I. .. Équation,

M. .. Avril, Annexe 2 Représentations graphiques des linéarisations de Langmuir (a) et de Freundlich (b) appliquées aux échantillons de l'étang de Pigeard aux mois de mars

P. Impacts-des and . Henderson, PAC) 'eau (mauvaise odeur, mauvais goût, 2008.

. D'une-part-;-codd, elles modifient quantitativement et qualitativement la dynamique de la MO au sein des sont avérés (Chorus et Bartram, 1999.

, En effet, bien que l'abattement soit différent d'une espèce à l'autre, la MOA est globalement difficilement éliminée (20-50%). La MOA générée par les proliférations récurrentes de phytoplancton impacte durablement la composition de la MON (Leloup, 2013). L'élimination de la MON varie donc selon l'état de trophie de la ressource en eau. D'autres méthodes de traitement sont envisageables comme la filtration membranaire. Cependant, la présence de MO réfractaire engendre un colmatage accéléré des membranes. Il est alors impératif d'optimiser l'élimination de la MO afin d'éviter les dysfonctionnements ultérieurs et l'adsorption sur CAP peut présenter plusieurs avantages. Ce procédé d'adsorption permet, notamment, l'élimination simultanée de la matière organique et des microcystines, non éliminées par coagulation-floculation. Les objectifs de l'étude sont donc doubles : évaluer les conséquences des modifications saisonnières des caractéristiques de la MON induites par les phénomènes d'eutrophisation sur le procédé d'adsorption sur CAP et identifier les interactions de la MON dans l'élimination des MCs. Pour répondre à cette problématique, une étude de l'adsorption sur CAP a été menée pour estimer la capacité du procédé à éliminer d'une part la MON impactée par des proliférations et d'autre part les MCs. Pour cela, des essais ont été effectués en laboratoire sur des échantillons issus de cultures de M. aeruginosa (en phase stationnaire) cultivées à 15°C et 23°C. Des essais ont également été réalisés sur des échantillons naturels prélevés sur une ressource eutrophe, l'étang de Pigeard. Enfin, des essais ont été réalisés sur de l'eau synthétique ayant les caractéristiques d'une eau de l'ex-région Limousin et dopée avec une, Dans le procédé de potabilisation de l'eau, la coagulation-floculation est la principale étape pour l'élimination des cellules phytoplanctoniques et de la MO. Cependant, la littérature a montré que ce procédé ne permettait pas d'éliminer la totalité de la matière organique, d'autant plus si la ressource est soumise aux développements algaux, 2013.

, Des tests d'adsorption sur CAP sont conduits sur ces échantillons afin d'évaluer l'efficacité d'élimination de la MO d'une eau hyper-eutrophe et de s'assurer du respect de la réglementation en sortie de station. La Figure 130-a,b présente le pourcentage d'élimination du COD en fonction du temps de contact

C. L'élimination-du, M. Grande-quantité-de, and . Hpi, Les COD résiduels des échantillons dopés sont de 6,3 mg C.L -1 et 5,7 mg C.L -1 , bien supérieurs à la règlementation en sortie de station. L'élimination de l'absorbance UV254 n'est pas impactée par l'apport de MOA. La MO hydrophobe et aromatique, initialement présente dans les échantillons

, Conclusions du chapitre, vol.3

M. La and . Est, difficilement éliminée par adsorption sur CAP (30 -39% au temps d'équilibre), à cause de la part importante de composés hydrophiles, très peu adsorbés (14 -16%). Pour une culture pure de laboratoire, la fraction HPO présente un meilleur abattement (54 -70%) que la fraction TPH, pp.16-25

, L'abattement obtenu pour la culture à 23°C de M. aeruginosa est supérieur à celui de la culture à 15°C. En effet, la culture à 23°C présente une proportion de HPO et TPH (45%) plus élevée que celle à 15°C (34%), expliquant ces meilleures performances

L. , échantillon du milieu naturel est largement impactée par les phénomènes d'eutrophisation, et ce quelle que soit la saison. En effet, au temps d'équilibre, l'adsorption obtenue sur l'étang eutrophe de Pigeard est supérieur en fin d'hiver -mars -(49%) comparativement à l'échantillon du printemps -mai -(33%). Cependant, les comportements des fractions diffèrent. Alors que pour la MOA, la fraction HPO présente les meilleurs pourcentages d'élimination

. D'une-manière-globale,

, Le CAP présente un important volume de mésopores permettant alors une très grande réactivité visà-vis de la MC-LR. Son élimination est cependant impactée par la présence de MO

E. Adewi, K. M. Badamelli, and V. Dubreuil, Evolution des saisons des pluies potentiellement utiles au Togo de, 1950.

G. R. Aiken, D. M. Mcknight, K. A. Thorn, and E. M. Thurman, Isolation of hydrophilic organic acids from water using nonionic macroporous resins, Org. Geochem, vol.18, pp.567-573, 1992.

D. M. Anderson, P. M. Glibert, and J. M. Burkholder, Harmful algal blooms and eutrophication: nutrient sources, composition and consequences, Estuaries, vol.25, pp.704-726, 2002.

A. Andrade-eiroa, M. Canle, V. Leroy-cancellieri, and V. Cerdà, Solid-Phase Extraction of Organic Compounds: A Critical Review. Part Ii, Trends in Analytical Chemistry, vol.80, pp.655-67, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01242987

M. Antoine, M. Marsaudon, and Y. Brizard, Contribution au suivi et à l'analyse de cyanobactéries sur le bassin versant de la Glane, 2009.

R. Aranda-rodriguez, C. Kubwabo, and F. M. Benoit, Extraction of 15 Microcystins and Nodularin Using Immunoaffinity Columns, Toxicon, vol.42, issue.6, pp.587-99, 2003.

E. Arunbabu, P. S.-ravichandran, and . Sreeja, Sedimentation and internal phosphorus load in Krishnagiri reservoir, India. Lakes & Reservoirs: Research & Management, vol.19, issue.3, pp.161-73, 2014.

. Ars-nouvelle-aquitaine, Qualité des eaux de baignade en Haute-Vienne, saison touristique, 2017.

S. Aslan and I. K. Kapdan, Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae, Ecological Engineering, vol.28, issue.1, pp.64-70, 2006.

D. L. Assougnon, H. Agadjihouede, K. Kokou, and A. P. Laleye, Caractérisation physico-chimique et diversité du peuplement phytoplanctonique des mares au sud de la réserve de faune de Togodo (sud-Togo), International Journal of Biological and Chemical Sciences, vol.11, issue.4, pp.1920-1936, 2017.

K. Atanle, L. M. Bawa, K. Kokou, G. Djaneye-boundjou, and M. T. Edorh, Distribution saisonnière du phytoplancton en foncti on des caractéristiques physico-chimiques du lac de Zowla, Journal of Applied Biosciences, vol.64, pp.4847-485, 2013.

C. Baccot, Etude du potentiel de valorisation énergétique et matière de composés organiques extraits de lixiviats de déchets ménagers, 2016.

A. Bajracharya, Y. L. Liu, and J. J. Lenhart, The influence of natural organic matter on the adsorption of microcystin-LR by powdered activated carbon, Environemental Science Water Research and Technology, 2018.

G. Barroin, Face à l'eutrophisation, seul le phosphore compte. Perspectives agricoles, p.336, 2007.

C. Bates, Z. W. Kundzewicz, S. Wu, and J. P. Palutikof, Climate Change and Water. technical Paper of the i ntergovernmental Panel on Climate Change (IPCC), 2008.

A. Beaufort, Température des cours d'eau : analyse des données et modélisation : application au bassin de la Loire, Laboratoire GéHCO -GéoHydrosystèmes Continentaux -EA, vol.6293, 2015.

A. W. Beusen, A. F. Bouwman, L. P. Van-beek, J. §. Logollon, and J. J. Middelburg, Global riverine N and P transport to ocean increased during the twentieth century despite increased retention along the aquatic continuum, Biogeosciences Discuss, vol.12, pp.20123-20148, 2015.

M. Bormans, B. Mar?álek, and D. Jan?ula, Controlling internal phosphorus loading in lakes by physical methods to reduce cyanobacterial blooms: a review, Aquatic Ecology, vol.50, issue.3, pp.407-429, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01371827

I. Boumnich, A. Dauta, J. Devaux, and J. C. Romagoux, Influence de la lumière et de la température sur la croissance de quatre espèces d'algues d'un lac eutrophe, Annls Limnol, vol.26, pp.3-10, 1990.

G. L. Boyer, A. H. Gillam, and C. Et-trick, Ion chelation and uptake, The cyanobacteria, pp.415-436, 1987.

A. Brias, J. D. Mathias, and G. Deffuant, Inter-annual rainfall variability may foster lake regime shifts: An example from Lake Bourget in France, Ecological modelling, vol.389, pp.11-18, 2018.

J. Briand, S. Jacquet, C. Bernard, and J. Humbert, Healt h hazards for terrestrial vertebrates from toxic cyanobacteria in surface water ecosystems, Vet. Res, vol.34, pp.361-377, 2003.

W. S. Broecker and T. H. Peng, Tracers in the sea, pp.1-690, 1982.

M. Campinas and M. J. Rosa, The ionic strength effect on microcystin and natural organic matter surrogate adsorption onto PAC, Journal of Colloid and Interface Science, vol.299, pp.520-529, 2006.

M. Campinas and M. J. Rosa, Removal of microcystins by PAC/UF, Sep Purif Technology, vol.71, pp.114-120, 2010.

C. C. Carey, B. W. Ibelings, E. P. Hoffmann, D. P. Hamilton, and J. D. Brookes, Eco -p hysiological adaptations that favour freshwater cyanobacteria in a changing climate, Water Res, vol.46, pp.1394-1407, 2012.

S. Carpenter, . Chair, N. F. Caraco, D. L. Correll, R. W. Howarth et al., Nonpoint pollution of surface waters with phosphorus and nitrogen, Issues in Ecology, p.3, 1998.

J. Chen, B. Gu, E. J. Le-boeuf, H. Pan, and S. Dai, Spectroscopic characterization of the structural and functional properties of natural organic matter fractions, Chemosphere, vol.48, issue.1, pp.59-68, 2002.

D. Chapman, Water Quality Assessments -A Guide to Use of Biota, Sediments and Water in Environmental Monitoring -Second Edition. F & FN Spon, vol.651, 1996.

W. P. Cheng and F. Chi, Influence of eutrophication on the coagulation efficiency in reservoir water, Chemosphere, vol.53, pp.773-778, 2003.

M. V. Cheshire, J. D. Russel, A. R. Fraser, J. M. Bracewell, G. W. Robertson et al., Nature of soil carbohydrate and its association with soil humic substances, J. Soil Sci, vol.43, issue.2, pp.359-373, 1992.

Y. Chin, G. Aiken, and E. O'loughlin, Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances, Environ. Sci. Technol, vol.28, pp.1853-1858, 1994.

I. Chorus, Current approaches to Cyanotoxin risk assessment, risk management and regulations in different countries, Federal environment Agency, 2012.

I. Chorus and J. Bartram, Toxic Cyanobacteria in Water: A guide to their public health consequences, monitoring and management Determination of Organic Compounds in Natural and Treated Waters, 1999.

A. T. Chow, F. Guo, S. Gao, and R. S. Breuer, Size and XAD fractionations of trihalomethane precursors from soils, Chemosphere, vol.62, pp.1636-1646, 2006.

C. W. Chow, M. Drikas, J. House, M. D. Burch, and M. A. Velzeboer, The impact of conventional water treatment processes on cells of the cyanobacterium Mircocystis aeruginosa, Wat. Res, vol.33, pp.3253-3262, 1999.

C. W. Chow, J. House, R. M. Velzeboer, M. Drikas, M. D. Burch et al., The effect of ferric chloride flocculation on cyanobacterial cells, Water Res, vol.32, pp.808-814, 1998.

C. W. Chow, S. Panglish, J. House, M. Drikas, M. D. Burch et al., A study of membrane filtration for the removal of cyanobacterial cells, Journal of Water Supply: Research and Technology -AQUA, vol.46, issue.6, pp.324-334, 1997.

J. M. Clark, S. H. Bottrell, C. D. Evans, D. T. Monteith, R. Bartlett et al., The importance of the relationship between scale and process in understanding long-term DOC dynamics, Science of the Total Environment, vol.408, pp.2768-2775, 2010.

B. Clement-larosì, Etude de la croissance de Chlorella vulgaris en photobioréacteur batch et continu, en présence de concentration elevées de CO2, 2012.

L. Cong, B. Huang, Q. Chen, B. Lu, J. Zhang et al., Determination of trace amount of microcystins in water samples using liquid chromatography coupled with triple quadrupole mass spectrometry, Analytica Chimica Acta, vol.569, issue.1-2, pp.157-168, 2006.

G. A. Codd, L. F. Morrison, and J. S. Metcalf, Cyanobacterial Toxins: Risk Management for Health Protection, Toxicology and Applied Pharmacology, vol.203, issue.3, pp.264-72, 2005.

D. Cook, G. Newcombe, and P. Sztajnbok, The application of powdered activated carbon for MIB and geosmin removal: predicting PAC doses in four raw waters, Wat. Res, vol.35, issue.5, pp.1325-1333, 2001.

D. Cook and G. Newcombe, Effect of natural organic matter concentration and character on the adsoprtion of microcystin analogues onto PAC. American Water Works Association-Water Quality Technology Science and Technology Conference, 2002.

D. Cook and G. Newcombe, b). Removal of microcystin variants with powdered activated carbon, Water Science and Technology: Water Supply, vol.2, pp.201-207, 2002.
URL : https://hal.archives-ouvertes.fr/in2p3-00945236

D. Cook and G. Newcombe, Comparison and modeling of the adsorption of two microcystin analogues onto powdered activated carbon, Environmental Technology, vol.29, issue.5, pp.525-534, 2008.

L. Coudert, D. Rolland, J. Blais, I. Laurion, and G. Mercier, État De L'Art En Matière D'Analyse Des Cyanobactéries Et Des Cyanotoxines, 2014.

J. Cracraft and M. J. Donoghue, Assembling the Tree of Life: Where We Stand at the Beginning of the 21st Century, pp.553-561, 2004.

J. P. Croué, Isolation of humic and non-humic NOM fractions: Structural characterizations, Environmental Monitoring and Assessment, vol.92, issue.1-3, pp.193-207, 2004.

J. Croué, B. Martin, and A. Deguin, Isolation and characterization of dissolved hydrophobic and hydrophi lic organic substances of a water reservoir, Presented at the Proceedings of Workshop on NOM in Drinking Water, pp.43-51, 1993.

T. W. Davis, D. Berry, G. L. Boyer, and C. J. Gobler, The Effects of Temperature and Nutrients on the Growth and Dynamics of Toxic and Non-Toxic Strains of Microcystis during Cyanobacteria Blooms, Harmful algae, vol.8, pp.715-725, 2009.

C. P. Deblois and P. Juneau, Relationship between photosynthetic processes and microcystin in Microcystis aeruginosa grown under different photon irradiances, Harmful Algae, vol.9, pp.18-24, 2010.

A. M. Devasurendra, D. S. Palagama, A. Rohanifar, D. Isailovic, J. R. Kirchhoff et al., Solid-Phase Extraction, Quantification, and Selective Determination of Microcystins in Water with a Gold-Polypyrrole Nanocomposite Sorbent Material, Journal of Chromatography A, vol.1560, pp.1-9, 2018.

S. Dgal, , 2018.

I. Delpla, Facteurs climatiques et dégradation de la qualité physico-chimique des eaux de surface destinées à la consommation humaine en zone agricole, 2011.

R. J. Diaz, J. Nestlerode, and M. L. Diaz, A global perspec-tive on the effects of eutrophication and hypoxia on aquatic biota, Proceedings of the 7th International Symposium on Fish Physiology, Toxicology, and Water Quality, 2003.

M. F. Dignac, Caractérisation chimique de la matière organique au cours du traitement des eaux usées par boues activées. Centre International de recherche sur l'eau et l'environnement, thèse de doctorat, vol.303, 1998.

E. Dittmann, B. A. Neilan, E. M. Von-döhren, H. Börner, and T. , Insertional mutagenesis of a peptide synthetase gene that is responsible for hepatotoxin production in the cyanobacterium Microcystis aeruginosa PCC 7806, Mol Microbiol, vol.26, pp.779-787, 1997.

E. Dittmann and C. Wiegand, Cyanobacterial toxins-occurrence, biosynthesis and impact on human affairs, Mol Nutr Food Res, vol.50, pp.7-17, 2006.

D. B. Donald, B. R. Parker, J. M. Davies, and P. R. Leavitt, Nutrient sequestration in the lake Winnipeg watershed, Journal of Great Lakes Research, vol.41, issue.2, pp.630-672, 2015.

C. Donati, M. Drikas, R. Hayes, and G. Newcombe, Microcystin-LR adsorption by powdered activated carbon, Water Res, vol.28, pp.1735-1777, 1994.

M. Drikas, C. W. Chow, J. House, and M. D. Burch, Using coagulation, and settling to remove toxic cyanobacteria, J. Am. Water Works Assoc, vol.93, pp.100-111, 2001.

Z. Dubinsky and N. Stambler, Photoacclimation processes in phytoplankton: mechanisms, consequences, and applications, Aquatic Microbial Ecology. Presented at the International Workshop of the Group for Aquatic Primary Productivity (GAP), Inter -Research, pp.163-176, 2009.

N. Dumoutier, I. Baudin, C. Anselme, and J. Manem, Elimination de la matière organique biodégradable par ultrafiltration, pp.177-188, 2005.

F. Durand-dastès, A propos de la géographie de l'eau : temporalités et échelles spatiales.L'Information géographique, vol.69, pp.69-84, 2005.

F. E-eau, L'état des eaux de surface et des eaux souterraines. Les synthèses, p.12, 2015.

J. K. Edzwald, Coagulation in drinking water treatment: Particles, organics and coagulants, Water Sci. Technol, vol.27, pp.21-35, 1993.

, European waters -assessment of status and pressures, 2012.

P. Ekholm, N:P ratios estimating nutrient limitation in aquatic ecosystems, 2008.

V. I. Esteves and A. C. Duarte, Thermogravimetric properties of aquatic humic substances, Mar. Chem, vol.63, pp.225-233, 1999.

C. D. Evans, D. T. Monteith, and D. M. Cooper, Long-term increases in surface water dissolved organic carbon: Observations, possible causes and environmental impacts, Environmental pollution, vol.137, pp.55-71, 2005.

I. R. Falconer, An Overview of Problems Caused by Toxic Blue -Green Algae Cyanobacteria in Drinking and Recreational Water, Environmental Toxicology, vol.14, pp.5-12, 1999.

I. R. Falconer, M. T. Runnegar, T. Buckley, Y. L. Huyn, and P. Bradshaw, Using activated carbon to remove toxicity from drinking water containing cyanobacterial blooms, Journal of the American Water Works Association, vol.81, pp.102-105, 1989.

J. Fang, X. Yang, J. Ma, C. Shang, and Q. Zhao, Characterization of algal organic matter and formation of DBPs from chlor(am)ination, Water Res, vol.44, pp.5897-5906, 2010.

. Fao, Base de données AQUASTAT, 2006.

J. J. Farnworth, Comparisons of the sorption from solution of a humic acid by Supelite DAX-8 and by XAD-8 resins, IHSS Newsl, vol.13, pp.8-9, 1995.

J. Fastner, G. A. Cood, J. S. Metcalf, P. Woitke, C. Wiedner et al., An international intercomparison exercise for the determination of purified microcystin-LR and microcystins in cyanobacterial field material, Analytical and Bioanalytical Chemistry, vol.374, pp.437-444, 2002.

J. K. Fawell, J. Hart, H. A. James, and W. Parr, Blue-green algae and their toxins-analysis, toxicity, treatment and environmental control, Water Supply, vol.11, issue.3, pp.109-121, 1993.

D. A. Fearing, E. H. Goslan, J. Banks, D. Wilson, P. Hillis et al., Staged coagulation for treatment of refractory organics, J. Environ. Eng, vol.130, pp.975-982, 2004.

L. R. Ferber, S. N. Levine, A. Lini, and G. P. Livingston, Do cyanobacteria dominate in eutrophic lake because they fix atmospheric nitrogen?, Freshwater Biology, vol.49, pp.690-708, 2004.

M. Filella and J. C. Rodriguez-murillo, Long-term Trends of Organic Carbon Concentrations in Freshwaters: Strengths and Weaknesses of Existing Evidence, vol.6, pp.1360-1418, 2014.

J. Fölster, R. K. Johnson, M. N. Futter, and A. Wilander, The Swedish monitoring of surface waters: 50 years of adaptive monitoring, AMBIO, vol.43, pp.3-18, 2014.

G. ;. Francis, M. L. Bender, N. A. Luedtke, G. R. Heath, and T. Devries, The marine phosphorus cycle, American Journal of Science, vol.282, issue.4, pp.474-511, 1878.

G. Garon-lardiere and S. , Etude structurale des polysaccharides pariétaux de l'algue rouge Asparagopsis armata (Bonnemaisoniales), 2004.

P. Geada, R. N. Pereira, V. Vasconcelos, A. A. Vicente, and B. D. Fernandes, Assessment of synergistic interactions between environmental factors on Microcystis aeruginosa growth and microcystin production, Algal Research, vol.27, pp.235-243, 2017.

M. Gehringer and N. Wannicke, Climate change and regulation of hepatotoxin production in Cyanobacteria, FEMS Microbial Ecol, vol.88, pp.1-25, 2014.

. Giec, Contribution du Groupe de travail I au cinquième Rapport d'évaluation du Groupes d'experts intergouvernemental sur l'évolution du climat, Changements climatiques 2013 : les éléments scientifiques, 2013.

J. Allen, A. Boschung, Y. Nauels, V. Xia, P. M. Bex et al.,

, Etats-Unis d'Amérique

H. L. Golterman, The Chemistry of Phosphate and Nitrogen Compounds in Sediments, 2004.

P. Gosse and F. Hendricks, Changement climatique: constat et prévision d'évolution des températures des rivières, 2009.

J. L. Graham, K. A. Loftin, M. T. Meyer, and A. C. Ziegler, Cyanotoxin mixtures and taste -and -odor compounds in cyanobacterial blooms from the midwestern united states, Environ. Sci. Technol, vol.44, pp.7361-7368, 2010.

D. Graham, H. Kish, L. A. Lawton, and P. K. Roberston, The degradation of microcystin-LR using doped visible light absorbing photocatalysts, Chemosphere, vol.78, pp.1182-1185, 2010.

S. R. Gray, C. B. Ritchie, T. Tran, and B. A. Bolto, Effect of NOM characteristics and membrane type on microfiltration performance, Water Research, vol.41, pp.3833-3841, 2007.

C. G. Griffin, J. C. Finlay, P. L. Brezonik, L. Olmanson, and R. M. Hozalski, Limitation as using CDOM as a proxy for DOC in temperate lakes, Water research, vol.144, pp.719-727, 2018.

M. D. Guiry, How Many Species of Algae Are There?, J. Phycol, vol.48, pp.1057-1063, 2012.

S. Hadjoudja, C. Vignoles, V. Deluchat, J. O. Lenain, A. Le-jeune et al., Short term copper toxicity on Microcystis aeruginosa and Chlorella vulgaris using flow cytometry, Aquatic Toxicology, vol.94, pp.255-264, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00653617

M. J. Harke, M. M. Steffen, C. J. Gobler, T. G. Otten, S. W. Wilhelm et al., A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp, Harmful Algae, vol.54, pp.4-20, 2016.

H. Canada, Les toxines cyanobactériennes dans l'eau potable: document de consultation publique, 2016.

X. He, M. Pelaez, J. A. Westrick, K. E. Shea, A. Hiskia et al., Efficient removal of microcystin-LR by UV-C/H2O2 in syntheticand natural water samples, Water Research, vol.46, pp.1501-1510, 2012.

R. D. Hedger, N. R. Olsen, D. G. George, T. J. Malthus, and P. M. Atkinson, Modelling spatial distribution of Ceratium hirundnella and Microcystis. in a small productive British lake, Hydrobiologia, vol.528, pp.217-227, 2004.

R. K. Henderson, A. Baker, S. A. Parsons, and B. Jefferson, Characterisation of al gogenic organic matter extracted from cyanobacteria, green algae and diatoms, Water Res, vol.42, pp.3435-3445, 2008.

R. K. Henderson, S. A. Parsons, and B. Jefferson, The impact of differing cell and algogenic organic matter (AOM) characteristics on the coagulation and flotation of algae, Water Res, vol.44, pp.3617-3624, 2010.

N. Her, G. Amy, H. Park, and M. Song, Characterizing algogenic orga nic matter (AOM) and evaluating associated NF membrane fouling, Water Res, vol.38, pp.1427-1438, 2004.

K. Himberg, A. M. Keijola, L. Hiisvirta, H. Pyysalo, and K. Sivonen, The effect of water treatment processes on the removal of hepatotoxins from Microcystis and Oscillatoria cyanobacteria: a laboratory study, Water Res, vol.23, pp.979-84, 1989.

S. Hiradate, T. Nakadai, H. Shindo, and T. Yoneyama, Carbon source of humic substances in some Japanese volcanic ash soils determined by carbon stable isotopic ratio, vol.119, pp.133-141, 2004.

P. Hnatukova, I. Kopecka, and M. Pivokonsky, Adsorption of cellular peptides of Microcystis aeruginosa and two herbicides onto activated carbon: Effect of surface charge and interactions, Water Research, vol.45, pp.3359-3368, 2011.

L. Ho, G. Onstad, V. Gunter, U. Rinck-pfeiffer, S. Craig et al., Differences in the chlorine reactivity of four microcystin analogues, Water Research, vol.40, issue.6, pp.1200-1209, 2006.

L. Ho, P. Lambling, H. Bustamante, P. Duker, and G. Newcombe, Application of powdered acti-vated carbon for the adsorption of cylindrospermopsin and microcystin toxins from drinking water supplies, Water Res, vol.45, pp.2954-64, 2011.

S. J. Hoeger, B. C. Hitzfeld, and D. R. Diestrich, Occurrence and elimination of cyanobacterial toxins in drinking water treatment plants, Toxicol. Appl. Pharm, vol.203, pp.31-242, 2005.

M. Honti, V. Istvánovics, and A. Osztoics, Stability and change of phytoplankton communities in a highly dynamic environment ? the case oflarge, shallow Lake Balaton (Hungary), Hydrobiologia, vol.581, pp.225-240, 2007.

W. J. Huang, B. L. Cheng, and Y. L. Cheng, Adsorption of microcystin-LR by three types of activated carbon, Journal of Hazardous Materials, vol.141, pp.115-122, 2007.

F. Huisman, J. Sharples, J. M. Stroom, P. M. Visser, W. E. Kardinaal et al., Changes in turbulent mixing shift competition for light between phytoplankton species, Ecology, vol.85, issue.11, pp.2960-2970, 2004.

A. Imai, T. Fukushima, K. Matsushige, and Y. Hwan-kim, Fractionation and characterization of dissolved organic matter in a shallow eutrophic lake, its inflowing rivers, and other organic matter sources, Water Res, vol.35, pp.4019-4028, 2001.

, Water Quality -Determination of Microcystins -Method Using Solid Phase Extraction (SPE) and High Performance Liquid Chromatography (HPLC) with Ultraviolet (UV) Detection, ISO, 2005.

L. Issifou, K. Atanlé, R. Radji, H. L. Lawson, K. Adjonou et al., Checklist of tropical algae of Togo in the Guinean Gulf of West, Africa. Academic Journals, vol.9, issue.22, pp.932-958, 2014.

C. Jacquin, B. Teychene, L. Lemee, G. Lesage, and M. Heran, Characteristics and fouling behaviors of Dissolved Organic Matter fractions in a full-scale submerged membrane bioreactor for municipal wastewater treatment, Biochemical Engineering Journal, vol.132, pp.169-181, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01822506

H. S. Jensen and F. O. Andersen, Importance of temperature, nitrate, and pH for phosphate release from aerobic sediments of four shallow, eutrophic lakes, Limnology & Oceanography, vol.37, issue.3, pp.577-89, 1992.

K. D. Jöhnk, J. Huisman, J. Sharples, B. Sommeijer, P. M. Visser et al., Summer heatwaves promote blooms of harmful cyanobacteria, Global change biology, vol.14, pp.495-512, 2008.

A. Jouraiphy, S. Amir, P. Winterton, M. El-gharous, J. Revel et al., Structural study of the fulvic fraction during composting of activated sludge-plant matter: Elemental analysis, FTIR and 13C NMR, Bioresour. Technol, vol.99, pp.1066-1072, 2008.

M. Kaebernick and B. Neilan, Ecological et molecular investigations of cyanotoxin production, FEMS Microbiology Ecology, vol.35, pp.1-9, 2001.

W. E. Kardinaal, I. Janse, M. Kamst-van-agterveld, M. Meima, J. Snoek et al., Microcystis genotype succession in relation to microcystin concentrations in freshwater laeilankes, Aquatic microbial ecology, vol.48, issue.1, pp.1-12, 2007.

T. Kaloudis, S. K. Zervou, K. Tsimeli, T. M. Triantis, T. Fotiou et al., Determination of Microcystins and Nodularin (Cyanobacterial Toxins) in Water by LC-MS/MS. Monitoring of Lake Marathonas, a Water Reservoir of, Journal of Hazardous Materials, vol.263, pp.105-115, 2013.

M. H. Khan, D. H. Ha, and J. Jung, Optimizing the industrial wastewater pretreatment by activated carbon and coagulation: Effects of hydrophobicity/hydrophilicity and molecular weights of dissolved organics, Journal of Environmental Science and Health -Part A Toxic/Hazardous Substances and Environmental Engineering, vol.48, issue.5, pp.534-542, 2013.

J. Kim, B. P. Lingaraju, R. Rheaume, J. Lee, and K. F. Siddiqui, Removal of ammonia from wastewater effluent by Chlorella vulgaris, Tsinghua Sci. Technol, vol.15, pp.391-396, 2010.

V. I. Kolmakov, Methods for prevention of mass development of the cyanobacterium Microcystis aeruginosa Kutz emend. Elenk. in aquatic ecosystems, Mikrobiologiia, vol.75, issue.2, pp.149-153, 2006.

S. Kosten, V. L. Huszar, E. Be´cares, L. S. Costa, E. Van-donk et al., Warmer climates boost cyanobacterial dominance in shallow lakes, Global Change Biology, vol.18, pp.118-126, 2012.

J. Kotai, Instructions for preparation of modified nutrient solution Z8 for algae. Norwegian Institute for Water Research, publication B-11/69, Blindern, vol.5, p.pp, 1972.

M. S. Kumar, Z. H. Miao, and S. K. Wyatt, Influence of nutrient loads, feeding frequency and inoculum source on growth of Chlorella vulgaris in digested piggery effluent culture medium, Bioresource Technology, vol.101, issue.15, pp.6012-6018, 2010.

J. Labanowski, Matière organique naturelle et anthropique : vers une meilleure compréhension de sa réactivité et de sa caractérisation, 2004.

J. Labanowski and G. Feuillade, Combination of biodegradable organic matter quantification and XADfractionation as effective working parameter for the study of biodegradability in environmental and anthropic samples, Chemosphere, vol.74, issue.4, pp.605-611, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00653621

J. Labanowski and G. Feuillade, Dissolved organic matter: Precautions for the study of hydrophilic substances using XAD resins, Water Research, vol.45, issue.1, pp.315-327, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00654625

Y. Lacoste, L'eau dans le monde, les batailles pour la vie . Larousse, vol.128, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00981386

T. Lagier, G. Feuillade, and G. Matejka, Interactions between copper and organic macromolecules: Determination of conditional complexation constants, Agronomie, vol.20, pp.537-546, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00886067

T. W. Lambert, C. F. Holmes, and S. E. Hrudey, Adsorption of Microcystin-LR by activated carbon and removal in full scale water treatment, Wat. Res, vol.30, issue.6, pp.1411-1422, 1996.

L. A. Lawton and P. K. Roberston, Physico-chemical treatment methods for the removal of microcystins (cyanobacterial hepatotoxins) from potable waters, Chemical Society Reviews, p.4, 1999.

L. A. Lawton, P. K. Robertson, J. P. Cornish, and M. Jaspars, Detoxification of Microcystins (Cyanobacterial Hepatotoxins) Using TiO2 Photocatalytic Oxidation, Environ. Sci. Technol, 1999.

J. A. Leenheer, Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and wastewaters, Environ. Sci. Technol, vol.15, pp.578-587, 1981.

J. A. Leenheer and J. Croué, Characterizing aquatic dissolved organic matter, Environ. Sci. Technol, p.37, 2003.

M. Leloup, Evaluation de l'impact des blooms algaux et d'efflorescences bactériennes sur les caractéristiques de la matière organique des eaux naturelles, 2013.

M. Leloup, R. Nicolau, V. Pallier, C. Yéprémian, and G. Feuillade-cathalifaud, Organic matter produced by algae and cyanobacteria : quantitative anf qualitative characterization, Journal of environmental sciences, vol.25, issue.6, pp.1089-1097, 2013.

M. Leitão and A. Couté, Guide pratique des cyanobactéries planctoniques du Grand Ouest de la France. Manuel pour les prélèvements et la reconnaissance à l'usage des gestionnaires des eaux de surface: caractéristiques, échantillonnage, identification, 2005.

Y. Levi, M. Harvey, and P. Cervantès, Risques sanitaires liés à La Présence de Cyanobactéries dans l'eau, 2006.

L. Li, N. Gao, Y. Deng, J. Yao, and K. Zhang, Characterization of intracellular & extracellular algae organic matters (AOM) of Microcystic aeruginosa and formation of AOM-associated disinfection byproducts and odor & taste compounds, Water Res, vol.46, pp.1233-1240, 2012.

K. Li, F. Qu, H. Liang, S. Shao, Z. S. Han et al., Performance of mesoporous adsorbent resin and powdered activated carbon in mitigating ultrafiltration membrane fouling caused by algal extracellular organic matter, Desalination, vol.336, pp.129-137, 2014.

J. Li, L. Parkefelt, K. M. Persson, and H. Pekar, Improving cyanobacteria and cyanotoxin monitoring in surface waters for drinking water supply, Journal of Water Security, p.3, 2017.

X. Liu, X. Lu, and Y. Chen, The effects of temperature and nutrient ratios onMicrocystis blooms in Lake Taihu, China: An 11-year investigation, Harmful Algae, vol.10, pp.337-343, 2011.

X. Lu, Y. Lu, D. Chen, C. Su, S. Song et al., Climate change induced eutrophication ofcold-water lake in an ecologically fragilenature reserve, Journal of environmental sciences, vol.75, pp.359-369, 2019.

M. Lukac and R. Aegerter, Influence of trace metals on growth and toxin production of Microcystis aeruginosa, Toxicon, vol.31, pp.293-305, 1993.

M. Lürling, F. Eshetu, E. J. Faassen, S. Kosten, and V. L. Huszar, Comparison of cyanobacterial and green algal growth rates at different temperatures, Freshwater Biology, vol.58, issue.3, pp.552-559, 2013.

M. ,

G. S. Mahmoud, T. H. Hassan, R. Othman, and A. Messikh, Simulation of absorption spectrum of photosynthetic pigments of chlorella vulgaris B algae, Malaysian Journal of Mathematical Sciences, vol.10, pp.123-130, 2016.

R. L. Malcolm and P. Maccarthy, Quantitative evaluation of XAD-8 and XAD-4 resins used in tandem for removing organic solutes from water, Environ. Int, vol.18, pp.597-607, 1992.

G. Marsily and . De, Académie des Sciences. Les eaux continentales . Rapport sur la Science et la Technologie n° 25, vol.328, 2006.

A. Maurel, Dessalement de l'eau de mer et des eaux saumâtres et autres procédés non conventionnels d'approvisionnement en eau douce. 2ème édition. Paris : TEC & DOC. 286 p. of surface water natural organic matter in raw filtered water samples, XAD, and reverse osmosis isolates, Water Res, vol.36, pp.2357-2371, 2006.

S. Mcdonald, A. G. Bishop, P. D. Prenzler, and K. Robards, Analytical chemistry of freshwater humic substances, Anal. Chim. Acta, vol.527, pp.105-124, 2004.

D. M. Mcknight, E. W. Boyer, P. K. Westerhoff, P. T. Doran, T. Kulbe et al., Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity, Limnol. Ocean, vol.46, pp.38-48, 2001.

F. Mercier, V. Moulin, M. J. Guittet, N. Barré, M. Gautier-soyer et al., Applications of new surface analysis techniques (NMA and XPS) to humic substances, Org. Geochem, vol.33, pp.247-255, 2002.

S. Merel, D. Walker, R. Chicana, S. Snyder, E. Baurès et al., a). State of knowledge and concerns on cyanobacterial blooms and cyanotoxins, Environment International, vol.59, pp.303-327, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01721597

S. Merel, M. Villarín, K. Chung, and S. Snyder, b). Spatial and thematic distribution of research on cyanotoxins, Toxicon, vol.76, pp.118-131, 2013.

J. Meriluoto and L. Spoof, Cyanobacterial Monitoring and Cyanotoxin Analysis, Acta Academiae Aboensis. Ser. B, Mathematica etphysica, vol.65, issue.1, 2005.

J. Meriluoto and L. Spoof, Cyanotoxins: sampling, sample processing and toxin uptake, Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs, pp.483-499, 2008.

J. S. Metcalf and G. A. Codd, Microwave oven and boiling waterbath extraction of hepatotoxins from cyanobacterial cells, FEMS Microbiology letters, vol.184, pp.241-246, 2000.

D. T. Monteith, J. L. Stoddard, C. D. Evans, H. A. De-wit, M. Forsius et al., Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry, Nature, vol.450, pp.537-541, 2007.

M. Montginoul and F. La-consommation-d'eau-en, historique, tendances contemporaines, déterminants », Sciences Eaux & Territoires, pp.68-73, 2013.

J. M. Moisselin and B. Et-dubuisson, Evolution des valeurs extrêmes de température et de précipitations au cours du XX ème siècle en France. La météorologie, p.54, 2006.

F. Monteil-rivera, E. B. Brouwer, S. Masset, Y. Deslandes, and J. Dumonceau, Combination of Xray photoelectron and solid-state 13C nuclear magnetic resonance spectroscopy in the structural characterisation of humic acids, Anal. Chim. Acta, vol.424, pp.243-255, 2000.

W. M. Mooij, S. Hülsmann, L. N. De-senerpont-domis, B. A. Nolet, P. L. Bodelier et al., The impact of climate change on lakes in the Netherlands: a review, vol.39, pp.281-400, 2005.

J. Morel, Les ressources en eau sur Terre: origine, utilisation et perspectives dans le contexte du changement climatique -un tour d'horizon de la littérature. Cahier de recherche LEPII, vol.2, 2007.

D. P. Morris, W. M. Lewis, and . Jr, Phytoplankton nutrient limitation in Colorado mountain lakes, Fresh-water Biology, vol.19, pp.315-327, 1988.

S. M. Mugo and C. S. Bottaro, Characterization of humic substances by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, Rapid Commun. Mass Spectrom, vol.18, pp.2375-2382, 2004.

L. R. Mur, M. O. Skulberg, and H. Utkilen, Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management, pp.15-40, 1999.

S. N-navalon, M. Alvaro, I. Alcaina, and H. Garcia, Multi-method characterization of DOM from the Turia river (Spain), Appl. Geochem, vol.25, pp.1632-1643, 2010.

G. Newcombe, D. Cook, S. Brooke, L. Ho, and N. Slyman, Treatment options for microcystin toxins: similarities and differences between variants, Environ Technol, vol.24, pp.299-308, 2003.

B. Newcombe-g-et-nicholson, Water treatment options for dissolved cyanotoxins, J Water Supply Res Technol-AQUA, vol.53, pp.227-266, 2004.

M. Nguyen, P. Westerhoff, L. Baker, Q. Hu, M. Esparza-soto et al., Characteristics and Reactivity of Algae-Produced Dissolved Organic Carbon, J. Environ. Eng, vol.131, pp.1574-1582, 2005.

N. Q. Nguyen, Reactivty of algal organic matter in water treatment processes: application to the combination of coagulation/floculation and adsorption on PAC. Comparison to the reactivity of natural organic matter, 2015.

B. C. Nicholson and M. D. Burch, Evaluation of Analytical Methods for Detection and Quantification of Cyanotoxins in Relation to Australian Drinking Water Guidelines. National Health and Medical, Limnologica -Ecology and Management of Inland Waters, vol.49, pp.33-41, 2001.

R. North, J. Johansson, D. Vandergucht, L. Doig, K. Liber et al., Evidence for internal phosphorus loading in a large prairie reservoir (Lake Diefenbaker, Saskatchewan), Journal of Great Lakes Research, vol.41, pp.91-99, 2015.

L. O-oberhaus, J. F. Briand, C. Leboulanger, S. Jacquet, and J. F. Humbert, Comparative effects of the quality and quantity of light and temperature on the growth of Planktothrix agardhii and P. rubescens, J. Phycol, vol.43, pp.1191-1199, 2007.

Y. H. Oh, Y. Lee, and T. Kim, In situ production of dissolved organic carbon (DOC) by phytoplankton blooms (Cochlodinium polykrikoides) in the southern sea of Korea, Journal of sea research, vol.138, pp.19-23, 2018.

R. L. Oliver and G. G. Ganf, The Ecology of Cyanobacteria: their diversity in time and space, pp.149-194, 2000.

. Onema, La température des cours d'eau sous haute surveillance. Les fiches de l'ONEMA, 2011.

. Onema, , 2016.

. L'eau, et les milieux aquatiques: chiffres clefs. Service de l'observation et des statistiques

H. W. Paerl and J. Huisman, Blooms like it hot, Science, vol.320, pp.57-58, 2008.

H. W. Paerl and J. Huisman, Climate change: A catalyst for global expansion of harmful cyanobacterial blooms, Environ. Microbiol. Reports, vol.1, pp.27-37, 2009.

H. W. Paerl, H. Xu, M. J. Mccarthy, G. Zhu, B. Qin et al., Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): The need for a dual nutrient (N & P) management strategy, Water Research, vol.45, issue.5, pp.1973-1983, 2011.

D. S. Palagama, R. E. West, and D. Isailovic, Improved solid-phase extraction protocol and sensitive quantification of six microcystins in water using an HPLC-orbitrap mass spectrometry system, Anal. Methods, vol.9, pp.2021-2030, 2017.

E. Parlanti, B. Morin, and L. Vacher, Combined 3D-spectrofluorometry, high performance liquid chromatography and capillary electrophoresis for the characterizati on of dissolved organic matter in natural waters, Org. Geochem, vol.33, pp.221-236, 2002.

R. Patrick, The effect of increasing light and temperature on structure of diatom communities, Limnology and Oceanography, p.16, 1971.

F. Peeters, D. Straile, A. Lorke, and D. M. Livingstone, Earlier onset of the spring phytoplankton bloom in lakes of the temperate zone in a warmer climate, Global change biology, vol.13, pp.1898-1909, 2007.

B. Pernet-coudrier, Influence de la matiere organique dissoute sur la speciation et la biodisponibilite des metaux : cas de la seine, p.292, 2008.
URL : https://hal.archives-ouvertes.fr/tel-00366692

P. Petitjean, O. Henin, and G. Gruau, Dosage du carbone organique dissous dans les eaux douces naturelles: Intérêt, principie, Mise en oeuvre et précautions opératoires. Cahiers techniques de Géosciences Rennes, 2004.

I. Peuravuori, P. Pihlaja, K. Koivikko, and R. , Comparisons of sorption of aquatic humic matter by DAX-8 and XAD-8 resins from solid-state 13 C NMR spectroscopy's point of view, Talanta, vol.55, pp.733-742, 2001.

J. Peuravuori, T. Lehtonen, and K. Pihlaja, Sorption of aquatic humic matter by DAX-8 and XAD-8 resins Comparative study using pyrolysis gas chromatography, Analytica Chimica Acta, vol.471, pp.219-226, 2002.

J. Peuravuori, A. Monteiro, L. Eglite, and K. Pihlaja, Comparative study for separation of aquatic humic-type organi c constituents by DAX-8, PVP and DEAE sorbing solids and tangential ultrafiltration: elemental composition, size-exclusion chromatography, UV-vis and FT-IR, Talanta, vol.65, issue.2, pp.408-422, 2005.

G. Pinay, C. Gascuel, A. Ménesguen, and Y. Souchon, Eutrophisation: manifestations, causes, conséquences et prédictibilité, 2017.

F. Pitois, O. Thomas, I. Thoraval, and E. Baurès, Learning from 8 years of regional cyanobacteria observation in Brittany in view of sanitary survey improvement, Environment International, vol.62, pp.113-118, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00877892

F. Pitois, C. Vezie, I. Thoraval, and E. Baurès, Improving microcystin monitoring relevance in recreative waters: A regional case-study, International Journal of Hygiene and Environmental Health, vol.219, pp.288-293, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01255825

H. Pekar, E. Westergerg, O. Bruno, A. Lääne, K. M. Persson et al., Fast, rugged and sensitive ultra high pressure liquid chromatography tandem mass spectrometry method for analysis of cyanotoxins in raw water and drinking water-First findings of anatoxins, cylindrospermopsins and microcystin variants in Swedish source waters and infiltration ponds, Journal of Chromatography A, pp.265-276, 1429.

A. Piccolo, The supramolecular structure of humic substances: A novel understanding of humus chemistry and implications in soil science, 2002.

M. Pivokonsky, O. Kloucek, and L. Pivokonska, Evaluation of the production, composition and aluminum and iron complexation of algogenic organic matter, Water Res, vol.40, pp.3045-3052, 2006.

M. Pivokonsky, J. Safarikova, M. Baresova, L. Pivokonska, and I. Kopecka, A comparison of the character of algal extracellular versus cellular organic matter produced by cyanobacterium, diatom and green algae, Water Research, vol.51, pp.37-46, 2014.

K. Poon, -. Mh, P. Lam, B. Lam, and . Wong, Determination of Microcystins in Cyanobacterial Blooms by Solid-Phase Microextraction: High-Performance Liquid Chromatography, Environmental Toxicology and Chemistry, vol.20, issue.8, pp.1648-1655, 2001.

R. Pourriot and M. Meybeck, Limnologie générale. Collection d'écologie 25, 1995.

F. Qu, H. Liang, J. He, J. Ma, Z. Wang et al., Characterization of dissolved extracellular organic matter (dEOM) and bound extracellular organic matter (bEOM) of Microcystis aeruginosa and their impacts on UF membrane fouling, Water Res, vol.46, pp.2881-2890, 2012.

R. Radji, A. Bandje, L. Issifou, M. T. Edorh, and K. Kokou, Diversité et dynamique des assemblages phytoplanctoniques dans les écosystèmes aquatiques au Sud du Togo, vol.09, pp.67-77, 2013.

J. Rapala, K. Erkomaa, J. Kukkonen, K. Sivonen, and K. Lahti, Detection of microcystins with protein phosphatase inhibition assay, high-performance liquid chromatography-UV detection and enzyme-linked immunosorbent assay: Comparison of methods, Analytica Chimica Acta, vol.466, issue.2, pp.213-231, 2002.

A. Rapin, Mobilité du phospore sédimentaire en contexte de retenues de barrage hydroélectrique, 2017.

J. A. Raven and R. J. Geider, Temperature and algal growth, New Phytol, vol.110, pp.441-61, 1988.

A. C. Redfield, B. H. Ketchum, and F. A. Richards, The influence of organisms on the composition of sea-water, The Sea, vol.2, p.554, 1963.

C. S. Reynolds, The ecology of freshwater phytoplankton, 1984.

C. S. Reynolds, R. L. Oliver, and A. E. Walsby, Cyanobacterial dominance: the role of buoyancy regulatio n in dynamic lake environments, New Zealand Journal of Marine and Freshwater Researchs, vol.21, pp.379-390, 1987.

C. S. Reynolds and . ;-r, Isolation and purification of cyanobacteria, Methods in Enzymology, vol.167, pp.3-27, 1988.

D. Rissik, E. Ho-shon, B. Newell, M. E. Baird, and I. M. Suthers, Plankton dynamics due to rainfall, eutrophication, dilution, grazing and assimilation in an urbanized coastal lagoon, Estuarine, Coastal and Shelf science, vol.84, pp.99-107, 2009.

K. C. Ruttenberg and D. J. Sulak, Sorption and desorption of dissolved organic phosphorus onto iron (oxyhydr)oxides in seawater, Geochimica et Cosmochimica Acta, vol.75, issue.15, pp.4095-4112, 2011.

G. Sandrini, Effects of Rising CO2 on the Harmful Cyanobacterium Microcystis, 2016.

G. Sandrini, H. Matthijs, J. Verspagen, G. Muyzer, and J. Huisman, Genetic diversity of inorganic carbon uptake systems causes variation in CO2 response of the cyanobacterium Microcystis, ISME Journal, vol.8, pp.589-600, 2014.

G. Sandrini, S. Cunsolo, J. M. Schuurmans, H. Matthijs, and J. Huisman, Changes in gene expression, cell physiology and toxicity of the harmful cyanobacterium Microcystis aeruginosa at elevated CO2, Frontiers in Microbiology, vol.6, p.401, 2015.

G. Sandrini, D. Jakupovic, H. Matthijs, and J. Huisman, Strains of the harmful cyanobacterium Microcystis aeruginosa differ in gene expression a nd activity of inorganic carbon uptake systems at elevated CO2 levels, Applied and Environmental Microbiology, vol.81, pp.7730-7739, 2015.

I. Sanseverino, D. Conduto, L. Pozzoli, S. Dobricic, and T. Lettieri, Algal bloom and its economic impact, 2016.

P. Servais, G. Billen, and M. Hascoet, Determination of the biodegradable fraction of dissolved organic matter in waters, Water Res, vol.21, pp.445-450, 1987.

P. M. Schenk, S. R. Thomas-hall, E. Stephens, U. C. Marx, J. H. Mussgnug et al., Second generation biofuels: high-efficiency microalgae for biodiesel production, BioEnergy Res, vol.1, pp.20-43, 2008.

D. W. Schindler, R. E. Hecky, D. L. Findlay, M. P. Stainton, B. R. Parker et al., Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment, Proceedings of the National Academy of Sciences, vol.105, issue.32, pp.11254-58, 2008.

M. Selman, S. Greenhalgh, R. Diaz, and Z. Sugg, Eutrophication and hypoxia in coastal areas: a global assessment of the state of knowledge. World Resources Institute policy note, vol.1, 2008.

A. B. Sengül, G. Ersan, and N. Tüfekçi, Removal of intra-and extracellular microcystin by submerged ultrafiltration (UF) membrane combined with coagulation/flocculation and powdered activated carbon (PAC) adsorption, Journal of hazardous materials, vol.343, pp.29-35, 2018.

D. Seo, Y. Kim, S. Ham, and D. Lee, Characterization of dissolved organic matter in leachate discharged from final disposal sites which c ontained municipal solid waste incineration residues, J. Hazard. Mater, vol.148, pp.679-692, 2007.

E. L. Sharp, S. A. Parsons, and B. Jefferson, Seasonal variations in natural organic matter and its impact on coagulation in water treatment, Sci. Total Environ, vol.363, pp.183-194, 2006.

I. A. Shiklomanov, Summary of the monograph « World Water Resources at the beginning of the 21st century » prepared in the framework of the IHP UNESCO, Saint Petersbourg: State Hydrological Institute (SHI), 1999.

I. A. Shiklomanov and J. C. Rodda, World Water Resources at the Beginning of the 21 st Century, 2003.

E. Sinha, A. M. Michalak, and V. Balaji, Eutrophication will increase during the 21 st century as a result of precipitation changes, Science, vol.357, pp.405-408, 2017.

K. Sivonen, Effects of Light, Temperature, Nitrate, Orthophosphate, and Bacteria on Growth of and Hepatotoxin Production by Oscillatoria agardhii Strains, Applied and Environmental Microbiology, pp.2658-2666, 1990.

K. Sivonen and G. Jones, Cyanobacterial toxins. In Toxic cyanobacteria in water, pp.41-112, 1999.

O. Sjövall and J. A. Meriluoto, SOP: Analysis of microcystins by liquid chromatography -mass spectrometry. SOP_TOXIC_AAU_ 10F, Toxic Cyanobacterial Monitoring and Cyanotoxins Analysis, vol.65, pp.105-110, 2005.

V. H. Smith, G. D. Tilman, and J. C. Nekola, Eutrophication: Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems, Environmental Pollution, vol.100, pp.179-196, 1998.

V. H. Smith and D. W. Schindler, Eutrophication science: where do we go from here?, Trends in Ecology and Evolution, vol.24, issue.4, 2009.

L. Song, T. Sano, R. Li, M. Watanabe, Y. Liu et al., Microcystin production of Microcystis viridis (cyano-bacteria) under different culture conditions, PhycolRes, vol.46, pp.19-23, 1998.

H. Song, E. S. Reichwaldt, and A. Ghadouani, Contribution of sediments in the removal of microcystin-LR from water, Toxicon, vol.83, pp.84-90, 2014.

K. Song, Z. Wen, Y. Shang, H. Yang, L. Lyu et al., Quantification of dissolved organic carbon (DOC) storage in lakes and reservoirs of mainland China, Journal of Environmental Management, vol.217, pp.391-402, 2018.

F. J. Stevenson, Humus chrmistry: genesis, composition, reactions, p.512, 1994.

W. G. Sunda, Trace Metal Interactions with Marine Phytoplankton, Biological Oceanography, vol.6, pp.411-442, 1989.

, Sweden facing climate change -threats and opportunities. Final report from the Swedish Commission on Climate and Vulnerability, Swedish Government Official Reports, 2007.

J. ?wietlik and E. Sikorska, Application of fluorescence spectroscopy in the studies of natural organic matter fractions reactivity with chlorine dioxide and ozone, Water Research, vol.38, issue.17, pp.3791-3799, 2004.

Z. E. Taranu, I. Gregpry-eaves, P. Leavitt, L. Bunting, T. Buchaca et al., Acceleration of cyanobacterial dominance in north temperate-subarctic lakes during the Anthropocene, Ecolology Letters, vol.18, issue.4, pp.375-384, 2015.

M. R. Teixeira and M. J. Rosa, Comparing dissolved air flotation and conventional sedimentation to remove cyanobacterial cells of Microcystis aeruginosa: Part I: The key operating conditions, Sep. Purif. Technol, vol.52, pp.84-94, 2006.

M. R. Teixeira and M. J. Rosa, Comparing dissolved air flotation and conventional se dimentation to remove cyanobacterial cells of Microcystis aeruginosa: Part II. The effect of water background organics, Sep. Purif. Technol, vol.53, pp.126-134, 2007.

M. R. Teixeira, V. Sousa, and M. J. Rosa, Investigating dissolved air flotation performance with cyanobacterial cells and filaments, Water Res, vol.44, pp.3337-3344, 2010.

E. Thurman and R. L. Malcolm, Preparative isolation of aquatic humic substances, Environ. Sci. Technol, vol.15, pp.463-466, 1981.

E. M. Thurman, Organic geochemistry of natural waters, Martinus Nijhoff / Dr W. Junk, vol.497, 1985.

K. Toming, T. Kutser, L. Tuvikene, M. Viik, and T. Nõges, Dissolved organic carbon and its potential predictors in eutrophic lakes, Water Research, vol.102, pp.32-40, 2016.

K. Tsuji, T. Watanuki, F. Kondo, M. F. Watanabe, S. Suzuki et al., Stability of microcystins from cyanobacteria II. Effect of UV light on decomposition and isomerization, Toxicon, vol.33, issue.12, pp.1619-1631, 1995.

V. Van-der-kooij, D. Visser, A. Hijnen, and W. A. , Determining the concentration of easily assimilable organic carbon in drinking water, J. Am. Water Works Assoc, vol.74, pp.540-545, 1982.

S. Velten, D. R. Knappe, J. Traber, H. P. Kaiser, U. Von-gunten et al., , 2011.

, Characterization of natural activated carbon adsorbers, Water Research, vol.45, pp.3951-3989

L. Via-ordorika, J. Fastner, R. Kurmayer, M. Hisbergues, E. Dittmann et al., Distribution of microcystin-producing and non-microcystin-producing Microcystis sp. in European freshwater bodies: Detection of microcystins and microcystin genes in individual colonies, Systematic and Applied Microbiology, vol.27, issue.5, pp.592-602, 2004.

L. O. Villacorte, Y. Ekowati, T. R. Neu, J. M. Kleijn, H. Winters et al., Characterisation of algal organic matter produced by bloom-forming marine and freshwater algae, Water research, vol.73, pp.216-230, 2015.

B. Vinçon-leite and C. Casenave, Modelling eutrophication in lake ecosystems: a review, Science of the total environment, vol.651, pp.2985-3001, 2019.

P. M. Visser, B. W. Ibelings, . Van-der, B. Veer, J. Koedood et al., Artificial mixing prevents nuisance blooms of the cyanobacteriumMicrocystis in Lake Nieuwe Meer, the Netherlands, Freshwater Biology, vol.36, pp.435-450, 1996.

P. M. Visser, J. M. Verspagen, G. Sandrini, L. J. Stal, H. C. Matthijs et al., How rising CO2and global warming may stimulate harmful cyanobacterial blooms, Harmful algae, vol.54, pp.145-159, 2016.

C. Volk, K. Bell, E. Ibrahim, D. Verges, G. Amy et al., Impact of enhanced and optimized coagulation on removal of organic matter and its biodegradable fraction in drinking water, Water Res, vol.34, pp.3247-3257, 2000.

T. Vrede, A. Ballantyne, C. Mille-lindblom, G. Algesten, C. Gudasz et al., Effects of N : P loading ratios on phytoplankton community composition, primary production and N fixation in a eutrophic lake, 2008.

C. Wagner and R. Adrian, Cyanobacteria dominance: Quantifying the effects of climate change, Limnology and Oceanography, vol.54, pp.2460-2468, 2009.

J. T. Walls, K. H. Wyatt, J. C. Doll, E. M. Rubenstein, and A. R. Rober, Hot and toxic: Temperature regulates microcystin release from cyanobacteria, Science of the total environment, pp.786-795, 2018.

L. Wang, F. Wu, R. Zhang, W. Li, and H. Liao, Characterization of dissolved organic matter fractions from Lake Hongfeng, Southwestern China Plateau, J. Environ. Sci, vol.21, pp.581-588, 2009.

J. L. Weishaar, G. R. Aiken, B. A. Bergamaschi, M. S. Fram, R. Fujii et al., Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon, Environ. Sci. Technol, vol.37, pp.4702-4708, 2003.

D. L. Widrig, A. G. Kimberly, and K. S. Mcauliffe, Removal of algal-derived organic material by preozonation and coagulation: monitoring changes in organic quality by pyrolysis-GC-MS, Water Res, vol.30, pp.2621-2632, 1996.

C. Wiedner, J. Rücker, R. Brüggemann, and B. Nixdorf, Climate change affects timing and size of populations of an invasive cyanobacterium in temperate regions, Oecologia, vol.152, issue.3, pp.473-484, 2007.

E. Willén, Phytoplankton and water quality characterization: experiences from Swedish large lakes Mälaren, Ambio, vol.30, pp.529-537, 2001.

E. Willén, G. Ahlgren, and A. Söderhielm, Toxic cyanophytes in three Swedish lakes. Verh Internat Verein Limnol, vol.27, pp.560-564, 2000.

T. Willén and R. Et-mattsson, Water-blooming and toxin-producing cyanobacteria in Swedish fresh and brackish waters, Hydrobiologia, vol.353, pp.181-192, 1981.

A. E. Wilson, O. Sarnelle, B. A. Neilan, T. P. Salmon, M. M. Gehringer et al., Genetic variation of the bloom-forming Cyanobacterium Microcystis aeruginosa within and among lakes: implications for harmful algal blooms, Appl. Environ. Microbiol, vol.71, pp.6126-6133, 2005.

U. Paris, J. Xu, Y. Zhao, B. Gao, S. Han et al., The influence of algal organic matter produced by Microcystis aeruginosa on coagulation-ultrafiltration treatment of natural organic matter, The United Nations World Water Development Report, pp.418-428, 0196.

Y. Yamamoto and H. Nakahara, The formation and degradation of cyanobacterium Aphanizomenon flos-aquae blooms: the importance of pH, water temperature, and day length, Limnology, vol.6, pp.1-6, 2005.

L. Ye, X. Shi, X. Wu, and F. Kong, Nitrate limitation and accumulation of dissolved organic carbon during a spring-summer cyanobacterial bloom in Lake Taihu (China), J. Limnol, vol.71, issue.1, pp.67-71, 2012.

L. Ye, X. Wu, B. Liu, D. Yan, and F. Kong, Dynamics and sources of dissolved organic carbon during phytoplankton bloom in hypereutrophic Lake Taihu (China), Limnologica, vol.54, pp.5-13, 2018.

H. K. Yen, T. F. Lin, and P. C. Liao, Simultaneous detection of nine cyanotoxins in drinking water using dual solid-phase extraction and liquid chromatography-mass spectrometry, Toxicon, vol.58, pp.209-218, 2011.

H. Yu, K. D. Clark, A. , and J. L. , Rapid and Sensitive Analysis of Microcystins Using Ionic Liquid-Based in Situ Dispersive Liquid-Liquid Microextraction, Journal of Chromatography A, pp.10-18, 1406.

A. Zamyadi, L. Ho, G. Newcombe, H. Bustamante, and M. Prévost, Fate of toxic cyanobacterial cells and disinfection by-products formation after chlorination, Water Res, vol.47, pp.2689-2700, 2013.

S. K. Zervou, C. Christophoros, T. Kaloudis, T. M. Triantis, and A. Hiskia, New SPE-LC-MS/MS method for simultaneous determination of multi-class cyanobacterial and algal toxins, Journal of hazardous materials, vol.323, pp.56-66, 2017.

Y. Zhang, J. Tian, J. Nan, S. Gao, H. Liang et al., Effect of PAC addition on immersed ultrafiltration for the treatment of algal-rich water, J. Hazard. Mater, vol.186, pp.1415-1424, 2011.

M. Zhang, H. Duan, X. Shi, Y. Yu, and F. Kong, Contributions of meteorology to the phenology of cyanobacterial blooms: Implications for future climate change, Water Research, vol.46, issue.2, pp.442-452, 2012.

M. Zhang, Z. Yang, and X. Shi, Effects of temperature fluctuation on the development of cyanobacterial dominance in spring: implication of future climate change, Hydrobiologia, vol.763, pp.135-146, 2016.

S. Zhou, Y. Shao, N. Gao, Y. Deng, L. Li et al., Characterization of algal matters of Microcystis aeruginosa: biodegradability, DBP formation and membrane fouling potential, Water research, vol.52, pp.199-207, 2014.

M. Ziegmann, M. Abert, M. Müller, and F. H. Frimmel, Use of fluorescence fingerprints for the estimation of bloom formation and toxin production of Microcystis aeruginosa, Water Res, vol.44, pp.195-204, 2010.

A. Zingone, E. J. Philips, and P. J. Harrison, Multiscale variability of twenty-two coastal phytoplankton time series: a global scale comparison, Estuaries and coasts, vol.33, pp.224-229, 2010.

A. Matière-organique, MOA) qui augmente la concentration et modifie les caractéristiques et la réactivité de la Matière Organique Naturelle (MON) du plan d'eau. Des cyanotoxines peuvent également être générées si des cyanobactéries productrices sont présentes. Le climat futur, prévu par les experts, vient soutenir ces proliférations et en aggraver les conséquences. L'optimisation d'une méthode d'identification

, La croissance cellulaire et la production de MOA et de MCs sous différents couples température/pluviométrie sont étudiées sur des cultures mono-spécifiques d'algue et de cyanobactérie. Les variations climatiques impactent le développement cellulaire, la quantité et la répartition des fractions hydrophobes de la MOA, la concentration totale en MCs et la proportion de la fraction extracellulaire. L'étude in-situ menée pendant 21 mois sur le plan d'eau hypereutrophe de Pigeard (87) est comparée au suivi de 18 mois de 2012-2013. Les apports récurrents de MOA perturbent annuellement et durablement la dynamique de la MON du plan d'eau, en modifiant ses caractéristiques et augmentant la charge organique et la part de composés hydrophiles. Les évolutions observées pour des ressources en eau sous des climats différents (Suède et Togo) corroborent les observations au laboratoire. Ces évolutions quantitatives et qualitatives de la MON affectent l'efficacité des procédés de traitement des eaux et notamment l'adsorption sur CAP. Les performances du procédé sont diminuées en présence de composés hydrophiles, UV/PDA après concentration par SPE permet l'analyse à des concentrations jusqu'à 0,1 µg.L -1 . Cependant, un pH basique et une charge organique dans l'échantillon surestiment la concentration