, Les transducteurs sont pondérés par une fonction arc-cosinus. La hauteur d'aluminium déposée est de 100 nm. du wafer considérées. Idéalement, les structures phononiques devraient être fabriquées par photolithographie lift-off utilisée pour les PID, mais cette technique n'est valable que pour de faibles hauteurs de métallisation. Par exemple, pour une géométrie de ? / = 0.15 et pour une fréquence de fonctionnement de 2.45 GHz, la hauteur de pilier correspondante est de 100 nm environ, ce qui est envisageable avec ce type de procédé. En revanche, avec un facteur de remplissage / = 0.3, on obtient une dimension critique de 220 nm qui est encore difficile à atteindre

. Enfin, une application capteur de température par exemple, il faudrait également s'intéresser au comportement en température du cristal phononique. Les propriétés mécaniques des matériaux, et en particulier des piliers dans notre cas, sont très dépendantes de cette grandeur

D. Royer and E. Et-dieulesaint, Propagation et génération des ondes élastiques, Techniques de l'ingénieur Matériaux pour l'électronique et dispositifs associés, Réf : E3210, 2001.

X. Du, ZnO film for application in surface acoustic wave device, J. Phys.: Conf. Ser, vol.76, p.12035, 2017.

&. Polifunzionale,

R. M. White and F. W. Voltmer, Direct Piezoelectric Coupling to Surface Elastic Waves, Appl. Phys. Lett, vol.7, p.314, 1965.

W. E. Bulst, G. Fischerauer, and L. Reindl, State of the art in wireless sensing with surface acoustic waves, IEEE Transactions on Industrial Electronics, vol.48, issue.2, pp.265-271, 2001.

S. Lehtonen and V. P. Plessky, Unidirectional SAW Transducer for Gigahertz Frequencies, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol.50, issue.11, pp.1404-1406, 2003.

T. Jamneala, M. &. Small, . Ruby, &. Rich, D. John et al., Coupled resonator filter with single-layer acoustic coupler, IEEE transactions on ultrasonics, 2008.

S. B. Cohn, Direct-Coupled-Resonator Filters, Proceedings of the IRE, vol.45, pp.187-196, 1957.

G. Mossuz and J. J. Gagnepain, Cryogenics, vol.16, issue.11, 1976.

, IRE Standards on Piezoelectric Crystals-The Piezoelectric Vibrator: Definitions and Methods of Measurement, Proceedings of the IRE, vol.45, pp.353-358, 1957.

L. M. Reindl and I. M. Shrena, Wireless measurement of temperature using surface acoustic waves sensors, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol.51, issue.11, pp.1457-1463, 2004.

J. H. Kuypers, S. Tanaka, M. Esashi, D. A. Eisele, and L. M. , 2.45 GHz Passive Wireless Temperature Monitoring System Featuring Parallel Sensor Interrogation and Resolution Evaluation, 5th IEEE Conference on Sensors, pp.773-776, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00640225

S. Lehtonen, V. P. Plessky, C. S. Hartmann, and M. M. Salomaa, Unidirectional SAW transducer for gigahertz frequencies, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol.50, issue.11, pp.1404-1406, 2003.

A. , A review of wireless SAW sensors, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol.47, issue.2, pp.317-332, 2000.

, Proceedings of the IRE, vol.37, pp.1378-1395, 1949.

D. C. Malocha, Evolution of the SAW transducer for communication systems, IEEE Ultrasonics Symposium, pp.302-310, 2004.

V. Laude and S. Ballandras, Slowness curves and characteristics of surface acoustic waves propagating obliquely in periodic finite-thickness electrode gratings, Journal of Applied Physics, pp.1235-1242, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00087970

J. F. Leguen, P. Ménage, and L. Chommeloux, Rapport final projet CATEAM, 2009.

S. Denisenko and I. D. Avramov, Design, fabrication and performance of 2 GHz surface transverse wave resonators, IEEE International Frequency Control Symposium, pp.645-649, 1993.

L. L. Pendergrass and L. G. Studebaker,

. Ghz, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol.35, issue.3, pp.372-379, 1988.

S. Denissenko, E. Gavignet, S. Ballandras, E. Bigler, and E. Cambril, Design and test of 3 GHz, fundamental mode STW resonators on quartz, Proceedings of the 1995 IEEE International Frequency Control Symposium (49th Annual Symposium), pp.469-475, 1995.

I. D. Avramov, O. Ikata, T. Matsuda, T. Nishihara, and Y. Satoh, Further improvements of surface transverse wave resonator performance in the 2.0 to 2.5 GHz range, Proceedings of International Frequency Control Symposium, pp.807-815, 1997.

I. D. Avramov and M. Suohai, Surface transverse waves exceed the material Q limit for surface acoustic waves on quartz, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol.43, issue.6, pp.1133-1135, 1996.

W. R. Shreve and P. S. Cross, Surface acoustic waves and resonators, Precision Frequency Control: Acoustic Resonators and Filters, vol.1, pp.118-145, 1985.

H. Nakamura, H. Nakanishi, R. Goto, and K. Hashimoto, Suppression of transverse-mode spurious responses by selectively SiO2 removing technique for SAW resonators on a SiO2/Al/LiNbO3 structure, IEEE International Ultrasonics Symposium, pp.629-632, 2010.

M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-rouhani, Acoustic band structure of periodic elastic composites, Phys. Rev. Lett, vol.71, pp.2022-2025, 1993.

M. N. Sigalas-&-e and . Economou, Band Structure of Elastic Waves in Two Dimensional Systems, Solid State Communications, vol.86, issue.3, pp.141-143, 1993.

A. Khelif and A. Adibi, Phononic Crystals, Fundamentals and Applications, pp.183-185

T. Uno and &. Jumonji, Optimization of quartz SAW Resonator Structure with Groove Gratings, IEEE Transactions on sonics and ultrasonics, vol.29, issue.6, 1982.

Y. Achaoui, A. Khelif, S. Benchabane, and V. Laude, Experimental observation of locally-resonant and Bragg band gaps for surface guided waves in a phononic crystal of pillars, Phys. Rev. B, vol.83, p.104201, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00639217

Y. Achaoui, V. Laude, S. Benchabane, and A. Khelif, A. Local resonances in phononic crystals and in random arrangements of pillars on a surface, J. Appl. Phys, vol.114, p.104503, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00541915

A. Khelif, F. Hsiao, A. Choujaa, S. Benchabane, and V. Laude, Octave omnidirectional band gap in a three-dimensional phononic crystal, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol.57, issue.7, pp.1621-1625, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02300297

E. Coffy, S. Euphrasie, M. Addouche, P. Vairac, and A. Khelif, Evidence of a broadband gap in a phononic crystal strip, Ultrasonics, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02131411

Y. Achaoui, . Khelif, &. Abdelkrim, S. &. Benchabane, . Robert et al., Locally resonant and Bragg band gaps for surface acoustic waves, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00646874

S. Yankin, A. Talbi, Y. Du, J. Gerbedoen, V. Preobrazhensky et al., Finite element analysis and experimental study of surface acoustic wave propagation through two-dimensional pillar-based surface phononic crystal, Journal of Applied Physics, vol.115, p.244508, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01018303

T. Liu, . Tsai, . Yao-chuan, Y. Lin, . Ono et al., Design and fabrication of a phononic-crystal-based Love wave resonator in GHz range, 2014.

J. Sun and J. Jhou, Study of surface acoustic waves in SiO2/LiNbO3 layered-structure phononic crystals, Japanese Journal of Applied Physics, 2014.

. Ayazi, Piezoelectric-on-semiconductor micromechanical resonators with linear acoustic bandgap tethers, vol.624, pp.471-472, 2014.

C. Lin, J. Hsu, D. G. Senesky, and A. P. Pisano, Anchor loss reduction in ALN Lamb wave resonators using phononic crystal strip tethers, IEEE International Frequency Control Symposium (FCS), pp.1-5, 2014.

M. , Acoustic isolation of disc-shaped modes using periodic corrugated plate-based phononic crystal, Electronics Letters, vol.54, issue.5, pp.301-303, 2018.

A. Khelif, Y. Achaoui, and B. Aoubiza, In-plane confinement and waveguiding of surface acoustic waves through line defects in pillars-based phononic crystal, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00674930

R. Dehghannasiri, R. Pourabolghasem, and A. A. Eftekhar, Integrated phononic crystal resonators based on adiabatically-terminated phononic crystal waveguides

S. Benchabane, Interaction of waveguide and localized modes in a phononic crystal, Europhysics Letters, vol.71, issue.4, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00074873

T. Pastureaud, Méthode de calcul de fonctions de Green sur structure stratifiée, 2001.

Y. Zhang, J. Desbois, and L. Boyer, Characteristic parameters of surface acoustic waves in a periodic metal grating on a piezoelectric substrate, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol.40, issue.3, pp.183-192, 1993.

R. C. Peach, A general Green function analysis for SAW devices, Proceedings. An International Symposium, vol.1, pp.221-225, 1995.

T. Pastureaud, Méthode de la Matrice Mixte pour la modélisation de transducteurs ultrasonores et de dispositifs synchrones à ondes élastiques de surface, 2001.

A. N. Darinskii, E. L. Clézio, and G. Feuillard, Frequency degeneracy of acoustic waves in twodimensional phononic crystals, Journal of Physics : Conference Series, vol.92, p.12117, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01804617

V. Laude, Phononic crystals, artificial crystals for sonic, acoustic and elastic waves, De Gruyter, pp.176-177, 2015.

E. Coffy, Rapport de thèse de doctorat, pp.29-30, 2017.

, Données déterminées au LPMO

V. Laude, programme de simulation acoustique, Slowness Buddy

R. Parkinson, Electroforming -a unique metal fabrication process, NiDI Technical Series n°10084, 1998.