, Bibliographie Chapitre, vol.2

T. A. Ehlers and C. J. Poulsen, Influence of Andean uplift on climate and paleoaltimetry estimates : Earth and Planetary Science Letters, v. 281, pp.238-248, 2009.

G. Ekström, M. Nettles, and A. M. Dziewo?ski, The global CMT project 2004-2010 : Centroid-moment tensors for 13,017 earthquakes : Physics of the Earth and Planetary Interiors, v, pp.1-9, 0201.

P. England and P. Molnar, Surface uplift, uplift of rocks, and exhumation of rocks : Geology, v, vol.18, pp.1173-1177, 1990.

N. Espurt, J. Barbarand, M. Roddaz, S. Brusset, P. Baby et al., A scenario for late Neogene Andean shortening transfer in the Camisea Subandean zone (Peru, 12 ? S) : Implications for growth of the northern Andean Plateau, pp.2050-2068, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00583773

R. Garreaud, M. Vuille, C. , and A. C. , The climate of the Altiplano : Observed current conditions and mechanisms of past changes : Palaeogeography, Palaeoclimatology, Palaeoecology, v. 194, pp.5-22, 2003.

C. Gautheron, N. Espurt, J. Barbarand, M. Roddaz, P. Baby et al., Direct dating of thick-and thin-skin thrusts in the Peruvian Subandean zone through apatite (U-Th)/He and fission track thermochronometry, vol.25, pp.419-435, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00812079

S. Gilder, S. Rousse, D. Farber, B. Mcnulty, T. Sempere et al., Post-Middle Oligocene origin of paleomagnetic rotations in Upper Permian to Lower Jurassic rocks from northern and southern Peru : Earth and Planetary Science Letters, vol.210, pp.233-248, 2003.

N. Gotberg, N. Mcquarrie, and V. C. Caillaux, Comparison of crustal thickening budget and shortening estimates in southern Peru (12 14 ? S) : Implications for mass balance and rotations in the "Bolivian orocline, vol.122, pp.727-742, 2010.

K. M. Gregory-wodzicki, Uplift history of the Central and Northern Andes : A review, vol.112, pp.1091-1105, 2000.

A. Hartley, Andean uplift and climate change, Journal of the Geological Society, vol.160, pp.7-10, 2003.

K. Heki, Y. Hamano, and M. Kono, Rotation of the Peruvian Block from palaeomagnetic studies of the Centrak Andes : Nature, v. 305, pp.514-516, 1983.

, Bibliographie Chapitre, vol.2

N. D. Perez, B. K. Horton, and V. Carlotto, Structural inheritance and selective reactivation in the central Andes : Cenozoic deformation guided by pre-Andean structures in southern Peru : Tectonophysics, v. 671, pp.264-280, 2016.

N. D. Perez, B. K. Horton, N. Mcquarrie, K. Stubner, and T. A. Ehlers, Andean shortening , inversion and exhumation associated with thin-and thick-skinned deformation in southern Peru : Geological Magazine, vol.153, pp.1013-1041, 2016.

N. Petford and M. P. Atherton, Crustal segmentation and the isotopic significance of the Abancay Deflection : Northern Central Andes (9-20 degrees S) : Revista Geologica De Chile, vol.22, pp.235-243, 1995.

D. Picard, T. Sempere, and O. Plantard, Direction and timing of uplift propagation in the Peruvian Andes deduced from molecular phylogenetics of highland biotaxa : Earth and Planetary Science Letters, v. 271, pp.326-336, 2008.

C. J. Poulsen, T. A. Ehlers, and N. Insel, Onset of Convective Rainfall During Gradual Late Miocene Rise of the Central Andes : Science, v. 328, pp.490-494, 2010.

A. J. Rak, N. Mcquarrie, and T. A. Ehlers, An Integrated Thermochronometer and Thermokinematic Modeling Approach : Tectonics, v. 36, pp.2524-2554, 2017.

V. A. Ramos, The Basement of the Central Andes : The Arequipa and Related Terranes : Annual Review of Earth and Planetary Sciences, vol.36, pp.289-324, 2008.

V. A. Ramos, The Grenville-age basement of the Andes, Journal of South American Earth Sciences, vol.29, pp.77-91, 2010.

V. A. Ramos and A. Folguera, Andean flat-slab subduction through time, vol.327, pp.31-54, 2009.

A. E. Rapalini, The accretionary history of southern South America from the latest Proterozoic to the Late Palaeozoic : Some palaeomagnetic constraints : Geological Society Special Publication, vol.246, pp.305-328, 2005.

M. J. Reitsma, Reconstructing the Late Paleozoic -Early Mesozoic plutonic and sedimentary record of south-east Peru : Orphaned back-arcs along the western margin of Gondwana : 246 p, 2012.

, La géomorphologie quantitative -Quantification des désequilibres de surface

. .. Définitions, 73 3.1.1.3 Ruptures de pente du réseau hydrographique (knickpoints et knickzones)

, Quantifier l'état de déséquilibre des rivières -les valeurs k sn

, Quantifier l'état de déséquilibre des bassins versants -le cas de l'analyse du ?

. .. , 82 3.1.2.1 Extraction de la topographie, du relief et des pentes . 82 3.1.2.2 Extraction des bassins versants, Protocoles et méthodes d'extraction des paramètres géomorphologiques

, Méthodes thermochronologiques -Contraintes sur l'exhumation et l'évolution du relief au cours du temps, p.86

. .. , 88 3.2.1.2 Les traces de fission sur apatite (AFT), La thermochronologie basse température (AHe et AFT) -Principes et définitions

, 2.2.2 Protocole analytique -Tronc commun AHe et AFT . 96 3.2.2.3 La méthode (U-Th-Sm)/He sur apatite (AHe -Apatite Hélium), Stratégie d'échantillonnage, préparation deséchantillons et calcul desâges

, Les traces de fission sur apatite (AFT -Apatite Fission Track)

, Modélisation desâges thermochronologiques -Taux de refroidissement et d'exhumation

. Relationâge-altitude, 3.1.2 Données implémentées pour modélisation AER, p.100

. .. Qtqt, Modélisation temps-température 2D

, Bibliographie Chapitre, vol.4

P. S. Van-heiningen, V. Carlotto, A. D. Zuloaga, L. Romero, and P. A. Andriessen, Oligocene to Pleistocene exhumation patterns across the Apurimac River drainage basin, southern Peru : 6th International Symposium on Andean Geodynamics (ISAG 2005, pp.763-766, 2005.

G. D. Hoke, B. L. Isacks, T. E. Jordan, N. Blanco, A. J. Tomlinson et al., Geomorphic evidence for post-10 Ma uplift of the western flank of the central Andes 18 ? 30 -22 ? S : Tectonics, v. 26, pp.1-17, 2007.

N. Insel, C. J. Poulsen, and T. A. Ehlers, Influence of the Andes Mountains on South American moisture transport, convection, and precipitation : Climate Dynamics, vol.35, pp.1477-1492, 2010.

B. L. Isacks, Uplift of the central Andean Plateau and bending of the Bolivian Orocline, Journal of Geophysical Research, issue.93, pp.3211-3231, 1988.

N. Kar, C. N. Garzione, C. Jaramillo, T. Shanahan, V. Carlotto et al., Rapid regional surface uplift of the northern Altiplano plateau revealed by multiproxy paleoclimate reconstruction : Earth and Planetary Science Letters, vol.447, pp.33-47, 2016.

L. Kennan, S. H. Lamb, and L. Hoke, High-altitude palaeosurfaces in the Bolivian Andes : evidence for late Cenozoic surface uplift : Palaeosurfaces : recognition, reconstruction and palaeoenvironmental interpretation, pp.307-323, 1997.

E. Kirby and K. X. Whipple, Expression of active tectonics in erosional landscapes, Journal of Structural Geology, vol.44, pp.54-75, 2012.

E. Kirby and K. Whipple, Quantifying rockuplift rates via stream profile analysis : Geology, v. 29, vol.2, pp.415-418, 2001.

S. Lamb and L. Hoke, Origin of the high plateau in the Central Andes, vol.16, pp.623-649, 1997.

R. O. Lease and T. A. Ehlers, Incision into the eastern Andean Plateau during Pliocene cooling : Science, v. 341, pp.774-776, 2013.

J. M. Licciardi, J. M. Schaefer, J. R. Taggart, and D. C. Lund, Holocene Glacier Fluctuations in the Climate Linkages : Science, v. 1677, pp.4-6, 2009.

K. Luirei, S. S. Bhakuni, and G. C. Kothyari, Drainage response to active tectonics and evolution of tectonic geomorphology across the Himalayan Frontal Thrust, Kumaun Himalaya : Geomorphology, v. 239, pp.58-72, 2015.

A. Margirier, L. Audin, X. Robert, F. Herman, J. Ganne et al., Time and mode of exhumation of the Cordillera Blanca batholith, Journal of Geophysical Research : Solid Earth, vol.121, pp.6235-6249, 2016.
URL : https://hal.archives-ouvertes.fr/insu-01677067

R. Marocco, Etude géologique de la chaîne andine au niveau de la déflexion d'Abancay (Pérou) : Cah. ORSTOM, pp.45-58, 1971.

H. P. Moon, The geology and physiography of the Altiplano of Peru and Bolivia : Transactions of the Linnean Society of, pp.27-43, 1939.

Z. Peizhen, P. Molnar, and W. R. Downs, Increased sedimentation rates and grain sizes 2-4 Ma ago due to the influence of climate change on erosion rates : Nature, v. 410, pp.891-897, 2001.

J. T. Perron and L. Royden, An integral approach to bedrock river profile analysis : Earth Surface Processes and Landforms, vol.38, pp.570-576, 2013.

C. J. Poulsen, T. A. Ehlers, and N. Insel, Onset of Convective Rainfall During Gradual Late Miocene Rise of the Central Andes : Science, v. 328, pp.490-494, 2010.

L. Seeber and V. Gornitz, River profiles along the Himalayan arc as indicators of active tectonics : Tectonophysics, v. 92, pp.335-367, 1983.

M. A. Seidl, W. E. Dietrich, and J. W. Kirchner, Longitudinal Profile Development into Bedrock : An Analysis of Hawaiian Channels : The Journal of Geology, vol.102, pp.457-474, 1994.

M. Servant and S. Servant-vildary, Holocene precipitation and atmospheric changes inferred from river paleowetlands in the Bolivian Andes, Palaeogeography, Palaeoclimatology, Palaeoecology, vol.194, pp.187-206, 2003.

L. Struth, D. Garcia-castellanos, M. Viaplana-muzas, and J. Vergés, Drainage network dynamics and knickpoint evolution in the Ebro and Duero basins : From endorheism to exorheism : Geomorphology, v. 327, pp.554-571, 2019.

. Géomorphologie and . De-la-déflexion-d'abancay,

S. D. Willett, S. W. Mccoy, J. Taylor-perron, L. Goren, C. et al., Dynamic reorganization of River Basins : Science, v, vol.343, 2014.

J. M. Wise and D. C. Noble, Late Pliocene inception of external drainage and erosion of intermontane basins in the highlands of Central Perú : Revista de la Sociedad Geologica de Espana, vol.21, pp.73-91, 2008.

C. W. Wobus, K. Hodges, and K. Whipple, Has focused denudation at the Himalayan topographic front sustained active thrusting near the Main Central Thrust ? Geology, v. 31, pp.861-864, 2003.

C. Wobus, K. X. Whipple, E. Kirby, N. Snyder, J. Johnson et al., Tectonics from topography : Procedures, promise, and pitfalls, pp.55-74, 2006.

P. K. Zeitler, Erosion, Himalayan Geodynamics, and the Geomorphology of Metamorphism : GSA Today, pp.4-9, 2001.

J. B. Barnes and T. A. Ehlers, End member models for Andean Plateau uplift : Earth-Science Reviews, pp.105-132, 2009.

J. Braun, Quantifying the effect of recent relief changes on age-elevation relationships : Earth and Planetary Science Letters, pp.331-343, 2002.

J. Braun, P. Van-der-beek, and G. Batt, Quantitative Thermochronology : Numerical Methods for the Interpretation of Thermochronological Data : Cambridge, 2006.

G. Carlier, G. Grandin, G. Laubacher, R. Marocco, and F. Mégard, Present knowledge of the magmatic evolution of the, Earth Science Reviews, vol.18, pp.253-283, 1982.

G. Carlier, J. P. Lorand, M. Bonhomme, and V. Carlotto, A reappraisal of the cenozoic inner arc magmatism in southern Peru : consequences for the evolution of the central Andes for the past 50 Ma : Third ISAG, pp.551-554, 1996.

G. Carlier, J. P. Lorand, J. P. Liégeois, M. Fornari, P. Soler et al., Potassic-ultrapotassic mafic rocks delineate two lithospheric mantle blocks beneath the southern Peruvian Altiplano : Geology, vol.33, pp.601-604, 2005.

B. Dalmayrac, G. Laubacher, and R. Marocco, Géologie des Andes péruviennes, vol.501, 1980.

N. Espurt, J. Barbarand, M. Roddaz, S. Brusset, P. Baby et al., A scenario for late Neogene Andean shortening transfer in the Camisea Subandean zone (Peru, 12 ? S) : Implications for growth of the northern Andean Plateau, pp.2050-2068, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00583773

K. Gallagher, Transdimensional inverse thermal history modeling for quantitative thermochronology, Journal of Geophysical Research : Solid Earth, vol.117, pp.1-16, 2012.
URL : https://hal.archives-ouvertes.fr/insu-00676497

C. N. Garzione, Tectonic Evolution of the Central Andean Plateau and Implications for the Growth of Plateaus : Annual Review of Earth and Planetary Sciences, v. 45, pp.529-559, 2017.

C. Gautheron, N. Espurt, J. Barbarand, M. Roddaz, P. Baby et al., Direct dating of thick-and thin-skin thrusts in the Peruvian Subandean zone through apatite (U-Th)/He and fission track thermochronometry, vol.25, pp.419-435, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00812079

D. Incision and P. Picchu,

C. Gautheron, L. Tassan-got, J. Barbarand, and M. Pagel, Effect of alphadamage annealing on apatite (U-Th)/He thermochronology : Chemical Geology, v. 266, pp.166-179, 2009.

C. Glotzbach, P. A. Van-der-beek, and C. Spiegel, Episodic exhumation and relief growth in the Mont Blanc massif, Western Alps from numerical modelling of thermochronology data : Earth and Planetary Science Letters, vol.304, pp.417-430, 2011.

S. Henry and H. Pollack, Terrestrial Heat Flow Above the Andean Subduction Zone in Bolivia and Peru, Journal of Geophysical Research, issue.93, pp.153-162, 1988.

C. Hoorn, Amazonia through time : Andean uplift, climate change, landscape evolution, and biodiversity : Science, v. 330, pp.927-931, 2010.

E. Jaillard and P. Soler, Cretaceous to early Paleogene tectonic evolution of the northern Central Andes (0-18 degrees S) and its relations to geodynamics : Tectonophysics, v. 259, pp.41-53, 1996.

L. Kennan, Fission track ages and sedimentary provenance studies in Peru, and their implications for andean paleogeographic evolution, stratigraphy and hydrocarbon systems, 2008.

E. Kirby and K. X. Whipple, Expression of active tectonics in erosional landscapes, Journal of Structural Geology, vol.44, pp.54-75, 2012.

P. O. Koons, P. K. Zeitler, and B. Hallet, Tectonic Aneurysms and Mountain Building, Treatise on Geomorphology, pp.318-349, 2013.

R. O. Lease and T. A. Ehlers, Incision into the eastern Andean Plateau during Pliocene cooling : Science, v. 341, pp.774-776, 2013.

R. Marocco, Etude géologique de la chaîne andine au niveau de la déflexion d'Abancay (Pérou) : Cah. ORSTOM, pp.45-58, 1971.

Z. Peizhen, P. Molnar, and W. R. Downs, Increased sedimentation rates and grain sizes 2-4 Ma ago due to the influence of climate change on erosion rates : Nature, v. 410, pp.891-897, 2001.

M. Pérez-gussinyé, A. R. Lowry, J. Phipps-morgan, and A. Tassara, Effective elastic thickness variations along the andean margin and their relationship to subduction geometry : Geochemistry, 2008.

N. D. Perez, B. K. Horton, N. Mcquarrie, K. Stübner, and T. A. Ehlers, Andean shortening, inversion and exhumation associated with thin-and thick-skinned deformation in southern Peru : Geological Magazine, vol.153, pp.1013-1041, 2016.

D. Picard, T. Sempere, and O. Plantard, Direction and timing of uplift propagation in the Peruvian Andes deduced from molecular phylogenetics of highland biotaxa : Earth and Planetary Science Letters, v. 271, pp.326-336, 2008.

C. J. Poulsen, T. A. Ehlers, and N. Insel, Onset of Convective Rainfall During Gradual Late Miocene Rise of the Central Andes : Science, v. 328, pp.490-494, 2010.

P. W. Reiners and M. T. Brandon, Using Thermochronology to Understand orogenic Erosion : Annual Review of Earth and Planetary Sciences, vol.34, pp.419-466, 2006.

P. Roperch, V. Carlotto, G. Ruffet, and M. Fornari, Tectonic rotations and transcurrent deformation south of the Abancay deflection in the Andes of southern Peru : Tectonics, v, vol.30, 2011.

G. M. Ruiz, V. Carlotto, P. V. Van-heiningen, and P. A. Andriessen, Steady-state exhumation pattern in the Central, vol.324, pp.307-316, 2009.

T. F. Schildgen, P. A. Van-der-beek, H. D. Sinclair, and R. C. Thiede, Spatial correlation bias in late-Cenozoic erosion histories derived from thermochronology : Nature, v. 559, pp.89-93, 2018.

M. R. Strecker, R. N. Alonso, B. Bookhagen, B. Carrapa, G. E. Hilley et al., Tectonics and Climate of the Southern Central Andes : Annual Review of Earth and Planetary Sciences, vol.35, pp.747-787, 2007.

K. E. Sundell, J. E. Saylor, T. J. Lapen, and B. K. Horton, Implications of variable late Cenozoic surface uplift across the Peruvian central Andes : Scientific Reports, pp.1-12, 2019.

. Picard, Simplified model (aerial view) showing suggested paleodrainage evolution associated to paleo-elevation data, 2008.

J. Arndt, T. Bartel, E. Scheuber, and F. Schilling, Thermal and rheological properties of granodioritic rocks from the Central Andes, pp.75-88, 1997.

M. Assumpção, M. Feng, A. Tassara, J. , and J. , Models of crustal thickness for South America from seismic refraction, receiver functions and surface wave tomography : Tectonophysics, v. 609, pp.82-96, 2013.

J. H. Davies, Global map of solid Earth surface heat flow : Geochemistry, Geophysics, Geosystems, v. 14, pp.4608-4622, 2013.

R. A. Donelick, P. B. Sullivan, and R. A. Ketcham, Apatite Fission-Track Analysis : Reviews in Mineralogy and Geochemistry, vol.58, pp.49-94, 2005.

T. A. Ehlers, T. Chaudhri, S. Kumar, C. W. Fuller, S. D. Willett et al., Computational Tools for Low-Temperature Thermochronometer Interpretation : Reviews in Mineralogy and Geochemistry, vol.58, pp.589-622, 2005.

N. J. Evans, J. P. Byrne, J. T. Keegan, and L. E. Dotter, Determination of Uranium and Thorium in Zircon, Apatite, and Fluorite : Application to Laser (U-Th)/He Thermochronology, Journal of Analytical Chemistry, vol.60, pp.1159-1165, 2005.

R. F. Galbraith and G. M. Laslett, Statistical models for mixed fission track ages : International Journal of Radiation Applications and Instrumentation. Part, vol.21, pp.459-470, 1993.

C. Gautheron and L. Tassan-got, A Monte Carlo approach to diffusion applied to noble gas/helium thermochronology : Chemical Geology, vol.273, pp.212-224, 2010.

C. Gautheron, L. Tassan-got, J. Barbarand, and M. Pagel, Effect of alphadamage annealing on apatite (U-Th)/He thermochronology : Chemical Geology, v. 266, pp.166-179, 2009.

C. Gautheron, L. Tassan-got, R. A. Ketcham, and K. J. Dobson, Accounting for long alpha-particle stopping distances in (U-Th-Sm)/He geochronology : 3D modeling of diffusion, zoning, implantation, and abrasion : Geochimica et Cosmochimica Acta, vol.96, pp.44-56, 2012.

R. Gonfiantini, M. Roche, J. Olivry, J. Fontes, and G. M. Zuppi, The altitude effect on the isotopic composition of tropical rains : Chemical Geology, pp.147-167, 2001.

S. G. Henry and H. N. Pollack, Terrestrial heat flow above the Andean Subduction Zone in Bolivia and Peru, Journal of Geophysical Research : Solid Earth, issue.93, pp.15153-15162, 1988.

N. Kar, C. N. Garzione, C. Jaramillo, T. Shanahan, V. Carlotto et al., Rapid regional surface uplift of the northern Altiplano plateau revealed by multiproxy paleoclimate reconstruction : Earth and Planetary Science Letters, vol.447, pp.33-47, 2016.

R. A. Ketcham, A. Carter, R. A. Donelick, J. Barbarand, and A. J. Hurford, Improved modeling of fission-track annealing in apatite : American Mineralogist, v. 92, pp.799-810, 2007.

R. A. Ketcham, C. Gautheron, and L. Tassan-got, Accounting for long alphaparticle stopping distances in (U-Th-Sm)/He geochronology : Refinement of the baseline case : Geochimica et Cosmochimica Acta, vol.75, pp.7779-7791, 2011.

A. G. Klein, G. O. Seltzer, and B. L. Isacks, Modern and last local glacial maximum snowlines in the Central Andes of Peru, Quaternary Science Reviews, vol.18, pp.63-84, 1999.

S. Lloyd, S. Van-der-lee, G. S. França, M. Assumpção, and M. Feng, Moho map of South America from receiver functions and surface waves, Journal of Geophysical Research : Solid Earth, vol.115, pp.1-12, 2010.

Y. Ma, C. , and R. W. , The crust and uppermost mantle structure of Southern Peru from ambient noise and earthquake surface wave analysis : Earth and Planetary Science Letters, v. 395, pp.61-70, 2014.

N. Mcglashan, L. Brown, K. , and S. , Crustal thickness in the central Andes from teleseismically recorded depth phase precursors : Geophysical Journal International, vol.175, pp.1013-1022, 2008.

D. Picard, T. Sempere, and O. Plantard, Direction and timing of uplift propagation in the Peruvian Andes deduced from molecular phylogenetics of highland biotaxa : Earth and Planetary Science Letters, v. 271, pp.326-336, 2008.

. .. Tectonics, Article in preparation for

. .. Results,

. .. Discussion and . .. Ma, 258 6.1.6.1 Exhumation rates computation and validation

. .. Ma, Eastern Cordillera -Increased exhumation since, p.261

.. .. ,

.. .. Conclusion,

.. .. Acknowledgements,

. .. Supplementary-material, , p.274

. .. Résumé-/-overview,

R. W. Allmendinger, R. Smalley, M. Bevis, H. Caprio, and B. Brooks, Bending the Bolivian orocline in real time : Geology, v. 33, pp.905-908, 2005.

R. B. Anderson, S. P. Long, B. K. Horton, S. N. Thomson, A. Z. Calle et al., ? S) : Implications for Cordilleran Cyclicity : Tectonics, v. 37, pp.3577-3609, 2018.

R. Armijo, R. Lacassin, A. Coudurier-curveur, and D. Carrizo, Coupled tectonic evolution of Andean orogeny and global climate : Earth-Science Reviews, pp.1-35, 2015.

J. Arndt, T. Bartel, E. Scheuber, and F. Schilling, Thermal and rheological properties of granodioritic rocks from the Central Andes, pp.75-88, 1997.

M. Assumpção, M. Feng, A. Tassara, J. , and J. , Models of crustal thickness for South America from seismic refraction, receiver functions and surface wave tomography : Tectonophysics, v. 609, pp.82-96, 2013.

J. B. Barnes and T. A. Ehlers, End member models for Andean Plateau uplift : Earth-Science Reviews, pp.105-132, 2009.

J. B. Barnes, T. A. Ehlers, N. Insel, N. Mcquarrie, and C. J. Poulsen, Linking orography, climate, and exhumation across the central Andes : Geology, v. 40, pp.1135-1138, 2012.

B. T. Bishop, S. L. Beck, G. Zandt, L. Wagner, M. Long et al., Causes and consequences of flat-slab subduction in southern Peru : Geosphere, vol.13, pp.1392-1407, 2017.

M. Bonhomme, M. Fornari, G. Laubacher, M. Sébrier, and G. Vivier, New Cenozoic K-Ar ages on volcanic rocks from the eastern High, Journal of South American Earth Sciences, issue.1, pp.179-183, 1988.

J. Braun, Pecube : A new finite-element code to solve the 3D heat transport equation including the effects of a time-varying, finite amplitude surface topography : Computers and Geosciences, v. 29, pp.787-794, 2003.

E. Sud-(déflexion-d'abancay and P. ,

J. Braun, P. Van-der-beek, P. Valla, X. Robert, F. Herman et al., Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using PECUBE : Tectonophysics, v. 524-525, pp.1-28, 2012.

G. Carlier, J. P. Lorand, M. Bonhomme, and V. Carlotto, A reappraisal of the cenozoic inner arc magmatism in southern Peru : consequences for the evolution of the central Andes for the past 50 Ma : Third ISAG, pp.551-554, 1996.

V. Carlotto, Paleogeographic and tectonic controls on the evolution of Cenozoic basins in the Altiplano and Western Cordillera of southern Peru : Tectonophysics, v. 589, pp.195-219, 2013.

G. S. Chulick, S. Detweiler, and W. D. Mooney, Seismic structure of the crust and uppermost mantle of South America and surrounding oceanic basins, Journal of South American Earth Sciences, vol.42, pp.260-276, 2013.

B. Dalmayrac, G. Laubacher, and R. Marocco, Géologie des Andes péruviennes, vol.501, 1980.

J. H. Davies, Global map of solid Earth surface heat flow : Geochemistry, Geophysics, Geosystems, v. 14, pp.4608-4622, 2013.

C. Dorbath, L. Dorbath, A. Cisternas, J. Deverchére, and M. Sebrier, Seismicity of the huancayo basin (central Peru) and the huaytapallana fault, Journal of South American Earth Sciences, issue.3, pp.21-29, 1990.

A. M. Dziewonski, T. A. Chou, and J. H. Woodhouse, Determination of earthquake source parameters from waveform data for studies of global and regional seismicity, Journal of Geophysical Research, vol.86, pp.2825-2852, 1981.

T. A. Ehlers, T. Chaudhri, S. Kumar, C. W. Fuller, S. D. Willett et al., Computational Tools for Low-Temperature Thermochronometer Interpretation : Reviews in Mineralogy and Geochemistry, vol.58, pp.589-622, 2005.

T. A. Ehlers and C. J. Poulsen, Influence of Andean uplift on climate and paleoaltimetry estimates : Earth and Planetary Science Letters, v. 281, pp.238-248, 2009.

G. Ekström, M. Nettles, and A. M. Dziewo?ski, The global CMT project 2004-2010 : Centroid-moment tensors for 13,017 earthquakes : Physics of the Earth and Planetary Interiors, v, pp.1-9, 0201.

, Article in preparation for Tectonics

N. Espurt, J. Barbarand, M. Roddaz, S. Brusset, P. Baby et al., A scenario for late Neogene Andean shortening transfer in the Camisea Subandean zone (Peru, 12 ? S) : Implications for growth of the northern Andean Plateau, pp.2050-2068, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00583773

N. J. Evans, J. P. Byrne, J. T. Keegan, and L. E. Dotter, Determination of Uranium and Thorium in Zircon, Apatite, and Fluorite : Application to Laser (U-Th)/He Thermochronology, Journal of Analytical Chemistry, vol.60, pp.1159-1165, 2005.

K. A. Farley, He Dating : Techniques, Calibrations, and Applications : Reviews in Mineralogy and Geochemistry, vol.47, pp.819-844, 2002.

R. F. Galbraith and G. M. Laslett, Statistical models for mixed fission track ages : International Journal of Radiation Applications and Instrumentation. Part, vol.21, pp.459-470, 1993.

K. Gallagher, Transdimensional inverse thermal history modeling for quantitative thermochronology, Journal of Geophysical Research : Solid Earth, vol.117, pp.1-16, 2012.
URL : https://hal.archives-ouvertes.fr/insu-00676497

C. N. Garzione, Tectonic Evolution of the Central Andean Plateau and Implications for the Growth of Plateaus : Annual Review of Earth and Planetary Sciences, v. 45, pp.529-559, 2017.

C. N. Garzione, P. Molnar, J. C. Libarkin, and B. J. Macfadden, Rapid late Miocene rise of the Bolivian Altiplano : Evidence for removal of mantle lithosphere : Earth and Planetary Science Letters, v. 241, pp.543-556, 2006.

C. Gautheron, N. Espurt, J. Barbarand, M. Roddaz, P. Baby et al., Direct dating of thick-and thin-skin thrusts in the Peruvian Subandean zone through apatite (U-Th)/He and fission track thermochronometry, vol.25, pp.419-435, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00812079

C. Gautheron and L. Tassan-got, A Monte Carlo approach to diffusion applied to noble gas/helium thermochronology : Chemical Geology, vol.273, pp.212-224, 2010.

C. Gautheron, L. Tassan-got, J. Barbarand, and M. Pagel, Effect of alphadamage annealing on apatite (U-Th)/He thermochronology : Chemical Geology, v. 266, pp.166-179, 2009.

E. Sud-(déflexion-d'abancay and P. ,

C. Gautheron, L. Tassan-got, R. A. Ketcham, and K. J. Dobson, Accounting for long alpha-particle stopping distances in (U-Th-Sm)/He geochronology : 3D modeling of diffusion, zoning, implantation, and abrasion : Geochimica et Cosmochimica Acta, vol.96, pp.44-56, 2012.

C. Glotzbach, P. A. Van-der-beek, and C. Spiegel, Episodic exhumation and relief growth in the Mont Blanc massif, Western Alps from numerical modelling of thermochronology data : Earth and Planetary Science Letters, vol.304, pp.417-430, 2011.

R. Gonfiantini, M. Roche, J. Olivry, J. Fontes, and G. M. Zuppi, The altitude effect on the isotopic composition of tropical rains : Chemical Geology, pp.147-167, 2001.

N. Gotberg, N. Mcquarrie, and V. C. Caillaux, Comparison of crustal thickening budget and shortening estimates in southern Peru (12 14 ? S) : Implications for mass balance and rotations in the "Bolivian orocline, vol.122, pp.727-742, 2010.

P. F. Green, A new look at statistics in fission-track dating : Nuclear Tracks, pp.77-86, 1981.

K. M. Gregory-wodzicki, P. S. Van-heiningen, V. Carlotto, A. D. Zuloaga, L. Romero et al., Oligocene to Pleistocene exhumation patterns across the Apurimac River drainage basin, southern Peru : 6th International Symposium on Andean Geodynamics, vol.112, pp.763-766, 2000.

S. G. Henry and H. N. Pollack, Terrestrial heat flow above the Andean Subduction Zone in Bolivia and Peru, Journal of Geophysical Research : Solid Earth, issue.93, pp.15153-15162, 1988.

B. K. Horton, Revised deformation history of the central Andes : Inferences from Cenozoic foredeep and intermontane basins of the Eastern Cordillera, pp.1-18, 2005.

B. K. Horton, N. D. Perez, J. D. Fitch, and J. E. Saylor, Punctuated shortening and subsidence in the Altiplano Plateau of southern Peru : Implications for early Andean mountain building : Lithosphere, pp.117-137, 2014.

L. Husson and T. Sempere, Thickening the Altiplano crust by gravity-driven crustal channel flow : Geophysical Research Letters, v. 30, pp.1-4, 2003.

, Article in preparation for Tectonics

N. Insel, C. J. Poulsen, and T. A. Ehlers, Influence of the Andes Mountains on South American moisture transport, convection, and precipitation : Climate Dynamics, vol.35, pp.1477-1492, 2010.

N. Kar, C. N. Garzione, C. Jaramillo, T. Shanahan, V. Carlotto et al., Rapid regional surface uplift of the northern Altiplano plateau revealed by multiproxy paleoclimate reconstruction : Earth and Planetary Science Letters, vol.447, pp.33-47, 2016.

L. Kennan, Fission track ages and sedimentary provenance studies in Peru, and their implications for andean paleogeographic evolution, stratigraphy and hydrocarbon systems, 2008.

R. A. Ketcham, A. Carter, R. A. Donelick, J. Barbarand, and A. J. Hurford, Improved modeling of fission-track annealing in apatite : American Mineralogist, v. 92, pp.799-810, 2007.

R. A. Ketcham, C. Gautheron, and L. Tassan-got, Accounting for long alphaparticle stopping distances in (U-Th-Sm)/He geochronology : Refinement of the baseline case : Geochimica et Cosmochimica Acta, vol.75, pp.7779-7791, 2011.

A. G. Klein, G. O. Seltzer, and B. L. Isacks, Modern and last local glacial maximum snowlines in the Central Andes of Peru, Quaternary Science Reviews, vol.18, pp.63-84, 1999.

S. Lamb, Did shortening in thick crust cause rapid Late Cenozoic uplift in the northern Bolivian Andes, Journal of the Geological Society, vol.168, pp.1079-1092, 2011.

R. O. Lease and T. A. Ehlers, Incision into the eastern Andean Plateau during Pliocene cooling : Science, v. 341, pp.774-776, 2013.

S. Lloyd, S. Van-der-lee, G. S. França, M. Assumpção, and M. Feng, Moho map of South America from receiver functions and surface waves, Journal of Geophysical Research : Solid Earth, vol.115, pp.1-12, 2010.

S. L. Loewy, J. N. Connelly, and I. W. Dalziel, An orphaned basement block : The Arequipa-Antofalla Basement of the central Andean margin of South America, vol.116, pp.171-187, 2004.

E. Sud-(déflexion-d'abancay and P. ,

Y. Ma, C. , and R. W. , The crust and uppermost mantle structure of Southern Peru from ambient noise and earthquake surface wave analysis : Earth and Planetary Science Letters, v. 395, pp.61-70, 2014.

M. Mamani, G. Wörner, and T. Sempere, Geochemical variations in igneous rocks of the Central Andean orocline (13 ? S to 18 ? S) : Tracing crustal thickening and magma generation through time and space, vol.122, pp.162-182, 2010.

R. Marocco, Etude géologique de la chaîne andine au niveau de la déflexion d'Abancay (Pérou) : Cah. ORSTOM, pp.45-58, 1971.

N. Mcglashan, L. Brown, K. , and S. , Crustal thickness in the central Andes from teleseismically recorded depth phase precursors : Geophysical Journal International, vol.175, pp.1013-1022, 2008.

L. Mercier, M. Sébrier, A. Lavenu, J. Cabrera, O. Bellier et al., Changes in the Tectonic Regime Above a Subduction Zone of Andean Type : The Andes of Peru and Bolivia During the Pliocene-Pleistocene, Journal of Geophysical Research, pp.945-982, 1992.

A. Mi?kovi?, R. A. Spikings, D. M. Chew, J. Ko?ler, A. Ulianov et al., Tectonomagmatic evolution of Western Amazonia : Geochemical characterization and zircon U-Pb geochronologic constraints from the Peruvian Eastern Cordilleran granitoids, vol.121, pp.1298-1324, 2009.

J. G. Mosolf, B. K. Horton, M. T. Heizler, and R. Matos, Unroofing the core of the central Andean fold-thrust belt during focused late Miocene exhumation : Evidence from the Tipuani-Mapiri wedge-top basin, pp.346-360, 2011.

J. P. Müller, J. Kley, J. , and V. , Structure and Cenozoic kinematics of the Eastern Cordillera, southern Bolivia (21 ? S) : Tectonics, v. 21, pp.1-1, 2002.

K. Norton and F. Schlunegger, Migrating deformation in the Central Andes from enhanced orographic rainfall : Nature Communications, 2011.

W. B. Ouimet and K. L. Cook, Building the central Andes through axial lower crustal flow : Tectonics, v. 29, pp.1-15, 2010.

, Article in preparation for Tectonics

Z. Peizhen, P. Molnar, and W. R. Downs, Increased sedimentation rates and grain sizes 2-4 Ma ago due to the influence of climate change on erosion rates : Nature, v. 410, pp.891-897, 2001.

M. Pérez-gussinyé, A. R. Lowry, J. Phipps-morgan, and A. Tassara, Effective elastic thickness variations along the andean margin and their relationship to subduction geometry : Geochemistry, 2008.

N. D. Perez, B. K. Horton, and V. Carlotto, Structural inheritance and selective reactivation in the central Andes : Cenozoic deformation guided by pre-Andean structures in southern Peru : Tectonophysics, v. 671, pp.264-280, 2016.

K. Phillips, R. W. Clayton, P. Davis, H. Tavera, R. Guy et al., Structure of the subduction system in southern Peru from seismic array data, Journal of Geophysical Research, vol.117, pp.1-17, 2012.

C. J. Poulsen, T. A. Ehlers, and N. Insel, Onset of Convective Rainfall During Gradual Late Miocene Rise of the Central Andes : Science, v. 328, pp.490-494, 2010.

A. J. Rak, N. Mcquarrie, and T. A. Ehlers, An Integrated Thermochronometer and Thermokinematic Modeling Approach : Tectonics, v. 36, pp.2524-2554, 2017.

V. A. Ramos, The Basement of the Central Andes : The Arequipa and Related Terranes : Annual Review of Earth and Planetary Sciences, vol.36, pp.289-324, 2008.

V. A. Ramos, The Grenville-age basement of the Andes, Journal of South American Earth Sciences, vol.29, pp.77-91, 2010.

M. E. Raymo and W. F. Ruddiman, Tectonic Forcing of late Cenozoic climate : Nature, v. 359, pp.117-122, 1992.

A. Recanati, Helium trapping in apatite damage : Insights from (U-Th, 2017.
URL : https://hal.archives-ouvertes.fr/insu-01588347

, He dating of different granitoid lithologies : Chemical Geology, vol.470, pp.116-131

P. W. Reiners and M. T. Brandon, Using Thermochronology To Understand Orogenic Erosion : Annual Review of Earth and Planetary Sciences, vol.34, pp.419-466, 2006.

P. W. Reiners and D. L. Shuster, Thermochronology and landscape evolution : Physics Today, pp.31-36, 2009.

E. Sud-(déflexion-d'abancay and P. ,

X. Robert, P. Van-der-beek, J. Braun, C. Perry, and J. L. Mugnier, Control of detachment geometry on lateral variations in exhumation rates in the Himalaya : Insights from low-temperature thermochronology and numerical modeling, Journal of Geophysical Research : Solid Earth, vol.116, pp.1-22, 2011.
URL : https://hal.archives-ouvertes.fr/insu-00681449

P. Roperch, T. Sempere, O. Macedo, C. Arriagada, M. Fornari et al., Counterclockwise rotation of late Eocene-Oligocene fore-arc deposits in southern Peru and its significance for oroclinal bending in the central Andes : Tectonics, p.25, 2006.

G. M. Ruiz, V. Carlotto, P. V. Van-heiningen, and P. A. Andriessen, Steady-state exhumation pattern in the Central, vol.324, pp.307-316, 2009.

M. Sambridge, Geophysical inversion with a neighbourhood algorithm -I, 1999.

, Searching a parameter space, Geophysical Journal International, v, vol.138, pp.479-494

M. Sambridge, Geophysical inversion with a neighbourhood algorithm -II, J. Int., v, vol.138, pp.727-746, 1999.

T. F. Schildgen, P. A. Van-der-beek, H. D. Sinclair, and R. C. Thiede, Spatial correlation bias in late-Cenozoic erosion histories derived from thermochronology : Nature, v. 559, pp.89-93, 2018.

G. E. Schwarz, Estimating the dimension of a model, Annu. Stat., v, vol.6, pp.461-464, 1978.

M. Sébrier, L. Mercier, M. Francois, G. Laubacher, and E. Carey-gailhardis, Quaternary Normal and Reverse Faulting and the State of Stress in the Central Andes of South Peru : Tectonics, pp.739-780, 1985.

T. Sempere, Late Permian-Middle Jurassic lithospheric thinning in Peru and Bolivia, and its bearing on Andean-age tectonics : Tectonophysics, v. 345, pp.211-217, 2002.

S. V. Sobolev and A. Y. Babeyko, What drives orogeny in the Andes ?, Geology, vol.33, pp.617-620, 2005.

M. Springer, Interpretation of heat-flow density in the Central Andes, Tectonophysics, vol.306, pp.377-395, 1999.

M. R. Strecker, R. N. Alonso, B. Bookhagen, B. Carrapa, G. E. Hilley et al., Tectonics and Climate of the Southern Central Andes : Annual Review of Earth and Planetary Sciences, vol.35, pp.747-787, 2007.

, Article in preparation for Tectonics

K. Stüwe, L. White, and R. Brown, The influence of eroding topography on steady-state isotherms. Application to fission track analysis : Earth and Planetary Science Letters, vol.124, pp.63-74, 1994.

K. E. Sundell, J. E. Saylor, T. J. Lapen, and B. K. Horton, Implications of variable late Cenozoic surface uplift across the Peruvian central Andes : Scientific Reports, pp.1-12, 2019.

A. Tassara, Interaction between the Nazca and South American plates and formation of the Altiplano-Puna plateau : Review of a flexural analysis along the Andean margin (15 ? -34 ? S) : Tectonophysics, v. 399, pp.39-57, 2005.

D. W. Waples and J. S. Waples, A review and evaluation of specific heat capacities of rocks, minerals, and subsurface fluids. Part 2 : Fluids and porous rocks : Natural Resources Research, pp.123-130, 2004.

K. X. Whipple and B. J. Meade, Controls on the strength of coupling among climate, erosion, and deformation in two-sided, frictional orogenic wedges at steady state, Journal of Geophysical Research : Earth Surface, vol.109, pp.1-24, 2004.

A. G. Whittington, A. M. Hofmeister, and P. I. Nabelek, Temperature-dependent thermal diffusivity of the Earth's crust and implications for magmatism : Nature, v. 458, pp.319-321, 2009.

S. Willett, C. Beaumont, and P. Fullsack, Mechanical model for the tectonics of doubly vergent compressional orogens : Geology, v. 21, vol.2, pp.371-374, 1993.

S. Wimpenny, A. Copley, C. Benavente, and E. Aguirre, Extension and Dynamics of the Andes Inferred From the 2016 Parina (Huarichancara) Earthquake, Journal of Geophysical Research : Solid Earth, issue.123, pp.8198-8228, 2018.

, of best-fit model predictions to the data. FT : Fission Track ; MTL : Mean Track Length ; AHe : Apatite Helium, Obs : Observed

, The red square shows the explored time and temperature range for inversion. The colored lines show the T-t paths for the top and the bottom samples with their respective likelihood (see color scale on right). The solid black and grey lines show the expected model and its 95% reliable interval for the thermal histories of the top and bottom samples, respectively. The grey lines in between represent the expected cooling paths for the intermediate samples. Cooling rate derived from QTQt is indicated on the graph. B) Graph of observed vs. predicted data. Fit of best-fit model predictions to the data. FT : Fission Track, Supplementary Material SUPPLEMENTARY FIGURE 8. QTQt inversion results for the Abancay highaltitudinal profile. A) Time-temperature paths obtained by inversion of AHe and AFT thermochronology data from the Abancay age-elevation profile using QTQt

, A) Age-elevation plot for observed AHe and AFT ages vs. predicted ones. B) Implemented AHe ages in function of predicted AHe ages. C) Implemented AFT ages in function of predicted AFT ages. D) Probability density function for implemented fission track length vs. predicted ones. E) Direct comparison of Time-temperature paths derived from QTQt modeling and T-t paths derived from PE-CUBE. F) Implemented temperature (QTQt) in function of predicted ones computed with PECUBE. G) Implemented modeled mean topography evolution (Sundell et al., 2019) and percentage of present-relief for forward modeling. H) Implemented topography (GTOPO30) in function of the predicted one by PECUBE after landscape evolution computation

E. Sud-(déflexion-d'abancay and P. ,

, Synthèse des informations extraites aux chapitres précédents296

, La Déflexion d'Abancay entre ?40 et ?5 Ma -Composante d'exhumation verticale limitée et structuration horizontale Miocène

L. .. Déflexion-d'abancay-entre-?5-ma, 300 7.1.2.1 Capture du paléo-Altiplano et basculement tectonique de la Cordillère Orientale au travers du système de failles de l'Apurimac

L. .. Déflexion-d'abancay-:-une-syntaxe-tectonique, 304 7.1.3.1 Analogies géomorphologiques avec les syntaxes himalayennes

, Analogies géodynamiques et tectoniques avec les syntaxes himalayennes et la syntaxe alaskienne, p.305

. .. Résumé-/-overview, , p.314

.. .. Perspectives,

, Synthèse des informations extraites aux chapitres précédents

, Les roches actuellementà la surface et disponibles pour l'échantillonnageétaient trop profondes et donc trop chaudes (systèmes thermochronométriques non activés ou resetés (remisà zéro) pour enregistrer cette perturbation thermique

, Pour le sud de la Cordillère Orientale, l'exhumation rapide post-5 Ma et la dénudation (érosion) en conséquence a détruit ce signal

, La perturbation thermique associéeà l'activité de l'arc magmatiqueétait géographiquement et temporellement limitée et n'a pu affecter les données thermochronologiques par réchauffement

A. Ma and ). Müller, 2002) et se manifeste par des rotations antihoraires d'ampleur (>45 ? ) pour le flanc nord de l'Orocline, en particulier dans la région de la Déflexion, 1995.

C. Synthèse and . Et, Abancay entre ?40 et ?5 Ma valident plutôt l'hypothèse d'un soulèvement continu et uniforme pour les Andes Centrales (Barnes and Ehlers, 2009) pour cette même période. En effet, l'exhumation quantifie les dynamiques verticales des roches. Elle est favorisée par l'érosion (dénudation) en réponseà un soulèvement de surface (tectonique ou non), PERSPECTIVES Les taux d'exhumation uniformes et constants pour la région d

, Ces observations sont donc en accord avec des mécanismes crustaux de soulèvement tels qu'un flux de croûte ductile inférieure (Husson and Sempere, 2003.

C. Ouimet and . Phillips, Cependant je ne peux exclure l'accélération de soulèvement de surface mis enévidence par, et/ou un raccourcissement tectoniqueà grandeéchelle, 2010.

, Les taux d'exhumation ont donc très bien pu rester stables malgré une accélération des taux de soulèvement de surface. Toutefois, il aété montré que l'accélération du soulèvement de surface pour cette région est un artéfact gouverné par la variabilité climatique, elle-même gouvernée par le soulèvement des Andes Centrales au Miocène, les processi de dénudation sont faibles (bassins intra-montagneux, dépôt sédimentaire), 2009.

C. Garzione, hypothèse d'un soulèvement de surface et d'une exhumation associée lents et continus depuis 40 Ma. Ceséléments permettent d'éliminer l'hypothèse d'une potentielle implication de délamination lithosphérique invoquée par Garzione et al. (2006) qui implique un ou plusieurs pulses de soulèvement tardi-Miocène, 2017.

, Une activité sismique contemporaine

. Bonhomme, La circulation de fluides volcaniques le long du système de failles depuis ?7 Ma (Chapitre 2 ; Kaneoka and Guevara, 1984.

, Les anomalies positives de topographie, de pentes, de reliefs et de k sn affectant le sud de la Cordillère Orientale bordée par le système de failles de l

, L'enregistrement thermochronologique et les modèles thermo-cinématiquesà partir desâges AHe et AFT sont en faveur du basculement de la Cordillère Orientale au travers du rétrochevauchement (système de failles de l'Apurimac, Chapitres, vol.5, issue.6

. Espurt, Causes de l'exhumation post ?5 Ma de la Déflexion d'Abancay La région de la Déflexion d'Abancay est bordée au nord par la zone subandine pour laquelle le raccourcissement crustal est actif depuis ?14 Ma (Figs. 7.1 et 7.2, Synthèse des informations extraites aux chapitres précédents 7.1.2.2, 1985.

. Willett, En considérant la théorie d'équilibre d'un prisme orogénique, 1993.

;. Willett and M. Whipple, l'élargissement de l'orogène vers la zone subandine par transfert tectonique depuis les zones internes, 1999.

;. Horton and . Mcquarrie, 2018) est déclenché par l'accumulation de sédiment dans le bassin d'avant-pays andin (zone subandine ; Mosolf et al., 2011) en réponseà l'intensification des précipitations sur le flanc orientale des Andesà la fin du Miocène, 2005.

, Une caractéristique notable de la Déflexion d'Abancay est le fait que les rivières Urubamba et Apurimac sont parvenuesà traverser la Cordillère Orientale et inciser profondément la région

. Poulsen, Au regard de son timing d'initiation (?5 Ma ; Fig. 7.2) le système de failles de l'Apurimac est un chevauchement hors séquence. Au même moment dans la zone subandine, l'activité du chevauchement (fold and thrust belt) du Pongo de Mainique cesse, Chapitre 4) potentiellement favorisées par l'intensification du phénomène de mousson sud-américain, 2001.

C. Synthèse and . Et-perspectives-4-;-loewy, La localisation de la déformation sur le système de failles de l'Apurimac est très probablement favorisée par la présence du terrane d'Arequipa, 2004.

. Le-système-de-failles-de-l-;-allmendinger, Apurimac joue le rôle de butoir sur lequel vient s'enraciner la rampe des chevauchements subandinsà vergence est formant ainsi une structure en fleur (Chetty and Bhaskar Rao, 2006) d'échelle crustale entre le bloc d'Arequipa hérité de la phase de convergence Grenville-Sunsás il y a 1 Ga au sud, 2005.

. Carlier, Au cours du Miocène, il a localisé les contraintes transpressives dans le cadre de la structuration horizontale de la Déflexion d'Abancay, 1980.

. Montgomery, Une fois de plus cetteétude montre le lien ténu entre le climat et la dénudation subséquente et le régime tectonique d'une région, 2001.

. Ma)-de-la-déflexion, Abancay, contrôlée par l'incision qui découle potentiellement de l'intensification des précipitations de la régionà la fin du Miocène et du soulèvement tectonique avec le rétro chevauchement du système de failles de l

C. Synthèse and . Et-perspectives,

. Garzione, L'accélération de l'exhumation très localisée dans le coeur de la Déflexion d'Abancay (sud de la Cordillère orientale ; Chapitre 6) ne peutêtre expliqué par un phénomène de grande ampleur spatiale comme un phénomène de délamination lithosphérique, 2005.

, D'autre part, la ride Nazca subduite sous le continent sud-américain

(. Ma and . Rosenbaum, La migration vers le sud de la ride asismique de Nazca (Hampel, 2002) pourrait expliquer une accélération des taux d'exhumation observésà grandeéchelle dans la région de la Déflexion d'Abancay. Le signal de soulèvement supposé de la plaque supérieure (Regard et al., 2009) devrait intervenirà partir de ?6 Ma pour la région de la Déflexion d'Abancay compte tenu de la position de la ride de, 2005.

, Cependant d'un point de vue spatial, l'enregistrement thermochronologique ne montre

, La Déflexion d'Abancay : Une syntaxe tectonique

, Certainséléments géomorphologiques propresà la Déflexion d'Abancay (Fig. 7.3A) présentent de flagrantes ressemblances avec les syntaxes tectoniques décrites en Himalaya. Pour le système himalayen, je fais références aux massifs du Nanga Parbat

. Schneider, , 1999.

M. Hallet, , 2001.

. Zeitler, De surcroît, cette topographieélevée est largement entaillée par un réseau hydrographique (Indus pour le NP, Tout d'abord ces régions montrent une anomalie de topographie positive en comparaison avec les régions qui les entourent, 2001.

Y. , Ces mêmes rivières traversent l'orogène afin de rejoindre l'avant pays et sont capturées par des formations géologiques avec des changements brutaux de direction d'écoulement, Urubamba et Apurimac pour la Déflexion d'Abancay, 2001.

. Salween, . Mekong, . Yangtze, and . Zeitler, En amont ces réseaux hydrographiques capturent des surfaces perchées le long d'accident tectoniques, Ces surfaces appartiennent aux ensembles morphologiques du plateau du Tibet pour l'Himalaya et de l'Altiplano pour les Andes. Enfin les rivières s'alignent et se resserrent autour de failles héritées, 1998.

N. Np and . Zeitler, 2001) et d'Alaska (Mont Saint Elias, Les régimes de déformations qui caractérisent les syntaxes tectoniques himalayennes, 2009.

. Chapman, La combinaison de ces déformations se traduit par l'exhumation de socle (antiforme) sous l'action de failles crustales en fleur (pop-up) le long desquelles des fluides magmatique percolent, ) impliquent des rotations tectoniques associéesà des systèmes de failles décrochantes (Figs. 7, 1997.

, L'indenter pour le système Himalaya est la plaque indienne (Fig. 7.3C ; Koons, 1995) tandis que pour la syntaxe du mont Saint Elias il s

. 3b-;-enkelmann, Ce contexte tectonique particulier favorise l'exhumation et la dénudation du coeur de ces syntaxes avec des taux parfois colossaux, 2009.

Z. À-titre-d-;-le-zhe-ou-le and . King, exemple la syntaxe du Namche Barwa enregistre des taux d'érosion > 6 km/Ma avec desâges thermochronologiques uniformes et très jeunes (< 2 Ma) pour des systèmes thermochronométriques tels que l'AFT, 2016.

. Koons, Ce stade mature des syntaxes tectoniques est défini comme anévrisme tectonique. Ce stade se caractérise par une exhumation localisée et très rapide associéeà de l'advection de chaleur vers la surface, 2013.

C. Synthèse and . Et-perspectives-la-déflexion-d&apos;abancay, Les mesures GPS montrent le mouvement actuel et favorisent l'hypothèse d'une progression du terrane d'Arequipa sous les Andes Centrales jouant le rôle de poinçonneur pour la Déflexion d'Abancay. Enfin, les taux d'exhumation sont plus forts au son coeur de la Déflexion

. D&apos;un-point-de-vue-rhéologique-;-koons, Le contexte de la Déflexion d'Abancay est sensiblement différent. Même si des fluides volcaniques circulent le long du système de failles de l'Apurimac (Kaneoka and Guevara, l'advection de chaleur qui caractérise les anévrismes tectoniques provoque la remontée de la limite fragile ductile, 1984.

, 1), tectoniques et géodynamiques, il apparaît que la Déflexion d'Abancay est une syntaxe tectonique au même titre que celles du Namche Barwa, Naga Parbat (Himalaya) ou du mont Saint Elias (Alaska), vol.7

, Cette dernière n'a cependant pas atteint la maturité d'un anévrisme tectonique (Fig

, 3A)

, Synthèse des informations extraites aux chapitres précédents

, La Déflexion d'Abancay est encadrée par le carré tireté noir. A) Carte des Andes Centrales montrant les amplitudes et directions de rotation pour l'Orocline bolivien, Interprétations géodynamiques des Andes Centrales issues de mesures GPS

. Modifiée-d&apos;après-allmendinger, La courbure de l'Orocline bolivien est toujours en cours. B) Représentation schématique des principaux blocs continentaux indépendants des Andes péruviennes. Modifiée d'après, 2005.

C. Synthèse and . Et-perspectives,

, Conclusion : Résumé / Overview Dans ce manuscrit, je mets enévidence les points suivants

, Altiplano actuel est la relique d'un paléo-Altiplano endoréique qui s'étendait bien plus au nord au moins au cours du Miocène dont la région de la Déflexion d'Abancay faisant parti

, Ce paléo-plateau endoréique aété capturé au cours des derniers 10 Ma et probablement autour de 5 Ma parérosion régressive au travers des rivières Apurimac et Urubamba s'écoulant vers le bassin amazonien

, Pour la déflection d'Abancay, l'Altiplano et la Cordillère Orientale enregistrent des taux d'exhumation comparables de ?0,2 km/Ma entre 40 et ?5 Ma impliquant un probable mécanisme d'exhumation communà grandeéchelle

, Un différentiel d'exhumation se met en place autour de 5 Ma entre l'Altiplano et la Cordillère Orientale. L'Altiplano conserve des taux d'exhumation de ?0,2 km/Ma tandis que le sud de la Cordillère Orientale enregistre une accélération des taux d'exhumation d'un ordre de grandeur supérieur (?1,2 km/Ma)

, The present-day Altiplano is a relict of a northward-extended paleo-Altiplano internally drained at least during Miocene. The Abancay Deflection was an integrant part of this morphology

, This internally drained paleo-plateau was captured during the last 10 Ma and more likely around 5 Ma by regressive erosion through the Apurimac and Urubamba Rivers draining toward the Amazonian basin

, For the Abancay Deflection, the Altiplano and the Eastern Cordillera registered common exhumation rates of ?0.2 km/m.y. between 40 and ?5 Ma implying probable large scale mechanisms (Tectonic shortening and/or lower crustal flow)

, While the Altiplano kept exhumation rates of ?0.2 km/m.y., the southern Eastern Cordillera registered a rapid increase of exhumation rates of an order of magnitude (1.2 km/m.y.) for the last 5 Ma

, I explain the exhumation rates increasing of the southern Eastern Cordillera by the common action of the incision through the Urubamba River and the tectonic tilting and uplifting through the crustal-scale Apurimac fault system marking the northern limit of the Arequipa terrane

, The paleo-Altiplano capture caused an important denudation and sediment transportation toward the Amazonian basin (foreland) implying an orogenic wedge perturbation leading to the reactivation of inherited faults (?5 Ma

, According to morphological and tectonics similarities, I assume that the Abancay Deflection is actually a tectonic syntaxis, with the Arequipa terrane as the indenter, comparable to the Himalayan or Alaskan syntaxes. I insist on the syntaxis term, as the Abancay region is not comparable with a tectonic aneurism, I propose a new geological definition for the Abancay Deflection

, Perspectives Grâceà mon travail de thèse, j'apporte de nouvelles données pour cette région qui enétait dépourvue et j'intègre l'évolution géologique de la Déflexion d'Abancay dans le cadre de l'évolution géodynamique andine, Les problématiques principales ontété résolues. Cependant, mon travail ouvre des perspectives de recherche nouvelles et complémentaires

, L'acquisition de nouvelles données thermochronologiques pour des régions ciblées (points triples des réseaux hydrographiques) permettrait de déterminer plus précisément le timing de la capture du paléo-Altiplano par l'Apurimac. J'aiéchantillonné SYNTHÈSE, CONCLUSION ET PERSPECTIVES certaines de ces zones (Chapitre 8 ; Annexes) lors de ma mission de terrain, mais pour des raisons de temps imparti

, Abancay pour les derniers milliers d'années et ainsi apporter une nouvelle contrainte au regard de l'évolution morphologique de la région pour deséchelles de temps très courtes (Approximation des taux de dénudation, détermination des vitesses de propagation des knickpoints dans le réseau hydrographique. De nombreuses zones offrent la possibilité d'effectuer ce type d, L'acquisition de données cosmogéniques pourrait aussi offrir la possibilité de contraindre les vitesses d'incision du réseau hydrographique qui drainent la Déflexion d

, FastScape ; Braun and Willett, 2013) permettraient de mieux contraindre les dynamiques fluviatiles et de réorganisations des bassins versants au cours du temps. En particulier, ce type de modélisation serait idéal afin de contraindre le basculement des directions de drainage du paléo-Altiplano endoréiqueà un exoréisme en direction de l'Amazonie

, Des modélisations de la cinématique de la structuration en 3D prenant en considération l'advection latérale de matériel qui affecte la Déflexion d'Abancay au Miocène permettrait d'affiner les valeurs de taux de raccourcissement enregistrées pour cette bordure nord de l'Altiplano

, Megafan sédimentaire des rivières drainant la Déflexion d'Abancay ; Fig.7.6) permettraitégalement d'apporter une nouvelle contrainte temporelle et une quantification des volumes de matériaux transportés associésà l'ouverture du système endoréique en amont (Paléo-Altiplano). polie par l'actionérosive de l

, Bibliographie Chapitre, vol.7

, Bibliographie Chapitre, vol.7

R. W. Allmendinger, R. Smalley, M. Bevis, H. Caprio, and B. Brooks, Bending the Bolivian orocline in real time : Geology, v. 33, pp.905-908, 2005.

R. B. Anderson, S. P. Long, B. K. Horton, S. N. Thomson, A. Z. Calle et al., ? S) : Implications for Cordilleran Cyclicity : Tectonics, v. 37, pp.3577-3609, 2018.

R. Armijo, R. Lacassin, A. Coudurier-curveur, and D. Carrizo, Coupled tectonic evolution of Andean orogeny and global climate : Earth-Science Reviews, pp.1-35, 2015.

J. B. Barnes and T. A. Ehlers, End member models for Andean Plateau uplift : Earth-Science Reviews, pp.105-132, 2009.

B. T. Bishop, S. L. Beck, G. Zandt, L. S. Wagner, M. D. Long et al., Foreland uplift during flat subduction : Insights from the Peruvian Andes and Fitzcarrald Arch : Tectonophysics, v, pp.73-84, 2018.

M. Bonhomme, M. Fornari, G. Laubacher, M. Sébrier, and G. Vivier, New Cenozoic K-Ar ages on volcanic rocks from the eastern High, Journal of South American Earth Sciences, issue.1, pp.179-183, 1988.

P. Bossart, D. Dietrich, A. Greco, R. Ottiger, R. et al., The Tectonic Structure of the Hazara-Kashmir Syntaxis, pp.273-297, 1988.

J. Braun and S. D. Willett, A very efficient O(n), implicit and parallel method to solve the stream power equation governing fluvial incision and landscape evolution : Geomorphology, v. 180-181, pp.170-179, 2013.

M. E. Brookfield, The evolution of the great river systems of southern Asia during the Cenozoic India-Asia collision : rivers draining southwards : Geomorphology, v. 22, pp.285-312, 1998.

V. Burtman and P. Molnar, Geological and geophysical evidence for deep subduction of continental crust beneath the Pamir, vol.281, pp.1-76, 1993.

R. F. Butler, D. Richards, T. Sempere, M. , and L. , Paleomagnetic determinations of vertical-axis tectonic rotations from Late Cretaceous and Paleocene strata of Bolivia : Geology, pp.799-802, 1995.

C. Synthèse, . Et-perspectives, G. Carlier, J. P. Lorand, M. Bonhomme et al., A reappraisal of the cenozoic inner arc magmatism in southern Peru : consequences for the evolution of the central Andes for the past 50 Ma : Third ISAG, pp.551-554, 1996.

G. Carlier, J. P. Lorand, J. P. Liégeois, M. Fornari, P. Soler et al., Potassic-ultrapotassic mafic rocks delineate two lithospheric mantle blocks beneath the southern Peruvian Altiplano : Geology, vol.33, pp.601-604, 2005.

V. Carlotto, D. Tintaya, R. Cárdenas, J. Carlier, G. Rodríguez et al., Fallas transformantes permo-triásicas : la falla Patacancha-Tamburco, 2006.

S. Geológica-del-perú, , pp.256-258

J. B. Chapman, T. L. Pavlis, R. L. Bruhn, L. L. Worthington, S. P. Gulick et al., , pp.105-126, 2012.

T. R. Chetty and Y. J. Bhaskar-rao, The Cauvery Shear Zone, 2006.

, Granulite Terrain, India : A crustal-scale flower structure : Gondwana Research, pp.77-85

D. M. Chew, G. Pedemonte, and E. Corbett, Proto-Andean evolution of the Eastern Cordillera of Peru : Gondwana Research, vol.35, pp.59-78, 2016.

M. K. Clark, L. M. Schoenbohm, L. H. Royden, K. X. Whipple, B. C. Burchfiel et al., Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns : Tectonics, pp.1-21, 2004.

D. Craw, P. O. Koons, D. Winslow, C. P. Chamberlain, and P. Zeitler, Boiling fluids in a region of rapid uplift, Earth and Planetary Science Letters, vol.128, pp.169-182, 1994.

B. Dalmayrac, G. Laubacher, and R. Marocco, Géologie des Andes péruviennes, vol.501, 1980.

C. Dorbath, L. Dorbath, A. Cisternas, J. Deverchére, and M. Sebrier, Seismicity of the huancayo basin (central Peru) and the huaytapallana fault, Journal of South American Earth Sciences, issue.3, pp.21-29, 1990.

M. A. Edwards, W. S. Kidd, M. A. Khan, and D. A. Schneider, Tectonics of the SW margin of the Nanga Parbat-Haramosh massif, pp.77-100, 2000.

, Bibliographie Chapitre, vol.7

T. A. Ehlers and C. J. Poulsen, Influence of Andean uplift on climate and paleoaltimetry estimates : Earth and Planetary Science Letters, v. 281, pp.238-248, 2009.

E. Enkelmann, A. Piestrzeniewicz, S. Falkowski, K. Stübner, and T. A. Ehlers, Thermochronology in southeast Alaska and southwest Yukon : Implications for North American Plate response to terrane accretion : Earth and Planetary Science Letters, vol.457, pp.348-358, 2017.

E. Enkelmann, P. K. Zeitler, T. L. Pavlis, J. I. Garver, and K. D. Ridgway, Intense localized rock uplift and erosion in the StElias orogen of Alaska : Nature Geoscience, pp.360-363, 2009.

N. Espurt, P. Baby, S. Brusset, M. Roddaz, W. Hermoza et al., How does the Nazca Ridge subduction influence the modern Amazonian foreland basin ? Geology, vol.35, pp.515-518, 2007.

N. Espurt, J. Barbarand, M. Roddaz, S. Brusset, P. Baby et al., A scenario for late Neogene Andean shortening transfer in the Camisea Subandean zone (Peru, 12 ? S) : Implications for growth of the northern Andean Plateau, pp.2050-2068, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00583773

S. Falkowski, E. Enkelmann, and T. A. Ehlers, Constraining the area of rapid and deep-seated exhumation at the St. Elias syntaxis, Southeast Alaska, with detrital zircon fission-track analysis : Tectonics, vol.33, pp.597-616, 2014.

C. N. Garzione, Tectonic Evolution of the Central Andean Plateau and Implications for the Growth of Plateaus : Annual Review of Earth and Planetary Sciences, v. 45, pp.529-559, 2017.

C. N. Garzione, P. Molnar, J. C. Libarkin, and B. J. Macfadden, Rapid late Miocene rise of the Bolivian Altiplano : Evidence for removal of mantle lithosphere : Earth and Planetary Science Letters, v. 241, pp.543-556, 2006.

C. Gautheron, N. Espurt, J. Barbarand, M. Roddaz, P. Baby et al., Direct dating of thick-and thin-skin thrusts in the Peruvian Subandean zone through apatite (U-Th)/He and fission track thermochronometry, vol.25, pp.419-435, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00812079

C. Synthèse, . Et-perspectives, S. Gilder, S. Rousse, D. Farber et al., Post-Middle Oligocene origin of paleomagnetic rotations in Upper Permian to Lower Jurassic rocks from northern and southern Peru : Earth and Planetary Science Letters, vol.210, pp.233-248, 2003.

N. Gotberg, N. Mcquarrie, and V. C. Caillaux, Comparison of crustal thickening budget and shortening estimates in southern Peru (12 14 ? S) : Implications for mass balance and rotations in the "Bolivian orocline, vol.122, pp.727-742, 2010.

B. Hallet and P. Molnar, Distorted drainage basins as markers of crustal strain east of the Himalaya, Journal of Geophysical Research : Solid Earth, vol.106, pp.13697-13709, 2001.

A. Hampel, The migration history of the Nazca Ridge along the Peruvian active margin : A re-evaluation : Earth and Planetary Science Letters, v. 203, pp.665-679, 2002.

N. Harkins, E. Kirby, A. Heimsath, R. Robinson, and U. Reiser, Transient fluvial incision in the headwaters of the Yellow River, northeastern Tibet, vol.112, pp.1-21, 2007.

A. Hartley, Andean uplift and climate change, Journal of the Geological Society, vol.160, pp.7-10, 2003.

S. Henry and H. Pollack, Terrestrial Heat Flow Above the Andean Subduction Zone in Bolivia and Peru, Journal of Geophysical Research, issue.93, pp.153-162, 1988.

B. K. Horton, Revised deformation history of the central Andes : Inferences from Cenozoic foredeep and intermontane basins of the Eastern Cordillera, pp.1-18, 2005.

B. K. Horton, N. D. Perez, J. D. Fitch, and J. E. Saylor, Punctuated shortening and subsidence in the Altiplano Plateau of southern Peru : Implications for early Andean mountain building : Lithosphere, pp.117-137, 2014.

L. Husson and T. Sempere, Thickening the Altiplano crust by gravity-driven crustal channel flow : Geophysical Research Letters, v. 30, pp.1-4, 2003.

B. Jones, The Abancay Batholith, Late Eocene crustal thickening, multiple mixing-differentiation cycles, and porphyry Cu Au mineralisation on the Altiplano at Antapaccay, Southern Peru : Goldschmidt Conference Abstracts, p.297, 2006.

, Bibliographie Chapitre, vol.7

I. Kaneoka and C. Guevara, K-Ar age determinations of late Tertiary and Quaternary Andean volcanic rocks, Geochemical Journal, vol.18, pp.233-239, 1984.

N. Kar, C. N. Garzione, C. Jaramillo, T. Shanahan, V. Carlotto et al., Rapid regional surface uplift of the northern Altiplano plateau revealed by multiproxy paleoclimate reconstruction : Earth and Planetary Science Letters, vol.447, pp.33-47, 2016.

G. E. King, F. Herman, and B. Guralnik, Northward migration of the eastern Himalayan syntaxis revealed by OSL thermochronometry : Science, v. 353, pp.800-804, 2016.

J. Kley, J. Müller, S. Tawackoli, V. Jacobshagen, and E. Manutsoglu, Pre-Andean and Andean-Age Deformation in the Eastern Cordillera of Southern Bolivia, Journal of South American Earth Sciences, issue.10, pp.1-19, 1997.

P. O. Koons, Modeling the Topographic Evolution of Collisional Belts : Annual Review of Earth and Planetary Sciences, pp.375-408, 1995.

P. O. Koons, B. P. Hooks, T. Pavlis, P. Upton, and A. D. Barker, Threedimensional mechanics of Yakutat convergence in the southern Alaskan plate corner : Tectonics, v, vol.29, pp.1-17, 2010.

P. O. Koons, P. K. Zeitler, and B. Hallet, Tectonic Aneurysms and Mountain Building, Treatise on Geomorphology, pp.318-349, 2013.

S. Lamb, Did shortening in thick crust cause rapid Late Cenozoic uplift in the northern Bolivian Andes, Journal of the Geological Society, vol.168, pp.1079-1092, 2011.

S. Lamb, D. , and P. , Cenozoic climate change as a possible cause for the rise of the Andes : Nature, v. 425, pp.792-797, 2003.

R. O. Lease and T. A. Ehlers, Incision into the eastern Andean Plateau during Pliocene cooling : Science, v. 341, pp.774-776, 2013.

S. L. Loewy, J. N. Connelly, and I. W. Dalziel, An orphaned basement block : The Arequipa-Antofalla Basement of the central Andean margin of South America, vol.116, pp.171-187, 2004.

Y. Ma, C. , and R. W. , The crust and uppermost mantle structure of Southern Peru from ambient noise and earthquake surface wave analysis : Earth and Planetary Science Letters, v. 395, pp.61-70, 2014.

C. Synthèse, . Et-perspectives, M. Mamani, A. Tassara, and G. Wörner, Composition and structural control of crustal domains in the central Andes : Geochemistry, 2008.

M. Mamani, G. Wörner, and T. Sempere, Geochemical variations in igneous rocks of the Central Andean orocline (13 ? S to 18 ? S) : Tracing crustal thickening and magma generation through time and space, vol.122, pp.162-182, 2010.

A. Marechal, S. Mazzotti, J. Elliott, J. Freymueller, and M. Schmidt, Indentorcorner tectonics in the Yakutat-St, Elias collision constrained by GPS : Journal of Geophysical Research : Solid Earth, vol.120, pp.3897-3908, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01243510

A. Margirier, X. Robert, L. Audin, C. Gautheron, M. Bernet et al., Slab flattening, magmatism, and surface uplift in the Cordillera Occidental, pp.1031-1034, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01237553

J. Martignole and J. E. Martelat, Regional-scale Grenvillian-age UHT metamorphism in the Mollendo-Camana block (basement of the Peruvian Andes), Journal of Metamorphic Geology, vol.21, pp.99-120, 2003.

N. Mcquarrie, J. B. Barnes, and T. A. Ehlers, Geometric, kinematic, and erosional history of the central Andean Plateau, ? S) : Tectonics, v, vol.27, pp.15-17, 2008.

A. S. Meltzer, G. L. Sarker, L. Seeber, and J. Armbruster, Snap, crackel, pop ! Seismicity and crustal structure at, p.79, 1998.

L. Mercier, M. Sébrier, A. Lavenu, J. Cabrera, O. Bellier et al., Changes in the Tectonic Regime Above a Subduction Zone of Andean Type : The Andes of Peru and Bolivia During the Pliocene-Pleistocene, Journal of Geophysical Research, pp.945-982, 1992.

D. R. Montgomery, G. Balco, and S. D. Willett, Climate, tectonics, and the morphology of the Andes : Geology, v. 29, vol.2, pp.579-582, 2001.

J. G. Mosolf, B. K. Horton, M. T. Heizler, and R. Matos, Unroofing the core of the central Andean fold-thrust belt during focused late Miocene exhumation : Evidence from the Tipuani-Mapiri wedge-top basin, pp.346-360, 2011.

J. P. Müller, J. Kley, J. , and V. , Structure and Cenozoic kinematics of the Eastern Cordillera, southern Bolivia (21 ? S) : Tectonics, v. 21, pp.1-1, 2002.

, Bibliographie Chapitre, vol.7

D. C. Noble, E. Mckee, R. Eyzaguirre, and R. Marocco, Age and regional tectonic and metallogenetic implications of igneous activity and mineralization in the Andahuaylas-Yauri belt of southern Peru : Economic geology, vol.79, pp.172-176, 1984.

K. Norton and F. Schlunegger, Migrating deformation in the Central Andes from enhanced orographic rainfall : Nature Communications, 2011.

W. B. Ouimet and K. L. Cook, Building the Central Andes through axial lower crustal flow, pp.1-15, 2010.

Z. Peizhen, P. Molnar, and W. R. Downs, Increased sedimentation rates and grain sizes 2-4 Ma ago due to the influence of climate change on erosion rates : Nature, v. 410, pp.891-897, 2001.

J. Perello, V. Carlotto, A. Zarate, P. Ramos, H. Posso et al., Porphyry-Style Alteration and Mineralization of the Middle Eocene to Early Oligocene Andahuaylas-Yauri Belt, Economic geology, vol.98, pp.1575-1605, 2003.

K. Phillips, R. W. Clayton, P. Davis, H. Tavera, R. Guy et al., Structure of the subduction system in southern Peru from seismic array data, Journal of Geophysical Research, vol.117, pp.1-17, 2012.

C. J. Poulsen, T. A. Ehlers, and N. Insel, Onset of Convective Rainfall During Gradual Late Miocene Rise of the Central Andes : Science, v. 328, pp.490-494, 2010.

V. A. Ramos, The Basement of the Central Andes : The Arequipa and Related Terranes : Annual Review of Earth and Planetary Sciences, vol.36, pp.289-324, 2008.

V. A. Ramos, The Grenville-age basement of the Andes, Journal of South American Earth Sciences, vol.29, pp.77-91, 2010.

V. Regard, R. Lagnous, N. Espurt, J. Darrozes, P. Baby et al., Geomorphic evidence for recent uplift of the Fitzcarrald Arch (Peru) : A response to the Nazca Ridge subduction : Geomorphology, v, vol.107, pp.107-117, 2009.

G. H. Roe, K. X. Whipple, and J. K. Fletcher, Feedbacks among climate, erosion, and tectonics in a critical wedge orogen, vol.308, pp.815-842, 2008.

C. Synthèse, . Et-perspectives, P. Roperch, T. Sempere, O. Macedo et al., Counterclockwise rotation of late Eocene-Oligocene fore-arc deposits in southern Peru and its significance for oroclinal bending in the central Andes : Tectonics, p.25, 2006.

G. Rosenbaum, D. Giles, M. Saxon, P. G. Betts, R. F. Weinberg et al., Subduction of the Nazca Ridge and the Inca Plateau : Insights into the formation of ore deposits in Peru : Earth and Planetary Science Letters, vol.239, pp.18-32, 2005.

L. H. Royden, B. C. Burchfiel, R. W. King, E. Wang, Z. Chen et al., Surface deformation and lower crustal flow in eastern Tibet : Science, v. 276, pp.788-790, 1997.

D. A. Schneider, M. A. Edwards, W. S. Kidd, M. Asif-khan, L. Seeber et al., Synkinematic plutonism within the doubly vergent shear zones of a crustal-scale pop-up structure : Geology, v, vol.27, pp.999-1002, 1999.

D. A. Schneider, M. A. Edwards, W. S. Kidd, P. K. Zeitler, and C. D. Coath, Early Miocene anatexis identified in the western syntaxis, Pakistan Himalaya : Earth and Planetary Science Letters, vol.167, pp.121-129, 1999.

M. Sébrier, L. Mercier, M. Francois, G. Laubacher, and E. Carey-gailhardis, Quaternary Normal and Reverse Faulting and the State of Stress in the Central Andes of South Peru : Tectonics, pp.739-780, 1985.

L. Seeber and A. Pêcher, Strain partitioning along the Himalayan arc and the Nanga Parbat antiform : Geology, v. 26, vol.2, pp.791-794, 1998.

T. Sempere, Late Permian-Middle Jurassic lithospheric thinning in Peru and Bolivia, and its bearing on Andean-age tectonics : Tectonophysics, v. 345, pp.211-217, 2002.

S. V. Sobolev and A. Y. Babeyko, What drives orogeny in the Andes ?, Geology, vol.33, pp.617-620, 2005.

M. R. Strecker, R. N. Alonso, B. Bookhagen, B. Carrapa, G. E. Hilley et al., Tectonics and Climate of the Southern Central Andes : Annual Review of Earth and Planetary Sciences, vol.35, pp.747-787, 2007.

, Bibliographie Chapitre, vol.7

K. E. Sundell, J. E. Saylor, T. J. Lapen, and B. K. Horton, Implications of variable late Cenozoic surface uplift across the Peruvian central Andes : Scientific Reports, pp.1-12, 2019.

A. Tassara, Interaction between the Nazca and South American plates and formation of the Altiplano-Puna plateau : Review of a flexural analysis along the Andean margin (15 ? -34 ? S) : Tectonophysics, v. 399, pp.39-57, 2005.

J. Villegas-lanza, M. Chlieh, O. Cavalié, H. Tavera, P. Baby et al., Active tectonics of Peru : Heterogeneous interseismic coupling along the Nazca megathrust, rigid motion of the Peruvian Sliver, and Subandean shortening accommodation, Journal of Geophysical Research : Solid Earth, vol.121, pp.7371-7394, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01744853

K. X. Whipple, The influence of climate on the tectonic evolution of mountain belts : Nature Geoscience, pp.97-104, 2009.

K. X. Whipple and B. J. Meade, Controls on the strength of coupling among climate, erosion, and deformation in two-sided, frictional orogenic wedges at steady state, Journal of Geophysical Research : Earth Surface, vol.109, pp.1-24, 2004.

K. X. Whipple and B. J. Meade, Orogen response to changes in climatic and tectonic forcing : Earth and Planetary Science Letters, v. 243, pp.218-228, 2006.

S. D. Willett, Orogeny and orography : The effects of erosion on the structure of mountain belts, Journal of Geophysical Research : Solid Earth, vol.104, pp.28957-28981, 1999.

S. Willett, C. Beaumont, and P. Fullsack, Mechanical model for the tectonics of doubly vergent compressional orogens : Geology, v. 21, vol.2, pp.371-374, 1993.

S. Wimpenny, A. Copley, C. Benavente, and E. Aguirre, Extension and Dynamics of the Andes Inferred From the 2016 Parina (Huarichancara) Earthquake, Journal of Geophysical Research : Solid Earth, issue.123, pp.8198-8228, 2018.

C. Synthèse, . Et-perspectives, R. Yang, M. G. Fellin, F. Herman et al., Spatial and temporal pattern of erosion in the Three Rivers Region, southeastern Tibet : Earth and Planetary Science Letters, vol.433, pp.10-20, 2016.

A. Yin, T. M. Harrison, G. 2000, . Evolution, . The-himalayan-tibetan et al., Annual Reviews of Earth and Planetary Sciences, vol.28, pp.211-280

P. K. Zeitler, Erosion, Himalayan Geodynamics, and the Geomorphology of Metamorphism : GSA Today, pp.4-9, 2001.

, 1.1 Thermochronologie quantitative -(U-Th)/He sur zircon (ZHe), p.330

, 1.2Échantillons récoltés mais non analysés par les méthodes AHe et AFT

, 333 8.2.1 Données AFT par grain and graphiques représentant les données sous forme radiale

, Mesures des longueurs de traces de fission confinées, p.361

, 367 8.3.1 Thermo 2018 -Quedlinburg -Poster

, Résumés des présentations faitesà des conférences

, Résumés des présentations faitesà des conférences

, Au cours de ces trois années de thèse, j'ai participé et présenté mes travaux sous forme de postersà deuxévénements majeurs (Thermo2018 et AGU, Les résumés des présentations réalisées lors de ces conférences sont présentés ci-après, 2018.

, Submitter: Gérard Status: SUBMITTED Contribution type, vol.48, p.2176

, Session 4: Interactions between climate and tectonics Exhumation driven by climatic and/or Tectonic processes in the Abancay Deflexion

*. Benjamin-gérard¹, X. Robert¹, L. Audin¹, C. Gautheron², M. Bernet¹ et al., , vol.8148, p.91405

, This area is a unique and exceptional anomaly at the Andes' scale. Numerous intrusive massifs are co-located with intersecting fluvial basins, and >1000 m-deep knickzones together with curved fault systems in this peculiar part of the Eastern Cordillera. Despite significant differences in their tectonics, but similarly to the Himalayan syntaxes, the Abancay syntaxe entrains major orogen-traversing rivers. Geologically, this arched transition zone extends over ?200 km and presents deflected inherited faults, which strike almost perpendicular to the principal elongation axis of the Andes. Moreover, the highest elevation peaks (Salcantay -6271 m) east of the Altiplano without any volcanic or seismic activity characterizes the Abancay deflexion. Finally, none of the erosion patterns. Following this approach, we first focused on the quantification of the exhumation to constrain the timing of the Abancay deflexion uplift. We sampled and processed 40 sites to provide new apatites (U-Th)/He and Fission-Track ages. We also ran quantitative geomorphology analysis to estimate the equilibrium state of the studied area at different times scales. Our first geomorphologic results (knickpoints, Ksn, ?) point to a strong disequilibrium into the core of the Abancay deflexion suggesting a very recent surface uplift (< 1 Ma). Furthermore, Low-Temperature

, 2 AGU 2018 -Washington D.C. -Poster T51F-0215: The Machu Picchu: Witness of Incision-Driven Exhumation into the Core of the Abancay Deflexion

. Friday, , p.20, 201808-12-14.