbate reduction of methemoglobin, Planta, vol.223, pp.1033-1040, 2006.

A. U. Igamberdiev, N. V. Bykova, and R. D. Hill, Structural and functional properties of class 1 plant hemoglobins, IUBMB Life, vol.63, pp.146-152, 2011.

A. U. Igamberdiev, N. V. Bykova, J. K. Shah, and R. D. Hill, Anoxic nitric oxide cycling in plants: Participating reactions and possible mechanisms, Physiologia Plantarum, vol.138, pp.393-404, 2010.

A. U. Igamberdiev and R. D. Hill, Nitrate, NO and haemoglobin in plant adaptation to hypoxia: An alternative to classic fermentation pathways, Journal of Experimental Botany, vol.55, pp.2473-2482, 2004.

A. U. Igamberdiev and R. D. Hill, Plant mitochondrial function during anaerobiosis, Annals of Botany, vol.103, pp.259-268, 2009.

W. Jia, N. Tovell, S. Clegg, M. Trimmer, and J. Cole, A single channel for nitrate uptake, nitrite export and nitrite uptake by Escherichia coli NarU and a role for NirC in nitrite export and uptake, The Biochemical Journal, vol.417, pp.297-304, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00479010

S. Jokipii-lukkari, A. J. Kastaniotis, V. Parkash, R. Sundström, N. Leiva-eriksson et al., Dual targeted poplar ferredoxin NADP + oxidoreductase interacts with hemoglobin 1, Plant Science, vol.247, pp.138-149, 2016.

W. M. Kaiser and E. Brendle-behnisch, Acid-base-modulation of nitrate reductase in leaf tissues, Planta, vol.196, pp.1-6, 1995.

K. Kato, Y. Okamura, K. Kanahama, and Y. Kanayama, Nitrate-independent expression of plant nitrate reductase in Lotus japonicus root nodules, Journal of Experimental Botany, vol.54, pp.1685-1690, 2003.

K. Kato, K. Kanahama, and Y. Kanayama, Involvement of nitric oxide in the inhibition of nitrogenase activity by nitrate in Lotus root nodules, Journal of Plant Physiology, vol.167, pp.238-241, 2010.

A. Kearns, J. Whelan, S. Young, T. E. Elthon, and D. Day, Tissuespecific expression of the alternative oxidase in soybean and siratro, Plant Physiology, vol.99, pp.712-717, 1992.

M. Keyster, A. Klein, and N. Ludidi, Endogenous NO levels regulate nodule functioning: potential role of cGMP in nodule functioning?, Plant Signaling & Behavior, vol.5, pp.1679-1681, 2010.

Z. Kotur, Y. M. Siddiqi, and A. D. Glass, Characterization of nitrite uptake in Arabidopsis thaliana: Evidence for a nitrite-specific transporter, New Phytologist, pp.201-210, 0200.

A. V. Kozlov, K. Staniek, and H. Nohl, Nitrite reductase activity is a novel function of mammalian mitochondria, FEBS Letters, vol.454, pp.127-130, 1999.

A. Krapp, Plant nitrogen assimilation and its regulation: A complex puzzle with missing pieces, Current Opinion in Plant Biology, vol.25, pp.115-122, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01204189

M. L. Lanteri, M. Graziano, N. Correa-aragunde, and L. Lamattina, From cell division to organ shape: Nitric oxide is involved in auxin-mediated root development, Communication in plants, pp.123-136, 2006.

J. Leach, M. Keyster, M. Du-plessis, and N. Ludidi, Nitric oxide synthase activity is required for development of functional nodules in soybean, Journal of Plant Physiology, vol.167, pp.1584-1591, 2010.

J. Ludwig, F. X. Meixner, B. Vogel, and J. Forstner, Soil-air exchange of nitric oxide: An overview of processes, environmental vactors, and modeling studies, Biogeochemistry, vol.52, pp.225-257, 2001.

F. Machín, B. Medina, F. J. Navarro, M. D. Pérez, M. Veenhuis et al., The role of Ynt1 in nitrate and nitrite transport in the yeast Hansenula polymorpha, Yeast, vol.21, pp.265-276, 2004.

C. Mathieu, M. Sophie, P. Frendo, A. Puppo, and M. Davies, Direct detections of radicals in intact soybean nodules: Presence of nitric oxide-leghemoglobin complexes, Free Radical Biology & Medicine, vol.24, pp.1242-1249, 1998.

G. E. Meakin, E. Bueno, B. Jepson, E. J. Bedmar, D. J. Richardson et al., The contribution of bacteroidal nitrate and nitrite reduction to the formation of nitrosylleghaemoglobin complexes in soybean root nodules, Microbiology, vol.153, pp.411-419, 2007.

E. Meilhoc, P. Blanquet, Y. Cam, and C. Bruand, Control of NO level in rhizobium-legume root nodules: Not only a plant globin story, Plant Signaling & Behavior, vol.8, p.25923, 2013.

E. Meilhoc, A. Boscari, C. Bruand, A. Puppo, and R. Brouquisse, Nitric oxide in legume-rhizobium symbiosis, Plant Science, vol.181, pp.573-581, 2011.

E. Meilhoc, Y. Cam, A. Skapski, and C. Bruand, The response to nitric oxide of the nitrogen-fixing symbiont Sinorhizobium meliloti, Molecular Plant-Microbe Interactions, vol.23, pp.748-759, 2010.

P. M. Melo, L. S. Silva, I. Ribeiro, A. R. Seabra, and H. G. Carvalho, , 2011.

, Glutamine synthetase is a molecular target of nitric oxide in root nodules of Medicago truncatula and is regulated by tyrosine nitration, Plant Physiology, vol.157, pp.1505-1517

J. W. Moir and N. J. Wood, Nitrate and nitrite transport in bacteria, Cellular and Molecular Life Sciences, vol.58, pp.215-224, 2001.

E. I. Murakami, M. Nagata, Y. Shimoda, K. I. Kucho, S. Higashi et al., Nitric oxide production induced in roots of lotus japonicus by lipopolysaccharide from Mesorhizobium loti, Plant and Cell Physiology, vol.52, pp.610-617, 2011.

M. Nagata, E. Murakami, Y. Shimoda, F. Shimoda-sasakura, K. Kucho et al., Expression of a class 1 hemoglobin gene and production of nitric oxide in response to symbiotic and pathogenic bacteria in Lotus japonicus, Molecular Plant-Microbe Interactions, vol.21, pp.1175-1183, 2008.

E. Oger, D. Marino, J. M. Guigonis, N. Pauly, and A. Puppo, Sulfenylated proteins in the Medicago truncatula-Sinorhizobium meliloti symbiosis, Journal of Proteomics, vol.75, pp.4102-4113, 2012.

G. E. Oldroyd and J. A. Downie, Coordinating nodule morphogenesis with rhizobial infection in legumes, Annual Review of Plant Biology, vol.59, pp.519-546, 2008.

T. Ott, J. T. Van-dongen, C. Günther, L. Krusell, G. Desbrosses et al., Symbiotic leghemoglobins are crucial for nitrogen fixation in legume root nodules but not for general plant growth and development, Current Biology, vol.15, pp.531-535, 2005.

N. Pauly, C. Ferrari, E. Andrio, D. Marino, S. Piardi et al., MtNOA1/RIF1 modulates Medicago truncatula-Sinorhizobium meliloti nodule development without affecting its nitric oxide content, Journal of Experimental Botany, vol.62, pp.939-948, 2011.

N. Pauly, C. Pucciariello, K. Mandon, G. Innocenti, A. Jamet et al., Reactive oxygen and nitrogen species and glutathione: Key players in the legume-rhizobium symbiosis, Journal of Experimental Botany, vol.57, pp.1769-1776, 2006.

Y. Pii, M. Crimi, G. Cremonese, A. Spena, and T. Pandolfini, Auxin and nitric oxide control indeterminate nodule formation, BMC Plant Biology, vol.7, p.21, 2007.

S. Pike, F. Gao, M. J. Kim, S. H. Kim, D. P. Schachtman et al., Members of the NPF3 transporter subfamily encode pathogeninducible nitrate/nitrite transporters in grapevine and arabidopsis, Plant and Cell Physiology, vol.55, pp.162-170, 2014.

K. Pilegaard, Processes regulating nitric oxide emissions from soils, Philosophical Transactions of the Royal Society, B: Biological Sciences, vol.368, 2013.

E. Planchet, K. Gupta, M. Sonoda, and W. M. Kaiser, Nitric oxide emission from tobacco leaves and cell suspensions: Rate limiting factors and evidence for the involvement of mitochondrial electron transport, The Plant Journal, vol.41, pp.732-743, 2005.

A. Puppo, N. Pauly, A. Boscari, K. Mandon, and R. Brouquisse, Hydrogen peroxide and nitric oxide: Key regulators of the legume -Rhizobium and mycorrhizal symbioses, Antioxidants & Redox Signaling, vol.18, pp.2202-2219, 2013.

J. Rexach, E. Fernández, and A. Galván, The Chlamydomonas reinhardtii Nar1 gene encodes a chloroplast membrane protein involved in nitrite transport, The Plant Cell, vol.12, pp.1441-1453, 2000.

C. Sánchez, A. J. Gates, G. E. Meakin, T. Uchiumi, L. Girard et al., Production of nitric oxide and nitrosylleghemoglobin complexes in soybean nodules in response to flooding, Molecular Plant-Microbe Interactions, vol.23, pp.702-711, 2010.

F. Sasakura, T. Uchiumi, Y. Shimoda, A. Suzuki, K. Takenouchi et al., A class 1 hemoglobin gene from Alnus firma functions in symbiotic and nonsymbiotic tissues to detoxify nitric oxide, Molecular Plant-Microbe Interactions, vol.19, pp.441-450, 2006.

H. Schägger, Respiratory chain supercomplexes, IUBMB Life, vol.52, pp.119-128, 2001.

A. Shankar, J. L. Fernandes, K. Kaur, M. Sharma, S. Kundu et al., Rice phytoglobins regulate responses under low mineral nutrients and abiotic stresses in Arabidopsis thaliana, Plant, Cell & Environment, vol.41, pp.215-230, 2018.

Y. Shimoda, M. Nagata, A. Suzuki, M. Abe, S. Sato et al., Symbiotic rhizobium and nitric oxide induce gene expression of non-symbiotic hemoglobin in Lotus japonicus, Plant and Cell Physiology, vol.46, pp.99-107, 2005.

Y. Shimoda, F. Shimoda-sasakura, K. I. Kucho, N. Kanamori, M. Nagata et al., Overexpression of class 1 plant hemoglobin genes enhances symbiotic nitrogen fixation activity between Mesorhizobium loti and Lotus japonicus, The Plant Journal, vol.57, pp.254-263, 2009.

R. Shingaki-wells, A. H. Millar, J. Whelan, and R. Narsai, What happens to plant mitochondria under low oxygen? An omics review of the responses to low oxygen and reoxygenation, Plant, Cell and Environment, vol.37, pp.2260-2277, 2014.

M. Stoimenova, A. U. Igamberdiev, K. J. Gupta, and R. D. Hill, Nitritedriven anaerobic ATP synthesis in barley and rice root mitochondria, Planta, vol.226, pp.465-474, 2007.

J. Streeter and P. P. Wong, Inhibition of legume nodule formation and N 2 fixation by nitrate, Critical Reviews in Plant Sciences, vol.7, pp.1-23, 1988.

K. N. Suding, S. L. Collins, L. Gough, C. Clark, E. E. Cleland et al., Functional-and abundance-based mechanisms explain diversity loss due to N fertilization, Proceedings of the National Academy of Sciences USA, vol.102, pp.4387-4392, 2005.

M. Sugiura, M. N. Georgescu, and M. Takahashi, A nitrite transporter associated with nitrite uptake by higher plant chloroplasts, Plant and Cell Physiology, vol.48, pp.1022-1035, 2007.

E. Thalineau, H. Truong, A. Berger, C. Fournier, A. Boscari et al., Cross-regulation between N metabolism and nitric oxide (NO) signaling during plant immunity. Frontiers in Plant Science, vol.7, p.472, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01696273

J. C. Trinchant and J. Rigaud, Nitrite and nitric oxide as inhibitors of nitrogenase from soybean bacteroids, Applied and Environmental Microbiology, vol.44, pp.1385-1388, 1982.

D. Trono, M. N. Laus, M. Soccio, and D. Pastore, Transport pathwaysproton motive force interrelationship in durum wheat mitochondria, International Journal of Molecular Sciences, vol.15, pp.8186-8215, 2014.

B. B. Vartapetian, I. N. Andreeva, I. P. Generozova, L. I. Polyakova, I. P. Maslova et al., Functional electron microscopy in studies of plant response and adaptation to anaerobic stress, Annals of Botany, vol.91, pp.155-172, 2003.

B. B. Vartapetian and L. I. Polyakova, Protective effect of exogenous nitrate on the mitochondrial ultrastructure of Oryza sativa coleoptiles under strict anoxia, Protoplasma, vol.206, pp.163-167, 1999.

G. L. Vourlitis, C. Defotis, and W. Kristan, Effects of soil water content, temperature and experimental nitrogen deposition on nitric oxide (NO) efflux from semiarid shrubland soil, Journal of Arid Environments, vol.117, pp.67-74, 2015.

Y. Y. Wang, P. K. Hsu, and Y. F. Tsay, Uptake, allocation and signaling of nitrate, Trends in Plant Science, vol.17, pp.458-467, 2012.

J. Wirth, F. Chopin, V. Santoni, G. Viennois, P. Tillard et al., Regulation of root nitrate uptake at the NRT2.1 protein level in Arabidopsis thaliana, Journal of Biological Chemistry, vol.282, pp.23541-23552, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00168099

Y. Wang, W. Li, Y. Siddiqi, V. F. Symington, J. R. Kinghorn et al., Nitrite transport is mediated by the nitrite-specific high-affinity NitA transporter and by nitrate transporters NrtA, NrtB in Aspergillus nidulans. Fungal Genetics and Biology, vol.45, pp.94-102, 2008.

H. Zhang, A. Jennings, P. W. Barlow, and B. G. Forde, Dual pathways for regulation of root branching by nitrate, Proceedings of the National Academy of Sciences, vol.96, pp.6529-6534, 1999.

W. G. Zumft, Cell biology and molecular basis of denitrification, Microbiology and MolecularBiology Reviews, vol.61, pp.533-616, 1997.

A. Berger, R. Brouquisse, and P. K. Pathak, Pathways of nitric oxide metabolism and operation of phytoglobins in legume nodules: Missing links and future directions, and oligo(dT) 15 , with M-MLV reverse transcriptase (Promega, Charbonnières, France), as recommended by the manufacturer. Quantitative PCR was performed on reverse-transcribed, pp.1-12, 2018.

. Boisson-dernier, Roots were cultured on Shb10 medium

(. Volvic and . Colditz, , 2007.

D. Abramowski, M. Arasimowicz-jelonek, K. Izbia?ska, H. Billert, and J. Floryszak-wieczorek, Nitric oxide modulates redox-mediated defense in potato challenged with Phytophthora infestans, Eur. J. Plant Pathol, vol.143, pp.237-260, 2015.

R. Ahlfors, M. Brosche, H. Kollist, and J. Kangasjarvi, Nitric oxide modulates ozone-induced cell death, hormone biosynthesis and gene expression in Arabidopsis thaliana, Plant J, vol.58, pp.1-12, 2009.

C. Ashtamker, V. Kiss, M. Sagi, O. Davydov, and R. Fluhr, Diverse subcellular locations of cryptogein-induced reactive oxygen species production in tobacco bright Yellow-2 cells, Plant Physiol, vol.143, pp.1817-1826, 2007.

J. Astier, A. Besson-bard, O. Lamotte, J. Bertoldo, S. Bourque et al., Nitric oxide inhibits the ATPase activity of the chaperone-like AAA+ ATPase CDC48, a target for S-nitrosylation in cryptogein signalling in tobacco cells, Biochem. J, vol.447, pp.249-260, 2012.

J. Astier and C. Lindermayr, Nitric oxide-dependent posttranslational modification in plants: an update, Int. J. Mol. Sci, vol.13, pp.15193-15208, 2012.

E. Ballini, T. T. Nguyen, and J. B. Morel, Diversity and genetics of nitrogen-induced susceptibility to the blast fungus in rice and wheat, Rice, vol.6, p.32, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01506291

G. Bécard and J. A. Fortin, Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots, New Phytol, vol.108, pp.211-218, 1988.

J. C. Begara-morales, B. Sanchez-calvo, F. Luque, M. O. Leyva-perez, M. Leterrier et al., Differential transcriptomic analysis by RNA-seq of GSNO-responsive genes between Arabidopsis roots and leaves, Plant Cell Physiol, vol.55, pp.1080-1095, 2014.

A. Besson-bard, C. Courtois, A. Gauthier, J. Dahan, G. Dobrowolska et al., Nitric oxide in plants: production and cross-talk with Ca2+ signaling, Mol. Plant, vol.1, pp.218-228, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02019450

A. Besson-bard, A. Gravot, P. Richaud, P. Auroy, C. Duc et al., Nitric oxide contributes to cadmium toxicity in Arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake, Plant Physiol, vol.149, pp.1302-1315, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00367141

P. C. Bethke, M. R. Badger, and R. L. Jones, Apoplastic synthesis of nitric oxide by plant tissues, Plant Cell, vol.16, pp.332-341, 2004.

A. Boisson-dernier, M. Chabaud, F. Garcia, G. Becard, C. Rosenberg et al., Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations, Mol. Plant-Microbe Interact, vol.14, pp.695-700, 2001.

G. Camanes, V. Pastor, M. Cerezo, J. Garcia-andrade, B. Vicedo et al., A deletion in NRT2.1 attenuates Pseudomonas syringae-induced hormonal perturbation, resulting in primed plant defenses, Plant Physiol, vol.158, pp.1054-1066, 2012.

D. Cecconi, S. Orzetti, E. Vandelle, S. Rinalducci, L. Zolla et al., Protein nitration during defense response in Arabidopsis thaliana, Electrophoresis, vol.30, pp.2460-2468, 2009.

M. Chaki, R. Valderrama, A. M. Fernandez-ocana, A. Carreras, M. V. Gomez-rodriguez et al., Mechanical wounding induces a nitrosative stress by down-regulation of GSNO reductase and an increase in S-nitrosothiols in sunflower (Helianthus annuus) seedlings, J. Exp. Bot, vol.62, pp.1803-1813, 2011.

T. Cheng, J. Chen, A. A. Ef, P. Wang, G. Wang et al., Quantitative proteomics analysis reveals that S-nitrosoglutathione reductase (GSNOR) and nitric oxide signaling enhance poplar defense against chilling stress, Planta, vol.242, pp.1361-1390, 2015.

F. Colditz, K. Niehaus, and F. Krajinski, Silencing of PR-10-like proteins in Medicago truncatula results in an antagonistic induction of other PR proteins and in an increased tolerance upon infection with the oomycete Aphanomyces euteiches, Planta, vol.226, pp.57-71, 2007.

F. J. Corpas, M. Chaki, A. Fernandez-ocana, R. Valderrama, J. M. Palma et al., Metabolism of reactive nitrogen species in pea plants under abiotic stress conditions, Plant Cell Physiol, vol.49, pp.1711-1722, 2008.

N. Correa-aragunde, F. J. Cejudo, and L. Lamattina, Nitric oxide is required for the auxin-induced activation of NADPH-dependent thioredoxin reductase and protein denitrosylation during root growth responses in Arabidopsis, Ann. Bot, vol.116, pp.695-702, 2015.

G. Corti-monzon, M. Pinedo, J. Di-rienzo, E. Novo-uzal, F. Pomar et al., Nitric oxide is required for determining root architecture and lignin composition in sunflower. Supporting evidence from microarray analyses, Nitric Oxide, vol.39, pp.20-28, 2014.

A. De-montaigu, E. Sanz-luque, A. Galvan, and E. Fernandez, A soluble guanylate cyclase mediates negative signaling by ammonium on expression of nitrate reductase in Chlamydomonas, Plant Cell, vol.22, pp.1532-1548, 2010.

J. Dechorgnat, O. Patrit, A. Krapp, M. Fagard, and F. Daniel-vedele, Characterization of the Nrt2.6 gene in Arabidopsis thaliana: a link with plant response to biotic and abiotic stress, PLoS ONE, vol.7, p.42491, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01190740

M. P. Develey-riviere and E. Galiana, Resistance to pathogens and host developmental stage: a multifaceted relationship within the plant kingdom, New Phytol, vol.175, pp.405-416, 2007.

N. Djébali, A. Jauneau, C. Ameline-torregrosa, F. Chardon, V. Jaulneau et al., Partial resistance of Medicago truncatula to Aphanomyces euteiches is associated with protection of the root stele and is controlled by a major QTL rich in proteasome-related genes, Mol. Plant-Microbe Interact, vol.22, pp.1043-1055, 2009.

N. Djébali, H. Mhadhbi, C. Lafitte, B. Dumas, M. Esquerré-tugayé et al., Hydrogen peroxide scavenging mechanisms are components of Medicago truncatula partial resistance to Aphanomyces euteiches, Eur. J. Plant Pathol, vol.131, pp.559-571, 2011.

F. Dong, J. Simon, M. Rienks, C. Lindermayr, and H. Rennenberg, Effects of rhizopheric nitric oxide (NO) on N uptake in Fagus sylvatica seedlings depend on soil CO2 concentration, soil N availability and N source, Tree Physiol, vol.35, pp.910-920, 2015.

C. Dordas, Role of nutrients in controlling plant diseases in sustainable agriculture, A review, Agron. Sustain. Dev, vol.28, pp.33-46, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00886444

S. Du, Y. Zhang, X. Lin, Y. Wang, C. Tang et al., Modification of intracellular levels of glutathione-dependent formaldehyde dehydrogenase alters glutathione homeostasis and root development, Plant Cell Environ, vol.31, pp.1002-1011, 2006.

M. Fagard, A. Launay, G. Clement, J. Courtial, A. Dellagi et al., Nitrogen metabolism meets phytopathology, J. Exp. Bot, vol.65, pp.5643-5656, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01563731

A. Feechan, E. Kwon, B. Yun, Y. Wang, J. A. Pallas et al., A central role for S-nitrosothiols in plant disease resistance, Proc. Natl. Acad. Sci. U.S.A, vol.102, pp.8054-8059, 2005.

A. Ferrarini, M. De-stefano, E. Baudouin, C. Pucciariello, A. Polverari et al., Expression of Medicago truncatula genes responsive to nitric oxide in pathogenic and symbiotic conditions, Mol. Plant-Microbe Interact, vol.21, pp.781-790, 2008.

B. G. Forde and M. R. Roberts, Glutamate receptor-like channels in plants: a role as amino acid sensors in plant defence? F1000Prime Rep, vol.6, p.37, 2014.

L. Frungillo, M. J. Skelly, G. J. Loake, S. H. Spoel, and I. Salgado, S-nitrosothiols regulate nitric oxide production and storage in plants through the nitrogen assimilation pathway, Nat. Commun, vol.5, p.5401, 2014.

A. Gow, A. Doctor, J. Mannick, G. , and B. , S-Nitrosothiol measurements in biological systems, J. Chromatogr. B, vol.851, pp.140-151, 2007.

K. J. Gupta, Y. Brotman, S. Segu, T. Zeier, J. Zeier et al., The form of nitrogen nutrition affects resistance against Pseudomonas syringae pv. phaseolicola in tobacco, J. Exp. Bot, vol.64, pp.553-568, 2013.

K. J. Gupta, A. R. Fernie, W. M. Kaiser, and J. T. Van-dongen, On the origins of nitric oxide, Trends Plant Sci, vol.16, pp.160-168, 2011.

K. J. Gupta, K. H. Hebelstrup, L. A. Mur, and A. U. Igamberdiev, Plant hemoglobins: important players at the crossroads between oxygen and nitric oxide, FEBS Lett, vol.585, pp.3843-3849, 2011.

K. J. Gupta, A. U. Igamberdiev, G. Manjunatha, S. Segu, J. F. Moran et al., The emerging roles of nitric oxide (NO) in plant mitochondria, Plant Sci, vol.181, pp.520-526, 2011.

F. Horchani, M. Prevot, A. Boscari, E. Evangelisti, E. Meilhoc et al., Both plant and bacterial nitrate reductases contribute to nitric oxide production in Medicago truncatula nitrogen-fixing nodules, Plant Physiol, vol.155, pp.1023-1036, 2011.

J. Hu, X. Huang, L. Chen, X. Sun, C. Lu et al., Site-specific nitrosoproteomic identification of endogenously S-nitrosylated proteins in Arabidopsis, Plant Physiol, vol.167, pp.1731-1746, 2015.

D. M. Huber and R. D. Watson, Nitrogen form and plant disease, Annu. Rev. Phytopathol, vol.12, pp.139-165, 1974.

I. S. Hwang, S. H. An, and B. K. Hwang, Pepper asparagine synthetase 1 (CaAS1) is required for plant nitrogen assimilation and defense responses to microbial pathogens, Plant J, vol.67, pp.749-762, 2011.

C. W. Jin, S. T. Du, Y. S. Zhang, X. Y. Lin, and C. X. Tang, Differential regulatory role of nitric oxide in mediating nitrate reductase activity in roots of tomato (Solanum lycocarpum), Ann. Bot, vol.104, pp.9-17, 2009.

A. Kandlbinder, I. Finkemeier, D. Wormuth, M. Hanitzsch, and K. J. Dietz, The antioxidant status of photosynthesizing leaves under nutrient deficiency: redox regulation, gene expression and antioxidant activity in Arabidopsis thaliana, Physiol. Plant, vol.120, pp.63-73, 2004.

S. Kneeshaw, S. Gelineau, Y. Tada, G. J. Loake, and S. H. Spoel, Selective protein denitrosylation activity of Thioredoxin-h5 modulates plant immunity, 2014.

, Mol. Cell, vol.56, pp.153-162

J. Kovacik, B. Klejdus, P. Babula, and M. Jarosova, Variation of antioxidants and secondary metabolites in nitrogen-deficient barley plants, J. Plant Physiol, vol.171, pp.260-268, 2014.

A. Krapp, Plant nitrogen assimilation and its regulation: a complex puzzle with missing pieces, Curr. Opin. Plant Biol, vol.25, pp.115-122, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01204189

L. Kubienova, T. Ticha, J. Jahnova, L. Luhova, B. Mieslerova et al., Effect of abiotic stress stimuli on S-nitrosoglutathione reductase in plants, Planta, vol.239, pp.139-146, 2014.

A. Kulik, E. Noirot, V. Grandperret, S. Bourque, J. Fromentin et al., Interplays between nitric oxide and reactive oxygen species in cryptogein signalling, Plant Cell Environ, vol.38, pp.331-348, 2015.

M. Leitner, E. Vandelle, F. Gaupels, D. Bellin, and M. Delledonne, NO signals in the haze: nitric oxide signalling in plant defence, Curr. Opin. Plant Biol, vol.12, pp.451-458, 2009.

G. Liu, Y. Ji, N. H. Bhuiyan, G. Pilot, G. Selvaraj et al., Amino acid homeostasis modulates salicylic acid-associated redox status and defense responses in Arabidopsis, Plant Cell, vol.22, pp.3845-3863, 2010.

J. Lozano-juste, R. Colom-moreno, and J. León, In vivo protein tyrosine nitration in Arabidopsis thaliana, J. Exp. Bot, vol.62, pp.3501-3517, 2011.

E. Luna, M. Van-hulten, Y. Zhang, O. Berkowitz, A. Lopez et al., Plant perception of beta-aminobutyric acid is mediated by an aspartyl-tRNA synthetase, Nat. Chem. Biol, vol.10, pp.450-456, 2014.

A. Maldonado-alconada, S. Echevarría-zome?o, C. Lindermayr, I. Redondo-lópez, J. Durner et al., Proteomic analysis of Arabidopsis protein S-nitrosylation in response to inoculation with Pseudomonas syringae, Acta Physiol. Plant, vol.33, pp.1493-1514, 2011.

A. Manoli, M. Begheldo, A. Genre, L. Lanfranco, S. Trevisan et al., NO homeostasis is a key regulator of early nitrate perception and root elongation in maize, J. Exp. Bot, vol.65, pp.185-200, 2014.

P. M. Melo, L. S. Silva, I. Ribeiro, A. R. Seabra, and H. G. Carvalho, , 2011.

, Glutamine synthetase is a molecular target of nitric oxide in root nodules of Medicago truncatula and is regulated by tyrosine nitration, Plant Physiol, vol.157, pp.1505-1517

K. M. Miranda, M. G. Espey, and D. A. Wink, A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite, Nitric Oxide, vol.5, pp.62-71, 2001.

L. V. Modolo, O. Augusto, I. M. Almeida, C. A. Pinto-maglio, H. C. Oliveira et al., Decreased arginine and nitrite levels in nitrate reductase-deficient Arabidopsis thaliana plants impair nitric oxide synthesis and the hypersensitive response to Pseudomonas syringae, Plant Sci, vol.171, pp.34-40, 2006.

H. C. Oliveira, G. C. Justino, L. Sodek, and I. Salgado, Amino acid recovery does not prevent susceptibility to Pseudomonas syringae in nitrate reductase double-deficient Arabidopsis thaliana plants, Plant Sci, vol.176, pp.105-111, 2009.

L. Perchepied, C. Balague, C. Riou, C. Claudel-renard, N. Riviere et al., Nitric oxide participates in the complex interplay of defense-related signaling pathways controlling disease resistance to Sclerotinia sclerotiorum in Arabidopsis thaliana, Mol. Plant-Microbe Interact, vol.23, pp.846-860, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00697824

E. Pietrowska, S. Ró?alska, A. Ka?mierczak, J. Nawrocka, and U. Ma?olepsza, Reactive oxygen and nitrogen (ROS and RNS) species generation and cell death in tomato suspension cultures-Botrytis cinerea interaction, Protoplasma, vol.252, pp.307-319, 2015.

J. Puyaubert, A. Fares, N. Reze, J. B. Peltier, and E. Baudouin, Identification of endogenously S-nitrosylated proteins in Arabidopsis plantlets: effect of cold stress on cysteine nitrosylation level, Plant Sci, vol.21, pp.150-156, 2014.

H. J. Quandt, A. Puhler, and I. Broer, Transgenic root-nodules of Vicia-hirsuta -a fast and efficient system for the study of gene-expression in indeterminate-type nodules, Mol. Plant-Microbe Interact, vol.6, pp.699-706, 1993.

S. Rasul, C. Dubreuil-maurizi, O. Lamotte, E. Koen, B. Poinssot et al., Nitric oxide production mediates oligogalacturonide-triggered immunity and resistance to Botrytis cinerea in Arabidopsis thaliana, Plant Cell Environ, vol.35, pp.1483-1499, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01137174

T. Rey, A. Nars, M. Bonhomme, A. Bottin, S. Huguet et al., , 2013.

, LysM protein controlling Nod factor perception, also intervenes in Medicago truncatula resistance to pathogens, New Phytol, vol.198, pp.875-886

E. P. Rosales, M. F. Iannone, M. D. Groppa, and M. P. Benavides, Nitric oxide inhibits nitrate reductase activity in wheat leaves, Plant Physiol. Biochem, vol.49, pp.124-130, 2011.

E. P. Rosales, M. F. Iannone, M. D. Groppa, and M. P. Benavides, Polyamines modulate nitrate reductase activity in wheat leaves: involvement of nitric oxide, Amino Acids, vol.42, pp.857-865, 2012.

C. Rusterucci, M. C. Espunya, M. Diaz, M. Chabannes, and M. C. Martinez, S-nitrosoglutathione reductase affords protection against pathogens in Arabidopsis, both locally and systemically, Plant Physiol, vol.143, pp.1282-1292, 2007.

E. Sanz-luque, F. Ocana-calahorro, A. Galvan, and E. Fernandez, THB1 regulates nitrate reductase activity and THB1 and THB2 transcription differentially respond to NO and the nitrate/ammonium balance in Chlamydomonas, Plant Signal. Behav, vol.10, p.1042638, 2015.

E. Sanz-luque, F. Ocana-calahorro, A. Llamas, A. Galvan, and E. Fernandez, Nitric oxide controls nitrate and ammonium assimilation in Chlamydomonas reinhardtii, J. Exp. Bot, vol.64, pp.3373-3383, 2013.

D. P. Schachtman and R. Shin, Nutrient sensing and signaling: NPKS, Annu. Rev. Plant Biol, vol.58, pp.47-69, 2007.

M. Sedlá?ová, L. Kubienová, Z. Drábková-trojanová, L. Luhová, A. Lebeda et al., Chapter Thirteen -the role of nitric oxide in development and pathogenesis of biotrophic phytopathogens -downy and powdery mildews, pp.263-283, 2016.

S. Slezack, E. Dumas-gaudot, S. Rosendahl, R. Kjøller, M. Paynot et al., Endoproteolytic activities in pea roots inoculated with the arbuscular mycorrhizal fungus Glomus mosseae and/or Aphanomyces euteiches Frontiers in Plant Science | www, vol.7, p.472, 1999.

S. Snoeijers, A. Pérez-garcía, M. A. Joosten, D. Wit, and P. G. , The effect of nitrogen on disease dvelopment and gene expression in bacterial and fungal pathogens, Eur. J. Plant Pathol, vol.142, pp.493-506, 2000.

H. Sun, J. Li, W. Song, J. Tao, S. Huang et al., Nitric oxide generated by nitrate reductase increases nitrogen uptake capacity by inducing lateral root formation and inorganic nitrogen uptake under partial nitrate nutrition in rice, J. Exp. Bot, vol.66, pp.2449-2459, 2015.

Y. Tada, S. H. Spoel, K. Pajerowska-mukhtar, Z. Mou, J. Song et al., Plant immunity requires conformational changes [corrected] of NPR1 via S-nitrosylation and thioredoxins, Science, vol.321, pp.952-956, 2008.

S. Trevisan, A. Manoli, L. Ravazzolo, A. Botton, M. Pivato et al., Nitrate sensing by the maize root apex transition zone: a merged transcriptomic and proteomic survey, J. Exp. Bot, vol.66, pp.3699-3715, 2015.

N. N. Tun, C. Santa-catarina, T. Begum, V. Silveira, W. Handro et al., Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings, Plant Cell Physiol, vol.47, pp.346-354, 2006.

E. Vandelle and M. Delledonne, Peroxynitrite formation and function in plants, Plant Sci, vol.181, pp.534-539, 2011.

D. Wendehenne, Q. M. Gao, A. Kachroo, and P. Kachroo, Free radicalmediated systemic immunity in plants, Curr. Opin. Plant Biol, vol.20, pp.127-134, 2014.

G. Xu, X. Fan, and A. J. Miller, Plant nitrogen assimilation and use efficiency, Annu. Rev. Plant Biol, vol.63, pp.153-182, 2012.

S. Xu, D. Guerra, U. Lee, and E. Vierling, S-nitrosoglutathione reductases are low-copy number, cysteine-rich proteins in plants that control multiple developmental and defense responses in Arabidopsis, Front. Plant Sci, vol.4, p.430, 2013.

T. Yaeno and K. Iba, BAH1/NLA, a RING-type ubiquitin E3 ligase, regulates the accumulation of salicylic acid and immune responses to Pseudomonas syringae DC3000, Plant Physiol, vol.148, pp.1032-1041, 2008.

H. Yamasaki and Y. Sakihama, Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NRdependent formation of active nitrogen species, FEBS Lett, vol.468, pp.89-92, 2000.

B. W. Yun, A. Feechan, M. Yin, N. B. Saidi, T. Le-bihan et al., , 2011.

, S-nitrosylation of NADPH oxidase regulates cell death in plant immunity, Nature, vol.478, pp.264-268

B. W. Yun, M. J. Skelly, M. Yin, M. Yu, B. G. Mun et al., Nitric oxide and S-nitrosoglutathione function additively during plant immunity, New Phytol, 2016.

J. Zeier, New insights into the regulation of plant immunity by amino acid metabolic pathways, Plant Cell Environ, vol.36, pp.2085-2103, 2013.

F. Zeng, F. Sun, L. Li, K. Liu, and Y. Zhan, Genome-scale transcriptome analysis in response to nitric oxide in birch cells: implications of the triterpene biosynthetic pathway, PLoS ONE, vol.9, p.116157, 2014.

G. B. Zhang, H. Y. Yi, and J. M. Gong, The Arabidopsis ethylene/jasmonic Acid-NRT signaling module coordinates nitrate reallocation and the trade-off between growth and environmental adaptation, Plant Cell, vol.26, pp.3984-3994, 2014.