, ? Nous avons estimé la force de radiation d'un faisceau laser sur une nanofibre. Pour des valeurs typiques de la puissance (100 mW )

, En modélisant la nanofibre comme une corde élastique sans tension initiale, nous avons estimé le fléchissement causé par le faisceau laser et montré qu'il était maximum pour un rayon de la nanofibre d

, ? Suivant une idée originale de Arno Rauschenbeutel, nous avons développé un système permettant de détecter des mouvements nanométriques d'une nanofibre

, ? Nous avons finalement présenté une tentative de mise en évidence de la force de radiation sur une nanofibre. À l'heure actuelle, nous n'avons pas pu observer une telle force de radiation

, Fibre optique monomode (Thorlabs : P3-405B-FC) opérant entre 405 et, vol.532

. Nanofibre, Diamètre ciblé : 220 nm, longueur de la zone nanofibre : 10 mm

, Fibre monomode (Thorlabs : SM600) opérant entre 633 et 780 nm

H. Filtre-passe, Thorlabs : FELH0550) permettant de bloquer la diffusion résiduelle du laser d'excitation mais laissant passer le signal de fluorescence du nanocristal autour de 600 nm

, Cube séparateur non polarisant

, Fibres multimodes à saut d'indice (Thorlabs : M42L) opérant entre 400 et 2400 nm avec un diamètre de coeur de 50 µm

, Câbles coaxiaux d'impédance 50 ? et de longueur 1 m

, Surface du détecteur : 180 µm, efficacité quantique : 65% à 650 nm, temps de récupération : ? 30 ns

, Compteur d'impulsion et corrélateur (Aurea Technology : SPD-TDC)

, Nous considérons les sources d'atténuation du signal à partir de l'émetteur jusqu'au corrélateur. L'efficacité totale du système correspond au nombre de coups relevé par le compteur sur les deux photodiodes divisé par le nombre total de photons émis par l'émetteur. La principale source d'atténuation est le couplage dans la fibre, qui permet de collecter environ 20 % de la lumière [88] -mais dont seulement la moitié est dirigée vers le système de détection-soit un couplage de 10 %. Cette valeur est à comparer avec les taux de collection d'un objectif de microscope, Nous présentons dans le tableau 9.1 un bilan de l'efficacité de la détection du signal de fluorescence

H. Tanji-suzuki, I. D. Leroux, M. H. Schleier-smith, M. Cetina, A. T. Grier et al., Chapter 4 -interaction between atomic ensembles and optical resonators : Classical description, Advances in Atomic, Molecular, and Optical Physics, vol.60, pp.201-237, 2011.

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, Quantum state transfer and entanglement distribution among distant nodes in a quantum network, Phys. Rev. Lett, vol.78, pp.3221-3224, 1997.

P. Solano, J. A. Grover, J. E. Hoffman, S. Ravets, K. Fredrik et al., Chapter seven -optical nanofibers : A new platform for quantum optics, Advances In Atomic, Molecular, and Optical Physics, vol.66, pp.439-505, 2017.

G. Hétet, L. Slodi?ka, M. Hennrich, and R. Blatt, Single atom as a mirror of an optical cavity, Phys. Rev. Lett, vol.107, p.133002, 2011.

G. Baptiste, Optical Nanofibers Interfacing Cold Atoms : A Tool for quantum Optics, 2016.

O. Benson, Assembly of hybrid photonic architectures from nanophotonic constituents, Nature, vol.480, issue.7376, pp.193-199, 2011.

L. Novotny and . Niek-van-hulst, Antennas for light, Nature Photonics, vol.5, issue.2, pp.83-90, 2011.

J. Q. Fam-le-kien, K. Liang, V. I. Hakuta, and . Balykin, Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber, Optics Communications, vol.242, issue.4, pp.445-455, 2004.

T. Van-mechelen and Z. Jacob, Universal spin-momentum locking of evanescent waves, Optica, vol.3, issue.2, pp.118-126, 2016.

P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss et al., Chiral quantum optics, Nature, vol.541, issue.7638, pp.473-480, 2017.

C. Sayrin, C. Junge, R. Mitsch, B. Albrecht, O. Danny et al., Nanophotonic optical isolator controlled by the internal state of cold atoms, Phys. Rev. X, vol.5, p.41036, 2015.

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide, Nature Communications, vol.5, 2014.

J. Volz, M. Scheucher, C. Junge, and A. Rauschenbeutel, Nonlinear ? phase shift for single fibre-guided photons interacting with a single resonatorenhanced atom, Nature Photonics, vol.8, p.965, 2014.

E. A. Bahaa, M. Saleh, and . Carl-teich, Wiley series in pure and applied optics, 2007.

M. Born, A. B. Wolf, P. C. Bhatia, D. Clemmow, A. R. Gabor et al., Principles of Optics. Cambridge University Press, 1999.

, Eugene Hecht. Optics. Pearson Education, 2017.

H. G. Berry, G. Gabrielse, and A. E. Livingston, Measurement of the stokes parameters of light, Appl. Opt, vol.16, issue.12, pp.3200-3205, 1977.

K. Okamoto, Fundamentals of Optical Waveguides, 2006.

A. Yariv and P. Yeh, Photonics : Optical Electronics in Modern Communications, 2007.

A. W. Snyder and J. D. Love, Optical Waveguide Theory, 1983.

D. Marcuse, Light Transmission Optics. Van Nostrand Reinhold Company, 1982.

D. Gloge, Weakly guiding fibers, Appl. Opt, vol.10, issue.10, pp.2252-2258, 1971.

A. W. Snyder and W. R. Young, Modes of optical waveguides, J. Opt. Soc. Am, vol.68, issue.3, pp.297-309, 1978.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins et al., Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber, Phys. Rev. Lett, vol.104, p.203603, 2010.

V. I. Fam-le-kien, K. Balykin, and . Hakuta, Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber, Phys. Rev. A, vol.70, p.63403, 2004.

M. Sumetsky, How thin can a microfiber be and still guide light ?, Opt. Lett, vol.31, issue.7, pp.870-872, 2006.

S. Fam-le-kien, V. I. Gupta, K. Balykin, and . Hakuta, Spontaneous emission of a cesium atom near a nanofiber : Efficient coupling of light to guided modes, Phys. Rev. A, vol.72, p.32509, 2005.

K. Y. Bliokh, F. J. Rodríguez-fortuño, F. Nori, and A. V. Zayats, Spin-orbit interactions of light, Nature Photonics, vol.9, p.796, 2015.

J. Francisco, G. Rodríguez-fortuño, P. Marino, . Ginzburg, O. Daniel et al., Near-field interference for the unidirectional excitation of electromagnetic guided modes, Science, vol.340, issue.6130, pp.328-330, 2013.

J. Petersen, J. Volz, and A. Rauschenbeutel, Chiral nanophotonic waveguide interface based on spin-orbit interaction of light, Science, vol.346, issue.6205, pp.67-71, 2014.

I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi et al., Deterministic photon-emitter coupling in chiral photonic circuits, Nature Nanotechnology, vol.10, pp.775-778, 2015.

M. Scheucher, A. Hilico, E. Will, J. Volz, and A. Rauschenbeutel, Quantum optical circulator controlled by a single chirally coupled atom, Science, vol.354, issue.6319, pp.1577-1580, 2016.

G. Sagué, E. Vetsch, W. Alt, D. Meschede, and A. Rauschenbeutel, Cold-atom physics using ultrathin optical fibers : Light-induced dipole forces and surface interactions, Phys. Rev. Lett, vol.99, p.163602, 2007.

R. Yalla, K. P. Nayak, and K. Hakuta, Fluorescence photon measurements from single quantum dots on an optical nanofiber, Opt. Express, vol.20, issue.3, pp.2932-2941, 2012.

P. Barber and S. Hill, Light Scattering by Particles : Computational Methods. WORLD SCIENTIFIC, 1990.

R. Mitsch, Interaction and manipulation of nanofiber-trapped atoms with spin-orbit coupled light, 2014.

H. C. Van-de-hulst, Light scattering by small particles, 1981.

P. Govind, Fiber-Optic Communication Systems, 2002.

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell et al., Ultrahigh transmission optical nanofibers, AIP Advances, vol.4, issue.6, p.67124, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02328860

W. Florian, Ultradünne Glasfasern als Werkzeug zur Kopplung von Licht und Materie, 2007.

R. Nagai and T. Aoki, Ultra-low-loss tapered optical fibers with minimal lengths, Opt. Express, vol.22, issue.23, pp.28427-28436, 2014.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix et al., Tapered single-mode fibres and devices. i. adiabaticity criteria, IEE Proceedings J -Optoelectronics, vol.138, issue.5, pp.343-354, 1991.

J. D. Love and W. M. Henry, Quantifying loss minimisation in single-mode fibre tapers, Electronics Letters, vol.22, issue.17, pp.912-914, 1986.

A. Stiebeiner, R. Garcia-fernandez, and A. Rauschenbeutel, Design and optimization of broadband tapered optical fibers with a nanofiber waist, Opt. Express, vol.18, issue.22, pp.22677-22685, 2010.

K. Karapetyan, Optical fibre toolbox, 2011.

K. Konstantin, Single optical microfibre-based modal interferometer, 2012.

J. E. Hoffman, S. Ravets, P. Solano, P. R. Kordell, L. A. Orozco et al., Pulling algorithm and simulation, 2014.

T. A. Birks and Y. W. Li, The shape of fiber tapers, Journal of Lightwave Technology, vol.10, issue.4, pp.432-438, 1992.

M. Manceau, S. Vezzoli, Q. Glorieux, F. Pisanello, E. Giacobino et al., Effect of charging on cdse/cds dot-in-rods singlephoton emission, Phys. Rev. B, vol.90, p.35311, 2014.

M. Manceau, single CdSe/CdS dot-in-rods fluorescence properties, 2014.
URL : https://hal.archives-ouvertes.fr/tel-01101939

S. Vezzoli, M. Manceau, G. Leménager, Q. Glorieux, E. Giacobino et al., Exciton fine structure of cdse/cds nanocrystals determined by polarization microscopy at room temperature, ACS Nano, vol.9, issue.8, pp.7992-8003, 2015.

Y. Yeh, B. Creran, and V. M. Rotello, Gold nanoparticles : preparation, properties, and applications in bionanotechnology, Nanoscale, vol.4, pp.1871-1880, 2012.

J. Pérez-juste, I. Pastoriza-santos, L. M. Liz-marzán, and P. Mulvaney, Gold nanorods : Synthesis, characterization and applications, 36th International Conference on Coordination Chemistry, vol.249, pp.1870-1901, 2004.

J. Cao, T. Sun, and K. T. Grattan, Gold nanorod-based localized surface plasmon resonance biosensors : A review, Sensors and Actuators B : Chemical, vol.195, pp.332-351, 2014.

V. I. , Nanocrystal quantum dots, 2010.

S. Ninomiya and S. Adachi, Optical properties of cubic and hexagonal cdse, Journal of Applied Physics, vol.78, issue.7, pp.4681-4689, 1995.

E. Hendry, M. Koeberg, F. Wang, H. Zhang, C. De-mello-donegá et al., Direct observation of electron-to-hole energy transfer in cdse quantum dots, Phys. Rev. Lett, vol.96, p.57408, 2006.

C. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, 1998.

L. Novotny and B. Hecht, Principles of Nano-Optics, 2012.

J. Zheng, C. Zhang, and R. M. Dickson, Highly fluorescent, water-soluble, size-tunable gold quantum dots, Phys. Rev. Lett, vol.93, p.77402, 2004.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S. Oh et al., Optical dielectric function of gold, Phys. Rev. B, vol.86, p.235147, 2012.

G. Mie, Beiträge zur optik trüber medien, speziell kolloidaler metallösungen, Annalen der Physik, vol.330, issue.3, pp.377-445, 1908.

R. Gans, Über die form ultramikroskopischer goldteilchen, Annalen der Physik, vol.342, issue.5, pp.881-900, 1912.

R. Loudon, The Quantum Theory of Light, 2000.

C. Cohen-tannoudji, J. Dupont-roc, and G. Grynberg, Photons et atomes. Introduction à l'électrodynamique quantique : Introduction à l'électrodynamique quantique, SAVOIRS ACTUELS. EDP Sciences, 2012.

E. M. Purcell, The question of correlation between photons in coherent light rays, Nature, vol.178, p.1449, 1956.

R. J. Glauber, The quantum theory of optical coherence, Phys. Rev, vol.130, pp.2529-2539, 1963.

R. Brown and R. Q. Twiss, Correlation between photons in two coherent beams of light, Nature, vol.177, pp.27-29, 1956.

F. Miftasani and P. Machnikowski, Photon-photon correlation statistics in the collective emission from ensembles of self-assembled quantum dots, Phys. Rev. B, vol.93, p.75311, 2016.

V. Loo, G. Blanquer, M. Joos, Q. Glorieux, V. Yannick-de-wilde et al., Imaging light scattered by a subwavelength nanofiber, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02024985

V. Krachmalnicoff, D. Cao, A. Cazé, E. Castanié, R. Pierrat et al., Towards a full characterization of a plasmonic nanostructure with a fluorescent near-field probe, Opt. Express, vol.21, issue.9, pp.11536-11545, 2013.

C. Mary, S. Frawley, V. G. Nic-chormaic, and . Minogin, The van der waals interaction of an atom with the convex surface of a nanocylinder*, Physica Scripta, vol.85, issue.5, p.58103, 2012.

D. Reitz and A. Rauschenbeutel, Nanofiber-based double-helix dipole trap for cold neutral atoms, Optical micro/nanofibers : Challenges and Opportunities, vol.285, pp.4705-4708, 2012.

T. R. Wolinski, Polarization in optical fibers, Acta Physica Polonica A, 1999.

R. Ulrich, S. C. Rashleigh, and W. Eickhoff, Bending-induced birefringence in singlemode fibers, Opt. Lett, vol.5, issue.6, pp.273-275, 1980.

R. Ulrich and A. Simon, Polarization optics of twisted single-mode fibers, Appl. Opt, vol.18, issue.13, pp.2241-2251, 1979.

J. N. Ross, The rotation of the polarization in low birefringence monomode optical fibres due to geometric effects, Optical and Quantum Electronics, vol.16, issue.5, pp.455-461, 1984.

E. Vetsch, S. T. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss et al., Nanofiber-based optical trapping of cold neutral atoms, IEEE Journal of Selected Topics in Quantum Electronics, vol.18, issue.6, pp.1763-1770, 2012.

M. Berek, Zur messung der doppelbrechung hauptsächlich mit hilfe des polarisationsmicroscops, Zbl. Miner. Geol. Paläont, 1913.

R. and C. Jones, A new calculus for the treatment of optical systems i. description and discussion of the calculus, J. Opt. Soc. Am, vol.31, issue.7, pp.488-493, 1941.

H. Hurwitz and R. Jones, A new calculus for the treatment of optical systemsii. proof of three general equivalence theorems, J. Opt. Soc. Am, vol.31, issue.7, pp.493-499, 1941.

M. Joos, C. Ding, V. Loo, G. Blanquer, E. Giacobino et al., Polarization control of linear dipole radiation using an optical nanofiber, Phys. Rev. Applied, vol.9, p.64035, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01949453

F. Mitri, Radiation force and torque of light-sheets, Journal of Optics, vol.19, issue.6, p.65403, 2017.

J. Leon-m-bellan, H. G. Kameoka, and . Craighead, Measurement of the young's moduli of individual polyethylene oxide and glass nanofibres, Nanotechnology, vol.16, issue.8, p.1095, 2005.

T. W. Tombler, C. Zhou, L. Alexseyev, J. Kong, H. Dai et al., Reversible electromechanical characteristics of carbon nanotubes underlocal-probe manipulation, Nature, vol.405, p.769, 2000.

S. Haroche and J. Michel-raimond, Exploring the Quantum : Atoms, Cavities, and Photons, 2006.

J. David and J. , Classical electrodynamics, 1975.

R. Yalla, F. Le-kien, M. Morinaga, and K. Hakuta, Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber, Phys. Rev. Lett, p.63602, 2012.