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Upper plate deformation in retreating subduction zones 

 

i. Abstract 
 

The Earth’s surface is constantly reshaped by the tectonic plate motion, which is mainly 

driven by subduction of plates into the deeper mantle. Subduction trenches are also 

mobile plate boundaries, and are observed to retreat towards the subducting plate or 

advance towards the upper plate over geological time. Trench retreat has been 

historically thought to cause extension in the upper plate above the subducting slab. 

However, natural subduction systems show several examples of retreating trenches 

that are associated with upper-plate compression. This thesis explores upper plate 

(back-arc) deformation in retreating subduction systems. Three techniques are used: 

large-scale numerical models addressing physical processes; seismic profiles in the 

Central Aegean addressing basin-scale fault patterns; and field-scale observations 

clarifying fault kinematics in the Central Aegean. The large-scale thermo-mechanical 

models deal with viscous deformation of the upper plate, and investigate the 

relationship between slab pull, slab rollback, trench retreat and upper plate deformation 

at scales of 100 to 1000 km. They show that asthenosphere flows below the plates 

(100-200 km depth) can control both trench retreat and upper plate deformation. The 

type of deformation in the upper plate also depends on the plate’s far-field conditions: 

if the plate is free to move, deformation tends to be compressive, but a fixed upper 

plate shows extension. The latter is comparable to the Aegean region, an upper plate 

exhibiting extension above a narrow, retreating subduction zone. Related extensional 

structures in the central Aegean have been analysed from seismic and field data, 

revealing co-existing normal, oblique and strike slip faults. These features reflect a 

combination of rollback-related extension and extrusion-related strike slip activity. 

Resulting block rotation and trench retreat re-activate inherited normal faults in oblique-

normal slip, while new pure-normal faults are created. We also infer a recent change in 

stress state possibly related to the slab tear on the western side of the Hellenic slab. 
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Additionally, accelerated trench retreat and upper plate extension are the cause of the 

Aegean’s high surface heat flow, which makes it potentially suitable for geothermal 

energy production. As a final perspective on the application of geodynamic research, 

an assessment of the role of tectonic modelling in predicting geothermal energy 

potential is presented, using the stretched Aegean upper plate as an example. 
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ii. La déformation de la plaque supérieure dans les zones de 
subduction en retrait (version française abrégée) 
 

ii.b. Abstract 

La surface de la Terre est en permanence remodelée par les mouvements des plaques 

tectoniques, dont le moteur principal est la subduction, i.e. le plongement de plaques 

océaniques dans le manteau profond. Les fosses océaniques de subduction 

constituent également des limites de plaques mobiles, et les observations montrent 

que, sur des échelles de temps géologiques de plusieurs millions d’années, ces fosses 

reculent (vers la plaque plongeante) ou avancent (vers la plaque 

chevauchante/supérieure). Historiquement, le retrait de la fosse a été associé à une 

extension de la plaque supérieure au-dessus du panneau plongeant. Cependant, les 

zones de subduction sur Terre montrent plusieurs exemples de fosses en recul 

associées à des contraintes compressives. Cette thèse étudie la déformation (arrière-

arc) de la plaque supérieure pour une subduction en retrait. Trois approches ont été 

utilisées : des modèles numériques explorant les processus physiques mis en jeu à 

grande échelle, des profils sismiques en mer Égée centrale permettant d’étudier la 

répartition des failles à l’échelle du bassin, et des observations de terrain pour 

caractériser l’évolution temporelle de la déformation de la plaque supérieure en mer 

Égée centrale. Les modèles thermo-mécaniques à grande échelle reproduisent une 

déformation visqueuse de la plaque supérieure, et permettent d’analyser les relations 

entre traction du slab, recul du slab, retrait de la fosse et déformation de la plaque 

supérieure, à des échelles allant de 100 à 1000 km. Ils montrent que des courants dans 

le manteau asthénosphérique sous les plaques (vers 100-200 km de profondeur) 

peuvent contrôler à la fois le mouvement relatif de la fosse et la déformation de la 

plaque supérieure. Cette dernière dépend également des conditions mécaniques aux 

limites: si la plaque est libre de bouger, sa déformation sera plutôt compressive ; mais 

une plaque fixe sera en extension. Ce dernier cas est comparable à la région de la mer 

Égée, une plaque supérieure montrant de l’extension et associée à une zone de 

subduction étroite en retrait. Les structures extensives associées ont été analysées 
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grâce à l’observation sur le terrain et à l’étude de profils sismiques, révélant des failles 

normales, obliques et décrochantes synchrones. Cela est interprété comme résultant 

de la combinaison de contraintes extensives associées au recul de la fosse et de 

contraintes décrochantes associées à l’extrusion d’un bloc voisin. La rotation et le recul 

de la fosse réactivent d’anciennes failles normales dans un mode oblique-extensif, et 

engendrent des nouvelles failles purement normales. Les données suggèrent 

également un changement récent de l’état de contrainte mécanique dans la plaque, qui 

pourrait être dû à une déchirure du panneau plongeant côté Ouest. En sus, 

l’accélération du recul de la fosse et l’intensification de l’extension de la plaque 

supérieure expliquent probablement le flux de chaleur élevé en mer Égée, ce qui rend 

l’énergie géothermique potentiellement exploitable dans cette zone. Une évaluation de 

l’apport de la modélisation tectonique pour prédire le potentiel géothermique est 

finalement présentée comme perspective de l’application des recherches en 

géodynamique, s’appuyant sur l’exemple de la plaque supérieure égéenne amincie. 
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ii.b. Synthèse 

La subduction est le principal moteur des mouvements des plaques tectoniques et 

créer certaines des caractéristiques les plus importantes sur la surface de la Terre. La 

fosse, l’interface entre la plaque subductante et la plaque supérieure, est une limite 

mobile. Cette dernière peut soit avancer vers la plaque supérieure soit reculer vers la 

plaque subductante (Figure 1).  

 

 

Figure 1* : Zones de subduction majeures globales, vitesse de subduction de la plaque 

plongeante en bleu et migration de la fosse en rouge.  

 

Il est historiquement admis que le mouvement de la fosse dépend du tirage induit par le 

panneau plongeant, ou de son âge; les plus vieilles, plus lourdes, induisent un recul, 

alors que les plus jeunes, plus légères, permettent un mouvement vers l’avant.  

Cependant la relation n’est pas confirmée par des observations à l’échelle du système 

naturel et la relation entre le tirage du panneau plongeant et le mouvement de la fosse 

reste floue (Figure 2).  

                                                
* Schellart, Wouter, Dave Stegman, Rebecca Farrington, and Louis Moresi. 2011. Influence of Lateral Slab 

Edge Distance on Plate Velocity, Trench Velocity, and Subduction Partitioning. Journal of Geophysical 

Research. Vol. 116. 
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Figure 2† : Graphe de l’âge du slab en fonction du mouvement de la fosse qui ne 

montre aucune corrélation claire. 

 

Le mouvement de la fosse est aussi connu pour créer des déformations au niveau de la 

plaque supérieure, mais ces mouvements sont associés à la fois à des plaques 

supérieures en compression mais aussi en extension.  

 

                                                
† Goes, Saskia, Roberto Agrusta, Jeroen van Hunen, and Fanny Garel. 2017. “Subduction-Transition 

Zone Interaction: A Review.” Geosphere 13 (3): 644–64. http://dx.doi.org/10.1130/GES01476.1. 
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Figure 3‡ : Pas de corrélation claire entre le style de déformation global du domaine 

arrière-arc et le mouvement absolu de la fosse. 

 

Cette thèse a traité le mouvement du retrait de la fosse et la déformation de la plaque 

supérieure associée en adressant trois questions majeures : 

 

- Est-ce que le tirage de la plaque plongeante contrôle le recul de la fosse ?  

- Quelle est la relation entre le recul de la fosse et la déformation de la plaque 

supérieure ? 

- La recherche en tectonique peut-elle alimenter directement des applications pouvant 

être utiles à la société ?  

 

Dans le but de répondre à ces questions, une approche multi-échelle a été utilisée pour 

mieux comprendre les processus physiques dans les zones de subduction en retrait et 

ce qui contrôle la déformation de la plaque supérieure associée à ces dernières. Nous 

avons utilisé des modèles numériques à grande échelle pour isoler les effets du tirage 

                                                
‡ Heuret, Arnauld, and Serge Lallemand. 2005. “Plate Motions, Slab Dynamics and Back-Arc 

Deformation.” Physics of the Earth and Planetary Interiors 149 (1-2 SPEC. ISS.): 31–51. 

https://doi.org/10.1016/j.pepi.2004.08.022. 
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de la plaque subductante, premièrement, sur le recul de la fosse et deuxièmement, sur 

la déformation de la plaque supérieure (Figure 4). Nous avons aussi utilisé des données 

de terrain et de sismiques au niveau de la plaque supérieure Egéenne pour mieux 

comprendre la disposition des failles fragiles à l’échelle des bassins dans les systèmes 

de subduction en retrait.  

  

Figure 4: Paramétrisation initiale du modèle numérique 

 

Nos modèles montrent que le recul de la fosse n’est pas seulement contrôlé par le 

tirage de la plaque plongeante, mais aussi par le flux peu profond du manteau 

environnant. Les tirages de plaque plongeante les plus forts induisent des subductions 

plus rapides, ce qui déclenche à son tour un écoulement de manteau plus rapide sous 

les deux types de plaques.  Ces flux de manteau plus rapides se confrontent, et la 

fosse peut reculer si le retour de flux dans le coin mantellique (sous la plaque 

supérieure) est plus rapide que celui situé sous la plaque plongeante. Cependant si 

cette dernière subducte rapidement et entraine le manteau situé juste en dessous de 

manière à ce qu’il s’écoule plus rapidement que celui dans le coin mantellique, il pourra 

alors résister au recul de la plaque plongeante et de la fosse même si le tirage est fort 

et la subduction rapide. Ceci montre que le tirage de la plaque plongeante n’est pas 

seulement le facteur affectant le mouvement de la fosse mais que le flux mantellique 

(que cela résulte ou non de la traction de la plaque inférieure) a aussi un fort contrôle 

sur le mouvement de la fosse.   

 

Nous avons constaté que l'écoulement du manteau est également responsable de la 

déformation de la plaque supérieure ; ainsi, le mouvement de la fosse ne peut causer 

indirectement la déformation de la plaque supérieure que s’il déclenche un mouvement 
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plus rapide de l’écoulement du manteau. Nos modèles montrent que si l’écoulement du 

manteau sous la plaque supérieure est suffisamment fort pour dépasser la résistance 

de la plaque supérieure, il peut entrainer la plaque supérieure en profondeur et créer de 

la déformation. Le type de déformation induit dépend alors du fait que la plaque soit 

entrainée dans son entièreté ou que seul des portions le soient. La plaque peut être 

entrainée entièrement si elle présente un bord libre, par exemple une dorsale à l’arrière 

de sa direction d’entrainement. Dans ce cas, la plaque supérieure se déforme en 

compression. Par ailleurs, si seules des portions de plaque sont entrainées, comme 

dans le cas présent lorsque la plaque est reliée à l’arrière a un large continent, elle se 

déforme en extension lorsqu’elle est entrainée au front vers la fosse. Dans les deux cas, 

la résistance de la plaque supérieure a aussi son importance, puisqu’elle doit être 

suffisamment faible pour être déformée par le flux mantellique sous-jacent. Une autre 

façon d’exprimer cette idée est : le flux mantellique sous-jacent doit être assez fort 

pour dépasser la résistance de la plaque. Nous illustrons ce concept Figure 5. 

 

Figure 5 : Interprétation de processus physiques issus des modèles numériques 

 

Ceci a un autre effet sur le retrait de la fosse. Si la plaque supérieure est fixe, i.e. 

incapable de translater latéralement, la fosse ne peut reculer que si la plaque 

supérieure se déforme. Sans déformation, le mouvement de la fosse est bloqué. Ceci 
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fait apparaitre une nouvelle perspective concernant le retrait de la fosse, étant donné 

qu’il a toujours été considéré comme la cause de la déformation de la plaque 

supérieure. Notre modèle montre qu’il peut aussi être le résultat de la déformation de la 

plaque supérieure. 

Ceci peut également être pertinent pour le système Égéen, où la fosse se retire dans 

une étroite zone de subduction, sous une plaque supérieure relativement fixée. Le 

retrait de la fosse s’est possiblement initié en raison d’une plus forte traction de plaque 

plongeante, mais ceci a pu engendrer un flux mantellique suffisamment rapide pour 

qu’il soit présentement le principal moteur. Par conséquent, la déformation dans la mer 

Égée rend compte de l'évolution du recul de la plaque plongeante, comme le montre le 

chapitre 3. Ici, nous avons un changement progressif dans le style des failles depuis 

l’exhumation et la formation localisée de failles à faible pendage, jusqu’à la 

segmentation et la formation distribuée de failles à fort pendage. D’après les résultats 

de nos modèles, la segmentation a été rendue possible du fait que la plaque soit 

préalablement affaiblie par la précédente exhumation, permettant au manteau sous-

jacent de dépasser la résistance de la plaque et créant une déformation plus pervasive. 

 

Figure 6 : Interprétation des failles de la mer Égée centrale 
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Nos données sur le domaine Égéen montrent la coexistence de failles normales, 

obliques et décrochantes (Figure 6). Alors que la présence des failles normales et 

décrochantes est prévisible avec les processus de recul de la plaque plongeante et de 

l’extrusion Anatolienne respectivement, la présence de failles obliques ajoute un 

élément de complexité. Ces dernières suggèrent que les générations précédentes de 

failles normales ne sont plus alignées avec la direction d'extension, ce qui entraîne un 

glissement oblique. Notre interprétation de la mer Égée centrale montre que la 

géométrie des failles lors de la segmentation tourne avec la rotation du recul de la 

plaque plongeante. Les orientations des failles (toutes les générations) suggèrent qu'il y 

a eu un changement dans l'état de contrainte en plus (de l’interprétation) de la rotation 

des blocs. Cela pourrait représenter la rotation des contraintes résultant de la déchirure 

de la dalle dans la mer Égée occidentale (Figure 7). 

 

 

Figure 7 : Interprétation conceptuelle du recul de la fosse, de la rotation de bloc et de la 

rotation des contraintes en Égée Centrale. 
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De plus, le recul radial de la fosse en Égée introduit une composante décrochante 

accommodant la rotation des blocs, ce qui serait compatible avec la dynamique de 

l’extrusion Anatolienne. Ceci soulève la question : l’extrusion Anatolienne est-elle 

engendrée par un flux mantellique à grande-échelle déclenché par le recul de la plaque 

plongeante Egéenne ? Plusieurs études suggèrent que la distribution de la déformation 

de la plaque supérieure correspond avec la taille de la cellule de convection sous-

jacente. Il est possible que la cellule de convection subjacente soit devenue assez 

grande pour attirer la partie ouest de l’Anatolie, suivant la pénétration de la plaque 

plongeante dans le manteau inférieur. Récemment, le développement de déchirures sur 

les bords de la plaque Hellénique a introduit un flux mantellique toroïdale 

supplémentaire, renforçant ce mouvement et augmentant la vitesse de retrait de la 

fosse jusqu’à sa vitesse actuelle de 3 cm/an. 

 

Cet important flux mantellique couplé à une croûte supérieure amincie pourrait 

expliquer pourquoi le domaine Égéen présente un flux thermique si élevé en 

comparaison avec son environnement. Ce flux de chaleur plus élevé, associé aux 

sources chaudes, rend la région égéenne propice à l'exploration de l'énergie 

géothermique. Cependant, une compréhension de la structure lithosphérique 

contribuerait grandement à cet effort. La plaque supérieure amincie permet au manteau 

de s’écouler plus proche de la surface. Cependant, elle réduit également l’effet de 

recouvrement permettant une plus grande diffusion.  

La sédimentation, quand à elle, contrecarre cela. Mais la présence de failles amenant 

les fluides thermiques profonds augmente le géotherme. La quantification tectonique 

de ces effets peut grandement améliorer les prévisions géothermiques. Le chapitre 4 a 

montré que le simple ajout d'une extension de la lithosphère dans un processus de 

modélisation thermique modifiait considérablement les prévisions. 
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1. Introduction 

1.1. Preface 

 

The Earth is a complex dynamo with a hot interior and a rigid surface broken up into 

plates. These plates move and interact with the Earth’s interior over geological time, as 

described by the theory of Plate Tectonics (Le Pichon, 1968). Plates are, thus, defined 

by mechanical rather than compositional layer designation, and make up the 

lithosphere, the Earth’s outermost mechanical layer, which lies above the 

asthenosphere (Montagner 2011). Compositionally, the lithosphere includes the crust 

and part of the upper mantle. Tectonic plate motion is thought to be largely driven by 

subduction, the sinking of lithosphere into the asthenosphere (e.g. Forsythe and Uyeda, 

1975). There are currently tens of active subduction zones on Earth, which are shown in 

Figure 1.1. 

 

 

Figure 1.1: Global major subduction zones, trench normal subducting plate velocity in 

blue, and trench normal trench migration velocity in red. Velocities calculated using the 

Indo-Atlantic hot spot reference frame (O'Neill et al., 2005). Figure taken from Schellart 

et al. (2011). 
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The portion of the plate that has already subducted beneath the surface is called the 

slab. It is thought that subduction is mostly driven by the slab pulling the rest of the 

plate since it is heavier than the surrounding mantle. This is called the slab pull force 

(Forsyth and Uyeda, 1975; Davies, 1981; Conrad and Lithgow-Bertelloni, 2002). Slab 

pull occurs because the slab is mainly made of cold lithosphere, which is heavier than 

the surrounding hot asthenospheric mantle. As the slab subducts through the upper 

mantle, it starts to warm up, but the increased pressure first metamorphoses the 

basaltic oceanic crust to eclogite, and then the olivine rich lithospheric mantle to 

wadsleyite in the mid-upper mantle. This significantly raises the density of the slab, 

raising slab pull even more (Figure 1.2). 

 

 

Figure 1.2: Subduction zone simplified force balance: slab pull from negative buoyancy 

together with the mid-upper mantle phase transition act as positive sinking forces; 

resisting forces result from mantle drag, slab bending, upper plate strength and the 

upper-lower mantle phase transition. (Goes et al., 2017) 

 

While slab pull is the largest force in the system, the subduction zone (SZ hereafter) is 

also affected by several other forces. In addition to slab pull, ridge push acts as a 
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driving force. However, resistance occurs due to lithospheric bending, frictional plate-

coupling, viscous shear in the mantle, and positive buoyancy due to the ringwoodite-

to-perovskite/ magnesiowustite phase transition at a depth of 660 km, the bottom of 

the upper mantle (Billen, 2008). These forces are shown conceptually in Figure 1.2. The 

variable strength of each of these forces, as well as other variations, for example to far-

field plate motions, cause the characteristics of each SZ to vary. For example, SZs are 

not generally stationary, but move over geological time. The movement is 

conventionally ascribed to the trench, the interface between the subducting plate and 

the upper (or overriding) plate (e.g. Chase, 1978). Trenches are usually described to 

advance, i.e. move towards the upper plate, or retreat, i.e. move towards the 

subducting plate. Since all plates move relative to each other, a single reference point 

must be defined in order to describe surface motion. Hot spots are usually used to 

define different reference frames.  

 

 

Figure 1.3: Plotting slab age against trench motion shows no clear correlation (Goes et 

al., 2017). 
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Most of the world’s trenches move no faster than 5 cm/yr (Heuret and Lallemand., 

2005), however, the world’s fastest trench, in the northern Tonga SZ, retreats at a rate 

of 14.5 cm/yr (Lallemand et al., 2008). Figure 1.1 shows the normal component of 

global trench motion. Statistical data shows that there are approximately as many 

retreating trenches as there are advancing ones (Heuret and Lallemand, 2005). This 

challenges our current understanding that slabs ought to spontaneously rollback and 

retreat because of their negative buoyancy (e.g. Molnar and Atwater, 1978; Dewey, 

1980; Garfunkel et al., 1986). The lack of observed correlation between trench retreat 

and negative buoyancy (i.e. slab pull resulting from plate age, see Figure 1.3), also 

challenges this notion (e.g. Heuret and Lallemand., 2005; Sdrolias and Müller, 2006; 

Goes et al., 2017). Contrastingly, trench motion seems to correlate better to upper plate 

motion, although there are also many exceptions to this statement (e.g. Heuret and 

Lallemand., 2005; Lallemand et al., 2008). This leads us to question our understanding 

of the system’s driving forces, raising the first question of this thesis: how does slab 

pull influence trench retreat? 

 

The second question of this thesis relates to an apparent consequence of trench 

retreat: deformation of the upper plate away from the trench and beyond the volcanic 

arc, or what is known as the back-arc. Slab rollback and trench retreat have often been 

assumed to cause extensional stresses in the upper plate leading to back arc 

spreading (e.g. Molnar and Atwater, 1978). But again, there is no clear correlation 

between trench retreat and back arc extension, as shown in Figure 1.4 (Heuret and 

Lallemand., 2005). This observation poses the second question of this thesis: is there a 

relationship between trench retreat and upper plate deformation? 
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Figure 1.4: No clear correlation between global back-arc deformation style and trench 

absolute motion (Heuret and Lallemand, 2005). 

 

In order to answer these two questions, we have approached the problem from two 

different angles. The first attempts to improve our understanding of the physical 

processes controlling trench retreat and associated upper plate deformation. To do 

this, we have constructed thermo-mechanical numerical models on the scale of the 

upper mantle, dealing with viscous deformation on the time-scale of several million 

years. The second angle attempts to improve our understanding of the system using 

observations of brittle deformation from a retreating subduction zone, where the rate of 

trench retreat and associated upper plate deformation has changed through time. To 

do this, we use field and seismic data from the Aegean upper plate. Using these 

approaches allows us to tackle the problem at different scales; the scale of the upper 

mantle, basin scale, and local scale; while also touching on both the physical processes 

and natural observations.  While we primarily deal with the fundamental scientific 

concepts relating to upper plate deformation in retreating SZs, we expect results from 

our multi-scale approach to be more easily disseminated into applied studies, and we 

pose a third question in this thesis: Can tectonic research (such as performed here) 

feed back directly into applications that can be useful for society? To answer this third 

and final question, a brief study was conducted to see if basin-scale tectonic modelling 
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can improve thermo-mechanical predictions of geothermal energy potential, using the 

Aegean as an example. 

 

Sections 1.2 - 1.4 below provide the background to each study performed: large scale 

numerical modelling of upper plate deformation in retreating SZs; case study of brittle 

extension in the Aegean; and potential use of tectonic modelling in predicting 

geothermal potential. 

 

Summary of objectives 

 

This thesis attempts to better understand upper plate deformation in retreating 

subduction zones, by answering the following three questions: 

 

• How does slab pull influence trench retreat? 

• Is there a relationship between trench retreat and upper plate deformation? 

• Can tectonic research feed back directly into applications that can be useful 

for society? 

 

We tackle this with a multi-scale approach, using different tools to observe different 

parts of the retreating subduction system. We, thus, use large-scale numerical models, 

basin-scale seismic analysis, and local-scale field studies. We then combine basin 

scale observations with thermomechanical modeling to assess the use of tectonic 

research in predicting geothermal energy potential.  

Thus, rather than focusing on a single specific detail or a particular method, our 

strategy is to combine multiple angles to gain a better understanding of upper plate 

deformation in retreating subduction zones, and how the system’s main controls relate 

to each other. 

 

  



 

22 

1.2. Numerical modelling of subduction trench retreat 

and upper plate deformation  

 

1.2.1. Geodynamic models of subduction 

 

Studying lithosphere and asthenosphere dynamics, such as in subduction, usually falls 

under Geodynamics, a discipline that combines structural geology, geochemistry and 

geophysics. This mostly deals with the subsurface, which cannot be directly observed 

(the deepest borehole drilled to date is 12 km deep, while the mantle extends to 2900 

km depth). Therefore, much of the discipline started from mathematical constructs of 

physical concepts. Recent improvements in data acquisition, such seismic tomography 

and long-series GPS, has added crucial constraints, improving geodynamic models.  

Theoretical models and observations from nature (both direct and indirect) are, thus, 

strongly complimentary and can produce sophisticated models of natural processes. 

 

Theoretical models are often first inspired by concepts derived from sparse 

observations. Combining these with physics-based predictions and then comparing the 

model results to natural observations can largely improve our understanding of the 

unobserved processes. From the early days of tectonic research, analogue modelling 

has played an important role in improving our understanding of plate motion and 

subduction (e.g. Griffiths et al., 1995). 

For example, analogue models revealed that trench retreat could be responsible for 

back-arc extension (e.g. Figure 1.2.1, Faccenna et al., 2001). However, these models 

generally did not include upper plates, and incorporating upper plates (into numerical 

models) revealed that back-arc extension might relate to other factors than trench 

retreat (e.g. Capitanio et a., 2010). 
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Figure 1.2.1: Analogue models of subduction and trench retreat by Faccenna et al., 

2001: the slab is simulated using silicone plates and the mantle using glucose syrup 

mixed with pure white sugar to vary viscosity.  The experiments ultimately simulated 

episodic trench retreat. 

 

While analogue models are useful for studying slab dynamics, retreating subduction 

with an upper plate remains difficult to model experimentally (but not impossible as 

shown by Pitard et al., 2018, amongst others). This is more easily handled by numerical 

models, which have numerous other advantages for tackling upper plate deformation in 

retreating subduction zones. For example, different scales are more easily captured by 

numerical models, which is particularly useful for large-scale setups with variable mesh 

size. Also, model evolution is not limited to kinematics but can also include thermal and 
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compositional evolution. Model setup and parametrisation can also be varied more 

quickly numerically, allowing us to more efficiently test different scenarios. Numerical 

model results are also inherently quantified, facilitating analysis of the findings. We 

have, therefore, chosen to model trench retreat and upper plate deformation 

numerically. 

 

1.2.2. Numerical modelling of subduction processes 

 

Numerical modelling of subduction processes is usually based on solving conservation 

equations, often applied to fluid dynamics. The plate and the asthenosphere are, thus, 

treated as viscous fluids deforming over multi-million year timescales (Billen, 2008). The 

thickness of the plate is defined by the lithosphere-asthenosphere boundary, or the 

LAB. The LAB can be defined by different proxies, such as shown in Figure 1.2.2 (Eaton 

et al., 2009). In the models we present in Chapter 2, we define the LAB thermally, since 

strain rate is calculated from viscosity, which in turn is calculated from temperature. 

Thus, in our models, the LAB is defined thermally, and mechanical decoupling between 

the plates and the lithosphere is maintained; the plates have lower strain rate than the 

asthenosphere, making them more rigid. 
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Figure 1.2.2: Different proxies used to define the lithosphere-ashthenosphere boundary 

(LAB). After Eaton et al. (2009). 

 

There are various types of subduction zone numerical models. The first distinction is 

between 2-D and 3-D models (e.g. Figure 1.2.3).  Trench motion and upper plate 

deformation are inherently 3-dimensional phenomena. If we also consider mantle flow 

beneath the plates, the role of lateral influences becomes even more important. 

However, 2-D models can be useful to better identify effects that are not related to 

lateral influences, and these models are less computationally expensive. This makes 2-

D models relevant for simplifying a specific problem and gaining a more fundamental 

understanding of the processes at play. 
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Figure 1.2.3: Examples of 2-D and 3-D numerical models that explore UP dynamics: a) 

2D model of flat slab subduction resulting from upper plate acceleration (Van Hunen et 

al., 2004). b) 3D model of hyper-episodic subduction with alternating trench retreat and 

advance (Clark et al., 2008). 

 

Regardless of model dimensions, there are several types of numerical models, the 

choice of which depends on the question addressed. Billen (2008) summarises the 

main model types as: 

- Instantaneous models: the equations of conservation of mass and momentum are 

solved, but not the conservation of energy (the thermal field is not advected forward 

in time). These have the advantage of enabling comparison of results to a large range 
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of observations, e.g. the observed geoid was found to require an increase in viscosity 

between the upper and lower mantle (Hager, 1984).  

- Dynamic models: all three conservation equations are solved (mass, momentum, and 

energy), updating the thermal and viscosity field (as well as the composition and 

phase changes where applicable) for each time step. These are useful for exploring 

slab dynamics, such as rheologic controls on the slab, e.g. Billen and Hirth (2007). In 

this category, we can also distinguish models in which slab sinking drives 

asthenospheric flow (e.g. Garel et al., 2014) from models in which subduction is a 

consequence of whole-mantle thermal convection (e.g. Crameri and Tackley, 2014).  

- A combination of dynamic and kinematic models: the three conservation equations 

are solved (dynamic), but with part of the model domain having prescribed velocity 

(kinematic). Models of this type can be purely thermomechanical or include 

composition, where the latter tend to be more complex. A common use of these 

models is to combine slab dynamics with prescribed surface kinematics such as 

observed plate motion (e.g. Tan et al., 2002). 

 

Our work, presented in Chapter 2, uses 2-D, fully dynamic thermo-mechanical models 

driven by slab sinking.  These allow us to identify the effect of slab pull without 

obscuring plate deformation with prescribed surface velocities. 
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1.2.3. Previous numerical models of upper plate deformation in retreating 

subduction systems 

 

Controls on trench motion 

 

Many numerical studies attempt to understand trench motion, as it is not yet clear 

whether trench motion is a cause or effect of slab dynamics (Billen, 2008; Gerya 2011). 

Some studies have found that trench motion correlates with slab dip, where steep slabs 

are likely to result in trench advance, and gently inclined slabs to trench retreat (e.g. 

Bellahsen et al., 2005; Faccenna et al., 2007; Di Giuseppe et al., 2008; Stegman et al., 

2010; Gerault et al., 2012). This correlation between slab dip and trench motion is also 

observed in nature (e.g. Lallemand et al., 2005). Other studies link trench motion to 

mantle dynamics, e.g. slow down of slab rollback and trench retreat due to slab 

anchoring in the lower mantle  (e.g. Billen, 2008; Enns et al., 2005). 

 

Upper plate deformation 

 

Various studies have also looked at upper plate deformation associated with trench 

retreat. Focusing on retreating systems, UP extension is mechanically expected, 

according to early studies such as Dvorkin et al., 1993; Faccenna et al., 1996; Jolivet et 

al., 1994. Thus, understanding UP compression in retreating systems (e.g. in the South 

American SZ) has been the focus of many studies. Additionally, upper plate extension 

has been found to be more complex than being directly caused by trench retreat, as 

the other forces (Figure 1.2) in the system come into play. 

 

Some studies have focused on the motion of the UP to understand its deformation. For 

example, Silver et al. (1998) found the South American plate acceleration towards the 

trench (due to ridge push) caused Andean compression, while Van Hunen et al. (2004) 

also found that this UP motion can cause slab flattening and UP obduction. Sobolev 

and Babeyko (2005) found that in addition to UP acceleration towards the trench, the 
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crustal structure of the UP, as well as the degree of shear coupling at the plate 

interface, were also important controls, particularly in the case of the Andes. Other 

studies attribute UP compressive deformation (again, taking the example of the Andes) 

to slab buoyancy, e.g. by subduction of ridges (e.g. Gutscher et al., 2000; Jadamec et 

al., 2013). This leads us to investigate how plate and trench motion could vary in 

relation to slab pull and mantle flow. 

 

As for retreat-related extension in the UP, several studies have attributed it to the 

speed of subduction caused by slab buoyancy (e.g. Capitanio et al., 2011). Additionally, 

Clark et al. (2008) found that in this scenario, back-arc extension tends not to be 

continuous, but episodic, where the deformation can be pseudo-, quasi- or hyper-

episodic. Natural systems (e.g. Izu-Bonin Trench, the Mariana Trench, the Japan 

Trench, the Java-Sunda Trench and the central portion of the Peru–Chile Trench) are 

thought to be dominantly quasi-episodic, where the back-arc shifts from rifting to 

spreading to tectonic quiescence. The authors found that this requires fast subducting 

plate velocities (6-9 cm/yr), as does hyper episodicity, where the trench alternates 

between advance and retreat. Slower subducting plates, however, are characterised by 

slower subducting plate motion, such as the in the Mediterranean or Scotia Sea.  

 

 

 

Figure 1.2.4: Illustration of toroidal flow (lateral flow) and poloidal slab (vertical flow) 

around the slab.  Illustration from Schellart and Moresi (2013). 
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For both extensional and compressional deformation in the UP, deformation has also 

often been attributed to shallow asthenospheric flow induced by subduction (e.g. 

Wdowinski et al., 1989; Schellart et al., 2010; Husson et al., 2012; Schellart and Moresi, 

2013; Chen et al., 2016; Faccenna et al., 2017). Several studies argue that compression 

is associated with poloidal flow, where the flows vertically beneath the slab, while 

extension is associated with toroidal flow, where the mantle flows laterally around the 

slab (illustrated in Figure 1.2.4). Many of these studies argue that since toroidal flow 

cannot be captured in 2-D models, 3-D models can more accurately constrain UP 

extension (e.g. Piromallo et al., 2006; Capitanio et al., 2011). These models can also 

capture more complex slab dynamics, such as slab tearing, which has been show to 

further enhance trench retreat and mantle flow, dragging the UP from below and 

introducing extra strain (e.g. Sternai et al., 2014). However, depending on the scenario 

studied, 2-D models can suffice. For example, by modelling Andean deformation in 3-

D, Schellart (2017) showed that poloidal flow produce both extension and compression 

depending on the size of the convection cell. Here, convection on the scale of the 

whole mantle scaled with the entire UP, dragging the entire plate and generation 

compression. However, convection on the scale of the upper mantle (before the slab 

reaches the lower mantle) is smaller scale and only drags the front of the upper plate, 

generating back-arc extension. This is an effect that would be captured in 2-D (Figure 

1.2.5), as shown by Schellart and Moresi (2013) and Faccenna et al. (2017). 

 

Apart from model dimensions, the choice of boundary conditions is also important. The 

type of side boundaries can control subduction geometry (e.g. Enns et al., 2005, refer 

to Chapter 2.4.1 for more). However, the choice of surface boundary conditions can 

largely influence the observed results when exploring UP deformation. Models  benefit 

from using a free surface as the upper boundary condition to allow a fully dynamic 

setup where surface deformation and topography can develop freely. Many authors 

(including our models in Chapter 2) are now using this free-surface for a more accurate 

analysis (e.g. Bonnardot et al., 2008; Schmeling et al., 2008; Zhu et al., 2009, 2011; 

Garel et al., 2014; Ficini et al., 2017; Yoshida, 2017; Cerpa et al., 2018). 
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Figure 1.2.5: The scale of poloidal mantle flow can determine upper plate deformation. 

a) Upper mantle only, small scale convection can create upper plate extension. b) 

Whole mantle, large scale convection can create upper plate compression. Illustration 

from Faccenna et al. (2017). 

 

Finally, compositional models can also shed light on upper plate deformation (Gerya, 

2011), particularly in identifying the role of UP weakening by fluids (e.g. Arcay et al., 

2005) and magmatism (e.g., Ueda et al., 2008; Sizova et al., 2010). Gerya and Meilick 

(2011) found that aqueous fluids mainly affect the forearc and affect plate coupling, 

while magmatism weakens the lithosphere below the arc, which controls UP extension 

and compression. The combination of these could result in retreating subduction and 

back-arc spreading, due to strong rheological weakening combined with weak plate 

coupling. These compositional models, however, are more complex to build, costly to 

run, and are not essential when tackling the dynamic issues investigated in this thesis. 
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Between the large body of work available and the myriad approaches adopted, it is still 

not clear what is the relationship between slab pull, trench retreat and upper plate 

deformation. Several studies have invoked various local physical processes influencing 

UP deformation, as summarised above; however, their relationships (i.e. identifying 

causality rather than correlation) and their integration into a global mechanical scenario 

remain elusive. We, therefore, aim to clarify the physical processes that relate slab pull, 

trench retreat and upper plate deformation.  

 

1.2.4. Choice of model presented in Chapter 2 

 

As we aim to better understand the fundamental relationship between slab pull, trench 

retreat and UP deformation, our strategy was to produce the a simple model which 

shows trench retreat and UP deformation occuring during a deviation from a steady-

state subduction. We, thus, construct fully dynamic, thermo-mechanical models in 2-D. 

We only vary slab pull by introducing a density anomaly in the slab, and observe the 

resulting changes in trench retreat and UP deformation. The choice of a fully dynamic 

model avoids obscuring UP deformation by prescribing surface plate velocity, while 

building the model in 2-D allows us to distinguish UP deformation caused by trench 

retreat from potential lateral mantle flow effects. Our model setup includes the upper 

mantle (660 km) and is especially wide (6000 km) to minimise far field side effects on 

subduction dynamics. Generally, upper plate deformation in nature is transient, and to 

simulate this, we start our model from quasi-steady-state, mature subduction, varying 

slab pull as subduction continues to disturb the system and observe deformation 

resulting from cascading physical processes. Our findings are presented in Chapter 2 

of this thesis. 
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1.3. The Aegean: case study of a retreating subduction zone and its rapidly 

deforming upper plate 

 

1.3.1. The Aegean subduction zone 

 

The Aegean subduction zone is part of the complex Alpine-Mediterranean mobile belt, 

where slabs have been torn, segmented, back-arc basins opened and micro-continents 

formed (Figure 1.3.1).  Only two zones of active subduction remain in the Eastern 

Mediterranean, the Tyrrhenian and the Aegean. Complex slab dynamics here continue 

as the slabs tear and rollback further. A simplified illustration of the tectonic evolution of 

the Eastern Mediterranean is shown in Figure 1.3.2.  

 

 

Figure 1.3.1: Major tectonic elements of the Mediterranean system (Royden and 

Faccenna, 2018) 
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We will focus on the Aegean region, where African slab is subducting beneath Eurasia. 

The subduction stacked north-dipping nappes, which are now undergoing back-arc 

extension due to trench retreat (Royden 1993; Jolivet and Faccenna 2000; Faccenna et 

al. 2003, 2014; Brun and Faccenna 2008). Figure 1.3.3 shows an overview of the main 

geological units and their simplified tectonic history in cross section.  

 

 

Figure 1.3.2: Tectonic evolution of the Eastern Mediterranean since 30 Ma (Royden and 

Faccenna, 2018). Note the reconstructed trench retreat of the Aegean SZ towards 

Africa. 
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Figure 1.3.3: The main geological units in the Aegean in a) map view, b) cross section, 

and c) cross sectional tectonic history. After van Hinsbergen et al. (2005). 

 

The trench is currently retreating approximately 3 cm/yr (e.g. Shaw and Jackson, 2010), 

however, the migration of the volcanic arc, migration of high pressure metamorphism, 

and slow down of plate convergence (Ring et al., 2010 and references therein) suggest 

that trench retreat has been accelerating since it first started in the Eocene (Brun et al., 

2016). Consequently, the style of deformation in the UP has also evolved through time. 

The Aegean shows three main stages of rollback related deformation, as shown by 

Jolivet and Brun (2010) and Philippon et al., (2012): prograde subduction-related 

deformation; rollback-related exhumation of metamorphic core complexes (Figure 

1.3.4); and rollback-related segmentation by high angle normal faults (Figure 1.3.5).  
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Figure 1.3.4: Exhumation of (a) high pressure, and (b) high temperature metamorphic 

core complexes in the Aegean from the Mid-Eocene to the Mid-Miocene (circled 

numbers indicate age in Ma) (Brun et al., 2016). 

 

 

Figure 1.3.5: Segmentation of the Aegean upper plate by high angle normal faults 

creating widespread sedimentary basins in the Neogene (Brun et al., 2016). 

 

The rollback is thought to have caused up to 600 km of extension in the Aegean upper 

plate to date (Jolivet and Brun 2010; Jolivet et al. 2013). Various studies suggest that 

this rollback has accelerated over time, either due to the slab flattening on the lower 

mantle (e.g. Ring et al., 2010) or due to slab tearing (e.g. Wortel and Spakman, 2000; 
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Brun and Sokoutis, 2010; Jolivet et al., 2013). As a result of this acceleration, the style 

of extensional deformation is thought to have changed from localised exhumation to 

distributed segmentation (e.g. Figure 1.3.6, Brun et al., 2016). The exhumation stage 

has already been heavily studied (e.g. Lister, 1992; Jolivet et al., 1996; Avigad et al., 

1997; Krohe and Mposkos 2002; Kumerics et al., 2005; Brichau et al., 2007; Brun and 

Facenna, 2008, etc). The segmentation stage, however, has received little attention so 

far. We therefore focus on the segmentation stage and how the fault pattern relates to 

slab rollback and trench retreat. 

 

 

Figure 1.3.6: Hellenic trench retreat since the Eocene and apparent associated 

deformation (Brun et al., 2016). 

 

1.3.2. Recent deformation in the Aegean upper plate 

 

The Aegean upper plate currently shows pervasive high-angle normal faulting. Early 

efforts by Mascle and Martin (1990) mapped the subsurface structure of the Aegean’s 

offshore faults using seismic reflection profiles (example shown in Figure 1.3.7). They 

showed that the Aegean is undergoing classical back-arc rifting. However, Anatolia is 

also extruding westwards (McClusky et al., 2000; Hollenstein et al., 2008; Müller et al., 

2013), which overprints the Aegean with a strike-slip regime, as shown in Figure 1.3.8. 
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Earthquake focal solutions show that there are NE-trending, dextral strike slip faults in 

the Central and Eastern Aegean (e.g. Taymaz et al., 1991) as shown in Figure 1.3.9. 

 

 

Figure 1.3.7 Example of offshore high-angle normal faulting in the Cretan Sea. 

Representative of the entire Aegean Sea. From Mascle and Martin (1990). 
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Figure 1.3.8: Major Aegean structures and GPS field in the Aegean, interpreted by 

Armijo et al., 2004: red and blue shading respectively represent extensional and  

compressional strain associated with the propagation of the North Anatolian Fault. 

Rollback related extension is shaded in yellow. 
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Figure 1.3.9: Earthquake focal solutions for shallow earthquakes of magnitude >/= 4.0. 

a) normal faults, b) thrust faults, c) strike-slip faults. From Vamvakaris et al. (2016). 

Recent work by Sakellariou and Tsampouraki-Kraounaki (2018) amongst others has 

shown that these strike slip faults interact with the back-arc normal faults, as shown in 

Figure 1.3.10. When this interaction started is not clear, but recent studies have 

suggested that it is as old as the Mid-Miocene (e.g. Philippon et al., 2014). The oldest 

extension-related sediments are known to be Mid-Miocene (e.g. Mascle and Martin, 

1990; Sánchez-Gómez et al., 2002; Beniest et al., 2016), but the age of dispersed strike 

slip faults is more elusive.  The NAF is known to have localised recently, dated around 5 

Ma (e.g. Armijo et al., 1999; Şengör et al., 2005), however, large-scale dextral shear 

zones in the Aegean may have initiated in the Mid-Miocene (Armijo et al., 1996, 1999; 

Şengör et al., 2005; Reilinger et al., 2010). Additionally, there is evidence of NE-trending 
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strike slip faults partly localising magmatism since the Mid-Miocene (Kokkalas and 

Aydin, 2013). Therefore, there is evidence for strike slip activity as far back as the Mid-

Miocene, but whether or not it influenced back arc extension remains unclear. 

 

 

Figure 1.3.10: Interpretation of recent the deformation pattern in the Aegean by 

Sakellariou and Tsampouraki-Kraounaki (2018), which includes normal and strike slip 

faulting. The insets show the author’s interpretation of dextral oblique extension (B) that 

fits with the Riedel shear framework (A), and creates sinistral pull apart structures in the 

south Eastern Aegean (C). Volcanic arc marked by red dots, yellow areas cover Plio-

Quaternary basins with sediment thickness > 500 m. 
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1.3.3. Focus on the Cyclades and workflow presented in Chapter 3 

 

We attempt to clarify the relationship between slab rollback, extension and strike slip 

faulting in the central Aegean, and how this relationship has changed through time. To 

do this, we focus on the Cyclades, where the geology is well known, but the latest 

segmentation related structures are poorly constrained.  The Cyclades block also 

contains the limit between clockwise and counter-clockwise block rotation (Figure 

1.3.11), indicated from palaeomagnetic studies (Morris and Andersen, 1996; Avigad et 

al., 1998). This is makes it particularly interesting to understand the role of rotation in a 

retreating subduction system. Additionally, the Cyclades block is one of the least active 

areas in the Aegean, making it a suitable candidate for distinguishing older structures. 

We therefore start by addressing the question: why do the normal faults in the Aegean 

have variable strike? This was already evident in the early structural maps of Mascle 

and Martin (1990), and can be seen in Figure 1.3.10. We distinguish multiple normal 

fault generations and interpret their formation in the context of a rotating block. This is 

reconciled with slab rollback and extrusion.  

 

 

Figure 1.3.11: Main tectonic elements of the Cyclades with rotation since the Mid-

Miocene and an interpreted dextral strike slip accommodating the rotation. After 

Philippon et al., 2014. 
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The offshore fault pattern is mapped using shallow seismic reflection profiles, and field 

data from Syros is used to constrain fault kinematics and timing.  We use Syros as a 

representative example of the central Aegean since it shows all three stages of 

deformation (subduction related, exhumation related and segmentation, Figure 1.3.12), 

as shown by Keiter et al., 2004 and Philippon et al., 2012. Subduction related 

structures are preserved in eclogite and blueschist facies rocks (e.g. Ring et al., 2010 

and references). Exhumation is recorded by the low-angle detachment faults that have 

brought these high-pressure rocks to the surface (e.g. Jolivet et al., 2013 and 

references therein).  

 

Figure 1.3.12: P-T path of the rocks in Syros showing progression from prograde 

subduction-related metamorphism through retrograde rollback-related extension. From 

Laurent et al., 2016. 

 

As we aim to better understand the large-scale pattern of recent high angle normal 

faults (i.e. segmentation), we will only focus on structures that post-date low-angle 

detachments.  We find that combining field and seismic data to be particularly useful in 

interpreting faulting pattern and kinematics. We use this to produce a regional 

interpretation of progression of high angle faults with rotation related to trench retreat 

and Anatolian extrusion.  
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1.4. The role of tectonic research in predicting geothermal energy 

 

1.4.1. Geoscience and energy resources 

 

Geoscience and energy production have long been closely intertwined, from the early 

days of coal mining, through the petroleum era and onwards to alternative resources; 

energy production usually starts from the natural environment in which we live. While 

several energy sources are derived from the energy Earth’s surface, such as solar, wind 

and hydroelectric power, venturing deeper into the crust has provides a wealth of 

energy resources. Future generations will undoubtedly uncover further resources we 

have not yet conceived of, but today, our main deep energy resources are fossil fuels 

and geothermal energy.  Buried hundreds to thousands of meters beneath the surface, 

these resources are strongly affected by tectonic activity, and lie where direct 

observation is not possible. As the petroleum industry matured, it developed various 

subsurface observation tools on multiple scales, including gravity, magnetic, and 

seismic surveys, as well various logging tools. Academia has also made large strides in 

processing seismic tomography data in recent years. These combined with the present 

availability of satellite data provides us with a suite of tools from which the petrology, 

temperature and fluid distribution in the lithosphere can be studied. The petroleum 

industry has made extensive use of this and been able to go as far as exploiting 

reservoirs in unconventional settings.  Consequently, the petroleum industry has 

produced a wealth of knowledge on geological settings and subsurface processes, 

particularly related to sedimentary basins, subsurface fluid flow, structural geology and 

geomechanics. However, as the world’s fossil fuel reservoirs deplete and awareness of 

their environmental impact rises, we must replace energy production from fossil fuels 

by more sustainable resources. This brings us to our second deep energy resource, 

geothermal energy.      
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1.4.2. What is geothermal energy? 

 

Unlike fossil fuels, geothermal energy production is less mature and less predictable, as 

it requires a better understanding of the heat transport within the lithosphere. It is 

considered to be a renewable energy source, which exploits the Earth’s internal natural 

heat. This is predominantly primordial heat from the Earth’s accreation 4.5 Ga ago, in 

addition to radiogenic heat generated in the lithosphere and within the Earth’s mantle 

(Stacey and Davis, 2013; Manzella, 2019). As the solid Earth is cooling from its surface, 

the crust is generally coolest and temperature increases with depth. This vertical 

temperature profile is called the geotherm.  In the simplest assumption, the continental 

lithosphere is assumed to be in thermal equilibrium, i.e. the geotherm is in steady state 

(Cloetingh et al., 2010). In geologically stable continental regions the ambient heat flux 

averages around 0.065 W/m2 (Stacey and Davis, 2013) and the geotherm averages 

around 20-30 °C/km (Manzella, 2019). This heat profile is too cold to be exploited for 

energy production, which requires a higher geotherm. The latter can result from thermal 

influences, such as magmatism or tectonic activity changing the thickness of the 

lithosphere, or inducing metamorphism. The highest geotherms are, thus, observed in 

volcanic areas and are between 40-80 °C/km (Arndt, 2011). Geothermal energy is 

already exploited from steam in such volcanic areas, e.g. Iceland, Italy, California and 

New Zealand (Stacey and Davis, 2013). Tectonic processes such as extension or 

magmatism also raise local geotherms, such as in the Pannonian Basin, the Aegean 

and parts of western Turkey (Cloetingh et al., 2010). Interestingly, tectonic processes 

can also raise local geotherms in amagmatic systems by creating fracture networks.  

Such permeable networks allow superheated fluids to migrate from significant depths 

to the upper crust. An example of this is seen in Taiwan where a geothermal reservoir 

has formed in fractured metamorphic rocks as a result of oblique collision, creating 

local hot springs (Gup et al., 2018) 
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1.4.3. Geothermal energy contribution 

 

On average, global energy use increases by 3% a year  (Stacey and Davis, 2013). In 

2015, geothermal energy contributed a projected 73,549 GWh to global energy use, a 

16% rise from the previous 5 years (Bertani, 2016). Figure 1 shows the rise in 

geothermal energy production from 1950 to a 2020 projection. Bertani (2016) showed 

that with 16600 GWh, the USA produced the largest amount of geothermal energy 

2015, followed by the Philippines, Indonesia, and New Zealand, who produce between 

5000-10000 GWh each. Turkey, Kenya, Japan, Costa Rica and El Salvador each 

produced between 1000-5000 GWh in 2015.  The prominence of subduction zones in 

these values is noteworthy (Philippines, Indonesia, New Zealand, Japan, Costa Rica 

and El Salvador). 

 

 

Figure 1.4.1: Global geothermal installed capacity and produced energy from 1950 

projected to 2020 (Bertani, 2016). 

 

Geothermal energy is used for both heating and producing electricity. In general, a wide 

range of geothermal reservoir temperatures can be used for heating, but producing 



 

47 

electricity usually requires temperatures over 100°C (Manzella, 2019). Presently, global 

geothermal power production has a capacity of 12.7 GW (IRENA 2018), and annual 

electricity generation in 2015 reached 80.9 TWh, approximately 0.3% of global 

electricity generation (IRENA 2017) and 18% of total geothermal energy use (Manzella, 

2019). With growing capacity, geothermal energy can provide a more widespread 

energy source since production is independent of seasonal variations, providing a 

continuous energy base-load which can respond to energy demand (Manzella, 2019). 

 

1.4.4. Geothermal technologies 

 

Geothermal plants use heat directly, or most commonly, extract hot geothermal fluid, 

circulate it through a heat exchanger, and re-inject it into the subsurface. Geothermal 

plants must, thus, optimise their locations, manage borehole extraction and injection, 

and manage the heat exchanger. For heating, temperatures tapped usually range from 

70-90°C (Manzella, 2019). Higher temperatures > 100°C are required for electricity 

production, and the temperature conditions affects the efficiency of electricity 

generation, as higher temperatures can produce more power for the same flow rates 

(e.g. DiPippo, 2007, Cloetingh et al., 2010). These usually require deeper drilling 

(around 5 km for a mean continental heat flow and a thermal gradient of 20°C/km). 

Shallower reservoirs are mainly used for heating and cooling. There are several 

conventional geothermal technologies which utilise both shallow and deep geothermal 

reservoirs. A frontier technology is also under development, that is the Enhanced 

Geothermal System (EGS), introduced below. Manzella (2019) provides a concise 

overview of conventional geothermal technologies, summarised here: 

 

Conventional shallow geothermal 

 

Apart from direct thermal application, which accounts for 26% of geothermal energy 

use, geothermal resources are primarily classified by their depth: shallow and deep 

geothermal. Shallow geothermal exploits the thermally stable layer a few 10 - 100 
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meters deep, where there are no seasonal variations. Geothermal energy here is usually 

produced using a Ground Source Heat Pump (GSHP). This allows both heating and 

cooling and accounts for 56% of total geothermal energy production. 

 

Conventional deep geothermal 

 

Deep geothermal, on the other hand, exploits a high geotherm by drilling into the crust 

and accessing heated fluids or vapour.  There are different types of power plants used 

in this scenario depending on the fluid temperatures.  For temperatures greater than 

250°C, dry steam plants are possible.  These use geothermal fluids, which are 

completely vaporised (often due to the drop in a drop which results from drilling) and 

are piped directly to the power plant. Temperatures greater than 180°C facilitate flash 

steam systems, where the geothermal fluid is only partially vaporised at the surface (or 

flashed). For temperatures as low as 110°C, binary cycle technologies can be used, 

where the geothermal fluid exchanges heat with a working fluid that has a lower boiling 

point and higher vapour pressure. The working fluid us then vaporised in a heat 

exchanged.  

 

All three types of plants require at least two wells, one for production and the other to 

inject the geothermal fluids back into the ground, although only the binary cycle type 

plant is able to re-inject all the of the geothermal fluid, as steam is lost to the 

atmosphere in the other two plant types. The binary cycle type plant, however, has the 

disadvantage of lower efficiency, and thus only accounts for 12% of global installed 

capacity (Bertani, 2016). Single flash power plants, on the other hand, account for 41%, 

while dry steam plants account for 22% of global installed capacity. Other 

technologies, including hybrid technology plants, account for the remaining 3%. A 

schematic overview of the geothermal power plants is shown in Figure 1.4.2. 
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Figure 1.4.2: Simplified overview of geothermal power plants (Manzella, 2019). 

 

The Enhanced Geothermal System (EGS) 

 

EGS exploits deep geothermal reservoirs which are normally too impermeable for 

commercial production by employing hydraulic and chemical stimulation. EGS involves 

drilling at least two boreholes (a ‘doublet’), one used for production, the other for 

injection, where both wells are stimulated to artificially enhance the permeability of the 

reservoir between them, as shown in Figure 1.4.3 (Gérard et al., 2006). The potential for 

EGS was proven in the Soultz research project in eastern France (Gérard et al., 2006) 

and commercially in the Landau project, Palatinate, western Germany (Cloetingh et al., 

2010). 
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Figure 1.4.3: Conceptual image of the Enhanced Geothermal System (Gerard et al., 

2006). 

 

1.4.5. Challenges and predictability 

 

The first challenge of geothermal energy use is to accurately predict the geotherm. To 

reduce drilling costs, relatively high geotherms are targeted.  These can be a result of 

magmatism, e.g. Iceland (Cloetingh et al., 2010); hydrothermal fluids circulating from 

deeper to shallower levels through open faults and fracture, e.g. Soultz, France (Gérard 

et al., 2006); or recent crustal thinning, e.g. the Pannonian basin, Hungary (Horvath et 

al., 2015). Predicting geothermal potential, thus, requires an understanding not only of 



 

51 

the thermal state of a region, but also its tectonic structures.  This is not a trivial task, 

as the present day thermal and structural conditions of the lithosphere requires 

inerpretation from surface observations (e.g. geological cross-sections, seismic 

profiles). Many of these processes also have different effects, for example, basin 

formation through crustal thinning can raise heat flow, as in the Pannonian Basin, 

however sedimentation can significantly reduce surface heat flow due to the blanketing 

effect (e.g. Wangen, 1995). While this is partially compensated by radiogenic heat 

production in sediments (Van Wees et al., 2009), erosion and thinning also reduce heat 

flow due to the loss of radiogenic heat from crustal material (e.g. Van Wees and 

Beekman, 2000). The latter two effects will create different geotherms, as sediment 

blanketing may reduce surface heat flow, but preserve it at depth. In fact, heat flow 

modelling of continental extensional basins shows that over long time-scales, heat flow 

is lowered compared to unrifted basins (Van Wees et al., 2009) and is confirmed by 

lower heat flow in the deepest centres of certain basins compared with their margins, 

e.g. in the Black Sea (Cloetingh et al., 2003). Thus, taking the example of basins,  

geotherms and heat flow will vastly differ depending on the age of rifting, the stretching 

factors and the sedimentation rates.  Other geological settings similarly have competing 

thermal influences.  Incorporating these various factors is facilitated by modelling, 

however, it is a challenge to collectively model both the thermal state, the kinematic 

evolution and the development of smaller scale influences such as fractures. 

 

Frontier technologies, such as EGS, may be able to exploit a wider range of reservoirs, 

but also entail further technical challenges.  Cloetingh et al. (2010) show that fluid 

stimulation requires a clear understanding of the reservoir’s stress state to optimise 

production and minimise induced seismicity. This is because inducing fractures in the 

subsurface preferentially creates open fractures in the direction of maximum stress. If 

critically stressed fractures exist in this direction, they will also open, enhancing the 

permeability, however, the presence of critically stressed faults may induce seismicity 

(e.g. Charléty et al., 2007). This is not a new problem, and has been tackled by the 

petroleum industry for decades, however, the geothermal industry does not yet benefit 
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from the same amount of data for more complete geomechanical analyses.  

Interestingly, this is partly addressed by the petroleum industry’s data becoming 

available, but the sub-surface of continental regions remains vastly unexplored. Some 

factors remain poorly understood, such as the lithosphere layered rheology or stress 

state. In such situations, tectonic studies could largely aid in geothermal exploration 

efforts. 

 

1.4.6. The role of tectonic modeling 

 

Tectonic models can address several challenges (see above) and help evaluate a 

region’s potential for geothermal energy production. This was already shown by 

Cloetingh et al. (2010) who focus on EGS, a geothermal technology that could 

disseminate geothermal energy to non-volcanic regions (see above). Tectonic 

modelling could improve conventional geothermal as well as unconventional 

technologies in a variety of ways, of which a non-exhaustive list is presented below. 

 

Location optimization 

 

This is one the largest controlling factors of a project’s success, as it not only 

determines which temperatures are tapped but also production risk. This is because 

producing geothermal energy does not only require high temperatures, but also needs 

particular sub-surface permeabilities and stress conditions. Tectonic modelling, can 

thus, first aid by identifying regions of high temperature. These are not limited to 

temperatures elevated by magmatism, but include temperature highs which result from 

tectonic processes, such as rifting. Many conventional geothermal reservoirs are 

produceable because they contain hot fluids which are brought to drillable depths via 

permeable fault and fracture networks (e.g. Fernández et al., 1990; Faulds et al., 2006; 

Sanjuan et al., 2006), e.g. the Upper Rhine Graben reservoir (Vidal and Genter, 2018).  

Such reservoirs often carry a greater location risk, as the permeable network comprises 
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discrete produceable planes, which if missed, will yield a dry hole. Tectonic modelling 

here is crucial to better understand the structurally permeable network and its extent.   

 

 

 

Reduced risk drilling and production  

 

Understanding regional stresses and lithological failure criteria are crucial to safely drill 

a borehole. This is the field classically referred to as geomechanics, which uses 

tectonic information to design borehole drilling plans. These include drilling directions 

and mud (drilling fluid) weight windows which will keep the borehole stable (the mud 

must be heavy enough to stop the borehole from caving in, but not so heavy that it 

fractures the formations). No matter how well the borehole is designed, results can be 

disastrous if the borehole crosses a critically stressed fault, as this could induce slip on 

the fault plane, creating seismicity or collapsing the borehole. Similarly, reservoir 

production -particularly where stimulation is involved- can induce seismicity on critically 

stressed faults, as was the case in Basel 2006 EGS project, where stimulation caused 

several seismic events during stimulation, that culminated in a ML 3.4 earthquake after 

stimulation was stopped (Häring et al., 2008). Thus, understanding the local stress 

state, particularly in the presence of faults, is critical for safe production.  

 

Reduced cost production 

 

Understanding the stress state can not only improve drilling operations, but also largely 

reduce the cost of production, especially where stimulation is involved. While 

stimulation in the vicinity of a critically stressed fault may be dangerous (e.g. Mignan et 

al., 2019), triggering critically stressed fractures is favourable, as these create a more 

extensive permeable fracture network.  However, if these fractures do not cross the 

reservoir, stimulation could be useless, since critically stressed fractures form 

preferential pathways for hydraulic stimulation (Häring et al., 2008). Thus, before 
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hydraulic stimulation, tectonic modelling can be a large aid in predicting the success of 

stimulation, by first understanding the existing fault and fracture networks, and their 

stress states. Additionally, a better understanding of the stress state allows a better 

choice of stimulation direction (e.g. along the maximum stress), which will render 

stimulation more efficient, reducing its cost. 

 

Prolonged reservoir life 

 

Similarly to reducing stimulation cost, more efficient stimulation will also prolong the 

lifetime of production, since steadier pressures can be maintained. This also holds true 

for conventional geothermal technologies, which do not require stimulation. A 

geothermal reservoir fed by a naturally permeable fracture network will still tend to have 

higher permeability in a certain direction.  Tapping fluid flow in this direction will ensure 

longer-lived production, as the pressure would quickly drop in other directions. 

Additionally, where geothermal fluids flow along open faults, recent structural studies 

have shown that fluid flow does not necessarily coincide with the positions of maximum 

slip, but seems to correlate more with fault zone intersections, overlaps or terminations 

(e.g. Faulds et al., 2009). Thus, targeting these fault segments will ensure longer 

production. 

 

1.4.7. Future perspectives 

 

Conventional geothermal is presently limited to volcanic regions, regions with natural 

hot springs or permeable deep geothermal reservoirs. However, many parts of the 

world have sufficiently high geotherms to utilise EGS even in the absence of the 

aforementioned conditions. For example, EGS is estimated likely to provide 5-10 % of 

the USA’s electricity demand in 2050 (e.g. Tester et al., 2007). Focussing on Europe, 

Figure 1.4.4 shows temperature gradient values in Europe, (extracted from the 

international heat flow database http://www.heatflow.und.edu, figure taken from 

Cloetingh et al., 2010), identifying several regions with high enough geotherms for 
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geothermal energy production, particularly around Europe’s mountain belts. These 

combined with tectonic knowledge (geology, stress state and active seismicity) can be 

used to identify areas which are critically stressed (Cloetingh et al., 2010). Additionally, 

onshore first order heat flow appears to relate to Cenozoic tectonics at various depth 

levels in the lithosphere (Cloetingh et al., 2010). These can be modelled, allowing more 

accurate prediction of resources.  Medium-high enthalpy geothermal is thought to be 

possible in various areas in Europe, by exploiting active faults that provide fluid 

pathways from depth (e.g. Fernández et al., 1990; Gartrell et al., 2006). These are 

thought to be most promising in extensional regions, where faults and fractures are 

more likely to be open (e.g. Zoback, 2007). This renders the Mediterranean region 

particularly interesting for geothermal prospecting, as it is marked by active 

deformation, local magmatism and pronounced lithospheric block movement (e.g. 

Cloetingh et al., 2005). 

 

 

Figure 1.4: European heat flow map (Cloetingh et al., 2010). 
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1.4.8. The value of tectonic modelling on geothermal modeling, the Aegean 

test 

 

As shown above, tectonic modelling could address several challenges faced by the 

geothermal industry, and make it a more widespread resource. The Aegean is a good 

candidate to test this since is has high surface heat flow and a complex but relatively 

understood tectonic history. While the Aegean seems to host geothermal reservoirs of 

multiple temperatures, only low temperature resources are used for direct applications, 

and no electricity is produced from geothermal (Mendrinos et al., 2010).  This could be 

addressed by deep conventional geothermal as well as EGS, depending on the 

reservoir, however, the reservoirs must first be better understood to select the most 

suitable sites and technology. We show in Chapter 4 that a better understanding of 

geothermal reservoirs can benefit from incorporating tectonic concepts. While this 

chapter does not aim to produce realistic geothermal models of the Aegean (that would 

be an entire PhD in itself), it shows that incorporating tectonic modelling into the 

thermal modelling workflow can largely change resulting predictions. From this, we 

conclude that tectonic models and concepts should be systematically included in 

thermal modelling workflows. This calls for further development of said workflows, but 

it is evident that this could add large potential to geothermal exploration, reduce its 

costs, and increase its production. 
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Abstract 

 

Upper plate deformation within a subduction zone depends on the complex relationship 

between surface plate motion, trench motion, slab pull and shallow mantle flow. 

Previous modelling studies suggest that trench motion rates should be related to slab 

buoyancy, but this relationship is neither clear nor verified by observations of natural 

subduction systems. Trench motion is also thought to induce upper plate deformation; 

however, no clear correlation has been identified between the direction of trench motion 

and the mode of upper plate deformation. In this study, we construct 2-D thermo-

mechanical models to explore the relationship between slab pull, trench retreat and 

upper plate deformation, focusing on subduction systems with retreating trenches. We 

start with quasi-steady-state subduction and introduce a positive density anomaly into 

the slab to transiently increase slab pull. We vary both the value of the density anomaly 

and the properties of the upper plate to isolate key controls on trench retreat and upper 

plate deformation. Our models demonstrate that asthenospheric flow responds to 

changes in slab pull and influences both trench retreat and upper plate deformation. We 

find that trench retreat depends on the competition between shallow and opposite 

asthenospheric flows below the subducting and upper plates, and that a fast sub-slab 

flow can hamper trench retreat even when slab buoyancy is high. The mode of upper 
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plate deformation partly depends on the upper plate’s ability to translate horizontally: an 

upper plate with a ridge at its trailing edge deforms by shortening, while a fixed upper 

plate deforms by extension. Finally, in some cases, we observe that upper plate 

deformation permits trench retreat if the upper plate is weak enough to be deformed by 

basal drag from underlying asthenospheric flow.  Our results provide insights into 

retreating subduction systems with contrasting upper plate deformation modes, such as 

the compressive Andes and the extensional Aegean. 
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2.1. Introduction 

 

The slab pull force, generated by the negative buoyancy of the subducting lithosphere 

relative to the surrounding mantle, is a key component of the force-balance governing 

tectonic plate motions (e.g. Forsyth and Uyeda, 1975). There are tens of subduction 

zones on Earth, and observations show that most of them have mobile trenches (e.g. 

Chase, 1978; Heki et al., 1999). While some trenches, such as the Mariana, advance 

towards the upper plate, others, including Tonga, retreat into the subducting plate 

(Heuret and Lallemand, 2005).  

 

In the past, trench migration has been considered to cause deformation in the upper 

plate (UP hereafter). It is presumed that trench retreat creates extensional stresses in the 

UP, forming back-arc basins, while trench advance pushes against the UP, leading to 

UP compression (e.g. Uyeda and Kanamori, 1979). However, Heuret and Lallemand, 

2005 have shown that this correlation is not manifest on Earth. Furthermore, Heuret and 

Lallemand (2005) and Arcay et al. (2008) demonstrated that the bulk upper plate velocity 

away from the trench (Vup) plays a role in this deformation. For example, trench retreat 

coupled with back-arc extension is observed in the Mediterranean, New Hebrides, 

Ryukyu and Scotia; while trench retreat is coupled with UP compression in Chile, Japan, 

Costa Rica and Manila (Heuret and Lallemand, 2005). This upper plate deformation is 

thought to result from a complex force balance involving the motions of the sinking plate, 

surface plates and their respective underlying (asthenospheric) mantle flows (Heuret and 

Lallemand, 2005). 

In a subduction system, the trench and plate motions, as well as the asthenospheric 

flows, can result from a variety of physical processes. These include buoyancy variation 

in the subducting plate (e.g. Royden and Husson, 2009), deformation through piling and 

folding of the slab at depth (e.g. Capitanio et al., 2010; Holt et al., 2015), shear drag by 

asthenospheric flow at the base of the upper plate (e.g. Nakakuki and Mura, 2013), 

variation in UP thermal and mechanical properties (e.g. Rodríguez-González et al., 2012), 
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lateral mantle flow, or “mantle wind” (e.g. Ficini et al., 2017), 3-D effects from side plates 

(e.g. Yamato et al., 2009) and toroidal mantle flow (e.g. Schellart and Moresi, 2013). In 

our study, we have designed a simple, 2-D model to explore the physical interactions 

between some of the dominant controls on trench retreat and upper plate deformation. 

Trench retreat is often assumed to be primarily driven by slab pull (Forsyth and Uyeda, 

1975), although some recent studies have challenged this notion (e.g. Stotz et al., 2018). 

Slab pull exerts a bending torque at the subduction hinge, contributing to a downward 

folding of the slab. This is thought to generate spontaneous retreat of the trench – or 

rollback, suggesting that older (and therefore, colder and denser) slabs should have 

retreating trenches (e.g. Garfunkel et al., 1986; Conrad and Hager, 1999; Lallemand et 

al., 2008). However, in nature, such a relationship is not observed (Heuret and 

Lallemand, 2005). To better understand this, we model a slab with varying slab pull 

through time. Varying slab pull and slab sinking rates can be caused by density 

anomalies within the sinking slab, for example, positive anomalies from eclogitised crust 

(Liu et al., 2010; Arrial and Billen, 2013), or negative anomalies caused by ridges, 

seamounts or continental crust (e.g. Royden and Husson, 2009; Magni et al., 2014). 

 

Our numerical study features a transient increase of slab buoyancy, to explore the effect 

of changing the slab pull force on subduction dynamics, including trench motion, 

asthenospheric flow and upper plate deformation. We also explore the effect of UP 

strength and its role in this relationship. Previous modelling studies on UP deformation 

have often focused on one particular aspect, such as UP motion (Cerpa et al., 2018), 

large-scale mantle flow (Husson, 2012), or boundary conditions (Capitanio et al., 2010). 

This paper aims to explore the relationship between some of these aspects, by focusing 

on 2-D models of retreating subduction zones and observing UP deformation with 

varying rates of trench retreat and varying UP boundary conditions. This is particularly 

interesting for systems such as the South American subduction zone, where the trench 

is retreating, yet the upper plate experiences strong shortening, contributing to the 

formation of the Andes (e.g. Oncken et al., 2006). 
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2.2. Model description 

 

We design 2-D, upper mantle, thermo-mechanical models of subduction, with a freely 

moving trench and upper plate. We start with quasi-steady-state subduction (e.g 

Capitanio et al. 2007) and introduce a positive density anomaly into the slab to increase 

slab pull, allowing us to study the temporal relationships between slab pull, trench 

retreat, asthenospheric flow, and upper plate deformation without directly forcing plate 

motion.  This setup is illustrated in Figure 2.1. 

 

We use the unstructured, adaptive mesh, Fluidity computational modelling framework 

(e.g. Davies et al. 2011; Kramer et al. 2012; Le Voci et al. 2014) to solve the equations 

describing the conservation of mass, momentum, and energy for an incompressible 

Stokes fluid, under the Boussinesq approximation:  

 

!!!! ! !   (1) 

 

!!!!" ! !!!!!(2) 

 

!!

!!
! !!!!! ! ! !!

!
!(3) 

 

where u and g denote velocity and gravity vectors, respectively, σij the stress tensor, T 

the temperature, κ the thermal diffusivity, and Δ⍴=-⍺⍴s(T-Ts) the density difference due to 

temperature, with ⍺ the coefficient of thermal expansion and ⍴s the nominal density at 

the surface temperature Ts (parameter values are provided in Table 1).  

We use a wide box of 6,000 km to minimise potential boundary effects. The domain 

height is 660 km to simulate the upper mantle, with the first-order approximation that the 

high-viscosity lower mantle is a barrier to slab penetration. The top boundary is a free 

surface while the bottom and sides are free slip. Plates are defined thermally using the 

half-space cooling model, and plate ages increase linearly from 0 Myr at the leftmost and 
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rightmost corners (“ridges”) to the limit between the subducting and upper plate 

(“trench”). The trench is initially located at 3500 km from the left boundary. Note that the 

simulated UP is free to move laterally towards the trench due to the rightmost ridge, 

which mimics a partially oceanic upper plate. These ridges also enable asthenopheric 

mantle material to transform into lithospheric plate material by thermal diffusion from the 

cold surface. Hence, as in nature, the plates renew and do not have a finite length. 

Initial plate thermal ages are 40 Ma for the subducting plate (left) and 20 Ma for the 

upper plate (right). These ages are chosen to generate a slab deflecting horizontally at 

the bottom of the upper mantle (see Garel et al. (2014) for a regime diagram of slab 

morphology as a function of initial plate ages). The subducting plate is prescribed a 

proto-slab shape that is sufficient to initiate subduction under its negative buoyancy. The 

numerical simulation evolves for 35 Myr, after which subduction dynamics reach a quasi-

steady-state, i.e. plate and trench velocities exhibit only small variations through time. 

We then restart our simulations from this thermal state of mature subduction, where the 

slab has already subducted through the upper mantle and has partly flattened on the 

bottom boundary at 660 km depth (Figure 2.1). Hereafter, the time indicated in the 

simulations is the time passed since this initial mature state. 

Most of the domain material is assigned a “mantle” composite rheology, and only an 8 

km thick, weak, decoupling layer at the surface of the subducting plate is assigned a 

weak “crustal” rheology. The weak layer properties revert to those of normal material 

below 200 km depth. The “mantle” rheology takes into account 4 mechanisms: pseudo-

brittle yielding, dislocation creep, diffusion creep, and low-temperature plasticity or 

“Peierls” creep. Strain-rates for these mechanisms add up, resulting in a composite bulk 

viscosity: 

! !
!

!!"##
!
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  (4) 

with creep viscosities μdiff, μdisl, μp calculated as 
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with A a prefactor, n the stress exponent, E, V the activation and volume energies 

respectively, P=⍴sgz the lithostatic pressure, R the gas constant, and the second 

invariant of the strain-rate tensor. Tr is the temperature obtained by adding an adiabatic 

gradient of 0.5 K/km to the Boussinesq solution (Fowler, 2004). 

Brittle failure at low lithostatic pressure is approximated through a “yielding” viscosity !! 

!! !
!!

!!!!

    (6) 

where the yield strength τy is given by 

!! ! !"#! !! ! !!!! !!"#$    (7) 

with τ0 the surface yield strength, fc the friction coefficient, and τymax the maximum yield 

strength. 

The bulk viscosity calculated in equation (4) is limited by lower- and upper-bound values 

of 1018 and 1025 Pa.s, respectively. 

Key model parameters are summarised in Table 1. Our geometrical set-up, boundary 

conditions, rheology parameterization and numerical solution are similar to Garel et al. 

(2014).  

 

To vary the slab pull force through time, we add a 1000x50 km2 denser block near the 

trench in the subducting plate, below the weak decoupling crust (Figure 2.1). This block 

triggers a change in the overall system dynamics through a transient increase in slab 

pull, without requiring a prescribed force at the model surface, thus avoiding artificial UP 

deformation. We vary the block density anomaly from +10 to +100 kg/m3 in our models 

to achieve different magnitudes of slab pull and trench retreat rates (Table 2).  
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Table 2.1: Model parameters 

 

We sometimes modify the upper plate (section 3.5) for a chosen density anomaly (+70 

kg/m3) in two increments: 

1- To test the influence of the ridge located at the trailing edge of the UP (top-

right corner in Figure 2.1), we remove the ridge and impose a constant 
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thickness in the UP from the trench to the top-right corner of the model. The 

thickness used is the average thickness of the ridge-edge models, with an 

age of ~45 Ma, corresponding to a thickness of ~67 km (calculated via the 

depth of the 1300 K isotherm derived from the half-space cooling model). 

2- To test the influence of upper plate strength in addition to removing the 

ridge, we reduce the thickness of the upper plate by setting a constant UP 

age of 15 Ma, which corresponds to a thickness of ~38 km (calculated in the 

same away as above). 

 

In addition to asthenosphere flow pattern, the main surface velocities analysed are the 

velocity of the subducting plate (Vsp), upper plate (Vup), and trench (Vtr). The trench is 

defined as the surface location where the weak, decoupling layer meets the upper plate. 

Locating the trench using a change in horizontal velocity direction yields similar, 

although noisier, results. The trench velocity is then calculated as a smoothed time-

derivative of the trench location. The range of simulated trench velocities is given in 

Table 2. 

  

 

Figure 2.1: Model initial conditions where quasi-steady-state subduction is already 

achieved. All physical boundaries are free-slip (no normal flow) except for the free-

surface top. The initial velocity field is set to null. The beige contour follows the 1300 K 

isotherm and outlines the surface plates, ridges and slab. The weak decoupling layer is 

shown in blue, and the 1000x50 km2 denser block in red. The trench is located at 2940 

km from the left side. Subducting and upper plate surface horizontal velocities are 

retrieved at 1500 km and 4500 km from the left side, respectively.  
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In the results section below, we first present a description of our reference simulation, 

followed by the results for simulations where we systematically add complexities. These 

are: (i) introducing a density anomaly in the slab; (ii) varying the value of the density 

anomaly; (iii) changing the upper plate boundary condition by fixing its edge; and (iv) 

changing the strength of the fixed upper plate.  We then discuss our model results and 

their implications. 
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Figure 2.2: Viscosity plots overlain with velocity glyphs for the same times during 

reference simulation (no density anomaly, column a) and simulation DA70 

(density anomaly +70 kg/m3, column b). The glyphs show clockwise motion in 

the sub-slab flow, and counter-clockwise flow in the mantle wedge beneath the 

UP. The glyph lengths indicate the velocity magnitude (same scale for all 

images). Plate material is outlined in black as the 1300 K isotherm. The denser 

block is outlined in white for simulation DA70. Both simulations have the same 

starting trench location and slab tip.  
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As a consequence of the model geometry and closed (free-slip) side boundaries, the 

subducting plate (hereafter SP) advances towards the right while the upper plate and the 

trench move towards the left. This creates two asthenosphere flow cells: one beneath 

the subducting slab (clockwise, hereafter referred to as sub-slab), and another in the 

mantle wedge between the upper plate and the slab (counter-clockwise). These are 

largely separated by the slab, except for a small, connecting channel beneath the slab 

(cf. Figure 2.2).  

 

The reference simulation exhibits minimal changes in the asthenosphere flow pattern 

through time, and is characterised by a slow, steady trench retreat (Figure 2.2a).  This is 

quasi-steady-state subduction, which continues unchanged from the initial condition. 

This is reflected in the plate and trench surface velocities, which are shown in Figure 

2.2.3. Here, the subducting plate moves rightwards with a velocity (Vsp) of ca. 4 cm/yr, 

while the upper plate (Vup) and trench (Vtr) both move leftwards with a velocity of ca. 1 

cm/yr throughout the simulation. 

2.3.2. Introducing a density anomaly in the slab 

  

 

Figure 2.3: Surface horizontal velocities 

for the reference simulation (black 

curves, no density anomaly) and 

simulation DA70 (red curves, density 

anomaly + 70 kg/m3): subducting plate 

velocity Vsp is positive rightwards, upper 

plate velocity Vup and trench velocity Vtr 

are both positive leftwards.  The vertical 

lines indicate the times labelled t1 to t4 in 

Figure 2. 
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Figure 2.2.b and Figure 2.3 show the effect of disturbing the initial equilibrium by 

introducing a denser block within the subducting plate (DA70, density anomaly of +70 

kg/m3). Here, the SP moves 5 times faster than the reference at the start of the 

simulation, and peaks at 17 cm/yr, which is 17 times faster than the reference (Figure 

2.3). Therefore, the slab sinks faster (see Appendix A), and the slab tip advances further  

(c.f. Figure 2.2 time t3, when the slab tip in simulation DA70 is 150 km further advanced 

than the slab tip in the reference simulation). Faster subduction does not alter the 

geometry asthenospheric flow, but it does increase velocity magnitudes (Figure 2.2). This 

faster flow results in increased lateral motions of both plates through the ridges on both 

domain sides (also seen in Faccenna et al., 2017). Thus, the UP and the trench also 

accelerate in response to the accelerated sinking slab, but unlike the SP, they do not 

accelerate throughout the simulation. Vtr accelerates during the first 3 Myr, peaks around 

t2 3.4 Myr at 4.2 cm/yr and subsequently decelerates. Vup accelerates during the first 4 

Myr, peaks at 5 cm/yr and then decelerates. 

 

The trench decelerates before the upper plate (Figure 2.3 after 3 Myr: Vup > Vtr), resulting 

in a deformed, high strain-rate region under compressive stresses in the UP, as 

illustrated in Figure 2.4. Deformation is largest when the discrepancy between Vup and Vtr 

increases around t4 6 Myr (Figure 2.3). 

 

Figure 2.4 shows the velocity field, strain-rate and horizontal stress of the reference 

simulation and simulation DA70 (block density anomaly of +70 kg/m3) during trench 

deceleration at t3 4.8 Myr. Figure 4.a.ii confirms that introducing a density anomaly only 

changes the velocity field magnitude, not its pattern (also evident in Figure 2.2).  At time 

t3, the maximum velocity (in the asthenosphere near the dipping slab) is raised from 5.7 

cm/yr in the reference to 14.2 cm/yr in DA70. 
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Figure 2.4: Comparison at t3 4.8 Myr of i) reference simulation with no density anomaly, 

and ii) simulation DA70 with a block density anomaly of + 70 kg/m3. The plates are 

outlined with the 1300 K isotherm in black, while the denser block is outlined in white. 

The panels show plots of a) velocity magnitude, b) second invariant of the strain-rate 

tensor, and c) horizontal normal stresses !xx. Panels (a) and (b) are overlain with the 

velocity pattern. Magenta lines delimit the upper plate deformed region where strain-rate 

is higher than 10-16 s-1. 
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The two simulations in Figure 2.4.a exhibit a constant velocity along most of the two 

plates, i.e. the plates translate rigidly. Figure 2.4.b shows that in both simulations, strain-

rates are highest in the asthenosphere, particularly at the ridge interfaces due to change 

in flow direction, and between the plates and the asthenosphere due to viscous shear 

stresses. 

 

We also observe in both simulations a narrow area in the UP immediately next to the 

trench with large strain-rates, resulting from the bending of the sinking slab at depth 

(Capitanio et al. 2007) transmitted to the UP through the subduction interface. 

 

In simulation DA70, an intraplate lateral velocity gradient near the trench (Figure 2.4.a.ii) 

is associated with additional UP deformation (Figure 2.4.b.ii). We track the UP region 

where the strain-rate at 30 km depth is higher than a threshold of 10-16 s-1 to quantify 

deformation width in the UP. Figure 2.4.b.ii shows that the deformed region remains 

smaller than 225 km wide in the reference simulation, while in DA70 it is 576 km at t3 4.8 

Myr (Table 2). 

 

The mode of deformation associated with these high strain-rates is compressive 

horizontal stress (τxx ) in both simulations (Figure 2.4.c). As with strain-rate, simulation 

DA70 exhibits more intense and widespread horizontal compression in the UP than the 

reference simulation.  

2.3.3. Varying the density anomaly in the slab 

 

To better understand the effect of increased slab pull, we varied the block density 

anomaly in increments of 10 kg/m3 between 0 and +100 kg/m3. A summary of the results 

is presented in Table 2, which shows for each density anomaly: the relative increase in 

slab pull, calculated by multiplying the density anomaly by the 2-D block dimensions and 

gravity; peak Vtr and its associated time; the peak discrepancy between Vup and Vtr and 

its associated time; max UP deformation width (where strain rate is higher than 10-16 s-1 

at 30 km depth); the time range during which the UP experiences deformation wider than 



 

86 

the reference’s (i.e. where the deformed region defined by strain rate higher than 10-16 s-1 

at 30 km depth is wider than 225 km). Appendix B also shows graphs of each density 

anomaly against its maximum Vtr, each density anomaly against its maximum width of 

upper plate deformation and the maximum width of upper plate deformation against the 

maximum discrepancy between Vup and Vtr. 

 

Table 2.2: List of simulations and their block density anomalies: additional slab pull 

(calculated by multiplying density anomaly by 2-D block dimensions and gravity); peak 

trench retreat (Vtr) and associated time; the peak discrepancy between upper plate and 

trench retreat velocities (Vup-Vtr) and associated time; maximum upper plate deformation 

width (where strain rate is higher than 10-16 s-1 at 30 km depth), and the time range during 

which the UP deformation width is higher than the reference’s. 

 

Figure 2.5 illustrates trench and UP surface velocities for simulations with density 

anomalies: 0 (reference), +10 kg/m3 (DA10), +40 kg/m3 (DA40), and +70 kg/m3 (DA70). 

The same trench retreat pattern observed in simulation DA70 (acceleration then 

deceleration) is observed for simulation DA40 (Figure 2.5), and also for all density 

anomalies higher than +20 kg/m3. Note that the velocities for DA70 oscillate after 6 Myr 

due to slab buckling as the denser block reaches the closed bottom boundary (see 

Appendix C). We stop our analysis of UP deformation before slab buckling starts. 
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Figure 2.5: a) Upper plate and trench retreat velocities for reference simulation with no 

density anomaly and simulations DA10, DA40 and DA70, which have density anomalies 

+10 kg/m3, +40 kg/m3, +70 kg/m3 respectively.  

b) Plots of the second invariant of the strain-rate tensor for each simulation at their times 

of widest upper plate deformation (where strain rate is higher than 10-16 s-1 at 30 km 

depth). Magenta lines delimit the deformed region. The plates are outlined with the 1300 

K isotherm in black, while the denser block is outlined in white.  

 

Simulation DA10 shows equal Vup and Vtr, which is 0.5 cm/yr faster than the reference. In 

DA40, there is a discrepancy between Vup and Vtr, where Vup becomes progressively 

faster than Vtr. For all simulations, trench and UP velocities both increase with increasing 

density anomaly (Table 2). Peak Vtr increases almost linearly with increasing slab pull. 

The discrepancy between Vup and Vtr increases with higher density anomalies, and is 

associated with stronger and wider UP deformation (see Appendix B and high strain-rate 

regions in Figure 2.5.b). 
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Figure 2.6: Plots of i. horizontal normal stress τxx and ii. Second invariant of the strain-rate tensor overlain with 

velocity glyphs for simulations:  

a) DA70, block density anomaly of +70 kg/m3, unaltered upper plate thermal structure, with a ridge at its trailing 

edge (same as Figure 2.4). Shown at t3 4.8 Myr. 

b) OFDA70, block density anomaly of +70 kg/m3, constant upper plate age of 45 Ma (no ridge, “fixed edge”). 

Shown at t = 8.8 Myr, the time of strongest horizontal stress in the upper plate. 

c) YFDA70, block density anomaly of +70 kg/m3, constant upper plate age of 15 Ma (no ridge, “fixed edge”). 

Shown at t = 6.2 Myr, the time of strongest horizontal stress in the upper plate. 

The plates are outlined in black by the 1300 K contour. The denser block is outlined in white.  
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The deformation observed in our models is strongly dependent on the UP velocity. We 

now explore the effect of the presence of a ridge at the edge of the UP (top right corner, 

Figure 2.1) on the asthenosphere return flow and UP deformation. Thus, we design 

models with an UP of constant thickness and age from the near-trench region to the 

right side, preventing the rigid translation of the UP by lateral asthenospheric push at the 

ridge. Note that we preserve the thermal structure of the UP adjacent to the trench (up to 

ca. 300 km away from the trench) to avoid a change in the corner flow velocity. A block 

density anomaly of +70 kg/m3 is used to allow direct comparison with simulation DA70. 

 

The constant UP age in simulation OFDA70 (Figure 2.6.b) is 45 Ma (away from the 

trench), similar to the average of the variable ages along the UP in the “ridge-edge” 

simulations (e.g. DA70). This simulation shows minimal asthenosphere return flows (e.g. 

< 3.5 cm/yr at t = 8.8 Myr) below both plates, no trench retreat and no significant UP 

deformation throughout the simulation.  

2.3.5. Changing the strength of the fixed upper plate  

 

In simulation YFD70, the constant UP age is set to 15 Ma to simulate a younger and 

weaker UP (Figure 2.6.c). With this less resistant UP, the elevated slab pull is able to 

trigger faster asthenosphere flow, deforming the UP (Figure 2.6.c.ii), and the trench is 

able to retreat. The trench retreats 52 km by 6.2 Myr (Figure 2.6.c) with a peak Vtr of 3.3 

cm/yr. This differs from the stationary trench in simulation OFD70, which has an old, 

strong UP (Figure 2.6.b). 

 

For both simulations OFDA70 and YFDA70, the UPs exhibit extensional horizontal 

normal stresses (Figures 6.i.b and 6.i.c). However, in simulation YFDA70, the UP is 

stretched and thinned by ~10 % due to its lower resistance. Note that the stretched 

region is localized above the slab tip because of the upward asthenosphere return flow. 
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2.4. Discussion 

2.4.1. Limitations of model setup  

 

The geometry of the asthenospheric flow in our model results is partially dictated by the 

model’s 2-dimensionality and its closed free slip side and bottom boundaries. In this 

section, we provide arguments for the robustness of our interpretations of slab pull 

variations driving upper deformation. We do, however, acknowledge that since our 

model does not include a third dimension, some 3-D effects such as lateral slab 

buoyancy variations or toroidal flow are not captured: these effects can also induce 

upper plate deformation (e.g. Schellart and Moresi, 2013; Magni et al., 2014)  

 

One of our keys results is that the trench decelerates even though slab pull is relatively 

high, which we verified not to be imposed by our model geometry. The free slip right side 

is bound to slow down the slab as the slab tip approaches the boundary. However, this 

occurs quite late in our simulations, after 6 Myr, whereas the trench starts to decelerate 

at 3 Myr when the slab is steadily advancing (Appendix E.a). Note the constant 

acceleration of the slab tip during the elevated slab pull (Appendix E.b), with the slab tip 

velocity correlated to Vsp. 

 

The closed left-side boundary could also hamper rollback since the sub-slab and 

mantle-wedge flows are isolated from each other, however, this is not the case as the 

rollback is compensated by slab flattening, elongation of sub-slab channel flow, and to a 

lesser extent, rising free surface. For example, if we take an average rollback velocity of 

3 cm/yr integrated along an inclined slab length of 1000 km, the 2-D volume reduction 

associated with slab rollback and trench retreat is around 10-3 m2/s. This is mainly 

accommodated by slab flattening, as trench retreat causes a decrease of slab dip from 

50° to about 35° (Appendix F), which creates a sub-slab volume increase of 1.3 x 1011 

m2. This corresponds to a 2-D volume rate increase of 0.7 x 10-3 m2/s over 6 Myr. 

Additionally, the asthenosphere below the subducting plate moves below the 

lengthening flat segment of the slab (sub-slab channel at the bottom of the model). If we 
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take a conservative sub-slab channel thickness of 50 km, which lengthens 600 km over 

6 Myr, this yields a volume increase rate of 0.2x10-3 m2/s. Thus, slab flattening and sub-

slab channel flow compensate most of the sub-slab mantle volume reduction caused by 

rollback, with the free surface elevation above the subducting plate accommodating the 

rest  (Appendix G).  

 

At t3 4.8 Myr during trench deceleration, dynamic pressure in most of the sub-slab 

compartment is equivalent to the dynamic pressure in the right compartment near the 

slab tip (Appendix H). This shows that the sub-slab mantle is not over-pressured and 

suggests that slab rollback is not limited by the leftward side boundary condition.). 

 

We also tested the subduction dynamics in a set-up with a lower mantle but is otherwise 

similar to DA70 (Appendix 8). The asthenosphere here flows from the left to the right of 

the domain throughout the simulation. Since the lower mantle in this test model has a 

significantly higher viscosity, the velocity magnitudes are all lower than in DA70 (e.g. 

peak Vtr of 2 cm/yr compared to 4 cm/yr in DA70). Despite the different velocity 

magnitude and slab geometry (the slab anchors in the lower mantle), the trench retreat 

pattern remains similar to DA70 (trench retreat acceleration and deceleration while slab 

pull is still relatively high).  This shows that Vtr deceleration in our upper-mantle 

simulations is not caused by a closed bottom boundary or the inability of the mantle to 

flow between the two compartments on each side of the slab. 

 

In our simulations, the slab and asthenosphere cell geometries are forced by the free slip 

side and bottom boundary conditions. Enns et al. (2005) have shown that the type of 

side boundary conditions affect the trench velocities, with free-slip (reflective) sides 

inducing slower rollback velocities than periodic side boundary conditions. Although this 

suggests that absolute velocity variations inferred from our simulations should be treated 

with caution, our qualitative interpretation of associated upper plate deformation will 

likely remain valid. 
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2.4.2. Influence of slab buoyancy on subduction dynamics  

 

The force balance governing subduction is not yet entirely clear and has been addressed 

by numerous studies (e.g. Conrad and Hager, 1999; Capitanio et al., 2007; Husson et al., 

2012; Goes et al., 2017). These have attempted to understand how the potential energy 

of the slab’s negative buoyancy is transmitted to slab motion, surface plate motion and 

asthenospheric motion. They have also questioned how this energy is dissipated through 

slab bending at the hinge and through drag from the surrounding mantle. Fitting this 

energetics perspective, we propose a scenario linking the initial slab pull increase to the 

observed trench motion, slab rollback and upper plate deformation. We conceptually 

illustrate this in Figure 2.7, and emphasise the importance of competing shallow 

asthenospheric flows beneath the two plates in controlling slab rollback and trench 

retreat. This is consistent with the conclusions of Husson (2012), who showed that 

mantle drag is a prominent component of the force-balance governing plate tectonics 

and trench motion.  

Raising slab pull by introducing a dense block in the slab increases the overall speed of 

subduction (Figure 2.3 and Appendix A) and advance velocity of the slab tip (Appendix 

E), as seen in other numerical studies (e.g. Holt et al. 2015). The faster slab triggers 

acceleration in the surrounding asthenosphere on both sides through viscous drag. This 

has two effects: (i) in the sub-slab region, where it acts as a positive feedback 

accelerating the subducting plate; and (ii) in the mantle wedge beneath the UP where the 

negative pressures in the corner flow (see Appendix H) results in a “slab suction” force 

that drives the UP towards the trench (e.g. Conrad and Lithgow-Bertelloni, 2004). The 

latter return flow induces shear stresses at the base of the UP, dragging it towards the 

trench by viscous coupling (as in Husson, 2012, and Sternai et al., 2014). Dal Zilio et al. 

(2018) have shown that maximum upper plate deformations occur for maximum lateral 

gradient of shear stresses. In our free edge models, the UP is also pushed leftwards 

from its ridge. 



 

93 

Trench retreat initially matches the velocity of the UP (Figure 2.3), suggesting that UP 

translation controls trench retreat (e.g. Cerpa et al., 2018). However, trench retreat 

decelerates around halfway through the subduction of the denser block (e.g. after 3.5 

Myr for simulation DA70), even though slab pull remains high. This is not caused by 

changes in slab dip angle, since slab dip adjusts to trench motion with a ~2 Myr delay 

(see Appendix F). Additionally, in simulation ODA70, the slab progressively steepens as 

the trench remains stationary, accommodating increased slab pull. Slab dip, therefore, 

responds to surface trench motion. This is in line with the free subduction models of 

Capitanio et al. (2007) where slab dip adjusts to minimize the energy dissipation 

associated with bending dissipation, and trench deceleration causes the increase in slab 

dip angle (Royden and Husson, 2009).  

  

Figure 2.7: Cartoon of the main processes influencing trench retreat and upper plate 

deformation for wide-slab subduction (similar to our 2-D model set-up). Slab pull 

variations trigger transient asthenospheric flows. The mode of upper plate deformation 

depends on the upper plate’s ability to translate (far-field boundary condition) and to 

resist shear basal drag by the mantle-wedge flow. Trench motion is controlled by the 

competition between the opposing asthenospheric flows on each side of the slab and by 

the deformation of the upper plate. 
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We suggest that the mantle-wedge return flow beneath the UP promotes slab rollback 

and trench retreat, while sub-slab flow dragged by the subducting plate opposes this 

motion. For example, DA70 experiences Vtr deceleration at t3 4.8 Myr. The asthenosphere 

velocities near the slab at a depth of ~125 km show a sub-slab flow of 8.4 cm/yr, but a 

mantle wedge flow of 6 cm/yr. Since the sub-slab flow is stronger than the mantle-

wedge flow, rollback is hampered, causing Vtr deceleration. We interpret that this 

competition modulates trench velocity, as shown conceptually in Figure 2.7. Additionally, 

the rollback velocities at 200 km depth decelerate before those at 400 km depth, which 

also suggests that deceleration starts at shallow depths before propagating deeper 

(Appendix I) 

2.4.3. Upper plate deformation during trench retreat  

 

Table 2 shows that the width of the UP deformed region tends to increase with higher 

slab pull, however, the smallest density anomaly (simulation DA10) does not exhibit extra 

deformation compared to the reference simulation, despite its faster trench retreat. Thus, 

for low values of acceleration, the rigid translation of the UP from basal asthenosphere 

traction is fully accommodated by trench retreat with no discrepancy between Vup and Vtr 

(Figure 2.5, simulation DA10). Significant deformation only occurs when trench retreat 

cannot accommodate a rapid translation of the UP. This effect is seen for higher block 

density anomalies (simulations DA30 - DA100) due to their faster sub-slab flows, 

resulting in higher discrepancies between Vup and Vtr (Table 2, Appendix B). These results 

show that upper plate deformation in subduction zones can depend on the ability of the 

trench to retreat in response to a variation in slab sinking rates. 

 

In our free edge models, this results in UP compression (Figure 2.4); however, our fixed 

edge models show extensional stresses (Figure 2.6). The fixed edge simulations develop 

a slab “kink” (sharp transition from a vertical to a flat slab) at the bottom of the box 

(Figure 2.6).  This kink might accommodate trench retreat through slab dip variation. 

However, we only observe trench retreat in YFDA70 (younger UP) and not in OFDA70 

(older UP). In OFDA70, the UP is not free to translate horizontally, and experiences 
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extensional horizontal stresses caused by mantle-wedge flow, but these stressed are 

insufficient to deform it enough to allow trench retreat (hence, the trench remains 

stationary since Vtr = Vup). Contrastingly, the younger UP in YFDA70 can be deformed by 

the extensional shear stresses caused by the basal drag, permitting the trench to retreat.  

The shear stresses are comparable in both simulations since the elevated slab pull is the 

same, but the strength of the UP differs, controlling trench retreat in this case. Where the 

trench retreats in YFDA70, the peculiar slab morphology with mid-mantle dip variation 

(Figure 2.6) is probably the result of this leftward motion of the trench at the surface. 

 

Therefore, depending on the plate's properties, the same additional slab pull (density 

anomaly +70 kg/m3) can result in UP plate extension, shortening, or no deformation at 

all (Figure 2.6). Only a basal drag large enough to deform the UP can cause a 

discrepancy between UP and trench velocities (e.g. Wdowinski et al., 1998, and Sternai 

et al., 2014).  Thus, we consider the UP’s motion and deformation to be mainly driven by 

asthenospheric basal drag, in agreement with the 2-D cylindrical simulations of Gérault 

et al. (2015). If the UP is free to move, there is UP translation which trench retreat cannot 

match, resulting in compression. If the UP is fixed, the basal drag results in UP 

extension. This far-field influence on UP deformation has also been found by other 

studies, notably Nakakuki and Mura (2013), Chen et al. (2015) and Capitanio et al. (2010). 

 

Similar differences are observed in 3-D studies, where trench retreat of wide slabs 

results in predominantly poloidal flow and UP compression (e.g. Schellart and Moresi, 

2013). On the other hand, trench retreat of a narrow slab can create toroidal flow, which 

results in UP extension (e.g. Schellart and Moresi, 2013; Faccenna et al., 2014). The 

extension observed in our 2-D fixed-edge simulations (Figure 2.6) in the absence of 

toroidal flow can be explained by a variable drag exerted by the mantle flow along the 

UP, as modelled by Schellart et al. (2017). We expect the presence of a 3-D toroidal flow 

to reinforce the shear drag exerted by mantle wedge flow at the base of the UP, 

enhancing plate deformation.  
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2.4.4. Application to natural subduction zones  

 

Our results indicate that trench retreat can be associated with different upper plate 

deformation styles: no deformation for simulations DA10 and early DA70 (Figures 2 and 

5), compression at later times in DA70 (Figure 2.4), and extension in YFDA70 (Figure 2.6). 

This can partly explain the lack of correlation between trench retreat rates and UP stress 

regimes observed in nature (Lallemand et al., 2005). 

 

Since our 2-D models neglect the role of toroidal flow, the simulations best represent  

the dynamics taking place at the centre of a wide slab, where poloidal flow is dominant. 

Our fixed-edge simulations reproduce UP extension in 2-D that is also observed in 3-D 

simulations. We extrapolate two end-member subduction systems exhibiting retreating 

trenches, summarized in Figure 2.8:  

 

1- Upper plate shortening: requires fast lateral translation of the UP, which could be 

facilitated by a ridge on the UP’s trailing edge (predominantly poloidal flow in the 

centre of a wide slab). In this case, asthenospheric flow is partitioned into lateral 

translation of the UP at the ridge, with less energy for basal asthenospheric drag. 

A natural example of this case is the South America subduction zone. 

2- Upper plate extension: requires asthenospheric basal drag that is sufficient to 

overcome the strength of the UP, with possible applications to the Mediterranean 

subduction zones, which have narrow slabs inducing strong 3-D toroidal flows. 

 

The South American subduction zone has a trench that has been retreating since the 

Cretaceous, a strongly compressive upper plate (the Andes) and the Atlantic ridge in its 

trailing edge allowing the UP to translate westwards. Compression is thought to have 

initiated 50 Ma ago, which is synchronous with a discrepancy between Vup and Vtr, as the 

trench has been decelerating more than the UP (Faccenna et al., 2017). A hypothesis 

explaining UP compression is that the slab anchored when it reached the lower mantle, 

limiting rollback and triggering a large-scale return flow beneath the UP (Faccenna et al., 
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2017). Our results also suggest that compression in the Andes may result from a 

stronger asthenospheric flow beneath the UP (possibly limited to the upper mantle), 

triggered by faster subduction related to older slab subduction (e.g. Capitanio et al., 

2011).  Alternatively, compression could be associated with a larger push from the Mid-

Atlantic ridge due to diversion of mantle flow from the African hotspot after Africa’s 

collision with Eurasia (e.g. Silver et al., 1998; Husson et al., 2012). 

 

 

Figure 2.8: Cartoon of the two end members of upper plate deformation in subduction 

zones with retreating trenches. a) Upper plate shortening occurs when the sub-slab flow 

is faster than the mantle wedge flow, hampering trench retreat. This is applicable to 

some subduction zones with wide slabs. b) Upper plate extension occurs when the 

mantle wedge flow is larger than the sub-slab flow, enhancing trench retreat.  This is 

applicable to subduction zones with narrow or torn slabs where toroidal flow can 

contribute to the mantle wedge flow beneath the upper plate. 
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In contrast, the Mediterranean subduction zones (Aegean, Calabrian) show UP extension 

associated with accelerated trench retreat, which is thought to have resulted from 

increases in slab density (e.g. Jolivet et al., 1999) or slab tears (Wortel and Spakman, 

2000). Our fixed edge models shed some light on these subduction zones, as the fixed 

UP is analogous to Eurasia, which is much larger than the individual subduction zones 

and is fixed relative to the Mediterranean slabs. Our results suggest that these fast 

trench retreats can be a result of UP extension (and the reverse). In the Aegean 

subduction zone, for example, the Aegean UP was thinned from the Oligocene to the 

Mid-Miocene (e.g. Brun et al., 2016 and references therein) reducing the crustal 

thickness by ~100% (Tirel et al., 2004). This means that the UP was weakened, making it 

more susceptible to deformation by asthenospheric toroidal flow introduced by slab 

tearing (Faccenna et al., 2014). While our 2D models do not capture these 3D effects, we 

do observe that a weaker UP can permit trench retreat if the basal flow is strong enough. 

Thus, if Aegean trench retreat accelerated in the Miocene (Brun et al., 2016), it could be 

because the UP was weak enough to thin more and allow further trench retreat, creating 

a positive feedback between UP deformation and trench retreat. 

 

There are many other examples of subduction zones that are affected by dynamic 

changes through time (e.g. Japan, Banda, Apennines, Scotia, see Clark et al. (2008)). It is 

hard to disentangle the exact causes for these changes, and our models and other 

modelling studies show that this can have various causes, including changes in 

neighbouring plate velocity through time (e.g. Japan, according to Jolivet et al. (1999)), or 

changes in incoming material (e.g. Banda and Apennines according to Royden and 

Husson (2009)). The complex relationship between trench motion and UP deformation 

style also holds for advancing trenches that do not systematically deform in 

compression, such as the Izu-Bonin or the Kermadec subduction zones (Heuret and 

Lallemand, 2005). 

 

Our model results show that an increase in slab sinking rates triggers an increase in the 

spreading rate of ridges located at the end of both the subducting and upper plates. It is 
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well known that slab pull has an effect on the spreading rate of the subducting plate 

ridge (e.g. Forsyth and Uyeda, 1975), and our results also suggest a possible influence of 

subduction on the spreading rate of the oceanic upper plate. For example, the variations 

of the spreading rate of the North Atlantic ridge may have been influenced by the sinking 

slab dynamics of the South American slab (Silver et al., 1998). 

 

2.5.  Conclusion 

 

Our 2-D models of subduction systems shed light on the relationship between slab pull, 

trench retreat, asthenosphere flow and upper plate deformation. Our results show that 

depending on the asthenospheric flows, the upper plate strength and its boundary 

conditions, a retreating trench can be associated with either an upper plate that is 

undeformed, in compression or extension. We suggest that stresses in the upper plate 

result from both basal drag by the mantle-wedge flow and from the ability of the trench 

to retreat, the latter depending on a competition between shallow asthenospheric flows 

below the subducting and upper plates. For example, if the upper plate is free to move 

(e.g. if there is a ridge in its trailing edge), deformation can occur in compression if 

trench retreat is hampered. On the other hand, if the upper plate is fixed, deformation 

can occur in extension, similar to narrow subduction zones with large toroidal flows. If 

the velocities of the upper plate and the trench are equal, the trench can retreat without 

any upper plate deformation. We find that trench retreat also depends on deformation 

in the upper plate, particularly in fixed edge upper plates, which do not translate rigidly. 

Deformation here can permit trench motion. Hence, for the present-day and recent 

geological past, we emphasize the important role of asthenospheric flow in modulating 

trench motion and upper plate deformation.  
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2.7.  Supplementary material  

 

Appendix A: Slab sinking rates  

 

DA70 surface subducting plate velocity (Vsp) together with the slab sinking velocities at a 

depth of 250 km: horizontal component (Vx), the vertical component (Vy), and the bulk 

velocity magnitude (Vmag). The slab sinking velocities exhibit the same temporal pattern 

as the Vsp, and differ from trench retreat velocity (Vtr in Figure 2.3). This shows that trench 

velocity is not solely controlled by slab pull, whereas the motion of the subducting plate 

is.  
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Appendix B: Graphical plots of density anomalies and upper plate deformation from 

Table 2 

 

 

i) Trench retreat velocity against density anomaly. ii) Maximum width of upper plate 

deformation against density anomaly. iii) Maximum discrepancy between Vup and Vtr 

against maximum width of upper plate deformation. 
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Appendix C: Slab buckling 

 

  

DA70 slab buckling at t = 7.8 Myr due to the slab sinking faster than slab tip advance. 

We stop our analysis before slab buckling starts to avoid misinterpreting artificial upper 

plate deformation caused by the buckle. The bounce in Vtr acceleration following the 

buckle (see Figure 2.3 or Appendix E) shows that Vtr can still go up and is not hampered 

by the boundary conditions. 

 

Appendix D: Slab tip advance and velocity  

 

 

Slab dynamics for DA70 using a threshold temperature 1300 K: a) slab tip location and b) 

slab tip, subducting plate, and trench retreat horizontal velocity through time. The slab 

tip location continually advances through time showing that slab advance is not 

hampered by the right boundary of the model. Additionally, slab tip velocity mimics 

subducting plate velocity, not trench retreat, showing that trench retreat deceleration is 

not caused by slab tip deceleration as it approaches the right side boundary. 
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Appendix E: Slab dip and trench retreat velocity  

 

 

DA70 and the reference simulation slab dip 

angle and trench retreat evolution the time. The 

average slab dip angle is calculated using the 

1200 K isotherm between depths 200-400 km. 

The evolution of slab dip through time inversely 

mimics the evolution of trench velocity, but with 

a temporal delay of ~2 Myr. Slab dip variation 

here adjusts to trench velocity evolution (slab 

dip shallows when Vtr accelerates, and 

steepens when Vtr decelerates), rather than the 

inverse. 

 

Appendix F: Free surface evolution  

  

DA70 free-surface topography evolution at times t11.6 Myr to t4 6 Myr. The free surface 

gradually and continuously rises above the subducting plate as trench retreats, 

accommodating slab rollback which is not accommodated by slab flattening and the 

growing sub-slab channel (see section 4.1). 
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DA70 dynamic pressure calculated relative to the column on the 

right side of the model (X = 6000 km). Plot shown at t3 4.8 Myr, with 

negative pressure (“suction”) in the mantle wedge flow. The sub-

slab mantle has dynamic pressure values equivalent to the mantle 

between the slab tip and the right side of the model. This shows 

that the sub-slab mantle is not over-pressured. 
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Appendix H: Test model with a lower mantle 

 

 

 

Test model with a high-viscosity (10-fold) lower mantle extending from 660 km to 2000 

km depth. In this set-up, the asthenosphere is free to flow below the slab to equilibrate 

the 2-D volumes below the two plates. We perform a simulation with a block density 

anomaly of + 70 kg/m3, as in DA70. Compared to DA70 (Figure 2.3), the model with a 

lower mantle shows lower velocity magnitudes over longer timescales because the slab 

is sinking into a much higher viscosity lower mantle. However, the velocity patterns are 

comparable, where trench retreat accelerates and decelerates while the denser block is 

still subducting, even though the mantle is free to flow around the slab. Therefore, trench 

deceleration in our main simulations with a box depth of 660 km is not due to the denser 

block feeling the free-slip bottom boundary, nor due to restricted volumes on either side 

of the slab hampering trench retreat. 

 

Appendix I: Slab rollback velocity 

 

DA70 trench retreat velocity 

compared with horizontal slab 

rollback velocities calculated at 

200, 300 and 400 km depth. This 

shows that deceleration starts 

from the surface and propagates 

deeper. 
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3. Late, brittle faulting in the Cyclades: a combination of 

strike slip and high angle normal faulting!! 
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Abstract 

Back-arc extension in the Central Aegean has been active since the Late Oligocene and 

its style of deformation seems to have evolved through time. Extension started with 

ductile metamorphic rock exhumation in the Late Oligocene, and then high angle 

normal faulting from the Mid-Miocene, which continues today. The Aegean also 

experiences strike slip faulting related to the westward extrusion of Anatolia. This study 

aims to constrain the relationship between strike slip and recent high-angle normal 

faulting in the Cyclades. We use offshore seismic reflection profiles in the Cyclades, as 

well as structural data collected on the island of Syros to constrain the pattern and 

kinematics of faulting. We identify three main sets of faults: NW pure-normal faults, 

NNW oblique-normal faults, and NNE-NE strike slip faults. Of the two normal fault sets, 

we suggest that the NW pure-normal set is the youngest, while the NNW oblique-

normal set is inherited and reflects block rotation since the Mid-Miocene. We suggest 

that dextral strike slip faulting has accommodated block rotation, which implies that 

strike slip faulting was active in the Miocene. We also interpret a more recent change in 

stress field, possibly due to Hellenic slab tearing since the Pliocene.  

  

                                                
** In preparation for submission to Tectonics. 
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3.1. Introduction 

 

The Aegean subduction zone is one of the most active regions in the Mediterranean. 

The Hellenic trench is retreating south-westwards at a current rate of approximately 3 

cm/yr (e.g. Shaw and Jackson, 2010). Palaeomagnetic studies indicate that the central 

Aegean has rotated around 23° clockwise north of Naxos, and around 33° counter-

clockwise south of Naxos since the Mid-Miocene (Morris and Andersen, 1996; Avigad 

et al., 1998). Hellenic trench retreat is, thus, facilitated by clockwise rotation of the 

Aegean upper plate about a pole near Scutari-Pec (e.g. van Hinsbergen and Schmid, 

2012). The retreat of the subduction zone has created extension in the Aegean upper 

plate since around 45 Ma (Brun and Sokoutis, 2010). Since this time, extension in the 

Aegean has been accommodated by a progressive change in deformation style. It 

started with exhumation of high-pressure, low temperature rocks, followed by the 

formation of high-temperature metamorphic core complexes (e.g. Lee and Lister, 1992; 

Jolivet et al., 1996; Avigad et al., 1997; Krohe and Mposkos, 2002; Kumerics et al., 

2005; Brichau et al., 2007; Brun and Facenna, 2008).  High-pressure, low-temperature 

exhumation brought the Cycladic Blueschist Unit (CBU) to the surface, which now 

makes up the Cyclades. Prior to blueschist and eclogite facies metamorphism, the 

CBU’s protolith originated as part of a continental passive margin (Adria) with remnants 

of ophiolitic melange rocks (Pindos Ocean) (Philippon et al., 2012). Ductile exhumation 

in the Aegean ended around the Mid-Miocene, following which the style of deformation 

changed to high-angle normal faulting (Brun et al., 2016), creating dispersed 

sedimentary basins (e.g. Mascle and Martin, 1990; Sánchez-Gómez et al., 2002; 

Beniest et al., 2016). 
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Figure 3.1: Tectonic map of the Aegean region with block rotation (Morris and 

Andersen, 1996; Avigad et al., 1998). Bathymetry from NOAA (Amante and Eakins, 

2009). 

 

The Aegean is also affected by westward extrusion of Anatolia, mainly accommodated 

by the North Anatolian Fault since the Pliocene (e.g. Armijo et al., 2004). There is, 

however, evidence that Anatolian extrusion started earlier in the Mid-Miocene. This is 

indicated by the initiation of large-scale dextral shear zones around 11-13 Ma in Turkey 

(Şengör et al., 2005). There are also indications of NE trending strike slip faults in the 

Central Aegean, partly controlling magma emplacement since the Mid-Miocene 

(Kokkalas and Aydin, 2013). Therefore, rollback-related extension may have been 

interacting with extrusion-related strike slip since the Mid-Miocene (Philippon et al., 

2014).  
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We, thus, aim to characterise the style of deformation in the Central Aegean since the 

Mid-Miocene. We aim to explain how normal faulting has recently evolved with the 

retreating trench, and how extension interacts with the extrusion regime. We focus our 

study on the Cyclades block in the Central Aegean. Several studies have been 

conducted on the neotectonics of continental Greece (e.g. Hatzfel, 1999; Taymaz et l., 

1991; Shaw and Jackson, 2010; Sachpazi et al., 2016; Vamvakaris et al., 2016). Recent 

offshore faults have also been mapped out in the Aegean Sea (e.g. Mascle and Martin, 

1990; Beniest et al., 2016; Sakellario and Tsampouraki-Kraounaki , 2018). However, little 

work has been done on recent faulting in the Cyclades. We, thus, characterise the 

present day fault pattern in the Cyclades by identifying multiple fault sets and 

generation. We reconcile these with the regional tectonic framework, particularly with 

the plate kinematic reorganisation related to the development of the North Anatolian 

Fault and the slab tear beneath the Kephalonia Transform Fault since the late Miocene 

and Pliocene (Royden and Papanikolaou, 2011; Perouse et al., 2012) 

 

To do this, we use a combination of offshore seismic data as well as onshore field data. 

We conduct our field study on the island of Syros since its geology is well understood 

and since it has documented late high angle faults (e.g. Keiter et al., 2004).  Offshore 

data permits the identification of recently active faults and their basin-scale pattern, 

while onshore data allows us to accurately characterise their kinematics. From this, we 

can distinguish pure normal faults from oblique slip. With these kinematics clarified fault 

kinematics, we interpret normal fault evolution in the Cyclades in the context of slab 

rollback, trench retreat and strike slip faulting. 
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3.2. Offshore faulting in the northern Cyclades 

 

3.2.1. Seismic reflection data  

 

We use bathymetry data (from NOAA, Amante and Eakins, 2009) combined with 2-D 

shallow seismic reflection images acquired in the 1980s, and provided by the Hellenic 

Centre for Marine Research. These lines were used to propose a recent tectonic 

interpretation of the Aegean (Sakellariou and Tsampouraki-Kraounaki, 2016). The raw 

and processed digital data are not available; rather, we have used static images of the 

profiles with no depth/time axes. This means that we are unable to indicate the depth 

of the interpretation, but the profiles only image the shallow subsurface. The profiles are 

oriented NE-SW and NW-SE, and their locations are shown on Figure 3.2. 

 

We have performed a structural interpretation, which is mainly based on syn-kinematic 

sediment packages in faulted blocks.  We identify faults as steep features which abut 

other reflectors. Sediment packages are identified by their closely spaced reflectors 

(bedding), and their abrupt interruption against steep faults. Syn-kinematic packages 

additionally have bedding reflectors which do not have continuous thickness, i.e. these 

packages thicken where accommodation space is created during fault activity.  The 

position of this thickening within a graben indicates which bounding fault is dominant, 

as the largest amount of accommodation space is created closest to the dominant 

fault. Unlike sediment packages, the basement (Cycladic Blueschist Unit) does not 

show many internal reflectors, and the poor data quality limits interpretation inside the 

basement. We therefore only interpret the top of the basement where possible. 

 

The strike of active faults is interpreted from bathymetry. Where possible, interpreted 

faults have been correlated from one seismic profile to another using a combination of 

the bathymetry and the character of the imaged fault. As the seismic digital data files 
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are not available and the lines are not closely spaced, horizon correlation was not 

possible. 

 

Two main fault families have been interpreted, normal faults and strike slip faults. 

Below, we show two representative interpreted profiles, which illustrate the reasoning 

behind our interpretation. For the complete set of interpreted profiles and their 

locations, refer to the supplementary materials. 

 

3.2.2. Interpretation of seismic profiles 

 

- Active high angle normal faulting:  

We observe normal faulted (half) grabens trending NW-SE to WNW-ESE, based on the 

bathymetry and correlated from neighbouring seismic lines. Figure 3.3 shows an 

example of a half graben with eroded basement in the footwall, present day offset of 

the sea floor and sediment infill in the hanging wall. 

 

- Compressive structures within the grabens: 

In addition to normal offset, the imaged half grabens show broad folds within the 

sediment infill.  This is seen in Figure 3.3, where the sediments are slightly folded 

throughout the imaged depth. The intensity of folding increases with depth in the visible 

syn-kinematic sediments. This broad folding is seen in all of the imaged profiles except 

for one (seismic profile 3, Suppl. Mat. Figure 3.S.3). 
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Figure 3.2: Interpretation of seismic profile 3 

 

- Strike slip faults  

We observe evidence for both minor and major strike slip faults. An example of minor 

strike slip faulting is illustrated in Figure 3.3, where two small negative flower structures 

can be seen on the eastern edge of the half graben. The subsurface flower, F5, seems 

to have ceased activity, as it is draped with flat sediments.  The easternmost flower, F6, 

is presently active as it creates a small trough in the sea floor.  

 

Interestingly, the older negative flower, F5, appears to cross cut F7, the eastern binding 

fault of the graben.  The latter is interpreted as a normal fault rather than an eroded 

surface since the sediments thicken in the middle of the faulted block, not against fault 

F2. This suggests that the faults were active on both sides of the graben, and that F2 is 

currently dominant based on sea floor offset.  This is supported by the sediments on F7 

showing a very high degree of rotation, suggesting it is (or at least has been recently) 

active but not dominant in the graben. 

 

3 km
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Figure 3.3: Interpretation of seismic profile 14 

 

Figure 3.4 shows Seismic profile 14, a distinctly different profile from the one shown in 

Figure 3.3.  Profile 14 trends NW-SE, and thus shares the strike of the grabens 

described previously. Therefore, it does not capture horizon orientations or sediment 

packages related to extension. Instead, the horizons appear relatively flat (since the 

profile is acquired along their strike), but to the north, there is zone of complex 

deformation with a distinct trough in the sea floor. 

We interpret this to be a major negative flower structure, which creates a bathymetric 

trough with an overall depth of 300 - 350 m, compared to the surrounding footwall 

which is ~140 m deep to the NW of the fault zone. The major strike-slip zone trends 

NNE-SSW across the northern Cyclades, and appears to trend more NE-SW to the east 

and west of the Cyclades (shown as interpreted, dashed lines on Figure 3.4). 

 

  

2.5 km
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3.2.3. Offshore fault pattern 

 

 

Figure 3.4: Interpretation of faulting in the Cyclades mainly based on interpreted 

seismic profiles and bathymetry. Apparently normal and oblique normal faults are 

shown in red, while strike slip faults are shown in blue.  Solid lines used for 

observed/correlated fault segments from seismic, dashed lines used for fault segments 

interpreted from bathymetry alone. 

 

We interpret normal faults and strike slip faults, shown in Figure 3.2 in red and blue 

respectively. The solid lines show observed/correlated fault segments, while the 

dashed lines show interpreted fault segments from bathymetry alone. The strike slip 

faults show negative flower structures, and two distinct fault orientations: NNE-SSW 

and NE-SW. The normal faults ranging faulting orientation from NNW-SSE to NW-SE. 

These widely ranging fault orientations of both sets combined with the observation of 
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broad compressive structures in the sediment packages suggests complex fault 

kinematics. As fault kinematics are not observable from seismic data, we address this 

by analysing fault exposures onshore. We thus present field data from the island of 

Syros, in the central Cyclades normal and strike slip faults are observed, and presented 

below. 

 

3.3. Faulting in Syros 

 

3.3.1. Tectonic framework of Syros 

 

Syros is mainly made up of the Cylcadic Blueschist Unit (CBU), a sequence which has 

undergone high pressure metamorphism during subduction in the Eocene (e.g. Dixon, 

1976). The sequence experienced retrogression and ductile exhumation in the 

Oligocene - early Miocene (Bröcker et al., 2013) and final exhumation by brittle faulting 

took place in the mid-late Miocene (Ring et al., 2003; Philippon et al., 2011; Soukis and 

Stöckli, 2013). The Syros CBU is structurally arranged in NE dipping layers. From the 

structural base to the top, the sequence is made up of albitic micaschists and gneisses, 

alternating marbles and mica-schists, and metabasites (Hecht, 1985; Keiter et al., 2004, 

2011; Philippon et al., 2011).  

 

Since exhumation, Syros has suffered brittle faulting (e.g. Philippon et al., 2015, 2011; 

Keiter et al., 2011) which has received far less attention than its ductile history. In this 

section, we present results from structural mapping of late stage brittle structures on 

Syros, summarized in Figure 3.6. Here we present simplified lithology and foliation 

based on Keiter et al. (2011) and Philippon et al. (2011), overlain by the major later 

stage high angle faults from this study. These consist of 3 fault sets: A normal fault set 

trending NW-SE, a normal-oblique fault set trending NNW-SSE and a dextral strike slip 

fault set trending NE-SW. These are presented in more detail below. 
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Figure 3.5: Tectonic map of Syros showing the main units and interpreted fault sets. 

3.3.2. Normal faulting, trending NW-SE 

 

The NW-SE trending normal fault set in Syros is interpreted to be a major fault set 

which offsets lithology (e.g. south central Syros, between Galissas and Vari), however, 

its faults are poorly exposed. Apart from offset lithology, we find several smaller scale 

associated structures that echo this fault set. These are most clearly seen in Komito 

bay, where a cross section of tilted block-style normal faulting is visible in a road cut on 

the northern edge of Komito bay, shown in Figure 3.6.a. The stereonet of these faults 

shows a strongly NW-SE trend, with foliation dipping towards the NE. This fault set 

creates a distributed zone of deformation, with penetrative small faults creating zones 

of weaknesses, which create NW-SE fabric in the coastline, as shown on the aerial 

photograph in Figure 3.6.b. The same Figure 3.shows a stereonet plot of these faults, 
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which reveals a wide range of orientations, suggesting some complexity in normal 

faulting here.  

Figure 3.6: Normal faulting Komito 

 

This fault set is also seen in Fabrika separating marbles from schists, as shown in 

Figure 3.7.a. The main fault shows vertical slickenlines (Figure 3.7.c), indicating that this 

fault set is purely extensional. The main fault has an associated small-scale pull-part 

structure in the marble rocks to the north. The extensional segment of the pull-apart 

trends NW-SE, parallel to the main fault, and also shows parallel tensile joints. The 

strike-slip segment trends NNW-SSE and shows sinistral slip, which is compatible with 

NW-SE extension, as shown in Figure 3.7.b.  Since the extensional pull-apart segment 

forms in the bend of the sinistral segment, the sinistral strike slip fault must have 

already been established when the pull-apart opened in extension. The stereonet plot 

(Figure 3.7.d) shows sinistral strike slip segments are plotted in black, while normal fault 

planes and slickenlines are plotted in red and show consistently vertical slip. 
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Combining these small-scale structures with the lithological map allows us to identify 

several large-scale NW-SE normal faults, offsetting the Kastri/Kambos units. We 

interpret these in the south, centre and north of the island, as shown in Figure 3.5. 

These major normal fault zones can explain the unroofing of the deepest units (Pyrgos) 

in the center of the Island. 

 

 

Figure 3.7: Faulting in Fabrika 
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3.3.3. Normal-oblique faulting, trending NNW-SSE 

 

 

Figure 3.8: Oblique normal faulting in a) Galissas and b) Palos 
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The third set of faults observed in Syros, trending NNW, was already documented by 

Philippon et al. (2015) in the Pyrgos marbles near Papouri (Figure 3.5). At map scale, 

this fault set is visible in south-western Syros in Galissas (Figure 3.8.a). This fault set is 

also observed in Palos and correlated to minor faulting observed offshore, shown in 

Figure 3.8.a.  The latter is imaged where the seismic profile approaches the Syros 

coastline (see Supp. Mat Figure 3.S.4 for the complete profile). This part of the 

coastline is defined by a major fault, visible in the Google Earth image along with tensile 

joints shown in Figure 3.8.b. This fault plane creates a major cliff (Figure 3.8.e), which 

shows tensile mineralised veins, and oblique slickenlines (Figure 3.8.c). It also creates a 

section of fault breccia and gouge in the order of ~20 m (see Figure 3.8.b.iii for an 

example of small fault breccia). The stereonet plot on Figure 3.8.d. shows that the fault 

plane has a dominant NNW-SSE trend (maroon) and shows sinistral normal 

slickenlines.  The tensile mineralised veins, plotted in black, also indicate sinistral 

normal slip. Therefore, this NNW trending fault shows sinistral normal (oblique) slip, 

similar to the sinistral NNW trending fault observed in Fabrika (Figure 3.7). We therefore 

distinguish this older oblique NNW fault set from the pure normal NW fault set, 

suggesting there are at least two generations of normal faulting. 

 

3.3.4. Dextral strike-slip faulting, trending NE-SW 

 

Central Syros is along strike the minor strike slip fault observed on seismic line 3 (F6, 

Figure 3.3). Following this, we find field evidence for a similarly minor NE-SW trending 

strike slip fault zone across central Syros. We interpret this to be a minor fault set in 

Syros, consisting of segmented small-scale structures. The fault planes are poorly 

exposed here, with the few exposures documented in Figure 3.9. Google Earth satellite 

imagery shows that this fault zone offsets marble layers with a dextral sense of shear 

(Figure 3.9.a). One fault plane was found revealing oblique lateral slip, shown in Figure 

3.9.a. Figure 3.9.b shows an exposure of this fault set in eastern Syros near 

Ermoupouli, where en echelon shear fractures also indicate dextral motion. A single 

major fault plane is not found; instead, we find small segments of faults and associated 
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fractures, which we plot collectively as associated structures on Figure 3.9.b.  These 

have a range of orientations, but are on average NE-SW. We also find a 10m thick NE-

SW trending breccia layer within the fault zone in Central Syros, NE of Galissas Bay, 

which allows us to extend the fault zone drawn on Figure 3.5 to Galissas. 

 

 

Figure 3.9: Dextral strike slip faulting across central Syros 

 

The presence of this fault zone across Central Syros is also supported by the 

surrounding foliation, as the foliation to the north turns into the fault zone (Figure 3.5) 

creating a broad fold in the Pyrgos Marbles (Philippon et al., 2011; 2015).  This fault 

zone also separates the gently dipping southern half of the island from the steeper 

northern half, which could be explained by the presence of a strike slip fault. 
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3.4. Interpretation and Discussion 

 

3.4.1. Fault pattern and kinematics 

 

From our field and seismic data, we have identified three main sets of faults, which we 

show on Figure 3.10: NW-SE normal faults (in red), NNW-SSE oblique normal faults (in 

burgundy), and NNE-SSW to NE-SW strike slip faults (blue).  

 

 

Figure 3.10: a) Interpreted faulting in the Cyclades and stress regime. b) restored block 

rotation to Mid-Miocene and predicted stress regime 

 

Minor NE-SW strike slip faults have been identified both offshore and onshore in Syros 

with a dextral sense of shear. One major strike slip zone limits the Cyclades from Attica 

to the West, with a segment apparently trending NNE-SSW, as already proposed by 

Sakellariou and Tsampouraki-Kraounaki (2018). The regional strike slip faults in the 

central Aegean mainly trend NE-SW and have dextral offset (e.g. Taymaz et al., 1991 
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for earthquake focal mechanisms and Sakellariou and Tsampouraki-Kraounaki, 2018 

for offshore faulting patterns). Our interpreted minor strike slip faults on and west of 

Syros is consistent with this. However, our interpreted strike slip zone in the northern 

Cyclades has a segment with an apparent trend of NNE-SSW, following the 

bathymetry. In the north-eastern corner of the Cyclades, the strike slip zone trends NE-

SW, but it is not clear from bathymetry alone if these two segments are continuous. To 

the NE of the Cyclades, the NE-SW trending fault shows a dextral earthquake focal 

mechanism (Global CMT catalogue, Dziewonski et al., 1981; Ekström et al., 2012). 

Attempting to interpret the NNE-SSW segment as part of the same fault proves 

problematic, as it strikes at a high angle to the main strike-slip direction, but shows 

strike slip extension (negative flower) and not compression. It could possibly be a 

synthetic P structure within the Riedel framework, as interpreted by Sakellariou and 

Tsampouraki-Kraounaki (2018, but such structures typically have a closer angle to the 

main strike slip zone. Alternatively, it could be an inherited structure that has mixed 

kinematics. More data is necessary to reliably interpret this structure. Regardless, this 

structure does not apparently extend for more than  ~65 km before the regional NE-SW 

dextral strike slip pattern resumes. 

 

The normal faults interpreted from both Syros and the offshore seismic profiles in the 

Cyclades show two dominant directions: NW-SE and NNW-SSE. Both sets appear to 

be presently active offshore, as they both offset the sea floor. Slickenlines observed on 

Syros show pure or near pure vertical slip on the NW-SE fault set (e.g. Figure 3.7), and 

sinistral oblique slip on the NNW-SSE fault set (e.g. Figure 3.8). Additionally, the pull-

apart structure in Fabrika (Figure 3.6) shows an older sinistral fault trending NNW-SSE 

with a later extensional structure trending NW-SE. 

 

We extrapolate this to the offshore faults and interpret similar pure vertical slip on the 

NW-SE segments, and oblique sinistral slip on the NNW-SSE segments. The sinistral 

component of these oblique faults could be the cause of the broad compressive 

structures discussed in section 2.2. Figure 3.10 shows our three interpreted faults in the 
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Cyclades, from which we interpret the direction of maximum extension (or sigma 3) to 

be around NE-SW (e.g. normal to the pure normal faults). The NNW-SSE sinistral-

normal fault set and the NE-SW dextral strike slip faults are thus compatible with this 

stress field. Moreover, this stress field is close to the predicted direction of stretching 

from geodetic data (e.g. Allmendinger et al., 2007 show maximum stretching in the 

central Aegean to be ~NNE-SSW). Since new extensional structures most likely open in 

the direction of maximum stretching, the presence of oblique extensional faults (NNW-

SSE), oriented at a high angle to the direction of stretching, suggests that they act as 

inherited structures in the present day stress field, and consistent with inferred pre-

existing structures (e.g. Fabrika sinistral pull-apart, Figure 3.6). These structures require 

an extension direction closer to WNW-ESE, which differs from today’s stress field. 

Therefore, either the faults have rotated, the stress field has rotated or both have 

rotated. 

 

3.4.2. Normal fault rotation since the Mid-Miocene 

 

Palaeomagnetic studies show that the north-western Cycladic area has rotated 22°-23° 

clockwise since the Miocene (Morris and Andersen, 1996; Avigad et al., 1998). We 

restore this block rotation in Figure 3.10.b, which shows the block and observed faults 

rotated back to the Mid-Miocene. Note that the present day pure normal faults (red on 

Figure 3.10.a) are not shown as we interpret them to be the youngest. In this 

restoration, the majority of the faults strike NNE-SSW, with an extension direction 

roughly towards the SSW. Based on this, we infer the Mid-Miocene extensional stress 

field shown on Figure 3.10.b, which differs from today’s stress field (Figure 3.10.a).  

This implies that in addition to block rotation, the stress field must have changed since 

the Mid-Miocene. We propose this occurred due to the development of the western 

Hellenic slab tear. 

 

We illustrate this interpretation in Figure 3.11:   
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Figure 3.11: Interpretation of fault evolution by trench retreat, extrusion, block rotation 

and slab tearing. 

 

a) If we define the rotation of the Aegean trench about the Scutari-Pec line (e.g. van 

Hinsbergen and Schmid, 2012), rotating the trench by 23° places it in a position 

consistent with tectonic reconstructions since the Miocene (e.g. Royden and Faccenna, 

2018). Therefore, the retreat of the trench accounts for the block rotation predicted 

from palaeomagnetism.   

b) Since the trench is retreating, the Aegean is expected to be under extension 

throughout this time, i.e. it suffers normal faulting. The fault pattern and the stress 

tensor both rotate with the block rotation caused by trench retreat.  This can explain 

the rotation of normal fault from NW-SE to NNW-SSE. However, in this case, NNW-SSE 

normal fault will remain pure normal fault with no obliquity. The final (i.e. present day) 
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stress field would have sigma 3 (direction of extension) trending NNE-SSW, which is 

very different from the present day’s actual stress field. A change in stress field is, thus, 

necessary.  

c) Our interpretation suggests that there is an additional change in stress during this 

history. While our data does not allow us to predict when this change took place, we 

propose that this stress change takes place during the reorganisation of plate 

kinematics in Late Miocene - Early Pliocene with the development of the Corinth Rift 

and the North Anatolian Fault (see discussion in Royden and Papanikolaou, 2011 and 

Perouse et al., 2012). This stress change could, thus, be related to the development of 

a slab tear beneath the Kephalonia transform fault in late Miocene, and may have 

rotated the direction of extension counter clockwise to its current SSW direction. 

Consequently, this could explain the new development of NW-SE faults in the Cyclades 

and oblique slip in rotated NNW-SSE normal faults, as the youngest fault set opens 

parallel to the newly rotation stress direction (shown in red in Figure 3.11), while the 

inherited fault sets (trending NW-NNW) develop oblique (sinistral-normal) slip that 

accommodates the new direction of extension. Similar observations of multiple fault 

generations created by block rotation associated with slab rollback have been 

described in Corsica in (Gueydan et al., 2017). 

 

3.4.3. Extrusion and strike slip 

 

In addition to normal faulting, our data shows evidence of dextral strike slip faulting in 

the Cyclades. These are observed as both major (Figure 3.3) and minor structures (e.g 

Figure 3.9). The minor structures strike NE-SW, which is consistent with the regional 

dextral fault pattern. The major structure, however, trends NNE-SSW, at a high angle to 

the regional pattern. This, combined with the observation of multiple normal fault sets, 

raises several questions pertaining to the timing and tectonic conditions that control 

brittle faulting in the Central Aegean.  The normal and oblique faults here are a product 

of back arc extension, which is a function of recent slab rollback (see discussion in 

section 2.5.2). On the other hand, the presence of strike slip faults (this study and 
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Sakellario and Tsampouraki-Kraounaki  , 2018) show that the Aegean is affected by 

extrusion of Anatolia in addition to back-arc extension (Şengör et al., 2005).  It is not 

clear when strike slip activity started in the Central Aegean, however, there is evidence 

for regional Mid-Miocene initiation of large-scale dextral shear zones (e.g. Şengör et al., 

2005; Kokkalas and Aydin, 2013). If this is the case, these dextral strike slip zones 

could have facilitated block rotation (represented in Figure 3.11 by NE-SW trending 

strike slip faults in blue), while maintaining their orientation since the extrusion stress 

field does not change. Blocks between dextral strike slip zones rotate clockwise, which 

is consistent with observed rotation. This could allow new generations of rollback-

related normal faults to progressively nucleate in the direction of maximum extension, 

while older generations experience increasingly oblique slip. Oblique strike slip faults 

may also open during block rotation between two NE-SW strike slip zones, such as our 

interpreted negative flower structure shown in Figure 3.3, which likely initiated as a 

sinistral structure, as shown in Figure 3.10.b. 

 

However, the older stress regime predicted from the NNE-SSW fault set (Figure 3.10.b) 

is incompatible with NE-SW dextral strike slip faulting. If this stress regime was active 

in the past and was synchronous with westward-directed extrusion, there must have 

been strain partitioning between extrusion-related structures and rollback-related 

structures. Contrastingly, today’s extrusion and rollback related stress fields are quite 

close, which means strain partitioning is not necessary. We have shown that field 

studies can shed light on offshore fault kinematics in the Aegean. Further such field 

studies could provide age constraints on the timing of these various fault sets. 
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3.5. Conclusion 

 

We have combined structural field data from Syros with offshore seismic interpretation 

to characterise the fault pattern and kinematics in the Cyclades. We draw the following 

conclusions: 

• The Cyclades shows three co-existing fault sets that have different kinematics: 

NW-SE pure normal faults, NNW-SSE oblique (sinistral-normal) faults, and NNE-

SWW to NE-SW dextral strike slip faults. 

• NNW oblique faults and NW pure normal faults represent multiple generations of 

normal faulting during Aegean trench retreat. 

• The radial retreat of the trench and the dextral strike slip faults (related to 

Anatolian extrusion) can accommodate block rotation, and subsequently fault 

rotation. 

• This implies that dextral strike slip faulting may have been active since the Mid-

Miocene, well before the development of the NAF. 

• An additional change in stress pattern is needed to explain the present day 

stress pattern and resulting NW pure normal faults. This change may be related 

to recent slab tearing on the western side of the Hellenic slab, which lead to 

reorganisation of strain in the Pliocene with the development of the NAF and 

Corinth Gulf. 
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3.8. Supplementary material 

 

Figure 3.S.0: Location and extent of all seismic profiles shown below. Figures below 

show original seismic line on top with the interpreted version underneath. 
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Figure 3.S.1 
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Figure 3.S.2 

 

 

  



 

144 

 

Figure 3.S.3 
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Figure 3.S.4.a 
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Figure 3.S.4.b 
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Figure 3.S.6 
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Figure 3.S.8 
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Figure 3.S.9 
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Figure 3.S.10 
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Figure 3.S.11 
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Figure 3.S.12 
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Figure 3.S.13 
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Figure 3.S.15 
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Figure 3.S.16 
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Figure 3.S.17 

 

 

  



 

157 

4. Can tectonic modelling improve modelling geothermal 

potential? An example from the Aegean."" 

 

 

4.1. Introduction 

 

Plate tectonics is a relatively young discipline, and much of the community's work still 

lies in the fundamental research stage.  However, as plate tectonics shapes the Earth’s 

surface, it influences habitability and resources.  While some applications of tectonic 

studies are fairly advanced, such as mineral resource emplacement, other potential 

applications are farther from reach, such as earthquake prediction. There are 

applications which are not yet fully commercial, but are attainable in the near future. 

One example of this is geothermal energy production.   

 

Geothermal energy is a renewable and green energy source, which utilises heat in the 

crust, as introduced in Chapter 1.4. In this chapter, the role of tectonic modelling in 

geothermal energy production was also demonstrated, particularly for improving 

geothermal energy predictability in non-volcanic regions. The Aegean is a prime area to 

explore this (e.g. Cloetingh et al., 2010), as it has widespread high surface heat flow 

(Figure 4.1), with magmatism and hot springs. Additionally, the complex tectonic history 

of the Aegean is relatively well understood, rendering it a good candidate to test the 

ability of tectonic modelling to predict geothermal potential. 

 

                                                
†† This study was done at TNO Utrecht, in collaboration with Utrecht University. The 

work was carried out with Kristof Porkalob, Jon Limberger, Jan-Diederik Van Wees and 

Fred Beekman. 
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Figure 4.1: European heat flow map, as it appears in Cloetingh et al., 2010. 

 

There are various known geothermal reservoirs in the Aegean primarily in regions of 

Miocene - recent volcanism and in continental basins, as shown in Figure 4.2. High 

temperature resources (>200◦ C) have been confirmed on the islands of Milos and 

Nisyros, and similar conditions are inferred on the volcanically active Santorini. There 

are also widespread low temperature resources (<100◦ C), which are proven in northern 

Greece. Geochemical data and data from oil exploration wells suggest medium 

temperature resources (100-200◦ C) in Sousaki, the islands of Samothraki, Chios and 

Lesvos, in the basins of Nestos River Delta and Alexandroupolis and in the graben of 

Sperchios River (Mendrinos et al., 2010). Continental basins, thus, host significant 

geothermal resources, most of which are low temperature at the surface (known from 

hot springs), but higher temperatures at depth (oil exploration wells have proven 
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temperatures of 100–150◦ C at 3.5-4 km depth) (Kolios et al., 2007; Mendrinos et al., 

2010). 

 

 

Figure 4.2: Main known geothermal areas in Greece (Mendrinos et al., 2010). 

 

Geothermal exploration in the Aegean started in 1970 by the Institute of Geological and 

Mineral Exploration (IGME) of Greece in 1970. Usage, however, is currently limited to 

direct applications (e.g. for spas or agricultural) from low temperature reservoirs 

(Mendrinos et al., 2010). This is because poorly conducted operations on the Milos 

Island power plant in the 1970s-1980s led to environmental pollution, and thus, social 
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opposition to high temperature geothermal use. Social awareness needs to be raised 

before high temperature geothermal resources are accepted again, but low-medium 

temperature resources are still perceived positively (Karytsas et al., 2019). Therefore, 

there is an opportunity to develop geothermal production from reservoirs with low 

surface temperatures, but medium temperatures at depth. As many of these reservoirs 

lie in continental basins, there is a clear relationship between tectonic activity and 

geothermal potential in the Aegean, even away from the magmatic arc. In this case, the 

tectonic activity is in the form of lithospheric extension. This begs the question: can 

tectonic modelling predict geothermal reservoir potential? 

 

This study aims to address this question using two short thermal modelling workflows, 

one that is steady state, and another that incorporates extension. We do not attempt to 

accurately model thermal potential in the Aegean, but only to test whether 

incorporating extension changes the predicted thermal potential. This will essentially 

show whether or not it would be valuable to incorporate tectonic modelling into existing 

thermal modelling workflows. We therefore use the thermal modelling workflow 

documented in Limberger et al. (2018) and build on the 3D thermotectonic model 

created by Larede (2018). Larede (2018) has already shown that varying the lithospheric 

thickness has a first order effect on thermal distribution. In our study, we test the effect 

of crustal lithological composition in steady state, and the effect of simplified 

lithospheric stretching over 40 Ma. 

 

Aegean geological setting: 

The Aegean subduction zone is one of the most actively deforming regions in the 

Alpine-Himalayan Belt. Subduction initially created a thickened nappe-stack which later 

collapsed when the subduction zone started retreating around 55 Ma (Ring et al., 2010 

and references therein). During this time, extension started with ductile exhumation and 

later progressed to brittle normal faulting. The onset of rollback is expected to have 

largely raised temperatures in the Aegean as the cold slab migrated northwards, and 

exhumation of high temperature metamorphic core complexes is seen (Ring et al., 
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2010). The exhumation phase is also thought to have largely thinned the lithosphere 

(e.g. Brun et al., 2016). The Moho is presently thought to lie around 25 km depth (Tirel 

et al., 2004), but the thickness of the lithosphere is more poorly constrained. For a more 

complete overview of the Aegean’s geological setting, refer to chapter 1.3. 

 

4.2. Thermal Modelling 

 

4.2.1. Numerical method 

This study uses TNO’s in-house thermal modeller, Basin 3D, to create a steady state 

thermal model of the Aegean as well as a transient model which incorporates 

lithosphere stretching over 40 Ma. The thermal modeller was documented in Limberger 

et al. (2018): the first model is preprocessed using a 1D steady state thermal solution. 

This is the a priori model and starts from a lithological geometrical model. The a priori 

thermal properties are then populated for each grid cell, to give k (z), a collection of 1D 

thermal conductivity profiles (W m-1 K-1) as a function of depth for the sediments, 

upper crust, lower crust and lithospheric mantle. The bulk matrix conductivity, km, 

(Limberger et al., 2018, Sekiguchi, 1984) is then used together with lithological 

properties (Table 1) for the thermal calculations  (Hantschel and Kaurauf, 2009; Bär et 

al., 2017; Limberger et al., 2018). Radiogenic heat production is accounted for and 

thermal conductivity is also corrected for temperature (Van Wees et al., 2009; 

Limberger et al., 2018). 
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ID class subclass K 

[W/m

K] 

aniso

tropy 

cp 

 [J/k

gK] 

rho 

 [kg/m

3] 

A 

 [µW/

m3] 

phi0  

[%/1

00] 

k 

(compaction 

par.) [1/km] 

IRGranite150 Igneous_Rocks Granite_150

_My_old 

2.6 1.15 800 2650 3.32 0 0 

MRGneiss Metamorphic_Rocks Gneiss 2.7 1.4 800 2740 2.5 0 0 

MRSchist Metamorphic_Rocks Schist 2.9 1.35 920 2740 1.44 0 0 

MREclogite Metamorphic_Rocks Eclogite 3.55 1.1 750 3400 0.12 0 0 

MRMarble Metamorphic_Rocks Marble 2.8 1.02 860 2700 0.34 0 0 

CRDolomiteTy

p 

Carbonate_Rocks_D

olomite 

typical 4.2 1.06 860 2790 0.29 0.35 0.39 

MRSerpentinit

e 

Metamorphic_Rocks Serpentinite 2.6 1.45 785 2900 0.01 0 0 

IRUltramafics Igneous_Rocks Ultramafics 3.8 1 900 3310 0 0 0 

IRDiabase Igneous_Rocks Diabase 2.6 1 800 2800 0.18 0 0 

CSSandTyp Clastic_Sediments_S

andstone 

typical 3.95 1.15 855 2720 0.7 0.41 0.31 

CRMarl Carbonate_Rocks_M

arl 

Marl 2 1.45 850 2700 1.18 0.5 0.5 

CSGypsum Chemical_Sediments Gypsum 1.5 1.15 1100 2320 0.05 0 0 

CSSandCrich Clastic_Sediments_S

andstone 

clay_rich 3.35 1.2 860 2760 1.1 0.4 0.32 

CSConglomera

teTyp 

Clastic_Sediments_O

ther 

Conglomerat

e_typical 

2.3 1.05 820 2700 0.85 0.3 0.3 

CRLimeOoidgr

ainstone 

Carbonate_Rocks_Li

mestone 

ooid_grainst

one 

3 1.19 835 2740 0.35 0.35 0.01 

CSSalt Chemical_Sediments Salt 6.5 1.01 860 2740 0.02 0 0 

CRLimeOrgRT

yp 

Carbonate_Rocks_Li

mestone 

org._rich_ty

pical 

2 1.95 845 2680 1.4 0.51 0.52 

Bouguer Other_Minerals Bouguer 1000 1.17 885 2670 0 0 0 

KmLM IRPeridotite none 0 0 0 3200 0.02 0 0 

Table 4.1: Lithological properties, after Hantschel and Kaurauf, 2009, and Limberger et 

al., 2018. 
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The a priori model is then used to create a 3D forward model, using a finite-difference 

approximation, and assuming steady state. This is based on the multi-1D model 

presented in Van Wees et al. (2009), but with addition of vertical stretching in 3D, 

across the entire modelled region. This updated version of the code was provided by 

Jan Diederik Van Wees, TNO in early 2019. The code is otherwise similar to that of 

Limberger et al., 2018, although 

their full workflow is not followed 

here. In this study we only create 

prior and forward models with 

different input data, as there are 

no calibration data available for 

creating posterior models. 

4.2.2. Input data 

For the geocellular model input, 

we use the crustal model from 

Larede, 2018, who constructed 

the model using the software 

GeoModeller‡‡, and based the 

layers on data from Tirel et al., 

2004; van Hinsbergen et al., 

2005; Brun and Sokoutis, 2010; 

Jolivet and Brun, 2010; Jolivet et al., 2013; Beniest et al., 2016, and Menant et al., 

2016.  

 

This is a simplified lithological model which captures the Hellenides’ nappe stack at first 

order, but does not incorporate a modelled fault network. The main purpose of using 

this model is capture the different units’ thermal properties and their first order 

distribution across the Aegean.  

                                                
‡‡

 www.intrepid-geophysics.com 

Figure 4.3: Map view of model locatoin, 

model units, and location of cross section 

A-A'. 
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The crustal model consists of four main layers. A map view of the units is shown in 

Figure 4.3. From top to bottom, these are: 

- Top sedimentary cover, oldest sediments are Eocene, basins and include: 

Thermaikos Basin, North Aegean Basin, North Skyros Basin, Ikaria Basin, Cretan 

Basin 

- Upper crust, containing five units: Rhodope, Vardar, Pelagonia, Pindos and CBU, 

Cycladic Basement (refer to chapter 1.3 for an overview of these units) 

- Lower crust: Migmatite, homogenous  

- Lithospheric mantle: Peridotite, homogenous 

 

The lithological compositions of each of these layers was compiled by Kristof Porkalob 

(modified from Larede, 2018), and are shown in Table 2. These lithological 

compositions are used for calculating lithological properties (Table 1) and subsequently 

thermal conductivity. We found that lithological composition has a first order impact on 

the thermal model, so we expect a model with increased resolution to give more 

precise values.  

 

The Moho, the boundary between the crust and the lithospheric mantle, is based on the 

modelled Moho in Tirel et al., 2004, which has an average depth of 25 km. The Moho 

grid used in the model is shown in Figure 4.4. We use the Moho as the bottom 

boundary condition for the our steady state model. 

 

The lithosphere-asthenosphere boundary (LAB) is used as the bottom thermal 

boundary condition.  Here, it is considered to be the boundary between mainly 

conductive and convective mantle, and is represented by the 1200°C isotherm, after 

Tesauro et al. (2009). 

Since the model is forward modelled, the boundary condition is set for the start of the 

simulation. Thus, we have created two LAB grids, one for the present day to create the 

steady state model, and a second for 40 Ma to create the transient, stretched model. 
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This allows us to capture the migrating subduction zone, as the present day offshore 

Aegean domain is thinned, while at 40 Ma, it would have still been a thickened nappe 

stack. We interpret the LAB structures from literature reconsructions (e.g. van 

Hinsbergen and Schmid, 2012; Jolivet and Brun, 2010; Menant et al., 2016) and show 

the grids used in Figure 4.4. 

Table 4.2: Lithological compositions used. 

ID Unit Unit grid Type of grid Composition 

-2 Moho moho_new_spline_inverted.asc Elevation 100% KmLM 

-1 Lower crust Units_isopachs_Migmatite.asc Thickness 50% IRGranite150, 50% MRGneiss 

11 Upper Crust: 

 Cycladic basement 

Units_isopachs_Cycladic_base

ment.asc 

Thickness 34% MRGneiss, 33% MRSchist, 33% 

MRMarble 

10 Upper Crust: CBU Units_isopachs_CBU.asc Thickness 34% MRSchist, 33% MREclogite, 33% 

MRMarble 

9 Upper Crust: 

Pelagonia 

Units_isopachs_Pelagonia.asc Thickness 30% MRGneiss, 30% MRSchis, 20% 

MRMarble, 20% CRDolomiteTyp 

8 Upper Crust: 

Vardar 

Units_isopachs_VardarSZ.asc Thickness 20% MRSerpentinite, 20% 

IRUltramafics, 15% IRDiabase, 15% 

MRSchist, 15% MRMarble, 15% 

CSSandTyp 

7 Upper Crust: 

Rhode 

Units_isopachs_RUU.asc Thickness 33% MRGneiss, 33% MRSchist, 34% 

CRMarl 

6 Sedimentary cover: 

 Cretan Basin 

Units_isopachs_cretan_sedi.as

c 

Thickness 50% CRMarl, 25% CSGypsum, 25% 

CSSandTyp 

5 Sedimentary 

cover:  Ikaria Basin 

Units_isopachs_Ikaria_sedi.asc Thickness 34% CSSandCrich, 33% CSSandTyp, 

33% CSConglomerateTyp 

4 Sedimentary cover: 

 North Skyros Basin 

Units_isopachs_NSkyros_sedi.a

sc 

Thickness 34% CSSandCrich, 33% 

CSConglomerateTyp, 33% CSSandTyp 

3 Sedimentary cover: 

 North Aegean 

Basin 

Units_isopachs_NA_sedi.asc Thickness 40% CSSandCrich, 30% 

CSConglomerateTyp, 20% 

CRLimeOoidgrainstone, 10% CSSalt 

2 Sedimentary cover: 

 Thermaikos Basin 

Units_isopachs_Thermaikos_se

di.asc 

Thickness 34% CSSandCrich, 33% 

CSConglomerateTyp, 33% 

CRLimeOrgRTyp 

1 Topography topo_correct_2000mres.asc Elevation 100% Bouguer 

0  -3000 Elevation 100% Bouguer 
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Figure 4.4: Grids used for the Moho (after Tirel et al., 2004) and for thre LAB at 40 Ma 

(interpreted from literature, see main text). 

 

4.2.3. Generalised workflow 

In our study, we first created a present day steady state model, using the Moho (from 

Tirel et al., 2004) as the bottom boundary condition. 

We then created a transient model spanning the last 40 Ma. Here, the lithospheric 

stretching is forward modelled and employs the principles of non-uniform stretching, 

where different stretching factors are used for the crust (⍺) and mantle lithosphere (β) 

(Royden and Keen, 1980). We consider that stretching in the Aegean started slowly at 

40 Ma and has sped up through time (e.g. van Hinsbergen and Schmid, 2012, Brun et 

al., 2016). We thus use two time-steps where the stretching factors change at 15 Ma, 

as follows: 

40 - 15 Ma: ⍺ = 1.3, β = 1.1 

15 - 0 Ma: ⍺ = 1.5, β = 1.2 

The forward model, thus, calculates the evolution of the geotherm with lithospheric 

stretching, incorporating material properties and thermal velocities (Van Wees and 

Stephenson, 1995) assuming fixed strain-rates.  
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The relevant results include present day modelled 3D temperature based on the bottom 

boundary conditions, lithology compositions and geometry, and stretching (for the 

transient models). In the absence of wellbore data, model validation is limited to 

comparing modelled and observed surface temperatures. 

 

4.2.4. Preliminary results 

 

We start by a crust-only steady state simulation, using the Moho as the bottom 

boundary. We then change the bottom boundary condition to the 40 Ma LAB. We then 

introduce incremental changes in each following simulation. We thus compare the 

following three models: 

a) Steady state, crust only, Moho used for the thermal bottom boundary condition 

b) Steady state run using the 40 Ma LAB for the thermal bottom boundary condition 

c) 40 Ma transient model with stretching 

 

Figure 4.5 below shows a comparison of these models using a model cross section 

along the profile A-A’ (Figure 4.2) and Temperature at the depth slice 2125 m below sea 

level. At this depth, the crust-only model (a) shows a dominant temperature range of 

80-100 °C, where the temperature generally increases from south to north, and where 

the North Anatolian Trough creates a cold spot in the otherwise warm northern Aegean. 

This pattern is also observed in the steady state model which uses the 40 Ma LAB as 

the bottom boundary condition. However, this model is significantly colder, which is 

expected, since the 40 Ma LAB is a much deeper layer. More interestingly, the 40 Ma 

stretched model (c) shows a significantly higher overall temperature, with most of the 

Aegean showing temperatures higher than 90°C at 2125 m depth. The North Aegean 

trough still creates a cold spot, however, the Peloponnese show significantly higher 

temperatures (> 130°C at 2125 m depth), which is less pronounced in the present day 

steady state model (a).  
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Figure 4.5: Preliminary model results: a) Steady state model using the Moho as the 

bottom boundary condition. b) Steady state model using the 40 Ma LAB as the bottom 

boundary condition. c) Transient stretched model starting from 40 Ma. 
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4.3. Discussion and conclusion 

 

The preliminary models above show that introducing tectonic stretching into thermal 

model largely affects predicted results. Unfortunately, these results cannot be validated 

as there are no wellbore data available. These would typically act as additional tie 

points and could enable further stochastic modelling (as in Limberger et al., 2018). But 

even without wellbore modelling, there is ample scope to incorporate more tectonic 

processes into the thermal modelling workflow above. Resulting model predictions 

could then be compared to observed surface temperatures/heat flow for first order 

model validation. Since the models shown above indicate that vertical stretching largely 

affects predicted heat flow, it would be interesting to bring in the third dimension into 

the model. Since the stretching algorithm only acts vertically, and the geometrical 

model is not altered, we have incorporated subduction zone migration by creating a 40 

Ma LAB grid, which is “stretched away”. However, in the workflow above, the 

stretching factors are applied uniformly across the model. This can be improved by 

scaling the stretching factors across the Aegean, to more accurately capture the 

migration of the subduction zone. This would be a more concrete 3D stretching 

application to the thermal field, and could be aided by creating pseudo-tie points at 

intermediate intervals (e.g. where the LAB is expected at 15 Ma).  

 

Additionally, the model predictions could be largely improved by incorporating the 

magmatic arc and its migration through time, an important aspect which is not included 

in the workflow above.  Introducing magmatism is particularly interesting for identifying 

local areas with elevated temperatures. As the Aegean crust is made up of a nappe 

stack composed of lithologies with different thermal properties, it would be interesting 

to see how the migrating arc influences the temperature distribution in the crust.   

 

The preliminary work above shows that there is large potential to improve geothermal 

model prediction by incorporating large scale tectonic processes. Tectonic modelling 

could aid thermal prediction in a myriad other ways, particularly when considering 
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different scales. This has already been shown by Cloetingh et al., 2010 who 

emphasised that tectonic studies can aid in both predicting and producing geothermal 

energy (refer to chapter 1.4). This is particularly relevant for producing geothermal 

energy in non-volcanic areas, which is not yet common due to the difficulties in 

predicting optimum well locations in such areas.  Reducing exploration and production 

risk in non-volcanic areas could largely increase the global potential for geothermal 

energy, and take it beyond its current status as a resource restricted to volcanic areas. 
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5. Synthesis 

 
This thesis has explored trench retreat and upper plate deformation, addressing three main 

questions: 

 

- How does slab pull influence trench retreat? 

- What is the relationship between trench retreat and upper plate deformation? 

- Can tectonic research feed back directly into applications that can be useful for society? 

 

In order to answer these questions, a multi-scale approach was used to better understand the 

physical processes in retreating subduction zones, and what controls upper plate deformation 

in this setting. We used large-scale (> 100 km) numerical models to isolate the effect of slab 

pull on trench retreat, and subsequently on upper plate deformation.  We used field and seismic 

data from the Aegean upper plate to better understand basin-scale (> 1 km) brittle fault patterns 

in retreating subduction systems.  

 

Our models show that trench retreat is not only controlled by slab pull, but also by shallow flow 

in the mantle below the surface plates and around the subducting slab.  Larger slab pull causes 

faster subduction, which in turn triggers faster mantle flow beneath both the subducting plate 

and the upper plate. These faster mantle flows compete, and the trench can retreat if the return 

flow in the mantle-wedge (beneath the upper plate) is faster than the sub-slab flow. However, if 

the slab subducts faster and drags the sub-slab mantle so that it flows faster than the mantle 

wedge, it resists slab rollback and trench retreat, even though slab pull is high and subduction 

is fast. This shows that slab pull is not the only factor affecting the motion of the trench, but 

that mantle flow (whether or not it is a result of slab pull) is also a strong control on trench 

motion.   

 

We found that mantle flow can also be responsible for upper plate deformation; thus, trench 

motion can only indirectly cause upper plate deformation if it triggers faster mantle flow.  Our 

models shows that if mantle flow beneath the upper plate is strong enough to overcome the 

strength of the upper plate, it can drag the upper plate from below and create deformation. The 

type of deformation depends on whether the entire plate is dragged or only part of it.  The 

entire plate can be dragged if it has a free edge, for example a ridge in its trailing edge. In this 
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case, the upper plate deforms in compression. On the other hand, if only part of the upper plate 

is dragged, as is this case if its trailing is fixed because it is part of a large continent, it deforms 

in extension since its front is dragged away from its trailing edge.  In both scenarios, the 

strength of the upper plate also matters, as it needs to be weak enough to be deformed by the 

underlying mantle flow. We illustrate this conceptually in Figure 5.1. 

 

Figure 5.1: Shallow asthenospheric flow beneath the plates controls both trench motion 

and upper plate deformation. 

 

This has another effect on trench retreat. If the upper plate is fixed, i.e. not free to laterally 

translate, the trench can only retreat if the upper plate deforms.  If there is no deformation, the 

trench is locked in place. This sheds a new perspective in trench retreat, as it has always been 

considered the cause of upper plate deformation. Our models show that it can also be the 

result of upper plate deformation.  

 

This may also have relevance on the Aegean system, where the trench is retreating in a narrow 

subduction zone under a relatively fixed upper plate. Trench retreat may have originally started 

because of higher slab pull, but this may have triggered sufficiently fast mantle flow that it is 

now the main driver.  Consequently, the deformation in the Aegean captures the evolution of 

the rollback, as shown in Chapter 3. Here we have a progressive change in faulting style from 

exhumation and local low angle faulting to segmentation and distributed high angle faulting. 

According to our model results, the segmentation may have been possible because the plate 
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was already weakened by the previous exhumation, enabling the underlying mantle to 

overcome the strength of the plate and create more pervasive deformation.  

 

Our data from the Aegean shows coexisting normal faults, oblique faults and strike slip faults. 

Normal faults are expected from slab rollback and strike slip faults are expected from Anatolian 

extrusion, however oblique faults introduce an added element of complexity. They suggest 

previous generations of normal faulting are no longer aligned with the extension direction, 

resulting in oblique slip. Our interpretation of the Central Aegean shows that the pattern of 

faulting during segmentation rotates with the radial rollback of the slab. The orientations of the 

faults (all generations) suggest that there was a change in the stress state in addition to the 

interpreted block rotation. This could represent stress rotation resulting from slab tearing in the 

western Aegean. This interpreted evolution is shown in Figure 5.2. 

 

 

Figure 5.2: Interpretation of block (a-b) and stress (c) rotation in the Aegean since the 

Mid-Miocene, based on the coexistence of normal, oblique and strike slip faults. 
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Additionally, radial trench retreat in the Aegean introduces an element of strike slip activity 

accommodating block rotation, which is suspiciously compatible with the Anatolian extrusion 

regime. This begs the question: is Anatolian extrusion driven by large-scale mantle flow 

triggered by the Aegean rollback? Various studies suggest that the upper plate deformation 

scales with the size of the underlying convection cell. It is possible that the sub-Aegean 

convection cell became large enough to drag the western side of Anatolia following the slab’s 

penetration into the lower mantle. Recently, the development of tears on the sides of the 

Hellenic slab have introduced an additional toroidal mantle flow, reinforcing this motion and 

raising the rate of trench retreat to its current 3 cm/yr. 

 

This strong mantle flow coupled with a thinned upper plate may be why the Aegean exhibits 

such elevated heat flow compared to its surroundings. This higher heat flow coupled with hot 

springs makes the Aegean ripe for geothermal energy exploration, however, understanding the 

lithospheric structure would largely aid in this effort. The thinned upper plate allows the mantle 

to flow closer to the surface, however, it also reduces blanketing allow greater diffusion. 

Sedimentation, in turn, counteracts this, but the presence of faults which bring up thermal fluids 

from depth raises the geotherm. Quantifying these effects tectonically can largely improve 

geothermal predictions, and chapter 4 showed that simply adding lithospheric extension into a 

thermal modelling workflow significantly changed the predictions.   

 

We often think of geodynamic research as fundamental research far removed from current 

applications, however, chapter 4 shows that geodynamics has present day, real world 

applications. The geothermal example is one of a direct application of tectonic research which 

could introduce geothermal energy to non-volcanic regions. This could increase global 

renewable energy production. Managing geohazards is the other obvious direct use of 

geodynamic research. There are many other applications of this kind of research, which are too 

many to list here, but they are largely contributing to our fast developing technology. Our lives 

would look very different if we did not benefit from the wealth of resources our planet offers us, 

and we would not be able to tap into these resources without understanding the planet. So for 

the sake of our own development, and for the sake of knowledge, the ultimate pursuit, let us 

always be curious and intrigued by our beautiful Earth. 

 


