A. L. Alhadeff, Z. Su, E. Hernandez, M. L. Klima, S. Z. Phillips et al., A neural circuit for the suppression of pain by a competing need state, Cell, vol.173, pp.140-152, 2018.

M. Andreoli, T. Marketkar, and E. Dimitrov, Contribution of amygdala CRF neurons to chronic pain, Exp. Neurol, vol.298, pp.1-12, 2017.

B. A. Baiamonte, M. Valenza, E. A. Roltsch, A. M. Whitaker, B. B. Baynes et al., Nicotine dependence produces hyperalgesia: role of corticotropin-releasing factor-1 receptors (CRF1Rs) in the central amygdala, 2014.

, Neuropharmacology, vol.77, pp.217-223

F. Bihel, J. Humbert, E. Schneider, I. Bertin, P. Wagner et al., Development of a peptidomimetic antagonist of neuropeptide FF receptors for the prevention of opioid-induced hyperalgesia, ACS Chem. Neurosci, vol.6, pp.438-445, 2015.

S. Bingham, P. T. Davey, A. J. Babbs, E. A. Irving, M. J. Sammons et al., Orexin-A, an hypothalamic peptide with analgesic properties, Pain, vol.92, pp.81-90, 2001.

G. P. Borges, J. A. Mico, F. L. Neto, and E. Berrocoso, Corticotropin-releasing factor mediates pain-induced anxiety through the ERK1/2 signaling cascade in locus coeruleus neurons, Int. J. Neuropsychopharmacol, vol.18, pp.1-6, 2015.

D. Borsook, C. Linnman, V. Faria, A. M. Strassman, L. Becerra et al., Reward deficiency and anti-reward in pain chronification, Neurosci. Biobehav. Rev, vol.68, pp.282-297, 2016.

L. Moulédous, C. Mollereau, and J. Zajac, Opioid-modulating properties of the neuropeptide FF system, BioFactors, vol.36, pp.423-429, 2010.

M. Muñoz and R. Coveñas, Involvement of substance P and the NK-1 receptor in human pathology, Amino Acids, vol.46, pp.1727-1750, 2014.

Y. Nakamura, H. Izumi, T. Shimizu, K. Hisaoka-nakashima, N. Morioka et al., Volume Transmission of Substance P in Striatum Induced by Intraplantar Formalin Injection Attenuates Nociceptive Responses via Activation of the Neurokinin 1 Receptor, J. Pharmacol. Sci, vol.121, pp.257-271, 2013.

A. Nazarian, J. M. Tenayuca, F. Almasarweh, A. Armendariz, and D. Are, Sex differences in formalin-evoked primary afferent release of substance P, Eur. J. Pain (United Kingdom), vol.18, pp.39-46, 2014.

N. Nevárez and L. De-lecea, Recent advances in understanding the roles of hypocretin/orexin in arousal, affect, and motivation, 1421.

T. Nozu and T. Okumura, Corticotropin-releasing factor receptor type 1 and type 2 interaction in irritable bowel syndrome, J. Gastroenterol, vol.50, pp.819-830, 2015.

M. Oishi, T. Kushikata, H. Niwa, C. Yakoshi, C. Ogasawara et al., Endogenous neuropeptide S tone influences sleep-wake rhythm in rats, Neurosci. Lett, vol.581, pp.94-97, 2014.

Y. L. Peng, J. N. Zhang, M. Chang, W. Li, R. W. Han et al., Effects of central neuropeptide S in the mouse formalin test, Peptides, vol.31, pp.1878-1883, 2010.

M. J. Pérez-de-vega, A. Ferrer-montiel, and R. González-muñiz, Recent progress in non-opioid analgesic peptides, Arch. Biochem. Biophys, vol.660, pp.36-52, 2018.

A. N. Pierce, J. M. Ryals, R. Wang, and J. A. Christianson, Vaginal hypersensitivity and hypothalamic-pituitary-adrenal axis dysfunction as a result of neonatal maternal separation in female mice, Neuroscience, vol.263, pp.216-230, 2014.

D. Sargin, The role of the orexin system in stress response, pp.1-11, 2018.

T. Sato, Y. Nakamura, Y. Shiimura, H. Ohgusu, K. Kangawa et al., Structure, regulation and function of ghrelin, J. Biochem, vol.151, pp.119-128, 2012.

M. A. Schuckit, Treatment of opioid-use disorders, N. Engl. J. Med, vol.375, p.357, 2016.

N. Schuelert, S. Just, R. Kuelzer, L. Corradini, L. C. Gorham et al., The somatostatin receptor 4 agonist J-2156 reduces mechanosensitivity of peripheral nerve afferents and spinal neurons in an inflammatory pain model, Eur. J. Pharmacol, vol.746, pp.274-281, 2015.

B. Sivertsen, T. Lallukka, K. J. Petrie, O. A. Steingrimsdottir, A. Stubhaug et al., Sleep and pain sensitivity in adults, Pain, vol.156, pp.1433-1439, 2015.

B. H. Smith and N. Torrance, Epidemiology of neuropathic pain and its impact on quality of life, Curr. Pain Headache Rep, vol.16, pp.191-198, 2012.

R. K. Somvanshi and U. Kumar, ?-Opioid receptor and somatostatin receptor-4 heterodimerization: Possible implications in modulation of pain associated signaling, PLoS One, vol.9, pp.24-27, 2014.

J. Starnowska, R. Costante, K. Guillemyn, K. Popiolek-barczyk, N. N. Chung et al., Analgesic properties of opioid/NK1 multitarget ligands with distinct in vitro profiles in naive and chronic constriction injury mice, ACS Chem. Neurosci, vol.8, pp.2315-2324, 2017.

A. Stengel, H. Karasawa, and Y. Taché, The role of brain somatostatin receptor 2 in the regulation of feeding and drinking behavior, Horm. Behav, vol.73, pp.15-22, 2015.

P. Zeng, S. Li, Y. H. Zheng, F. Y. Liu, J. L. Wang et al., Ghrelin receptor agonist, GHRP-2, produces antinociceptive effects at the supraspinal level via the opioid receptor in mice, Peptides, vol.55, pp.103-109, 2014.

S. Zhang, X. Jin, Z. You, S. Wang, G. Lim et al., Persistent nociception induces anxiety-like behavior in rodents: Role of endogenous neuropeptide S, Pain, vol.155, pp.1504-1515, 2014.

C. H. Zhou, X. Li, Y. Z. Zhu, H. Huang, J. Li et al., Ghrelin alleviates neuropathic pain through GHSR-1a-mediated suppression of the p38 MAPK/NF-?B pathway in a rat chronic constriction injury model, Reg. Anesth. Pain Med, vol.39, pp.137-148, 2014.

E. P. Zorrilla and G. F. Koob, Progress in corticotropin-releasing factor-1 antagonist development, Drug Discov. Today, vol.15, pp.371-383, 2010.

E. P. Zorrilla, M. L. Logrip, and G. F. Koob, Corticotropin releasing factor: A key role in the neurobiology of addiction, Front. Neuroendocrinol, vol.35, pp.234-244, 2014.

B. La and C. , RXFP3-A2) 1 h prior to being anaesthetized with lidocaine/pentobarbital, and transcardially-perfused with fresh 4% PFA. Brains were removed from these mice and post-fixed in 4% PFA at 4ºC for 1.5 h. Brains were then placed in 30% sucrose in 0.1 M PBS solution at 4ºC overnight; and then frozen on dry ice and kept at -80ºC until use. Brains were then mounted in OCT (Tissue-Tek®, Sakura) and 20 µm sections were cut in the cryotome (Leica). Sections containing the ACC, anteromedial part of the BNST (amBNST), parataenial nucleus of the thalamus (PT), and lateral, basolateral, and central amygdala, Mice that had undergone behavioural testing following hindpaw injections of 0.9% NaCl or CFA, were centrally administered with the same treatments received initially (aCSF or

, For IHC experiments, sections were thawed and washed in 0.1 M PBS for 3 × 5 min

, -52) to the incubation. After overnight incubation, the reaction was stopped by washing the sections in 0.1 M PBS for 3 × 5 min. The secondary incubation was, Sections were incubated with blocking solution consisting of 1% goat normal serum and 0.25% Triton X-100

, M PBS containing 1% goat normal serum, 0.25% Triton X-100

, After washing in 0.1 M PBS, sections were mounted on SuperFrost slides with Fluoromount-G/DAPI (ThermoFisher Scientific) and air dried overnight in the dark, Alexa 568-conjugated goat anti-rabbit secondary antibody (1:500; Molecular Probes

H. Albert-gascó, Á. García-avilés, S. Moustafa, S. Sánchez-sarasua, A. L. Gundlach et al., Central relaxin-3 receptor (RXFP3) activation increases ERK phosphorylation in septal cholinergic neurons and impairs spatial working memory, Brain Struct. Funct, vol.222, pp.449-463, 2017.

H. Albert-gascó, S. Ma, A. M. Sánchez-pérez, F. Ros-bernal, A. L. Gundlach et al., GABAergic Neurons in the Rat Medial Septal Complex Express Relaxin-3 Receptor (RXFP3) mRNA, Front. Neuroanat, vol.11, pp.1-16, 2018.

, Diagnostic and Statistical Manual of Mental Disorders, CoDAS. American Psychiatric Association, 2013.

J. Andre, B. Zeau, M. Pohl, F. Cesselin, J. Benoliel et al., Involvement of cholecystokininergic systems in anxiety-induced hyperalgesia in male rats: behavioral and biochemical studies, J. Neurosci, vol.25, pp.7896-7904, 2005.

G. J. Asmundson and J. Katz, Understanding the co-occurrence of anxiety disorders and chronic pain: State-of-the-art, Depress. Anxiety, vol.26, pp.888-901, 2009.

M. N. Baliki, D. R. Chialvo, P. Y. Geha, R. M. Levy, R. N. Harden et al., Chronic pain and the emotional brain: specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain, J Neurosci, vol.26, pp.12165-12173, 2006.

R. Bathgate, D. Halls, M. L. Van-der-westhuizen, E. T. Callander, G. E. Kocan et al., Relaxin family peptides and their receptors, Physiol. Rev, vol.93, pp.405-80, 2013.

R. A. Bathgate, C. S. Samuel, T. C. Burazin, S. Layfield, A. A. Claasz et al., Human relaxin gene 3 (H3) and the equivalent mouse relaxin (M3) gene: Novel members of the relaxin peptide family, J. Biol. Chem, vol.277, pp.1148-1157, 2002.

A. Blasiak, M. Siwiec, A. Grabowiecka, T. Blasiak, A. Czerw et al., Excitatory orexinergic innervation of rat nucleus incertus -Implications for ascending arousal, motivation and feeding control, Neuropharmacology, vol.99, pp.432-447, 2015.

T. C. Burazin, R. A. Bathgate, M. Macris, S. Layfield, A. L. Gundlach et al., Restricted, but abundant, expression of the novel rat gene-3 (R3) relaxin in the dorsal tegmental region of brain, J. Neurochem, vol.82, pp.1553-1557, 2002.

R. K. Butler and D. P. Finn, Stress-induced analgesia, Prog. Neurobiol, vol.88, pp.184-202, 2009.

A. A. Calejesan, S. J. Kim, and M. Zhuo, Descending facilitatory modulation of a behavioral nociceptive response by stimulation in the adult rat anterior cingulate cortex, Eur. J. Pain, vol.4, pp.83-96, 2000.

J. Calvez, C. Lenglos, C. De-Ávila, G. Guèvremont, and E. Timofeeva, Differential effects of central administration of relaxin-3 on food intake and hypothalamic neuropeptides in male and female rats, Brain Behav, vol.14, pp.550-563, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01601469

M. J. Caterina, A. Leffler, A. B. Malmberg, W. J. Martin, J. Trafton et al., Impaired nociception and pain sensation in mice lacking the capsaicin receptor, Science, vol.288, pp.306-313, 2000.

S. S. Ch'ng, J. Fu, R. M. Brown, C. M. Smith, M. A. Hossain et al., Characterization of the relaxin family peptide receptor 3 system in the mouse bed nucleus of the stria terminalis, J. Comp. Neurol, 2019.

W. Chen, Y. Taché, and J. C. Marvizón, Corticotropin-Releasing Factor in the Brain and Blocking Spinal Descending Signals Induce Hyperalgesia in the Latent Sensitization Model of Chronic Pain, Neuroscience, vol.381, pp.149-158, 2018.

N. C. Coimbra and M. L. Brandão, Effects of 5-HT2 receptors blockade on fearinduced analgesia elicited by electrical stimulation of the deep layers of the superior colliculus and dorsal periaqueductal gray, Behav. Brain Res, vol.87, pp.97-103, 1997.

M. Dahlhoff, M. Schäfer, E. Wolf, and M. R. Schneider, Genetic deletion of the EGFR ligand epigen does not affect mouse embryonic development and tissue homeostasis, Exp. Cell Res, vol.319, pp.529-535, 2013.

J. Djordjevic, A. Djordjevic, M. Adzic, and M. B. Radojcic, Effects of chronic social isolation on wistar rat behavior and brain plasticity markers, Neuropsychobiology, vol.66, pp.112-119, 2012.

L. Djouhri, S. Koutsikou, X. Fang, S. Mcmullan, and S. Lawson, Spontaneous Pain, Both Neuropathic and Inflammatory, Is Related to Frequency of Spontaneous Firing in Intact C-Fiber Nociceptors, J. Neurosci, vol.26, pp.1281-1292, 2006.

K. Eto, H. Wake, M. Watanabe, H. Ishibashi, M. Noda et al., Inter-regional contribution of enhanced activity of the primary somatosensory cortex to the anterior cingulate cortex accelerates chronic pain behavior, J. Neurosci, vol.31, pp.7631-7637, 2011.

H. L. Fields, Pain: an unpleasant topic, Pain, vol.82, pp.61-69, 1999.

H. L. Fields and M. M. Heinricher, Anatomy and physiology of a nociceptive modulatory system, Philos. Trans. R. Soc. London, vol.308, pp.361-374, 1985.

A. François, S. A. Low, E. I. Sypek, A. J. Christensen, C. Sotoudeh et al., A brainstem-spinal cord inhibitory circuit for mechanical pain modulation by GABA and enkephalins, Neuron, vol.93, pp.822-839, 2017.

S. I. Gingold, J. D. Greenspan, and A. V. Apkarian, Anatomic evidence of nociceptive inputs to primary somatosensory cortex: relationship between spinothalamic terminals and thalamocortical cells in squirrel monkeys, J. Comp. Neurol, vol.308, pp.467-490, 1991.

A. Gonzalez-hernandez and A. Charlet, Oxytocin, GABA, and TRPV1, the Analgesic Triad?, Front. Mol. Neurosci, vol.11, pp.1-4, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02166006

G. Guilbaud, V. Kayser, J. M. Benoist, and M. Gautron, Modifications in the responsiveness of rat ventrobasal thalamic neurons at different stages of carrageeninproduced inflammation, Brain Res, vol.385, pp.86-98, 1986.

M. Haack, E. Sanchez, and J. M. Mullington, Elevated inflammatory markers in response to prolonged sleep restriction are associated with increased pain experience in healthy volunteers, Sleep, vol.30, pp.1145-52, 2007.

M. Haidar, K. Tin, C. Zhang, M. Nategh, J. Covita et al., Septal GABA and Glutamate Neurons Express RXFP3 mRNA and Depletion of Septal RXFP3 Impaired Spatial Search Strategy and Long-Term Reference Memory in Adult Mice, Front. Neuroanat, vol.13, pp.1-16, 2019.

S. Han, M. Soleiman, M. Soden, L. Zweifel, and R. D. Palmiter, Elucidating an affective pain circuit that creates a threat memory, Cell, vol.162, pp.363-374, 2015.

B. Y. Harper and S. N. Lawson, Electrical properties of rat dorsal root ganglion neurones with different peripheral nerve conduction velocities, J. Physiol, vol.359, pp.47-63, 1985.

L. M. Haugaard-kedström, F. Shabanpoor, M. A. Hossain, R. J. Clark, P. J. Ryan et al., Design, synthesis, and characterization of a single-chain peptide antagonist for the relaxin-3 receptor RXFP3, J. Am. Chem. Soc, vol.133, pp.4965-4974, 2011.

M. M. Heinricher and M. J. Neubert, Neural Basis for the Hyperalgesic Action of Cholecystokinin in the Rostral Ventromedial Medulla, J. Neurophysiol, vol.92, pp.1982-1989, 2004.

M. M. Heinricher, I. Tavares, J. L. Leith, and B. M. Lumb, Descending control of nociception: specificity, recruitment and plasticity, Brain Res. Rev, vol.60, pp.214-225, 2009.

I. T. Hosken, S. W. Sutton, C. M. Smith, and A. L. Gundlach, Relaxin-3 receptor (Rxfp3) gene knockout mice display reduced running wheel activity: Implications for role of relaxin-3/RXFP3 signalling in sustained arousal, Behav. Brain Res, vol.278, pp.167-175, 2015.

S. Ide, T. Hara, A. Ohno, R. Tamano, K. Koseki et al., Opposing roles of corticotropin-releasing factor and neuropeptide Y within the dorsolateral bed nucleus of the stria terminalis in the negative affective component of pain in rats, J Neurosci, vol.33, pp.5881-5894, 2013.

A. Ieraci, A. Mallei, and M. Popoli, Social isolation stress induces anxiousdepressive-like behavior and alterations of neuroplasticity-related genes in adult male mice, Neural Plast, vol.2016, pp.1-13, 2016.

H. Ikeda, J. Stark, H. Fischer, M. Wagner, R. Drdla et al., Synaptic amplifier of inflammatory pain in the spinal dorsal horn, Science, vol.312, pp.1659-1662, 2006.

R. Ikeda, Y. Takahashi, K. Inoue, and F. Kato, NMDA receptor-independent synaptic plasticity in the central amygdala in the rat model of neuropathic pain, Pain, vol.127, pp.161-172, 2007.

E. M. Jennings, B. N. Okine, M. Roche, and D. P. Finn, Stress-induced hyperalgesia, Prog. Neurobiol, vol.121, pp.1-18, 2014.

T. Kaneko, K. Kaneda, A. Ohno, D. Takahashi, T. Hara et al., Activation of adenylate cyclase-cyclic AMP-protein kinase A signaling by corticotropin-releasing factor within the dorsolateral bed nucleus of the stria terminalis is involved in pain-induced aversion, Eur. J. Neurosci, vol.44, pp.2914-2924, 2016.

S. J. Kang, C. Kwak, J. Lee, S. E. Sim, J. Shim et al., Bidirectional modulation of hyperalgesia via the specific control of excitatory and inhibitory neuronal activity in the ACC, Mol. Brain, vol.8, pp.1-11, 2015.

A. Kania, A. Gugula, A. Grabowiecka, C. De-Ávila, T. Blasiak et al., Inhibition of oxytocin and vasopressin neuron activity in rat hypothalamic paraventricular nucleus by relaxin-3-RXFP3 signalling, J. Physiol, vol.595, pp.3425-3447, 2017.

Y. Kawasaki, D. S. Bredt, K. Jo, N. Sweeney, H. Misawa et al., Contrasting Localizations of MALS/LIN-7 PDZ Proteins in Brain and Molecular Compensation in Knockout Mice, J. Biol. Chem, vol.276, pp.9264-9272, 2002.

A. F. Keller, S. Beggs, M. W. Salter, and Y. De-koninck, Transformation of the output of spinal lamina I neurons after nerve injury and microglia stimulation underlying neuropathic pain, Mol Pain, vol.3, p.27, 2007.

J. Kim, J. H. Kim, Y. Kim, H. Cho, . Young et al., Role of spinal cholecystokinin in neuropathic pain after spinal cord hemisection in rats, Neurosci. Lett, vol.462, pp.303-307, 2009.

K. Koga, G. Descalzi, T. Chen, H. G. Ko, J. Lu et al., Coexistence of two forms of LTP in ACC provides a synaptic mechanism for the interactions between anxiety and chronic pain, Neuron, vol.85, pp.377-389, 2015.

A. Latremoliere and C. J. Woolf, Central sensitization: a generator of pain hypersensitivity by central neural plasticity, J. Pain, vol.10, pp.895-926, 2009.

S. Lautenbacher, B. Kundermann, and J. C. Krieg, Sleep deprivation and pain perception, Sleep Med. Rev, vol.10, pp.357-369, 2006.

E. A. Lawson, The effects of oxytocin on eating behaviour and metabolism in humans, Nat. Rev. Endocrinol, vol.13, pp.700-709, 2017.

C. Lenglos, J. Calvez, and E. Timofeeva, Sex-specific effects of relaxin-3 on food intake and brain expression of corticotropin-releasing factor in rats, Endocrinology, vol.156, pp.523-533, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01602279

C. Lenglos, A. Mitra, G. Guèvremont, and E. Timofeeva, Sex differences in the effects of chronic stress and food restriction on body weight gain and brain expression of CRF and relaxin-3 in rats, Brain Behav, vol.12, pp.370-387, 2013.

J. Li, Y. Li, B. Zhang, X. Shen, and H. Zhao, Why depression and pain often coexist and mutually reinforce: role of the lateral habenula, Exp. Neurol, vol.284, pp.106-113, 2016.

C. Liu, J. Chen, S. Sutton, B. Roland, C. Kuei et al., Identification of Relaxin-3/INSL7 as a Ligand for GPCR142, J. Biol. Chem, vol.278, pp.50765-50770, 2003.

C. Liu, E. Eriste, S. Sutton, J. Chen, B. Roland et al., Identification of Relaxin-3/INSL7 as an Endogenous Ligand for the Orphan G-protein-coupled Receptor GPCR135, J. Biol. Chem, vol.278, pp.50754-50764, 2003.

M. G. Liu and J. Chen, Preclinical research on pain comorbidity with affective disorders and cognitive deficits: challenges and perspectives, Prog. Neurobiol, vol.116, pp.13-32, 2014.

Y. Liu, L. Yang, J. Yu, and Y. Q. Zhang, Persistent, comorbid pain and anxiety can be uncoupled in a mouse model, Physiol. Behav, vol.151, pp.55-63, 2015.

S. Ma, A. Blasiak, F. E. Olucha-bordonau, A. J. Verberne, and A. L. Gundlach, Heterogeneous responses of nucleus incertus neurons to corticotrophin-releasing factor and coherent activity with hippocampal theta rhythm in the rat, J. Physiol, vol.591, pp.3981-4001, 2013.

S. Ma, P. Bonaventure, T. Ferraro, P. J. Shen, T. C. Burazin et al., Relaxin-3 in GABA projection neurons of nucleus incertus suggests widespread influence on forebrain circuits via G-protein-coupled receptor-135 in the rat, Neuroscience, vol.144, pp.165-190, 2007.

J. C. Marvizon, W. Walwyn, A. Minasyan, W. Chen, and B. K. Taylor, Latent Sensitization: A Model for Stress-Sensitive Chronic Pain, in: Current Protocols in Neuroscience, 2015.

M. Matsumoto, M. Kamohara, T. Sugimoto, K. Hidaka, J. Takasaki et al., The novel G-protein coupled receptor SALPR shares sequence similarity with somatostatin and angiotensin receptors, Gene, vol.248, pp.183-189, 2000.

B. M. Mcgowan, J. S. Minnion, K. G. Murphy, D. Roy, S. A. Stanley et al., Relaxin-3 stimulates the neuroendocrine stress axis via corticotrophin-releasing hormone, J. Endocrinol, vol.221, pp.337-346, 2014.

B. M. Mcgowan, S. A. Stanley, J. Donovan, E. L. Thompson, M. Patterson et al., Relaxin-3 stimulates the hypothalamic-pituitary-gonadal axis, Am. J. Physiol. Endocrinol. Metab, vol.295, pp.278-86, 2008.

B. M. Mcgowan, S. A. Stanley, K. L. Smith, N. E. White, M. M. Connolly et al., Central relaxin-3 administration causes hyperphagia in male wistar rats, Endocrinology, vol.146, pp.3295-3300, 2005.

K. L. Meadows and E. M. Byrnes, Sex-and age-specific differences in relaxin family peptide receptor expression within the hippocampus and amygdala in rats, Neuroscience, vol.284, pp.337-348, 2015.

H. Merskey and N. Bogduk, Classification of chronic pain, IASP Pain Terminology, 1994.

A. E. Metz, H. Yau, M. V. Centeno, A. V. Apkarian, and M. Martina, Morphological and functional reorganization of rat medial prefrontal cortex in neuropathic pain, Proc. Natl. Acad. Sci. U. S. A, vol.106, pp.2423-2428, 2009.

M. J. Millan, Descending control of pain, Prog. Neurobiol, vol.66, pp.355-474, 2002.

H. Moldofsky, Sleep and pain, Sleep Med. Rev, vol.5, pp.385-396, 2001.

C. Mollereau, M. Roumy, and J. Zajac, Opioid-modulating peptides : mechanisms of action, Curr. Top. Med. Chem, vol.5, pp.341-355, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00078857

W. K. Nahm and J. L. Noebels, Nonobligate role of early or sustained expression of immediate-early gene proteins c-fos, c-jun, and Zif/268 in hippocampal mossy fiber sprouting, J. Neurosci, vol.18, pp.9245-55, 1998.

A. Nakao, Y. Takahashi, M. Nagase, R. Ikeda, and F. Kato, Role of capsaicinsensitive C-fiber afferents in neuropathic pain-induced synaptic potentiation in the nociceptive amygdala, Mol. Pain, vol.8, p.51, 2012.

M. Narita, C. Kaneko, K. Miyoshi, Y. Nagumo, N. Kuzumaki et al., Chronic pain induces anxiety with concomitant changes in opioidergic function in the amygdala, Neuropsychopharmacology, vol.31, pp.739-50, 2006.

M. Nategh, S. Nikseresht, F. Khodagholi, and F. Motamedi, Nucleus incertus inactivation impairs spatial learning and memory in rats, Physiol. Behav, vol.139, pp.112-120, 2015.

V. Neugebauer, W. Li, G. C. Bird, G. Bhave, and R. W. Gereau, Synaptic plasticity in the amygdala in a model of arthritic pain: differential roles of metabotropic glutamate receptors 1 and 5, J. Neurosci, vol.23, pp.52-63, 2003.

T. Onaka and Y. Takayanagi, Role of oxytocin in the control of stress and food intake, J. Neuroendocrinol, vol.04026, p.12700, 2019.

H. Otsubo, T. Onaka, H. Suzuki, A. Katoh, T. Ohbuchi et al., Centrally administered relaxin-3 induces Fos expression in the osmosensitive areas in rat brain and facilitates water intake, Peptides, vol.31, pp.1124-1130, 2010.

D. Parikh, A. Hamid, T. C. Friedman, K. Nguyen, A. Tseng et al., Stress-induced analgesia and endogenous opioid peptides: The importance of stress duration, Eur. J. Pharmacol, vol.650, pp.563-567, 2011.

G. Paxinos and K. B. Franklin, The mouse brain in stereotaxic coordinates, 2004.

C. Peirs, S. P. Williams, X. Zhao, C. E. Walsh, J. Y. Gedeon et al., Dorsal horn circuits for persistent mechanical pain, Neuron, vol.87, pp.797-812, 2015.

H. Petitjean, S. A. Pawlowski, S. L. Fraine, B. Sharif, D. Hamad et al., Dorsal horn parvalbumin neurons are gate-keepers of touchevoked pain after nerve injury, Cell Rep, vol.13, pp.1246-1257, 2015.

A. Ploghaus, C. Narain, C. F. Beckmann, S. Clare, S. Bantick et al., Exacerbation of pain by anxiety is associated with activity in a hippocampal network, J. Neurosci, vol.21, pp.9896-903, 2001.

J. F. Poulin, D. Arbour, S. Laforest, and G. Drolet, Neuroanatomical characterization of endogenous opioids in the bed nucleus of the stria terminalis, Prog. Neuro-Psychopharmacology Biol. Psychiatry, vol.33, pp.1356-1365, 2009.

M. G. Proescholdt, B. Hutto, L. S. Brady, and M. Herkenham, Studies of cerebrospinal fluid flow and penetration into brain following lateral ventricle and cisterna magna injections of the tracer [14C]inulin in rat, Neuroscience, vol.95, pp.577-592, 2000.

S. Qiu, M. Zhang, Y. Liu, Y. Guo, H. Zhao et al., GluA1 phosphorylation contributes to postsynaptic amplification of neuropathic pain in the insular cortex, J. Neurosci, vol.34, pp.13505-13520, 2014.

P. Rainville, G. H. Duncan, D. D. Price, B. Carrier, and M. C. Bushnell, Pain affect encoded in human anterior cingulate but not somatosensory cortex, Science, vol.277, pp.968-971, 1997.

K. Ren and R. Dubner, Inflammatory models of pain and hyperalgesia, ILAR J, vol.40, pp.111-118, 1999.

M. Roy, M. Piché, J. Chen, I. Peretz, and P. Rainville, Cerebral and spinal modulation of pain by emotions, Proc. Natl. Acad. Sci. U. S. A, vol.106, pp.20900-20905, 2009.

B. Rudy, G. Fishell, S. Lee, and J. Hjerling-leffler, Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons, Dev. Neurobiol, vol.71, pp.45-61, 2011.

P. J. Ryan, E. Büchler, F. Shabanpoor, M. A. Hossain, J. D. Wade et al., Central relaxin-3 receptor (RXFP3) activation decreases anxiety-and depressive-like behaviours in the rat, Behav. Brain Res, vol.244, pp.142-151, 2013.

P. J. Ryan, H. E. Kastman, E. V. Krstew, K. J. Rosengren, M. A. Hossain et al., Relaxin-3/RXFP3 system regulates alcohol-seeking, Proc. Natl. Acad. Sci. U. S. A, vol.110, pp.20789-94, 2013.

P. J. Ryan, E. V. Krstew, M. Sarwar, A. L. Gundlach, and A. J. Lawrence, Relaxin-3 mRNA levels in nucleus incertus correlate with alcohol and sucrose intake in rats, Drug Alcohol Depend, vol.140, pp.8-16, 2014.

V. Rytova, D. E. Ganella, D. Hawkes, R. A. Bathgate, S. Ma et al., Chronic activation of the relaxin-3 receptor on GABA neurons in rat ventral hippocampus promotes anxiety and social avoidance, pp.1-16, 2019.

V. K. Samineni, J. G. Grajales-reyes, B. A. Copits, D. E. O'brien, S. L. Trigg et al., Divergent Modulation of Nociception by Glutamatergic and GABAergic Neuronal Subpopulations in the Periaqueductal Gray, vol.4, pp.129-145, 2017.

A. M. Sánchez-pérez, I. Arnal-vicente, F. N. Santos, C. W. Pereira, N. Elmlili et al., Septal projections to nucleus incertus in the rat: Bidirectional pathways for modulation of hippocampal function, J. Comp. Neurol, vol.523, pp.565-588, 2015.

J. Sandkühler and X. Liu, Induction of long-term potentiation at spinal synapses by noxious stimulation or nerve injury, Eur. J. Neurosci, vol.10, pp.2476-2480, 1998.

F. N. Santos, C. W. Pereira, A. M. Sánchez-pérez, M. Otero-garcía, S. Ma et al., Comparative Distribution of Relaxin-3 Inputs and Calcium-Binding Protein-Positive Neurons in Rat Amygdala, Front. Neuroanat, vol.10, pp.1-23, 2016.

T. C. Schütz, M. L. Andersen, and S. Tufik, Sleep alterations in an experimental orofacial pain model in rats, Brain Res, vol.993, pp.164-171, 2003.

R. P. Seal, X. Wang, Y. Guan, S. N. Raja, C. J. Woodbury et al., Injury-induced mechanical hypersensitivity requires C-low threshold mechanoreceptors, Nature, vol.462, pp.651-655, 2009.

F. Shabanpoor, M. Akhter-hossain, P. J. Ryan, A. Belgi, S. Layfield et al., Minimization of human relaxin-3 leading to high-affinity analogues with increased selectivity for relaxin-family peptide 3 receptor (RXFP3) over RXFP1, J. Med. Chem, vol.55, pp.1671-1681, 2012.

S. D. Shields, W. A. Eckert, and A. I. Basbaum, Spared nerve injury model of neuropathic pain in the mouse: a behavioral and anatomic analysis, J. Pain, vol.4, pp.465-470, 2003.

C. M. Smith, I. T. Hosken, S. W. Sutton, A. J. Lawrence, and A. L. Gundlach, Relaxin-3 null mutation mice display a circadian hypoactivity phenotype, Brain Behav, vol.11, pp.94-104, 2012.

C. M. Smith, P. J. Shen, A. Banerjee, P. Bonaventure, S. Ma et al., Distribution of relaxin-3 and RXFP3 within arousal, stress, affective, and cognitive circuits of mouse brain, J. Comp. Neurol, vol.518, pp.4016-4045, 2010.

C. M. Smith, A. W. Walker, I. T. Hosken, B. E. Chua, C. Zhang et al., Relaxin-3/RXFP3 networks: An emerging target for the treatment of depression and other neuropsychiatric diseases?, Front. Pharmacol, vol.5, pp.1-17, 2014.

C. M. Smith, L. L. Walker, B. E. Chua, M. J. Mckinley, A. L. Gundlach et al., Involvement of central relaxin-3 signalling in sodium (salt) appetite, Exp. Physiol, vol.100, pp.1064-1072, 2015.

G. S. Smith, D. Savery, C. Marden, J. J. Costa, S. Averill et al., Distribution of messenger RNAs encoding enkephalin, substance P, somatostatin, galanin, vasoactive intestinal polypeptide, neuropeptide Y, and calcitonin gene-related peptide in the midbrain periaqueductal grey in the rat, J. Comp. Neurol, vol.350, pp.23-40, 1994.

M. Tanaka, N. Iijima, Y. Miyamoto, S. Fukusumi, Y. Itoh et al., Neurons expressing relaxin 3/INSL 7 in the nucleus incertus respond to stress, 2005.

, J. Neurosci, vol.21, pp.1659-1670

K. Thibault, W. K. Lin, A. Rancillac, M. Fan, T. Snollaerts et al., BDNF-dependent plasticity induced by peripheral inflammation in the primary sensory and the cingulate cortex triggers cold allodynia and reveals a major role for endogenous BDNF as a tuner of the affective aspect of pain, J. Neurosci, vol.34, pp.14739-14751, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-02119514

A. J. Todd, Neuronal circuitry for pain processing in the dorsal horn, Nat. Rev. Neurosci, vol.11, pp.823-836, 2010.

L. Tran, J. Schulkin, and B. Greenwood-van-meerveld, Importance of CRF receptormediated mechanisms of the bed nucleus of the stria terminalis in the processing of anxiety and pain, Neuropsychopharmacology, vol.39, pp.2633-2645, 2014.

P. Veinante, I. Yalcin, and M. Barrot, The amygdala between sensation and affect: a role in pain, J. Mol. psychiatry, vol.1, p.9, 2013.

N. D. Volkow and A. T. Mclellan, Opioid abuse in chronic pain -misconceptions and mitigation strategies, N. Engl. J. Med, vol.374, pp.1253-1263, 2016.

K. M. Wagner, Z. Roeder, K. Desrochers, A. V. Buhler, M. M. Heinricher et al., The dorsomedial hypothalamus mediates stress-induced hyperalgesia and is the source of the pronociceptive peptide cholecystokinin in the rostral ventromedial medulla, Neuroscience, vol.238, pp.29-38, 2013.

A. W. Walker, C. M. Smith, B. E. Chua, E. V. Krstew, C. Zhang et al., Relaxin-3 receptor (RXFP3) signalling mediates stressrelated alcohol preference in mice, PLoS One, vol.10, pp.1-17, 2015.

L. C. Walker, H. E. Kastman, J. A. Koeleman, C. M. Smith, C. J. Perry et al., Nucleus incertus corticotrophin-releasing factor 1 receptor signalling regulates alcohol seeking in rats, Addict. Biol, vol.22, pp.1641-1654, 2017.

L. C. Walker, H. E. Kastman, E. V. Krstew, A. L. Gundlach, and A. J. Lawrence, Central amygdala relaxin-3/relaxin family peptide receptor 3 signalling modulates alcohol seeking in rats, Br. J. Pharmacol, vol.174, pp.3359-3369, 2017.

E. T. Westhuizen, . Van-der, T. D. Werry, P. M. Sexton, and R. J. Summers, The Relaxin Family Peptide Receptor 3 Activates Extracellular Signal-Regulated Kinase 1 / 2 through a Protein Kinase C-Dependent Mechanism, Mol. Pharmacol, vol.71, pp.1618-1629, 2007.

S. B. Wolff, J. Gründemann, P. Tovote, S. Krabbe, G. A. Jacobson et al., Amygdala interneuron subtypes control fear learning through disinhibition, Nature, vol.509, pp.453-458, 2014.

J. Y. Xie, Cholecystokinin in the Rostral Ventromedial Medulla Mediates Opioid-Induced Hyperalgesia and Antinociceptive Tolerance, J. Neurosci, vol.25, pp.409-416, 2005.

I. Yalcin, S. Megat, F. Barthas, E. Waltisperger, M. Kremer et al., The sciatic nerve cuffing model of neuropathic pain in mice, J. Vis. Exp, pp.1-7, 2014.

C. T. Yen and P. L. Lu, Thalamus and pain, Acta Anaesthesiol. Taiwanica, vol.51, pp.73-80, 2013.

R. P. Yezierski and P. Hansson, Inflammatory and Neuropathic Pain From Bench to Bedside: What Went Wrong?, J. Pain, vol.19, pp.571-588, 2018.

K. Yin, J. R. Deuis, R. J. Lewis, and I. Vetter, Transcriptomic and behavioural characterisation of a mouse model of burn pain identify the cholecystokinin 2 receptor as an analgesic target, Mol. Pain, vol.12, pp.1-13, 2016.

K. Yu, P. Garcia-da-silva, D. F. Albeanu, and B. Li, Central Amygdala Somatostatin Neurons Gate Passive and Active Defensive Behaviors, J. Neurosci, vol.36, pp.6488-6496, 2016.

C. Zhang, D. V. Baimoukhametova, C. M. Smith, J. S. Bains, and A. L. Gundlach, Relaxin-3/RXFP3 signalling in mouse hypothalamus: no effect of RXFP3 activation on corticosterone, despite reduced presynaptic excitatory input onto paraventricular CRH neurons in vitro, Psychopharmacology (Berl), vol.234, pp.1725-1739, 2017.

C. Zhang, B. E. Chua, A. Yang, F. Shabanpoor, M. A. Hossain et al., Central relaxin-3 receptor (RXFP3) activation reduces elevated, but not basal, anxiety-like behaviour in C57BL/6J mice, Behav. Brain Res, vol.292, pp.125-132, 2015.

P. Zhao, S. G. Waxman, and B. C. Hains, Sodium channel expression in the ventral posterolateral nucleus of the thalamus after peripheral nerve injury, Mol. Pain, vol.2, p.27, 2006.