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Abstract
In computational electromagnetics, boundary integral equations are the sheme of
hoice for solving extremely large forward electromagnetic problems due to their
high eiciency. However, two of the most used of these formulations, the electric
and combined ield integral equations (EFIE and CFIE), sufer from stability issues
at low frequency and dense discretization, limiting their applicability at both ends
of the spectrum. his thesis focusses on remedying these issues to obtain full-wave
solvers stable from low to high frequencies, capable of handling scenarios ranging
from electromagnetic compatibility to radar applications. he solutions presented
include (i) extending the quasi-Helmholz (qH) projectors to higher order modeling
thus combining stability with high order convergence rates; (ii) leveraging on the qH
projectors to numerically stabilize the magnetic ield integral equation and obtain
a highly accurate and provably resonance-free Calderón-augmented CFIE immune
to both of the aforementioned problems; and (iii) introducing a new low frequency
and dense discretization stable wire EFIE based on projectors and linear B-splines.
In addition, a researh axis focussed on enhancing Brain Computer Interface (BCIs)
with high resolution electromagnetic modeling of the brain has been opened; a
particular atention is dedicated to the inverse problem of electromagnetics and the
associated integral equation-based forward problem. he irst results of this new
line of investigations include the development of one of the irst peer-reviewed,
freely available framework for end-to-end simulation of BCI experiments.
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Résumé
Dans le domaine de l’électromagnétisme computationnel, les équations intégrales
de frontière sont très largement utilisées pour résoudre certains des plus grands
problèmes directs, grâce à leur grande eicacité. Cependant les équations intégrales
du hamp électrique et du hamp combiné (EFIE et CFIE), deux des formulations les
plus employées, soufrent d’instabilités à basse fréquence et à haute discrétisation,
ce qui limite leur versatilité. Dans cete thèse diférentes approhes sont présentées
pour obtenir des algorithmes applicables aussi bien à des problèmes de compatibilité
électromagnétique qu’à des applications radar. Les solutions présentées incluent
(i) l’extension des projecteurs dit quasi-Helmholz (qH) aux modélisations d’ordre
supérieur ; (ii) l’utilisation de ces projecteurs pour stabiliser l’équation intégrale du
hamp magnétique et former une CFIE extrêmement précise, augmentée par des
tehniques de type Calderón, qui ne soufre de problèmes ni à basse fréquence ni
à haute discrétisation et qui n’est pas sujete aux résonances artiicielles ; (iii) le
développement d’une EFIE ilaire, basée sur des B-splines linéaires et les projecteurs
qH, stable aux deux extrémités du spectre. Ces travaux ont été suivis de l’ouverture
d’un nouvel axe de reherhe visant l’amélioration des tehniques de résolution
des problèmes inverses en électromagnétique, avec pour objectif principal l’aug-
mentation des performances des interfaces cerveau mahine (BCIs). Les premiers
résultats obtenus incluent le développement de l’un des premiers systèmes libres
de simulation de bout en bout de session de BCI ayant été publié après revue par
les pairs.
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Résumé Long
Dans le domaine de l’électromagnétisme computationnel, les équations intégrales
de frontière sont très largement utilisées pour résoudre certains des plus grands
problèmes directs, grâce à leur grande eicacité. Cependant ces équations soufrent
de diverses instabilités, en particulier à haute et à basse fréquences qui restreignent
leurs domaines d’applicabilités. Les travaux présentés dans cete thèse s’articulent
autour de la stabilisation de plusieurs équations intégrales largement utilisées, aussi
bien dans les milieux académiques que dans l’industrie, grâce à des analyses spec-
trales détaillées permetant dans un premier temps de caractériser les instabilités et
dans un second temps de concevoir des familles de préconditionneurs adaptés aux
diférents problèmes ainsi identiiés. Ces diférents aspects sont présentés de façon
synthétique dans le Chapitre 1.

Dans le Chapitre 2 certaines des équations intégrales principales de l’électroma-
gnétisme sont dérivées à partir des équations de Maxwell

∇ × e = −m − j!�h , (0.1a)
∇ × h = j + j!�e , (0.1b)
∇ ⋅ d = �e , (0.1c)
∇ ⋅ b = �m . (0.1d)

En haute fréquence ces équations sont l’équation intégrale du hamp électrique
(EFIE) et l’équation intégrale du hamp magnétique (MFIE)

[jk+�+(T j+�)(r) + (Km+�)(r)]tan + 1
2
n̂ ×m+� (r) = [ei(r)]tan , r ∈ � , (0.2)

[ jk+�+ (T m+�)(r) − (Kj+�)(r)]tan − 1
2
n̂ × j+� (r) = [hi(r)]tan , r ∈ � , (0.3)

qui seront le sujet de nombreux développements tout au long de cete thèse. Puisque
le dernier hapitre de cete thèse se concentre sur le développement de nouvelles
interfaces cerveau-mahine (sICMs), l’une des formations intégrales les plus utilisées
pour la modélisation électromagnétique du cerveau est aussi introduite dans ce
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Figure 0.1. : Illustration de la dégradation de la solution de l’EFIE en basses fréquences,
obtenue en simulant un sphère de rayon 1m à 1 ⋅ 10−40Hz. Les séries de Mie
représentent la solution analytique exacte.

premier hapitre à partir de équations de Maxwell en régime quasi-statique

∇ × e = −�
∂h
∂t

, (0.4)

∇ × h = �
∂e
∂t

+ j , (0.5)

∇ ⋅ d = �e , (0.6)
∇ ⋅ b = 0 . (0.7)

Dans le Chapitre 3 une nouvelle approhe est présentée pour stabiliser l’EFIE à
basse fréquence lorsqu’une modélisation d’ordre supérieur est employée. L’EFIE
soufre en efet de problèmes de conditionnement et de précision à basse fréquence
(low frequency breakdown), qui la rendent diicilement utilisable dans ce régime
(Figures 0.1 et 0.2). Ces problèmes ont récemment été résolus de façon eicaces par
l’utilisation de projecteurs dit quasi-Helmholz (qH). Ces projecteurs qui permetent
de décomposer l’espace des fonctions de base en un sous-espace solénoïdal et un
sous-espace non solénoïdal ne sont cependant pas directement applicables aux
problèmes dont la géométrie est discrétisée à l’aide d’éléments d’ordre supérieur ou
courbés (Figure 0.3). Lesmodélisations d’ordre supérieur ont de nombreux avantages
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en terme de nombre d’inconnues et de vitesse de convergence de la solution et
sont donc nécessaires au développement de simulateurs haute performance. Pour
étendre les projecteurs à ce type d’équation il est nécessaire de les redéinir à partir
de la matrice Σ discrétisant l’opérateur gradient

[ΣT]ij = ⟨�i(r),∇ ⋅ f pj (r)⟩ , (0.8)

et les deux projecteurs (non-solénoïdal et solénoïdal) sont

PΣ = Σ(ΣT
G

−1�,�Σ)+ΣT , (0.9)
PΛ = I − PΣ . (0.10)

Une tehnique de calcul rapide de la pseudo-inverse nécessaire au calcul de PΣ est
toujours en cours d’étude pour ateindre une résolution en complexité linéaire. En
efet, la complexité linéaire de calcul des projecteurs obtenue pour les discrétisations
traditionnelles ne peut pas être obtenue de la même façon car la matrice ΣT

Σ ne se
comporte plus comme une matrice de Laplace.

Dans le Chapitre 4 la version ilaire de l’EFIE

− jkη0[∫l l̂(r) ⋅ l̂(r ′)i(r ′)Kex(r − r ′)dl′+
1k2 l̂(r) ⋅ ∇∫l ∇′ ⋅ (l̂(r ′)i(r ′))K(r − r ′)dl′] = −l̂(r) ⋅ ei , (0.11)

est étudiée en profondeur en pour être stabilisée aussi bien en basse fréquence
qu’en discrétisation. En particulier une analyse spectrale détaillée est obtenue
pour les deux noyaux de l’équation K = Kex et K = Kred, ce qui permet d’obtenir
directement le spectre de l’opérateur intégral du hamp électrique (EFIO) dans le
cas d’un dipôle ininiment long. Cete analyse a mis en évidence l’existence de deux
régimes diférents des EFIEs ilaires qui sont la conséquence de la forte inluence
du diamètre du il les propriétés de l’opérateur. Ces deux régimes, observables
pour les deux noyaux, donnent donc naissance à quatre comportements spectraux
devant être analysés indépendamment. Les expressions analytiques des spectres
sont ensuite utilisées pour hoisir une famille de préconditionneurs hiérarhiques
adaptés (Figure 0.4) et capables de compenser les instabilités en haute discrétisation
dans les cas où cela est possible. Le préconditionneur hiérarhique est ensuite couplé
avec une extension des projecteurs qH aux structures ilaires ce qui permet une
stabilisation complète de l’équation sur une large bande de fréquence. L’équation
ainsi obtenue

DH
T
MZMHDy = DH

T
Mv , (0.12)

4
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Figure 0.4. : Exemple d’ondeletes construites sur un segment ilaire.

est capable d’opérer aussi bien en haute qu’en basse fréquences.
Dans le Chapitre 5 la MFIE est elle aussi stabilisée en basse fréquence et en

haute discrétisation en utilisant des projecteurs qH et les identités de Calderón,
respectivement. Combiner cete nouvelle MFIE avec une nouvelle EFIE récemment
introduite permet d’obtenir une équation stable en basse et haute fréquences qui
est aussi insensible aux résonances non physiques dont les équations soufrent
lorsqu’elles sont séparées. La nouvelle MFIE

(I

2
−K−jk)(I

2
+Kk)(j) = (I

2
−K−jk)(n̂r × hi) . (0.13)

peut correctement représenter le noyau statique de l’opérateur magnétique sur les
structures à connexité multiple et ne soufre pas de perte de précision en basse
fréquence (Figure 0.5). Cete nouvelle équation peut ensuite être combinée avec
une EFIE régularisée pour former la nouvelle équation intégrale du hamp combiné
(CFIE)

(�2(I

2
−K−jk)(I

2
+Kk)(k) + T−jkTk)(j) =

(I

2
−K−jk)(n̂ × hi) + T−jk(n̂ × ei) , (0.14)

dont il peut être prouvé qu’elle n’est pas sujete aux résonances non physiques
(Figure 0.6). Les diférentes propriétés de ces nouvelles équations sont illustrées au
travers de nombreux exemples numériques.
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Figure 0.7. : Illustration d’un pipeline d’ICM augmenté par imagerie cérébrale.

Dans le Chapitre 6 une nouvelle approhe permetant d’améliorer considérable-
ment la précision des ICMs en utilisant des tehniques d’imagerie cérébrale à haute
résolution est présentée (Figure 0.7). Cete approhe est permise par le développe-
ment du premier logiciel libre de simulation de données ICM, qui permet d’obtenir
un cadre de test robuste des nouveaux algorithmes proposés. En particulier l’utili-
sation de données ICM simulées permet de se passer dans un premier temps de la
génération d’un jeu de données issus de sujets humains. Un autre avantage crucial
de cete approhe est qu’elle permet de contrôler complètement le signal observé,
ce qui permet de comprendre en profondeur les avantages et les points faibles de
hacune des tehniques employées. Ce travail sera dans un future prohe l’élément
fondateur d’un axe de reherhe sur le développement de nouveaux types d’ICM
capables d’exploiter au maximum les données issues de l’imagerie cérébrale haute
résolution.

Ce manuscrit se termine dans le Chapitre 7 sur une rélexion du travail accompli
durant cete thèse et propose de futurs axes de reherhe dans leurs continuation.
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Chapter 1

Introduction

Thanks to their numerous advantages, boundary integral formulations
are widely used for solving predictive electromagnetic forward problems.
In particular, they yield reduced-size interaction matrices because only the

surfaces of the scaterer are discretized, as opposed to the full volume discretization
of diferential methods (e.g. the inite element method (FEM)). In addition, these
tehniques ofer a generally high precision due to their resilience to numerical
dispersion. Among the numerous integral formulations that have been proposed in
the literature the electric ield integral equation (EFIE) has seen widespread usage in
applications ranging from electromagnetic compatibility to radio-frequency simula-
tions thanks to its versatility. It sufers, however, from issues reducing its stability at
both ends of the spectrum. At low frequency it becomes extremely ill-conditioned
and its solutions undergo numerical cancellations. At high frequency, when the
density of the discretization increases, its conditioning grows quadratically. he
conditioning breakdowns are problematic because they reduce the performance
of iterative solvers and thus jeopardize the linear in complexity resolution that
can be atained with fast algorithms suh as the Multilevel Fast Multipole Method
(MLFMM). Another source of ill-conditioning of the electric equation are the arti-
icial resonances whih cause it to become periodically ill-conditioned. his last
problem is usually addressed by linearly combining the EFIE with the magnetic ield
integral equation (MFIE) in order to form the resonance free combined ield integral
equation (CFIE). However, while the magnetic equation does not sufer from dense
discretization issues, it exhibits its own numerical instabilities at low frequency in
addition to being applicable only to closed structures. In this thesis, ater reviewing
the relevant electromagnetic (EM) bakground in Chapter 2, solutions to some of
the aforementioned issues are introduced (or pre-existing solutions extended) to
stabilize these equations and obtain solvers capable of reliably handling a wide
range of scenarios.

he low frequency issues plaguing the EFIE have recently been addressed by
introducing the quasi-Helmholz (qH) projectors that allow for a computationally
eicient loop star decomposition and hence can be used to cure to the root cause

9
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of the so-called low frequency breakdown. In Chapter 3 the qH projectors are
extended to higher order modeling. Because higher order tehniques enable beter
discretization of the geometry and introduce electrically large basis function, they
ofer signiicantly higher convergence rates than standard modeling. Extending
the projectors to this family of shemes will open up the development of extremely
stable, accurate and fast solvers.

he simulation of wire-like structures (or structures made of a combination of
wires and surfaces) is oten performed using the wire EFIE whih takes advantage
of the fact that, if the radius of the wires is small enough with regards to the
wavelength, it is possible to modelize the structure with one dimensional basis
functions, thus considerably reducing the dimensionality of the problem. he
eiciency of this reduced problem is however compromised by both low frequency
and dense discretization breakdowns. he underlying causes of this low frequency
breakdown are similar to these of the surface EFIE hence a cure based on a one-
dimensional extension of the qH projectors is presented in Chapter 4, along with
a reinement regularization. Diferently from the surface formulation, however,
the dense discretization breakdown is not addressed with Calderón-like tehniques
but with wavelet preconditioning (b-spline wavelets). he careful combination of
these tehniques yields a stable formulation that is proved to be immune from both
breakdowns in a canonical case, through a detailed spectral analysis of the wire
electric ield integral operators (sEFIOs).

hanks to its resilience to artiicial resonances, the CFIE is a staple formulation
in the integral equation community. However, while the low and high frequency
limitations of the surface EFIE have been recently addressed, the low frequency
issues of the MFIE are still salient and adversely impact the precision of the com-
bined equation. Even though the numerical instabilities of the magnetic equation
are radically diferent than these of the EFIE, they can be addressed by using the
qH projectors on a newly introduced, symmetrized magnetic equation. Once stabi-
lized, this new equation is combined, in Chapter 5, with the corresponding EFIE in
order to form a new and highly stable combined ield equation that is proved to be
immune to spurious resonances.

Finally, a line of investigations dedicated to the enhancement of Brain Computer
Interfaces (sBCIs) through high precision anatomical modeling based on integral
equations has been opened. It focusses mainly on the hallenges of the inverse
problem in EM and, in particular, on improving the reconstruction of the brain
activity from the electroencephalogram (EEG) signals. Despite still being in its
early stages, this work, detailed in Chapter 6, has already produced one of the irst
peer-reviewed framework for fully simulated BCI experiments whih is expected
to help improve the pace of innovation in this ield by reducing the cost in both

10



time and inances induced by human experiments.
his dissertation closes in Chapter 7 with a relection on the work ahieved and

more importantly on how these contributions can be extended in the future.
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Chapter 2

Bakground on Electromagnetic
Scatering

Maxwell’s eqations are the four fundamental equations governing the
behaviour of electromagnetic waves and hence will serve as the starting
point of this dissertation. In thishapter the formulations and operators that

will be used throughout this thesis are derived starting from these relations. he
bakground material presented in the following sections includes considerations
for both high – non-zero – frequency and statics and on the solutions of the
corresponding Helmholz’s and Poisson’s equations.

Maxwell’s and Helmholz’s equations are recalled in Sections 2.a and 2.b and
used to derive relations for the ields generated by free current distributions in
Section 2.c. hese expressions are then extended to the case of scatering by
perfectly electrically conducting (PEC) objects in Section 2.e using the EM boundary
condition introduced in Section 2.d. Tehniques for numerical solution of the newly
introduced EM problems are then presented in Sections 2.f and 2.g. Finally, the
EEG forward problem is introduced in Section 2.i using the static formulation of
Maxwell’s equations introduced in Section 2.h.

Because this thesis focuses on time-harmonic ields, the time-dependency ej!t
will be omited throughout its developments.

a) Maxwell’s Equations
In a homogeneous dielectric region of space the equations governing the behaviour
of the electric ield e and of the magnetic ield h are, in the frequency domain,∇ × e = −m − j!�h , (2.1a)∇ × h = j + j!�e , (2.1b)∇ ⋅ d = �e , (2.1c)∇ ⋅ b = �m , (2.1d)
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where ! is the angular frequency, d = �e, b = �h, j andm are electric and magnetic
current densities, and �e and �m are electric andmagneticharge densities;m and �m
are not physical quantities and are introduced for simplifying further developments.

b) Helmholz’s Equation
To solve general scatering problems the solution of the inhomogeneous scalar
Helmholz equation is required. Given a wavenumber k and a function f ∶ R

3 ↦ C

with compact support, the equation can be writen∇2A(r) + k2A(r) = −f (r) , r ∈ R
3 . (2.2)

Unicity of its solution requires a physically meaningful boundary condition to
be enforced. In the case of electromagnetic ields this boundary condition is the
Sommerfeld radiation condition, whih states that the energy radiated by the
solution must disperse at ininity, i.e. if A is a solution of eq. (2.2), then

lim‖r‖→∞
‖r‖( ))‖r‖ + jk)A(r) = 0 , (2.3)

uniformly in all directions r̂ = r/‖r‖.
Under the Sommerfeld radiation condition, the solution of eq. (2.2) is the con-

volution of the right hand side (RHS) with the 3-dimensional free-space Green’s
function G (G ∗ f )(r) = ∫

R
3

G(r − r ′)f (r ′)dr ′ , (2.4)

and the Green’s function is the solution of the inhomogeneous scalar Helmholz
equation with the Dirac delta function as RHS

∇2G(r) + k2G(r) = −�(r) , r ∈ R
3 , (2.5)

whih in R
3 is

G(r) = e−jk‖r‖
4π‖r‖ , r ∈ R

3 . (2.6)

c) Fields Currents Distributions
Maxwell’s equations can be used to model electromagnetic ields generated by
current distributions living in free space. In this section the expressions of these
ields are presented using two diferent approahes. his canonical case will serve
as foundation for scatering problems introduced later on.

14
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�) Expression of the Fields
he expression of the electric ield e as a function of the electric and magnetic cur-
rents can be obtained by applying the curl operator to eq. (2.1a) before substituting
eq. (2.1b) into the resulting equation, yielding

∇ × ∇ × e − k2e = −∇ × m − j!�j , (2.7)

with k = !√��. Leveraging on the vector identity

∇ × ∇ × A = ∇(∇ ⋅ A) − ∇2A , (2.8)

and using eq. (2.1c), eq. (2.7) can be re-writen as

∇2e + k2e = ∇ × m + j!�j + ∇�e� . (2.9)

An expression for ∇ ⋅ e is derived by applying the divergence operator to eq. (2.1b)
and noting that ∇ ⋅ (∇ × A) = 0,

∇2e + k2e = ∇ ×m + j!�j − 1j!�∇(∇ ⋅ j) . (2.10)

Equation (2.10) is actually anHelmholz’s equationwith the electric ield, whihmust
satisfy the Sommerfeld boundary condition, as unknown. herefore an expression
for e can be immediately derived using the results from Section 2.b,

e(r) = −j!� ∫
R
3 G(r − r ′)[1 + 1k2∇′∇′⋅]j(r ′)dr ′ − ∫

R
3 G(r − r ′)∇′ ×m(r ′)dr ′ .

(2.11)
his equation can be used to obtain an expression of the electric ield generated
by arbitrary electric and magnetic current densities anywhere in space. A similar
approah will deliver the magnetic counterpart of eq. (2.11)

h(r) = −j!� ∫
R
3 G(r − r ′)[1 + 1k2∇′∇′⋅]m(r ′)dr ′ + ∫

R
3 G(r − r ′)∇′ × j(r ′)dr ′ .

(2.12)

�) Potentials
Another method to derive the expression of the electric ield relies on the explicit
deinition of a vector and scalar potentials. Even though this approah yields

15
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results equivalent to these of the previous section, the potentials are useful for
some theoretical considerations. heir deinitions will be recalled without going
through their whole derivations.

In the absence of magnetic harges ∇ ⋅ B = 0 whih implies that there exists a
magnetic vector potential A suh that

h = 1�∇ × A . (2.13)

Using Maxwell’s equations an electric scalar potential �e
e = −j!A − ∇�e . (2.14)

can also be constructed. Considering that only curl of A has been ixed so far, its
divergence can be freely hosen. he usual hoice is the so-called Lorenz gauge

∇ ⋅ A = −j!���e , (2.15)

whih efectively cancels out one of the potentials. Ater simple derivations A can
be shown to be solution of the inhomogeneous vector Helmholz equation

∇2A + k2A = −�j , (2.16)

thus it can be expressed as

A(r) = � ∫
R
3 j(r ′)G(r − r ′)dr ′ , (2.17)

and, inally, e(r) = −j![1 + 1k2∇∇⋅]A(r) . (2.18)

Similar considerations in the presence of magnetic harges will yield the expres-
sions for the electric vector potential F and the magnetic scalar potential �m

F (r) = � ∫
R
3
m(r ′)G(r − r ′)dr ′ , (2.19)

�m = − 1j!��∇ ⋅ F , (2.20)

whih can be used to express the magnetic ield as

h(r) = −j![1 + 1k2∇∇⋅]F (r) . (2.21)
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Finally, the ields generated by arbitrary electromagnetic current distributions
can be obtained by superposition, i.e. by summing the contributions of the electric
and magnetic densities

e(r) = −j![1 + 1k2∇∇⋅]A(r) − 1�∇ × F(r) , (2.22)

h(r) = −j![1 + 1k2∇∇⋅]F(r) + 1�∇ × A(r) . (2.23)

he careful reader will have noticed that 2.22 and 2.11 are diferent since the
diferential operators do not act on the same variables. heir equivalence can be
demonstrated through simple but cumbersome derivations that can be found in
[Jin15].


 ) Far Field Approximation
While the previous expressions are valid anywhere in space, it is suicient for
numerous applications to study the behaviour of the electromagnetic ields far
from the sources. In this case the distance between the sources and the observation
point can be approximated as ‖r − r ′‖ ≈ ‖r‖, when the term is used as an amplitude
scaling; when it is used as a phase term – i.e. in the exponential of the Green’s
function – the more subtle approximation

‖r − r ′‖ ≈ ‖r‖ − r̂ ⋅ r ′ , (2.24)

should be used. his last approximation is derived by expanding ‖r − r ′‖ into its
inner product deinition and neglecting r ′ ⋅r ′ with regards to r ⋅r . Furthermore, the
derivatives in eqs. (2.22) and (2.23) contribute terms negligible in front of ‖r − r ′‖−1,
thus

e(r) ≈ −j!A(r) − 1
�
∇ × F(r) , (2.25)

h(r) ≈ −j!F (r) + 1
�
∇ × A(r) . (2.26)

Ater introducing the notations

N(r) = ∫
R
3
j(r ′)ejkr′⋅r̂dr ′ , (2.27)

L(r) = ∫
R
3 m(r ′)ejkr′⋅r̂dr ′ , (2.28)

17



Bakground on Electromagnetic Scatering Chapter 2

the potentials can be writen in the far ield region

A(r) ≈ �
4π‖r‖e−jk‖r‖N(r) , (2.29)

F(r) ≈ �
4π‖r‖e−jk‖r‖L(r) , (2.30)

because e−jk‖r−r′‖
4π‖r − r ′‖ ≈ e−jk‖r‖

4π‖r‖ejkr′⋅r̂ . (2.31)

Before obtaining the inal expressions, it should be demonstrated that the radial
components of the potentials are negligible with regards to the azimuthal and polar
components. his can be demonstrated by properties of the integration in spherical
coordinates, but for the sake of brevity this will not be detailed here; details can
be found in [Bal12]. Finally, the complete expressions of the far ields, ater all
simpliications have been carried out, are

e(r) ≈ −
jk

4π‖r‖e−jk‖r‖[�̂(L�(r) + �N� (r)) − �̂(L� (r) − �N�(r))] , (2.32)

h(r) ≈ −
jk

4π�‖r‖e−jk‖r‖[�̂(L� (r) − �N�(r)) + �̂(L�(r) + �N� (r))] . (2.33)

�) Radar Cross-Section
When studying radiation paterns the radar cross-section (RCS) is oten preferred
to the raw far ields. he RCS � of a scaterer is deined as

� (r) = lim‖r‖→∞
4π‖r‖2 ‖es(r)‖2‖ei(r)‖2 , (2.34)

where es is the far ield scatered by the object and ei is the incident ield. Note
that the RCS only depends on the angle of observation of the object and not on the
distance.

d) Boundary Conditions
To solve problems of scatering by arbitrary objects it is necessary to establish the
behaviours of the electromagnetic ields at their boundaries. In a region of space 
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with a smooth boundary � haracterized by its outgoing unit surface normal vectorn̂, the ields must satisfy the following properties near �
n̂ × (e+ − e−) = −m� , (2.35a)n̂ × (h+ − h−) = j� , (2.35b)
n̂ ⋅ (d+ − d−) = �e,� , (2.35c)
n̂ ⋅ (b+ − b−) = �m,� , (2.35d)

where the ± superscript indicates quantities at the inner and outer boundaries and
the � subscript indicates surface quantities. More formally,

{e,h}+(r) = lim
r→r′

{e,h}(r) , r ∈ R
3 ⧵ 
 , (2.36)

{e,h}−(r) = lim
r→r′

{e,h}(r) , r ∈ 
 . (2.37)

A case of particular interest for the developments of this thesis is that of PEC objects,
for whih the boundary conditions simplify as

n̂ × (e+ − e−) = 0 , (2.38a)n̂ × (h+ − h−) = j� , (2.38b)n̂ ⋅ (d+ − d−) = �e,� , (2.38c)n̂ ⋅ (b+ − b−) = 0 . (2.38d)

e) Equivalence Principle
Another crucial element for solving scatering problems involving arbitrarily shaped
objects is the equivalence principle whih states that any distribution of electro-
magnetic sources enclosed within a surface � radiating ields (e, h) can be replaced
by surface current densities (j� ,m�) on � that will radiate the same ields outside
of the surface. If current densities are properly hosen, the ields inside � can be
replaced by any ields (e′, h′) satisfying Maxwell’s equations without perturbing
the outside ields. he hoice of current densities is imposed by the boundary
conditions eq. (2.35) and are

j� = n̂ × (h − h′) , (2.39)m� = −n̂ × (e − e′) , (2.40)

19



Bakground on Electromagnetic Scatering Chapter 2

where n̂ is the outgoing normal unit vector of � . Since these current densities
create a ield identical to the original one on the outer surface, the uniqueness
theorem dictates that the ields outside of � are indeed (e, h).

In particular, since the ields inside the surface can be arbitrarily hosen, it is
possible to set them to (e′, h′) = (0, 0), so that the material enclosed by the surface
can be set arbitrarily with no inluence on the ields. his is particularly useful
since the presence of the object was preventing usage of the relations in eqs. (2.11),
(2.12), (2.22) and (2.23).

Before trying to obtain expressions for the total ields in the domain, some
additional notations should be introduced. First, the distinction is made between
the total ields that would be present in the absence of the scaterer and the ields
created by the equivalent surface current densities on the boundary of the scaterer.
he former are the incident ields (ei ,hi) and the later are the scatered ields(es ,hs). It is clear that, because of superposition, (e,h) = (ei ,hi) + (es ,hs). To
simplify the upcoming expressions the following operator notations are introduced
for the electric and magnetic ields

(T X )(r) = (TsX )(r) + 1k2 (TℎX )(r) , (2.41)

(TsX )(r) = ∯� X(r ′) e−jk‖r−r′‖
4π‖r − r ′‖dr ′ , (2.42)

(TℎX )(r) = ∇∯� ∇′ ⋅ X(r ′) e−jk‖r−r′‖
4π‖r − r ′‖dr ′ , (2.43)

(KX )(r) = ∯�
e−jk‖r−r′‖
4π‖r − r ′‖ × ∇′X(r ′)dr ′ . (2.44)

Using the new notations in combination with the equivalence principle yields,
in the exterior region,

m+� = −n̂ × e = −n̂ × (ei + es) , (2.45)j+� = n̂ × h = n̂ × (hi + hs) . (2.46)

hese expressions are then combined with eqs. (2.11) and (2.12)

m+� (r) + n̂ × (−jk+�+(T j+�)(r) − (Km+�)(r)) = −n̂ × ei(r) , (2.47)

j+� (r) − n̂ × (−jk+�+ (T m+�)(r) + (Kj+�)(r)) = n̂ × hi(r) . (2.48)
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Equations (2.47) and (2.48) are however not valid on � itself because K has a non-
zero Cauhy principal value when r → r ′. his singularity requires a non-trivial
treatment that can be found in [Jin15] or in most electromagnetic books; once it has
been addressed the previous expressions become, on a closed and smooth surface,

1
2
m+� (r) + n̂ × (−jk+�+(T j+�)(r) − (Km+�)(r)) = −n̂ × ei(r) , r ∈ � , (2.49)

1
2
j+� (r) − n̂ ×(− jk+�+ (T m+�)(r) + (Kj+�)(r)) = n̂ × hi(r) , r ∈ � , (2.50)

if the surface is not ininitely thin.
he current densities on the interior boundary can be derived via similar consid-

erations, with the diference that the incident ields are 0,
1
2
m−� (r) − n̂ × (−jk−�−(T j−�)(r) − (Km−� )(r)) = 0 , r ∈ � , (2.51)

1
2
j−� (r) + n̂ ×(−

jk−�− (T m−� )(r) + (Kj−�)(r)) = 0 . r ∈ � . (2.52)

In addition, Equations (2.49) to (2.52) can be reformulated in terms of tangential
components on � by using the vector identity

n̂ × n̂ × X = −[X ]tan (2.53)

yielding,

[jk+�+(T j+�)(r) + (Km+�)(r)]tan + 1
2
n̂ ×m+� (r) = [ei(r)]tan , r ∈ � , (2.54)

[jk+�+ (T m+�)(r) − (Kj+�)(r)]tan − 1
2
n̂ × j+� (r) = [hi(r)]tan , r ∈ � , (2.55)

[jk−�−(T j−�)(r) + (Km−� )(r)]tan − 1
2
n̂ ×m−� (r) = 0 , r ∈ � , (2.56)

[jk−�− (T m−� )(r) − (Kj−�)(r)]tan + 1
2
n̂ × j−� (r) = 0 , r ∈ � . (2.57)

Equations (2.54) to (2.57) can be used to determine the surface current densities when
coupled with the proper boundary conditions, whih can in turn be used to compute
the total ields anywhere in space using eqs. (2.11) and (2.12). Equations (2.54)
and (2.55) are respectively the EFIE and MFIE. hese equations both sufer from
the existence of non-physical resonances in their solutions, a problem that is
traditionally alleviated by linearly combining them to form the CFIE

�EFIE + �(1 − �)n̂ ×MFIE , (2.58)
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where � ∈]0 , 1[ (0 and 1 are excluded because they degenerate to the original,
resonating equations).

A case of particular interest is that of a PEC scaterer, in whih case the above
equations simplify because m� = 0.

f) Discretization
he diferent formulations derived so far can only yield analytic solutions for some
simple, canonical cases (e.g. spheres). While these closed-form results will be useful
for verifying the correctness of several shemes presented in this thesis, they are of
litle practical use for real case scatering scenarios. To haracterize and predict
the behaviour of electromagnetic ields when non-trivial structures are involved,
numerical shemes must be employed.

he irst step in the conception of a numerical method is the discretization of
the problem. In this thesis only Petrov-Galerkin shemes are studied because
they ofer, under certain conditions [SS11], a guaranteed convergence to the exact
solution. If applied to surface integral equations, these shemes form the boundary
element methods (sBEMs) or methods of moments (sMoMs). In these approahes
the unknown is irst expanded with basis functions living in the correct space
and capable of representing the properties of the unknown; the resulting set of
equations is then tested with functions living in the dual of the range of the operator.
he functions are deined on a small subset of elements of the tessellated scater (in
this thesis the tessellation is always made of tringles). Other approahes include
Nyström [Ged03] or collocation methods.

he EFIE is commonly discretized with Rao-Wilton-Glisson (RWG) functions
[RWG82], whih live in H −1/2(div) – the correct functional space for the current
density – and have a well deined divergence, i.e. they do not give rise to unphysical
harges. An RWG function is deined on a pair of triangles (c+n , c+n), sharing an
inner edge en connecting vertices v+n and v−n , as

fn(r) =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
r − r+n
2Ac+n for r ∈ c+n ,r−n − r
2Ac−n for r ∈ c−n ,
0 otherwise,

(2.59)

where the vertices r+n and r−n are the vertices of c+n and c−n that do not belong to en andAc+n and Ac−n are the respective areas of the cells (Figure 2.1). his deinition does not
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Fig. 2.1.: Illustration of an RWG basis function deined on the inner edge en between verticesv+n and v−n , and connecting the cells c+n and c−n , whih are the two triangles atahed
to the deining edge and completed by the vertices r+n and r−n , respectively.

include any normalization by the edge-length ‖en‖, whih is used in some instances
in the literature. he current is approximately expanded as a linear combination ofN RWG basis functions

{fm},

j(r) ≈ N∑m=1[j ]mfm(r) , (2.60)

where [j ]m = ⟨fm, j⟩ and ⟨a, b⟩ = ∬ a(r) ⋅ b(r)dr denotes the duality product. In
the case of a PEC scaterer � the EFIE is approximated as

(Tsj)(r) ≈ N∑m=1[j ]mn̂ ×∬� fm(r) e−jk‖r−r′‖4π‖r − r ′‖dr ′ , (2.61)

(Tℎj)(r) ≈ N∑m=1[j ]mn̂ × ∇∬� ∇′ ⋅ fn(r) e−jk‖r−r′‖4π‖r − r ′‖dr ′ , (2.62)

(Tℎj)(r) ≈ N∑m=1[j ]m(−jk�(Tsfm)(r) + �jk (Tℎfm)(r)) . (2.63)

hese equations are then tested with the functions
{
n̂ × fn} in the dual of the range

of the operators, giving rise to the matrix system

T j = −jk�Tsj + �jkTℎj = ve , (2.64)
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where [Ts]mn = ⟨n̂ × fm ,Tsfn⟩ , (2.65)[Tℎ]mn = ⟨n̂ × fm ,Tℎfn⟩ , (2.66)[ve]m = −⟨n̂ × fm , ei⟩ , (2.67)

T = −jk�Ts + �jkTℎ . (2.68)

he system then be solved for j in order to obtain the coeicients of the current
in the interpolatory basis. he radiated ield is obtained by radiating this current
using eqs. (2.11) and (2.12).

he MFIE can be discretized in a very similar fashion. However particular care
should be given to the testing basis functions. his equation has traditionally been
tested with standard RWG basis functions, but this discretization yields inaccurate
results [Coo+11]. A new, conforming, discretization has been introduced more
recently [Coo+11] in whih rotated Bufa-Christiansen (BC) basis functions

{f̃m},
whih live in the dual of the operator, are used for the testing. A formal deinition
of the BC functions can be found in [BC07]. he discretized MFIE is

(G f̃ ,f2 + K)j = vℎ , (2.69)

where [G]mn = ⟨n̂ × f̃m ,Ifn⟩ , (2.70)

[K ]mn = ⟨n̂ × f̃m ,Kfn⟩ , (2.71)

[vℎ]m = ⟨n̂ × f̃m ,hi⟩ . (2.72)

g) Iterative Methods and Conditioning

�) Iterative Methods
Because of its cubic complexity, direct resolution of linear problems is seldom
applicable in any practical case. In electromagnetics, the linear problem

Mx = b , (2.73)

is usually solved using iterative methods that have a more tractable, quadratic,
complexity. As their name indicates, iterative methods atempt to approximate the
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solution of the problem by iteratively minimizing a cost function. Every step usually
involves matrix vector products whih explains their complexity. his quadratic
cost, however, only holds if the number of iterations required for converging
to a predetermined error is somehow bounded (with regards to the number of
unknowns). For instance the generalizedminimal residual method (GMRES)method
atempts to minimize the residual distance�n = ‖Mxn − b‖ , xn ∈ Kn , (2.74)

where Kn = span
{
b ,Mb ,… ,M n−1

b
} . (2.75)

is the n-th Krylov subspace of the system. In the case of a symmetric positive
deinite (s.p.d) matrix, GMRES exhibits a convergence rate that is related to the
conditioning of M (see Section 2.g.�)

�n ≤ (cond(M )2 − 1

cond(M )2 )n/2�0 . (2.76)

his results also implies that, if the condition number of M is constant with regards
to the number of unknowns, then a solution of the problem can be obtained in
quadratic complexity. In addition, if a fast matrix-vector product can be obtained,
for instance using fast methods suh as the MLFMM, the problem is efectively
linearised.

�) Condition Number
he condition number of an invertible matrix M is deined as

cond(M ) = ‖M ‖‖M −1‖ . (2.77)

In computational disciplines the conditioning plays a critical role because it afects
the convergence rate of the iterative solvers and hence the complexity of solving the
problem. And, as importantly, the condition number haracterizes the numerical
stability of the problem. Assuming that an error e is made in the estimation of b in
eq. (2.73) – either purely numerical or experimental – then

x = M
−1
b +M

−1
e , (2.78)

and the relative error made on the solution is

�b ,e = ‖M −1
e‖‖M −1
b‖ ⋅ ‖b‖‖e‖ . (2.79)
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An upper bound � on �b ,e can be found by considering the worst case scenario

� = max
b ,e �b ,e = max

e

‖M −1
e‖‖e‖ ⋅max

x

‖Mx ‖‖x ‖ (2.80)

and thus � = ‖M ‖‖M −1‖ . (2.81)
In conclusion, in order for the system to be resilient to numerical errors (e.g. loating
point calculation round of) or even measurement noise, it must be well conditioned.
Most of this thesis is dedicated to the pre-conditioning of EM problems to reduce
their complexity and stabilize their numerical accuracy.

h) Maxwell’s Equations in Statics
At low frequencies, when time derivatives can be neglected, Maxwell’s equations
decouple and new derivations are required. To detail some key passages of these
new derivations, Maxwell’s equations are re-statedwith an explicit time dependency.
One suh – non-symmetrized – form is

∇ × e = −� ∂h
∂t , (2.82)

∇ × h = � ∂e
∂t + j , (2.83)

∇ ⋅ d = �e , (2.84)
∇ ⋅ b = 0 , (2.85)

whih, when the derivatives are negligible, implies the existence of a scalar potentialV suh that e = −∇V . his result, in light of Ohm’s law

j = �e + j0 , (2.86)

where � is the conductivity of the medium and j0 is a constant initial contribution,
implies, ater few passages, that

∇ ⋅ (�∇V ) = ∇ ⋅ j0 . (2.87)

whih is Poisson’s equation. Because eq. (2.87) does not admit a unique solution,
additional boundary conditions must be provided. To specify these conditions the
trace operator that associates a function u deined on a compact domain 
, with
its generalized boundary function on ∂
 is introduced


 ±
0 u = u|�± . (2.88)
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Similarly, the co-normal derivative is deined as


 ±1 u = n̂ ⋅ 
 ±
0 �±∇u . (2.89)

In the cases relevant to this thesis, the boundary conditions are


 +
0 V = 
 −

0 V , (2.90)
 +
1 V = 
 −

1 V , (2.91)

where n̂ is the outgoing normal of � . In physical terms, eq. (2.90) imposes continuity
of the potential at the boundary, while eq. (2.91) imposes continuity of the normal
component of the current. Finally, any solution should fulil the Sommerfeld
radiation conditions.

he solution of the Poisson’s problem

− ∇ ⋅ (�∇V ) = �0 (2.92)

in a homogeneous domain of unit conductivity is the static three dimensional
Green’s function Gs(r) = 1

4π‖r‖ . (2.93)

Following the same reasoning as for Helmholz’s equation it can be shown that the
solutions of the problem

− ΔV = f (2.94)

are V = −f ∗ Gs . his solution will be of particular importance in the derivation of
the EEG forward problem.

i) EEG Forward Problem

�) Modeling of the Neurons
Because the physiological electric phenomenons occurring inside the brain typically
have a maximum frequency of 1 kHz, the quasi-static approximations of Maxwell’s
equations can be used for predictive modeling [BML01]. In addition, the source
of the electrical activity in the brain are the neurons whih, conveniently, can be
modeled as current dipoles [dMvDS88]. In algebraic form, the current distribution
generated by a neuron located at r0 and of moment q is

j(r) = q�(r − r0) , (2.95)
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where � denotes the Dirac delta function. he RHS of the corresponding Poisson’s
problem is ∇ ⋅ j(r) = q∇�(r − r0) . (2.96)

Finally, in a homogeneous domain of unit conductivity, the dipole generates the
potential vd = q ⋅ (r − r0)

4π‖r − r0‖3 . (2.97)

�) Nested Domains
he BEM formulations of the EEG forward problem are not capable of handling
fully anisotropic volumes (unlike FEM formulations). As a consequence the head is
oten modeled as being composed of three nested layers of uniform conductivities1
– typically brain, skull and scalp – and Poisson’s equation is solved in this multi-
domain context, whih requires additional developments.

he head is irst decomposed into N bounded, nested domains 
i with uniform
conductivity �i; the domain 
N+1 = R

3 ⧵ ⋃Ni=1 
i contains no sources. hen, if f is
the RHS of the problem in R

3, it can be decomposed into a sum of functions f
i ,
suh that

f
i (r) =
{f (r) if r ∈ 
i
0 if r ∉ 
i . (2.98)

he solutions of the sub-problems that satisfy the Sommerfeld radiation condition
are v
i = −f
i ∗ Gs , i = 1…N . hese local solutions are combined into a single
function

vd = N∑i=1 v
i , (2.99)

harmonic in 
N+1, that satisies Poisson’s equation. In addition, the function and its
normal derivatives are continuous across the diferent domain boundaries. Using
the representation theorem and Green’s identities [Kyb+05], it follows that

vd (r) = �j + �j+1
2

V (r) − N∑i=1 (�i+1 − �i)(D
0,iV )(r) , r ∈ �j , (2.100)

1 his assumption has been disproved for the white mater [Wol+06], however standard BEM formu-
lations are not capable of handling this anisotropy yet. New formulations addressing this limitation
are being developed [Rah+17].
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where D relates double layer potentials to their values on the domains’ boundaries

(Du)(r) = ∫)
 
 ′1Gs(r − r ′)u(r ′)dr ′ . (2.101)

Other formulations are available for obtaining the surface potentials, however
eq. (2.100) is the most straightforward and popular [BML01].


 ) Discretization
To solve the double layer formulation, the scalp, skull and cortex surfaces are
tessellated into N kt triangles and N kv vertices and the unknown potential V in
eq. (2.100) is expanded with pyramid basis function

Vk(r) ≈ Nv∑j=1 xkj 	j(r) , r ∈ �k , (2.102)

where the pyramids are deined to have unit value on their deining vertex and
to linearly go to zero over the triangles sharing this vertex. he equation is then
tested using the pyramids as testing functions, yielding a system of equation that
can be numerically solved

⎡
⎢
⎢
⎢⎣
G1 + D1,1 D1,2 D1,3

D2,1 G2 + D2,2 D2,3
D3,1 D3,2 G3 + D3,3

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
v1
v2
v3
⎤⎥⎥⎥⎦
= ⎡⎢⎢⎢⎣

b1
b2
b3
⎤⎥⎥⎥⎦
, (2.103)

where [Gk]ij = �k + �k+12 ⟨	 ki , 	 kj ⟩ , (2.104)[Dkl]ij = (�l+1 − �l)⟨	 ki ,Dkl	 lj⟩ , (2.105)[bk]i = ⟨	 ki , vd⟩ , (2.106)[xk]i = xki . (2.107)

A number of elementary results of EM theory have been presented in this intro-
ductory hapter. Most of the developments presented here will not be recalled in
the next hapters but references will be made to the present section when necessary.
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Chapter 3

High Order uasi-Helmholz
Projectors

Boundary integral equations are particularly eicient for solving problems of scat-
tering by conducting and penetrable objects. hese methods stand out in terms of
performance because they only require the surface of the scaterer to be discretized,
as opposed to the full volume discretization of diferential methods. However number
of these formulations exhibit numerical instabilities at low frequency, a phenomenon
designated as the low frequency breakdown in the literature. his chapter is devoted to
presenting a recently introduced strategy based on quasi-Helmholz projectors to cure
the low frequency breakdown of the EFIE and extending it to higher order modeling.
Because they preserve the convergence properties of the original formulations and do
not necessitate the recovery of cycles of the structure – unlike several other solutions
to the low frequency breakdown – projector approaches are well-suited for solving
large problems at low frequencies. Hence the high order extension of the technique
will enable the development of highly accurate formulations exhibiting higher order
convergence rates.

a) Introduction

While the EFIE has several advantages over other formulations, suh as
being able to handle open structures (unlike the MFIE or the CFIE) and
yielding smaller matrices than FEM tehniques while automatically sat-

isfying the radiation conditions, it sufers from ill-conditioning at low frequency
[ATV10]. In addition, the formulation also sufers from ill-conditioning at high
reinement [ATV10] but this problem is not detailed in the present hapter. Both
ill-conditionings prevent numerical solvers from yielding accurate solutions or
even prevent them from converging altogether. In addition, the EFIE sufers at low
frequency from numerical cancellations in its solution vector [Yun+03; CTH08;
QC10; Bog+11a; Bog+11b]. hese cancellations are due to the diferent scaling
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of the solenoidal and non-solenoidal parts of the solution. Because the former
scales with the frequency while the later scales with its inverse, the solenoidal
contribution is cancelled out by the non-solenoidal one when computed – and
stored together – in inite precision. Even though it might appear negligible, this
loss of current information results in a severe degradation of the accuracy of the
electrical harge and becomes even more critical when computing the scatered
ield. Indeed, for certain types of excitation the preserved and the cancelled out
parts of the solution physically contribute with the same strength [And+13b] to
the ield. his means that a crucial part of the inal result will have been lost and
replaced by numerical noise. his phenomenon together with the low-frequency
ill-conditioning, are indiferently referred to as the low-frequency breakdown of
the EFIE.

Because these limitations are intrinsic to the operator itself, they are also present
when higher order modeling is employed. his is particularity deplorable since
higher order shemes ofer signiicant improvements over traditional – low order –
ones in terms of eiciency and lexibility. hanks to their numerous advantages
high order shemes are commonly used in a wide array of computational shemes
[Not08]. Two of their most signiicant improvements with regards to low order
tehniques are (i) their more accurate discretizations – in less elements – of general
geometries enabled by curved geometrical elements; (ii) their higher convergence
rates permited by the usage of electrically large basis functions (of the order of
the wavelength). Overall these high order tehniques are generally faster than the
traditional ones. In particular the surface EFIE has been extended to higher orders
using a wide array of tehniques [Che+01; Not+01; DN03], a thorough review of
whih can be found in [Not08]. A particularly popular approah is to use higher
order divergence conforming interpolatory basis functions suh as the Graglia-
Wilton-Peterson (GWP) functions [GP97] whih are the higher order counterpart
of the standard RWG functions [RWG82]. Other contributions have proposed high
order hierarhical bases [Kol99] that allow for adaptive p-reinement of the mesh,
however they are not as widely employed because of the conditioning issues they
provoke. To address this issue, orthogonal high order hierarhical bases have been
proposed more recently [DN03]. he community has also proposed numerous
tehniques permiting the integration of the singularity of the Green’s function
in the case of an higher order EFIE [JTY06]. In addition to its high order-related
advantages, the high order EFIE still beneits from the properties of its standard
counterpart. In particular it can be accelerated though the application of the
MLFMM [Don+01].

he previous diagnostic should make it clear that one way of addressing the low-
frequency breakdown is to separate and re-scale – in frequency – the solenoidal
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and non-solenoidal parts of the solution. his approah has traditionally been
implemented via Loop-Star (LS) decompositions in both low [WG81a; Vec99; ZC00;
LLB03; Eib04] and high order [WW04]. However, LS decompositions have two
major limitations : (i) they require the detection of the global loops of the structure
[WG81a] whih is an expensive – quadratic – operation and (ii) they increase
the dense discretization ill-conditioning of the EFIE impedance matrix [Eib04].
he second issue is a consequence of the ill-conditioning of the LS decomposition
operators that behave as graph Laplacians [And12; Sha+09]. hese two problems
render the LS tehniques impractical for the simulation of large structures. Other
formulations, immune to the low frequency breakdown, and that do not require
detection of global loops, have been proposed [QC08b].

In this hapter a recently introduced family of solutions that rely on quasi-
Helmholz (qH) projectors [And+13b] to perform the LS decomposition is presented
and extended to high order. Relying on projectors has the advantage of not de-
grading the conditioning of the matrices they decompose because they have lat
spectrum. An even more remarkable property is that, because the solenoidal pro-
jector deduced from its non-solenoidal counterpart, global loops do not have to
be detected. While this hapter focusses on the EFIE, high order projectors can be
used to stabilize numerous formulations, some of whih are studied in this thesis.

To set the notations, this hapter opens with a summary of some key concepts
of high order modeling in Section 3.b. In Section 3.c the standard LS matrices are
deined before being used in Section 3.d to fully haracterise the low-frequency
breakdown phenomenon and the shortcomings of its standard remedies. hese
developments motivate the introduction of the qH projectors in Section 3.e and of
their detailed analysis in Section 3.f. Strong of this knowledge, the projectors are
extended to higher order in Section 3.g. he performances of the new projectors
are illustrated in Section 3.i before introducing implementations details required
to reproduce our results and obtain an optimal accuracy when using the shemes
introduced throughout the hapter are presented in Section 3.h. Finally, the dis-
cussion is closed in Section 3.j. Most of the developments and illustrations of the
low frequency breakdown throughout this hapter have been performed with orderp = 0 discretization for practical reasons, but they extend directly to higher order,
as will be made clear in Section 3.g.

b) High Order Modeling
Geometrical high order modeling relies on high order elements, whih are more
lexible than their order p = 0 counterparts. Most of the standard BEM elements
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Fig. 3.1.: Illustration of the simplex coordinate system on the reference triangle. he �i
coordinates are deined as the ratio Ai/A where A is the area of the triangle, andAi the area of the sub-triangles deined by x .

(triangles and quadrilaterals for surface and tetrahedrons and hexahedrons for
volume) have been extended to curvilinear geometries. In this section only curved
triangles are considered, but details about other shapes can be found in [GP97;
Pet05; GP15].

�) High Order Triangles

Curved triangles can be deined by leveraging on appropriate interpolation polyno-
mials whih are zero at all interpolation points but one. hese points are usually
provided by a mesher sotware and, for the simplicity of the discussion, are as-
sumed to be uniformly distributed over the triangular elements. To clarify the
discussion the interpolation points are designated via their simplex coordinates on
the reference triangle. he simplex coordinates are deined as the ratios between
the areas of the sub-triangles deined by the point under consideration and the
complete triangle. For instance, in Figure 3.1, x is uniquely identiied by its simplex
coordinates

(�1, �2, �3) = (A1A , A2A , A3A ) . (3.1)

It is clear that these coordinates are not independent since �1 + �2 + �3 = 1. In the
case of a triangular element of order M the interpolation points are, in simplex
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Fig. 3.2.: Illustration of a quadratic triangular element.

coordinates, {
( iM , jM , kM) ||||| (i, j, k) ∈ [0, M]3 ∧ i + j + k = M

}
, (3.2)

but for notation simplicity they are designated unequivocally with the triplet (i, j, k).
A common hoice of interpolation polynomials for triangular elements are

Sijk(�1, �2, �3) = RMi (�1)RMj (�2)RMk (�3) , (3.3)

where

RMm (�) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1m!

m−1∏n=0 (M� − n) if m > 0

1 if m = 0 . (3.4)

are the Sylvester polynomials [SF96]. his family of polynomials is well suited to
the problem at hand since the zeros of its members are equally spaced and eah
polynomial has unit value in a single point. In particular, the zeros of the polynomialRMm (�) are � ∈

{n/M ∶ n ∈ [0, m − 1]
}

and it has unit value in � = m/M .

�) High Order Basis Functions
In order to ensure optimal lexibility and higher order convergence rates, the
curvilinear elements introduced in the previous section must be coupled with
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higher order basis function. A particularly convenient set of higher order functions
are the so-called GWP [GP97] because they are, in part, constructed by multiplying
the order p = 0 RWG functions with a shited variation of the polynomials eq. (3.3)
introduced for the curved elements. In addition, these functions are divergence
conforming and are built to exhibit a representation complete to the same degree
for both the basis function and its divergence. his prevents issues or ineiciencies
when the functions are used to discretized an unknown quantity and its divergence,
whih occurs in the EFIE.

To facilitate the following developments the RWG functions are re-introduced in
the same formalism as the higher order functions. Eah triangle of the discretized
geometry supports three RWG functions, that when mapped to the reference
triangle, are expressed as f 01 (�1, �2) = (�1 − 1)�̂1 + �2�̂2 , (3.5)

f 02 (�1, �2) = (�2 − 1)�̂2 + �1�̂1 , (3.6)

f 03 (�1, �2) = (�1�̂1 + �2�̂2) . (3.7)

he continuity of the normal component of the current across the edges of the
deining triangle is imposed by coupling the functions with the corresponding
functions on the adjacent triangles and weighted with the appropriate sign. he
high order functions are then formed by multiplying the RWG functions with the
shited Sylvester polynomials

R̃Mm (�) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

(m − 1)!

m−1∏n=1 (M� − n) if m ∈ [2, M + 1]

1 if m = 1 , (3.8)

whih can be expressed from Sylvester polynomials (eq. (3.4)) asR̃Mm (�) = RMm−1(� − 1M) . (3.9)

he procedure described by [GP97] suggests to build one basis function per inter-
polation point located on an edge and two per point located within the cell. he
general formula to build the functions deined on the edge �1 = 0 is

fijk(�1, �2) = f 01 (�1, �2) ⋅ RMi (�1)R̃Mj (�2)R̃Mk (1 − �1 − �2) . (3.10)

he functions interpolating on the other edges can be obtained by using the cor-
responding order p = 0 function and using shited Sylvester polynomial of the
appropriate simplex coordinate.
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In the case of order p = 1 functions, six edge basis functions (two per edge)
can be constructed. he shited polynomial ensure that all basis functions have a
non-zero normal component a single interpolation point. In this relatively simple
case, the basis edge basis functions aref102(�1, �2) = f 02 (�1, �2)R̃3

2(1 − �1 − �2) , (3.11)f201(�1, �2) = f 02 (�1, �2)R̃3
2(�1) , (3.12)f012(�1, �2) = f 01 (�1, �2)R̃3
2(1 − �1 − �2) , (3.13)f021(�1, �2) = f 01 (�1, �2)R̃3
2(�2) , (3.14)f120(�1, �2) = f 03 (�1, �2)R̃3
2(�2) , (3.15)f210(�1, �2) = f 03 (�1, �2)R̃3
2(�1) , (3.16)

with R̃3
2(�) = 3� − 1 and the three possible cell basis functions are

f 1111(�1, �2) = f 01 (�1, �2)R3
1(�1) , (3.17)f 2111(�1, �2) = f 02 (�1, �2)R3
1(�2) , (3.18)f 3111(�1, �2) = f 03 (�1, �2)R3
1(1 − �1 − �2) , (3.19)

with R3
1(�) = 3� . Because the three inner basis functions are linearly dependant

one of them should be discarded; at higher orders one function is discarded at every
inner interpolation point.

c) Loop Star Matrices
To compare the qH projectors to the standard LS tehnique, the LS matrices are
introduced in this section. For the remainder of this hapter the EFIE eq. (2.54)
is supposed to be discretized on the tessellation of a surface � composed of Nv
vertices,Ne edges andNf faces (whih are the triangles of the mesh). he LSmatrices
decompose the space of standard RWG functions

{fi}, i ∈ [1, Ne], into a solenoidal
subspace �, a non-solenoidal subspace � and a harmonic subspace H .

he solenoidal subspace � is composed of divergence-free functions (i.e. ∀l ∈� ,∇ ⋅ l = 0) whih, since they discretize the unknown of the EFIE, represent current
density functions. It has been demonstrated [WGK95] that solenoidal current
density form closed path, whih is the origin of the term loop functions. hese
considerations lead us to deine � as the subspace of local – by opposition to global
– loops. his space is generated by the Nv loop basis functions

{�j}, j ∈ [1, Nv],
respectively deined on eah of the Nv vertices

{vj} of the mesh. hese functions
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are a linear combination of the p RWG basis functions deined on the p edges
connected to vj (p is the degree of vj). More formally

�j(r) = Ne∑i=1 [Λ̃]ijfi(r) , j ∈ [1, Nv] , (3.20)

where, for eah loop function �j , the p non-zero elements of Λ̃ are hosen so that∇ ⋅ �j = 0. he matrix Λ̃ ∈ R
Nv ,Ne is a transformation matrix from the RWG space to�. Using the notations from Figure 5.1 the elements of the matrix are

[Λ̃]ij = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if vertex j is v+i ,−1 if vertex j is v−i ,
0 otherwise.

(3.21)

he non-solenoidal subspace � has several possible constructions, the hoice
detailed thereater corresponds to the dual deinition to that of the loops, and will
be designated as �S . his subspace is generated by a set of Nf basis functions {�Sj },j ∈ [1, Nf ]; eah function �Sj is deined on the corresponding cell cj as a linear
combination of all RWG functions that are partially deined on this cell. Using the
notations of Figure 5.1 this means that �Sj is a linear combination of the Nj basis
functions for whih c+ = cj or c− = cj . From trivial geometrical considerations it
is clear that, in the absence of junctions, Nj ∈ [1, 3] and in particular, for closed
structures Nj = 3. In matrix form

�Sj (r) = Ne∑i=1 [Σ̃ S]ijfi(r) , j ∈ [1, Nf ] , (3.22)

where Σ̃ S ∈ R
Nf ,Ne . For eah function �Sj the Nj corresponding non-zero elements

are set to ±1 and hosen so that all currents low out of the cell. he matrix Σ̃
S is

an RWG to stars mapping, and its entries are

[Σ̃ S]ij = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if cell j is c+i ,
−1 if cell j is c−i ,
0 otherwise.

(3.23)

he harmonic subspace H is more hallenging to construct because it is spanned
by the divergence free functions deined on the global loops of � , that are com-
putationally expensive to identify. If g is the genus (or number of handles) of
the structure, the number of global loops is 2g. In simple cases, suh as spherical
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Fig. 3.3.: Illustration a toroidal structure and its associated global loops. he vertical
– green – arrow indicates the poloidal direction while the horizontal – red –
one indicates the toroidal direction.

geometries (g = 0) this space is empty because the structure is simply connected,
i.e. it does not contain global loops. Tori are probably the simplest case of mul-
tiply connected surfaces (g = 1), and present two global loops corresponding to
the toroidal and poloidal directions (Figure 3.3). Once the global loops have been
identiied2, it is possible to construct a mapping matrix H̃ ∈ R

2g,Ne from RWGs
to the harmonic subspace whih contains the coeicients of the RWG functions
composing the global loops as columns.

Before leveraging on the decomposition operators introduced thus far3 to perform
a LS decomposition, the linear dependency of the Loop and Star functions should
be addressed. Euler-Poincaré [Wil83] formula provides a relationship between the
number of faces f , vertices v, inner edges e, apertures a and handles ℎ

f + v − e = 2 − 2ℎ − a . (3.24)

his formula, when compared to the dimensions of the diferent transformation
matrices implies that, for eah connected component of � , (i) one loop function
must be removed if the component is closed and (ii) one star function must always
be removed. To illustrate this relations consider a plate for whih ℎ = 0 and a = 1
then e = f − 1 + v, meaning that one star function (i.e. one column of Σ̃ S) must
be removed. In the case of a sphere (ℎ = 0, a = 0, e = f − 1 + v − 1) one column
should be removed from both Σ̃

S and Λ̃. he linearly independant matrices Λ and Σ

(corresponding respectively to Λ̃ and Σ̃ S) can be used to build the LS transformation

2 Global loops can be identiied via speciic graph-based searh algorithm, or for small cases, via
singular value decomposition (SVD).

3 he space � ⊕ H ⊕ �S is equal to the RWG space.
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matrix B as
B = [Λ H Σ ] , (3.25)

where H = H̃ did not require any modiications.
Finally, ΣT corresponds to a discretization of the divergence operator on the RWG

space. As a consequence Σ
T
Λ = Σ

T
H = 0 whih means that the non-solenoidal

subspace is orthogonal to the solenoidal and harmonic subspaces.

d) Low-Frequency Breakdown
his section focuses on the analysis of the low frequency breakdown itself and its
root causes. he efects of the breakdown are irst illustrated through numerical
examples. he origin of its diferent efects are then analyzed before presenting the
standard LS solution oten used to address them.

�) Illustration of the Problem

In order to beter describe the low frequency breakdown, its symptoms are demon-
strated via numerical examples. Seting up these pathological cases will also serve
to illustrate the efectiveness of the diferent shemes introduced to cure its under-
lying causes. To have an analytical solution as reference, the geometry in these
examples is a PEC sphere for whih the Mie series serve as closed-form solution.

First, the validity the setup is demonstrated by simulating the RCS of the sphere
in a non-pathological case, at relatively high frequency. he results, illustrated in
Figure 3.4, demonstrate a perfect math between the computed RCS and the Mie
series. Next, the efects of the low frequency breakdown on the far ield accuracy
and on the conditioning of the system matrix are illustrated in Figures 3.5 and 3.6,
respectively. he RCS was computed at 1 ⋅ 10−40Hz to conirm that the solutions
proposed later on efectively address the low frequency breakdown at arbitrarily
low frequency. However, the scatered ield shows a visible mismath with the Mie
series as early as 1MHz for a sphere of 1m radius, and not only at extremely low
frequencies.

It should be clear that, as is, the EFIE is not usable at low frequencies because (i)
it yields the wrong solution and (ii) the conditioning of the impedance matrix will
grow as k−2, whih reduces the convergence speed of iterative solvers, or prevent it
altogether.
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Fig. 3.4.: RCS of a PEC sphere of radius 1m, excited by a plane wave oscillating at one
wavelength per diameter. In this high frequency case the EFIE yields a result
perfectly mathing the Mie series.
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Fig. 3.5.: RCS of a PEC sphere of radius 1m, excited by a planewave oscillating at 1 ⋅ 10−40Hz.
here is a clear mismath between the Mie series and the EFIE solution caused by
the low frequency breakdown of the formulation.
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Fig. 3.6.: Evolution of the condition number of the EFIE matrices of a PEC sphere with unit
radius at diferent frequencies. Because of numerical limitations in the computation
of high condition numbers, very low frequency points are not displayed.

�) Analysis of the Low Frequency Breakdown
Now that the symptoms of the low frequency breakdown have been illustrated, its
origins should be studied. he low frequency breakdown has two root causes: (i)
the matrix bloks are ill-scaled as some bloks scale with the frequency while others
scale with its inverse and (ii) numerical cancellations occur when the solution
vector is stored in inite precision. To expose these two issues the solenoidal and
non-solenoidal parts of the EFIE are separated and studied independently. his
decomposition is ahieved by applying the decomposition matrix B introduced in
Equation (3.25) to the discretized EFIE eq. (2.64)

B
T(−jk�Ts + �−jkTℎ)By = B

T
ve , (3.26)

where j = By . For notation simplicity the let-hand side of the equation is denoted
ZΛHΣ ; in blok notation this term can be writen

ZΛHΣ = −�jk⎡⎢⎢⎢⎣
Λ
T
ZsΛ Λ

T
ZsH Λ

T
ZsΣ

H
T
ZsΛ H

T
ZsH H

T
ZsΣ

Σ
T
ZsΛ Σ

T
ZsH Σ

T(Zs + k−2Zℎ)Σ
⎤⎥⎥⎥⎦

(3.27)

where the relations
ZℎΛ = 0 , ZℎH = 0 ,ΛT

Zℎ = 0 ,HT
Zℎ = 0 , (3.28)
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Tab. 3.1.: Frequency scaling of diferent kinds of excitations.
Type of excitation Λ H Σ

Plane wave O(k) O(k) O(1)
Capacitive voltage gap 0 0 O(1)
Inductive voltage gap O(1) O(1) O(1)

have been used. he results in eq. (3.28) can be immediately deduced from the
deinition of the loops, i.e. ∀l ∈ � ⊕ H ,∇ ⋅ l = 0, and the presence of the divergence
operators in Tℎ. At low frequencies, the botom-right blok eq. (3.27) can be
approximated as

Σ
T(Zs + k−2Zℎ)Σ ≈k→0

k−2ΣT
ZℎΣ , (3.29)

whih clearly demonstrates the incompatible scaling of the solenoidal and non-
solenoidal parts of the matrix since all terms scale as k, while a single term scales
as k−1. he consequences of this ill-scaling are explored in the next sections.

3.d.� .1. Numerical Instability

he numerical instabilities degrading the solution of the EFIE can be brought into
light by analysing the frequency scaling of the solution of eq. (3.26)

B
−1
j = Z

−1
ΛHΣB

T
Ve . (3.30)

First, the frequency behaviour of Z −1
ΛHΣ is determined using well known results on

the inverse of blok matrix [HS81]

Z
−1
ΛHΣ =

⎡⎢⎢⎢⎣
O(1/k) O(1/k) O(k)
O(1/k) O(1/k) O(k)
O(k) O(k) O(k)

⎤⎥⎥⎥⎦
. (3.31)

hen, given the scalings for diferent types of excitation recalled in Table 3.1 [QC10],
speciic analyses can be performed for eah induced solution. he diferent excita-
tion types present in the table are:

Plane-wave excitation corresponding to an impinging wave of the form r ↦e0 exp(−jkk̂ ⋅ r)û where e0 is the amplitude of the wave, k̂ its direction of
propagation and û its polarization.
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Capacitive voltage gap excitation corresponding to a delta gap that does not
excite any of the global loops of the structure. A simple example of suh an
excitation is a delta gap on the conductive strip between the two parallel
plates of a capacitor.

Inductive voltage gap excitation corresponding to a delta gap excitation that
does excite a global loop of the structure. A simple example can be obtained
by adding a second conductive strip to the capacitor used as example for the
capacitive voltage gap.

In the case of a plane-wave excitation

B
−1
j =k→0 [O(1) O(1) O(k)]T , (3.32)

whih implies that the current density scales as

j =k→0
O(1) ⋅ Λ +O(1) ⋅ H +O(k) ⋅ Σ . (3.33)

It is then clear that at low frequencies and in inite precision the non-solenoidal
contribution of the current will be erased. hus the information about the harge
∇ ⋅ j is lost since

∇ ⋅ j = Σ
Tj = O(k) ⋅ ΣT

Σ . (3.34)

But even more severe problems arise when this current is used to compute the
ield scatered by � . Since the solenoidal and non-solenoidal parts of the current
contribute equally to the far ield, numerical noise will be ampliied and corrupt
the computations. his can be demonstrated by analyzing the solenoidal and non-
solenoidal parts of the far ield. First, following from eq. (2.32), the far ield operator
F is introduced

(Fj)(r) = −
jk�4π‖r‖e−jk‖r‖[�̂N� (r) + �̂N�(r)] ,

= − jk�4π‖r‖e−jk‖r‖(�̂ �̂ + �̂�̂) ⋅ (N j)(r) . (3.35)

he solenoidal behaviour of this operator can be exposed by decomposing the
exponential in N as exp(x) = 1 + exp(x) − 1, yielding

(N j)(r) = ∬� j(r ′)(ejkr′⋅r̂ − 1)dr ′ +∬� j(r ′)dr ′ . (3.36)
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While this procedure does not yield any insight for star functions, it is possible to
simplify it when it is applied to divergence-free functions by noting that

∬l l(r ′)dr ′ = 0 , ∀l ∈ � ⊕ H , (3.37)

whih derives from Green’s theorem. his simpliication, combined with a Taylor
series expansion of x ↦ exp(x) − 1, provides the scaling of the solenoidal part of
the far ield(N l)(r) =

k→0 ∬l l(r ′)(jkr ′ ⋅ r̂ +O(k2))dr ′ , ∀l ∈ � ⊕ H . (3.38)

As a consequence, the discrete far ield operator is equivalent to a multiplication byk ⋅ [O(k) O(k) O(1)] and the scaling of the far ield eF induced by a plane wave isk−1eF =k→0 [O(k) O(k) O(1)] ⋅ B−1
j =k→0

O(k) +O(k) +O(k) . (3.39)

In accordance with earlier statements, in the case of a plane wave excitation, the far
ield is composed in equal measures by the solenoidal and non-solenoidal current
contributions, one of whih was lost in the resolution process. Hence, the far ield
obtained through the standard EFIE can not be relied upon for this excitation. he
situation is less dire for the voltage gap excitations: the capacitive voltage gap will
not cause cancellations in the current and a physical cancellation will occur in the
scatered ield

j =k→0
O(k) ⋅ Λ +O(k) ⋅ H +O(k) ⋅ Σ , (3.40)k−1eF =k→0

O(k2) +O(k2) +O(k) ; (3.41)

the inductive gap is subject to numerical cancellation in its current but the lost
term has a negligible contribution to the far ield,

j =k→0
O(1/k) ⋅ Λ +O(1/k) ⋅ H +O(k) ⋅ Σ , (3.42)k−1eF =k→0

O(1) +O(1) +O(k) . (3.43)

In these last two cases no numerical noise is ampliied by the scatering operation
and, as a consequence, the far ield paterns should remain accurate at low frequen-
cies. However the inductive voltage gap exhibits a loss of harge information and
all the excitations are still subject to the ill-conditioning of the impedance matrix
that will degrade the precision of numerical current solutions, even if they are not
subject to cancellations per se.
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3.d.� .2. Low-Frequency Ill Conditioning

To demonstrate the existence of the low frequency ill-conditioning of the EFIE,
another matrix is shown to be well-conditioned and the conditioning of the original
matrix is deduced from this result.

Consider the matrix ZLR deined by let and right multiplying ZΛHΣ by two
diagonal matrices

ZLR = LZΛHΣR =k→0
L

⎡⎢⎢⎢⎣
Λ
T
ZsΛ Λ

T
ZsH −jkΛT

ZsΣ
H

T
ZsΛ H

T
ZsH −jkHT

ZsΣ−jkΣT
ZsΛ −jkΣT

ZsH Σ
T
ZℎΣ

⎤⎥⎥⎥⎦
R , (3.44)

where L = diag(−1/jk, −1/jk, 1) and R = diag(1, 1, −jk), and its low frequency
limit

Z
0
LR = limk→0 ZLR = L

⎡⎢⎢⎢⎣
Λ
T
ZsΛ Λ

T
ZsH 0

H
T
ZsΛ H

T
ZsH 0

0 0 Σ
T
ZℎΣ

⎤⎥⎥⎥⎦
R . (3.45)

Because Z
0
LR is frequency independent, it is clear that ZLR is immune from the low

frequency conditioning breakdown
limk→0 cond ZLR = cond Z 0

LR ∈ R . (3.46)

Using properties of the condition number of products yields
cond ZΛHΣ ≤ cond ZLR cond L

−1 condR−1 . (3.47)
In addition, because cond(AT

A) = cond(AAT) for all square matrices, and ater
re-writing ZLR as

ZLR = DZΛHΣD , (3.48)

where D = diag(√j/k,√j/k,√k/j), a few manipulations provide the equality

cond(DZ
−1/2
ΛHΣZΛHΣZ

−1/2
ΛHΣD) ≤ cond ZΛHΣ cond ZLR . (3.49)

he condition number of ZΛHΣ is then bounded by both inequalities
1
k2 ≤ cond ZΛHΣ ≤ 
k2 , (3.50)

where 
 = cond ZLR , whih immediately implies that
cond ZΛHΣ =k→0

O(k−2) , (3.51)

thereby demonstrating the existence of a low frequency ill-conditioning of the EFIE
matrix, that grows with k−2.
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 ) Traditional Loop-Star Decomposition
One of the traditional tehniques used to remedy the issues exposed in the previous
sections is the Loop-Star (LS) decomposition. Despite its efectiveness this approah
sufers from two crucial shortcomings: (i) it requires explicit detection of the global
loops and (ii) it further degrades the EFIE conditioning behaviour with increasingly
denser discretization. In this section the LS procedure is detailed to illustrate its
shortcomings.

Given that the developments of the previous sections were actually already
involving a LS decomposition, diferent passages of the required developments
have already been detailed. he key motivation behind the LS tehnique is to
re-scale the ZΛHΣ decomposition with L and R , in order to obtain a numerically
stable intermediate solution and a well-conditioned system matrix. he Loop-Star
electric ield integral equation (LS-EFIE) then reads

LB
T(−jkZs − 1jk Zℎ)BRyLS = LB

T
ve , (3.52)

where j = BRyLS . Previous developments immediately demonstrate the stability
of the conditioning of this formulation, however its numerical stability is still to
be demonstrated. Adapting eq. (3.30) and the related developments to the new
formulation immediately yields

R
−1
B
−1
j = (R−1

ZΛHΣL
−1)LBT

ve , (3.53)

and the current scaling for a plane-wave excitation are

yLS = R
−1
B
−1
j =k→0 [O(1) O(1) O(1)]T . (3.54)

he intermediate solution yLS is clearly immune from low frequency numerical
cancellations and can be stored in inite precision. he loop and star components
should then be radiated independently and j should never be explicitly computed,
or numerical cancellations would occur.

To demonstrate the efectiveness of the sheme the same simulations as in Fig-
ures 3.5 and 3.6 have been performed with the LS formulation (Figures 3.7 and 3.8).
It is clear from these results that the low frequency breakdown is cured. However,
the LS matrices sufer from ill-conditioning for dense discretizations (Figure 3.9a).
his, in turn, means that the decomposed formulation exhibits a worse reinement
behaviour than the standard one (Figure 3.9b). hese last results are in accordance
with the fact that Λ is a graph-Laplacian and hence behaves as an operator of order
two [And12].
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Fig. 3.7.: RCS of a PEC sphere of radius 1m, excited by a planewave oscillating at 1 ⋅ 10−40Hz.
here is a clear mismath between the Mie series and the EFIE solution caused by
the low frequency breakdown of the formulation. On the other hand the LS-EFIE
mathes perfectly the Mie series.
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Fig. 3.8.: Evolution of the condition number of the LS-EFIE and EFIE impedance matrices for
a PEC sphere with unit radius at diferent frequencies. he condition number of
the LS-EFIE remains constant until 1 ⋅ 10−40Hz. Because of numerical limitations
in the computation of high condition numbers, very low frequency points are not
displayed.
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Fig. 3.9.: Evolution of the conditioning of the LS matrices (a) and of the LS-EFIE and EFIE
matrices with increasing reinement (b). he matrices correspond to a PEC sphere
with radius 1m at diferent levels of reinement.

e) he uasi-Helmholz Projectors
To solve the low frequency breakdown without the limitations of the LS decompo-
sition, qH projectors have been recently introduced. hey have the advantage of
curing both aspects of the low frequency breakdown without (i) requiring detection
of the global loops and (ii) degrading the dense discretization behaviour of the EFIE,
as projectors have a lat spectrum.

he qH projectors do not require the detection of global loops because only the
non-solenoidal projector

PΣ = Σ(ΣT
Σ)+ΣT , PΣ ∈ R

Ne×Ne , (3.55)

where + denotes the Moore-Penrose pseudo-inverse, is explicitly computed. he
solenoidal projector

PΛH = I − PΣ (3.56)

is computed as its remainder. In the case of simply connected geometries (H = ∅),
the solenoidal projector can be computed directly

PΛH = PΛ = Λ(ΛT
Λ)+ΛT , (3.57)

but this is generally unnecessary.
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It should be noted that the projectors are symmetric and, because they are
complementary (by construction), they can decompose any RWG coeicient vector
j into its solenoidal and non-solenoidal parts

j = PΛH j + PΣ j . (3.58)

Another key practical consideration, is that, relying on an explicit pseudo-
inversion is computationally too expensive and would render the overall sheme
at least as unpractical as the global loop detection of the standard LS approah.
Alternatively the projectors can be computed in linear time with a fast matrix
vector product based on multigrid tehniques. Given that the ΣT

Σ matrix can be
regularized with 1Σ

(Σ
T
Σ + 1Nf 1Σ1

T
Σ)+ = (Σ

T
Σ + 1Nf 1Σ1

T
Σ)−1 , (3.59)

= (ΣT
Σ)+ + 1Nf 1Σ1

T
Σ , (3.60)

and because 1Σ is in the null-space of Σ , it can be proven that

PΣ = Σ(Σ
T
Σ + 1Nf 1Σ1

T
Σ)−1

Σ
T . (3.61)

he inner term of the RHS is spectrally equivalent to a graph-Laplacian [And12],
whih means that it is possible to perform fast matrix-vector products with its
inverse thanks to multigrid preconditioning [LB12; NN12].

f) Solution of the Low-Frequency Breakdown for the
EFIE

Because of the drawbaks of the standard LS tehnique presented in Section 3.d.
 ,
other methods should be investigated. A more satisfactory solution can be derived
from the qH projector introduced in Section 3.e.

�) Leveraging the uasi-Helmholz Projectors
Similarly to the LS decomposition, the qH projector tehniques separates and
independently re-scales the solenoidal and non-solenoidal parts of the EFIE matrix.
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Dually to the decomposition and rescaling matrices LBT and BR , the matrices

M = − 1jkPΛH + PΣ , (3.62)

N = PΛH − jkPΣ (3.63)

are used to build the quasi-Helmholz projected electric ield integral equation
(qH-EFIE)

M(−jkZs + 1−jk Zℎ)NyqH = M
T
ve , (3.64)

where j = NyqH . To verify that the matrix does not have a low frequency ill-
conditioning, consider the expansion of the system matrix

M(−jkZs + 1jk Zℎ)N = (PΛHZsPΛH + Zℎ) − (PΛHZsPΣ + PΣZsPΛH )jk− (PΣZsPΣ )k2= (PΛHZsPΛH + Zℎ) +O(k) , (3.65)

where the relation
PΛHZℎ = ZℎPΛH = 0 , (3.66)

has been used and derives from the matrix relations ΛZℎ = 0 and

PΣZℎ = ZℎPΣ = Zℎ , (3.67)

whih can be demonstrated by writing

Zℎ = (PΛH + PΣ )Zℎ = PΛHZℎ + PΣZℎ = 0 + PΣZℎ . (3.68)

Given that the expansion of the qH-EFIE is composed of a frequency independent
term and an O(k) remainder

limk→0 condMZN = cond PΛHZsPΛH + Zℎ , (3.69)

thus, the qH formulation is clearly immune from any low frequency conditioning
breakdown. he stability of this conditioning is illustrated in Figure 3.11.

Finally, the numerical stability of the qH sheme can be veriied by using the
scaling obtained for the physical solution in eq. (3.33) to deduce the scaling of the
intermediate solution yqH . Given that

j
ΛH = PΛHNyqH = PΛH yqH =k→0

O(1) , (3.70)

j
Σ = PΣNyqH = −jkPΣ yqH =k→0

O(k) , (3.71)
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Fig. 3.10.: RCS of a PEC sphere of radius 1m, excited by a plane wave oscillating at
1 ⋅ 10−40Hz. here is a clear mismath between the Mie series and the EFIE
solution, because of the low frequency breakdown of the formulation, while the
LS-EFIE and qH-EFIE math perfectly with the Mie series.

and that the projectors have no frequency scaling, the solenoidal and non-solenoidal
parts of the intermediary solution both have an O(1) low frequency behaviour.
Hence, yqH is numerically stable at low frequency. Numerical results conirm the
stability and the accuracy of the far ield obtained using this tehnique (Figure 3.10).
Overall, qH projectors completely cure the low frequency breakdown while (i) not
requiring the detection of global loops, allowing the overall sheme to be near-
linear in complexity, and (ii) preserving the original conditioning of the EFIE matrix
(Figure 3.11).

g) High Order Projectors

he objective of this hapter if to combine the overall stability of the projector
shemes with the many computational improvements permited by higher order
modelling. Because the projectors are derived from Σ , it is crucial to extend this
matrix to higher order. However, even though Σ was eiciently built out of connec-
tivity information, this deinition does not generalize to higher orders. However,
because Σ

T is a discretization of the divergence operator it is possible to extend
it to GWP functions. To discretize the operator, a set of scalar testing functions
capable of representing any polynomial of degree p over eah triangle of the dis-
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Fig. 3.11.: Evolution of the condition number of the qH-EFIE, LS-EFIE and EFIE matrices
generated on a PEC sphere with radius 1m at diferent frequencies. Because of
numerical limitations in the computation of high condition numbers, very low
frequency points are not displayed.

100 100.2 100.4 100.6 100.8
101

102

103

104

105

106

1/h [1/m]

Co
nd

iti
on

nu
m
be
r

EFIE
LS-EFIE
qH-EFIE

Fig. 3.12.: Evolution of the conditioning of the conditioning of the qH-EFIE, LS-EFIE and
EFIE matrices with increasing reinement. he matrices correspond to a PEC
sphere with radius 1m at diferent levels of reinement.
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cretized geometry must be constructed4, because the divergence of GWP functions
is complete to order p. Let {�i} be one suh set and

{f pj } be the set of vector GWP
functions of order p, then [ΣT]ij = ⟨�i(r),∇ ⋅ f pj (r)⟩ . (3.72)

While this matrix has been used for extending loop star decompositions tehniques
to higher order [WW04], it would sufer from the same limitations as its orderp = 0 counterparts (see Chapter 3). Instead, the divergence matrix is used to build
quasi-Helmholz projectors extending the tehnique prescribed in Section 3.e for
RWG functions, i.e.

PΣ = Σ(ΣT
G

−1�,�Σ)+ΣT , (3.73)
PΛ = I − PΣ , (3.74)

where I is the identity and the terms of the Gram matrix G�,� are

[G�,�]ij = ⟨�i(r) , �j(r)⟩ . (3.75)

Even though explicit construction of the GWP to local loops mapping Λ is out of
the scope of this work, it is interesting to study the efect of higher order modeling
on the taxonomy loop functions. While in order p = 0 modeling the loops are built
around the vertices of the mesh (Figure 3.13a) [Vec99], additional loops appear
at order p = 1 and p = 2. Starting from order p = 1 it is possible to construct
loop functions associated to the edges of the mesh (in the same way that RWG are
deined on the inner edges of the mesh), by linearly combining – ater adjusting
their scalings and orientations – the two GWP functions crossing the edge and
the six functions deined within the two adjacent triangle cells (Figure 3.13b). he
order p = 2 sees the appearance of a new family of functions that are deined within
single cells as a linear combination of their inner functions (Figure 3.13c). he
existence of these new families of functions further underlines the usefulness of the
projectors that do not require their burdensome explicit computation unlike higher
order loop star tehniques [WW04] – in addition to not requiring the detection of
the global loops of the structure. A detailed computation of the number of higher
order loops is provided in [WW04] and will not be recalled here.

While the higher order qH projectors will efectively address the low frequency
limitations of the EFIO, they involve the computation of a pseudo-inverse. Because

4 For instance, for order p = 0 the functions are the constant functions over eah triangle (one per
triangle) while for p = 1 a possible set of functions are the three pyramids deined on every edge of
every triangle.
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Fig. 3.13.: Diferent families of loop functions encountered in high order modeling. Fig-
ure 3.13a loop formed by the order p = 0 functions; Figure 3.13b loop formed by
the vertex and inner order p = 1 functions over two adjacent cells; Figure 3.13c
loop formed by linear combinations of the inner order p = 2 functions of a single
cell.

v1 v2

v3

v4

Fig. 3.14.: Simple structure composed of two symmetric triangles.

this operation is above linear complexity, it prevents usage of the projectors with
fast shemes, suh as the MLFMM and reduce their practical applicability. For orderp = 0 the product ΣT

Σ is a graph Laplacian making it possible to evaluate the
matrix vector product (ΣT

Σ)+x , x ∈ R
Ne , (3.76)

in near-linear complexity by leveraging multigrid tehniques (see Section 3.e).
However this approah is not directly generalizable to arbitrary order functions,
since for order p > 0 the ΣT

Σ is no longer a graph Laplacian.
A consequent amount of time has already been dedicated to inding new teh-

niques for performing near-linear evaluation of the generalized projectors, however
results have not been conclusive yet. Several approahes have been investigated,
the most promising of whih is that the underlying graph Laplacian nature of the
Σ

T
Σ term could be recovered by decomposing it as Kroneker product of the orderp = 0 Laplacian with a local, higher order, connectivity matrix.
To illustrate this approah, the elementary case of a structure composed of two

triangles (Figure 3.14) is considered. It is clear that this structure will exhibit:

at order p = 0 one RWG function and two path functions (one on eah triangle);
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at order p = 1 six GWP functions (two on the edge (v1,v3) and two on eah trian-
gle) and six pyramid functions (three on eah triangle).

he blok structure of the order p = 1 divergence matrix is straightforward to
deduce from these consideration

Σ1 = ⎡⎢⎢⎢⎣
A B

C 0

0 D

⎤⎥⎥⎥⎦
(3.77)

where A and B correspond to the contributions of the two edge GWP functions
respectively tested from the pyramids of eah triangle and C and D are the con-
tributions of the inner GWP functions tested on the triangle on whih they are
deined. From this expression, it is possible to deduce the structure of ΣT1Σ1 as a
blok product

Σ
T1Σ1 = [AT

A + C
T
C A

T
B

B
T
A B

T
B + D

T
D] . (3.78)

In addition, given the appropriate normalization of the functions involved, B = −A
and D = C and thus eq. (3.78) becomes

Σ
T1Σ1 = [AT

A + C
T
C −AT

A−AT
A A

T
A + C

T
C] . (3.79)

In this extremely simple case this matrix form is generated by the order p = 0
connectivity information in the form of ΣT

0Σ0 and higher order contributions AT
A

and C
T
C

Σ
T
1Σ1 = [ A

T
A −AT

A

−AT
A A

T
A ] + [CT

C 0

0 C
T
C]

= Σ
T
0Σ0 ⊗ A

T
A + I ⊗ C

T
C , (3.80)

where ⊗ denotes the Kroneker product. he structure of ΣT
1Σ and Σ

T
0Σ0 ⊗ A

T
A are

illustrated in Figure 3.15 along with their relative diference, whih underlines the
efect of the high order perturbationC

T
C . he decomposition in Kroneker products

is particularly promising thanks to the well know result about the pseudo-inverse
of a Kroneker product

(M ⊗ N )+ = M
+ ⊗ N

+ , (3.81)

whih could be used as a way to invert the order p = 1 product by inverting the
small high order perturbations and leveraging on multigrid tehniques for inverting
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Fig. 3.15.: Illustration of the matrices computed on a structure composed of two symmetric
triangles (Figure 3.14) : order p = 1 product ΣT1 Σ1 (Figure 3.15a), tentative recon-
struction of the ΣT1 Σ1 as ΣT

0 Σ0 ⊗ A
T
A (Figure 3.15b) and relative error between

the order ΣT
1 Σ1 and the corresponding Kroneker product (Figure 3.15c) whih

underlines the non-negligible efect of CT
C .
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the order p = 0 contribution. Several issues are preventing direct use of this
approah: (i) a way to handle the I ⊗ C

T
C perturbation has not been found yet;

(ii) the structure of eq. (3.79) seems to globally hold for more complex structures,
but the ordering of the functions and their normalizations make its recovery more
hallenging, especially for closed structures. In conclusion the Kroneker tehnique
only seems applicable to very simple geometries but a more thorough study needs
to be performed before discarding it. As of this writing these investigations are
underway. Other approahes based on iterative solutions exploiting the nullspaces
of the perturbations matrices are also being considered but are at very early stages
of investigation and thus will not be detailed here.

h) Implementation Details
he numerical results presented so-far have relied on implementation details that
have not been presented in the previous sections but are necessary for ataining
optimal stability of the shemes.

he computation of the plane-wave RHS at low frequencies requires particular
handling of the exponential term. he general expression of this excitation is

[ve]i = e0 ∬fi e−jkk̂⋅r′fi(r ′) ⋅ ûdr ′ , (3.82)

whih should be decomposed into solenoidal and non-solenoidal contributions
using the qH projectors

vΣ = PΣve , (3.83)

vΛH = − 1ikPΛHve . (3.84)

Following the reasoning behind eq. (3.38), the exponential in the solenoidal term of
the RHS should be computed using x ↦ (exp(x) − 1) + 1, where the second term
is null. his relation must be explicitly enforced because the RHS will scale as O(k)
for solenoidal functions, and, at low frequencies, this contribution will be hidden by
the 0-th order term of the Taylor series expansion of the exponential. Additionally,x ↦ (exp(x) − 1) can not be computed naively as a subtraction, to avoid further
numerical cancellations, specialized implementations must be employed. In most
scientiic computing libraries suh implementations are available under the name
expm1. All these considerations lead to the following expression of the solenoidal
RHS [PΛHVE ]i = e0∬li expm1(−jkk̂ ⋅ r ′)li(r ′) ⋅ ûdr ′ , (3.85)
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and the solenoidal contribution remains unhanged.
he far ield is computed in a similar way. According to eq. (3.35) the far ield

scatered by a solenoidal current is

(Fli)(r) = − jk�4π‖r‖e−jk‖r‖(�̂ �̂ + �̂�̂) ⋅∬li li(r ′)ejkr̂ ⋅r′dr ′ , (3.86)

whih, for the same reasons as for the plane-wave excitation, should be computed
as

(Fli)(r) = − jk�4π‖r‖e−jk‖r‖(�̂ �̂ + �̂�̂) ⋅∬li li(r ′)expm1(jkr̂ ⋅ r ′)dr ′ . (3.87)

he computation of the impedance matrix the qH-EFIE also requires some spe-
cial care. Because of limitations of inite precision arithmetic, it is necessary to
explicitly cancel out the terms listed in eq. (3.66) in the development of MZN ,
hence the impedance matrix should only be computed as detailed in eq. (3.65). his
requirement can be explained by considering that in inite precision the problematic
terms are not exactly null:

‖PΛHZℎPΛH ‖ = �MACH , (3.88)

where �MACH is typically around 1 ⋅ 10−16, meaning that, because of their frequency
scaling they will be artiicially ampliied

‖ 1jkPΛHZℎPΛH ‖ = �MACHk , (3.89)

when the frequency is low enough. For instance, at a frequency of 1 ⋅ 10−40Hz the
norm of the term becomes of the order of 1 ⋅ 1031.

Finally, as explained in Section 3.e, the projectors can be computed in near-linear
complexity thanks to multi-grid preconditioning [LB12; NN12]. his tehnique
being outside the scope of the hapter the reader is referred to pyamg [OS18] and
AGMG [Not] whih are two well-established and freely available implementations
of the tehnique.

i) Numerical Results
In this section, the diferent properties of the higher order qH formulation are
illustrated through a series of numerical examples.
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Fig. 3.16.: Far ield scatered by a sphere of radius �/30 – where � is the wavelength of the
impinging plane wave – using order p = 0 and p = 1 formulations. he Mie series
are used as reference. Both formulations were computed with 75 element per
wavelength but it is clear that the higher order formulation yields more accurate
results for an equivalent discretization.

To verify the correctness of the order p = 0 and p = 1 qH projected formulations
and of their implementations, the far ield scatered by a sphere is veriied against the
Mie series at relatively low frequency (Figure 3.16). As expected both formulations
converge to the analytical solution with the higher order formulation converging
faster.

he low frequency stability of the conditioning of all formulations has been
veriied on both a sphere and a torus (Figures 3.17a and 3.17b, respectively) to
control that global loops are appropriately handled by the new shemes. hese
results indicate that the projected formulations do not sufer from the low frequency
ill-conditioning that their standard counterparts exhibit. In addition, the current
cancellations introduced in Section 3.d.� .1 are also addressed by the qH shemes.
he numerical stability of the currents computed with the new formulations has
been studied at low frequency (1 ⋅ 10−10Hz) by comparing the non-solenoidal and
solenoidal parts of the solutions of order p = 1 of qH and non-qH formulations
(Figures 3.18a and 3.18b). he results demonstrate that the non-solenoidal parts
of the solutions are in agreement and have not been cancelled out in neither
formulations. However, the solenoidal part of the standard EFIE has undergone
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Fig. 3.17.: Evolution of the condition number of the order p = 0 and p = 1 formulations
until extremely low frequencies, with and without qH projectors. he simulated
structures are a sphere of radius 1m discretized with a mesh parameter ℎ = 0.4m
(Figure 3.17a) and a torus of large radius 1.3m and small radius 1m (Figure 3.17b).
he lat condition number of the non-qH projected formulation is caused by
numerical saturation in the computation of the condition numbers.

numerical cancellation and could not be recovered. hese results are only presented
for the case of the toroidal structure, but similar ones have been obtained for orderp = 0 and p = 1 on both spherical and toroidal structures; the remaining results are
not presented here for conciseness.

Finally, the dense discretization stability of the projectors has been veriied on
both a sphere and a torus by performing a reinement analysis of the condition
number of the projected and non projected formulations (Figures 3.19a and 3.19b).
Because the projectors have a lat spectrum, they are expected not to degrade further
the dense discretization breakdown that intrinsically plagues the EFIO. Given that
the projected and non-projected formulations exhibit a quadratic growth of their
conditioning with increasing discretization, this property is veriied.

j) Conclusion
In this hapter the low frequency breakdown of the EFIE and its causes have
been introduced and analysed. his study was followed by a presentation of
the traditional LS decomposition and its acting principle. However, because it is
unpractical in complex scenarios a qH projectors based solution that alleviates
all the limitations of the original sheme was introduced. he qH projectors have
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Fig. 3.18.: Illustration of cancellations occurring in the solenoidal part of the current (Fig-
ure 3.18b) of the non-qH EFIE of order p = 1. he non-solenoidal part of the
current is fully preserved (Figure 3.18a). hese currents have been obtained for
a torus of large radius 1.3m and small radius 1m, discretized with elements of
average edge length 0.4m at 1 ⋅ 10−10Hz. Similar results can be obtained for orderp = 0 and are omited for conciseness.
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Fig. 3.19.: Dense discretization behaviour of the condition number of the order p = 0 andp = 1 EFIE formulation, with and without qH projectors. To verify the stability of
the results with regards to global loops, all formulations were applied to a sphere
of radius 1meter (Figure 3.19a) and a torus of large radius 1.3m and small radius
1.0m (Figure 3.19b) simulated at 1 ⋅ 107Hz.
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then been extended to handle higher order discretization, in order to form highly
eicient and accurate EFIE formulations. To allow the reader to reproduce the
presented results, some of the most critical implementation details required for
stability until arbitrarily low frequency were explained. Computational tehniques
required to compute the projectors in near-linear time have also been presented
for order p = 0. he fast computation of the projectors for order p > 0 is still the
topic of active investigations and is crucial for applying the projectors to the largest
application scenarios.

In Chapter 4 the projectors will be extended to the case of wire-like structures
discretized with 1-dimensional basis functions. Finally, in Chapter 5 they will be
used to build a fully stabilized and extremely accurate CFIE formulation.
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Chapter 4

Low Frequency and Reinement
Regularization for the hin-Wire EFIE
hanks to its stability and eiciency, the wire Electric Field Integral Equation has
been widely used to simulate scatering by wire-like structures. However, similarly
to its surface counterpart, this formulation sufers from both a dense discretization
and a low-frequency breakdown, which adversely impact its accuracy and solvability.
In this chapter, new formulations, immune from both breakdowns, are introduced for
the exact and reduced kernel formulations. hese formulations rely on an extension to
wire structures of the surface quasi-Helmholz projectors, on a spectral analysis of both
kernels in a canonical case and on a carefully chosen hierarchical preconditionner.
he spectral analysis demonstrates the existence of two distinct simulation regimes,
only one of which remains stable at high reinement. hese new formulations have
the strong beneit of not requiring the identiication of global loops in the structure.
Numerical results illustrate the regularization properties of our scheme.

a) Introduction

Thanks to its stability and computational eiciency, the thin-wire electric
ield integral equation (wire EFIE) has been widely used, in researh and in
commercial solvers, for simulating scatering problems by wire-like Perfect

Electrical Conductors (PEC) structures. Provided that the simulated structures
are thin enough not to have any radial current [WC06], the wire EFIE is more
computationally eicient and stable than the traditional surface EFIE. his is why
most solvers include hybrid wire-surface solvers [VW11].

Two diferent formulations of the wire EFIE, based on two diferent kernels,
have been widely studied in the literature [WC06; CWR06; DDF01; MW06; FW01;
BH07; WB76]. he so-called exact kernel has been proven to yield relatively well
conditioned systems thanks to its logarithmic singularity [Pea75; WHW94; Ryn00],
and is the one recommended [Ryn92; MW06] for accurate and stable simulations,
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regardless of the Right Hand Side (RHS). However this kernel includes an azimuthal
integral on the wire surface making it computationally expensive. his is why the
reduced kernel, whih assumes azimuthal invariance of the current density, has been
introduced. However there has been a long discussion amongst the community
regarding its solvability [Jon81; FPA08; Fik+11; PFM10; Fik01; BT07]. It turns out
that the reduced kernel wire EFIE is ill-posed and only admits solutions for smooth
enough RHS [FPA08]. Furthermore the stability of the solution it yields is also
dependant on the wire radius of the simulated geometry [BT07]. Hence, extra
caution should be used when dealing with the reduced kernel wire EFIE.

Despite its advantages, the wire EFIE shares some of the limitations of its sur-
face counterpart. Most notably, it sufers from both a low-frequency breakdown
[CC02] and a dense discretization breakdown [BT07]. When discretized via BEM,
these issues will cause the EFIE to yield high condition number matrices. his, in
turn, makes it diicult and expensive, or in extreme cases impossible, to solve the
discretized system with iterative solvers. hese two issues should be addressed in
order for the wire EFIE to retain its advantages when simulating highly reined
structures and/or structures at low frequency.

he low frequency breakdown is the consequence of an ill-scaling of the solenoidal
and non-solenoidal parts of the EFIE operator. Not only does it cause the condi-
tion number of the EFIE matrix to increase drastically when the frequency goes
down, it also causes numerical cancellations in the solution. he accuracy of the
solution will then degrade until, at low enough frequency, resolution becomes
impossible. he low frequency breakdown has traditionally been addressed via
loop-star decomposition [VVW09], whih is used to separate the solenoidal and
non-solenoidal parts of the operator, in order to re-scale them appropriately. While
efective, this solution requires the detection of global loops, whih can make it
inconvenient for complex structures. In order to address this limitation [And+13b]
has recently introduced, for the surface EFIE, another tehnique whih relies on
projectors to perform the quasi-Helmholz decomposition and the re-scaling. hese
quasi-Helmholz projectors have the advantage of not requiring any loop detection,
making them a good candidate for a scalable formulation.

Several contributions have focused on speeding up the resolution of the wire EFIE,
in order to compensate the slowdown caused by the high-reinement breakdown.
Many of these contributions [LL98; NGT97; GMS06; RBK15] have been using
hierarhical basis functions in order to sparsify the BEM matrix. However this
kind of tehniques will degrade the solution, given that they rely on thresholding
the elements of the impedance matrix. here have also been investigations on
addressing the high-reinement breakdown directly. For instance [BT07] notices
that, in a particular regime of the equation, a Laplacian preconditioner can cure
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the high-reinement breakdown.
his hapter introduces, for both kernel, fully regularized wire EFIE formulations,

immune from both breakdowns (in the amendable regime), that do not require the
searh for global loops. he low frequency regularization has been ahieved by
extending the quasi-Helmholz projectors to wire structures. he high-reinement
regularization relies on the usage of a carefully selected hierarhical preconditioner.
he selection of the right hierarhical basis derives from a complete spectral analysis
of the spectral behaviour of the exact and reduced kernel wire EFIE formulations.
To the best of our knowledge no suh formulation has yet been introduced.

his contribution is organized as follows. Bakground and notations are intro-
duced in Section 4.b. In Section 4.c the spectral analysis of the exact and reduced
kernel wire EFIE is developed. he extension of the quasi-Helmholz projectors to
wire structures is presented in Section 4.d and the fully regularized formulations
are introduced in Section 4.f along with details related to their implementation
in Section 4.g. Finally Section 4.h contains numerical results that illustrate the
properties of the newly introduced formulations.

b) hin-Wire EFIE Formulation
Let a PEC wire structure of length L, external surface S and radius a reside in a
space of permitivity � and permeability �. Any incident electric ield ei impinging
on the wire will induce a surface electric current density j radiating a scatered
electric ield es . If a is small compared to the wavelength �, the wire can be modeled
by a curve l of length L, on whih the current density j can be represented in terms
of an unknown ilamentary current i(r) = 2πaj(r), oriented along the wire axis,
with no azimuthal variation [BW75]. In particular this means that the current can
be expressed as i(r) = i(r)l̂(r), where l̂(r) is the unit tangent vector along the curvel. Under these assumptions the tangential part of the standard surface EFIE

− jkη0l̂(r) ⋅ [(Tsj)(r) + 1k2 (Tℎj)(r)] = −l̂(r) ⋅ ei , (4.1)

where the singular and hyper-singular operators Ts and Tℎ are respectively deined
as

(Tsj)(r) = ∬� j(r ′) e−jk‖r−r′‖4π‖r − r ′‖dr ′ (4.2)
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and

(Tℎj)(r) = ∇∬� ∇′ ⋅ j(r ′) e−jk‖r−r′‖4π‖r − r ′‖dr ′ , (4.3)

can be simpliied as

− jkη0[∫l l̂(r) ⋅ l̂(r ′)i(r ′)Kex(r − r ′)dl′+1k2 l̂(r) ⋅ ∇∫l ∇′ ⋅ (l̂(r ′)i(r ′))Kex(r − r ′)dl′] = −l̂(r) ⋅ ei , (4.4)

where

Kex(r − r ′) = 12π ∫ π
−π e−jk‖r−r′‖4π‖r − r ′‖d� ′ (4.5)

is the exact kernel of the wire EFIE and � indicates the azimuthal direction along
the wire cross-sections. To allow for numerical resolution of the problem, the wire
is discretized into Ns segments sm of average length ℎ. he current can then be
approximated as a sum of N triangle basis functions {�m}

i(r) ≈ N∑m=0
�m�m(r) . (4.6)

he triangle functions are deined, for eah pair of segments s+m and s−m sharing a
vertex vm and whih other vertex is respectively v+ and v− (Figure 4.1), as

�(r) =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

‖r − v+‖‖vm − v+‖ for r ∈ s+m
1 −

‖r − v−‖‖vm − v−‖ for r ∈ s−m
0 otherwise;

(4.7)

his discretization is combined with a Galerkin sheme, yielding the matrix system

Zi = (−jkη0Zs − η0jk Zℎ)i = ve , (4.8)
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Fig. 4.1.: Illustration of hat basis functions, the doted lines indicate the value of the function
on the corresponding segments.

where

[Zs]mn = ∫�m �m(r)l̂m(r) ⋅ ∫�n �n(r ′)l̂n(r ′)Kex(r − r ′)dr ′dr , (4.9)

[Zℎ]mn = ∫�m
d�m(r)dl ∫�n

d�m(r ′)dl′ Kex(r − r ′)dr ′dr , (4.10)

[ve]m = −∫�m
�m(r)l̂(r) ⋅ ei(r)dr , (4.11)

Z = (−jkη0Zs − η0/(jk)Zℎ) and [i ]m = �m.
Another widely used [Jin15] formulation for wire EFIE can be derived in a similar

fashion, with the exception that testing of the equation is performed on the axis of
the wire – and no longer on its surface – and the radius a is considered to be very
small. he reduced kernel of this approximated formulation follows directly fromKex ,

Kred(r − r ′) = e−jk‖r−r′‖4π‖r − r ′‖ . (4.12)

c) Spectral Analysis
Several excellent works in literature have been analyzing the solvability of the re-
duced kernel EFIE concluding that it is questionable in general and that a naive use
of this formulation may result in the well-known problem of numerical oscillations
[Fik+11; PFM10; BT07; DDF01]. At the same time, the exact kernel EFIE has been
traditionally considered to have a non critical spectrum. his section is propaedeu-
tical to the next ones and it has the purpose to show that: i) the exact kernel
EFIE still has a non-bounded condition number whih, as a consequence, requires
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regularization; ii) under certain discretization conditions, the ill-posedness of the re-
duced kernel EFIE can be treated by suitably tuned preconditioning. Regularization
tehniques for both cases will then be the subject of Section 4.e.

�) Spectrum of the Wire Equations
he required haracterizations of the spectra of both exact and reduced kernels
will be obtained on the ininite wire, efectively adapting to the case of interest the
strategy in [FW01]. A generalization of the results to the inite wire case could be
obtained, however, by leveraging on the strategies similar to those presented in
[BvE12].

It is well known that for an ininite ẑ-oriented dipole of radius a the eigenvalues
of the vector potential for the ininite wire are

��
Ts ,K = √2πF[K](�) , (4.13)

where, for notation simplicity, K refers to either Kex or Kred and where F[K] denotes
the Fourier transform of K . his result can be derived by irst considering that

(Tsi)(z) = ∫ ∞
−∞ i(r ′)K(r , r ′)dz = (i ∗ K)(z) , (4.14)

whih ater applying the Fourier transform and using the convolution theorem
yields

F[(Tsi)(z)](�) = √2πF[i(z)](�) ⋅ F[K(z)](�) . (4.15)

Applying the ansaz i(z) = ejnz and noticing that F[i(z)](� ) = √2π�(n − 2π� ), the
previous eq. (4.15) becomes

F[(Tsi)(z)](�) = √2πF[K(z)](�) ⋅ √2π�(n − 2π�) , (4.16)

F[(Tsi)(z)](�) = F[K(z)]( k2π) ⋅ �(� − n2π) , (4.17)

and, using the inverse Fourier transform,

(Tsi)(z) = √2πF[K(z)]( n2π) ⋅ ejnz (4.18)

hence the eigenvalues of Ts are
�nTs ,K = √2πF[K]( n2π) . (4.19)
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For simplifying further the analysis it is suicient to consider only the singular
parts of the kernels since their dynamic remainder will only contribute a compact
perturbation of the static spectrum. In addition, it is trivial to show that, in the
case of an ininite z-oriented antenna,

‖r − r ′‖2 = 2a2(1 − cos(� − � ′)) + (z − z′)2 (4.20)

and under the thin wire approximation

‖r − r ′‖2 = a2 + z2 . (4.21)

Using these considerations it is possible to establish the following asymptotic
analytic expressions for the singular values of both kernels:��

Ts ,Kex
∼ (2π)−1K0(2πa�)I0(2πa�) , (4.22)

and ��
Ts ,Kred

∼ (2π)−1K0(2πa�) , (4.23)

where I0 and K0 are the modiied Bessel functions of the irst and second kind. Here
the spectral variable � will reside in the interval [�min, �max] where �min is strictly
positive and corresponds to the least oscillating eigenvector (structure dependent)
and �max correspond to its most oscillating eigenvector (discretization dependent),
i.e. �max ∝ (2ℎ)−1.

�) Asymptotic Behaviors
Given the asymptotic behaviors of the spectra deduced from eqs. (4.22) and (4.23),
the condition number of the exact and reduced kernel EFIEs can be studied in two
regimes: (i) the coarse reinement regime inwhih a ≪ ℎ and (ii) the high reinement
regime in whih a ≫ ℎ. he spectra of the kernels exhibit signiicantly diferent
behaviours in these two regimes and require dedicated analyses to consistently
address the dense discretization breakdown.

he behaviour of the eigenvalues of the exact kernel in case (i) (a ≪ ℎ), whih
in the spectral domain translates into a�max ≪ 1, can be obtained by performing a
power series expansion of eq. (4.22) near zero

��
Ts ,Kex

∼a�≪1 −(2π)−1(
 + log(π) + log(a�)) +O(� 2) , (4.24)
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Fig. 4.2.: Illustration of the behavior of the various functions involved in the spectral analysis
of the exact and reduce kernels (Figure 4.2a) and their inverses (Figure 4.2b).
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Fig. 4.3.: Illustration of the behaviour of the scalar potential of the reduced potential showing
that the condition number will irst increase � ∈ [�min, �0] because the minimum
singular value decreases, remain constant for � ∈ [�0, �1] and inally increase in� > �1 because the maximum singular value increases while the minimum remains
constant.
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where 
 is Euler’s constant. From the power expansion of the vector potential, the
behavior of the eigenvalues ��

Tℎ,Kex
of scalar potential are obtained considering the

net two derivative diference between vector and scalar potential operators

��
Tℎ,Kex

∼a�≪1 − 12π� 2(
 + log(π) + log(a�)) +O(� 4) . (4.25)

he reinement behaviour of the spectrum of the exact kernel can be obtained
by recalling that �max = �(2ℎ)−1 (where � is an undetermined scaling factor) in
eqs. (4.24) and (4.25)��min

Ts ,Kex
≈ −(2π)−1(
 + log(π) + log(a�min)) , (4.26)

and ��max
Ts ,Kex

≈ −(2π)−1(
 + log(aπ�) − log(2) − log(ℎ)) . (4.27)
he study of case (ii) – a� ≫ 1 – for the exact kernel requires an asymptotic

analysis of eq. (4.22)

limℎ→0 ��min
Ts ,Kex

= (2π)−1K0(2πa�min)I0(2πa�min) = O(1) , (4.28)

and limℎ→0 ��max
Ts ,Kex

∝ limℎ→0K0(πa�ℎ )I0(πa�ℎ ) = O(ℎ) , (4.29)

where for the later the well known property

I0(X )K0(X ) =X→+∞

1
2X +O( 1X 3) (4.30)

has been used [ON10]. Following the same reasoning as in the previous case yields
for the scalar potential

limℎ→0 ��max
Tℎ,Kex

= O(1ℎ) . (4.31)

A similar analysis can be readily performed for the reduced kernel. he results
for when case (i) is applied to equation eq. (4.23) are the same as for the exact kernel��

Ts ,Kred
∼a�≪1 −(2π)−1(
 + log(π) + log(a�)) +O(� 2) , (4.32)

and ��
Tℎ,Kred

∼a�≪1
−(2π)−1� 2(
 + log(π) + log(a�)) +O(� 4) . (4.33)
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Fig. 4.4.: Condition number of the exact kernel vector potential (Figure 4.4a), scalar potential
and EFIO (Figure 4.4b) for an increasingly denser discretization of a loop of radius
equal to one half of the wavelength of the impinging plane wave. he wire radius
of the loop is a = 1.6 ⋅ 10−5m.

Finally, in case (ii) the reduced kernel has the following behavior:

limℎ→0 ��min
Ts ,Kred

= 1√2πK0(2πa�min) = O(1) , (4.34)

and

limℎ→0 ��max
Ts ,Kex

= limℎ→0
1√2πK0(π� aℎ) = O(√ ℎ

π�ae−π�a/ℎ) . (4.35)

he spectral behavior of the two kernels on a loop of unitary radius is illustrated
in Figures 4.4 and 4.5 and all numerical results are in agreement with the former
analysis. A regression analysis of the coarse reinement logarithmic behaviour has
been performed and is illustrated in F igure 4.6

d) Low Frequency Regularization

�) uasi-Helmholz Projectors
In order to address the low frequency breakdown of the wire EFIE the surface
projectors presented in Section 3.e are extended to wire geometries. Because the
low frequency breakdown of the wire EFIE has the same underlying causes as its
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Fig. 4.5.: Condition number of the reduced kernel vector potential (Figure 4.4a), scalar
potential and EFIO (Figure 4.4b) for an increasingly denser discretization of a
loop of radius equal to one half of the wavelength of the impinging plane wave.
he wire radius of the loop is a = 1.6 ⋅ 10−5m. he dip of the scalar potential’s
condition number is explained by the trends illustrated in Figure 4.3.
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Fig. 4.6.: Regression coeicients of the scalar potential of the exact (Figure 4.6a) and reduced
kernel (Figure 4.6b), corresponding to the ive points of coarsest reinement in
Figures 4.4 and 4.5, respectively. hese igures demonstrate that the numerical
results exhibit the expected logarithmic behaviours predicted by theory. he
curves of the analytical result for the ininite wire kernels are presented in the
corresponding igures in order to serve as reference.
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surface counterpart, projector based solutions will retain their eiciency and their
edge over traditional tehniques suh as loop star decompositions. he extension
of the projectors relies on the fact that the non-solenoidal decomposition matrix
Σ ∈ R

Nv×Ns is actually a discretization of the gradient operator

[Σ ]mn = ⟨Λm, Pn⟩ , (4.36)

where
{Pj} is the set composed of the constant function x ↦ 1 over eah segments

of the discretized geometry. his matrix can be computed only using connectivity
information of the meshed geometry

[Σ ]ij = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if sn is s+m ,−1 if sn is s−m ,
0 otherwise.

(4.37)

he solenoidal projector PΣ can then be deined as

PΣ = Σ(ΣT
Σ)+ΣT , (4.38)

and the solenoidal projector PΛH as its remainder

PΛH = I − PΣ . (4.39)

he wire counterpart of the solenoidal decomposition matrix Λ can not be estab-
lished in simple terms because the solenoidal functions are cycles of the mesh,
and can not be built from purely local information. he overall solenoidal map-
ping could be built using cycle and/or global loop detection algorithms, however
these tehniques exhibit an above quadratic complexity [Pat69], hence it is more
convenient and computationally eicient to use the deinition proposed in eq. (4.39).

he quasi-Helmholz projectors can be used to decompose any hat function
expansion coeicient vector into its solenoidal and non-solenoidal components

i = PΛH i + PΣ i . (4.40)

One crucial property of the projectors is that they can be computed with a near-
linear cost through the algorithm detailed in Section 3.e, leveraging on multigrid
preconditioner [NN12], making them a very eicient alternative to traditional
tehniques.
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�) Leveraging uasi-Helmholz Projectors
he quasi-Helmholz projectors can be used to deine the quasi-Helmholz decom-
position operator

M = 1√kPΛH + j√kPΣ , (4.41)

whih has the property M
T = M . he result of applying M to the wire EFIE matrix

can be expanded as

M
T
ZM = −j(PΛHZsPΛH + PΣZℎPΣ ) + (PΛHZsPΣ + PΣZsPΛH )k+ (PΣZsPΣ )jk2= −j(PΛHZsPΛH + Zℎ) +O(k) (4.42)

by recognizing that PΣZℎPΣ = Zℎ – whih derives from the complementarity of the
projctors PΛH + PΣ = I – and that PΛHZℎ = ZℎPΛH = 0. Since the loop and star main
contributions do not scale in frequency, this formulation is immune from the low
frequency breakdown. In particular, following the reasoning detailed in Section 3.e
it can be shown that both the numerical cancellations and the condition number
breakdown are addressed.

Even with the low frequency breakdown cured, this formulation still sufers
from an ill-scaling between the vector and scalar potential. his ill-scaling can be
compensated, to further reduce the condition number, by adding a scaling term

� = √‖Zℎ‖‖Zs‖ (4.43)

to M

M = √�kPΛH + j√k� PΣ . (4.44)

Even though � is deined using norms, it can be computed eiciently by using
power methods.

e) Hierarhical Preconditioning
To stabilize the dense discretization breakdown of the wire EFIO, whih is asymp-
totically spectrally equivalent to a Laplacian operator in its quadratic regime, a
hierarhical preconditioner based on linear B-splines can be employed. In addition,
this preconditioner can also regularize the operator in its linear regime.
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For this hapter to be clearer, some key passages in the demonstration of the
efectiveness of the hierarhical sheme will be recalled. For a more complete
discussion on the topic, the reader can refer to [Dah03].

Let H be an Hilbert space equipped with a norm ‖ ⋅ ‖H induced by the s.p.d
operator O, i.e. ‖v‖2H = ⟨v,O(v)⟩ , ∀v ∈ H , (4.45)

whih can be re-writen in matrix form as‖v‖2H = α
TBOαB , (4.46)

where [αB]i are the coeicients of v in an arbitrary basis B = {vi}, i.e.∀v ∈ H ∃αB ∣ v = ∑i [�B]ivi . (4.47)

Given two function x and y, x ≍ y denotes that x ≲ y and y ≲ x , where x ≲ y if∃C > 0 suh that x ≤ Cy . With this notation, assume the existence of a basis W of
H that satisies the condition ‖v‖2H ≍ ∑i [αW ]2i d2i , (4.48)

or, in matrix form, ‖v‖2H ≍ α
TWD

T
DαW , (4.49)

where D is a diagonal matrix, then combining eqs. (4.46) and (4.49) yields

α
TBOαB ≍ α

TWD
T
DαW . (4.50)

Because the basis B is not deined, it is hosen to be composed of the same vectors
as W but scaled, i.e. αB ← DαW ; this hoice yields

α
TWD

T
ODαW ≍ α

TBαB , (4.51)

whih implies that DT
OD is spectrally equivalent to an identity and hence is well-

conditioned. his means that if a basis satisfying eq. (4.49) exists then combining a
wavelet hange of basis with a diagonal preconditioner will yield a well conditioned
operator O [DK92].

It can be shown that the linear B-spline wavelets are a preconditioning basis for
the Laplacian operator [CT99]. To deine the functions generating this basis the
segment S = [0, 1] is partitioned at level j into 2j segments Sj,k = [xjk , xj,k+1] where
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v0 v1 v2 v3 v4 v5 v6 v7 v8

�3,1 �3,2 �3,3 �3,4

�2,1 �2,2

�1,1

Fig. 4.7.: Example of wavelets constructed on a wire segment.

xj,k = k2−j and k = 0… 2j . he B-splines wavelets are well suited to the problem at
hand since they are scaled and translated hat function

�jk(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
2j(x − xj,k−1) if x ∈ Sj,k−1 ,
2j(xj,k+1 − x) if x ∈ Sj,k ,
0 otherwise.

(4.52)

he hierarhical basis can then be built by complementing the set �j of functions
of previous levels with the functions deined on the new nodes of the current level

�j+1 = �j ⊕ {�j,2k+1/k = 0,… , 2j − 1
} . (4.53)

A construction of �3 is illustrated in Figure 4.7. While this construction is given on
straight wire with uniform discretization, it can be generalized to less trivial cases
in a way in a natural way.

f) Preconditioned Equation
Ater regularizing the frequency behaviour of the wire EFIE, its condition number
still increases with ℎ−1 or ℎ−2, depending on the regime. hese behaviours can be
preconditioned using the hierarhical preconditioner

DH
T
ZHD , (4.54)
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where D is a diagonal preconditioner and H is the matrix expressing the hierarhical
B-pline functions as a linear combination of the triangle basis functions used to
discretize Z .

he fully regularized wire EFIE combines both the frequency and high reinement
regularizations and yields the system

DH
T
MZMHDy = DH

T
Mv , (4.55)

where D is a diagonal preconditioner and i = MHDy . However, particular care
should be taken when computing the � scaling factor of the quasi-Helmholz pro-
jectors. If eq. (4.43) was used directly � would reintroduce a dependency on the
reinement of the geometry, whih would counterbalance the regularization efect
of the hierarhical preconditioner. However, because the gap in singular values
addressed by � is caused by the geometry only the top level hierarhical functions
can be extracted for the re-scaling, i.e.

� = √‖HT
0 ZℎH0‖‖HT
0 ZsH0‖ , (4.56)

where H0 is the part of H that only contains the coeicients for the top level (i.e.
least reined) hierarhical functions. Since these functions still contain the structural
informations but do not hange with increasing reinement, this � is constant with
regards to ℎ. his formulation is then well-conditioned and immune from both the
low frequency and dense discretization breakdowns.

g) Implementation Details
his section will address some of the implementation details that need to taken
into account for an efective implementation of the new shemes.

First, in order to avoid numerical instabilities in the computation of MZM ,
the matrix product has to be expanded as in eq. (4.42). his will allow explicit
cancellation of the PΛHZℎ and ZℎPΛH terms, that may cause numerical instabilities.

Moreover, the RHS also requires careful treatment: ater rewriting eq. (4.55) as
DH

T
MZMHDy = vΛH + v� , (4.57)

where

vΛH =

√�kDH
T
PΛHv , (4.58)

vΣ = j√k�DH
T
PΣv , (4.59)
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numerical cancellations need to be accounted for in the computation of vΛH . When
v is induced by a plane-wave excitation of the form exp(−jkk̂ ⋅ r), for example, it
should be replaced by its extracted version vext , generated by exp(−jkk̂ ⋅ r) − 1 in
eq. (4.58), as suggested by [Zha+02]. Dually, ater solving this system the solution i

should be retrieved as

iΛH =
√�kPΛHHDy , (4.60)

iΣ = j
√k� PΣHDy , (4.61)

i = iΛH + iΣ . (4.62)

and the far ield must be computed from the two components iΣ and iΛH separately
so that the extracted exponential exp(−jkk̂ ⋅ r) − 1 can be used in the computation
of the ield scatered by the solenoidal current iΛH .

Finally, the singularity extraction of the kernels of both EFIEs should be computed
with high accuracy in order for the transformations from triangles to wavelet
functions to remain correct.

h) Numerical Results
To verify the correctness, preconditioning properties and stability of the fully-
regularized formulations eq. (4.55), both with the exact and reduced kernels, a
series of numerical experiments have been performed.

First, the new regularized formulations were tested for correctness by simulating
the ield scatered by a dipole antenna of unit length and wire diameter of 1 ⋅ 10−2 m.
he simulation was performed at 3 ⋅ 107 Hz, with both the full and reduced wire EFIE
kernels. he results, illustrated in Figure 4.8, are compared against the analytical
expression of the ield radiated by a small dipole and demonstrate the accuracy of
the formulation, regardless of the kernel used.

To conirm the stability of the new formulations at low frequency, their condi-
tioning has been studied until 1 ⋅ 10−40Hz. While not practical, this extremely low
frequency serves to illustrate the continued robustness of the shemes. his study
has been performed on a square loop of radius 1m and on the complex structure
illustrated in Figure 4.9 (Figures 4.10a and 4.10b, respectively). Both cases exhibit
a stabilized conditioning until arbitrarily low frequencies. he high (but stable)
conditioning of the tower structure is due to the scalar potential contribution (whih
has been veriied to exhibit an intrinsically high condition number) becoming more
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Fig. 4.8.: Field scatered by a 1m dipole antenna at 3 ⋅ 107Hz.

Fig. 4.9.: Wire-discretized antenna structure.
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Fig. 4.10.: Frequency behaviour of the condition number of the standard EFIEs and the
new formulations, computed on a square loop of 1m side (Figure 4.10a) and
on the structure illustrated in Figure 4.9 (Figure 4.10b) both with a wire radiusa = 1 ⋅ 10−3m.

important at low frequencies because it is no longer dampened by its k−1 scaling. In
addition, the apparently stable conditioning at 1 ⋅ 1016 of the standard formulations
is due to numerical saturations in the computation of the condition number and
should be disregarded. he numerical stability of the shemes have been veriied
on the square loop by computing the loop and star components of the solution
vectors of the standard full kernel EFIE, the corresponding qH formulation and a
loop star decomposed EFIE for reference (Figures 4.11a and 4.11b). he simulations
clearly demonstrate that, while all formulations preserve the non-solenoidal parts
of their solutions, only the decomposed ones yield accurate solenoidal parts. For
more details in the causes of these cancellations see Chapter 3.

he high-reinement behaviour of the new formulations is illustrated in the dense
discretization regime in Figure 4.12a. Given the compactness of the reduced kernel,
the condition number of the corresponding formulation is not regularized. However,
as expected, the exact kernel formulations exhibits a lat condition number with
increasingly denser discretization. A similar study, illustrated in Figure 4.12b, has
been performed for the coarse reinement regime. Both formulations are stabilized
in this regime, up to logarithmic increase in the condition number. Similar results
also hold for the complex structure illustrated in Figure 4.9 (Figures 4.13a and 4.13b).
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Fig. 4.11.: Non-solenoidal part (Figure 4.11a) and solenoidal part (Figure 4.11b) of the current
on a square loop of 1m radius induced by an impinging plane-wave at 500Hz.
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Fig. 4.12.: Spectral behaviour of the EFIEs on square loop of side 1m at 6 ⋅ 107Hz, in the
dense reinement regime obtained with a wire radius a = 0.159m (Figure 4.12a)
and in the coarse reinement regime obtained with a wire radius a = 1.59 ⋅ 10−8m
(Figure 4.12b).
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Fig. 4.13.: Spectral behaviour of the EFIEs on the structure illustrated in Figure 4.9 at8.4 ⋅ 106Hz, in the dense reinement regime obtained with a wire radius a =
15.91m Figure 4.13a and in the coarse reinement regime obtained with a wire
radius a = 1.6 ⋅ 10−6m Figure 4.13b.

i) Conclusion
he new wire EFIE formulations presented in this work are immune from both
the high-reinement and the low frequency breakdowns, and does not require
the searh for global loops. he hierarhical preconditioner have been hosen to
math the spectral behaviour of both wire EFIE kernels under both of their regimes.
Numerical results demonstrated the accuracy and regularization properties of our
shemes in non-trivial cases.
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Chapter 5

Magnetic and Combined Field Integral
Equations Based on the

uasi-Helmholz Projectors
Boundary integral equation methods for analyzing electromagnetic scatering phe-
nomena typically sufer from several of the following problems: (i) ill-conditioning
when the frequency is low; (ii) ill-conditioning when the discretization density is high;
(iii) ill-conditioning when the structure contains global loops (which are computa-
tionally expensive to detect); (iv) incorrect solution at low frequencies due to current
cancellations; (v) presence of spurious resonances. In this chapter5, quasi-Helmholz
projectors are leveraged to obtain a MFIE formulation that is immune to drawbacks
(i)-(iv). Moreover, when this new MFIE is combined with a regularized EFIE, a new
quasi-Helmholz projector CFIE is obtained that also is immune to (v). Numerical
results corroborate the theory and show the practical impact of the newly proposed
formulations.

a) Introduction

T ime-harmonic scatering by PEC objects otentimes is modeled using fre-
quency domain boundary integral equations. Among them, electric and mag-
netic ield integral equations (EFIE and MFIE) [Van07] are the most popular.

Although the EFIE is easily discretized using RWG basis functions [RWG82], it
sufers from ill-conditioning when the frequency is low and/or the discretization
density is high. he MFIE, on the other hand, remains well-conditioned in both
regimes, provided that a mixed discretization sheme is employed [Coo+11]. In

5 his work is the result of a collaboration with Dr. Yves Beghein, Assistant Prof. Kristof Cools, Prof.
Eric Michielssen and Prof. Francesco P. Andriulli. Part of this work has been performed before
the start of this thesis and is recalled here for the completeness of the discussion. he present work
has been submited for publication in December, 2018 [Mer+18a].
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practice, however, it is not feasible to obtain accurate results for the MFIE at
extremely low frequencies without resorting to highly precise numerical quadrature
methods. In addition to the above issues, both the EFIE and the MFIE sufer from
current cancellations at low frequencies [Yun+03; QC10; QC08a].

he EFIE’s conditioning and current cancellation problems can be overcome by
using loop-star or loop-tree decompositions [WG81a; Vec99; ZC00; LLB03; Eib04].
For multiply connected geometries, this requires the detection of global loops,
whih is computationally expensive [WG81b]. hese tehniques also fail to address
the dense discretization breakdown phenomena [ATV10; And+08] whih causes
the EFIE’s condition number to grow quadratically with the mesh reinement pa-
rameter. Worse still, loop-star tehniques for combating the EFIE’s low-frequency
conditioning problems further degrade the equations dense discretization behavior
[And12].

Several formulations have been introduced to address these low-frequency issues
without the computational burden of global loop detection [QC08b; ZJ11]. hese so-
lutions, however, do not address the dense discretization ill-conditioning of the EFIE.
Both issues can be concurrently takled by leveraging hierarhical quasi-Helmholz
decompositions [VVP07; AVV08; Che+09; ATV10]. hese decompositions also have
been successfully coupled with other approahes suh as Calderón preconditioning
[CN02; Con+02; Ada04; Dar06; SL09; And+08; SJZ10] and Debye-inspired shemes
[EG10]. he price to be paid for this dual stabilization is, once again, the need for
global loop detection at very low frequencies. In addition, several of the aforemen-
tioned tehniques fail to properly address low-frequency numerical cancellations
occurring in the solution vector [Yun+03; CTH08; QC10; Bog+14]. Several of the
above drawbaks have been successfully addressed by the promising sheme in
[Vic+16]. Alternative remedies to current cancellations include perturbation meth-
ods [Yun+03; CTH08; Sun+13] and Calderón regularization combined with loop
star decompositions [SL09; SJZ10]. Both families of solutions do, however, have
shortcomings: the former is only applicable at low frequencies and exhibits the
same spectral issues as the formulation it is applied to – high reinement breakdown
for the EFIE or global loop detection for the MFIE and Calderón EFIE – while the
later also requires global loop detection and treatment of the high reinement
instability of the loop-star decomposition. It should also be noted that some recent
incarnations of augmented equations are immune to several of the above men-
tioned drawbaks, though they require the recovery of auxiliary quantities [Che+15;
DG16].

Recently, an electric type equation based on quasi-Helmholz projectors was
proposed that is immune to all of the aforementioned issues [And+13b]. A similar
regularization has also been applied to the time domain electric ield integral
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equation [BCA15a; BCA15b] and both the time domain and the frequency domain
PMCHWT equations [Beg+15; BCA15c].

In this hapter, quasi-Helmholz projectors are used to obtain a new MFIE that
no longer requires interaction integrals to be computed using extremely accurate
quadrature rules. Additionally, the solenoidal and nonsolenoidal current compo-
nents are scaled suh that low frequency cancellations are avoided. As a result,
the formulation remains accurate down to extremely low frequencies. Scatering
problems involving PEC objects can also be solved using the CFIE, whih is a linear
combination of the EFIE and the MFIE. his equation has the added beneit that it
does not support spurious resonances [CS07]. In this hapter, the new regularization
method for the MFIE is combined with that for the EFIE presented in [And+13b].
he resulting CFIE is not only low-frequency stable but also immune to spurious
resonances. Preliminary results of this researh have previously been presented as
conference contributions [And+14; And+13a].

his hapter is organized as follows. To set notation, Section 5.b deines the
standard EFIE and MFIE as well as their discretizations and related quasi-Helmholz
current decompositions. In Section 5.c, a quasi-Helmholz decomposition is applied
to a new symmetrized form of the MFIE. he resulting equation can be discretized
accurately using standard numerical quadrature methods, and can be scaled in
frequency suh that no low frequency cancellations occur. In Section 5.d, this
MFIE is combined with the regularized EFIE [And+13b] to obtain an extremely low
frequency stable CFIE. Section 5.e discusses numerical results that corroborate the
theory and conclusions are presented in Section 5.f.

b) Bakground and Notations
he EFIE and MFIE operators Tk and Kk are deined as

(Tkj)(r) = (Ts,kj)(r) + (Tℎ,kj)(r) , (5.1)

(Ts,kj)(r) = jk�n̂ × ∫� e−jkR4πR j(r ′)ds′ , (5.2)

(Tℎ,kj)(r) = − �jk n̂ × ∇∫� e−jkR4πR ∇′ ⋅ j(r ′)ds′ , (5.3)

(Kkj)(r) = −n̂ × p.v.∫� ∇ × e−jkR4πR j(r ′)ds′ , (5.4)

where R = ‖r − r ′‖, � is the boundary of a closed domain 
 ⊂ R
3 and n̂ is its

exterior normal vector. Furthermore, given the angular frequency !, k = !√�� and
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Fig. 5.1.: Notations used for the deinition of an RWG basis function; en denotes the deining
inner edge that links vertices v+n and v−n and c+n and c−n the two triangles connected
to this edge whih are completed by the vertices r+n and r−n , respectively.

� = √�/�; here � and � the permitivity and permeability of vacuum, respectively.
If 
 is perfectly conducting, it supports an electric current j(r) satisfying both the
EFIE (Tkj)(r) = n̂ × ei(r) (5.5)

and the MFIE

((I2 +Kk)j)(r) = n̂ × hi(r) (5.6)

for all r ∈ � ; where ei and hi denote the impinging electric and magnetic ields,
respectively. To numerically solve these equations via a Galerkin procedure, j(r) is
expanded into RWG basis functions

{
fj(r)} [RWG82] as

j(r) ≈ Ne∑j=1 [j ]jfj(r) , (5.7)

where Ne is the number of edges of the mesh. Following [And+13b], the RWG
functions are normalized suh that the integrated lux through their deining edges
equals one. Next, the EFIE (5.5) is tested with rotated RWG functions

{
n̂ × fi(r)},

while the MFIE (5.6) is tested with rotated BC functions [BC07]
{
n̂ × gi(r)}. he

BC functions
{
gj} are divergence-conforming functions deined on the barycentric

reinement of the mesh. In addition, they are quasi curl-conforming in the sense
that the mixed Gram matrix between curl-conforming rotated BC functions and
RWG functions is well conditioned. For an explicit deinition of these functions the
reader is referred to [And+08; BC07]. Overall, the testing procedure results in the
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following matrix equations:

T j = ve , (5.8)

(G
T2 + Kk)j = vℎ, (5.9)

where

[T ]ij = (n̂ × fi ,Tkfj), (5.10)[Ts]ij = (n̂ × fi ,Ts,kfj), (5.11)[Tℎ]ij = (n̂ × fi ,Tℎ,kfj), (5.12)[Kk]ij = (n̂ × gi ,Kkfj), (5.13)[G]ij = (fi , n̂ × gj), (5.14)[ve]i = (n̂ × fi , n̂ × ei), (5.15)[vℎ]i = (n̂ × gi , n̂ × hi), (5.16)

with (a, b) = ∫� a(r) ⋅ b(r)ds. In addition we denote by ❚ , ❚s and ❚ℎ the BC-
expanded and tested counterparts of the discretized operatorsT ,Ts andTℎ computed
with the complex wavenumber −jk.

he solutions of (5.8) and (5.9) can be expressed as linear combinations of diver-
gence free (loop and harmonic functions) and of non-divergence free (star functions)
contributions via a quasi-Helmholz decomposition

j = Λl + Σs + Hh (5.17)

where the irst two matricesΛ ∈ R
Ne×Nv andΣ ∈ R

Ne×Nf represent mappings from the
RWG subspace to the local loop and star subspaces, respectively. Here, Nv and Nf
are the number of vertices and facets of the mesh, respectively [WG81b; Coo+09b].
hese two mappings can be deined using only the connectivity information of the
discretized geometry as

Λij =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if node j equals v+i−1 if node j equals v−i
0 otherwise

(5.18)
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and

Σij =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if the cell j equals c+i−1 if the cell j equals c−i
0 otherwise , (5.19)

where vertices v−i and v+i deine the oriented edge haracterizing RWG function i,
and c−i and c+i denote the corresponding cells (Figure 5.1). he matrix H represents
the mapping from the RWG space to the quasi-harmonic or global loop space
composed of 2Nℎ functions, where Nℎ is the number of handles in the structure.
For a complete description of this mapping and the associated harmonic functions,
the reader is referred to [WG81b] and [Coo+09b].

A few properties of these matrices are recalled next to facilitate further develop-
ments. For the sake of simplicity we restrict ourselves to the case of a geometry
with a single closed connected component. All derivations below can be extended
to arbitrary geometries using the relations in [Wil83]. Given this assumption, Λ
has a null-space spanned by the all-one vector 1Λ ∈ R

Nv , i.e.
Λ1Λ = 0. (5.20)

Similarly, linear dependency of the star functions cause Σ to exhibit a one-dimen-
sional null space spanned by the all-one vector 1Σ ∈ R

Nf , i.e.
Σ1Σ = 0. (5.21)

Finally, it is trivial to show that the loop and star subspaces are orthogonal, i.e.

Σ
T
Λ = 0. (5.22)

As Λ and Σ are ill-conditioned and because of the high computational cost
of detecting global loops required to build H , it is convenient to leverage the
quasi-Helmholz projectors introduced in [And+13b] to obtain a quasi-Helmholz
decomposition of the EFIE and MFIE operators. he projectors are deined as

P
Σ = Σ(ΣT

Σ)+ΣT , (5.23)
P

ΛH = I − P
Σ , (5.24)

where + denotes the Moore-Penrose pseudo-inverse and I is the identity. Any RWG
expansion coeicient vector can then be decomposed as

j = (PΛH
j) + (PΣ

j) (5.25)
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where P
ΛH

j and P
Σ
j contain the RWG expansions of the solenoidal (loop) and

non-solenoidal (star) components of the current, respectively. hese operators are
self-adjoint and also can be used to decompose the RWG testing space. Similarly,
the dual projectors PΛ and PΣH , deined as

PΛ = Λ(ΛT
Λ)+ΛT, (5.26)

PΣH = I −PΛ, (5.27)

decompose any linear combination of BC (basis or testing) functions into a non-
solenoidal and solenoidal part, respectively. It should be noted that construction of
these projectors does not require the detection of global loops, and that (ΣT

Σ)+
can be eiciently computed using multigrid preconditioners [And+13b; NN12].

c) Regularizing the MFIE at Extremely Low Frequencies

�) Low Frequency Behaviour of the MFIE
he standard RWG discretization of the MFIE fails to provide accurate results
at low frequencies due to the unphysical scaling of the loop and star (or tree)
components of the current [Yun+03]. It was shown in [Coo+09a; Coo+11] that the
mixed discretization of the MFIE (in whih BC or CW functions [CW90] are used as
testing functions) improves accuracy. In particular, the loop and star components
of the current obtained from this formulation scale physically [Bog+14]. his result
also holds true for multiply connected geometries [Bog+11a].

he mixed MFIE formulation still sufers from three problems. First, the physical
scaling of the current can only be retrieved when interaction integrals are computed
to high accuracy [Bog+14]. Second, the nonsolenoidal current component scales
as O(!) whereas the solenoidal component is of O(1). As a result, at very low
frequencies and when using inite precision, both components should be stored
in diferent arrays to prevent the nonsolenoidal component from losing accuracy
or even being cancelled out [Yun+03; CTH08; QC10; Bog+11b; Bog+11a]. hird,
the static MFIE (at ! = 0) has a null space when applied to multiply connected
geometries. It follows that the discretized MFIE has Nℎ singular values that scale
as O(!2) [Coo+09b]. Any accurate discretization of the MFIE operator must
preserve this null-space. Standard RWG discretizations of the MFIE operators are
not capable of correctly modelling this null space [And+14]. he mixed MFIE, on
the other hand, correctly models this null-space in ininite precision. However, ater
discretization, the null-space associated singular values will not be more accurate
than the precision of the quadrature rule.

93



Magnetic and Combined Field Integral Equations Based on the QH Projectors Chapter 5

�) A Robust MFIE Formulation
To address the above described MFIE deiciencies we propose the following sym-
metrized MFIE:

(I2 −K−jk)(I2 +Kk)(j) = (I2 −K−jk)(n̂r × hi). (5.28)

his equation is the magnetic ield counterpart of the (localized) Calderón precon-
ditioned electric operator in [And+13b]. We propose to discretize (5.28) as

▼T(G
T2 − K−jk)(GT)−1(G

T2 + Kk)Mi

= Oi =▼T(G
T2 − K−jk)(GT)−1vℎ (5.29)

where

M = P
ΛH 1� + jPΣ� , (5.30)

▼ = PΣH 1� + jPΛ� , (5.31)

and Mi = j .
he coeicient � allows for re-scaling of the loop and star components of the

solution i of (5.29) to prevent numerical cancellations. Because P
Σ + P

ΛH = PΛ +
PΣH = I, operator O in (5.29) can be decomposed as

O = (PΛ +PΣH )O (PΣ + P
ΛH ) =
PΛ

OP
Σ +PΛ

OP
ΛH +PΣH

OP
Σ +PΣH

OP
ΛH , (5.32)

whih allows for the study of the low-frequency behavior of eah of the sepa-
rate terms. Analysis of the frequency behavior of the irst three terms is quite
straightforward and yields

PΛ
OP

Σ = O(�2) k → 0 , (5.33a)
PΛ

OP
ΛH = O(1) k → 0 , (5.33b)

PΣH
OP

Σ = O(1) k → 0 . (5.33c)

Analysis of the last term in (5.32) requires special care. It is known that when
decomposing Kk as

Kk = K0 + K
′k , (5.34)
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where K0 is the static limit of Kk and K
′k = Kk − K0 is the dynamic remainder,

K
′k = O(k2) as k → 0 [Bog+11a]. When using this decomposition in (5.29), it can

be veriied that K0 satisies

PΣH(G
T

2
− K0)(GT)−1(G

T

2
+ K0)P

ΛH = 0 . (5.35)

he above equation holds the key to unloking a frequency-stable MFIE and can
be proven by introducing P

Pol, P Tor, PPol, PTor the orthogonal projectors into the
right and let null-spaces of the internal and external MFIE operators, i.e.

(G
T

2
+ K0)P

Pol = 0 , (5.36)

(G
T

2
− K0)P

Tor = 0 , (5.37)

PPol(G
T

2
− K0) = 0 , (5.38)

PTor(G
T

2
+ K0) = 0 . (5.39)

Note that

(G
T

2
+ K0)P

Tor = G
T
P

Tor , (5.40)

(G
T

2
− K0)P

Pol = G
T
P

Pol , (5.41)

PTor(G
T

2
− K0) = PTor

G
T , (5.42)

PPol(G
T

2
+ K0) = PPol

G
T . (5.43)

We can then deine
◗Λ = P

ΛH − P
Pol − P

Tor , (5.44)
whih clearly satisies

PΛ◗Λ = ◗Λ , (5.45)
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since the union of the right null spaces of the internal and external MFIE operators
contains all the non-trivial cycles of the structure [Coo+09b]. Dually,

Q
Σ = PΣH −PPol −PTor , (5.46)

satisies
P

Σ
Q

Σ = Q
Σ . (5.47)

It follows that

(G
T2 − K0)(GT)−1(G

T

2
+ K0)P

ΛH

=(G
T

2
− K0)(GT)−1(G

T

2
+ K0)(◗Λ + P

Pol + P
Tor)

=(G
T

2
− K0)(GT)−1(G

T

2
+ K0)◗Λ

+(G
T

2
− K0)(GT)−1(G

T

2
+ K0)P

Tor (5.48)

=(G
T

2
− K0)(GT)−1(G

T

2
+ K0)◗Λ

+(G
T

2
− K0)P

Tor

=(G
T

2
− K0)(GT)−1(G

T

2
+ K0)◗Λ ,

and similarly that

PΣH(G
T

2
− K0)(GT)−1(G

T

2
+ K0)

=QΣ(G
T

2
− K0)(GT)−1(G

T

2
+ K0) . (5.49)
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Combining the above equations it follows that

PΣH(G
T2 − K0)(GT)−1(G

T

2
+ K0)P

ΛH

= Q
Σ(G

T

2
− K0)(GT)−1(G

T

2
+ K0)◗Λ . (5.50)

In the above expression we now insert the identity matrices (PΛH + P
Σ) and(PΣH +PΛ) obtaining

(5.50) = Q
Σ(G

T

2
− K0)(PΛH + P

Σ)(GT)−1
(PΣH +PΛ)(G

T

2
+ K0)◗Λ . (5.51)

Given that

Q
Σ(G

T

2
− K0)P

ΛH = Q
Σ
P

Σ(G
T

2
− K0)P

ΛH = 0 (5.52)

and that

PΣH(G
T

2
+ K0)◗Λ = PΣH(G

T

2
+ K0)PΛ◗Λ = 0 (5.53)

and considering the property

P
Σ(GT)−1PΛ = 0 , (5.54)

we obtain that

(5.50) =PΣ(G
T

2
− K0)P

Σ(GT)−1PΛ(G
T

2
+ K0)PΛ

=0 , (5.55)

whih completes the proof.
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he term PΣH
OP

ΛH can now be studied. To this end, note that

�2PΣH
OP

ΛH = = PΣH(G
T2 − K0)(GT)−1(G

T

2
+ K0)P

ΛH

+PΣH(G
T

2
− K0)(GT)−1(K ′k)PΛH

−PΣH(K ′−jk)(GT)−1(G
T2 + K0)P

ΛH (5.56)

−PΣH(K ′−jk)(GT)−1(K ′k)PΛH= 0 +O(k2) +O(k2) −O(k4),
whih completes the low-frequency analysis of the overall operator

O = PΛ
OP

Σ +PΛ
OP

ΛH +PΣH
OP

Σ +PΣH
OP

ΛH

= O(�2) +O(1) +O(1) +O(k2�2) . (5.57)

To hoose � , in addition to the conditioning constraint imposed by (5.57), we need
to consider the physical scaling of the current, whih for a plane wave excitation,
is [QC10]

P
ΛH

j = O(1) , (5.58)
P

Σ
j = O(k) . (5.59)

hese scaling laws reveal that for a standard formulation, a severe numerical
cancellation is expected due to the fact that the non-solenoidal component of the
current (whih scales as O(k)) will disappear when stored alongside the solenoidal
component (whih scales asO(1)). Instead, for the regularized formulation proposed
here, the equation is solved for i = M

−1
j , whih scales as

P
ΛH
i = O(�) , (5.60)

P
Σ
i = O(k/�) . (5.61)

It is now evident that by seting � =
√k, the above scaling behaviors become

P
ΛH
i = O(√k) , (5.62)

P
Σ
i = O(√k) , (5.63)
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eliminating the low frequency cancellation and, at the same time, stabilizing the
matrix at low frequencies. he later is seen upon inserting the new scalings into
(5.57):

O = O(�2) +O(1) +O(1) +O(k2�2)= O(k) +O(1) +O(1) +O(k) . (5.64)

he deiciency of the MFIE in the static regime also is solved by the sheme proposed
here. In fact, using (5.57) when k = 0 we obtain

OP
ΛH = PΛ

OP
ΛH , (5.65)

whih proves the existence of an exact matrix null-space in statics of dimension
exactly equal to that of the harmonic subspace.

Summarizing, the proposed MFIE resolves the three main issues of prior standard
and non-standard MFIE formulations and now can be linearly combined with EFIEs
using projectors.

d) A New CFIE
he theoretical developments of the previous sections resulted in a magnetic ield
operator that can be stably discretized for arbitrarily low frequencies using stan-
dard integration rules. he electric counterpart of this operator was obtained in
[And+13b]. We will now combine these two operators, irst proving the resonance-
free property of their continuous combination at high frequencies, and then showing
their compatibility at arbitrarily low frequencies.

Standard Calderón CFIE equations use a localization strategy for the EFIE com-
ponent to obtain a resonance-free equation [Ada04; Con+02]. Here, we follow
the Yukawa-Calderón approah in [Con+02]. When the Yukawa-Calderón EFIE
is linearly combined with the new magnetic operator deined in Section 5.c, the
following symmetric Yukawa-Calderón CFIE is obtained:

(�2(I

2
−K−jk)(I2 +Kk)(k) + T−jkTk)(j) =

(I2 −K−jk)(n̂ × hi) + T−jk(n̂ × ei) . (5.66)
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To demonstrate that this equation represents a valid CalderónCFIE, i.e. is free from
internal resonances, we prove that the operator

(�2(I2 −K−jk)(I2 +Kk)(k) + T−jkTk) (5.67)

can be inverted for any k. Since the operator (I2 −K)(−jk) always admits an
inverse, the invertibility of (5.67) is equivalent to the invertibility of

(I2 +Kk) + (I2 −K−jk)−1
T−jkTk . (5.68)

Given the anti-commutation property
T −1K +KT −1 = 0, (5.69)

whih follows directly from the second Calderón identity T −1K = T −1KT T −1 =
−T −1T KT −1 = −KT −1, and deining

A = (I

2
−K−jk)−1

T−jk , (5.70)

it follows that

(n̂ ×A)T = (n̂ × (I2 −K−jk)−1
T−jk)T

= ⎛⎜⎜⎝n̂ ×(T −1−jk(I2 −K−jk))−1⎞⎟⎟⎠
T

= ⎛⎜⎜⎝n̂ ×((I2 +K−jk)T −1−jk)−1⎞⎟⎟⎠
T

= (n̂ × T−jk(I2 +K−jk)−1)T

= ((I2 +K−jk)−1)Tn̂ × T−jk
= −n̂ ×(I2 −K−jk)−1n̂ × n̂ × T−jk
= n̂ × (I2 −K−jk)−1

T−jk = n̂ ×A .

(5.71)
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Given this result and the fact that

n̂ ×A = n̂ × (I2 −K−jk)−1
T−jk (5.72)

is a real operator, the symmetry implies it being Hermitian, so that

x
†⎛⎜⎜⎝n̂ ×((I2 −K−jk)(jk))−1

T−jk⎞⎟⎟⎠x (5.73)

is real and nonzero. By leveraging a straightforward extension of heorem 3.1 in
[Bru+09], it follows that

((I2 −K−jk)(I2 +Kk) + T−jkTk) (5.74)

is always invertible. Otherwise said, the Yukawa-Calderón CFIE we propose is
resonance free.

he discretization of the proposed Yukawa-Calderón CFIE follows directly from
that of the new MFIE in Section 5.c and that of the EFIE in [And+13b]:

�2▼T(G
T2 − K−jk)(GT)−1(G

T2 + Kk)Mi +▼T❚▼ (G)−1M T
TMi

= �2▼T(G
T2 − K−jk)(GT)−1vℎ +▼T❚▼ (G)−1M T

ve . (5.75)

Here � = 1 and � = √k in the high and low frequency regime, respectively. We
next study the later more in detail.

Scaling in the later regime follows from the results of the previous section:

�2▼T(G
T2 − K−jk)(GT)−1(G

T2 + Kk)Mi +▼T❚▼ (G)−1M T
TMi= − j(P�H❚sP�H)G−1

Tℎ + j❚ℎG−1(P �H
TsP �H)+j(P�H❚sP�H)G−1(P �H

TsP �H)+
�2P�H(G

T2 − K0)(GT)−1(G
T

2
+ K0)jP �+

�2jP�(G
T2 − K0)(GT)−1(G

T

2
+ K0)P

�H +O(k)
=O(1) +O(1) +O(1) +O(1) +O(1) +O(k) .

(5.76)
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Fig. 5.2.: Comparison of the far ield scatered by a PEC sphere of radius 1m discretized
with an average edge size of 0.15m and excited by a plane wave oscillating at
200MHz.

Combining this result with the corresponding right hand side scalings (5.62) and
(5.63) proves the overall low-frequency stability of new CFIE.

e) Numerical Results
his section presents numerical results that validate the above properties of the
proposed MFIE and CFIE.

he irst set of tests involve a PEC sphere of radius 1m. Figure 5.2 shows the
scatered far ield at f = 200MHz obtained using the new MFIE and CFIE as well as
other established formulations (standard EFIE, EFIE with projectors, Calderón EFIE
with projectors, Mixed MFIE, CFIE). For this high frequency case all formulations
deliver accurate results, thus validating our implementations. A irst diference
in performance between our new formulations and their standard counterparts is
noted when lowering the frequency. Figure 5.3 shows data similar to Figure 5.2 but
for f = 1 ⋅ 10−40Hz. It is clear that accuracy breakdowns occur for the non-projected
methods – the mixed MFIE, the EFIE, and the CFIE (for the later two the lak of
accuracy also is due to conditioning problems). On the other hand, all projected
formulations, including the two new ones, deliver accurate results for arbitrarily
low frequencies.

he low frequency stability of the new Calderón MFIE is further demonstrated

102



Section 5.e Numerical Results

0 50 100 150

−2,000

−1,800

−1,600

−1,400

−1,200

−1,000

Observation angle [°]

E
Fi
el
d
[V
/m
]

EFIE
Proj. EFIE
Cald. EFIE
Mixed MFIE
Cald. MFIE
CFIE
Cald. CFIE
Mie series

Fig. 5.3.: Comparison of the far ield scatered by a PEC sphere of radius 1m discretized
with an average edge size of 0.15m and excited by a plane wave oscillating at
1 ⋅ 10−40Hz.

in Figure 5.4, whih illustrates the conditioning of the diferent operators for low
frequencies. It is clear that the newMFIE remains as well-conditioned as its standard
counterpart. he Calderón CFIE is also low-frequency stable, unlike the standard
CFIE, whih exhibits a severe ill-conditioning caused by its EFIE contribution.

Figure 5.5 shows that, despite its regularized low frequency behavior, the Calderón
MFIE is prone to spurious resonances causing it to become periodically ill-condi-
tioned. his issue is shared by all non combined formulations and can be overcome
by combined ield strategies. It is clear from the igure that both the new Calderón
CFIE and its standard counterpart exhibit resonance-free behaviour.

he last key property to be illustrated is the reinement stability of the proposed
formulations. his property was veriied by studying the dependence of the con-
dition number of the diferent formulations applied to a unit radius sphere with
increasing discretization density (Figure 5.6). hese results conirm that the second
kind nature of our new formulations renders them immune to the high-reinement
breakdown.

In summary, the above results show that the new CalderónMFIE yields correct re-
sults for arbitrarily low frequencies and is well conditioned for both low frequencies
and dense discretization. Additionally, when combined with the projector Calderón
EFIE the new Calderón CFIE, whih is low frequency stable, immune to dense
discretization breakdown, and free from non-physical resonances, is obtained.

To ensure that the properties illustrated so far still persist for multiply connected
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Fig. 5.4.: Low frequency behaviour of the conditioning of the diferent operators on a PEC
sphere of radius 1m. Because of numerical limitations in the computation of very
high condition numbers (> 1 ⋅ 1016) some points have been let out.
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PEC sphere of radius 1m sphere illustrating the spurious resonances occurring in
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Fig. 5.6.: High-reinement behaviour of the conditioning of the diferent operators on a PEC
sphere of radius 1m. he non-resonant frequency has been kept constant for all
simulations and corresponds to 5 unknowns per wavelength discretization for the
least reined point.

structures, many of the previous analyses were repeated for a square torus. he
correctness of the formulation has been veriied by studying the far ield scatered
by the torus at high and very low frequencies, respectively (Figures 5.7 and 5.8).
Since no analytic solution is readily available for the square torus, the solution of
the Calderón EFIE was used as a reference and particular care was taken to avoid
frequencies corresponding to an internal resonance. While the results are similar
to those of the sphere, the reader should be aware that, because of its toroidal and
poloidal null-spaces, the Calderón MFIE required the usage of a pseudo inversion
to obtain current solutions at very low frequencies.

he low frequency stability of the Calderón MFIE and Calderón CFIE on the
toroidal structure are demonstrated in Figure 5.9, while their resonance free be-
haviors are illustrated in Figure 5.10. Finally, the resilience of both formulations
to dense discretization breakdown is illustrated in Figure 5.11, whih presents the
condition number of the integral operators with increasing discretization of the
square torus.

One of the key advantages of the new Calderón MFIE sheme is that it does not
require extremely accurate numerical integration rules because it allows explicit
cancellation of near-zero terms that are hallenging to obtain numerically. he
slow convergence of the standard numerical integration shemes can be seen in
Figure 5.12, in whih the ratio of the norm of the term in (5.35) to the norm of the
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Fig. 5.7.: Comparison of the far ield scatered by a PEC square torus with an inner radius of
0.5m and a tube radius of 0.25m, discretized with an average edge size of 0.15m
and excited by a plane wave oscillating at 200MHz.
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Fig. 5.8.: Comparison of the far ield scatered by a PEC square torus with an inner radius of
0.5m and a tube radius of 0.25m, discretized with an average edge size of 0.15m
and excited by a plane wave oscillating at 1 ⋅ 10−40Hz.
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Fig. 5.9.: Low frequency behaviour of the conditioning of the diferent operators on a PEC
square torus with an inner radius of 0.5m, a tube radius of 0.25m and meshed
with an average edge length of 0.6m. Because of numerical limitations in the
computation of very high condition numbers (> 1 ⋅ 1016) some points have been
let out.
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Fig. 5.10.: High frequency behaviour of the conditioning of the diferent operators on a
PEC square torus of inner radius of 0.5m and tube radius of 0.25m, illustrating
the resonances of non-combined formulations. he average edge size of the
discretization has been kept at one-ith of the wavelength for every simulation.
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Fig. 5.11.: High-reinement behaviour of the conditioning of the diferent operators on a
PEC square torus of inner radius of 0.5m and tube radius of 0.25m. he non-
resonant frequency has been kept constant for all simulations and corresponds
to a 5 unknowns per wavelength discretization for the least reined point.

full operator with increasing number of integration points is presented. While
this ratio does decrease with the number of Gaussian quadrature points, it does
so very slowly and remains far from a mahine-precision zero value. he efect
of these numerical inaccuracies is evident when comparing the singular value
decompositions of the Mixed MFIE and of the new Calderón MFIE in Figure 5.13.
It is clear that the null singular values corresponding to the toroidal and poloidal
subspaces of the square torus immediately reah the mahine precision zero in
the case of the Calderón MFIE, while for the Mixed MFIE they will require an
unreasonably complex integration rules to even remotely resemble a nullspace.

Finally, to demonstrate that our shemes can be readily applied to more complex
problems we studied the low frequency conditioning of our operators (Figure 5.15)
for the complex, multiply connected geometry in Figure 5.14.

f) Conclusion
his hapter presented a new symmetrized MFIE that can be stably and efectively
discretized using quasi-Helmholz projectors. When linearly combined with a quasi-
Helmholz projector-based Calderón EFIE, a new CFIE that is immune from all
drawbaks that plague the majority of existing formulations is obtained. In fact,
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Fig. 5.14.: Complex multiply-connected geometry discretized with an average edge length
of 0.35m. he values represented on the geometry correspond to the intensity
of the current induced on the PEC structure by a plane wave. he simulating
frequency corresponds to 10 unknowns per wavelength.
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Fig. 5.15.: Low frequency behaviour of the conditioning of the diferent operators on the
structure illustrated in Figure 5.14. Because of numerical limitations in the
computation of very high condition numbers (> 1 ⋅ 1016) some points have been
let out.
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the proposed CFIE remains well-conditioned both at low frequencies and for high
discretization densities, allows for an accurate solution at extremely low frequencies
without requiring special numerical quadrature methods, does not require the
detection of global loops when applied to multiply connected geometries, and is
provably free from internal resonances. Numerical results conirm the theoretically
predicted properties of the proposed equations.
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Chapter 6

Impacting Brain Computer Interfaces
with Computation Electromagnetics

Currently the most afordable and practical general purpose brain computer interfaces
(BCIs) rely on electroencephalography (EEG) or magnetoencephalography which ofer
a high temporal resolution. However these techniques are severely limited in spatial
resolution, especially compared to the very high level of details that can be obtained
from magnetic resonance imaging. A widely explored approach to compensate this
limitation is to integrate EEG source imaging (ESI) techniques into the process. hese
techniques are based on a model of the electromagnetic behaviour of the brain, oten
leveraging on BEM or FEM to reconstruct the brain activity from scalp measurements,
and have shown promising results in challenging BCI applications. his chapter
presents the irst results of this thesis’s work dedicated to enhancing the state of the
art BCI via improvements to the integral equation models used for ESI. Early in this
work, it became clear that the prohibitive cost of human experiments would make the
research very challenging. In addition, because the human experiments are notoriously
unreliable at small scales and because it is impossible to know what exactly happened
in the head of the user, it was decided to use simulated BCI data. However, none of
the few available works on the topic were matching the requirements to make strong
statements about BCI performance. his state of facts motivated the development of
a fully simulated BCI evaluation framework. While the simBCI framework is not a
substitute for actual experiments, it makes it possible to study in details the impact of
speciic changes to the processing scheme and to gain insight into the interactions of
the diferent components. A large amount of time has been devoted to the development
of simBCI in order to make sure that it was able to produce realistic BCI signals
while still being modular enough for allowing investigations. For this reason only
very early results related to the improvement of the ESI-augmented BCI have been
produced as of this writing. However the scientiic contribution of simBCI itself has
been recognized by its publication in a domain-speciic journal. In this chapter the
motivations behind simBCI are presented and the framework and its usage are descried.
An experimental protocol is described that will be used in the near future to investigate
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areas of improvements in integral equation based BCI.

a) Introduction

Brain computer interfaces are systems designed to translate the diferent
brain states of its users into predetermined commands for the target system.
Application scenarios for BCIs range from therapeutic where they can be

used to command assistive tehnologies suh as prostheses for amputees or spellers
for patient sufering for loked-in syndrome [Bir06] to innovative interfaces for a
wide variety of systems [ZK11; Coy+13]. Traditionally BCI systems are composed
of an acquisition device, typically EEG or magnetoencephalogram (MEG), in harge
of measuring part of the user’s brain activity and of a processing pipeline that
is trained to distinguish between the diferent mental states of the user and to
translate them into the corresponding commands. In the case of non-invasive BCI,
EEG remains the most widely used acquisition device thanks to its high temporal
resolution, afordability and practicality. he signals it measures are, however,
intrinsically diicult to work with because of their low signal-to-noise ratio (SNR)
and low spatial resolution. hese hallenges have motivated the development of
numerous and ever more advanced tehniques to improve the accuracy of EEG-
based BCIs; a thorough review of these tehniques can be found in [Lot+07] and its
updated version in [Lot+18].

Usage of EEG source imaging (ESI), oten inherited from researh in epilepsy, in
BCI have seen a steady increase over the last few years [HVG18]. hese tehniques
aim at reconstructing the current distribution inside the brain from the EEG scalp
measurements. his reconstruction relies on an accurate anatomical modeling of
the diferent components of the head (scalp, skull, cortical surface, white mater,
etc.), whih can be obtained from magnetic resonance imaging (MRI), to compute
the mapping from current sources – modeling the neurons [dMvDS88] – within the
brain to their efect on the electrodes. In the literature this problem is designated
as the EEG forward problem (FP) and has been extensively studied [Hal+07]. FPs
taking into account the complex anisotropy proiles of the brain are built using FEM
[Wol+06] yielding large matrices, making the leadield computationally expensive
to compute. However, it is common to model the head as three concentric spheres
with homogeneous conductivity proiles, in whih case smaller systems can be
obtained by leveraging BEMs [Hed+17]. Because this homogeneity approximation
introduces non-negligible errors in the modelling, new BEM solvers capable of
modeling the white mater anisotropy are being developed [OPC11; PRA16]. his
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mapping is obtained for every dipoles on grid within the brain (or on the cortex)
in order to form the leadield matrix whih maps the efects of all dipoles to the
electrodes. In the context of ESI the reciprocal mapping needs to be obtained.
However, given that researh EEG headset are composed of, at most, 256 electrodes
[Son+15] and that the number of reconstructed current sources is in the order
of 10 000 [HVG18], the inverse problem is severely ill-posed and admits several
solutions. Tehniques based on regularization [Gre+08] and genetic algorithms
[UHS98], among others, have been used to obtain reliable solutions to this inverse
problem (IP).

his hapter focuses on identifying the impact of the accuracy of the integral
equation-based ESI can have on the performance of BCI systems. In other words,
this work tries to determine to what extent and under what conditions increasing
the precision and complexity of the integral modeling of the forward problem
leads to improvements in BCI performance. Early developments of this work
have identiied several issues with the traditional approah to BCI studies: (i) it is
very costly and time consuming to train a large user base to perform statistically
signiicant BCI experiments; (ii) using actual EEG recordings, even if acquired from
freely available datasets, is unsatisfactory since it is not possible to know what
actually happened in the brain of the user during the trial, and this lak of ground
truth makes it almost impossible to draw insights or strong conclusions on the
performance of BCI pipelines; (iii) in the case of ESI it is also complex to obtain
and segment MRI models of every subject. hese hallenges have motivated the
development of simBCI, the irst – to the best of our knowledge – freely available full
simulator for BCI generation and analysis of EEG recordings for BCI tasks and BCI
processing pipelines. Other works have been published on simulated BCI but they
are either based onmodiied actual EEGmeasurements [Lot11; CMT17] or not freely
available [Tan+12]. he simBCI framework has been developed in collaboration
with Dr. Jussi Lindgren and has been accepted for publication in a domain speciic
peer-reviewed journal [Lin+18b]. his tool enables new ways of approahing BCI
development and numerous researh axes are either under investigation or are to
be in the near future. In order to take advantage of the new possibilities ofered by
simBCI, whih allows for studies of very speciic parameters of the pipelines (whih
is hardly possible with experimental approahes) an experimental protocol has
been established and is being implemented. As a side efect this work has delivered
the irst (to the best of out knowledge) publicly available reimplementations of
[Cin+08; EBH16; Tan+12].

he work on BCI of this thesis was part of the Seizing Advances in Bci from high
Resolution Eeg imaging in runtime (SABRE) project inanced by the CominLabs.
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Fig. 6.1.: Illustration of a typical data-driven BCI pipeline. he blue color indicates com-
ponents that need to be trained while the vertical arrow indicates that external
information (prior) is provided to the system.

b) Traditional BCI Systems
Traditional BCI systems include a large number of components suh as ilters,
classiiers, optimizers, etc. some of whih need to be trained to learn the diferent
features that haracterize the mental states of interest (Figure 6.1). Because of
the variabilities between tasks, patients and even sessions, the training should
be performed for eah patient at every session. During the training phase the
system dictates the mental state its user should be in whih allows the mahine
learning components to identify whih features of the EEG signal are discriminant
and whih brain state or label, is also trained. he trained feature extractor and
classiier are then used during the online phase to classify the unlabeled EEG signals
and associate them to a speciic command. Alternative shemes based on neural
networks or Riemannian spaces have been introduced to unify the feature extraction
and classiication [Lot+18]. Others have atempted to use unsupervised learning
approahes in order to do without the training phase altogether [Lot+18].

A simple example purely data-driven BCI pipeline can be obtained by using a
common spatial patern (CSP) as feature extractor and a linear discriminant analysis
(LDA) as classiier [Lin+18b]. Despite its simplicity this pipeline as been shown, in
simBCI to yield up to 80% accuracy given a long enough training and a favorable
enough SNR.

c) Integral Equations-enhanced BCI
Enhancing BCI with integral equations and ESI has promising applications. One of
the key advantages of this tehnique is physiological interpretability of the dipoles
activity, whih allows medical knowledge to be inserted in the problem to try
to address its under-determination. his is in opposition with raw EEG signals
that are reportedly less interpretable and potentially misleading in some instances.
he spatial and anatomical informations provided by ESI make it possible, for
instance, to only consider the signals coming from the region of interest (ROI) that
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is known to be associated with the BCI task under consideration (e.g. the motor
cortex in the case of motor imagery (MI) [Cin+08]). Suh physical priors have the
potential to reduce the under-determination of the inverse problem and to improve
understanding of the merits of demerits of diferent BCI approahes, whih is oten
not possible for purely data-driven approahes. In addition, because of the blurring
efect caused by the forward problem, accurate ROI selection is less straightforward
in the electrode space, contributions of one region of the brain is spread across
several electrodes that are not necessarily the closest ones. Finally, the features
in the dipole space have been shown to be more statistically signiicant [Cin+08],
whih indicates that data-driven approahes applied to the source space can be
expected to be more robust than in the electrode space.

�) Forward Problem
he forward problem (FP) leverages on Maxwell’s equations in the quasi-static
regime (see Section 2.h) to compute the scalp potentials generated by a single
dipole located in the brain. Under the approximation of a head composed of three
homogeneous concentric volumes, integral equations are the sheme of hoice to
solve this problem: given the notations of Section 2.i, the D operator

(Du)(r) = ∫)
 
 ′1Gs(r − r ′)u(r ′)dr ′ (6.1)

is used to build the mapping from source space – neurons – to measurement space
– electrodes – by repeatedly solving the forward problem

vd (r) = �j + �j+12 V (r) − N∑i=1 (�i+1 − �i)(D
0,iV )(r) , r ∈ �j , (6.2)

with diferent RHSs vd , once for every dipolar source. he results of these inversions
are then aggregated to form the leadield matrix G ∈ R

Ne×Nd whih maps the signal
of the Nd dipolar sources in the brain s to the Ne electrodes on the scalp

v = Gs . (6.3)

In the distributed approahes, whih are the most popular in the literature, the
dipoles are placed on a grid (either fully volumetric or restricted to the cortex),
whih results in a leadield matrix composed of typically 10 000 columns and 256
rows. Alternatively, in the localized approahes, a few dipoles (typically less than
ten) are placed in the brain, at arbitrary locations. hese modeling diferences in
the FP are motivated by the diferent approahes used to solve the IP.
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�) Inverse Problem
he inverse problem estimates s given a speciic set of EEG measurements and
additional constraints ensuring unicity. Spatial iltering and/or mahine learning
tehniques can then be applied on the reconstructed source activity s . he time
dependency of the EEG signal is also oten taken into account by considering a set
of solutions for diferent time samples; v and s then become matrices.

he dimensions of G clearly indicate that the problem is ill-posed and admits
more than one solution. To overcome this issue several tehniques have been
developed. In particular regularization methods have been widely used. Given a
noisy EEG measurement vector ṽ , a regularization term composed of a scalar � and
a function L, these methods aim at minimizing the function

F� (s) = ‖Gs − ṽ ‖2 + �L(s) . (6.4)

If L = ‖ ⋅ ‖2 the problem becomes a Tikhonov regularization and its solution is
[Gre+08]

s̃� = (GT
G + �I)−1GT

ṽ . (6.5)
he appropriatehoice of � is critical to obtaining a proper estimation of the solution,
and several tehniques are available [Gre+08]. In the literature the tehnique behind
eq. (6.5) is oten referred to as the minimum norm estimate (MNE), and is know to
yield poor results [Pas99] – in particular for deep sources. he weighted minimum
norm estimate (WMNE) has been introduced to correct the depth bias of MNE by
introducing of a weight matrixW in the deinition of the regularization functionL(s) = ‖Ws‖2, leading to a diferent solution

s̃� = (GT
G + �W T

W )−1GT
ṽ . (6.6)

he matrixW has several deinitions but usually relects the norm of the columns
of the leadield matrix. he standardized low resolution brain electromagnetic
tomography (sLORETA) is another closely related tehnique that normalizes the
results of MNE by the diagonal of the matrix

S = G
T(GG

T + �I)−1G . (6.7)

hanks to its high accuracy [Pas02; Dal+00] sLORETA has been extensively used
in the context of BCI [HVG18]. A inal mention should be made for the low
resolution brain electromagnetic tomography (LORETA) tehnique that uses a
weighted Laplacian operator L(s) = ‖�WLs‖2 to obtain the smoothest solution
while avoiding artiicial dampening of deep sources. To that endWL is the column
normalization of the leadield matrix.
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he localized – or parametric – algorithms form another family of tehniques
for solving the inverse problem. Instead of placing a large number of dipoles on a
predeined grid and computing a single leadield matrix, Nd dipoles (typically up to
ten) are placed in the source space and their positions, moments and amplitudes
are optimized to ind the coniguration that will yield scalp tensions as close to the
actual measurement as possible. his can be ahieved by minimizing the L2 residual
norm ‖v −G({di})s({di})‖ , (6.8)

where {di} is a set of Nd dipoles represented by their positions and moments.
Traditional optimization methods suh as gradient descent or genetic algorithms
[UHS98; Cuf95; FGG03; MKD02; KLH05] can be used to solve this problem and ind
the optimal conigurations of dipole positions {di} and activations s({di}). Since it
requires re-computation of the leadield G({di}) at every step of the optimization
procedure this method is computationally demanding and does not seem to have
found widespread adoption in the ESI-augmented BCI community.


 ) Inverse-Based BCI
Leveraging on the ESI tehniques introduced above it is possible to add a spatial
iltering phase to the standard BCI. One way of using these algorithms is to project
the EEG signal, ater iltering, to the source space, in whih anatomical knowledge
can be used to select a subset of dipoles that are relevant to the BCI task (Figure 6.2)
[Cin+08]. his has the advantage of reducing the number of features passed down
the pipeline and hence should reduced the experimental training time [HVG18].
However, anatomical ROI selection supposes that a subject-speciic head model
has been used, or active dipoles could be excluded from the selected dipoles. If
no anatomical model is available, data-driven approahes can be used for ROI
selection [HVG18]. It may seem that the beneit of ESI is lost altogether, however
this approah still has numerous beneits: (i) the selected ROI is still in the source
space and can be easily heked, giving insight into how the algorithms behave; (ii)
statistical signiicance of the features has been reported to be beter in the source
space [Cin+08]; (iii) the deblurring efect of the IP allows for more speciic spatial
iltering and facilitates artifact removal; (iv) inverse-based pipelines also increase
the discriminability of nearby sources [EBH16] whih is required by more complex
BCI tasks suh as 4 classes wrist movement.

Hybrid shemes have also been introduced, for instance the sheme presented by
Edelman et al. irst decomposes the EEG signal into independent components using
independent component analysis (ICA) before projecting the relevant components
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Fig. 6.2.: Illustration of a ESI-augmented BCI pipeline. he blue color indicates components
that need to be trained while the vertical arrows indicate that external information
(prior) is provided to the system.

to the source space where additional feature extraction is performed [EBH16].

d) he simBCI Framework for Simulated BCI
Human experiments are hallenging to work with, because individual results are
extremely sensible to the user’s own training, to its mental state between and
even within runs and to a myriad of other factors (devices, electrode dryness,
electrode positions, etc). Combined to the lak of absolute certainty that the user
was actually performing the mental task at hand at every epoh of the trial, this
makes experimental data unreliable for the irst phases of theoretical developments.
In the literature this hallenge is oten mitigated by recruiting a large number of
users to perform the same simulations. In addition to being very time consuming
this approah as numerous hallenges. Some researh teams are using a reference
recording the quality of whih is assumed to be reasonable [Tan+12]. Still, when
trying to understand the underlying causes of any improvement or degradation
in performance of a speciic BCI paradigm, this kind of data makes asserting any
claim very diicult.

In order to address this situation, simulated data can be of great value. Hence, a
consequent part of this thesis has been dedicated to the development and validation
of the irst (to the best of our knowledge) framework for simulation of BCI data.
A formal introduction of the simBCI framework has been published in [Lin+18a;
Lin+18b].

he relevance of this work and the crucial need for fully controlled simulated
BCI data is further illustrated by the almost concurrent development of another
simulation framework [Kro+18] by an independent group.

�) Data Generation
Because the objective behind the development of simBCI was to be able to precisely
describe every component of an EEG recording, the signal generation starts directly
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within the brain (and not e.g. on the electrode space). Algebraically the EEG signal
is generated as

V = G(S + Nv) + Ns , (6.9)
where G is the leadield matrix of the simulated setup, V ∈ R

Ne×Ns contains the
voltages measured at eah of the Ne electrodes over the Ns samples, S ∈ R

Nd×Ns are
the corresponding activations of the Nd dipoles in the brain and Nv and Ns describe
additive noise originating from the brain volume and the measurement surface,
respectively. he forward model behind the provided leadield is mostly orthogonal
to simBCI core functionalities, except regarding whether the dipoles moments have
constrained orientation (typically orthogonal to the cortical surface) or if they are
freely oriented (i.e. composed of three coordinates per dipole). his description
implies that the signal is haracterized by both spatial and temporal haracteristics.
Indeed, in order accurately simulate real EEG recording simBCI has to be able to
express correlations between events in both time and space. In particular, the events
generating the signals are placed on a timeline at the beginning of the simulation
in order generate time sample that are not simply uncorrelated measurements of
diferent events. he events simulating the BCI tasks are haracterized by three
main descriptor:

When refers to the timeline generator whih are in harge of distributing the
events over the diferent time samples of the simulation. hey are also used
to associate event descriptions with the timeline labels. he events either be
placed randomly on the timeline (e.g. eyeblinks) or associated with trials of
the actual BCI task (Figure 6.3).

Where describes the location where the event occurs; for instance, in the case of
let and right MI [PN01] the activity is located in the corresponding motor
cortices, while in the case of steady-state visually evoked potentials (SSVEP)
[Via+10] it is located in the occipital lobe. he locations are either heuristically
deduced by simBCI itself (e.g. eyes, let motor cortex, etc.) or, if the user has
enough information about the physiological model, by the indices of speciic
leadield rows. It is also possible to have more distributed efects, suh as
bakground volumetric noise, applied to the whole domain.

What is the actual description of the physiological efect associated with the BCI
task, or other event suh as eyeblinks or bakground noise. In the case of
MI the main event is event-related desynhronisation (ERD) while in the
case of SSVEP it is a spectral peak at the frequency of the observed stimulus.
Generating this kind of realistic events is more hallenging than trivial power
spikes, and has required in depth review of the literature.
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Listing 1 Code used for generating a BCI competition IV type of BCI signal. he
code snippet was retrieved from one of the examples of the oicial repository.

% These events mark starts of trials that are to be classified
classEvents = {'left','right'};
% Parameters controlling experiment timeline generation: when events happen
timelineParams = { 'samplingFreq', 200, 'eventList', { ...

{'when', {@when_trials, 'events',classEvents, ...
'numTrials',10, ...
'trialLengthMs',4000, 'restLengthMs', 2000, ...
'trialOrder', 'random', 'includeRest', true}}, ...

{'when', {@when_random, 'events',{'eyeblink'},'eventFreq',0.1}}, ...
{'when', {@when_random, 'events',{'eyemove'},'eventFreq',0.2,...

'randomMaxDurationMs',2000}}, ...
{'when', {@when_always, 'events',{'noise'}}} ...

} ...
};
% List reactions to the events on the timeline
effectParams = { ...

{'SNR', 1.0, 'name', 'signalLeft', 'triggeredBy', 'left', ...
'what', {@gen_desync, 'centerHz',12,'widthHz',1,'reduction',0.5}, ...
'where', {@where_heuristic, 'position','rightMC'} }, ...

{'SNR', 1.0, 'name', 'signalRight', 'triggeredBy', 'right', ...
'what', {@gen_desync, 'centerHz',12,'widthHz',1,'reduction',0.5}, ...
'where', {@where_heuristic, 'position','leftMC'}}, ...

{'SNR', 0.1, 'name', 'blinks', 'triggeredBy', 'eyeblink', ...
'what', @noise_eyeblinks, ...
'where', {@where_heuristic, 'position','eyes'}}, ...

{'SNR', 0.1, 'name', 'eyemove', 'triggeredBy', 'eyemove', ...
'what', @noise_eyemovement, ...
'where', {@where_heuristic, 'position','eyes'}}, ...

{'SNR', 0.005, 'name', 'noise', 'triggeredBy', 'noise', ...
'what', {@noise_spectrally_colored, 'subType','distance'}, ...
'where', {@where_whole_surface}} ...

};

he modularity of this arhitecture and of the whole simBCI framework guarantees
that, in case the provided primitives are not enough, the user will be able to develop
and integrate its own.

In order to make sure that simBCI was capable of handling realistic simulations,
the dataset generation procedure behind the BCI competition IV [Tan+12] has
been re-implemented. Incidentally, it appears to be the irst openly accessible
re-implementation of the protocol to date. he speciications used to generate this
signal are provided in Listing 1 for beter illustrating the above discussion. he
modular arhitecture makes it possible to specify all the parameters explicitly in a
single master ile and avoid lak of reproducibility caused by parameter scatering.
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Fig. 6.3.: Timeline generated by simBCI for a let-right MI experiment. his timeline illus-
trates most of the simulation capabilities of the framework as it includes: the bci
tasks, rest periods, noise and artifacts (eye movements and eye blinks).
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�) BCI Processing Pipelines
he processing of the generated data is delegated to the pipelines whih are a
succession of elementary processors whose individual output will be consumed by
the following processor. Processors can include mahine learning components suh
as CSP, support vector mahine (SVM), LDA but also inverse algorithms. For BCI
experiments the content of the pipeline is completely to the user’s discretion, but
the inal processor must be a classiier and return a vectors containing, for eah
trial, the probabilities that it belongs to speciic classes.

To reproduce a real BCI seting, the processing is composed of a training phase
and a pseudo online phase. During the processing phase the processors that require
training can adapt their parameters, while those who do not remain unmodiied.
In the training phase the diferent processors do have access to the actual labels
of the timeline. During the online phase a new timeline and dataset is generated
and fed to the trained pipeline, the labels however are no longer accessible to the
processors.

his arhitecture can support the simplest processing hains, suh as a CSP-LDA
combination as well as some the most advanced one. In particular pipelines follow-
ing these presented by Cincoti et al. [Cin+08], Edelman et al. [EBH16], Lote et al.
[LLA09] and Besserve et al. [BMG11] have been reimplemented in simBCI. he
reimplementation of the irst two appear to be the irst openly available. One of
the reasons behind these re-implementations is to be compare them in a consistent
and, hopefully, fair seting in order to determine their respective strength and
weaknesses.

e) Experimental Protocol

�) Expected Outcomes
he development of the simBCI was motivated by the objective of improving the
state-of-the-art BCI performances via improvements in (i) the forward modeling
of the brain using novel computational tehniques (ii) improving the speed of the
overall process to ensure that the tehnology remains compatible with real-time
applications and (iii) possibly improve upon the state-of-the-art pipelines.

�) State of the Art Implementation
As stated previously, state-of-the-art BCI processing pipelines have been reimple-
mented in order to study the efects of several parameters on their accuracy. A
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quik overview of their behaviours is provided in the following.
he pipeline introduced by Cincoti et al. [Cin+08] is deigned for a two-class

BCI system in whih the user can move a cursor up and down. he authors use
WMNE in order to reconstruct the cortical current density (CCD) whih is then
spatially iltered using anatomical knowledge of the ROIs related to the task. he
spectral power of 30 frequency bands of eah remaining hannel are then estimated,
yielding a relatively large number of features. Feature selection is then performed
using r2 analysis; three of the features most correlated to the variation in labels
were selected – two in the motor cortex and one in the mesial region. he authors
report an improved accuracy when using ESI in this two-classes case, and have
even atempted a height classes experiments where ESI signiicantly improved BCI
performance.

he tehniques involved of the work introduced by Edelman et al. [EBH16]
are signiicantly more complex but have the advantage of not requiring explicit
selection of the ROI. he authors consider a BCI involving four diferent classes
of movement of the right hand. he ROI is selected by performing an ICA in
the electrode space. he most relevant independent component was selected by
performing a time frequency analysis of the hannels based on Morlet wavelets

	f (t) = (�√π)−1/2et2/2�2ej2πfc t , (6.10)

with

� =
wfc fcf√8 ln 2 , (6.11)

where fc is the central frequency of the wavelet, wfc its temporal resolution andf the frequency under consideration. hese wavelets are particularity useful for
evaluating the evolution of the spectrum of the signal over time. he wavelets
were used to split eah trial into time-localized frequency bands that were used
as features. he most relevant features were determined using a searh algorithm
and Mahalanobis distance (MD) whih haracterizes the similarity of random dis-
tribution. he searh algorithm was used to iteratively add to the set of selected
features the feature that would maximize the distance to the rest of the features;
one suh set was built for eah BCI class. his signal was then projected on the
cortical surface using WMNE and only the dipoles with the highest amplitude were
kept. In the classiication the MD was used to determine whih class-dependant
feature set was the closest to the trial data.
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 ) Experimental Protocol
To verify the hypotheses that motivated the investigation into ESI-augmented BCI
an experimental protocol was put in place based on the following considerations:

Validation In order tomake sure that the re-implemented state-of-the-art pipelines
were behaving as intended by their original authors, simulations similar to
the experiments described in their presentation papers were run. Given that
the setings were identical – except for the fact that the data was simulated –,
classiication accuracies were also expected to closely resemble the ones
given in the literature. Because of missing parameters or inaccuracies in
the original pipelines descriptions the re-implementation phase turned out
to be more hallenging that expected. his lak of reproducibility further
underlines the need for results from simulated BCI as the authors of new
investigations could provide the actual coniguration iles of the simulator to
the community for closer inspection.

Genrality Every hypotheses on the efect of a parameter on classiication accuracy
(e.g. increased forward model resolution) are veriied against all available
pipelines, in order to make sure if the improvement is anecdotal, general or
restricted to speciic tehniques (e.g. speciic inverse algorithms). However,
because the pipelines are very diferent there is a risk that under-performance
of one of them could be due to an inadequate coniguration for the testing
seting. For instance the number of ICA components in the pipeline presented
in [EBH16] needs to be adapted to the number of classes of the BCI task. To
address this issue, the hyper-parameters of the pipelines are optimized, for
every new test, using mahine learning and/or big data approahes. his is
expected to improve the fairness of the overall testing procedure.

Significance Because of the very high dimensionality of the simulation parame-
ters (SNR, size of the ROI, etc.), one should carefully hek that any observed
improvement or regression in classiication accuracy is not due to a speciic
coniguration. hus all simulations are performed on a multi-parameter space
where at least three parameter dimensions are explored at the same time.
Given the curse of high dimensionality the simulation must be evaluated on
very large dataset in order to obtain statistically signiicant results. his is,
once again, possible to perform the same level of inspection with actual user
recordings because of the few number of samples available to the researhers.

One of the irst investigation direction coming to mind is the study of the efect
of speciic inverse algorithms on the accuracy of the pipelines. Investigating
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whih type of inverse performs best in diferent classes is critical to determine if
improvements are possible in this area or if algorithms originating from diferent
communities can be transplanted in BCI. For instance the epilepsy localization
community has been developing several ESI algorithms [Bec+15], however it is not
clear if their most performing algorithms would be equally performing in a BCI
seting. he algorithms designed for epilepsy are optimized for inding high power
in very localized areas. It is possible that this family of inverse algorithms translates
to BCI setings suh as SSVEP for whih the neural activity can be expected to
have higher intensity in the occipital lobe, however it is muh less clear whether
or not this also applies to MI where the main efect is ERD. Consequently part of
the experimental protocol is dedicated to studying the raw localization accuracy of
the inverse algorithms that have been re-implemented in simBCI and determine if
they are potential candidates for ESI-augmented BCI. Because of the blurring efect
of the FP and of the ill-posedness of the IP perfect reconstruction of the cortical
activity is not to be expected. Hence inversion accuracy should rely on more
sophisticated metrics than the relative error between the original and reconstructed
data. When considering focal activity in the brain a large number of metrics have
been introduced to haracterize the accuracy of the reconstruction:

• relative error between the amplitudes of the signals;

• average distance between the original and reconstructed amplitude maxima
[Mic+04; Gre+08];

• distance from the center of the brain of the original and reconstructed maxi-
mum amplitude source [Yve+96]. While simple this metric permits identii-
cation of depth-biased algorithms suh as MNE;

• percentage of intersection of the original dipoles with the strongest 5% of
reconstructed dipoles [BG97];

• noise reliance is also considered using the previous metric and correlate the
accuracy with the SNR [Sh+99].

While some of these metrics are used in the current protocol, the one described in
[Bra+16] is more adequate. he metric makes the distinction between the precision
whih is haracterized by the number of original sources that have efectively been
reconstructed and the recall whih fraction of the original sources were identiied
by the ESI algorithm. Taken together these two measures are able to give a more
robust indication of the quality of the algorithm, in particular if several sources
are active at the same time (whih many of the other metrics fail to haracterize).
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Numerous inverses that are either widely used or thought to exhibit properties
worth investigating have been implemented into simBCI ; they include

• Minimum norm estimate (MNE);

• Weighted minimum norm estimate (WMNE);

• Minimum current estimates (MCE) [UHS99];

• Low resolution brain electromagnetic tomography (LORETA) [PML94];

• Cortical low resolution brain electromagnetic tomography (cLORETA)
[Wag+96];

• Standardized low resolution brain electromagnetic tomography (sLORETA)
[NN12];

• Champagne [Wip+10];

• Standardized shrinking LORETA-FOCUSS (SSLOFO) [Liu+05];

• Multiple signal classiication (MUSIC) [Alb+08];

• Extended source multiple signal classiication (ExSoMUSIC) [Bir+11].

Other inverses are sheduled to be implemented in order to perform a thorough
assessment of the compatibility of the most well know inverse algorithms with BCI.
his kind of evaluation has already been performed in the context of epilepsy but
not in the context of BCI and especially not in the context of more complicated
shemes suh as multi-task MI.

In addition to the distributed inverses described above, localized algorithms
are being implemented in the framework in order to determine why they seem
to have fallen out use. Indeed, one of the last contributions on the topic dates
bak to 2005 [KLH05]. It is not clear if this is due to the computational cost of
repetitively recomputing leadield matrices, because of a low convergence rate of
the optimization procedure or an overall lak of accuracy in the BCI context.

Using the tools and concepts introduced previously the inluence of diferent
parameters can be studied on both inverses only and within an ESI-based BCI. As
of this writing the following parameters are to be investigated:

Resolution he resolution of the forward model could inluence the number of
discriminable dipoles, whih in turn could improve BCI accuracy, especially
in multi-class seting suh as the ones presented in [EBH16; Cin+08]. In the
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current literature the number of dipoles is usually around 10 000 [BMG11]
and it should be veriied if more dipoles could lead to beter BCI performance.

Anisotropy he tissue anisotropies of the skull and the white mater have been
shown to signiicantly inluence ESI [Wol+06]. It is worth investigating
whether or not it has an efect on BCI; if the ROI is selected by a data-driven
process it is not clear if any gain will be noticed, however if it is hosen a
priori by a physician the greater the accuracy of the model the beter.

Training length he time required for training the BCI system during human
experiments is critical in practical BCI applications because it tires the user
before any active usage of the system and is required at the beginning of
every sessions. It has already been shown that the reduction in number of
features that ESI can provide thanks to spatial iltering should allow for a
reduced training time [HVG18].

User specific model he importance of having a user-speciic model can be thor-
oughly heked thanks to the fully controlled environment of simBCI. Time,
cost and tehnical constraints oten prevent obtention ofMRImodels for every
user and several studies have been reported to use standard templates suh
as [HPH16] for constructing the leadield [Mic+04; HVG18]. he potential
loss in BCI accuracy needs to be veriied in a fully controlled environment.

Noise/Artefact resilience Spatial iltering in the head volume is expected to yield
increase resilience of the pipeline to artifacts suh as eye blinks and noise.
Early results presented in [Lin+18b] seem to indicate that this is the case.

In general, the ESI literature shows a tendency to compare very complex inverse
pipelines with relatively simple pure mahine learning ones [Lin18] making it
diicult to question the merits of ESI-augmented and purely data-driven BCIs. To
provide an unbiased comparison, state-of-the-art mahine learning pipelines are
being implemented into simBCI. One of themain axis of researh are the Riemannian
manifold approahes described in [Lot+18].

f) Future Work
Ater the experimental protocol described in above is completed, more complex
questions will be addressed, e.g. regarding the inluence of ESI on the stability
of transfer learning [WLL15; HVG18] or real-time applicability of the tehniques
[Din+15]. Some early results produced so far are detailed in [Lin+18b] and will not
be recalled here because they focus mostly on data-driven approahes.
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g) Conclusion
While investigating the inluence of beter modeling of the brain anisotropies
[Rah+17] on BCI, it became clear that making scientiically sound claims would
require an enormous investment in both time and money if human trials were to
be used. his realization has motivated the development of the apparently irst
fully simulated BCI development framework. Ater making sure that the simBCI
framework was providing realistic data, it was published in a domain-speciic
journal. his has laid the ground work for a thorough investigation into possible
improvements to the state-of-the-art BCI systems, whih has already started by
the development of a preliminary experimental protocol and will be acted upon
in the near future. he work behind the development of simBCI has also been
the opportunity to provide the irst publicly available reimplementation of several
works, whih is expected to positively afect the community.
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Conclusions and Future Work

In this thesis a series of tehniques aiming to stabilize integral equations have
been presented in order to obtain highly accurate and versatile formulations
capable of handling low and high frequency scenarios alike. he novel sci-

entiic contributions include the extension of the qH projectors to higher order
modeling, thus enabling the development of formulations that exhibit both low
frequency stability and higher order convergence rates. hese projectors were
then applied to the wire EFIE in order to address the limitations it shares with its
surface counterpart. However, while Calderón shemes are usually employed to
stabilize the dense discretization behaviour of the surface formulation, b-spline
wavelets were employed in the one-dimensional case. he projectors were inally
leveraged upon to stabilize the numerical properties of the MFIE, whih could
then be combined with an already stabilized surface EFIE thus forming an highly
accurate CFIE capable of handling low and high frequency applications without
loss of precision nor spurious resonances, making it highly potent formulation for
closed structures.

Because the above-mentioned work performed for improving forward EMmodel-
ing was completed in advance with regards to this thesis’ original plan, a new line of
investigations on inverse EM modeling was pursued. Due to the existing expertise
of the laboratory in brain modeling, these investigations naturally focussed on
the hallenging domain of BCI. While the work is still in its early stages, a full
assessment of the state-of-the-art has been performed and has led to the develop-
ment and publication of what is probably the irst fully simulated experimental BCI
environment. As a side efect, this framework has made possible the distribution of
the irst publicly available implementation of some key contributions of the BCI
community.

To complement the results reported in this thesis, several lines of researh are
still to be investigated:

• the high order extension of the qH still requires the development of a fast
algorithm to math the high eiciency of their low order counterpart and

131



Conclusions and Future Work

take full advantage of high order modeling;

• the implementation of the experimental protocol described for the BCI line
of investigation is to be completed and run;

• investigations on real time inversion for BCI are required, to ensure the
practicality of the most complex shemes;

• the high order tehniques presented in this Chapter 3 could be applied to
both the new CFIE and wire EFIE equations.

Most of these tasks and researh axes are being worked on as of this writing and
most of them are expected to yield publishable results in relatively short term.
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List of Variables and Other Mathematical Symbols
he following list summarizes frequently used variables and mathematical symbols.

Symbol Description

Accents and Operationŝ he standard hat denotes a unit vector̃ he wide tilde denotes the involvement of dual basis functions
A
−1 Inverse of the matrix A (if it exists)

A
+ Moore-Penrose pseudo-inverse of the matrix A

A
T Transpose of the matrix A

A
† (A)T

A
−T (A−1)T

A ⊗ B Kroneker product of matrices A and B

Physical uantitiesr, r ′ Position vectorsn̂ Surface normal unit vector directed to the exterior" Permitivity� Permeability"0 Permitivity of vacuum�0 Permeability of vacuumk Wavenumberf Frequency� Wave impedance! Angulary frequency
j Electric current densitym Magnetic current densitye Electric ieldh Magnetic ieldd Electric lux density
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b Magnetic lux densityG(r , r ′) 3D Green’s function
Vector Spaces and Sets
 Denotes a domain in R

3� Boundary of 

Abbreviations

BC Bufa-Christiansen

BCI Brain Computer Interface

BEM boundary element method

CCD cortical current density

CFIE combined ield integral equation

CFIE équation intégrale du hamp combiné

cLORETA cortical low resolution brain electromagnetic tomography

CSP common spatial patern

EEG electroencephalogram

EFIE electric ield integral equation

EFIE équation intégrale du hamp électrique

EFIO electric ield integral operator

EFIO opérateur intégral du hamp électrique

EM electromagnetic

ERD event-related desynhronisation

ESI EEG source imaging

ExSoMUSIC extended source multiple signal classiication

FEM inite element method
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FP forward problem

GMRES generalized minimal residual method

GWP Graglia-Wilton-Peterson

ICA independent component analysis

ICM interface cerveau-mahine

IP inverse problem

LDA linear discriminant analysis

LORETA low resolution brain electromagnetic tomography

LS Loop-Star

LS-EFIE Loop-Star electric ield integral equation

MCE minimum current estimates

MD Mahalanobis distance

MEG magnetoencephalogram

MFIE magnetic ield integral equation

MFIE équation intégrale du hamp magnétique

MI motor imagery

MLFMM Multilevel Fast Multipole Method

MNE minimum norm estimate

MoM method of moments

MRI magnetic resonance imaging

MUSIC multiple signal classiication

PEC perfectly electrically conducting

qH quasi-Helmholz
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qH quasi-Helmholz

qH-EFIE quasi-Helmholz projected electric ield integral equation

RCS radar cross-section

RHS right hand side

ROI region of interest

RWG Rao-Wilton-Glisson

SABRE Seizing Advances in Bci from high Resolution Eeg imaging in runtime

sLORETA standardized low resolution brain electromagnetic tomography

SNR signal-to-noise ratio

s.p.d symmetric positive deinite

SSLOFO standardized shrinking LORETA-FOCUSS

SSVEP steady-state visually evoked potentials

SVD singular value decomposition

SVM support vector mahine

wire EFIE thin-wire electric ield integral equation

WMNE weighted minimum norm estimate
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Titre :  Systèmes Computationnel unifiés pour Simulations de Basse à Haute Fréquence : 
Modélisations Rapides et Haute-Fidélité pour des Applications du Cerveau aux Radiofréquences 

Mots clés : Electromagnétique computationnelle, Basses-Fréquences, Hautes-Fréquences, 
préconditionnement 

Résumé :  Dans le domaine de l’électromagnétisme computationnel, les équations intégrales de 
frontière sont très largement utilisées pour résoudre certains des plus grands problèmes directs, 
grâce à leur grande efficacité. Cependant les équations intégrales du champ électrique et du 
champ combiné (EFIE et CFIE), deux des formulations les plus employées, souffrent d’instabilités 
à basse fréquence et à haute discrétisation, ce qui limite leur versatilité. Dans cette thèse 
différentes approches sont présentées pour obtenir des algorithmes applicables aussi bien à des 
problèmes de compatibilité électromagnétique qu’à des applications radar. Les solutions 
présentées incluent (i) l’extension des projecteurs dit quasi-Helmholtz (qH) aux modélisations 
d’ordre supérieur ; (ii) l’utilisation de ces projecteurs pour stabiliser l’équation intégrale du champ 
magnétique et former une CFIE extrêmement précise, augmentée par des techniques de type 
Calderón, qui ne souffre de problèmes ni à basse fréquence ni à haute discrétisation et qui n’est 
pas sujette aux résonances artificielles ; (iii) le développement d’une EFIE filaire, basée sur des B-
splines linéaires et les projecteurs qH, stable aux deux extrémités du spectre. Ces travaux ont été 
suivis de l’ouverture d’un nouvel axe de recherche visant l’amélioration des techniques de 
résolution des problèmes inverses en électromagnétique, avec pour objectif principal 
l’augmentation des performances des interfaces cerveau machine (BCIs). Les premiers résultats 
obtenus incluent le développement de l’un des premiers systèmes libres de simulation de bout en 
bout de session de BCI ayant été publié après revue par les pairs. 

 

Title :  Unified Computational Frameworks Bridging Low to High Frequency Simulations :  Fast and 
High Fidelity Modelling from Brain to Radio-Frequency Scenarios 

Keywords : Computational Electromagnetics, Low-Frequency, High-Frequency, Preconditioning 

Abstract : In computational electromagnetics, boundary integral equations are the scheme of 
choice for solving extremely large forward electromagnetic problems due to their high efficiency. 
However, two of the most used of these formulations, the electric and combined field integral 
equations (EFIE and CFIE), suffer from stability issues at low frequency and dense discretization, 
limiting their applicability at both ends of the spectrum. This thesis focusses on remedying these 
issues to obtain full-wave solvers stable from low to high frequencies, capable of handling 
scenarios ranging from electromagnetic compatibility to radar applications. The solutions 
presented include (i) extending the quasi-Helmholtz (qH) projectors to higher order modeling thus 
combining stability with high order convergence rates; (ii) leveraging on the qH projectors to 
numerically stabilize the magnetic field integral equation and obtain a highly accurate and provably 
resonance-free Calderón-augmented CFIE immune to both of the aforementioned problems; and 
(iii) introducing a new low frequency and dense discretization stable wire EFIE based on 
projectors and linear B-splines. In addition, a research axis focused on enhancing Brain Computer 
Interface (BCIs) with high resolution electromagnetic modeling of the brain has been opened; a 
particular attention is dedicated to the inverse problem of electromagnetics and the associated 
integral equation-based forward problem. The first results of this new line of investigations include 
the development of one of the first peer-reviewed, freely available framework for end-to-end 
simulation of BCI experiments. 
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