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Introduction

Ce principe [doit] dominer la politique
des nations aussi bien que celle des
particuliers : Quand l’effet produit n’est plus
en rapport direct ni en proportion égale avec
sa cause, la désorganisation commence.

Balzac, César Birotteau
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Reasoning about proofs and programs

What is a proof? It can be described as the process of making the necessary connection between
premises and a conclusion explicit. And what is a program? In the same way, it can be defined as the
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8 Introduction

process of making explicit a result, given parameters. The two notions, of proof and of program, are
connected via the Curry–Howard correspondence, summed up in Figure 1 between proofs, programs,
and natural operations in both contexts (Howard 1980).

Logic Programming Theory
Specification Formula Type
Static Proof Program
Dynamic Cut-elimination Computation

Figure 1: The Curry–Howard correspondence, in a nutshell

A formula is an assembly of symbols, satisfying certain rules of construction. A proof is a math-
ematical object, specified in a certain formal system, such as minimal implicative natural deduction
NJ (see Figure 2), that embeds a formula that it proves. Proofs are then simplified by cut-elimination,
a dynamic procedure that explicits the proof by deleting all the unnecessary generalizations.

A type is an assembly of symbols, satisfying certain rules of construction. A program is a math-
ematical object, specified in a certain formal system, such as simply-typed λ-calculus Λ→ (see Fig-
ure 3), that embeds a type which it is typed by. Programs are then simplified by computation, a
dynamic procedure that explicits the result of the program by simplifying the computation steps.

In both cases, the dynamical aspect is of paramount importance.
Reasoning mathematically about a dynamical process is notoriously hard: while geometry and

number theory were developed early in human history, a mathematical theory of gravitation had to
wait for the late 17th century. The situation is even worse in situations when the dynamics is not
governed by the physical time, but by an other, more subtle, temporality. Indeed, the recognition of
the importance of the dynamical aspects of the proofs has been started by Gentzen (1936), centuries
after the first investigation on the rules of reasoning by the ancient Greeks1. Great progresses have
been made, in particular inspired by the Curry–Howard correspondence, in the past century. It is
our thesis that the dynamics of linear approximations of proofs and programs give a unifying point
of view on many developments around the formal study of proofs and programs.

Linearity

It can be argued that there is no concept of paramount importance for our ability to understand
the world than linearity. Without touching the social aspects of it – Balzac, for instance, in 1837,
asserts that society goes astray when capitalism abandons a proportionality between an effect and
its cause – or the moral ones, of retribution or Tun-Ergehen Zusammenhang, modern science and
modern thought have been built around the refutation of causal over-determination: there can be
only one sufficient cause for each effect2. Linearity is but an extension of this principle: not only
do effects have a unique sufficient cause, their intensity is dependent on the intensity of the cause,
and in the simplest possible way.

1. Although we tend to give to Aristotle the credit of inventing logic, he benefited a lot from the work – that he
derided – of the Eleatic school, whose most well-known members are Parmenides and Zeno, who are said to be the
inventors of the reductio per absurdo and of the principle of contradiction (Colli 1998).

2. This may seem peculiar to the ear of a 21st century person, but has not always been the case. We can think of the
Greek myths as examples of over-determination: Œdipus kills his father Laius because he refused to let him go first at
a crossroad and because of a malediction on its family – both causes being independently sufficient.
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A ⊢ A
(axiom)

Γ,A ⊢ B
Γ ⊢ A → B

(→-introduction)

Γ ⊢ A → B Δ ⊢ A
Γ;Δ ⊢ B

(→-elimination)

Figure 2: Logical rules of minimal intuitionnistic logic in natural deduction NJ

𝑥 ∶ A ⊢ 𝑥 ∶ A
(variable)

Γ, 𝑥 ∶ A ⊢ 𝑡 ∶ B
Γ ⊢ λ𝑥.𝑡 ∶ A → B

(abstraction)

Γ ⊢ 𝑡 ∶ A → B Δ ⊢ 𝑢 ∶ A
Γ; Δ ⊢ 𝑡𝑢 ∶ B

(application)

Figure 3: Simply-typed λ-calculus Λ→, without structural rules

The study of linearly dependent quantities, linear algebra has been an incredibly successful sub-
field of mathematics. Through its pervasiveness, the variety of approach it can harness and its nu-
merous possibilities of generalizations, it provides an indispensable common ground, providing the
(often unconscious) backbone to the rest of the mathematical activities.

In fact, for all the talking about new kinds of science, emerging spontaneously from huge quan-
tities of data, be they understood through cellular automata or through deep neural networks, the
greatest achievements of 20th century science are stubbornly linear. Let us cite only quantum me-
chanics, Grothendieck’s theory of motives, the whole of particle physics or representation theory.
Without making a dogma of linearity, it can be cautious to think that it might continue to be the
case, and that linearity will still be a cornerstone of human thought in the foreseeable future.

Approximations

Despite the pleasing conceptual simplicity of linearity, most phenomena do not behave strictly so.
Indeed, even objects as ubiquitous as polynomials do not define linear functions in the general case.
Linear models that were instrumental in shaping a field can also be discarded: the hallmark of the
scientific revolution, the gradual comprehension of the theory of universal gravitation, an eminently
linear theory, has been replaced in the first half of last century by Einstein’s relativity which is not.

Nonetheless, many phenomena can be approximated by linear ones, which means that not only
can a linear phenomenon be studied instead of a non-linear one, because it is easier to study; but
that the error this shift of object of study causes can be apprehended, evaluated, bounded. So, for
instance, under suitable hypotheses, a function 𝑓 from the real numbers to the real numbers can be
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approximated, in the neighborhood of a point 𝑥, by a linear function d𝑓𝑥, its differential, and the
difference between the two can be bounded by a known quantity.

Given the sheer variety and importance of non-linear phenomena, and the success and power
of linear methods, it is no wonder that the task of approximating non-linear behaviors with linear
ones has concentrated mathematicians’ work for decades. Actually, mathematics has jokingly been
described as the task of reducing every problem to linear algebra (it is at least the motto of some
subfields of mathematics such as representation theory: study every group as a subgroup of the group
of automorphisms over a vector space).

Types, denotational semantics and syntactical approximations

Approximations made different appearances in theoretical computer science and in proof theory.
Let us concentrate on three such incarnations:

Types Types, and type derivations, can be seen as approximations of a program behavior: the fact,
for instance, that a λ-term can be typed with a simple type A → B implies that the term
interacts well when applied to any other term of type A. Depending on the type system, the
type of a term witnesses different properties of the term: for instance, there are type systems
ensuring different kinds of normalization or of other side effects. Every term having the same
type can be expected to behave, according to certain approximation, in the same way.

A particular class of type systems, called intersection types systems, will be our main object of
study. Their general philosophy is to allow for a sub-term to be typed in different ways in the
same type derivation, so as to approximate different possible behaviors of the term.

Set-based semantics To understand better proofs and programs, a line of work traced back to Scott
(1970) has been to interpret them in other well-known mathematical structures. So, for
instance, the arithmetical expressions (built on constants and arithmetical operations+,×,…)
can be interpreted as integers, and the rewriting rules of mathematical expression be proved
sound by showing that an expression has the same interpretation that any other expression
it rewrites to. The notion of approximation has been central since the first semantics of the
λ-calculus, Scott domains (Scott 1970): the intuition behind Scott domains is that the only
functions representable in the λ-calculus are continuous, in the sense that a program that
terminates only reads a finite quantity of information of its input before returning its output.
So, the output of a program on an infinite input is equal to the output of the same program on
any sufficiently large (in the sense that it contains enough information) finite approximation
of the input.

The idea of Scott domain is then to interpret types as partial orders (representing the informa-
tion order) closed by certain operation and terms as functions that respect these operations.
Other set-based semantics interpret also types as sets with structure, and in some cases, it is
possible to view elements of these sets as approximations.

Syntactical approximations Syntactical approximations have become an object of study only later:
indeed, for a good notion of syntactic approximations to be devised, there is a need for a good
definition of the language of approximations.

The object of this thesis is to argue that syntactical approximations can be taken as the funda-
mental object, from which we can define and compute types and semantics.
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Linear logic and Girard’s approximation theorem

Linearity made its grand debut in logic and computer science with the work of Girard (1987),3 where
a decomposition of intuitionistic logic is introduced around the notion of linearity. In layman’s
terms, in linear logic, an hypothesis can only be used once during the course of reasoning: as such,
a valid theorem in intuitionistic logic such as

A ⇒ A∧A,

(where ⇒ is the intuitionistic implication and ∧ the conjunction) is, brutally translated in linear
logic as

A ⊸ A⊗A

(where ⊸ is the linear implication and ⊗ the multiplicative conjunction, that is, conjunction in
the strongest possible sense) no longer provable for an arbitrary proposition A. This restriction is
as drastic as it seems: proofs by induction are no longer possible (as the hypothesis of induction is
used an arbitrary number of times), the conjunction of a formula and its (linear) negation does not
imply everything…

Linear logic overcomes this restriction by not being linear at all: untamed reasoning, using all
the power of infinity is available, but carefully circumscribed inside modalities ! and ?. Nonetheless,
linear logic, whose sequent calculus formulation LL is recalled in Figure 4, successfully separates
linear and non-linear steps of reasoning. So, while the proposition A ⊸ A ⊗ A is not in general
provable, the proposition

!A ⊸ A ⊗A

whose intuitive meaning is: “given an arbitrary number of the hypothesis A, A is proved twice” is
provable, as well as

!A ⊸ !A ⊗ !A.

By delineating a strictly linear fragment of logic inside the larger logic, linear logic allows to define
clearly approximations.

Indeed, ever since the seminal article of Girard, the rôle of approximations in linear logic has
been recognized. The article actually ends with an approximation theorem, which shows a form
of density of exponential-free linear logic in full linear logic, and thus justifies a crude form of
approximations. If we define the bounded exponential

!𝑝A ∶=
𝑝 times

􏿇􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿈􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿉(A & 1) ⊗⋯ ⊗ (A & 1),

and ?𝑝A ∶= (!𝑝A⊥)⊥, which are exponential-free formulæ if A is, we have:

Theorem 1 (Girard, 1987 )

Let A be a theorem of linear logic; with each occurrence of ! in A, assign a positive integer; then it
is possible to assign positive integers to all occurrences of ? in such way that if B denotes the result of
replacing each occurrence of ! (respectively ?) by !𝑛 (respectively ?𝑛) where 𝑛 is the integer associated

3. For completeness’ sake, ideas were already floating around in Lambek (1958) calculus and relevance logics.
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⊢ Γ
⊢ σ(Γ)

(exchange, with σ a permutation)

(a) Structural rule

⊢ A,A⊥ (identity)
⊢ Γ,A ⊢ Δ,A⊥

⊢ Γ,Δ
(cut)

(b) Identity rules

⊢ 1
(one)

⊢ Γ
⊢ Γ,⊥

(bottom)
⊢ Γ,A ⊢ Δ, B

⊢ Γ, Δ,A ⊗ B
(tensor)

⊢ Γ,A, B
⊢ Γ,A` B

(par)

(c) Multiplicative rules

⊢ Γ,⊤
(top)

⊢ Γ,A ⊢ Γ, B
⊢ Γ,A&B

(with)
⊢ Γ,A

⊢ Γ,A ⊕ B
(plus1)

⊢ Γ, B
⊢ Γ,A ⊕ B

(plus2)

(d) Additive rules

⊢ Γ,A
⊢ Γ, ?A

(dereliction)
⊢ Γ

⊢ Γ, ?A
(weakening)

⊢ Γ, ?A, ?A
⊢ Γ, ?A

(contraction)
⊢ ?Γ,A
⊢ ?Γ, !A

(promotion)

(e) Exponential rules

Figure 4: Linear Logic sequent calculus LL (Girard 1987) presented with unilateral sequents

to it, then B is still a theorem of linear logic.

For example, from the canonical proof of !A ⊸ (!A⊗ !A) (contraction, or duplication), we get
proofs of

!𝑝1+𝑝2A ⊸ (!𝑝1A ⊗ !𝑝2A)

for all 𝑝1, 𝑝2 ∈ N, which means intuitively that, from 𝑝1 + 𝑝2 copies of A, one can get at least 𝑝1
copies and separately, at least 𝑝2 copies.

In many ways, the thesis that will follow is a dance around this approximation theorem, trying
to collect and organize the many different ways of approximating proofs and programs.

Dynamical models

Let us turn back to the basic objects of study, that is, proofs and programs. As we saw, their dynamic
properties are essential. One great inspiration is Girard’s sous-sols (Girard 2006, Section 7.1). We
try here to capture these intuitions, eyeing to a mathematical structure:
First level: truth, specification This level is populated by formulæ, that we will write with roman

capital letters

A,B, C,…
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models

intersection type systems linear approximations

Figure 5: A well-known correspondence

or with star-shaped symbols

⋆, ∗, …

In general, we will not assume any structure on the formulæ. On certain cases, we will assume
the existence of some constructors, for instance a binary operation ⊙, such that for every
formulæ A and B, there exists a formula

A ⊙ B.

In some cases, we will also ask certain equations to be verified of the formulæ. For instance,
we could pose

A ⊙ B = B ⊙ A.

This level is sufficient to express the grammar of propositions, but is not able to express any-
thing related to their validity.

Second level: static compositionality In first approximation, an hypothetical argument proves a
formula of the form:

If some hypotheses A 1, … ,A 𝑛 are true, then B is true.

In the same way, a program can be specified in the form:

Given some inputs A 1, … ,A 𝑛, B is computed.

In both cases, we see that the terms present a fundamental assymetry: they relate a list of
objects on one side to a single object on the other side. As such, we will represent them as
arrows

A 1, … ,A 𝑛 B

Though possible, we will not consider any particular structure on the arrows.
This level is a language proficient enough to express proofs and provability, but not their
dynamics.

Third level: dynamism Reasoning proceeds by a succession of over-generalizations followed by
specializations. These unnecessary steps can then be removed by following an explicitation
procedure. Abstractly, it relates two terms of the same kind
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A 1, … ,A 𝑛 B

𝑡1

𝑡2

in an oriented fashion:

A 1, … ,A 𝑛 B

𝑡1

𝑡2

meaning that the term 𝑡1 reduces to the term 𝑡2 of same type.

Calculi and languages

The calculi we will focus on are represented Figure 6. In particular, we will study linear approxima-
tions of:

• the simply-typed λ-calculus Λ, the prototypical programming language, whose only compu-
tation mechanism is unrestricted substitution of a variable by an argument;

• the simply-typed call-by-value λ calculus Λ𝑣, where the substitution can only happen when
the argument is of a particular syntactic form, which is closer to the evaluation of implemented
programming languages such as the ML family;

• the simply-typed λμ-calculus ΛM, which incorporates features allowing for having different
outputs and switching between them, allowing for exception mechanisms (from a program-
ming language viewpoint) and classical reasoning (from a logical viewpoint),

as well as the untyped versions of these calculi, respectively Λ⋆, Λ𝑣,⋆, and ΛM⋆.
One of the ways in which we leverage linear logic is by translating these calculi we are interested

in to a calculus based on linear logic, allowing to define approximations only once, in a calculus that
already explicitely marks its non-linear features. We will introduce two calculi based on linear logic:

• the simply-typed intuitionnistic linear λ-calculus Λ!, in which we translate the λ-calculus
and the call-by-value λ-calculus through the so-called Girard translations;

• linear logic proof-nets MELL?, which is a calculus that allows to translate transparently classical
features of the λμ-calculus, on top of Λ!,

as well as their untyped variants Λ!,⋆ and MELL?,⋆. MELL?,⋆ actually has two types, one representing
all the linear types, and one the cartesian ones.

Operads

Operads4 offer a structure accommodating these three levels. More precisely, we will present most
calculi as Cat-operads: structures whose elements can be exactly pictured as above: a Cat-operad is

4. We use the term in a slightly non-standard way for symmetric multicategory.
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characterized by its set of object (0-dimensional arrows), of multi-arrows (1-dimensional arrows, or
arrows between objects) and 2-arrows (2-dimensional arrows, or arrows between arrows).

Classical systems, such as λμ-calculus or MELL proof-nets do not fit in this framework: an
essential feature of such systems is that they either have multiple conclusions at the same time (in the
case of MELL proof-nets) or can switch their main conclusion at will (in the case of λμ-calculus. This
motivates the move from Cat-operads to more general structures, such as cyclic Cat-operads (where
every input of a multi-arrow can be exchanged with the output) or even semi-cyclic Cat-operads
(where some of the inputs are marked and can be exchanged with the output).

Just as the calculi fit in the operadic framework, their models do too. We believe that, in the
same way the systematic study of linear approximations offered a new clarity to the study of models
of linear logic and the λ-calculus (for instance, differential linear logic clarified the study of the
relational model), linear approximations are the first step to study and understand more general
operadic models, where the interpretation of a term is not an invariant of the reduction but varies.

Just as our calculi are represented by Cat-operads, translations between them are represented as
morphisms of Cat-operads. More precisely, such a morphism 𝑓 ∶ 𝒟 → 𝒞 is a modular, semantic-
preserving translation of calculi:

• a type A in 𝒟 is encoded by 𝑓(A) in 𝒞;
• a term 𝑥1 ∶ C1, … , 𝑥𝑛 ∶ C𝑛 ⊢ 𝑡 ∶ A of 𝒟 is encoded by 𝑥1 ∶ 𝑓(C1), … , 𝑥𝑛 ∶ 𝑓(C𝑛) ⊢ 𝑓(𝑡) ∶
𝑓(A);

• the translation is sound with respect to substitution;
• the translation preserves the reductions.

Syntactic approximations

The starting point of our syntactic approximations is the desire to give a precise meaning, at the level
of terms, of the equation, inspired by Girard’s approximation theorem:

!A = lim
𝑝→∞

𝑝 times

􏿇􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿈􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿉(A & 1) ⊗⋯ ⊗ (A & 1) .

This prompts us to introduce a family of connectives, one for each arity, representing this 𝑛-fold
tensor product. So, for intuitionistic linear logic, we consider a calculus containing a sequence
constructor ⟨⋅⟩, and for classical linear logic, we introduce a ! cell for every arity. We will do the
following discussion in the intuitionistic case, as it is easier to write.

A term !M (meaning M at will) will thus be approximated by terms of the form:

⟨𝑡1, … , 𝑡𝑛⟩

where all the 𝑡1, … , 𝑡𝑛 approximate M, recursively. Dually, an abstraction has to cope with many
different inputs and needs tracks: indices indicating which approximation goes to which instance of
the variable.

Although the constructor itself is non-commutative, and is not endowed with any operation
giving it a structure more complicated than that of a list, some flexibility can be recovered: indeed,
we can embed some structural rules, making the list constructor able to look like other structures
such as sets or multisets. By choosing or not the different structural rules, we define different fla-
vors of syntactic approximation. Following linear logic, we will always consider exchange, but not
weakening and contraction. This yields four calculi:
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linear in the linear polyadic setting, no structural rule is allowed. A linear polyadic term can be
seen as a rigid representation of a resource term (Boudol 1993; Tsukada, Asada, and Ong
2017). Nonetheless, if an approximation ⟨𝑡1, … , 𝑡𝑛⟩ approximates !M, any permutation of it
approximates it too.

affine in the affine polyadic setting, only weakening is allowed, which means that approximations
can be discarded at will. Of the calculi we will consider, it is the closest one to Girard’s
approximation theorem, and as we will see, it is of crucial importance.

relevant in the relevant polyadic setting, we only allow contraction, which means that a given
approximation may be used multiple times. This has not been studied much in the past, and
we only include it for completeness’ sake.

cartesian in the cartesian polyadic setting, we allow every kind of structural rule, which means that
an approximations may be used any number of times, including zero. This is the situation of
the classical theory of intersection types.

So, although starting from a linear perspective, polyadic approximations are general enough to en-
compass situations completely non-linear.

The language of approximation is a language in its own right: constructions defined routinely
on calculi can be carried on it too. In particular, approximations can be typed in the most simple
way. So, to a term 𝑡 in the full language can be associated typing derivations Γ ⊢ δ ∶ A, where Γ is
a list of type, A a type, and δ an approximation of 𝑡.

For each of these flavors, it is possible to define an approximation functor Λ!,⋆ → 𝔇𝔦𝔰𝔱 (where
𝔇𝔦𝔰𝔱 is a well-chosen cyclic Cat-operad) that associates (in the simplest case)

• to the linear type in Λ!,⋆ the set of normal types, and to the cartesian type the set of polyadic
types (built from ⟨⋅⟩);

• to a multi-arrow the family of set, parametrized by the types, of simply-typed approximations
of the multi-arrow: for a list Γ of types and a type A, the image of the multi-arrow 𝑓 is the
set of type derivations of Γ ⊢ δ ∶ A such that δ approximates 𝑡.

• to a reduction the relation of the type derivations that are rewritten one into the other by the
reduction.

And the same thing can be done for MELL?,⋆. These functors are depicted by the blue arrow in
Figure 6.

So, the approximations are also captured by certain morphisms of operad-like structures.

Type systems

Type systems may also be encoded in this framework: (Melliès and Zeilberger 2015)’s idea is that
a morphism 𝑓 ∶ 𝒟 → 𝒞 may actually be seen as a type (refinement) system for the programming
language presented by 𝒞:

• given a type 𝑐 of 𝒞, 𝑓−1(𝑐) is seen as the set of types refining 𝑐; in case 𝒞 is monochro-
matic/untyped, 𝑓−1(∗) is just the set of types tout court ;

• a multimorphism δ ∈ 𝒟(Γ;A) such that 𝑓(δ) = 𝑡 ∈ 𝒞 (Ξ; 𝑐) is seen as a type derivation that
the typing Ξ ⊢ 𝑡 ∶ 𝑐 in 𝒞 may be refined to Γ ⊢ 𝑡 ∶ A (if 𝒞 is monochromatic, δ is just a
type derivation for the untyped term 𝑡);

• a 2-arrow δ ⇒ δ′ is seen as a typing of its image, which is a reduction 𝑓(π) ⇒ 𝑓(π′).
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In order for this morphism to be a meaningful type system, we need to require moreover that the
reductions in the typed language have the same structure as the reductions in the untyped language.
More specifically,

• the identity reduction is typed only by the identity;
• reductions are typed modularly: if a sequence of reductions is typable, each reduction of the

sequence is typable.
Interestingly, we do not require any conditions of this kind for terms, only for reductions. We will
call such morphisms of Cat-operads Niefield fibrations.

We will consider different type systems, that are depicted as red arrows in Figure 6.

From approximations to types

Approximations can be used to compute type systems, thanks to an operadic variant of the Grothen-
dieck construction. The Grothendieck construction, especially the generalizations described by Bén-
abou to distributors, is a far-reaching generalization of the equivalence between a function from an
arbitrary set to a set B and a set-valued function defined on B: indeed, to a function 𝑓 ∶ A → B, we
can associate a function ∂𝑓 defined on 𝑏 ∈ B as the set of pre-images of B, and to a set-valued func-
tion on 𝑔 ∶ B → Set, we can associate the function ∫𝑓, defined on the disjoint union ⊔𝑏∈B𝑔(𝑏),
that, to an element 𝑎 ∈ 𝑔(𝑏) associates 𝑏.

In the case we are interested in, this generalizes to the following equivalence of categories: the
category of Niefield fibrations of cyclic bioperads5 with image ℬ is equivalent to the category of
morphisms of cyclic bioperads from ℬ to 𝔇𝔦𝔰𝔱𝑠.

ℰ (F) 𝔇𝔦𝔰𝔱𝑠,∗

ℬ 𝔇𝔦𝔰𝔱𝑠
F

So, every approximation morphism give rise to a type system. And indeed, the linear, affine,
relevant, and cartesian approximations give rise to the type systems LinPoly, AffPoly, RelPoly and
CartPoly for Λ!,⋆ and LinPolyLL, AffPolyLL, RelPolyLL and CartPolyLL for MELL⋆.

The Grothendieck construction, by allowing to represent type systems alternatively as mor-
phisms ofCat-operads to and from the calculus we are interested in, allows to transport type systems
along translations of languages. Suppose we have a type system

𝒟 → ℬ

for ℬ. By the construction above, we can represent it faithfully as a morphism of Cat-operads with
domain ℬ and co-domain 𝔇𝔦𝔰𝔱𝑠, which can be pre-composed with any morphism of Cat-operads

𝒞 → ℬ

with codomain ℬ, yielding, by applying again the Grothendieck construction, a type system for
𝒞. This is indeed how we will build intersection type systems for the variants of the λ-calculus,

5. A slight generalization of cyclic Cat-operads
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and more generally, for any language that can be embedded into linear logic. This has allowed us
to recover known systems, and also to compute previously unknown ones, such as for λμ-calculus.
This justifies a slogan:

Intersection type systems are simply-typed polyadic approximations

Characterizing normalisation

Computing intersection type systems, and showing in the process that they are shadows of the same
polyadic approximation systems is already an interesting result, but would be disappointing if it did
not allow to prove properties of these systems. The first step is to remark that subject reduction and
subject expansion translate in the language we considered. Subject reduction is the property that
typing is stable by reduction. Rephrased in the operadic language, it means that, if a term 𝑡 is in
the image of a type system functor, all its reducts are too. We can strengthen the property in a way
that stays close to the actual practice by asking that any reduction from 𝑡 lifts to type derivations.
So, subject reduction and expansion are (op)lifting properties, and the fact that a type system enjoys
these properties is closely related to weak (op)fibrations.

These fibration-like properties translate also, through the Grothendieck construction, in the lan-
guage of morphisms into 𝔇𝔦𝔰𝔱. In particular, it means that we can characterize that these properties
can be transferred through well-behaved translations and that the question of their validity is mean-
ingful for any set of reductions in the calculus, allowing us to show separately that some reductions
enjoy subject reduction/expansion for a certain type system, thus paving the way to prove that a
certain intersection type system characterizes normalization for this type of reduction.

From approximations to semantics

The third leg of the correspondence of Figure 5 is about semantics: invariant of the reductions in
a well-structured mathematical universe. Indeed, types of a type system that enjoys both subject
expansion and reduction are invariant along the reduction. The equation summarizing Girard’s
approximation theorem suggests to define semantics of the exponentials in the following way:

• define semantics for approximations;
• compute the supremum of the semantics of the approximations of a term.

This approach fails in most cases as this supremum may not exist. Two workarounds have been
proposed.

The first is due to Melliès, Tabareau, and Tasson (2009), who rephrased the question in cate-
gorical terms, where the question of computing the semantics of the exponential translates in the
following way. Given a way of interpreting the linear part of linear logic, the exponential of every
formula A can be interpreted as the free commutative comonoid over the interpretation of A. Using
previous work by the first two authors (Melliès and Tabareau 2008), showed that one may proceed
as follows, to compute this free commutative comonoid:

• consider the affine version of A, that is, compute the free co-pointed object A• on A (which
is A& 1 if the category has binary products);

• compute the symmetric versions of the tensorial powers ofA•, the following equalizers, where
𝔖𝑛 is the set of canonical symmetries of (A•)⊗𝑛:

A⩽𝑛 (A•)⊗𝑛 𝔖𝑛
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LinPoly AffPoly AffPolyLL LinPolyLL

RelPoly CartPoly LinPolyLL?,! CartPolyLL RelPolyLL

Λ𝑣,⋆ Λ⋆ Λ!,⋆ MELL?,⋆ MELL⋆

Λ𝑣 Λ Λ! MELL? MELL

ΛM⋆ 𝔇𝔦𝔰𝔱

ΛM ℛ 𝑒ℓ





G𝑣

G𝑣

G

G

L

Figure 6: The different systems studied in the thesis

• compute the following projective limit, whereA⩽𝑛 ⟵ A⩽𝑛+1 is the canonical arrow “throw-
ing away” one component:

1 A⩽1 A⩽2 ⋯ A⩽𝑛 ⋯

A∞

At this point, for A∞ to be the commutative comonoid on A it is enough that all relevant limits
(the equalizers and the projective limit) commute with the tensor. Although not valid in general,
this condition holds in several different models of the linear part of linear logic.

The second approach, due to Mazza (2012), is topological, and is based directly on the syntax.
One considers the system AffPoly aforementioned. It strongly normalizes even in absence of types
(the size of terms strictly decreases with reduction). The set of terms is equipped with the structure
of uniform space6, the Cauchy-completion of which, denoted by Λaff

∞, contains infinitary terms
(allowing infinite sequences ⟨𝑢1, 𝑢2, 𝑢3, …⟩). The original calculus embeds (and is dense) in Λaff

∞ by
considering a finite sequence as an almost-everywhere ⊥ sequence. Reduction is continuous and
allows infinitely many substitutions to occur. This yields non-termination, in spite of the calculus

6. The generalization of a metric space, still allowing one to speak of Cauchy sequences.
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still being affine. Terms in this language are too many, and are then quotiented in order to get back
the usual λ-calculus.

So, one approach, written in a categorical language, can be seen as quotienting the semantics and
then completing the result. The other, in a language of approximations, consists of completing the
approximants and then quotienting the result. By rephrasing the second approach in a categorical
language, we draw a bridge between them, showing that both these approach consist in computing
semantics from affine approximations.

From approximations back to a term

We have shown that many constructions of interest can be tackled at the level of approximations.
One important question then is to understand in which case the approximations are not enough.
A good way to answer this question is to understand in which cases approximations can be used to
compute back the term they approximate.

In the case of the λ-calculus, the question is settled: an approximation allows to compute, in
linear time, back a term if no sub-term is approximated by the empty approximant. In the more
general case of linear logic proof-nets, the situation gets much more complicated. Indeed, even
without considering the problem of empty approximants, some polyadic proof-nets approximates
many different proof-nets. Furthermore, there is no good way to know if a set of polyadic proof-nets
approximate the same proof-net.

We define and develop a geometric restriction on proof-nets, box-connexity, which is large enough
to contain the translation of the λ-calculus, for which polyadic approximations behave well. More
precisely, we show that:

• a box-connected proof-net is completely characterized by a rich enough approximant, which
can moreover be chosen uniformly for all box-connected proof-nets;

• it is possible to characterize polyadic proof-nets that approximate the same box-connected
proof-net.

Polyadic approximants may be considered too strong a notion of approximants. These results
transfer to the more standard resource proof-nets, which is system LinPolyLL?,! of Figure 6.

Outline

In the Chapters 1 and 2, we define the usual calculi: λ-calculus, call-by-valueλ-calculus,λμ-calculus,
MELL proof-nets in the not-so-standard framework of Cat-operads. Actually, the classical calculi do
not fit in this framework, and need generalizations of it, which are defined in Chapter 2.

Having defined the calculi allow us to view translations between calculi, as well as semantics and
type systems, as morphisms of operads, in Chapter 3.

Chapter 4 defines polyadic approximations for both the λ-calculus of intuitionistic linear logic
and MELL proof-nets, in different approximation flavors.

Chapter 5 states and prove fundamental theorem on intersection types: they can be defined and
computed from polyadic approximations, and their main properties derive from the properties of
polyadic approximants.

Chapters 6 and 7 study more precisely the relation between a proof-net and an approximant
and defines the notion of box-connexity. Some applications to the study of the relational model are
then given.

Finally, Chapter 8 show how approximations can be used to define and understand semantics.
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Contributions

The work has been done with co-authors, and some parts may be found in already published form.
Chapter 8 is available as

• “A Functorial Bridge between the Infinitary Affine Lambda-Calculus and Linear Logic”
Damiano Mazza & Luc Pellissier
In : 12th International Colloquium onTheoretical Aspects of Computing, Lecture Notes in Com-
puter Science 9399, pages 144–161. Under the direction of Martin Leucker, Camilo Rueda
and Frank Valencia, Springer, 2015;

the first part of Chapter 6 as
• « Computing (connected) proof-structures from their Taylor expansion »

Giulio Guerrieri, Luc Pellissier & Lorenzo Tortora de Falco
In : 1st International Confererence on Formal Structures for Computation andDeduction, Leibniz
International Proceedings in Informatics 52, pages 20:1–20:18. Under the direction of Delia
Kesner and Brigitte Pientka, Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl,
2016;

and the essence of Chapter 5 is available in.
• « Approximations, Fibrations and Intersection Type Systems »

Damiano Mazza, Luc Pellissier & Pierre Vial
In : Proceedings of the ACM on Programming Languages (PACM PL), 2 (Principles of Pro-
gramming Languages), pages 6:1–6:28. Under the direction of Philip Wadler and Andrew
Myers, Association for Computing Machinery, New York, 2018.

Although the notions of multicategories/operads and cyclic operads are well-known, the exten-
sion of cyclic operads to the colored case, and more interestingly, to the case where some colors can
only be inputs or outputs (the semi-colored operads) is original, as is the systematic presentation of
well-known languages and their translations in that framework.

The definition of type systems in this framework is directly adapted from (Melliès and Zeilberger
2015). The application of the Grothendieck construction, allowing to equate intersection type
derivations and simply-typed linear approximations is new.

Linear approximations have been studied extensively since Girard’s aforementioned approxima-
tion theorem. Indeed, Kfoury (2000) has defined a linearization of the λ-calculus and studied the
relationship between it and the usual calculus. In the context of game semantics, so does Melliès
(2004). Finally, the resource calculus of Boudol (1993), which can be used as a target language of
Ehrhard and Regnier (2008)’sTaylor expansion will be studied more directly. An independent work,
that uses a closely related language is Tsukada, Asada, and Ong (2017)’s. Up to our knowledge, our
definition of the Taylor expansion of MELL proof-nets as a pullback is original.

The definition and developments around box-connexity both for polyadic proof-nets and for
the relational model, have been introduced in this work.

Finally, the adaptation of Mazza (2012) to a categorical language and the ensuing bridge is also
novel work.

https://hal.archives-ouvertes.fr/hal-01183520




1

Calculi as operads

1.1 Structures for intuitionnistic reasonning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
The Lambek tradition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Our basic object: Cat-operads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.2 The λ-calculus as an operad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Typed, untyped and unityped . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
The Λ operad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Extensionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
The unityped and simply-typed case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.3 The call-by-value λ-calculus as an operad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.4 Intuitionistic linear logic as an operad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

¦

. S   

The Lambek tradition

1.1.1 Following a tradition starting back with Lambek (1969), it is customary to interpret types as objects
in a category and terms (in normal form) as arrows between them. Recall, first, the definition of a
category:
Definition 1 (category)

A category 𝒞 is the data of:
• a class C of objects;

• for all couples (A, B) of objects, a class

𝒞 (A; B)

of morphisms from A to B. A morphism 𝑓 ∈ 𝒞 (A; B) may be represented as an arrow
𝑓 ∶ A → B or an arrow

23
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A B
𝑓

• for every object A, a distinguished morphism

idA ∈ 𝒞 (A;A)

• a family of operations

∘A,B,C ∶ 𝒞 (B; C) × 𝒞 (A; B) → 𝒞 (A;C)
(𝑓, 𝑔) ↦ 𝑓 ∘ 𝑔

indexed on triples of objects of 𝒞 (we will always omit the subscripts) verifying

∀(A, B, C,D) ∈ C4, ∀𝑓 ∶ A → B, ∀𝑔 ∶ B → C, ∀ℎ ∶ C → D, (ℎ ∘ 𝑔) ∘ 𝑓 = ℎ ∘ (𝑔 ∘ 𝑓)

and

∀(A, B) ∈ C, ∀𝑓 ∶ A → B, idB ∘ 𝑓 = 𝑓 = 𝑓 ∘ idA

If 𝒞 is a category, we will write

A ∶ 𝒞

to mean that A is an object in 𝒞 and

𝑓 ∶ A → B ∶∶ 𝒞

to mean that 𝑓 ∈ 𝒞 (A; B). We will often consider that this notation defines A, B and 𝑓 in the
same move, if A and B are not already defined.
Remark 1

We will not be really interested in size issues. A distinction can be made between “small” categories, whose un-
derlying class of object and all the classes of morphisms are sets, and “big” categories, that feature at least a proper
class.
This distinction can be achieved by either working in an extension of Zermelo–Fraenkel set theory rich enough
to accomodate proper classes, such as Von Neumann–Bernays–Gödel’s, or through Grothendieck unverses. The
reader can choose between the two according to their taste.
We will often omit to mention whether categories (or other structures defined later) are small or big.

Definition 2 (functor)

Let 𝒞 and 𝒟 be two categories. A functor

F ∶ 𝒞 → 𝒟

is a function (also written F) from objects of 𝒞 to objects of 𝒟 and, for every objects A ∶ 𝒞 and
B ∶ 𝒞, a function (also noted F)

F ∶ 𝒞 (A; B) → 𝒟(FA; FB)
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such that,

∀𝑓 ∶ A → B ∶∶ 𝒞 , ∀𝑔 ∶ B → C ∶∶ 𝒞 , F(𝑔 ∘ 𝑓) = F𝑔 ∘ F𝑓

and

∀A ∶ 𝒞 , F(idA) = idFA

1.1.2 The structure of category is extremely versatile. The philosophy underlying its interest is that all
mathematical structures ought to be understood, not per se, but by the way they are preserved or
twisted.

Example : These examples will be used throughout the text:

sets and functions Let Set be the (big) category whose objects are sets, morphisms are functions, and
composition the usual composition of functions.

categories and functors Let Cat be the (big) category whose objects are (small) categories, morphisms
are functors, and composition the composition of functors.

categories and functor, huge edition Let CAT be the (huge) category whose objects are (big and small)
categories and morphisms are functors. This construction can be iterated as long as our ambient
theory is reach enough to handle bigger and bigger classes.

sets and relations Let Rel be the (big) category whose objects are sets, morphisms are relations, and
composition the usual composition of relations: for 𝑓 ∶ A → B ∶∶ Rel and 𝑔 ∶ B → C ∶∶ Rel,

𝑔 ∘ 𝑓 = 􏿺(𝑎, 𝑐) ∈ A × C ∣ ∃𝑏 ∈ B, (𝑎, 𝑏) ∈ 𝑓, (𝑏, 𝑐) ∈ 𝑔􏿽 .

discrete categories Every class S defines a category 𝒮 in the following fashion: the underlying class of
objects of 𝒮 is S and the only morphisms in 𝒮 are the identities. Such a category is called discrete.
We will often view sets as discrete categories, when needed.

Remark 2
Although conventional, the names of categories we just presented is not completely coherent. The categories Set
and Cat are named after their objects, while Rel is named after its morphisms.
The general philosophy of category theory is that all the relevant structural information is captured by the mor-
phisms. It would thus be brave and coherent to rename every category after its morphisms.

1.1.3 A generalization of categories will come out handy later: categories whose objects do not necessarily
have identities.
Definition 3 (semi-category)

A semi-category 𝒞 is the data of:
• a class C of objects;

• for all couples (A, B) of objects, a class

𝒞 (A; B)

of morphisms from A to B. A morphism 𝑓 ∈ 𝒞 (A; B) may be represented as an arrow
𝑓 ∶ A → B or an arrow
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A B
𝑓

• a family of operations

∘A,B,C ∶ 𝒞 (B; C) × 𝒞 (A; B) → 𝒞 (A;C)
(𝑓, 𝑔) ↦ 𝑓 ∘ 𝑔

indexed on triples of objects of 𝒞 (we will always omit the subscripts) verifying

∀(A, B, C,D) ∈ C4, ∀𝑓 ∶ A → B, ∀𝑔 ∶ B → C, ∀ℎ ∶ C → D, (ℎ ∘ 𝑔) ∘ 𝑓 = ℎ ∘ (𝑔 ∘ 𝑓)

A morphism ℎ ∈ 𝒞 (A;A) such that

∀(A, B) ∈ C, ∀𝑓 ∶ A → B, 𝑓 = 𝑓 ∘ idA

and

∀(A, B) ∈ C, ∀𝑓 ∶ B → A, idB ∘ 𝑓 = 𝑓

is called the identity of A.

The definition of functor of semi-categories is the same as functor of categories.

Our basic object: Cat-operads

1.1.4 We depart from this traditional presentation of calculi as categories for the following reason:
• we find more natural to consider programs with possibly more than one free variable. Al-

though the many-variable case can be mimicked by one free variable using a technical trick
called “currification”, and that all the definitions are leaner in this case, we will soon need the
ability to treat each variable according to different modalities. As such, we will move from
categories to multicategories. This is directly inspired from (Hyland 2017);

• we are interested not only in the static behaviour of programs but also in the reduction be-
tween them. As such, we need to add a second dimension, arrows between arrows, as pre-
sented in (Seely 1987).

Definition 4 (Cat-operad )

A Cat-multicategory 𝒞 is the data of:
• a class C of objects;
• for each integer 𝑛 ∈ N and all tuples (𝑐1, … , 𝑐𝑛, 𝑐) ∈ C𝑛+1, a category

𝒞 (𝑐1, … , 𝑐𝑛; 𝑐)

whose objects are multi-morphisms (or multi-arrows) from (𝑐1, … , 𝑐𝑛) to 𝑐. Such a multi-
arrow is written 𝑓 ∶ 𝑐1, … , 𝑐𝑛 → 𝑐. Morphisms of 𝒞 (𝑐1, … , 𝑐𝑛; 𝑐) are called 2-arrows;

• for each object 𝑐 ∈ C, a distinguished multimorphism

id𝑐 ∶ 𝑐 → 𝑐,
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the identity of 𝑐;
• for every tuple

(𝑐1, … , 𝑐𝑛, 𝑐),

together with 𝑛 other tuples

(𝑑11, … , 𝑑𝑘11 , 𝑐1), … , (𝑑1𝑛, … , 𝑑𝑘𝑛𝑛 , 𝑐𝑛)

a morphism

∘ ∶ 𝒞 (𝑐1, … , 𝑐𝑛; 𝑐) × 𝒞 (𝑑11, … , 𝑑𝑘11 ; 𝑐1) ×⋯ × 𝒞 (𝑑1𝑛, … , 𝑑𝑘𝑛𝑛 ; 𝑐𝑛) → 𝒞 (𝑑11, … , 𝑑𝑘𝑛𝑛 ; 𝑐)

such that composition is associative:

θ ∘ 􏿴θ1 ∘ (θ1
1, … , θ𝑛1

1 ), … , θ𝑘 ∘ (θ1
𝑘, … , θ𝑛𝑘

𝑘 􏿷

=θ ∘ (θ1, … , θ𝑘) ∘ (θ1
1, … , θ𝑛𝑘

𝑘 )

(whenever the mulimorphisms are composable) and unital with respect to the identities:

∀θ ∶ 𝑐1, … , 𝑐𝑛 → 𝑐, θ ∘ (id𝑐1, … , id𝑐𝑛) = θ = id𝑐 ∘ θ.

A Cat-operad 𝒪 is a Cat-multicategory endowed with, for all object A, integer 𝑛, permu-
tation σ ∈ 𝔖𝑛, and objects Γ = A 1…A 𝑛, a functor

exch
Γ;A
σ ∶ 𝒪 (A 1, … ,A 𝑛; A) → 𝒪 (A σ−1(1), … ,A σ−1(𝑛); A)

that satisfy compatibility laws: the action is compatible with the composition in 𝔖𝑛:

∀σ, σ′ ∈ 𝔖𝑛,exch
σ−1Γ;A
σ′ ∘ exchΓ;Aσ = exch

Γ;A
σ′∘σ

exch
Γ;A
id = id

and with the composition in 𝒪.

Remark 3
We have to impose the reader a short terminological note, as the name operad is used here in a slightly non-standard
way.
Multicategories have been introduced by Lambek (1969), in the context of logics and linguistics. Multicategories
are in general not supposed symmetrical, and are thought of as generalization of categories, accounting for multi-
linear maps.
Operads have been defined in the field of homotopy theory, by May (1972). They are thought of as abstract
operations, are often symmetric, and have only one object.
The case of an operad with multiple objects is studied under the name of colored operads and the objects are dubbed
colors.
So symmetric multicategories and coloured operads are the same objects. We have decided here to simplify the termi-
nology, by calling them simply operads.

Example : We first give ways to see categories as operads.
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• The first example is the most pedestrian: every category 𝒞 defines an operad 𝒪 with the same set
of objects, morphisms of 𝒞 as unary multimorphisms of 𝒪 (and 𝒪 has no other multimorphisms),
and the categories of 2-arrows as trivial;

• Every strict monoidal category defines an operad with the same objects, and arrows 𝑐1⊗⋯⊗𝑐𝑛 → 𝑐
as multiarrows 𝑐1, … , 𝑐𝑛 → 𝑐.

Example : Not all multicategories arise from monoidal categories. For instance, let V be any symetric
monoidal category and let Ab(V) be the category of abelian groups in V. It is a multicategory, but
not a monoidal category in general.

It has been remarked from the beginning of category theory that the objects play a very dim
role, and can actually be forgotten and represented by a special class of arrows: the identities. Much
the same can be done in higher-dimensional structures. In our case, it means that the operads we
will define in the following are entirely characterized by their 2-arrows.

In other words, we will give a presentation of the λ-calculus and the linear logic proof-nets by
the reductions, and not by the terms/nets themselves.

1.1.5 This language allows to express properties of the reduction, such as normalization:
Definition 5 (normal, weakly and strongly normalizable multimorphism)

Let 𝒞 be a Cat-operad and let M be a multimorphism of 𝒞. We say that M is:
• normal if there is no non-identity 2-arrow M ⇒ M ′ in 𝒞;

• weakly normalizable if there is a 2-arrow M ⇒ N in 𝒞 with N normal;

• strongly normalizable if there is no sequence (ψ𝑖)𝑖∈N of non-identity 2-arrows ψ𝑖 ∶ M𝑖 ⇒
M𝑖+1 in 𝒞 with M0 = M.

Note that, when 𝒞 is a Cat-operad presenting a term calculus (multimorphisms are terms, 2-arrows
are reduction sequences), then the above definition matches the standard terminology.

. T λ-   

Typed, untyped and unityped

1.2.1 The λ-calculus is often defined in two fashions: either typed or untyped. Before discussing this
distinction, we will first clarify what we mean by a type. It will then become clear that we ought to
treat untyped λ-calculus as a special case of simply-typed λ-calculus.

1.2.2 Types are usually understood in one of the two following fashion: in the intrinsic view of typing,
also known as types à la Church, every well-formed term has a uniquely associated type: indeed,One of

themselves,
even a prophet
of their own,

said, the
Cretians are
alway liars,
evil beasts,
slow bellies.
Tit, 1, 12

the basic grammar of expressions uses the types to guarantee the well-formation, and thus making
certain expressions, such as Epimenides’ paradox, unwritable. Untyped terms have no meaning with
these spectacles. On the other side, the extrinsic view of typing, of so-called types à la Curry, sees
types as expressions of properties of terms, which have a meaning independently of these types. A
term can have many different types, or no type at all.

Pragmatically, while a Church type is embedded in a term, determining the Curry type of a term
can be computationally expensive, or even undecidable.

1.2.3 As our main viewpoint on the languages is categorical, that is, through the pragmatics of composition
and chaining, we naturally favor Church typing, and interpret terms as arrows in an operad (and as
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such, have sources and a target, defined at the same time that the term). We will then define first
simply-typed λ-calculus, parametrized by a set of types, and consider the untyped λ-calculus as the
special case of the unityped λ-calculus, that is, simply typed λ-calculus, typed with a single type.

The Λ operad

1.2.4 We let

𝕍 = {𝑥1, 𝑥2, … , 𝑥𝑛, … }

be an infinite countable set of variables. We suppose given a set 𝕋 closed by a binary operation
→ and disjoint from 𝕍, that will be a parameter of all our definitions. We will soon see that this
parameter is functorial.

1.2.5 Following the philosophy we highlighted, we will directly define reductions, inductively. As such,
we will define sequents of the form

Γ ⊢ θ ∶ 𝑡 ⇒ 𝑡′ ∶ B

where Γ is a list of the form 𝑥1 ∶ A 1, … , 𝑥𝑛 ∶ A 𝑛, the context, θ is the reduction, 𝑡 and 𝑡′ are
two terms and B is a type. The rules of reduction formation in Figure 1.1, where ⋅ {⋅ ← ⋅} is the
substitution operation, that we define now. We first define free and bounded variables of a term by:
Definition 6 (free variables, bounded variables)

The sets of free variables fv(𝑡) and of bounded variables bv(𝑡) of a term 𝑡 are inductively defined
by:

fv(𝑥) = {𝑥} bv(𝑥) = ∅
fv(𝑢𝑣) = fv(𝑢) ∪ fv(𝑣) bv(𝑢𝑣) = bv(𝑢) ∪ bv(𝑣)

fv(λ𝑥.𝑢) = fv(𝑢) ⧵ {𝑥} bv(λ𝑥.𝑢) = bv(𝑢) ∪ {𝑥}
fv(β𝑥.𝑢)𝑣 = fv(𝑢) ⧵ {𝑥} ∪ fv(𝑣) bv(β𝑥.𝑢) = bv(𝑢) ∪ {𝑥} ∪ bv(𝑣)

We are ready to define the substitution operation ⋅ {⋅ ← ⋅}:
Definition 7 (capture-free substitution)

Let 𝑢 and 𝑣 be two terms, such that fv(𝑣) ∩ bv(𝑢) = ∅. Let 𝑥 be a variable not bounded in 𝑢.
The substitution of 𝑥 by 𝑣 in 𝑢 is defined, by induction on the structure of 𝑢, by:

𝑥 {𝑥 ← 𝑣} = 𝑣
𝑦 {𝑥 ← 𝑣} = 𝑦

𝑢1𝑢2 {𝑥 ← 𝑣} = 𝑢1 {𝑥 ← 𝑣} 𝑢2 {𝑥 ← 𝑣}
(λ𝑦.𝑢) {𝑥 ← 𝑣} = 􏿴λ𝑦.𝑢 {𝑥 ← 𝑣}􏿷

(β𝑦.𝑢) {𝑥 ← 𝑣} = 􏿴β𝑦.𝑢 {𝑥 ← 𝑣}􏿷

The free variables of 𝑢 {𝑥 ← 𝑣} are

fv(𝑢 {𝑥 ← 𝑣}) = fv(𝑢) ⧵ {𝑥} ∪ fv(𝑣)
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Γ, 𝑥 ∶ A ⊢ 𝑥 ∶ 𝑥 ⇒ 𝑥 ∶ A
(variable)

Γ ⊢ θ ∶ 𝑡 ⇒ 𝑡′ ∶ A Γ ⊢ θ′ ∶ 𝑡′ ⇒ 𝑡″ ∶ A
Γ ⊢ θ; θ′ ∶ 𝑡 ⇒ 𝑡″ ∶ A

(composition)

Γ ⊢ θ ∶ 𝑡 ⇒ 𝑡′ ∶ A → B Γ ⊢ κ ∶ 𝑢 ⇒ 𝑢′ ∶ A
Γ ⊢ θκ ∶ 𝑡𝑢 ⇒ 𝑡′𝑢′ ∶ B

(application)

Γ, 𝑥 ∶ A ⊢ θ ∶ 𝑡 ⇒ 𝑡′ ∶ B
Γ ⊢ λ𝑥.θ ∶ λ𝑥.𝑡 ⇒ λ𝑥.𝑡′ ∶ A → B

(abstraction)

Γ, 𝑥 ∶ A ⊢ θ ∶ 𝑡 ⇒ 𝑡′ ∶ B Γ ⊢ κ ∶ 𝑢 ⇒ 𝑢′ ∶ A
Γ ⊢ (β𝑥.θ)κ ∶ (λ𝑥.𝑡)𝑢 ⇒ 𝑡′ {𝑥 ← 𝑢′} ∶ B

(β-reduction)

Figure 1.1: The λ-calculus reductions

In general, we will not redefine capture-free substitution for each language we will define in the
remainder of this thesis, but only specify which are the binders.

1.2.6 The reduction terms must consider reduction sequences modulo permutation equivalence. Consider
the case of a termM ∶ ⋆ → ⋆ with one free variable, the substitution of which by a termN ∶ ⋆𝑛 →
⋆ we denote by M{N}. Let M

ρ
→ M ′ ρ′

→ M″ and N τ→ N ′ τ′→ N″ be reduction sequences.
Consider the two reductions (ρ′; ρ) ∘ (τ′; τ) and (ρ′ ∘ τ′); (ρ ∘ τ), which are both from M{N} to

M″{N″} and which, by functoriality, must be equal (in order for the structure to be a Cat-operad).
These will form the top and bottom paths in the diagram

M{N} M{N ′} M{N″}

M ′{N ′} M ′{N″} M″{N″}

τ τ′

ρ ρ

τ′ ρ′

Hence, we need to ask that the square in the middle commutes, which is ensured by permutation
equivalence, the equations of Figure 1.2, where θ𝑡⇒𝑡′ is an abbreviation for

Γ ⊢ θ ∶ 𝑡 ⇒ 𝑡′ ∶ A

for some context Γ and type A.
Remark 4

The equations could be oriented, from left to right, to define a standardisation rewriting system. It would amount
to add a dimension to our operad structure, making it the following ladder:
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1. types,

2. terms,

3. reductions,

4. standardizing rewritings.

We leave the study of this structure for an other time.

(θ𝑡⇒𝑡′κ𝑢⇒𝑢′)𝑡𝑢⇒𝑡′𝑢′; (θ′
𝑡′⇒𝑡″κ′𝑢′⇒𝑢″)𝑡′𝑢′⇒𝑡″𝑢″ = (θ𝑡⇒𝑡′; θ′

𝑡′⇒𝑡″)𝑡⇒𝑡″(κ𝑢⇒𝑢′; κ′𝑢′⇒𝑢″)𝑢⇒𝑢″

(λ𝑥.θ𝑡⇒𝑡′); (λ𝑥.θ′
𝑡′⇒𝑡″) = λ𝑥.(θ; θ′)𝑡⇒𝑡″

(λ𝑥.θ𝑡⇒𝑡′)κ𝑢⇒𝑢′; (β𝑥.θ′
𝑡⇒𝑡′)κ′𝑢′⇒𝑢″ = (β𝑥.(θ; θ′)𝑡⇒𝑡″)(κ; κ′)𝑢⇒𝑢″

Figure 1.2: The λ-calculus reduction equations.

Lemma 1

Let Γ ⊢ 𝑡 ∶ 𝑡 ⇒ 𝑡 ∶ B be a β-less term. For all Γ ⊢ θ1 ∶ 𝑡′ ⇒ 𝑡 ∶ B and Γ ⊢ θ2 ∶ 𝑡 ⇒ 𝑡′ ∶ B,
𝑡; θ1 = θ1 and θ2; 𝑡 = θ2.

1.2.7 We can then define λ-terms as terms without β of this calculus, and remark that they have the same
source and target, which has the same syntax of the terms themselves.

Example : Anticipating §1.2.10, in the unityped setting (that is, with only one type ⋆ satisfying ⋆ → ⋆ =
⋆)

𝑐 ∶ ⋆, 𝑑 ∶ ⋆ ⊢ (β𝑏.λ𝑥.λ𝑦.((β𝑧.𝑏𝑧)𝑥)𝑦)((β𝑎.𝑎𝑐𝑑)(λ𝑒.λ𝑓.𝑒))
∶ (λ𝑏.λ𝑥.λ𝑦.((β𝑧.𝑏𝑧)𝑥)𝑦)((λ𝑎.𝑎𝑐𝑑)(λ𝑒.λ𝑓.𝑒)) ⇒ λ𝑥.λ𝑦.(λ𝑒.λ𝑓.𝑒)𝑐𝑑𝑥𝑦 ∶ ⋆, ⋆ → ⋆

is a reduction of the calculus. It can be composed with

𝑐 ∶ ⋆, 𝑑 ∶ ⋆ ⊢ λ𝑥.λ𝑦.(β𝑒.λ𝑓.𝑒)𝑐𝑑𝑥𝑦
∶ λ𝑥.λ𝑦.(λ𝑒.λ𝑓.𝑒)𝑐𝑑𝑥𝑦 ⇒ λ𝑥.λ𝑦.(λ𝑓.𝑐)𝑑𝑥𝑦 ∶ ⋆, ⋆ → ⋆

and

𝑐 ∶ ⋆, 𝑑 ∶ ⋆ ⊢ λ𝑥.λ𝑦.(β𝑓.𝑐)𝑑𝑥𝑦
∶ λ𝑥.λ𝑦.(λ𝑓.𝑐)𝑑𝑥𝑦 ⇒ λ𝑥.λ𝑦.𝑐𝑥𝑦 ∶ ⋆, ⋆ → ⋆

making a reduction from (β𝑏.λ𝑥.λ𝑦.((β𝑧.𝑏𝑧)𝑥)𝑦)((β𝑎.𝑎𝑐𝑑)(λ𝑒.λ𝑓.𝑒)) to λ𝑥.λ𝑦.𝑐𝑥𝑦 in the context 𝑐, 𝑑.

Definition 8

The Cat-operad Λ𝕋 is defined as the operad with:
• as objects the elements of 𝕋;

• as arrows
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A 1, … ,A 𝑛 B

β-less terms of Figure 1.1, quotiented by the equations of Figure 1.2

𝑥1 ∶ A 1, … , 𝑥𝑛 ∶ A 𝑛 ⊢ 𝑡 ∶ 𝑡 ⇒ 𝑡 ∶ B

that is, λ-terms 𝑡 with free variables included in {𝑥1, … , 𝑥𝑛}.
• as compositions the substitution and renaming of variables. That is, let

𝑥1 ∶ A 1, … , 𝑥𝑖 ∶ A 𝑖, … 𝑥𝑛 ∶ A 𝑛 ⊢ 𝑡 ∶ 𝑡 ⇒ 𝑡 ∶ B

and, for all 1 ⩽ 𝑖 ⩽ 𝑛,

𝑥𝑖1 ∶ A𝑖
1, … , 𝑥𝑖𝑛𝑖 ∶ A

𝑖
𝑛𝑖 ⊢ 𝑢𝑖 ∶ 𝑢𝑖 ⇒ 𝑢𝑖 ∶ A 𝑖

be λ-terms. Their composite 𝑡 ∘ (𝑢1, … , 𝑢𝑛) is the substitution of the λ-term

𝑥11 ∶ A1
1, … , 𝑥1𝑛1 ∶ A

1
𝑛1, 𝑥

2
1 ∶ A2

1, … , 𝑥𝑛𝑛𝑛 ∶ A
𝑛
𝑛𝑛 ⊢ 𝑡 {𝑥𝑖 ← 𝑢𝑖} ∶ 𝑡 {𝑥𝑖 ← 𝑢𝑖} ⇒ 𝑡 {𝑥𝑖 ← 𝑢𝑖} ∶ B

with the free variables renamed from 𝑥1 to 𝑥∑𝑛
𝑖=1 𝑛𝑖

.

• as 2-arrows between two terms

𝑥1 ∶ A 1, … , 𝑥𝑖 ∶ A 𝑖, … 𝑥𝑛 ∶ A 𝑛 ⊢ 𝑡 ∶ 𝑡 ⇒ 𝑡 ∶ B

and

𝑥1 ∶ A 1, … , 𝑥𝑖 ∶ A 𝑖, … 𝑥𝑛 ∶ A 𝑛 ⊢ 𝑡′ ∶ 𝑡′ ⇒ 𝑡′ ∶ B

all the reductions

𝑥1 ∶ A 1, … , 𝑥𝑖 ∶ A 𝑖, … 𝑥𝑛 ∶ A 𝑛 ⊢ θ ∶ 𝑡 ⇒ 𝑡′ ∶ B

• composition ; as composition of 2-arrows.

So, the operad Λ𝕋 is the operad of all λ-reductions, structured in the three layers presented earlier.
1.2.8 Let us consider the category BinOp whose objects are couples (X, ⊙) of sets endowed with a binary

operation

⊙ ∶ X × X → X

and morphisms 𝑓 ∶ (X, ⊙) → (Y, ⊙) functions 𝑓 ∶ X → Y such that,

∀𝑥, 𝑥′ ∈ X, 𝑓(𝑥 ⊙ 𝑥′) = 𝑓(𝑥) ⊙ 𝑓(𝑥′).

Theorem 2

The function

BinOp → Op
𝕋 ↦ Λ𝕋
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extends to a functor.

This functor maps a set (X, ⊙) to an operad ΛΧ: it views the set X as the set of types and the
binary operation ⊙ as the type constructor →.

Extensionality

1.2.9 The Λ𝕋 operad we just defined lacks extensionality properties. We may enrich our calculus with a
new binder η and the new formation rule of Figure 1.3. This defines an operad Λη

𝕋.

Γ ⊢ θ ∶ 𝑡 ⇒ 𝑡′ ∶ A → B
Γ ⊢ (η𝑥.θ) ∶ 𝑡 ⇒ λ𝑥.(𝑡′𝑥) ∶ A → B

(η-expansion)

Figure 1.3: The λ-calculus η-expansion

We will not be very interested in extensionality, apart as a sanity check: we ought to use only op-
erations that do not break it. For instance, in Chapter 3 we will consider morphisms ofCat-operads,
understood as translations of one language into antoher. We will only consider morphisms that can
be pass the extensionality test: if 𝑓 ∶ Λ → 𝒞 is a morphism of Cat-operads, and 𝑓 does not lift to a
morphism of Cat-operads Λη → 𝒞 (that is, there exists a 2-arrow 𝑡1 ⇒ 𝑡2 in Λη such that there are
no 2-arrows 𝑓(𝑡1) ⇒ 𝑓(𝑡2) in 𝒞) we will not consider this morphism to be a suitable translation.

The unityped and simply-typed case

Γ, 𝑥 ⊢ id ∶ 𝑥 ⇒ 𝑥
(variable)

Γ ⊢ θ ∶ 𝑡 ⇒ 𝑡′ Γ ⊢ θ′ ∶ 𝑡′ ⇒ 𝑡″

Γ ⊢ θ; θ′ ∶ 𝑡 ⇒ 𝑡″
(composition)

Γ ⊢ θ ∶ 𝑡 ⇒ 𝑡′ Γ ⊢ κ ∶ 𝑢 ⇒ 𝑢′

Γ ⊢ θκ ∶ 𝑡𝑢 ⇒ 𝑡′𝑢′
(application)

Γ, 𝑥 ⊢ θ ∶ 𝑡 ⇒ 𝑡′

Γ ⊢ λ𝑥.θ ∶ λ𝑥.𝑡 ⇒ λ𝑥.𝑡′
(abstraction)

Γ, 𝑥 ⊢ θ ∶ 𝑡 ⇒ 𝑡′ Γ ⊢ κ ∶ 𝑢 ⇒ 𝑢′

Γ ⊢ (β𝑥.θ)κ ∶ (λ𝑥.𝑡)𝑢 ⇒ 𝑡′ {𝑥 ← 𝑢′}
(β-reduction)

Figure 1.4: The unityped λ-calculus reductions
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1.2.10 The category BinOp has a terminal object: the singleton set ({⋆},→) such that ⋆ → ⋆ = ⋆. The
correspondingΛ⋆ operad corresponds to the unitypedλ-calculus. As it is of paramount importance,
we give an explicit description of it:

• Λ⋆ only has one object: ⋆;
• a multimorphism ⋆𝑛 → ⋆ is an id reduction built from the rules of Figure 1.4, modulo the

equations of Figure 1.2.
• a 2-morphism is a general term built from the rules of Figure 1.4, modulo the equations of

Figure 1.2.
Λ⋆ and Λη

⋆ both have infinite reduction sequences.
1.2.11 Dually, we call simply-typed λ-calculus theCat-operadΛ→ corresponding to the set1 freely generated

by an infinite countable set of atoms. Λ→ and Λη
→ both only have finite reduction sequences.

. T -- λ-   

The call-by-value λ-calculus, introduced by Plotkin (1975), to formalize the evaluation strategy
in ISWIM as given by the SECD machine, restricts the β-reduction of the usual λ-calculus to
a particular class of arguments, the values. It too, can be described in an operadic fashion. We
suppose that the set 𝕋 is still closed by a binary operation →, but that it is actually the reunion of
two disjoint subsets, of value types and term types, exchanged by a fix-point-free involution. We will
write the all types with roman capital letters A,B,….

The sequents will be of two forms:

Γ ⊢v θ ∶ 𝑡 ⇒ 𝑡′ ∶ B
Γ ⊢t θ ∶ 𝑡 ⇒ 𝑡′ ∶ B

The first kind meaning, that, under the context Γ (containing only value types), θ is a reduction
from 𝑡 to 𝑡′, of value type B, the second that, under the context Γ, that also contains only value
types, θ is a reduction from 𝑡 to 𝑡′, of term type B. The rules of reduction formation are given
Figure 1.5, modulo the equation of Figure 1.6. We can remark that the reductions for values are all
identities.
Definition 9

The Cat-operad Λ𝑣,𝕋 is defined as the operad with:
• as objects the elements of 𝕋;

• as arrows

Γ B

where

– Γ = A 1, … ,A 𝑛 are value types and B a term type, β𝑣-less terms of Figure 1.5,
quotiented by the equations of Figure 1.6

𝑥1 ∶ A 1, … , 𝑥𝑛 ∶ A 𝑛 ⊢t 𝑡 ∶ 𝑡 ⇒ 𝑡 ∶ B

that is, λ-terms 𝑡 with free variables included in {𝑥1, … , 𝑥𝑛}.
1. They are all isomorphic.
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Γ, 𝑥 ∶ A ⊢v 𝑥 ∶ 𝑥 ⇒ 𝑥 ∶ A
(variable)

Γ, 𝑥 ∶ A ⊢t 𝑡 ∶ 𝑡 ⇒ 𝑡 ∶ B
Γ ⊢v λ𝑥.𝑡 ∶ λ𝑥.𝑡 ⇒ λ𝑥.𝑡 ∶ A → B

(abstraction)

Γ ⊢t θ ∶ 𝑡 ⇒ 𝑡′ ∶ A Γ ⊢t θ′ ∶ 𝑡′ ⇒ 𝑡″ ∶ A
Γ ⊢t θ; θ′ ∶ 𝑡 ⇒ 𝑡″ ∶ A

(composition)

Γ ⊢t θ ∶ 𝑡 ⇒ 𝑡′ ∶ A → B Γ ⊢t κ ∶ 𝑢 ⇒ 𝑢′ ∶ A
Γ ⊢t θκ ∶ 𝑡𝑢 ⇒ 𝑡′𝑢′ ∶ B

(application)

Γ,⊢v 𝑣 ∶ 𝑣 ⇒ 𝑣 ∶ A
Γ ⊢t 𝑣 ∶ 𝑣 ⇒ 𝑣 ∶ A

(values)

Γ, 𝑥 ∶ A ⊢t 𝑡 ∶ 𝑡 ⇒ 𝑡 ∶ B Γ ⊢v 𝑢 ∶ 𝑢 ⇒ 𝑢 ∶ A
Γ ⊢t (β𝑣𝑥.𝑡)𝑢 ∶ (λ𝑥.𝑡)𝑢 ⇒ 𝑡 {𝑥 ← 𝑢} ∶ B

(β𝑣-reduction)

Figure 1.5: The λ𝑣-calculus reductions

(θ𝑡⇒𝑡′κ𝑢⇒𝑢′)𝑡𝑢⇒𝑡′𝑢′; (θ′
𝑡′⇒𝑡″κ′𝑢′⇒𝑢″)𝑡′𝑢′⇒𝑡″𝑢″ = (θ𝑡⇒𝑡′; θ′

𝑡′⇒𝑡″)𝑡⇒𝑡″(κ𝑢⇒𝑢′; κ′𝑢′⇒𝑢″)𝑢⇒𝑢″

Figure 1.6: The λ𝑣-calculus reduction equations.

– Γ = A 1, … ,A 𝑛 are value types and B a value type, β𝑣-less terms of Figure 1.5,
quotiented by the equations of Figure 1.6

𝑥1 ∶ A 1, … , 𝑥𝑛 ∶ A 𝑛 ⊢v 𝑣 ∶ 𝑣 ⇒ 𝑣 ∶ B

that is, λ-values 𝑣 with free variables included in {𝑥1, … , 𝑥𝑛}.
– Γ = B is a term type, one identity arrow.

• as composition the substitution and renaming of variables;

• as 2-arrows the reductions.

1.3.1 We remark that the reductions between values are only identities, which correspond to the intuition
that values are already in normal form, and shall not be reduced further.

We also need to remark that we added some identity arrows on every term type. This is because
we are in a categorical framework, where every object is endowed with an identity. We will move to
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a more general semi-categorical framework starting Section 2.3.

. I     

1.4.1 In the exact same way than λ-calculus, we will present intuitionistic linear logic typed, and consider
the untyped intuitionistic linear logic as a special case. We suppose given two infinite countable
sets of variables, the linear variables, ranging over 𝑎, 𝑏, … and the cartesian variables, ranging over
𝑥, 𝑦, ….

Let 𝕋 be a set partitioned in two subsets 𝕋l and 𝕋c, closed by a binary operation ⊸ and a unary
operation ! that maps elements of 𝕋l to elements of 𝕋c.

1.4.2 We define sequents of the form

Γ; Δ ⊢ θ ∶ 𝑡 ⇒ 𝑡′ ∶ C
where Γ is a list of the form 𝑎1 ∶ A 1, … , 𝑎𝑛 ∶ A 𝑛 of linear variables and types in 𝕋l, the linear
context and Δ is a list of the form 𝑥1 ∶ B1, … , 𝑥𝑚 ∶ B𝑚 of cartesian variables and types in 𝕋c, the
cartesian context, 𝑡 and 𝑡′ are two terms and C is a type. The rules of reduction formation are given
in Figure 1.7, quotiented by the equations of Figure 1.8.

We remark that linear variables appear exactly once in a term.
1.4.3 We borrow the approach to reduction under explicit substitutions of (Accattoli 2012): substitutions

acting at a distance avoids commuting conversions. Indeed, in a traditional definition of an explicit
substitution calculus, a term such as (λ𝑎.𝑎) [!𝑥 ∶= 𝑢] 𝑡 would not reduce to 𝑡 [!𝑥 ∶= 𝑢] without the
commutation (λ𝑎.𝑎) [!𝑥 ∶= 𝑢] 𝑡 ⇝ ((λ𝑎.𝑎)𝑡) [!𝑥 ∶= 𝑢].
Definition 10

The Cat-operad Λ!,𝕋 is defined as the operad with:
• as objects the elements of 𝕋;

• as arrows

Υ B

where Υ is an interleaving of Γ (containing only linear types) and Δ (containing only
cartesian types), β-less terms Γ; Δ ⊢ 𝑡 ∶ B of Figure 1.1, quotiented by the equations of
Figure 1.2

𝑥1 ∶ A 1, … , 𝑥𝑛 ∶ A 𝑛 ⊢ 𝑡 ∶ 𝑡 ⇒ 𝑡 ∶ B

that is, λ-terms 𝑡 with free variables included in {𝑥1, … , 𝑥𝑛};
• as compositions the substitution and renaming of variables;

• as 2-arrows between two terms the reductions;

• composition ; as composition of 2-arrows.

1.4.4 As for the λ-calculus, we denote by Λ!,⋆ the Cat-operad with the terminal set of types suitable for
intuitionistic linear logic: the set of types is reduced to two types l and c satisfying:

l ⊸ l = c ⊸ l = l ⊸ c = c ⊸ c = l

!l = !c = c.
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𝑎 ∶ A; Δ ⊢ 𝑎 ∶ 𝑎 ⇒ 𝑎 ∶ A
(variable)

Γ; Δ ⊢ θ ∶ 𝑡 ⇒ 𝑡′ ∶ A Γ ′; Δ′ ⊢ θ′ ∶ 𝑡′ ⇒ 𝑡″ ∶ A
Γ, Γ ′; Δ, Δ′ ⊢ θ; θ′ ∶ 𝑡 ⇒ 𝑡″ ∶ A

(composition)

Γ; Δ ⊢ θ ∶ 𝑡 ⇒ 𝑡′ ∶ A ⊸ B Γ ′; Δ′ ⊢ κ ∶ 𝑢 ⇒ 𝑢′ ∶ A
Γ, Γ ′; Δ, Δ′ ⊢ θκ ∶ 𝑡𝑢 ⇒ 𝑡′𝑢′ ∶ B

(application)

Γ, 𝑎 ∶ A; Δ ⊢ θ ∶ 𝑡 ⇒ 𝑡′ ∶ B
Γ; Δ ⊢ λ𝑎.θ ∶ λ𝑎.𝑡 ⇒ λ𝑎.𝑡′ ∶ A ⊸ B

(abstraction)

Γ, 𝑎 ∶ A; 𝑦⃗ ∶ C⃗, Δ ⊢ θ ∶ 𝑡 ⇒ 𝑡′ ∶ B
Γ ′; Δ′ ⊢ κ ∶ 𝑢 ⇒ 𝑢′ ∶ A ∀𝑖 ∈ I, Γ𝑖; Δ𝑖 ⊢ ζ𝑖 ∶ 𝑣𝑖 ⇒ 𝑣′𝑖 ∶ !C𝑖

Γ, Γ ′, Γ𝑖; Δ, Δ′, Δ𝑖 ⊢ (β𝑎.θ) 􏿮!𝑦⃗ ∶= ζ⃗􏿱 κ ∶ (λ𝑎.𝑡) 􏿮!𝑦⃗ ∶= 𝑣⃗􏿱 𝑢 ⇒ 𝑡′ {𝑎 ← 𝑢′} 􏿮!𝑥⃗ ∶= 𝑣′􏿱 ∶ B
(β-reduction)

; 𝑥 ∶ A, Δ ⊢ 𝑥 ∶ 𝑥 ⇒ 𝑥 ∶ A
(!-variable)

; Δ ⊢ θ ∶ 𝑡 ⇒ 𝑡′ ∶ A
; Δ ⊢ !θ ∶ !𝑡 ⇒ !𝑡′ ∶ !A

(promotion)

Γ; 𝑥 ∶ A, Δ ⊢ θ ∶ 𝑡 ⇒ 𝑡′ ∶ B Γ ′; Δ′ ⊢ κ ∶ 𝑢 ⇒ 𝑢′ ∶ !A
Γ, Γ ′; Δ, Δ′ ⊢ θ [!𝑥 ∶= κ] ∶ 𝑡 [!𝑥 ∶= 𝑢] ⇒ 𝑡′ [!𝑥 ∶= 𝑢′] ∶ B

(explicit)

Γ; 𝑥 ∶ A, Δ ⊢ θ ∶ 𝑡 ⇒ 𝑡′ ∶ B
Γ ′; 𝑦⃗ ∶ C⃗, Δ′ ⊢ κ ∶ 𝑢 ⇒ 𝑢′ ∶ !A ∀𝑖 ∈ I, Γ𝑖; Δ𝑖 ⊢ ζ𝑖 ∶ 𝑣𝑖 ⇒ 𝑣′𝑖 ∶ !C𝑖

Γ, Γ ′, Γ𝑖; Δ, Δ′, Δ𝑖 ⊢ βθ 􏿮!𝑥 ∶= κ 􏿮!𝑦⃗ ∶= ζ⃗􏿱􏿱 ∶ 𝑡 􏿮!𝑥 ∶= 𝑢 􏿮!𝑦⃗ ∶= 𝑣⃗􏿱􏿱 ⇒ 𝑡′ {𝑥 ← 𝑢′} 􏿮!𝑦⃗ ∶= 𝑣′􏿱 ∶ B
(explicit-β)

Figure 1.7: The λ!-calculus reductions

(θ𝑡⇒𝑡′κ𝑢⇒𝑢′)𝑡𝑢⇒𝑡′𝑢′; (θ′
𝑡′⇒𝑡″κ′𝑢′⇒𝑢″)𝑡′𝑢′⇒𝑡″𝑢″ = (θ𝑡⇒𝑡′; θ′

𝑡′⇒𝑡″)𝑡⇒𝑡″(κ𝑢⇒𝑢′; κ′𝑢′⇒𝑢″)𝑢⇒𝑢″

(λ𝑥.θ𝑡⇒𝑡′); (λ𝑥.θ′
𝑡′⇒𝑡″) = λ𝑥.(θ; θ′)𝑡⇒𝑡″

(λ𝑥.θ𝑡⇒𝑡′)κ𝑢⇒𝑢′; (β𝑥.θ′
𝑡⇒𝑡′)κ′𝑢′⇒𝑢″ = (β𝑥.(θ; θ′)𝑡⇒𝑡″)(κ; κ′)𝑢⇒𝑢″

Figure 1.8: The λ!-calculus reduction equations.
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Example : (λ𝑎.𝑥𝑥 [!𝑥 ∶= 𝑎])!(λ𝑎.𝑥𝑥 [!𝑥 ∶= 𝑎]) is a closed term of type c (a multiarrow with the empty list as
input type and c as output type).
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2.1.1 Classical calculi do not fit naturally in a categorical framework. Indeed, it is customary of classical
reasoning to change conclusion in the course of a proof, corresponding to sending a result, not
through the normal output, but through an error channel. Let us consider for instance the standard
proof of excluded middle in the system LK:

A ⊢ A
(axiom)

⊢ A,¬A
(⊢ ¬)

⊢ A ∨ ¬A
(⊢ ∨)

It relies crucially on the possibility to have two conclusions at one point of the proof. We interpreted
terms as multi-arrows, having many sources but exactly one target. Instead of allowing multiple
targets, we will allow to swap one source with the target. In this way, in a sense, we consider
the sources and the target on an equal footing (that is, to have only sources, or only targets, in a
monolateral sequent calculus kind of way), with one that is temporarily focused.

39
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Cyclic operads

2.1.2 Cyclic operads have been introduced in (Getzler and Kapranov 1995) to account abstractly for
Connes (1985)’s cyclic homology. We present here a polychromatic, Cat-enriched version.

We consider 𝔖𝑛 to act on {1, … , 𝑛}, we view 𝔖𝑛+1 (writing explicitely a number as a successor)
as acting on the set {0, … , 𝑛}.
Definition 11 (cyclicCat-operad )

A cyclic Cat-operad 𝒪 is the data of:
• a class C of objects;
• for each integer 𝑛 ∈ N and all tuples (𝑐1, … , 𝑐𝑛, 𝑐) ∈ C𝑛+1, a category

𝒪 (𝑐1, … , 𝑐𝑛; 𝑐)

whose objects are multi-morphisms (or multi-arrows) from (𝑐1, … , 𝑐𝑛) to 𝑐. Such a multi-
arrow is written 𝑓 ∶ 𝑐1, … , 𝑐𝑛 → 𝑐. Morphisms of 𝒞 (𝑐1, … , 𝑐𝑛; 𝑐) are called 2-arrows;

• for each object 𝑐 ∈ C, a distinguished multimorphism

id𝑐 ∶ 𝑐 → 𝑐,

the identity of 𝑐;
• for every tuple

(𝑐1, … , 𝑐𝑛, 𝑐),

together with 𝑛 other tuples

(𝑑11, … , 𝑑𝑘11 , 𝑐1), … , (𝑑1𝑛, … , 𝑑𝑘𝑛𝑛 , 𝑐𝑛)

a morphism

∘ ∶ 𝒞 (𝑐1, … , 𝑐𝑛; 𝑐) × 𝒞 (𝑑11, … , 𝑑𝑘11 ; 𝑐1) ×⋯ × 𝒞 (𝑑1𝑛, … , 𝑑𝑘𝑛𝑛 ; 𝑐𝑛) → 𝒞 (𝑑11, … , 𝑑𝑘𝑛𝑛 ; 𝑐)

such that composition is associative:

θ ∘ 􏿴θ1 ∘ (θ1
1, … , θ𝑛1

1 ), … , θ𝑘 ∘ (θ1
𝑘, … , θ𝑛𝑘

𝑘 􏿷

=θ ∘ (θ1, … , θ𝑘) ∘ (θ1
1, … , θ𝑛𝑘

𝑘 )

(whenever the mulimorphisms are composable) and unital with respect to the identities:

∀θ ∶ 𝑐1, … , 𝑐𝑛 → 𝑐, θ ∘ (id𝑐1, … , id𝑐𝑛) = θ = id𝑐 ∘ θ;

• for all objectA 0, integer 𝑛, permutation σ ∈ 𝔖𝑛+1, and objects Γ = A 1…A 𝑛, a functor

exch
Γ;A
σ ∶ 𝒪 (A 1, … ,A 𝑛; A 0) → 𝒪 (A σ−1(1), … ,A σ−1(𝑛); A σ−1(0))

that satisfy compatibility laws: the action is compatible with the composition in 𝔖𝑛:

∀σ, σ′ ∈ 𝔖𝑛+1,exch
σ−1Γ;A
σ′ ∘ exchΓ;Aσ = exch

Γ;A
σ′∘σ

exch
Γ;A
id = id

and with the composition in 𝒪.
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It does not make much sense to try to define cyclic Cat-multicategories: indeed, by restricting
the action of symmetric group 𝔖𝑛+1 into an action of 𝔖𝑛, a cyclic Cat-multicategory is endowed
with a symmetric structure, making it a Cat-operad.

Example : We will give examples of fully fledged cyclic Cat-operad later in this chapter. For the time being,
we only give a cyclic operad (that we trivially consider a Cat-operad by adding trivial 2-arrows).

Let us fix a field 𝑘. Consider the operad ℒ of 𝑘-multi-linear maps: its objects are finite vector spaces over
𝑘, and an arrow in

ℒ(V1, … , V𝑛; V0)

is a linear map

V1 ⊗⋯⊗ V𝑛 → V0

Linear dualization endows ℒ with a structure of cyclic operad, with the isomorphisms

ℒ(V1, … , V𝑛; V0) ≃ ℒ (V1, … , V𝑛, V⋆
0 ; 𝑘) ≃ ℒ (V1, … , V⋆

0 ; V⋆
𝑛 )

and, as the spaces are finite dimensional, a space is isomorphic to its dual, so

ℒ(V1, … , V𝑛; V0) ≃ ℒ (V1, … , V0; V𝑛).

This defines the action of a transposition, which generates all the symmetric group.

Semi-cyclic operad

2.1.3 In some cases, not all inputs can be used as a conclusion: among all inputs, some are outputs-in-
waiting and some are real inputs. We nonetheless want to be able to compose outputs with inputs.
This leads to the structure of semi-cyclic operad where only some inputs can be replaced by outputs.
While we are at it, we do not consider identities on outputs.
Definition 12 (semi-cyclicCat-operad )

A cyclic Cat-operad 𝒪 is the data of:
• three disjoint classes of objects,

– C1 of input objects, noted 𝑐, 𝑑, … ,
– C2 of outputs-in-waiting objects, noted 𝑐, 𝑑, …

– C3 of output objects, noted 𝑐, 𝑑, ….

such that C1, C2 and C3 are canonically in bijection, which justifies us denoting the
objects by input objects, more or less underlined. We write C = C1 ⊔ C2 ⊔ C3. When
we will want to consider an object without specifying its status, we will write it c ;

• for each integer 𝑛 ∈ N and all tuples (𝑐1, … , 𝑐𝑛, 𝑐) ∈ C𝑛+1, a category

𝒪 (𝑐1, … , 𝑐𝑛; 𝑐)

whose objects are multi-morphisms (or multi-arrows) from (𝑐1, … , 𝑐𝑛) to 𝑐. Such a multi-
arrow is written 𝑓 ∶ 𝑐1, … , 𝑐𝑛 → 𝑐. Morphisms of 𝒞 (𝑐1, … , 𝑐𝑛; 𝑐) are called 2-arrows;
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• for each object 𝑐 ∈ C1, a distinguished multimorphism

id𝑐 ∶ 𝑐 → 𝑐,

the identity of 𝑐;
• for every tuple

(𝑐1, … , 𝑐𝑛, 𝑐),

together with 𝑛 other tuples

(𝑑11, … , 𝑑𝑘11 , 𝑐1), … , (𝑑1𝑛, … , 𝑑𝑘𝑛𝑛 , 𝑐𝑛)

a morphism

∘ ∶ 𝒞 (𝑐1, … , 𝑐𝑛; 𝑐) × 𝒞 (𝑑11, … , 𝑑𝑘11 ; 𝑐1) ×⋯ × 𝒞 (𝑑1𝑛, … , 𝑑𝑘𝑛𝑛 ; 𝑐𝑛) → 𝒞 (𝑑11, … , 𝑑𝑘𝑛𝑛 ; 𝑐)

such that composition is associative:

θ ∘ 􏿴θ1 ∘ (θ1
1, … , θ𝑛1

1 ), … , θ𝑘 ∘ (θ1
𝑘, … , θ𝑛𝑘

𝑘 􏿷

=θ ∘ (θ1, … , θ𝑘) ∘ (θ1
1, … , θ𝑛𝑘

𝑘 )

(whenever the mulimorphisms are composable) and unital with respect to the identities:

∀θ ∶ 𝑐1, … , 𝑐𝑛 → 𝑐, θ ∘ (id𝑐1, … , id𝑐𝑛) = θ = id𝑐 ∘ θ;

• for all objectA 0, integer 𝑛, permutation σ ∈ 𝔖𝑛+1, and objects Γ = A 1, … ,A σ−1(0), … ,A 𝑛,

such that a functor

exch
Γ;A
σ ∶ 𝒪 (A 1, … ,A 𝑛; A 0) → 𝒪 (A σ−1(1), … ,A 0, … ,A σ−1(𝑛); A σ−1(0))

that satisfy compatibility laws: the action is compatible with the composition in 𝔖𝑛:

∀σ, σ′ ∈ 𝔖𝑛,exch
σ−1Γ;A
σ′ ∘ exchΓ;Aσ = exch

Γ;A
σ′∘σ

exch
Γ;A
id = id

and with the composition in 𝒪.
The exch

; operation swaps an output with an output-in-waiting.

Remark 5
A semi-operad is, usually, an operad with objects lacking identities. We have chosen the modifier semi- as, in our
case, the outputs-in-waiting lack identities, so a semi-cyclic operad is, when the cyclic structure is forgotten, a
semi-operad.

Example : Every cyclic Cat-operad 𝒪 defines a semi-cyclic Cat-operad, whose objects are the objects of 𝒪
triplicated.
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Example : Linear applications from vector spaces to a finite dimensional vector space.

. P-    

Proof-nets, informally

2.2.1 Proof-nets are a formalism introduced by Girard (1987) to represent proofs of Linear Logic in a
more synthetic way than sequent calculus.

We suppose given a set 𝕋 of MELL types closed by the unary operations !, ?, (⋅)⊥ and the binary
operations `, ⊗, verifying:

(A ⊗ B)⊥ = B⊥ `A⊥

(A` B)⊥ = B⊥ ⊗ A⊥

(!A)⊥ = ?A⊥

(?A)⊥ = !A⊥.

We will see that this parameter set is functorial.
Multiplicative exponential proof-nets are graphs generated by the multiplicative linear logic cells,

depicted in Figure 2.1.

A A⊥ A B A B A ⋯ A A

A A⊥ 1 ⊥
ax

cut
1 ⊥

⊗
A ⊗ B

`
A` B

?
?A

!
!A

Figure 2.1: Multiplicative-exponential linear logic cells

Graphs

2.2.2 We follow the definition of a graph given by Borisov and Manin (2008)1: in particular, a graph is
not the datum of a set of edges and a set of vertices, but the edges are split in halves, allowing for
some of them to be hanging.

1. The folklore attributes the definition of graphs with half-edges to Kontsevitch and Manin, but the idea can
actually be traced back to Grothendieck’s dessins d’enfant. The main contribution of (Borisov and Manin 2008) is to
define morphisms for this definition of graphs – that we will not use here – that are of great generality.
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Definition 13 (graph)

A (finite) graph τ is a quadruple (Fτ, Vτ, ∂τ, 𝑗τ), where
• Fτ is a finite set, whose elements are called flags of τ;
• Vτ is a finite set, whose elements are called vertices of τ;
• ∂τ ∶ Fτ → Vτ is a function associating to each flag its boundary;

• 𝑗τ ∶ Fτ → Fτ is an involution.

A flag fixed by the involution is a tail of τ.
Two-elements orbits of the involution form a set Eτ of edges of τ. Elements of an edge 𝑒 are

called halves of 𝑒.
Given two graphs τ and τ′, it is always possible to consider their disjoint union τ ⊔ τ′ defined

as the disjoint union of the underlying sets and functions.
2.2.3 A one vertex graph with set of flags F and involution the identity on F is called the corolla with set

of flags F. It is standardly written ∗F. One corolla ∗5 is depicted Figure 2.2.
Given a graph τ = (Fτ, Vτ, ∂τ, 𝑗τ), a vertex 𝑣 defines a corolla τ𝑣, by, if we set F𝑣 = ∂−1τ (𝑣):

τ𝑣 = (F𝑣, 𝑣, ∂τ|F𝑣, idF𝑣).

Every graph can be described as the set of corollas of its vertices, together with the involution glueing
the flags in edges.

2.2.4 Different notions of morphisms exist between graphs. As we will mainly be interested in isomor-
phisms and subgraphs, we will use the most naive notion.
Definition 14 (graph morphism)

Let τ, σ be two graphs. A graph morphism

ℎ ∶ τ → σ

is a couple of functions (ℎF ∶ Fτ → Fσ, ℎV ∶ Vτ → Vσ) such that ℎF ∘ ∂τ = ∂σ ∘ ℎV and
ℎF ∘ 𝑗τ = 𝑗σ ∘ ℎF.

A graph morphism is said to be injective if both its component functions are.

The category Graph has graphs as objects and morphisms of graphs as morphisms: indeed,
graph morphisms compose (by composing the underlying functions) and the couple of identities
(on vertices and flags) is neutral. It is a monoidal category, with disjoint union as a monoidal
product.

Graphs with structure

2.2.5 Some structure can be put on top of a graph. For instance:
Definition 15

• A labelled graph (τ, ℓ) with labels in I is a graph τ together with a function ℓ ∶ Vτ → I;

• a colored graph (τ, c) with colors in a set C is a graph τ together with a function c ∶
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Fτ → C such that, for two halves 𝑓, 𝑓′ of any edge of τ,

c(𝑓) = c(𝑓′);

• an oriented graph (τ, o) is a graph τ together with a function o ∶ Fτ → {in, out} such
that, for two halves 𝑓, 𝑓′ of any edge of τ,

o(𝑓) ≠ o(𝑓′);

in-oriented tails of τ are called inputs of τ, out-oriented tails are called outputs of τ;
• an ordered graph τ, ⩽τ is a graph together with an order on the flags.

The different structures on a graph combine.

Example : Let 5 = {0, 1, 2, 3, 4} be the finite cardinal endowed with the order 0 <5 4 and 1 <5 2 <5 3, and

• o the orientation defined by

o(0) = o(4) = out

o(1) = o(2) = o(3) = in,

• ℓ defined by ℓ(∗) = ✠,

• c ∶ 5 → {𝑎0, … , 𝑎4} the coloring defined by

∀𝑖 ∈ 5, c(𝑖) = 𝑎𝑖.

The ordered labelled oriented colored corolla (∗5, o, ℓ, c, <5) will be depicted as in Figure 2.2.

2.2.6 Each enrichment of the structure of graphs of Definition 15 defines a notion of morphism that
preserves it and an associated category.

2.2.7 We can depict graphs as two-dimensional figures. As a graph is just a disjoint union of corollas
glued with the involution, we only need to show depictions of corollas (as in Figure 2.2) and how
to depict an edge to be able to depict full graphs. We will always depict the inputs of a corolla
above the corolla, and its outputs below, with arrows also indicating the orientation. The colors are
written next to the arrows. If ordered, the different flags of a corolla are depicted increasing from
left to right.

✠

0 4

1 2 3

Figure 2.2: One depiction of a labelled oriented corolla

Trees
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2.2.8 A graph can be realized geometrically. The geometric realization of a corolla ∗S is the disjoint union
⨆S[0;

1
2 ] with end-points 0 identified. The geometric realization of a graph is the disjoint union of

the geometric realization of the corollas of all its vertices, with points 1
2 of any two flags forming an

orbit under the involution of the graph identified.
A graph is (simply) connected if its geometric realisation is (simply) connected.
A tree is a connected, simply connected graph.

2.2.9 A rooted tree is an oriented tree such that each vertex has exactly one out flag. A rooted tree only has
one output tail. Its boundary is called the root of the rooted tree.

A special class of morphism is of interest for rooted trees.
Definition 16

Let τ1 and τ2 be two rooted trees, and ℎ ∶ τ1 → τ2 be a morphism of graphs.
ℎ is a morphism of rooted trees if ℎV maps the root of τ1 to the root of τ2.

A sub-rooted tree of a tree τ is a tree τ′ together with an injective morphism of rooted tree τ′ → τ.
2.2.10 It is sometimes useful to consider not a rooted tree, but its reflexive-transitive closure (as in Defi-

nition 17). An (oriented) path on a oriented graph τ is either empty or a sequence 𝑓0𝑓1⋯𝑓2𝑛+1
such that the 𝑓2𝑖 are outputs and the 𝑓2𝑖+1 are inputs, and ∀0 ⩽ 𝑖 < 𝑛, ∂(𝑓2𝑖+1) = ∂(𝑓2𝑖+2). Such a
path is said to be from ∂(𝑓0) to ∂(𝑓2𝑛+1). The empty path is a path from any vertex to itself.

The set of paths on a tree are finite. As such, given a tree τ, we define its reflexive-transitive closure,
or free category τ⟲ as the graph with same vertices and same tails as τ, and with edges oriented from
𝑣 to 𝑣′ the paths from 𝑣 to 𝑣′.

2.2.11 Rooted trees and morphisms of rooted tree form a category RootTree. The reflexive-transitive clo-
sure operator extends to a functor (⋅)⟲ ∶ RootTree → Graph.

Proof-nets

2.2.12 We adopt the Cat-operadic point of view also for proof-nets, which mean our fundamental objects
will be reductions, and usual proof-nets will be particular cases of reductions: identities. Nonethe-
less, we will first define proof-nets with no reductions, then, pointed proof-nets with reductions,
that is, with a distinguished conclusion, then, finally, proof-nets with reductions.

We formalize the intuition of Section 2.2 by equipping a graph by labels (which specify the
types of the vertices, which are the connectives of MELL), colors (which specify the types of the flags,
which are formulæ of MELL), and a function that specify the deepest box a flag is in, all subject to
compatibility conditions.
Definition 17 (proof-net)

A MELL module is a tuple R = (τ, ℓ, c, ⩽,𝒯 , box), where
• τ is a labelled ordered oriented colored graph (τ, ℓ, c, ⩽), the underlying graph of R such

that:

– ℓ ∶ Vτ → {ax, cut, 1, ⊥, ⊗,`, ?, !};
– c ∶ Fτ → ℱMELL;

– let 𝑣 ∈ Vτ.

* if ℓ(𝑣) = cut, the corolla τ𝑣 has only two flags 𝑖1 and 𝑖2 which are inputs, and
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such that

c(𝑖1) = c(𝑖2)⊥;

* if ℓ(𝑣) = ax, the corolla τ𝑣 has only two flags 𝑜1 and 𝑜2 which are outputs,
and such that

c(𝑜1) = c(𝑜2)⊥;

* if ℓ(𝑣) = 1, the corolla τ𝑣 has no inputs and one output 𝑜, such that

c(𝑜) = 1;

* if ℓ(𝑣) = ⊥, the corolla τ𝑣 has no inputs and one output 𝑜, such that

c(𝑜) = ⊥;

* if ℓ(𝑣) = ⊗, the corolla τ𝑣 has two inputs 𝑖1 < 𝑖2 and one output 𝑜, such that

c(𝑜) = c(𝑖1) ⊗ c(𝑖2);

* if ℓ(𝑣) = `, the corolla τ𝑣 has two inputs 𝑖1 < 𝑖2 and one output 𝑜, such that

c(𝑜) = c(𝑖1)` c(𝑖2);

* if ℓ(𝑣) = ?, the corolla τ𝑣 has many inputs 𝑖1, … , 𝑖𝑛(𝑛 ⩽ 0) and one output 𝑜,
such that

∀1 ⩽ 𝑗 ⩽ 𝑛, c(𝑜) = ?c(𝑖𝑗);

* if ℓ(𝑣) = !, the corolla τ𝑣 has one input 𝑖 and one output 𝑜, such that

c(𝑜) = !c(𝑖).

These corollas are depicted Figure 2.1.
– ⩽ is total.

• 𝒯 is a rooted tree, the box-tree of R;

• box ∶ τ → 𝒯 ⟲ is a morphism of graphs, the box-function of R such that:

– boxV, induces a bijection between {𝑣 ∈ Vτ ∣ ℓ(𝑣) = !} and the non-root vertices of
𝒯;

– let {𝑓, 𝑓′} be an edge such that 𝑓 is an output. If boxV(∂τ𝑓) ≠ boxV(∂τ𝑓′), then
ℓ(∂τ𝑓) ∈ {!, ?}. If ℓ(∂τ𝑓) = ! then boxV(∂τ𝑓) ≠ boxV(∂τ𝑓′).

A MELL proof-net is a module with no input tails.

If R is a proof-net, we say that the vertices of τR (the underlying graph or R) are the cells of the
proof-net, the edges of τR are the wires and the tails are the conclusion of R.
Lemma 2

Let R = (τ, ℓ, c, ⩽,𝒯 , box) be a proof-net. The function c is uniquely determined by ℓ and its
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image on the conclusions of R.

2.2.13 The proof-nets we just defined are particularily rigid: a proof-net is depedent on its carrier-sets of
cells and wires. We will only consider proof-nets modulo the isomorphim arising from its labelled
graph structure.

Definition 18 (isomorphism of proof-nets)

A isomorphism of proof-nets 𝑓 ∶ R ≃ R ′ is
• an isomorphism 𝑓 ∶ τR → τR′ of the underlying graph

• an isomorphism 𝑓box ∶ 𝒯R → 𝒯R′ of the boxing trees
such that

τR 𝒯R

τR′ 𝒯R′

boxR

𝑓 𝑓box

boxR′

and such that, moreover, the restrictions of 𝑓 on:
• the tails,

• the inputs of each cell of type ?, ⊗,`,
are all increasing.

We will actually always consider proof-nets quotiented by this isomorphism, and will implicitly
verify that every construction we give factor through this quotient.

2.2.14 In order to fit in the operadic framwork we outlined, we need to specify which conclusions are to be
seen as in the source of the multi-arrow and which conclusion is seen as in the target. We achieve
this by specifying a distinguished conclusion on proof-nets.

Definition 19

A pointed proof-net is a proof-net R with a distinguished conclusion 𝑐.

Example : The graph of Figure 2.3 is a proof-net, with only one conclusion, distinguished, and so written in
red. The set of types is taken to be {𝑖, 𝑜}, satisfying the equations 𝑖 = 𝑜⊥, 𝑖 = !𝑜 ⊗ 𝑖.
The greyed areas represent the inverse images of boxes.

As the non-distinguished conclusions are totally ordered, a pointed proof-net (R, 𝑐) can be seen
as an arrow

A 1, … ,A 𝑛 → B

where A 𝑖 is the type of the 𝑖th non-distinguished conclusion, and B is the type of the distinguished
conclusion. We will make this structure more precise, by defining the reductions.



2.2. Proof-nets as a cyclic operad 49

𝑖 𝑜 𝑖 𝑜 𝑖 𝑜 𝑖 𝑜

𝑖 𝑜 𝑖 𝑜

𝑖 𝑜

ax ax

?
?𝑖

!

!𝑜
!

⊗
𝑖

cut

ax

!

!𝑜
!

ax

⊗
𝑖

cut

ax

?
?𝑖

`
𝑜

`
𝑜

ax

?
?𝑖

`
𝑜
!

!𝑜
!

ax

⊗
𝑖

cut

(a) The proof-net

•

0

0

1

(b)
Its box-tree

Figure 2.3: A pointed proof-net.

2.2.15 The reduction proof-nets have a much more complicated structure than the proof-nets. Indeed, any
cell of a reduction proof-net can be a reduction, carried in parallel, independently from the rest of
the proof-net. We achieve this by defining reduction cells, so that reductions are represented by a
structure akin to proof-nets, where some cells are reduction cells.
Definition 20

A reduction cell is a an oriented labelled colored corolla satisfying:

• the cell is labelled with a couple (𝑚1, 𝑚2) of MELL-modules together with two increasing
bijections between the sets of inputs (respectively outputs) of 𝑚1 and 𝑚2 that commute
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with c;

• the inputs (respectively outputs) of the reduction cells are in bijection with the inputs
(respectively outputs) of 𝑚1, and the bijection commutes with c.

The set of reduction cells is noted Red.
A reduction cell is endowed with two projections, the left and the right one, that associates

with a cell (𝑚1, 𝑚2) the left and the right module in it. The left and the right projection have
potentially a different box-tree.

The reduction cells are depicted Figures 2.4 to 2.6, whereπ andπ′ are arbitrary MELL proof-nets.
The set of reduction cells is noted Red.

A A⊥ A
ax

cut

A

A

A

A
(a) Cut | Axiom

A B B⊥ A⊥ A B B⊥ A⊥

⊗
A ⊗ B

`
B⊥ `A⊥

cut
cut

cut

A B B⊥ A⊥

(b) Tensor | Par

1 ⊥
1 ⊥

cut

(c) Tensor | Par

Figure 2.4: The MELL multiplicative reduction cells

Definition 21 (reductive MELL proof-net)

A reductiveMELLmodule is a tupleR = (τ, ℓ, c, ⩽,𝒯 , box), where τ is a labelled ordered oriented
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A ⋯ A A ⋯ A
?
?A

π

⋯
???

⋯

!
!A⊥

cut

π π π

⋯ ⋯ ⋯A⊥ A⊥ A⊥

cut
cut

cut
??
⋯
?

A ⋯ A

⋯
(a) Contraction | Box

π

⋯

???
⋯

!
!A⊥

π′

!
!B

⋯

???
⋯

⋯
?
?A

cut

π

⋯

???
⋯

!
!A⊥

π′

!
!B

⋯

???
⋯

⋯
?
?A

cut

!B ⋯
(b) Box | Box

Figure 2.5: The MELL exponential reduction cells

colored graph (τ, ℓ, c, ⩽), the underlying graph of R such that:
• ℓ ∶ Vτ → {ax, cut, 1, ⊥, ⊗,`, ?, !, Red};
• c ∶ Fτ → ℱMELL.
It is endowed with two projections, whose underlying graph is obtained by grafting the

projections of the reduction cells with the rest of the graph, while the box-trees are defined by
the grafting of the box-tree of the projections of the reduction cells with the one of the underlying
graph.

We require the two projected graphs to be MELL modules.

A reductive proof-net has two projections, the left and the right one, which are MELL proof-nets.
In particular, the two proof-nets need not share the same box-tree.

2.2.16 Let R and R’ be two reductive proof-nets, such that the right projection of R is isomorphic to the
left projection of R ′. Each represent a reduction, and as such, R;R ′ represent a reduction sequence.
Just as we did for λ-calculi, we need to ensure permutation equivalence, which is done by:
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• requiring a reductive cell to commute with any non-reductive proof-net;
• requiring any reductive cell with the same cell 𝑐 in its left and right projection to be equal to

the reductive proof-net with the reductive cell without 𝑐 and 𝑐 attached to it;
• requiring a reductive cell that 𝑛-plicates a box containing π followed by 𝑛 reductive cells

reducingπ toπ′ to be equal with the reductive cell that reduceπ intoπ′ inside a box followed
by the 𝑛-plication of π′.

2.2.17 The cyclic Cat-operad MELL of proof-nets is defined by:
• its objects are MELL formulæ;
• its multiarrows are pointed MELL proof-nets;
• its 2-arrows are sequences of composable reductive proof-nets modulo the equations described

above.
2.2.18 Just like the λ-calculus, proof-nets have their kind of extensionality.

A B B⊥ A⊥

A ⊗ B B⊥ `A⊥
ax

⊗
A ⊗ B

`
B⊥ `A⊥

ax

ax

A ⊗ B B⊥ `A⊥
(a) η-multiplicative

A⊥ A

?A⊥ !A
ax

ax

?
?A⊥

!
!A

(b) η-exponential

Figure 2.6: Extensionality

. T λμ-    

The λμ-calculus (Parigot 1992) is a well-known extension of the λ-calculus that captures classical
reasoning (and control operators). From the operadic point of view, this corresponds to being able
to permute certain inputs and outputs. It is therefore our motivating example for introducing semi-
cyclic operads.
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Given two infinite disjoint sets, a set of variables ranging over 𝑥, 𝑦, 𝑧, … and a set of names ranging
over α, β, …, and a set 𝕋 closed by a binary operation →, the λμ reductions are generated by the
rules of Figure 2.7 where {⋅//⋅} is recursively defined by:

𝑥{𝑢//α} = 𝑥
(λ𝑥.𝑡){𝑢//α} = λ𝑥.𝑡{𝑢//α}
(𝑡𝑢){𝑢//α} = 𝑡{𝑢//α}𝑢{𝑢//α}

(μγ.⌈α⌉𝑡){𝑢//α} = μγ.⌈α⌉(𝑡{𝑢//α})𝑢
(μγ.⌈β⌉𝑡){𝑢//α} = μγ.⌈β⌉(𝑡{𝑢//α}), β ≠ α

modulo the equations of Figure 2.8

Γ, 𝑥 ∶ A; Δ ⊢ 𝑥 ∶ 𝑥 ⇒ 𝑥 ∶ A
(variable)

Γ; Δ ⊢ θ ∶ 𝑡 ⇒ 𝑡′ ∶ A Γ; Δ ⊢ θ′ ∶ 𝑡′ ⇒ 𝑡″ ∶ A
Γ; Δ ⊢ θ; θ′ ∶ 𝑡 ⇒ 𝑡″ ∶ A

(composition)

Γ; Δ ⊢ θ ∶ 𝑡 ⇒ 𝑡′ ∶ A → B Γ;Δ ⊢ κ ∶ 𝑢 ⇒ 𝑢′ ∶ A
Γ; Δ ⊢ θκ ∶ 𝑡𝑢 ⇒ 𝑡′𝑢′ ∶ B

(application)

Γ, 𝑥 ∶ A; Δ ⊢ θ ∶ 𝑡 ⇒ 𝑡′ ∶ B
Γ; Δ ⊢ λ𝑥.θ ∶ λ𝑥.𝑡 ⇒ λ𝑥.𝑡′ ∶ A → B

(abstraction)

Γ; Δ, α ∶ A, β ∶ B ⊢ θ ∶ 𝑡 ⇒ 𝑡′ ∶ B
Γ; Δ, β ∶ B ⊢ μα.⌈β⌉θ ∶ μα.⌈β⌉𝑡 ⇒ μα.⌈β⌉𝑡′ ∶ A

(name)

Γ, 𝑥 ∶ A; Δ ⊢ θ ∶ 𝑡 ⇒ 𝑡′ ∶ B Γ; Δ ⊢ κ ∶ 𝑢 ⇒ 𝑢′ ∶ A
Γ; Δ ⊢ (β𝑥.θ)κ ∶ (λ𝑥.𝑡)𝑢 ⇒ 𝑡′ {𝑥 ← 𝑢′} ∶ B

(β-reduction)

Γ; Δ, α ∶ A → C ⊢ θ ∶ 𝑡 ⇒ 𝑡′ ∶ B Γ; Δ ⊢ κ ∶ 𝑢 ⇒ 𝑢′ ∶ A
Γ; Δ, β ∶ B ⊢ [(μα.⌈β⌉θ)κ] ∶ (μα.⌈β⌉𝑡)𝑢 ⇒ μα.⌈β⌉𝑡′{𝑢′//α} ∶ C

(μ-reduction)

Figure 2.7: The λμ-calculus reductions

Definition 22 (λμ operad )

The semi-cyclic Cat-semi-operad ΛM𝕋 is defined as the operad with:

• as objects three copies of the elements of 𝕋, respectively as inputs, outputs-in-waiting,
and outputs;

• as arrows, with Γ = A 1, … ,A 𝑛 and Δ = C1, … , C𝑚,
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(θ𝑡⇒𝑡′κ𝑢⇒𝑢′)𝑡𝑢⇒𝑡′𝑢′; (θ′
𝑡′⇒𝑡″κ′𝑢′⇒𝑢″)𝑡′𝑢′⇒𝑡″𝑢″ = (θ𝑡⇒𝑡′; θ′

𝑡′⇒𝑡″)𝑡⇒𝑡″(κ𝑢⇒𝑢′; κ′𝑢′⇒𝑢″)𝑢⇒𝑢″

(λ𝑥.θ𝑡⇒𝑡′); (λ𝑥.θ′
𝑡′⇒𝑡″) = λ𝑥.(θ; θ′)𝑡⇒𝑡″

(λ𝑥.θ𝑡⇒𝑡′)κ𝑢⇒𝑢′; (β𝑥.θ′
𝑡⇒𝑡′)κ′𝑢′⇒𝑢″ = (β𝑥.(θ; θ′)𝑡⇒𝑡″)(κ; κ′)𝑢⇒𝑢″

(μα.⌈β⌉θ𝑡⇒𝑡′)κ𝑢⇒𝑢′; [(μα.⌈β⌉θ′
𝑡′⇒𝑡″)κ′𝑢′⇒𝑢″] = [(μα.⌈β⌉(θ; θ′)𝑡⇒𝑡″κ𝑢⇒𝑢″]

Figure 2.8: The λμ-calculus reduction equations.

Γ, Δ B

β-less terms of Figure 2.7, quotiented by the equations of Figure 2.8

𝑥1 ∶ A 1, … , 𝑥𝑛 ∶ A 𝑛, α1 ∶ C1, … , α𝑚 ∶ C𝑚 ⊢ 𝑡 ∶ 𝑡 ⇒ 𝑡 ∶ B

that is, λ-terms 𝑡 with free variables included in {𝑥1, … , 𝑥𝑛} and names included in
{α1, … , α𝑚};

• as arrows A → A silent coercions;

• the only composable arrows are mediated through these coercions. We define the com-
position as the substitution and renaming of variables and names;

• as 2-arrows the reductions;

• composition ; as composition of 2-arrows;

• for a morphism

𝑥1, … , 𝑥𝑛, α1, … , α𝑚 ⊢ 𝑡 ∶ Γ; Δ → B,

with Δ = C1, … , C𝑚 and 1 ⩽ 𝑖 ⩽ 𝑚, the action of the transposition (0 𝑖) is the term

μα0.⌈α𝑖⌉𝑡{α0/α𝑖} ∶ Γ; C1, … , B,… , C𝑚 → C𝑖,

which is enough to define the action of 𝔖𝑛+1 as the symmetric group is generated by the
transposition with a fixed element.

It must be remarked that the potential outputs have no identities. Indeed, ; α ∶ A ⊢ α ∶ A is not a
term (or anything approaching it).

2.3.1 We can add extensionality to the λμ-calculus, by the reductions of Figure 2.9.
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Γ ⊢ θ ∶ 𝑡 ⇒ 𝑡′ ∶ A → B
Γ ⊢ (η𝑥.θ) ∶ 𝑡 ⇒ λ𝑥.(𝑡′𝑥) ∶ A → B

(η-expansion)

Figure 2.9: The λμ-calculus extensionality reductions
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¦

3.0.1 For the time being, we have only been interested in calculi, and categorical structures representing
them. As usual in mathematics, the morphisms of structures have an interest, and the morphisms
of calculi are no exceptions. As we will see, we have three different ways of interpreting a morphism
between two Cat-operads:

𝒞 𝒟
𝑓

depending on how we view the two Cat-operads. Indeed, we will view either
• 𝑓 as a translation of a calculus 𝒞 into a calculus 𝒟;

• 𝑓 as a type system for the calculus 𝒟, refining the types of 𝒟 as types of 𝒞, and typing the
terms in 𝒟 with derivations in 𝒞;

• 𝑓 as a semantics for the calculus 𝒞, and 𝒟 as an algebra for it.

57
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. CPS    λ-

3.1.1 Different flavors ofλ-calculus can be translated thanks to so-called continuation-passing-style (CPS)
translations. Invented for compiling functionnal languages such as Lisp, they enjoy a close relation-
ship with various logical translation, such as Gödel ¬¬-translation or forcing. These translations
have first been given by Plotkin (1975), and then sharpened in a lot of studies.

From call-by-value to call-by-name

3.1.2 The translation from call-by-value to call-by-name we present is directly inspired by the one orig-
inally presented by Plotkin (1975, §6). The translation acts on the sequents of the call-by-value
λ-calculus, and is the identity on types and contexts. So, omitting contexts and types, it is given by
Figure 3.1. We remark, that, if 𝑢 is a value, P(𝑢) = λκ.κ𝑢∘ (where 𝑢∘ is either 𝑥 if 𝑢 is a variable
𝑥 or (λ𝑥.P(𝑡)) if 𝑢 is an abstraction λ𝑥.𝑡) and that, for all terms 𝑡 and value 𝑢, P(𝑡 {𝑥 ← 𝑢}) =
P(𝑡) {𝑥 ← 𝑢∘}.

P(𝑥) =λκ.κ𝑥
P(λ𝑥.𝑡) =λκ.κ(λ𝑥.P(𝑡))
P(𝑡𝑢) =λκ.P(𝑡)(λ𝑚.P(𝑢)(λ𝑚′.𝑚𝑚′κ))

P((β𝑣𝑥.𝑡)𝑢) =λκ.(βκ′.κ′(λ𝑥.P(𝑡)))(λ𝑚.P(𝑢)(λ𝑚′.𝑚𝑚′κ));
λκ.((β𝑚.P(𝑢)(λ𝑚′.𝑚𝑚′κ))(λ𝑥.P(𝑡)));
λκ.(P(𝑢)(λ𝑚′.(β𝑥.P(𝑡))𝑚′κ));
λκ.((βκ.κ𝑢∘)(λ𝑥.P(𝑡)κ));
λκ.(β𝑥.P(𝑡)κ)𝑢∘)
∶λκ.(λκ′.κ′(λ𝑥.P(𝑡)))(λ𝑚.P(𝑢)(λ𝑚′.𝑚𝑚′κ)) ⇒ λκ.(P(𝑡) {𝑥 ← 𝑢∘} κ)

Figure 3.1: The CPS translation of call-by-value in call-by-name

So, P defines a morphism of Cat-operads Λ𝑣,𝕋 → Λ𝕋 for all sets of types 𝕋.

From call-by-name to call-by-value

3.1.3 In the other direction, the translation, given in Figure 3.2 is even arguably simpler. We remark that
P(𝑡 {𝑥 ← 𝑢}) = λκ.P(𝑡) {𝑥 ← P(𝑢)} κ.

. E    

The call-by-name Girard translation
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P(𝑥) =λκ.κ𝑥
P(λ𝑥.𝑡) =λκ.κ(λ𝑥.P(𝑡))
P(𝑡𝑢) =λκ.P(𝑡)(λ𝑚.𝑚P(𝑢)κ)

P((β𝑥.𝑡)𝑢) =λκ.(β𝑣κ′.κ′(λ𝑥.P(𝑡)))(λ𝑚.𝑚P(𝑢)κ);
λκ.((β𝑣𝑚.𝑚P(𝑢)κ)(λ𝑥.P(𝑡)));
λκ.((β𝑣𝑥.P(𝑡))P(𝑢)κ)
∶λκ.(λκ′.κ′(λ𝑥.P(𝑡)))(λ𝑚.𝑚P(𝑢)κ) ⇒ λκ.P(𝑡) {𝑥 ← P(𝑢)} κ

Figure 3.2: The CPS translation of call-by-name in call-by-value

3.2.1 Linear Logic started as a decomposition of intuitionnistic logic, based on the type isomorphism

A → B ≃ !A ⊸ B,

meaning that intuitionistic implication is linear implication of a repetition. As such, for a set of
types 𝕋1 suitable for intuitionnistic logic (that is, a set of types closed by a binary operation →) and
a set of types 𝕋2 suitable for linear logic (that is, partitionned in two sub-set 𝕋l and 𝕋c, closed by
a binary operation ⊸ and a unary operation ! that maps elements of 𝕋l to elements of 𝕋c) and a
function

(⋅)∘ ∶ 𝕋1 → 𝕋c

satisfying

∀A, B ∈ 𝕋1, (A → B)∘ = (!A∘) ⊸ B ∘,

Girard’s (call-by-name) embedding

G ∶ Λ𝕋1 ⟶ Λ!,𝕋2

of the λ-calculus in intuitionnistic linear logic (Girard 1987) is defined as follows:
• on objects, G(A) ∶= A∘;
• on multimorphisms, given Γ ⊢ M ∶ A 1, … ,A 𝑛 → B, G(Γ ⊢ M) ∈ Λ!,𝕋2(A

∘
1, … ,A∘

𝑛; B ∘)
is defined by induction on M:

– G(Γ, 𝑥 ⊢ 𝑥) ∶= Γ, 𝑥 ⊢ 𝑥;
– G(Γ ⊢ λ𝑥.M) ∶= Γ ⊢ λ𝑎.𝑡 [!𝑥 ∶= 𝑎], where G(Γ, 𝑥 ⊢ M) = Γ, 𝑥 ⊢ 𝑡;
– G(Γ ⊢ MN) ∶= 𝑡!𝑢, where G(Γ ⊢ M) = 𝑡 and G(Γ ⊢ N) = 𝑢.

It is straightforward to check that G(M {N ← 𝑥}) = G(M) {G(N) ← 𝑥}.
• On 2-arrows, given

(β𝑥.θ)κ ∶ Γ ⊢ (λ𝑥.M)N ⇒ M ′ {N ′ ← 𝑥} ,

G((β𝑥.θ)κ) is defined to be the following 2-step reduction:

G((β𝑥.θ)κ) =(β𝑎.G(M) [!𝑥 ∶= 𝑎])!G(N); βθ [!𝑥 ∶= !κ]
∶(λ𝑎.G(M) [!𝑥 ∶= 𝑎])!G(N) → G(M {N ← 𝑥})
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The call-by-value Girard translation

3.2.2 The call-by-value λ-calculus can also be encoded in linear logic (Maraist et al. 1999) by ways of a
translation already present in (Girard 1987), where it is called the “boring translation”. The resulting
morphism G𝑣 ∶ Λ𝑣 → Λ! is defined by:

• G𝑣(t) = l and G𝑣(v) = c;

• on terms, G𝑣 splits in two subcases, which we denote by Gt
𝑣 (for terms) and Gv

𝑣 (for values)
and define by mutual induction: given V ∈ Λ𝑣(v𝑛; v), Gv

𝑣(V) ∈ Λ!(c𝑛; c) is

– Gv
𝑣(𝑥) ∶= 𝑥;

– Gv
𝑣(λ𝑥.M) ∶= λ𝑎.G𝑣(M) [!𝑥 ∶= 𝑎]

and for M ∈ Λ𝑣(v𝑛; t), Gt
𝑣(M) ∈ Λ!(c𝑛; l) is

– Gt
𝑣(V) = !Gv

𝑣(V)
– Gt

𝑣(MN) = ξ [!ξ ∶= Gt
𝑣(M)]Gt

𝑣(N)
One may check that Gt

𝑣(M{V/𝑥}) = Gt
𝑣(M){Gv

𝑣(V)/𝑥}.
• the 2-arrow β𝑣 ∶ (λ𝑥.M)V → M{V/𝑥}, G𝑣(β𝑣) is

G𝑣((λ𝑥.M)V) = ξ [!ξ ∶= !λ𝑎.G𝑣(M) [!𝑥 ∶= 𝑎] !G𝑣(V)]
→ λ𝑎.G𝑣(M) [!𝑥 ∶= 𝑎] !G𝑣(V) → G𝑣(M) [!𝑥 ∶= !G𝑣(V)]
→ G𝑣(M){G𝑣(V)/𝑥} = G𝑣(M{V/𝑥}).

which is enough, because β𝑣 generates all 2-arrows of Λ𝑣.

. E    

Intuitionnistic to classical linear logic

3.3.1 The translation of intuitionnistic linear logic into classical logic is essentially vacuous, and is more
of a change of syntax than anything. Figure 3.3 and Figure 3.5. The explicit-β step is not pictured
and is a Contraction | Box from Figure 2.5(a) following the explicit-substitution translation.

3.3.2 The translation of theλ!-calculus we just presented does not validate the extensionality ofλ-calculus,
that is, the translations λ𝑥.(𝑡𝑥) and of 𝑡 are not always reducible one to the other. In order for the
translation to be extensional, we need to quotient MELL proof-net further, by making the ? cells
commutative.
Definition 23 (?-isomorphism of proof-nets)

A ?-isomorphism of proof-nets 𝑓 ∶ R ≃? R ′ is

• an isomorphism 𝑓 ∶ τR → τR′ of the underlying graph

• an isomorphism 𝑓box ∶ 𝒯R → 𝒯R′ of the boxing trees

such that
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(𝑎 ∶ A ⊢ id ∶ 𝑎 ⇒ 𝑎 ∶ A)∘ = 𝑎 ∶ A⊥A
ax

(a) Variable

(Γ, Γ ′; Δ ⊢ θκ ∶ 𝑡𝑢 ⇒ 𝑡′𝑢′ ∶ B)∘ = (Γ; Δ ⊢ θ ∶ 𝑡 ⇒ 𝑡′ ∶ A ⊸ B)∘

⋯ A ⊸ B

(Γ ′; Δ ⊢ κ ∶ 𝑢 ⇒ 𝑢′ ∶ A)∘

⋯ A

B

⊗

ax

cut
???

Δ

(b) Application

(Γ; Δ ⊢ λ𝑎.θ ∶ λ𝑎.𝑡 ⇒ λ𝑎.𝑡′ ∶ A ⊸ B)∘ =

(Γ, 𝑎 ∶ A; Δ ⊢ θ ∶ 𝑡 ⇒ 𝑡′ ∶ B)∘

⋯ 𝑎 ∶ A⊥B
`

A ⊸ B
(c) Abstraction

Figure 3.3: λ! calculus to MELL proof-nets, multiplicatives

τR 𝒯 ⟲
R

τR′ 𝒯 ⟲
R′

boxR

𝑓 𝑓⟲box

box
⟲
R′

and such that, moreover, the restrictions of 𝑓 on:
• the tails

• the inputs of each cell of type ⊗,`
are all increasing.
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(Γ, Γ ′; Δ, Δ′ ⊢ (β𝑎.θ)κ ∶ (λ𝑎.𝑡)𝑢 ⇒ 𝑡′ {𝑎 ← 𝑢′} ∶ B)∘

=

A⊥ B B⊥ A A⊥ B B⊥ A

B

`
A ⊸ B

⊗
B⊥ ⊗ A

cut
cut

cut

A⊥ B B⊥ A
(Γ, 𝑎 ∶ A; Δ ⊢ θ ∶ 𝑡 ⇒ 𝑡′ ∶ B)∘ (Γ ′Δ′ ⊢ κ ∶ 𝑢 ⇒ 𝑢′ ∶ A)∘ax

Figure 3.4: β-reduction

A ≃?-isomorphism class could be described directly by a definition close to the one of a proof-
net, but with the order on flags kept partial and not defined on inputs of ? and ax cells, and neither
on outputs of cut cells.

The Laurent-Girard translation

3.3.3 The Laurent-Girard translation translates λμ-calculus into some variant of MELL proof-nets (such
as polarized MELL proof-nets). We represent it Figure 3.6, restricted on terms, as the translation of
reductions is an adaptation of the translation of Λ! in MELL?.

. T 

Type-systems as functors

3.4.1 What is a type system? (Melliès and Zeilberger 2015) recently suggested an amazingly simple answer
to this question: a type system is a functor, mapping a category 𝒟 of derivations to a monoid 𝒞 of
programs (in the simple case in which programs are untyped, otherwise 𝒞 is also a category).

Typing reductions

3.4.2 We introduce a class of morphisms of Cat-operads that are interesting as type systems.
Definition 24 ((pointwise) Niefield fibration)

Let ℬ be a small category. A Niefield fibration on ℬ is a functor 𝑝 ∶ ℰ → ℬ, with ℰ an
arbitrary small category, verifying:
(identities) for every 𝑏 ∈ ℬ and arrow 𝑘 of ℰ, 𝑝(𝑘) = id𝑏 implies 𝑘 = id𝑒 for some 𝑒 ∈ ℰ;

(compositions) for every arrows 𝑘 of ℰ and 𝑓, 𝑓′ of ℬ, 𝑝(𝑘) = 𝑓′ ∘ 𝑓 implies that there exist
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(; 𝑥 ∶ A, Δ ⊢ id ∶ 𝑥 ⇒ 𝑥 ∶ A)∘ = A⊥ A
ax

?
?A⊥

(a) !-variable

(; Δ ⊢ !θ ∶ !𝑡 ⇒ !𝑡′ ∶ !A)∘ = (; Δ ⊢ θ ∶ 𝑡 ⇒ 𝑡′ ∶ A)∘

⋯
???
Δ

!
!A

(b) Promotion

(Γ, Γ ′; Δ, Δ′ ⊢ θ [!𝑥 ∶= κ] ∶ 𝑡 [!𝑥 ∶= 𝑢] ⇒ 𝑡′ [!𝑥 ∶= 𝑢′])∘ = (Γ; Δ ⊢ θ ∶ 𝑡 ⇒ 𝑡′ ∶ A ⊸ B)∘

A⊥

?
?A⊥

⋯ B

(Γ ′; Δ ⊢ κ ∶ 𝑢 ⇒ 𝑢′ ∶ A)∘

⋯ A
!
!A

cut???
Δ

(c) Explicit substitution

Figure 3.5: λ! calculus to MELL proof-nets, exponentials

(not necessarily unique) composable arrows 𝑔, 𝑔′ of ℰ such that 𝑝(𝑔) = 𝑓 and 𝑝(𝑔′) = 𝑓′
and 𝑘 = 𝑔′ ∘ 𝑔;

We say that a morphism of small Cat-operads 𝑝 ∶ ℰ → ℬ is a pointwise Niefield fibration if, for
all objects Γ,A of ℰ, the functor 𝑝Γ;A is a Niefield fibration.

The composition property has been studied by Niefield (2004) under the name weak factorization
lifting property. For a Niefield fibration 𝑝 ∶ ℰ → ℬ, the two properties together imply that, given
an arrow 𝑓 of ℰ, the structure of 𝑓 (with regard to the compositions and the identities) is the same
as that of 𝑝(𝑓).

In type-theoretic terms, pointwise Niefield fibrations correspond to type systems which

• do not type the untyped empty reduction with a non-empty reduction;
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𝑥∘ = •
ax

?
𝑥

(a) Variable

(λ𝑥.𝑡)∘ =
𝑡∘

⋯𝑥
`

?
•

(b) Abstraction

(μα.⌈β⌉𝑡)∘ = 𝑡∘

⋯ α β •
?
β

(c) Name

(𝑡𝑢)∘ =

𝑡∘

⋯

𝑢∘

⋯

•

!

⊗

ax

!

cut

???
⋯

(d) Application

Figure 3.6: The Laurent translation of the λμ-calculus. A conclusion can me marked by the name
or the variable it represents or by •, if it is the distinguished conclusion of a sub-net.

• type reductions “modularly”: if a decomposable reduction is typed, then so are its compo-
nents.

These seem to be reasonable requirements to ask of a type system. By the way, most common type
systems do not even come with an explicit notion of “typing a reduction”, so it does not even make
sense to ask whether they comply with the above restrictions.

It is interesting to note that we have no similar requirements for terms, that is, the identity may
be typed with a type of the form A → B (A ≠ B), which corresponds to a case of subtyping, and
we have no modularity requirements: if a term 𝑡{𝑥/𝑢} is typed, we do not ask that 𝑡 or 𝑢 are typable.
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Subject reduction, subject expansion

3.4.3 Of the properties of interest for type systems, the first ones are subject reduction and subject expan-
sion.

A weak discrete fibration (or wd-fibration) is a Niefield fibration 𝑝 ∶ ℰ → ℬ which further
satifies the weak lifting property: for every 𝑓 ∶ 𝑏 → 𝑝(𝑒′) in ℬ, there exists 𝑔 ∶ 𝑒 → 𝑒′ in ℰ such that
𝑝(𝑔) = 𝑓.

A wd-opfibration has the dual property: for every 𝑓 ∶ 𝑝(𝑒) → 𝑏′ in ℬ, there exists 𝑔 ∶ 𝑒 → 𝑒′
in ℰ such that 𝑝(𝑔) = 𝑓. A wd-bifibration has both properties.

. S

3.5.1 Let 𝒞 and 𝒟 be two Cat-operads. If 𝒞 is viewed as a calculus, but not 𝒟, it is still possible to
consider a morphism 𝑓 ∶ 𝒞 → 𝒟. In that case, if we view 𝒟 as a mathematical universe, 𝑓
associates

• to a type, a mathematical structure;

• to a term, a morphism of said structures;

• to a reduction, a transformation of these morphisms.
3.5.2 We can tame this structure by imposing restriction on what the reductions can be. For instance,

it is possible to consider only Cat-operads 𝒟 that are preorders locally, that is, for every objects
A 1, … ,A 𝑛 and object A, the category 𝒟(A 1, … ,A 𝑛; A) is a pre-order.

Any partially ordered set (S, ⩽) defines a Cat-operad 𝒮:
• 𝒮 has one object ⋆;

• a multimorphism ⋆𝑛 → ⋆ is a monotone function

S𝑛 → S

• the order between monotone functions of the same arity is the point-wise order: for 𝑓, 𝑔 ∶
⋆𝑛 → ⋆,

𝑓 ⩽ 𝑔 ⟺ ∀(𝑥1, … , 𝑥𝑛) ∈ S𝑛, 𝑓(𝑥1, … , 𝑥𝑛) ⩽ 𝑔(𝑥1, … , 𝑥𝑛).

3.5.3 We will now introduce particular partially ordered sets whose associated Cat-operad is naturally an
algebra for Λ, the implicative structures. They were introduced by Miquel to provide an uniform
treatment of classical and intuitionnistic realizability. Without entering into details, implicative
structures mix the interpretation of terms and of types, by allowing more flexibility in the structure
of Heyting algebra.
Definition 25 (implicative structure)

An implicative structure (𝒜 , ⩽,→) is a complete lattice (𝒜 , ⩽) endowed with a monotone
application

(→) ∶ 𝒜 op ×𝒜 → 𝒜



66 Chapter 3. Morphisms of operads

such that:

∀𝑎 ∈ 𝒜 , ∀B ⊆ 𝒜 ,􏾒
𝑏∈B

(𝑎 → 𝑏) = 𝑎 → 􏾒
𝑏∈B

𝑏

In particular, ∀𝑎 ∈ 𝒜 , (𝑎 → ⊤) = ⊤.

Example : Implicative structures encompass many different structures of interest, including:

total Heyting algebras
total combinatory algebras
abstract Krivine structures

Proposition 1

Let𝒜 be an implicative structure and 􏾧𝒜 the associated Cat-operad.
The function 𝑓 defined by:
• for all objects A of Λ, 𝑓(A) = ⋆;
• on the multi-arrows of Λ,

𝑓(Γ, 𝑥 ⊢ 𝑥) = (𝑎1, … , 𝑎𝑛) ↦ 𝑎𝑛 ∶ ⋆𝑛 → ⋆

𝑓(Γ ⊢ 𝑡𝑢) = (𝑎1, … , 𝑎𝑛) ↦ 􏾒􏿺𝑐 ∈ 𝒜 , 𝑓(Γ ⊢ 𝑡)(𝑎1, … , 𝑎𝑛) ⩽ 􏿴𝑓(Γ ⊢ 𝑢)(𝑎1, … , 𝑎𝑛) → 𝑐􏿷􏿽

𝑓(Γ ⊢ λ𝑥.𝑡) = (𝑎1, … , 𝑎𝑛) ↦ 􏾒
𝑎∈𝒜

(𝑎 → 𝑓(Γ, 𝑥 ⊢ 𝑡)(𝑎1, … , 𝑎𝑛, 𝑎))

where the sequents are written in unityped style, as the types are forgotten here.

• as there are at most one 2-arrow between arrows in 􏾧𝒜, 𝑓 is already determined on 2-arrows
is a morphism of Cat-operads

𝑓 ∶ Λ → 􏾧𝒜 .

Proof : The only thing to prove is that if there exists a 2-arrow θ ∶ 𝑡 ⇒ 𝑡′ in Λ, the image of 𝑡 is less
than the image of 𝑡′.

3.5.4 We can go a step further and ask for the reductions to be trivial. Every denotational model of the
λ-calculus is an algebra for Λ⋆.
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The polyadic λ-calculus

4.1.1 We fix two disjoint, countably infinite sets of linear and polyadic variables, ranged over by 𝑎, 𝑏, 𝑐 and
𝑥, 𝑦, 𝑧, respectively. As usual, we also fix a set of types 𝕋, closed by a binary operation ⊸, and, for
each arity 𝑛, an 𝑛-ary operation ⟨⟩. We will approximate the ! box constructor of linear λ-calculus
by a polyadic term, paving the way to linear approximations.

Polyadic terms are terms defined by Figure 4.1. Terms are considered up to renaming of variables,
bound by λ and ⋅ [⟨⋅⟩ ∶= ⋅].

4.1.2 Four flavors of calculi are obtained by including or excluding the structural rules of weakening and
contraction: a term is

• affine if, modulo Barendregt’s convention, every polyadic variable appears in it at most once.
This is achieved by allowing only weakening;

• relevant if, for every of its subterms of the form 𝑡 [⟨𝑥1, … , 𝑥𝑛⟩ ∶= 𝑢], each 𝑥𝑖 appears free in
𝑡. This is achieved by allowing only contraction;

• linear if it is both affine and relevant. This is achieved by allowing neither.
Unconstrained terms are also called cartesian, which is achieved by allowing both rules.

We want to stress that the type system of Figure 4.1 is far from original: if one erases all term
annotations, one obtains a natural deduction formulation of a logical system such that

67
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𝑎 ∶ A; Δ ⊢ 𝑎 ∶ 𝑎 ⇒ 𝑎 ∶ A
(variable)

Γ; Δ ⊢ θ ∶ 𝑡 ⇒ 𝑡′ ∶ A Γ ′; Δ′ ⊢ θ′ ∶ 𝑡′ ⇒ 𝑡″ ∶ A
Γ, Γ ′; Δ, Δ′ ⊢ θ; θ′ ∶ 𝑡 ⇒ 𝑡″ ∶ A

(composition)

Γ; Δ ⊢ θ ∶ 𝑡 ⇒ 𝑡′ ∶ A ⊸ B Γ ′; Δ′ ⊢ κ ∶ 𝑢 ⇒ 𝑢′ ∶ A
Γ, Γ ′; Δ, Δ′ ⊢ θκ ∶ 𝑡𝑢 ⇒ 𝑡′𝑢′ ∶ B

(application)

Γ, 𝑎 ∶ A; Δ ⊢ θ ∶ 𝑡 ⇒ 𝑡′ ∶ B
Γ; Δ ⊢ λ𝑎.θ ∶ λ𝑎.𝑡 ⇒ λ𝑎.𝑡′ ∶ A ⊸ B

(abstraction)

Γ, 𝑎 ∶ A; 𝑦⃗ ∶ C⃗, Δ ⊢ θ ∶ 𝑡 ⇒ 𝑡′ ∶ B
Γ ′; Δ′ ⊢ κ ∶ 𝑢 ⇒ 𝑢′ ∶ A Γ𝑖; Δ𝑖 ⊢ ζ𝑖 ∶ 𝑣𝑖 ⇒ 𝑣′𝑖 ∶ C𝑖

Γ, Γ ′, Γ𝑖; Δ, Δ′, Δ𝑖 ⊢ (β𝑎.θ) 􏿮⟨𝑦⃗⟩ ∶= ζ⃗􏿱 κ ∶ (λ𝑎.𝑡) 􏿮⟨𝑦⃗⟩ ∶= 𝑣⃗􏿱 𝑢 ⇒ 𝑡′ {𝑎 ← 𝑢′} 􏿮⟨𝑦⃗⟩ ∶= 𝑣′􏿱 ∶ B
(β-reduction)

; 𝑥 ∶ A, Δ ⊢ 𝑥 ∶ 𝑥 ⇒ 𝑥 ∶ A
(!-variable)

Γ1; ⊢ θ1 ∶ 𝑡1 ⇒ 𝑡′1 ∶ A 1 ⋯ Γ𝑛; ⊢ θ𝑛 ∶ 𝑡𝑛 ⇒ 𝑡′𝑛 ∶ A 𝑛
Γ1…Γ𝑛; ⊢ ⟨θ1, … , θ𝑛⟩ ∶ ⟨𝑡1, … , 𝑡𝑛⟩ ⇒ ⟨𝑡′1, … , 𝑡′𝑛⟩ ∶ ⟨A 1, … ,A 𝑛⟩

(promotion)

Γ; 𝑥1 ∶ A 1, 𝑥𝑛 ∶ A 𝑛, Δ ⊢ θ ∶ 𝑡 ⇒ 𝑡′ ∶ B Γ ′; ⊢ κ ∶ 𝑢 ⇒ 𝑢′ ∶ ⟨A 1, … ,A 𝑚⟩
Γ, Γ ′; Δ ⊢ θ [⟨𝑥1, … , 𝑥𝑛⟩ ∶= κ] ∶ 𝑡 [⟨𝑥1, … , 𝑥𝑛⟩ ∶= 𝑢] ⇒ 𝑡′ [⟨𝑥1, … , 𝑥𝑛⟩ ∶= 𝑢′] ∶ B

(explicit)

Γ; 𝑥1 ∶ A 1, 𝑥𝑛 ∶ A 𝑛, Δ ⊢ θ ∶ 𝑡 ⇒ 𝑡′ ∶ B
Γ ′; 𝑦⃗ ∶ C⃗, Δ′ ⊢ κ ∶ ⟨𝑢1, … , 𝑢𝑚⟩ ⇒ ⟨𝑢′1, … , 𝑢′𝑚⟩ ∶ ⟨A 1, … ,A 𝑚⟩

Γ″; ⊢ ζ ∶ 𝑣 ⇒ 𝑣′ ∶ ⟨C1, … , C𝑘⟩
Γ, Γ ′; Δ, Δ′ ⊢ βθ 􏿮⟨𝑥1, … , 𝑥𝑛⟩ ∶= κ 􏿮⟨𝑦⃗⟩ ∶= ζ⃗􏿱􏿱

∶ 𝑡 􏿮⟨𝑥1, … , 𝑥𝑛⟩ ∶= 𝑢 􏿮⟨𝑦⃗⟩ ∶= 𝑣⃗􏿱􏿱 ⇒ 𝑡′ 􏿺𝑥𝑖 ← 𝑢′𝑗􏿽 􏿮⟨𝑦⃗⟩ ∶= 𝑣′􏿱 ∶ B

(explicit-β)

Figure 4.1: Polyadic simple types derivations.

• if one reads ⟨A 1, … ,A 𝑛⟩ as A 1 ⊗⋯⊗A 𝑛, all rules except weakening and contraction are
derivable in the ⊗/⊸ fragment of multiplicative linear logic;

• if one reads ⟨A 1, … ,A 𝑛⟩ as (A 1 & 1) ⊗⋯⊗ (A 𝑛 & 1), then weakening too is derivable in
multiplicative additive linear logic;

• if one reads ⟨A 1, … ,A 𝑛⟩ as !A 1 ⊗⋯ ⊗ !A 𝑛, then every rule is derivable in multiplicative
exponential linear logic.

The simply-typed polyadic calculus are obtained as term calculi for these fragments of linear logic,
in the standard Curry-Howard sense.
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Γ; Δ ⊢ θ ∶ 𝑡 ⇒ 𝑡′ ∶ A
σ1Γ; σ2Δ ⊢ θ ∶ 𝑡 ⇒ 𝑡′ ∶ A

(exchange)

Γ; Δ ⊢ 𝑡 ∶ C
Γ; 𝑥 ∶ A, Δ ⊢ 𝑡 ∶ C

(weakening)

Γ; Δ, 𝑥 ∶ A, 𝑦 ∶ A ⊢ 𝑡 ∶ C
Γ; Δ, 𝑥 ∶ A ⊢ 𝑡 􏿺𝑦 ← 𝑥􏿽 ∶ C

(contraction)

Figure 4.2: The structural rules

4.1.3 We are ready to define four operads, each corresponding to a flavor of polaydic calculi.

Definition 26

The Cat-operad Poly𝕋 of (cartesian) polyadic terms is defined as follows:
• as objects the elements of 𝕋;

• as arrows

Υ B

where Υ is an interleaving of Γ (containing only linear types) and Δ (containing only
cartesian types), β-less terms Γ; Δ ⊢ 𝑡 ∶ B of Figure 4.1;

• as composition substitution and renaming;

• as 2-arrows between two terms the reductions;

• as composition of 2-arrows, composition ;.
We will, when stressing the importance of it, write CartPoly𝕋 this Cat-operad.
The Cat-operads AffPoly𝕋, RelPoly𝕋 and LinPoly𝕋 are the sub-Cat-operads of CartPoly𝕋

that are restricted to terms and reductions that do not use a particular structural rule. The
inclusions are schematised Figure 4.3.

LinPoly𝕋 RelPoly𝕋

AffPoly𝕋 CartPoly𝕋

Figure 4.3: The inclusions of operads of polyadic calculi

4.1.4 As usual, we single out two sets of types 𝕋 and the Cat-operads attached to them:
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• the terminal set, that only contains two elements l and c. We denote the associatedCat-operads
AffPoly⋆,RelPoly⋆,LinPoly⋆ and CartPoly⋆.

• the set freely generated by ⊸ and ⟨⟩ and an infinite set of atomic terms. We denote the
associated Cat-operads AffPoly,RelPoly,LinPoly and CartPoly.

There are obvious morphisms from the simply-typed versions to their terminal versions, which we
view as type systems.
Proposition 2

Every multimorphism of Poly is strongly normalizable.

Proof : As observed above, Poly may be embedded in propositional multiplicative exponential linear
logic, whose strong normalization is well known.

It is worth mentioning that, for LinPoly or AffPoly, Proposition 2 is actually immediate because
linear or affine polyadic terms strongly normalize even without types: the absence of duplication
makes the size of terms strictly decrease at every reduction step. In that case, the only property
ensured by simple types is that typed terms cannot get stuck (this is proved as customary).

4.1.5 We can remark that, given a context Γ and a type A, the set Poly(Γ;A) can be endowed with a
partial order that makes it a lattice.

It lacks some limits, so it is not a dcpo. We will return to this subject in Chapter 8.

Approximations of the λ-calculus

4.1.6 Although it can be studied on its own, the polyadic λ-calculus just presented is mainly interesting
for approximating λ-calculus and λ-calculus reductions. The approximation relation ⊏ is defined
inductively on the structure of the λ-calculus reduction (which justifies our decision to describe
the reductions by a term language) and is the same for all flavors of approximation, as represented
Figure 4.4, where we omit the types, for brevity: indeed, the approximation relation is defined on
sequents Γ; Δ ⊢ ρ ∶ 𝑡 ⇒ 𝑡′ ∶ A ⊏ Γ ′ ⊢ π ∶ T ⇒ T ′ ∶ A′. We suppose given a function from the
polyadic types 𝕋p to the linear types 𝕋l and all the judgements are understood closed with a context
coherent with this function.

4.1.7 Let us consider a pure λ-term of Λ!,⋆ M ∶ ⋆𝑛 → ⋆. For a given list of types Γ of length 𝑛 and a
type A, we can consider the set ℳ of polyadic terms of type Γ → A that approximates M. This set
ℳ is naturally endowed with an order relation, defined by induction on the term:

𝑎 ⩽ 𝑎 𝑥 ⩽ 𝑥
𝑡 ⩽ 𝑡′ 𝑢 ⩽ 𝑢′

𝑡𝑢 ⩽ 𝑡′𝑢′
𝑡1 ⩽ 𝑡′1 ⋯𝑡𝑛 ⩽ 𝑡′𝑛

⟨𝑡1, … , 𝑡𝑛⟩⟨𝑡′1, … , 𝑡′𝑛, … , 𝑡𝑚⟩

The ordered set (ℳ ,⩽) falls short of being a dcpo, and thus a model of the λ-calculus. We will
come back to this shortcoming Section 8.1.

. L   -

Polyadic proof-nets

4.2.1 The analog of polyadic λ-terms are polyadic proof-nets.
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𝑎 ∶ 𝑎 ⇒ 𝑎 ⊏ 𝑎 ∶ 𝑎 ⇒ 𝑎
(variable)

ρ ∶ 𝑡 ⇒ 𝑡′ ⊏ π ∶ T ⇒ T ′ ρ′ ∶ 𝑡′ ⇒ 𝑡″ ⊏ π′ ∶ T ′ ⇒ T″

ρ; ρ′ ∶ 𝑡 ⇒ 𝑡″ ⊏ π; π′ ∶ T ⇒ T″ (composition)

ρ ∶ 𝑡 ⇒ 𝑡′ ⊏ π ∶ T ⇒ T ′ ρ′ ∶ 𝑢 ⇒ 𝑢′ ⊏ π′ ∶ U ⇒ U ′

ρρ′ ∶ 𝑡𝑢 ⇒ 𝑡′𝑢′ ⊏ ππ′ ∶ TU ⇒ T ′U ′ (application)

ρ ∶ 𝑡 ⇒ 𝑡′ ⊏ π ∶ T ⇒ T ′

λ𝑎.ρ ∶ λ𝑎.𝑡 ⇒ λ𝑎.𝑡′ ⊏ λ𝑎.π ∶ λ𝑎.T ⇒ λ𝑎.T ′ (abstraction)

ρ ∶ 𝑡 ⇒ 𝑡′ ⊏ π ∶ T ⇒ 𝑡′ κ ∶ 𝑢 ⇒ 𝑢′ ⊏ χ ∶ U ⇒ U ′ ζ𝑖 ∶ 𝑣𝑖 ⇒ 𝑣′𝑖 ⊏ θ𝑖 ∶ V𝑖 ⇒ V𝑖

(β𝑎.ρ) 􏿮⟨𝑦⃗⟩ ∶= ζ⃗􏿱 κ ∶ (λ𝑎.𝑡) 􏿮⟨𝑦⃗⟩ ∶= 𝑣⃗􏿱 𝑢 ⇒ 𝑡′ {𝑎 ← 𝑢′} 􏿮⟨𝑦⃗⟩ ∶= 𝑣′􏿱
⊏ (β𝑎.π) 􏿮⟨𝑦⃗⟩ ∶= θ⃗􏿱 χ ∶ (λ𝑎.T) 􏿮⟨𝑦⃗⟩ ∶= V⃗􏿱U ⇒ T ′ {𝑎 ← U ′} 􏿮⟨𝑦⃗⟩ ∶= 􏹎V ′􏿱

(β-reduction)

𝑥𝑖 ∶ 𝑥𝑖 ⇒ 𝑥𝑖 ⊏ 𝑥 ∶ 𝑥 ⇒ 𝑥
(!-variable)

ρ1 ∶ 𝑡1 ⇒ 𝑡′1 ⊏ π ∶ T ⇒ T ′ ⋯ ρ𝑛 ∶ 𝑡𝑛 ⇒ 𝑡′𝑛 ⊏ π ∶ T ⇒ T ′

⟨ρ1, … , ρ𝑛⟩ ∶ ⟨𝑡1, … , 𝑡𝑛⟩ ⇒ ⟨𝑡′1, … , 𝑡′𝑛⟩ ⊏ !π ∶ !T ⇒ !T ′ (promotion)

ρ ∶ 𝑡 ⇒ 𝑡′ ⊏ π ∶ T ⇒ T ′ κ ∶ 𝑢 ⇒ 𝑢′ ⊏ χ ∶ U ⇒ U ′

ρ [⟨𝑥1, … , 𝑥𝑛⟩ ∶= κ] ∶ 𝑡 [⟨𝑥1, … , 𝑥𝑛⟩ ∶= 𝑢] ⇒ 𝑡′ [⟨𝑥1, … , 𝑥𝑛⟩ ∶= 𝑢′]
⊏ π [!𝑥 ∶= χ] ∶ T [!𝑥 ∶= U] ⇒ T ′ [!𝑥 ∶= U ′]

(explicit)

ρ ∶ 𝑡 ⇒ 𝑡′ ⊏ π ∶ T ⇒ T ′

κ ∶ ⟨𝑢1, … , 𝑢𝑚⟩ ⇒ ⟨𝑢′1, … , 𝑢′𝑚⟩ ⊏ χ ∶ U ⇒ U ′

ζ𝑖 ∶ 𝑣𝑖 ⇒ 𝑣′𝑖 ⊏ θ𝑖 ∶ V𝑖 ⇒ V𝑖

βρ 􏿮⟨𝑥1, … , 𝑥𝑛⟩ ∶= κ 􏿮⟨𝑦⃗⟩ ∶= ζ⃗􏿱􏿱 ∶ 𝑡 􏿮⟨𝑥1, … , 𝑥𝑛⟩ ∶= 𝑢 􏿮⟨𝑦⃗⟩ ∶= 𝑣⃗􏿱􏿱 ⇒ 𝑡′ 􏿺𝑥𝑖 ← 𝑢′𝑖􏿽 􏿮⟨𝑦⃗⟩ ∶= 𝑣′􏿱
⊏ βρ 􏿮!𝑥 ∶= κ 􏿮!𝑦⃗ ∶= ζ⃗􏿱􏿱 ∶ T 􏿮!𝑥 ∶= U 􏿮!𝑦⃗ ∶= V⃗􏿱􏿱 ⇒ T ′ {𝑥 ← U ′} 􏿮!𝑦⃗ ∶= 􏹎V ′􏿱

(explicit-β)

Figure 4.4: The polyadic approximations of λ-calculus reductions
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Definition 27 (polyadic proof-net)

A polyadic module is a labelled ordered oriented colored graph (τ, ℓ, c, ⩽) (the orientation is
left implicit) such that:

• ℓ ∶ Vτ → {ax, cut, 1, ⊥, ⊗,`, ?, !};
• c ∶ Fτ → ℱMELL;

• let 𝑣 ∈ Vτ.

– if ℓ(𝑣) = ax, the corolla τ𝑣 has only two flags 𝑖1 and 𝑖2 which are inputs, and such
that

c(𝑖1) = c(𝑖2)⊥;

– if ℓ(𝑣) = cut, the corolla τ𝑣 has only two flags 𝑜1 and 𝑜2 which are outputs, and
such that

c(𝑜1) = c(𝑜2)⊥;

– if ℓ(𝑣) = 1, the corolla τ𝑣 has no inputs and on output 𝑜, such that

c(𝑜) = 1;

– if ℓ(𝑣) = ⊥, the corolla τ𝑣 has no inputs and on output 𝑜, such that

c(𝑜) = ⊥;

– if ℓ(𝑣) = ⊗, the corolla τ𝑣 has two inputs 𝑖1 < 𝑖2 and one output 𝑜, such that

c(𝑜) = c(𝑖1) ⊗ c(𝑖2);

– if ℓ(𝑣) = `, the corolla τ𝑣 has two inputs 𝑖1 < 𝑖2 and one output 𝑜, such that

c(𝑜) = c(𝑖1)` c(𝑖2);

– if ℓ(𝑣) = ?, the corolla τ𝑣 has many inputs 𝑖1, … , 𝑖𝑛(𝑛 ⩽ 0) and one output 𝑜, such
that

∀1 ⩽ 𝑗 ⩽ 𝑛, c(𝑜) = ?c(𝑖𝑗);

– if ℓ(𝑣) = !, the corolla τ𝑣 has many inputs 𝑖1, … , 𝑖𝑛(𝑛 ⩽ 0) and one output 𝑜, such
that

∀1 ⩽ 𝑗 ⩽ 𝑛, c(𝑜) = !c(𝑖𝑗);

These corollas are depicted Figure 4.5.

• ⩽ is total.
A resource proof-net is a module with no input tails.

4.2.2 There are reductive polyadic proof-nets, too, depicted in Figure 4.6.
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A A⊥ A B A B A ⋯ A A ⋯ A

A A⊥ 1 ⊥
ax

cut
1 ⊥

⊗
A ⊗ B

`
A` B

?
?A

!
!A

Figure 4.5: Resource linear logic cells

Definition 28

A reduction cell is a an oriented labelled colored corolla satisfying:
• the cell is labelled with a couple (𝑚1, 𝑚2) of MELL-modules together with two increasing

bijections between the sets of inputs (respectively outputs) of 𝑚1 and 𝑚2 that commute
with c;

• the inputs (respectively outputs) of the reduction cells are in bijection with the inputs
(respectively outputs) of 𝑚1, and the bijection commutes with c.

Definition 29

A reductive resource module is a tuple R = (τ, ℓ, c, ⩽), where τ is a labelled ordered oriented
colored graph (τ, ℓ, c, ⩽), the underlying graph of R such that:

• ℓ ∶ Vτ → {ax, cut, 1, ⊥, ⊗,`, ?, !, Red};
• c ∶ Fτ → ℱMELL.
It is endowed with two projections, whose underlying graph is obtained by grafting the

projections of the reduction cells with the rest of the graph.
We require the two projected graphs to be resource modules.
A reductive proof-net is a reductive module without inputs.

Remark 6
All the MELL reduction cells without internal boxes are also polyadic reduction cells.

4.2.3 Proof-nets have a tree structure that is made explicit through their boxing function. We actually
define the linear approximations on these tree structures, and we will pull the approximation back
to the underlying graph.

Given a rooted tree 𝒯, it is possible to define a subtree with many copies of each node of 𝒯
(Boudes 2009).

Definition 30 (thick subtree)

A thick subtree of a rooted tree τ is a rooted tree σ together with a morphism of rooted trees
σ → τ.

Example : The left tree σ is a thick sub-tree of the right one τ. The nodes of τ are numbered, and the one of
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σ are marked with their image through the morphism of tree.

•

2

1 1 2 2 2 2

2

2 2 2 3 3

2

2 2

2

1 1 1

⟶ •

1

1 2

2

1 2 3

Definition 31 (proto-Taylor expansion)

Let R be a proof-net.
The set of thick subtrees of its box-tree is called the proto-Taylor expansion of R and noted

𝒯 proto

R .

Example : These are elements of the proto-Taylor expansion of Figure 2.3.

4.2.4 The point of defining the expansion of trees is to pull back this expansion to proof-nets.
Definition 32

Let R be a proof-net and 𝒯 its box-tree.
Let 𝑝 ∈ 𝒯 proto

R be an element of the proto-Taylor expansion of R. The 𝑡-expansion of R is
the pullback:

R𝑡 𝑡⟲

R 𝒯 ⟲

𝑝⟲

box

computed in the category of ordered oriented graphs.

4.2.5 Let 𝑡 be an element of the proto-Taylor expansion of a proof-netR. R𝑡 inherits a structure of labelled
colored graph, by composition with the graph morphism R𝑡 → R.

Given this structure, one can check that R𝑡 is a polyadic proof-net.
Definition 33 (polyadic Taylor expansion)

Let R be a proof-net. The Taylor expansion of R is the set

𝒯R = {R𝑡 ∣ 𝑡 ∈ 𝒯 proto

R }

of polyadic proof-nets.

4.2.6 The element of the Taylor expansion that takes exactly one copy of each box is particular: it is a
version of the original MELL proof-net, but without the boxes.
Lemma 3

Let R be a MELL proof-net, 𝑡 ∈ 𝒯 proto

R such that the morphism of trees 𝑡 → 𝒯 is an isomorphism.
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The projection R𝑡 → R is an isomorphism of labelled colored oriented graphs.

Approximations of the reduction

4.2.7 The MELL reduction cells are not all polyadic reduction cells. As such, for the pullback of a reductive
MELL proof-net and a thick subtree of its boxing tree to be a reductive polyadic proof-net, we need
to define the action, on a reductive MELL cell 𝑐, of a thick subtree of the boxtree of the left projection
of 𝑐.

Remark 7
Contrarily to what we do with proof-nets, the reductive proof-nets are not computed via a pullback. It is because
one reduction cell is actually a pair of MELL modules, and for each of them, a pullback is to be computed.
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Definition 34 (expansion of a reduction cell )

Let 𝑐 be a MELL reductive cell, and 𝒯 be the box-tree of its left projection. Let τ be a thick
subtree τ → 𝒯 of 𝒯. The expansion of 𝑐 along τ is

• if 𝑐 is of type Box | Contraction (Figure 2.5(a)) with its contraction of arity 𝑛 and the box
inside 𝑐 called π, if π has 𝑛 edges in τ with same image in 𝒯,

A ⋯ A A⊥ ⋯ A⊥ A ⋯ A A⊥ ⋯ A⊥

?𝑛
?A

!𝑛
!A⊥

cut

cut
cut

cut

A ⋯ A A⊥⋯ A⊥

π π π

⋯ ⋯ ⋯

??
⋯
?

• if 𝑐 is of type Box | Contraction (Figure 2.5(a)) with its contraction of arity 𝑛 and the box
inside 𝑐 called π, if π has a number of edges in τ with same image in 𝒯𝑚 different of 𝑛,

A ⋯ A A⊥ ⋯ A⊥

?𝑛
?A

!𝑛
!A⊥

cut

A⋯A
A⊥⋯A⊥

π π π

⋯ ⋯ ⋯

??
⋯
?
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and so, its right projection is collapsed to the empty polyadic proof-net.

• if 𝑐 is of type Box | Box (Figure 2.5(b)), and the arity of π and π′ in τ are compatible, the
expansion of 𝑐 is the identity.

Let R be a MELL reductive proof-net, and let 𝒯 be the box-tree of the left projection of R.
Let τ be a thick subtree τ → 𝒯 of 𝒯. The expansion of R along τ is the reductive proof-net
obtained by grafting:

• the pullback of the restriction of R to its non-reductive cells and its cells without internal
boxes;

• for each reduction cell 𝑐 with an internal box, the expansion of 𝑐 along the sub-tree of τ
corresponding to π.

Quotients and the Taylor expansion

4.2.8 We only defined the Taylor expansion of a MELL proof-net. We can check that, given an element 𝑡
of the proto-Taylor expansion of a proof-net R, 𝑡 ← R𝑡 → R can be quotiented by ≃?.

Definition 35 (?-equivalence)

A ?-isomorphism of polyadic proof-nets 𝑓 ∶ R ≃? R ′ is an isomorphism 𝑓 ∶ τR → τR′ of
the underlying graph such that, moreover, the restrictions of 𝑓 on:

• the tails

• the inputs of each cell of type ⊗,`, !
are all increasing.

4.2.9 It is not the case, if by analogy with ?, we also quotient !.

Definition 36 (!?-equivalence)

A !?-isomorphism of polyadic proof-nets 𝑓 ∶ R ≃? R ′ is an isomorphism 𝑓 ∶ τR → τR′
of the underlying graph such that, moreover, the restrictions of 𝑓 on:

• the tails

• the inputs of each cell of type ⊗,`
are all increasing. A resource proof-net is an ≃!?-equivalence class of polyadic proof-nets.

Definition 37 (resource Taylor expansion)

The resource Taylor expansion of a MELL proof-net R is defined as the set

𝒯 !?
R = {[𝑡] ∣ 𝑡 ∈ 𝒯R}

and the same for R a MELL? proof-net.

4.2.10 It is indispensable to note that the polyadic Taylor expansion and the resource Taylor expansion are
fundamentally different. An element of the Taylor expansion is a polyadic proof-net endowed with
two projections, while an element of the quotiented Taylor expansion is a resource proof-net.
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The non-quotiented Taylor expansion, consisting of polyadic proof-net, with their rigidity and
their determinism, will be our main tool to study the resource Taylor expansion, which, alone, has
the innocence that makes it the analogue of the polyadic (or resource) Taylor expansion of λ-terms.

Indeed, the polyadic Taylor expansion contains objects that are already formatted for their use.
We will come back to their study in Section 7.1.
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A A⊥ A
ax

cut

A

A
(a) Cut | Axiom

A B B⊥ A⊥ A B B⊥ A⊥

⊗
A ⊗ B

`
B⊥ `A⊥

cut
cut

cut

A B B⊥ A⊥

(b) Tensor | Par

A ⋯ A A⊥ ⋯ A⊥ A ⋯ A A⊥ ⋯ A⊥

?𝑛
?A

!𝑛
!A⊥

cut

cut
cut

cut

A⋯A A⊥⋯A⊥

(c) Contraction | Co-contraction

A ⋯ A A⊥ ⋯ A⊥

?𝑛
?A

!𝑚
!A⊥

cut

A⋯A
A⊥⋯A⊥

(d) Contraction | Co-contraction (error)

Figure 4.6: The polyadic reduction cells
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The Grothendieck construction for discrete fibrations

5.1.1 The Grothendieck construction gives an equivalence between discrete fibrations overs a base cate-
gory ℬ and presheaves on ℬ. Let’s unravel the definitions.

For pedagogical purposes, we first present a particular case, that will be generalized in § 5.1.7.
Definition 38 (discrete fibration)

Let ℬ be a small category.
A discrete fibration over ℬ is a functor

𝑝 ∶ 𝒞 → ℬ ,
where 𝒞 is any small category, such that, for all object 𝑐 ∶ 𝒞, and arrow 𝑓 ∶ 𝑏′ → 𝑝𝑐 ∶ ℬ there

81
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exists a unique 𝑔 ∶ 𝑐′ → 𝑐 ∶ 𝒞 such that 𝑝𝑔 = 𝑓.
The category of discrete fibration over ℬ is written DiscFib(ℬ ).

Definition 39 (presheaf )

Let ℬ be a small category.
A presheaf on ℬ is a functor ℬ → S𝑒𝑡op. The category of presheaves on ℬ is noted 􏾧ℬ.

Theorem 3

There is an equivalence of categories

􏾙 ∶ 􏾧ℬ ≃ DiscFib(ℬ ) ∶ ∂

Proof : This is a corollary of Theorem 5.

Distributors

5.1.2 Functors can be generalized, in the same way that functions can be generalized to relations.
Definition 40 (distributor)

Let 𝒱 be a monoidal category. Let 𝒞 and 𝒟 be two categories.
A 𝒱-enriched distributor D from 𝒞 to 𝒟, noted

D ∶ 𝒞 ⇸ 𝒟

is a functor

D ∶ 𝒞 ×𝒟 op → 𝒱 .

Example : Let 𝒞 be a category enriched over a monoidal category 𝒱. The functor

Hom ∶𝒞 × 𝒞 op → 𝒱
(𝑐, 𝑐′) ↦ 𝒞 (𝑐′, 𝑐)

is a distributor

Hom ∶ 𝒞 ⇸ 𝒞

Remark 8
The terminology on distributors is unclear.
When first defining them, Bénabou called them profunctors as they are more than functors. The name is unfortu-
nate, as the prefix ‘pro’ often denotes the pro-completion of a category, i.e. the collection of all formal cofiltered
limits of objects of a category, and profunctors are not objects of the pro-completion of some category.
He later switched to distributors, following an analogy with functional analysis: just as all functions define a distribu-
tion, and some distributions are representable by a function, all functors define a distributor, and some distributors
are representable by a functor.
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Other names used are bi-modules, making the above example paradigmatic; or stress the status of distributors as
generalized relations and call them correspondences or even relators (Loregian 2015).

As we will only use Set-enriched distributors, we will only give the next definitions and propo-
sitions in the Set-enriched case, although they generalize.

5.1.3 In the same way as relations, distributors compose.
Definition 41 ((co-)end )

Let 𝒞 and ℰ be two categories. Let H ∶ 𝒞 op × 𝒞 → ℰ be a functor.
Every objects 𝑐, 𝑐′ ∶ 𝒞 and arrow 𝑓 ∶ 𝑐 → 𝑐′ ∶ 𝒞 induces a contravariant arrow

𝑓∗ ∶ H(𝑐′, 𝑐′) → H(𝑐, 𝑐′)

and a covariant arrow

𝑓∗ ∶ H(𝑐, 𝑐) → H(𝑐, 𝑐′).

The end ofH, noted∫
𝑐∶𝒞

H is the universal object endowed with projections (inℰ)∫
𝑐∶𝒞

H →
H(𝑐, 𝑐), for all objects 𝑐 ∶ 𝒞, making the diagram

∫
𝑐∶𝒞

H H(𝑐′, 𝑐′)

H(𝑐, 𝑐) H(𝑐, 𝑐′)

𝑓∗

𝑓∗

commute, for all 𝑓 ∶ 𝑐 → 𝑐′ ∶ 𝒞.

Dually, the co-end of H, noted ∫
𝑐∶𝒞

H is the universal object endowed with projections (in

ℰ) H(𝑐, 𝑐) → ∫𝑐∶𝒞
H, for all objects 𝑐 ∶ 𝒞, making the diagram

H(𝑐, 𝑐′) H(𝑐′, 𝑐′)

H(𝑐, 𝑐) ∫𝑐∶𝒞
H

𝑓∗

𝑓∗

Although co-ends are also denoted by an integral sign, they have nothing to do with the Grothendieck
construction applied to a functor.
Theorem 4 (Fubini theorem for (co-)ends)

Let 𝒞,𝒟 and ℰ be three small categories and

T ∶ 𝒞 op × 𝒞 ×𝒟 op ×𝒟 → ℰ
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be a functor. If all sides exist, there are canonical isomorphisms:

􏾙
𝑐∶𝒞

􏾙
𝑑∶𝒟

T(𝑐, 𝑐, 𝑑, 𝑑) ≃ 􏾙
(𝑐,𝑑)∶𝒞 ×𝒟

T(𝑐, 𝑐, 𝑑, 𝑑) ≃ 􏾙
𝑑∶𝒟

􏾙
𝑐∶𝒞

T(𝑐, 𝑐, 𝑑, 𝑑)

And the same for co-ends:

􏾙
𝑐∶𝒞

􏾙
𝑑∶𝒟

T(𝑐, 𝑐, 𝑑, 𝑑) ≃ 􏾙
(𝑐,𝑑)∶𝒞 ×𝒟

T(𝑐, 𝑐, 𝑑, 𝑑) ≃ 􏾙
𝑑∶𝒟

􏾙
𝑐∶𝒞

T(𝑐, 𝑐, 𝑑, 𝑑)

5.1.4 Alas, a (co-)end is not defined unequivocally: as it is a universal object, it is only defined modulo
isomorphism. As such, the composition of distributors can not be associative, and there can not
exist a category of small categories and distributors.

We need to relax the definition of a category, to allow for composition and identities to hold
only up to isomorphism.
Definition 42 (bicategory)

A bicategory 𝒞 is the data of:
• a class C0 of objects;

• for all couples (A, B) of objects, a category

𝒞 (A; B)

of morphisms from A to B.

• for every objects A, B, C, a functor

𝒞 (A; B) × 𝒞 (B;C) → 𝒞 (A;C)

• for every object A, a distinguished morphism

idA ∈ 𝒞 (A;A)

• for each triple 𝑓 ∶ A → B, 𝑔 ∶ B → C, ℎ ∶ C → D, a natural isomorphism

αℎ,𝑔,𝑓 ∶ ℎ ∘ (𝑔 ∘ 𝑓) ⇒ (ℎ ∘ 𝑔) ∘ 𝑓

• for each morphism 𝑓 ∶ A → B, natural isomorphisms

λ𝑓 ∶ idB ∘ 𝑓 ⇒ 𝑓
ρ𝑓 ∶ 𝑓 ∘ idA ⇒ 𝑓

that satisfy the pentagon and triangle coherence diagrams.

Definition 43 (bicategory of distributors)

Given three small categories 𝒞 ,𝒟 ,ℰ, and two distributors F ∶ 𝒞 ⇸ 𝒟, G ∶ 𝒟 ⇸ ℰ, we
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define the composite G ∘ F ∶ 𝒞 ⇸ ℰ by:

∀𝑐 ∈ 𝒞 , ∀𝑒 ∈ ℰ ,G ∘ F(𝑒, 𝑐) = 􏾙
𝑑∶𝒟

G(𝑒, 𝑑) × F(𝑑, 𝑐)

The composition is associative up to isomorphism (due to Fubini theorem for co-ends and the
lax associativity of the cartesian product in Set). As such, we can define the bicategory Dist of
distributors in the following way:

• objects are small categories;

• morphisms are distributors with the aforementioned composition;

• 2-morphisms are natural transformation (of the underlying functors).

5.1.5 The bicategory Dist enjoys a close relationship with the bicategory Cat of small categories (whose
arrows are functors and 2-arrows natural transformations). Indeed, any functor F ∶ 𝒞 → 𝒟 induce
a pair of adjoints distributors F∗ ⊣ F ∗ in the following way:

F∗ ∶ 𝒞 ⇸ 𝒟 defined by F∗(𝑑, 𝑐) = 𝒟 (𝑑, F𝑐)
F ∗ ∶ 𝒟 ⇸ 𝒞 defined by F ∗(𝑐, 𝑑) = 𝒟 (𝑐, F𝑑)

Moreover, the functor ⋅ ↦ (⋅)∗ ∶ Cat → Dist is locally fully faithful, that is,

Cat(𝑓, 𝑔) ≃ Dist(𝑓∗, 𝑔∗)

This situation between Cat and Dist is called a pro-arrow equipment (Wood 1982). It is a actually
the prototypical exemple.

It is also possible to describe the same situation with double categories.
5.1.6 The bicategory Dist has a monoidal structure, inherited from Set.

The Grothendieck construction for Cat-operads

5.1.7 In order to define an analogue of the Grothendieck construction, building an equivalence between
some functors on a baseCat-operadℬ and type systems (that is, Niefield fibrations) overℬ, we need
to consider morphisms for type systems. Niefield fibrations and these morphisms are organized in a
bioperad, which is a relaxation of the notion of Cat-operad, replacing some identities with natural
isomorphisms.
Definition 44 (bioperad )

A (small) bioperad 𝒞 is given by the following:

• a set 𝒞0 of objects;

• for every objects C1, … , C𝑛, A, a category 𝒞 (C1, … , C𝑛; A) whose objects are called
multimorphisms and whose morphisms are called 2-arrows;

• for every objectA, sequence of objectsΔ ∶= B1, … , B𝑛 and sequences of objects Γ1, … , Γ𝑛,
a functor ∘Γ1,…,Γ𝑛;Δ;A from 𝒞 (Δ;A)×𝒞 (Γ1; B1)×⋯×𝒞 (Γ𝑛; B𝑛) to 𝒞 (Γ1, … , Γ𝑛; A);

• for every object A, a multimorphism idA ∈ 𝒞 (A;A);
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• for each 𝑛 ∈ N, σ ∈ 𝔖𝑛, object A and objects Γ ∶= C1, … , C𝑛, a functor exch
Γ;A
σ ∶

𝒞 (C1, … , C𝑛; A) → 𝒞 (Cσ−1(1), … , Cσ−1(𝑛); A) such that exchσ
−1(Γ);A

σ′ ∘exchΓ;Aσ = exch
Γ;A
σ′∘σ;

such that the composition functors satisfy the obvious associativity, neutrality and compatibility
laws with respect to exch up to (coherent) isomorphism.

A lax morphism of bioperads commute with the operations up to (coherent) natural trans-
formations in the right-to-left direction, which are not necessarily invertible.

Definition 45 (pointwise relational morphism)

A pointwise relational morphism F between two pointwise Niefield fibrations 𝑝1 ∶ ℰ1 → ℬ and
𝑝2 ∶ ℰ2 → ℬ is

• a relation F ⊆ ℰ1 × ℰ2 between the objects of ℰ1 and the objects of ℰ2;

• for every list Γ1 = B1
1 ⋯B𝑛

1 of objects of ℰ1 and object A 1 of ℰ1, and for every list
Γ2 = B1

2 ⋯B𝑛
2 of objects of ℰ2 and object A 2 of ℰ2, such that

∀1 ≤ 𝑖 ≤ 𝑛, (B 𝑖
1, B 𝑖

2) ∈ F and (A 1, A 2) ∈ F,

a relation FΓ1,A1
Γ2,A2

⊆ ℰ1(Γ1; A 1) × ℰ2(Γ2; A 2) such that:

– (𝑒1, 𝑒2) ∈ FΓ1,A1
Γ2,A2

implies 𝑝1(Γ1; A 1)(𝑒1) = 𝑝2(Γ2; A 2)(𝑒2);
– for every 2-arrow 𝑓 ∶ 𝑏 → 𝑏′ of ℬ and every 𝑒1 ∈ ℰ1 such that 𝑝1(Γ1; A 1)(𝑒1) = 𝑏

and 𝑒′2 ∈ ℰ2 such that 𝑝2(Γ2; A 2)(𝑒′2) = 𝑏′, the following conditions are equivalent:

* there exists 𝑔2 ∶ 𝑒2 → 𝑒′2 such that 𝑝2(Γ2; A 2)(𝑔2) = 𝑓 and (𝑒1, 𝑒2) ∈ R;

* there exists 𝑔1 ∶ 𝑒1 → 𝑒′1 such that 𝑝1(Γ1; A 1)(𝑔1) = 𝑓 and (𝑒′1, 𝑒′2) ∈ R.

Pointwise Niefield fibrations over ℬ and pointwise relational morphisms between them
form a category, which we denote NieFib(ℬ ).

Interpreted as a morphism of type systems, a pointwise relational morphism ensures a property of
inter-typability between the two systems it is a morphism of.

5.1.8 Let 𝔇𝔦𝔰𝔱 be the following (large) bioperad:
• objects are small categories;
• multimorphisms A 1…A 𝑛 ⇸ B are distributor-valued distributors, that is functors (of bi-

categories)

F ∶ A 1 ×⋯×A 𝑛 × Bop → Dist𝑠,

where A 1, … ,A 𝑛, B are trivially viewed as bicategories, and Dist𝑠 is the bicategory whose
objects are semi-categories, arrows distributors between them and 2-arrows natural transfor-
mations;

• composition of multimorphisms is defined as the composition of distributors;
• 2-arrows θ ∶ F ⇒ G ∶ A 1…A 𝑛 → B are natural transformations of the underlying

functors: a family of Set-valued functions indexed by A 1 ×⋯×A 𝑛 × Bop:

∀(𝑎1, … , 𝑎𝑛, 𝑏) ∈ A 1 ×⋯×A 𝑛 × Bop, θ𝑎1,…,𝑎𝑛,𝑏 ∶ F(𝑎1, … , 𝑎𝑛, 𝑏) × G(𝑎1, … , 𝑎𝑛, 𝑏) → Set

satisfying naturality conditions:
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F(𝑎1, … , 𝑎𝑛, 𝑏) × G(𝑎1, … , 𝑎𝑛, 𝑏) F(𝑎′1, … , 𝑎′𝑛, 𝑏′) × G(𝑎′1, … , 𝑎′𝑛, 𝑏′)

Set

F(𝑓1, … , 𝑓𝑛, 𝑓) × G(𝑓1, … , 𝑓𝑛, 𝑓)

θ𝑎1,…,𝑎𝑛,𝑏

θ𝑎′1,…,𝑎
′𝑛,𝑏′

5.1.9 Let now 𝔇𝔦𝔰𝔱∗ be the following (large) bioperad:
• objects are small pointed categories, that is couples (A, 𝑎) where A is a small category and
𝑎 ∶ A;

• multimorphisms (A 1, 𝑎1) … (A 𝑛, 𝑎𝑛) ⇸ (B, 𝑏) are pointed distributor-valued distributors
(F, 𝑓), that is functors

F ∶ A 1 ×⋯×A 𝑛 × Bop → Dist𝑠,

together with a point 𝑓 ∶ F(𝑎1, … , 𝑎𝑛, 𝑏).
• composition of multimorphisms is defined as the composition of distributors: given

(G, 𝑔) ∶ (B1, 𝑏1) … (B𝑚, 𝑏𝑚) ⇸ (C, 𝑐),
(F, 𝑓) ∶ (A 1, 𝑎1) … (A 𝑛, 𝑎𝑛) ⇸ (B𝑖, 𝑏𝑖),

the composite (G, 𝑔) ∘𝑖 (F, 𝑓) is defined as the couple (G ∘𝑖 F, (𝑔, 𝑓)) ((𝑔, 𝑓) here denotes the
image of (𝑔, 𝑓) in the coend defining G ∘𝑖 F(𝑏1, … , 𝑏𝑖−1, 𝑎1, … , 𝑎𝑛, 𝑏𝑖+1, … , 𝑏𝑚; 𝑐));

• 2-arrows θ ∶ (F, 𝑓) ⇒ (G, 𝑔) ∶ (A 1, 𝑎1) … (A 𝑛, 𝑎𝑛) → (B, 𝑏) are natural transformations of
the underlying functors such that, moreover,

(𝑓, 𝑔) ∈ θ𝑎1,…,𝑎𝑛,𝑏.

There is an obvious forgetful functor U ∶ 𝔇𝔦𝔰𝔱∗ → 𝔇𝔦𝔰𝔱.
5.1.10 Let us recall the definition of lax natural transformation between two lax functors θ ∶ F ⇒ G ∶

ℬ → ℜ𝔢𝔩:
• for each A in ℬ a distributor θA ∶ FA ⇸ GA;
• for each 𝑓 ∶ A 1…A 𝑛 → B in ℬ, a 2-arrow θ𝑓 ∶ G𝑓 ∘ (θA1, … , θA𝑛) ⇒ θB ∘ F𝑓, that is a

family of relations indexed on the objects of FA 1 ×⋯× FA 𝑛 × GBop,

∀(𝑎1, … , 𝑎𝑛, 𝑏) ∈ FA 1 ×⋯× FA 𝑛 × GBop, (θ𝑓)𝑎1,…,𝑎𝑛,𝑏 ⊆ (G𝑓 ∘ θA)(𝑎1, … , 𝑎𝑛; 𝑏) × (θB ∘ F𝑓)(𝑎1, … , 𝑎𝑛; 𝑏).

that satisfy naturality conditions.
We say that a lax natural transformation is relational if, for every object A, the distributor θA

is a relation, that is, it is valued in a subsingleton.
Theorem 5 (Grothendieck construction)

Let ℬ be a small Cat-operad. The category NieFibℬ is equivalent to the category 𝔇𝔦𝔰𝔱ℬ of lax
morphismsℬ → 𝔇𝔦𝔰𝔱 and lax relational natural transformations.

Proof : ∫ ∶ 𝔇𝔦𝔰𝔱ℬ → NieFib(ℬ ) is defined by:
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• given a lax functor F ∶ ℬ → 𝔇𝔦𝔰𝔱, ∫F is the pullback of the forgetful functor U ∶ 𝔇𝔦𝔰𝔱∗ →
𝔇𝔦𝔰𝔱 along F. More explicitly, we denote by ℰ ℓ(F) the pullback category:

– the objects are pairs (B, 𝑥), where B is an object of ℬ and 𝑥 ∶ FB;
– a multimorphism (B1, 𝑏1) … (B𝑛, 𝑏𝑛) → (B ′, 𝑏′) is a pair (𝑓, 𝑎) where 𝑓 ∶ B1…B𝑛 → B ′

is a multimorphism in ℬ and 𝑎 ∈ F𝑓(𝑏1, … , 𝑏𝑛, 𝑏′);
– given

(𝑔, 𝑏) ∶ (B1, 𝑏1) … (B𝑚, 𝑏𝑚) → (C, 𝑐),
(𝑓, 𝑎) ∶ (A 1, 𝑎1) … (A 𝑛, 𝑎𝑛) → (B𝑖, 𝑏𝑖),

the composite (𝑔, 𝑏) ∘𝑖 (𝑓, 𝑎) is the couple (𝑔 ∘𝑖 𝑓, (𝑏, 𝑎)).
– a 2-arrow θ ∶ (𝑓, 𝑎) ⇒ (𝑔, 𝑎′) ∶ (A 1, 𝑎1) … (A 𝑛, 𝑎𝑛) → (B, 𝑏) is a family of Set-valued

functions indexed by A 1 ×⋯×A 𝑛 × B:

∀(α1, … , α𝑛, β) ∈ A 1 ×⋯×A 𝑛 × B, θα1,…,α𝑛,β ⊆ F(α1, … , α𝑛, β) × G(α1, … , α𝑛, β).

such that

θ𝑎1,…,𝑎𝑛,𝑏(𝑎, 𝑎
′) ≠ ∅.

∫F is just the first projection. It is a pointwise Niefield fibration.

• Given a relational lax natural transformation θ ∶ F ⇒ G, we define the relation ∫θ from the
objects of ℰ ℓF to the objects of ℰ ℓ(G) by ((𝑏, 𝑥), (𝑏′, 𝑦)) ∈ 􏿴∫θ􏿷 if 𝑏 = 𝑏′ and (𝑥, 𝑦) ∈ θ𝑏.
The relational morphism of ℰ ℓF to the morphisms of ℰ ℓG by:

􏿵􏾙θ􏿸
Γ;(B,𝑏)

∶ ℰ ℓF(Γ; (B, 𝑏)) → ℰ ℓG((A 1, θA1𝑎1), … , (A 𝑛, θA𝑛𝑎𝑛); (B, θB𝑏))

for every list Γ = (A 1, 𝑎1), … , (A 𝑛, 𝑎𝑛) of objects of ℰ ℓF and object (B, 𝑏) of ℰ ℓF, and
list Γ ′ = (A 1, 𝑎′1), … , (A 𝑛, 𝑎′𝑛) of objects of ℰ ℓG and object (B, 𝑏′) of ℰ ℓG the relation

􏿴∫θ􏿷
Γ;(B,𝑏)

Γ′;(B′,𝑏′)
is defined, for

(𝑓, 𝑑) ∶ (A 1, 𝑎1), … , (A 𝑛, 𝑎𝑛) → (B, 𝑏)
(𝑔, 𝑑′) ∶ (A 1, 𝑎′1), … , (A 𝑛, 𝑎′𝑛) → (B, 𝑏′)

by ((𝑓, 𝑑), (𝑔, 𝑑′)) ∈ 􏿴∫θ􏿷
Γ;(B,𝑏)

Γ′;(B′,𝑏′)
if (𝑎1, 𝑎′1) ∈ θA1, … , (𝑎𝑛, 𝑎′𝑛) ∈ θA𝑛, (𝑏, 𝑏

′) ∈ θB, and ∅

else. Hence ∫θ is a pointwise relational morphism.

∂ ∶ NieFib(ℬ ) → 𝔇𝔦𝔰𝔱ℬ is defined by:

• given a pointwise Niefield fibration 𝑝 ∶ ℰ → ℬ, we set, for 𝑏 ∶ ℬ,
– ∂𝑝(B) equal to the semi-category whose objects are the pre-images of B through 𝑝 and

the morphims are the pre-images of the identity over B through 𝑝;
– for 𝑓 ∶ B1…B𝑛 → B in ℬ, ∂𝑝(𝑓) is the distributor ∂𝑝(𝑓) ∶ 𝑝−1(B1) ×⋯ × 𝑝−1(B𝑛) ⇸
𝑝−1(B) defined by:

∀(𝑒1, … , 𝑒𝑛, 𝑒) ∈ 𝑝−1(B1) ×⋯ × 𝑝−1(B𝑛) × 𝑝−1(B)op, ∂𝑝(𝑓)(𝑒1, … , 𝑒𝑛; 𝑒) = 􏿺𝑔 ∶ 𝑒1, … , 𝑒𝑛 → 𝑒 ∶ ℰ ∣ 𝑝𝑔 = 𝑓􏿽

– for θ ∶ 𝑓 ⇒ 𝑔 ∶ B1…B𝑛 → B in ℬ, ∂𝑝(θ)𝑏1,…,𝑏𝑛;𝑏 is the distributor

∂𝑝(θ)𝑏1,…,𝑏𝑛;𝑏(ϕ, γ) = {ρ ∶ ϕ ⇒ γ, 𝑝(ρ) = θ}.
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This defines a lax functor ∂𝑝 ∶ ℬ → 𝔇𝔦𝔰𝔱.
• given a pointwise relational morphism F between Niefield fibrations 𝑝1 ∶ ℰ1 → ℬ and 𝑝2 ∶
ℰ2 → ℬ,

– for B an object of ℬ, we set, for 𝑒1 ∈ 𝑝−11 (B), 𝑒2 ∈ 𝑝−12 (B), (𝑒1, 𝑒2) ∈ (∂F)B if (𝑒1, 𝑒2) ∈ F
and, for 𝑓 ∶ 𝑒1 → 𝑒′1 in 𝑝−11 (B), 𝑔 ∶ 𝑒2 → 𝑒′2 in 𝑝−12 (B), (𝑓, 𝑔) ∈ (∂F)B if (𝑓, 𝑔) ∈ F 𝑒1,𝑒′1

𝑒2,𝑒′2
.

(∂F)B(𝑓; 𝑔) = F(𝑓; 𝑔)

As F is a relation, (∂F)B can be seen as a distributor (∂F)B ∶ ∂𝑝1(B) ⇸ ∂𝑝2(B) which is a
relation.

– for 𝑓 ∶ B1…B𝑛 → B ′ ∶ ℬ, we set (∂F)𝑓, for (𝑏1, … , 𝑏𝑛; 𝑏′) ∈ ∂𝑝1(B1)×⋯×∂𝑝1(B𝑛)×
∂𝑝2(B ′),

((∂F)𝑓)𝑏1,…,𝑏𝑛;𝑏′ ⊆ (∂𝑝1(𝑓) ∘ ((∂F)B1, … , (∂F)B𝑛))(𝑏1, … , 𝑏𝑛; 𝑏′) × ((∂F)B′ ∘ ∂𝑝2)(𝑏1, … , 𝑏𝑛; 𝑏′)

as the diagonal relation.
Hence ∂F is a relational lax natural transformation between ∂𝑝1 and ∂𝑝2.

All the ideas behind this theorem are present in the following special case: a Niefield fibration
𝑝 ∶ ℰ → ℬ such that:

• for each object 𝑏 ∶ ℬ, 𝑝−1(𝑏) is a set;

• for each 2-arrow θ ∶ 𝑓 → 𝑓′, 𝑝−1(θ) is either empty or a singleton,
that is, in type theoretic terms, the type system 𝑝 does not have subtyping and a reduction can only
be typed by at most one typed reduction, then 𝑝 can be faithfully represented by:

• for each object in ℬ, its set of pre-images (the refined types)

• for each arrow in ℬ, and refined context, the set of type derivations of the arrow in the
context;

• for each reduction, a relation linking the type derivations together.

The cyclic case

5.1.11 In the cyclic case (that is, when ℬ is a cyclic Cat-operad), the theorem has to be adapted: indeed,
𝔇𝔦𝔰𝔱 is not a cyclic Cat-operad. It can be adapted by just changing 𝔇𝔦𝔰𝔱 to the following cyclic
operad:

Let 𝔇𝔦𝔰𝔱𝑠 be the following (large) bioperad:
• objects are sets;

• multimorphisms A 1…A 𝑛 ⇸ B are distributor-valued distributors, that is functors (of bi-
categories)

F ∶ A 1 ×⋯×A 𝑛 × Bop → Dist𝑠,

where A 1, … ,A 𝑛, B are trivially viewed as bicategories, and Dist𝑠 is the bicategory whose
objects are semi-categories, arrows distributors between them and 2-arrows natural transfor-
mations;

• composition of multimorphisms is defined as the composition of distributors;
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• 2-arrows θ ∶ F ⇒ G ∶ A 1…A 𝑛 → B are natural transformations of the underlying
functors: a family of Set-valued functions indexed by A 1 ×⋯×A 𝑛 × Bop:

∀(𝑎1, … , 𝑎𝑛, 𝑏) ∈ A 1 ×⋯×A 𝑛 × Bop, θ𝑎1,…,𝑎𝑛,𝑏 ∶ F(𝑎1, … , 𝑎𝑛, 𝑏) × G(𝑎1, … , 𝑎𝑛, 𝑏) → Set

satisfying naturality conditions:

F(𝑎1, … , 𝑎𝑛, 𝑏) × G(𝑎1, … , 𝑎𝑛, 𝑏) F(𝑎′1, … , 𝑎′𝑛, 𝑏′) × G(𝑎′1, … , 𝑎′𝑛, 𝑏′)

Set

F(𝑓1, … , 𝑓𝑛, 𝑓) × G(𝑓1, … , 𝑓𝑛, 𝑓)

θ𝑎1,…,𝑎𝑛,𝑏

θ𝑎′1,…,𝑎
′𝑛,𝑏′

5.1.12 As subtyping appears in our framework as an arrow 𝑓 ∶ A → B that types the identity, our frame-
work is able to handle:

• type systems with subtyping for intuitionistic calculi;
• type systems without subtyping for classical calculi,

but no type systems with subtyping for classical calculi, which is a bit puzzling.
5.1.13 We will not consider type systems with subtyping (there exist intersection type systems with sub-

typing, such as in (Terui 2012)), so the difference will not matter much.

. T   

5.2.1 Most reduction strategies can not be presented as Cat-operads: indeed, reductions in a Cat-operad
have to compose both sequentially and when applied to subterms, and most strategies are not stable
by composition into a subterm. So strategies have to be singled out, not as sub-operads, but as sets
of reductions of an operad. As we will see, depending on the kind of properties we are interested in,
we will need to define a varying notion of strategy.

5.2.2 We have already defined type systems for linear logic. Indeed, the systems of Chapter 4 define
pointwise Niefield fibrations:

LinPoly𝕋 → Λ!,⋆
RelPoly𝕋 → Λ!,⋆
AffPoly𝕋 → Λ!,⋆

CartPoly𝕋 → Λ!,⋆

and

LinPolyLL𝕋 → MELL?,⋆
RelPolyLL𝕋 → MELL?,⋆
AffPolyLL𝕋 → MELL?,⋆

CartPolyLL𝕋 → MELL?,⋆.

Through the Grothendieck construction of the last Section, for each operad D of derivations, we
have (for instance, in the case of MELL?,⋆) an approximation functor A⃗[D] ∶ MELL?,⋆ → 𝔇𝔦𝔰𝔱𝑠.
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So, the general setting in which the work takes place is the following: given a (possibly cyclic)
Cat-operad 𝒞, together with a translation into linear logic G ∶ 𝒞 → MELL?,⋆, and a choice of an
operad of derivations, we can define an approximation functor for 𝒞:

𝒞 MELL?,⋆ 𝔇𝔦𝔰𝔱𝑠
G A⃗[D]

A⃗[D,G]

In turn, by applying the Grothendieck construction to it, we get a type system for 𝒞:

ℰ ℓ(D,G) 𝔇𝔦𝔰𝔱𝑠,∗

𝒞 𝔇𝔦𝔰𝔱𝑠

p[D,G]
A⃗[D,G]

So, the main interest for us of the Grothendieck construction is to allow to compose type system
along translations. All the work is therefore to find the right translations and the right type systems
for linear logic to capture the properties we are interested in.

Strong-style normalization properties

5.2.3 Suppose we are interested in a calculus presented by a Cat-operad 𝒞. If we are interested in proving
that strong normalization holds for a reduction strategy, we have to prove that every reduction
accepted by the strategy enjoys a certain property. In other words, every set of reductions in 𝒞 have
enough structure to carry a strong normalization proof.

Theorem 6

Let 𝒞 be a Cat-operad together with the morphisms

𝒞 MELL?,⋆ 𝔇𝔦𝔰𝔱G A⃗[D]

A⃗[D,G]

Let Φ be a set of 2-arrows in 𝒞.
If

• for all ϕ ∶ 𝑡 ⇒ 𝑡′ ∈ Φ and for all list Γ and element B of A⃗[D](l) , A⃗[D,G]Γ,A(ϕ) is entire:
for all τ ∈ A⃗[D,G]Γ,A(𝑡), there exists a τ′ ∈ A⃗[D,G]Γ,A(𝑡′) such that A⃗[D,G]Γ,A(ϕ)(τ, τ′)
is non-empty;

• if ϕ ≠ id, then A⃗[D,G]Γ,A(ϕ) ≠ id,
then, ifM is p[D,G]-typable, then there is no infinite reduction in Φ starting fromM.
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Proof : The proof is a rewrite of the standard proof in the language ofCat-operads: let τ ∈ A⃗[D,G]Γ,A(M).
For any reduction sequence

M ⇒ M1 ⇒ ⋯ ⇒ M𝑛

we can define a sequence τ ⇒ τ1 ⇒ ⋯ ⇒ τ𝑛 (as reductions in D such that ∀1 ⩽ 𝑖 ⩽ 𝑛, τ𝑖 ∈
A⃗[D,G]Γ,A(M𝑖) (by the first condition) that is not stationary (by the second condition). As there
is no non-stationary infinite such sequence (by strong normalization of polyadic linear logic), it
concludes.

Weak-style normalization properties

5.2.4 For weak normalization, we want to ensure that a reduction sequence starting from M ends in a
set of terms already chosen. So we have to specify two things: a set of valid reductions and a set of
terms already reduced.
Theorem 7

Let 𝒞 be a Cat-operad together with the morphisms

𝒞 MELL?,⋆ 𝔇𝔦𝔰𝔱G A⃗[D]

A⃗[D,G]

Let R be a set of reductions in 𝒞.
Let𝒩 be a set of terms in 𝒞.
If

• for all ρ in R, and for all list Γ and element B of A⃗[D](l), A⃗[D,G]Γ,B(ρ) is surjective: for
all τ′ ∈ A⃗[D,G]Γ,A(𝑡′), there exists a τ ∈ A⃗[D,G]Γ,A(𝑡) such that A⃗[D,G]Γ,A(ϕ)(τ, τ′)
is non-empty,

• for all 𝑛 ∈ 𝒩, 𝑛 is p[D,G]-typable
then, if there is a succession of reductions in R fromM to a term in𝒩, thenM is p[D,G]-typable.

Proof : This is also just a reformulation of the standard proof: by induction on a reduction sequence
from M to a term in 𝒩.

The fundamental theorem of intersection types

5.2.5 The two above theorems might seem a bit puzzling: we proved that typability implies strong normal-
ization, and that weak normalization implies typability. So the full theorem, a characterization of
normalization by typability, requires strong normalization to be equivalent to weak normalization,
which is not true for non-deterministic reductions.

The solution to this riddle comes from the fact that the parameter in the last two theorems can
be chosen independently in a way that makes them agree. So, this gives the full theorem, dubbed
“the fundamental theorem of intersection types”.
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Theorem 8

Let 𝒞 be a Cat-operad together with the morphisms

𝒞 MELL?,⋆ 𝔇𝔦𝔰𝔱G A⃗[D]

A⃗[D,G]

Let R and Φ be sets of reductions in 𝒞, and let𝒩 be a set of terms in 𝒞.
If

• for all ϕ ∶ 𝑡 ⇒ 𝑡′ ∈ Φ and for all list Γ and element B of A⃗[D](l) , A⃗[D,G]Γ,A(ϕ) is entire:
for all τ ∈ A⃗[D,G]Γ,A(𝑡), there exists a τ′ ∈ A⃗[D,G]Γ,A(𝑡′) such that A⃗[D,G]Γ,A(ϕ)(τ, τ′)
is non-empty;

• for all ϕ ∶ 𝑡 ⇒ 𝑡′ ∈ Φ, if ϕ ≠ id, then A⃗[D,G]Γ,A(ϕ) ≠ id;

• for all ρ in R, and for all list Γ and element B of A⃗[D](l), A⃗[D,G]Γ,B(ρ) is surjective: for
all τ′ ∈ A⃗[D,G]Γ,A(𝑡′), there exists a τ ∈ A⃗[D,G]Γ,A(𝑡) such that A⃗[D,G]Γ,A(ϕ)(τ, τ′)
is non-empty,

• for all 𝑛 ∈ 𝒩, 𝑛 is p[D,G]-typable
• for all termsM, if there is no infinite reduction inΦ starting fromM, then there is a succession
of reductions in R fromM to a term in𝒩,

then for a termM in 𝒞, the following conditions are equivalent:
• M is p[D,G]-typable,
• there is no infinite reduction fromM in Φ,
• there is a sequence of reductions fromM to a term in𝒩.

As we will show, the well-known intersection type systems and their characterization of normal-
ization are instances of this construction and this theorem.

This theorem captures the essence of intersection types as a bridge between a strong normaliza-
tion property for a certain notion of reduction (represented by the set Φ) and a weak normalization
property for an other notion of reduction (represented by the sets R and 𝒩). When these sets are
harmonious, intersection types characterize exactly normalization for these notions.

. I     λ-

Recovering Coppo, Dezani and Venneri’s original intersection type system

5.3.1 We are now ready to reconstruct Coppo, Dezani-Ciancaglini, and Venneri (1981)’s original inter-
section type system. Consider the Cat-operad Λ⋆, that we will translate, for simplicity, into Λ!,⋆
through Girard’s translation. We will then consider the simply typed derivations of CartPoly with-
out empty sequences.
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ℰ ℓ(CartPoly,G) 𝔇𝔦𝔰𝔱∗

Λ Λ!,⋆ 𝔇𝔦𝔰𝔱

p[CartPoly,G]
G A⃗[CartPoly]

A⃗[CartPoly,G]

Objects in ℰ ℓ(CartPoly,G) are the objects in CartPoly, so given by the grammar:

A ∶∶= ⟨A 1, … ,A 𝑛⟩|A ⊸ B

and a term M and a reduction ϕ ∶ M ⇒ M ′ in Λ⋆ are typed by a simply-typed term in CartPoly
following the approximation relation with eventually some structural rules applied. So, the rules of
the obtained system have shape:

𝑥 ∶ A ⊢ 𝑥 ∶ A
(variable)

Γ, 𝑥1 ∶ A 1, … , 𝑥𝑛 ∶ A 𝑛 ⊢ 𝑡 ∶ B
Γ ⊢ λ𝑥.𝑡 {𝑥1, … , 𝑥𝑛 ← 𝑥} ∶ ⟨A 1, … ,A 𝑛⟩ ⊸ B

(abstraction)

Γ ⊢ 𝑡 ∶ ⟨A 1, … ,A 𝑛⟩ ⊸ B Δ1 ⊢ 𝑢 ∶ A 1 ⋯ Δ𝑛 ⊢ 𝑢 ∶ A 𝑛
Γ, Δ1, … , Δ𝑛 ⊢ 𝑡𝑢

(application)

Figure 5.1: Coppo, Dezani and Venneri’s original intersection type system

with all structural rules on the context, which means that the applicative lists behave like sets.

5.3.2 We can moreover use the fundamental theorem of intersection types for this system, by using the
following parameters:

• as Φ all reductions in Λ⋆;

• as R the set of non-erasing reductions;

• as 𝒩 all normal forms.
This proves:

Theorem 9 (Coppo, Dezani and Venneri)

The system of Figure 5.1 charaterizes strong normalization: a termM in Λ⋆ is equivalently:
• typable in this system;

• with no infinite sequences of reduction starting from it;

• with a finite sequence of non-erasing reduction starting from it and ending in a normal form.
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Recovering de Carvalho’s System R

5.3.3 Carvalho (2009)’s System R is a non-idempotent intersection type system. It is obtained by trans-
lating Λ⋆ into Λ!,⋆ and considering linear derivations LinPoly. Its rules are represented Figure 5.2
with only the exchange rule on contexts, which means that the applicative lists behave like multisets.

𝑥 ∶ ⟨A⟩ ⊢ 𝑥 ∶ A
(variable)

Γ, 𝑥1 ∶ A 1, … , 𝑥𝑛 ∶ A 𝑛 ⊢ 𝑡 ∶ B
Γ ⊢ λ𝑥.𝑡 {𝑥1, … , 𝑥𝑛 ← 𝑥} ∶ ⟨A 1, … ,A 𝑛⟩ ⊸ B

(abstraction)

Γ ⊢ 𝑡 ∶ ⟨A 1, … ,A 𝑛⟩ ⊸ B Δ1 ⊢ 𝑢 ∶ A 1 ⋯ Δ𝑛 ⊢ 𝑢 ∶ A 𝑛
Γ, Δ1, … , Δ𝑛 ⊢ 𝑡𝑢

(application)

Figure 5.2: de Carvalho’s System R

5.3.4 We can also use the fundamental theorem of intersection types for this system, by using the following
parameters:

• as Φ the head reductions in Λ⋆;

• as R the set of all reductions;

• as 𝒩 all head-normal forms.

This proves:

Theorem 10 (de Carvalho)

The system of Figure 5.2 charaterizes head normalization: a termM in Λ⋆ is equivalently:
• typable in this system;

• with no infinite sequences of head reductions starting from it;

• with a finite sequence of reduction starting from it and ending in a head-normal form.

. I     -- λ-

5.4.1 In the same way, we can consider intersection type systems for the call-by-value λ-calculus, com-
puted thanks to the translation G𝑣.
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ℰ ℓ(LinPoly,G𝑣) 𝔇𝔦𝔰𝔱∗

Λ𝑣 Λ!,⋆ 𝔇𝔦𝔰𝔱

p[LinPoly,G𝑣]
G𝑣 A⃗[LinPoly]

A⃗[LinPoly,G𝑣]

For instance, computing the system for the approximation derivations LinPoly, we get the sys-
tem shown in Figure 5.3. Its types are given by

A,B ∶∶= ⟨A 1 ⊸ B1, … ,A 𝑛 ⊸ B𝑛⟩

(𝑛 = 0 is allowed, which gives the base case of the inductive definition). The shape of types is justified
by observing that Girard’s call-by-value translation is based on the recursive type D = !(D ⊸ D),
and remembering that ⟨−⟩ approximates !(−), with only the exchange rule on contexts, which means
that the lists behave like multisets.

𝑥 ∶ A ⊢ 𝑥 ∶ A
(variable)

Γ1, 𝑥 ∶ A 1 ⊢ N ∶ B1 ⋯ Γ𝑛, 𝑥 ∶ A 𝑛 ⊢ N ∶ B𝑛
Γ1⋯Γ𝑛 ⊢ λ𝑥.N ∶ ⟨A 1 ⊸ B1, … ,A 𝑛 ⊸ B𝑛⟩

(abstraction)

Γ ⊢ M ∶ ⟨A ⊸ B⟩ Δ ⊢ N ∶ A
Γ ⋅ Δ ⊢ MN ∶ B

(application)

Figure 5.3: Non-idempotent intersection types for the call-by-value λ-calculus.

5.4.2 By applying Theorem 8, with the following parameters:

• as Φ and R the set of all reductions in Λ𝑣,⋆;

• as 𝒩 all normal forms,

we prove:

Theorem 11

The system of Figure 5.3 charaterizes call-by-value normalization: a termM inΛ𝑣,⋆ is equivalently:
• typable in this system;

• with no infinite sequences of reductions starting from it;

• with a finite sequence of reduction starting from it and ending in a normal form.
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. I     λμ-

5.5.1 The situation of the λμ-calculus caused us to move from the world of Cat-operads to the world
of semi-cyclic Cat-operads. So, by embedding λμ-calculus into MELL?,⋆, we get intersection type
systems for the λμ-calculus.

ℰ ℓ(LinPolyLL,L) 𝔇𝔦𝔰𝔱𝑠,∗

ΛM MELL?,⋆ 𝔇𝔦𝔰𝔱𝑠

p[LinPolyLL,L]

L A⃗[LinPolyLL]

A⃗[LinPolyLL,L]

The types of the resulting system, ranged over by A,B, are as follows:

A,B ∶∶= ⟨⟨P1, … , P𝑛⟩⟩,
P ∶∶= ⟨A 1, … ,A 𝑛⟩ ⊸ B,

where ⟨⟨−⟩⟩ is the dual of ⟨−⟩, just like the modality ?(−) is dual to !(−) in classical linear logic. The
shape of the types is immediately justified by noting that Laurent’s translation uses the recursive type
D = ?(!D ⊸ D), keeping in mind that ⟨−⟩ approximates !(−) and ⟨⟨−⟩⟩ approximates ?(−). In the
literature on intersection types for the λμ-calculus, these latter are known as union types (Laurent
2004). The typing judgments resulting from the translation are of the form

𝑥1 ∶ A⃗ 1, … , 𝑥𝑚 ∶ A⃗ 𝑚, α1 ∶ B1, … , α𝑛 ∶ B𝑛 ⊢ M ∶ C,

where by A⃗ we denote sequences of the form ⟨A 1, … ,A 𝑛⟩, for which we write A⃗(𝑖) to denote
A 𝑖. The typing rules are given in Figure 5.4. Interestingly, this system turns out to coincide with
a system for the λμ-calculus recently introduced by Kesner and Vial (2017). In their work, the
authors go further and characterize strong normalization; we may of course adapt the above to
strong normalization, obtaining however a system that is slightly different than Kesner and Vial’s.

Γ⟨⟩ denotes a context where all variables are typed by ⟨⟩ or ⟨⟨⟩⟩ (as appropriate). In the bot-
tom rule, ⋅ denotes the concatenation of sequences (of both forms). The notation Γ ⋅ Δ denotes
concatenation of lists. Sequences in the context (of both forms) may be permuted at will.
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Γ⟨⟩, 𝑥 ∶ ⟨A⟩ ⊢ 𝑥 ∶ A
(axiom)

Γ, 𝑥 ∶ A⃗ ⊢ M ∶ B
Γ ⊢ λ𝑥.M ∶ ⟨⟨A⃗ ⊸ B⟩⟩

(abstraction)

Γ, α ∶ A, β ∶ B ⊢ M ∶ C
Γ, α ∶ C ⋅ A ⊢ μβ.⌈α⌉M ∶ B

(μ)

Γ ⊢ M ∶ ⟨⟨􏹏A 1 ⊸ B1, … , 􏹏A 𝑛 ⊸ B𝑛⟩⟩ (Δ𝑗𝑖 ⊢ 􏹏A 𝑖(𝑗))1≤𝑖≤𝑛,1≤𝑗≤𝑘𝑖
Γ ⋅ Δ11⋯Δ𝑘11 ⋯Δ1𝑛⋯Δ𝑘𝑛𝑛 ⊢ MN ∶ ⟨⟨B1, … , B𝑛⟩⟩

(application)

Figure 5.4: System characterizing λμ head normalizing terms.
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. T    λ-

6.1.1 Associating to a term in a calculus whose dynamic can be very complicated (such as the λ-calculus
or MELL proof-nets) a set of terms in a simpler calculus (such as a linear or affine calculus) can help
study (and define operations on) the first language. For instance, a language such as LinPoly is
linear and strongly normalizing. To any term in the pure λ-calculus is associated a set of terms of
LinPoly, the set of its approximations, as elaborated in Chapter 5. So, it can be tempting to define
a notion of normal form of any λ-term (even a non-normalizing one) by taking the set of normal
forms of its linear approximations.

As we will see, the situation is very different between the intutionnistic world of λ-calculus (and
intutionnistic linear logic) and the classical world of proof-nets: the fact that classic calculi allow for
multiple conclusion make them lack any tree-like structure.

6.1.2 We will not compare polaydic approximations of the λ-calculus with polyadic approximations of
proof-nets: given our definitions, an element of the polyadic Taylor expansion is attached with
two projections (𝑡 ← R𝑡 → R), and so contain all the informations on how it was built, and

99
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which MELL proof-net it approximates. For the comparison to be interesting, it must be between
resource λ-terms and resource proof-nets. Nonetheless, we will use polyadic proof-nets as a tool
to understand resource proof-nets. We actually believe that polyadic proof-nets are a syntax for
resource proof-nets: non-canonical, but easier to manipulate.

6.1.3 The goal of this Chapter is to introduce and motivate a geometric restriction on MELL proof-nets,
box-connexity which brings some of the clarity of the λ-calculus’ situation to proof-nets.

Coherence

6.1.4 In a language of approximations, not all terms approximate a term in the approximated language.
A notion of uniformity (Ehrhard and Regnier 2008) or well-formedness (Kfoury 2000) can capture
it, in the case of the λ-calculus.
Definition 46 (Coherence for resource λ-terms)

Let 𝑡 and 𝑡′ be resource λ-terms. We say that 𝑡 and 𝑡′ are coherent, written

𝑡 ¨ 𝑡′,

if, by induction on the structure of 𝑡,
• 𝑡 = 𝑡′ = 𝑥;
• 𝑡 = λ𝑥.𝑠, 𝑡′ = λ𝑥.𝑠′ and 𝑠 ¨ 𝑠′;
• 𝑡 = 𝑠T, 𝑡′ = 𝑠′T ′, and 𝑠 ¨ 𝑠′ and for all 𝑡1, 𝑡2 ∈ T + T ′, 𝑡1 ¨ 𝑡2.

A term that is coherent with itself is called uniform.

Uniform terms are exactly the terms that approximate λ-terms. Finite cliques (for the coherence
relations) are included in the Taylor expansion of a λ-term.

6.1.5 It is impossible to do so for proof-nets: indeed, consider the example, slightly adapted from (Tasson
2009, Example V.9) (in the original example, all the (co-)contractions are replaced by (co-)weaken-
ings), of Figure 6.1. By pairs, the resource proof-nets depicted come from the Taylor expansion of
a MELL proof-net, but not the three together.

So, there does not exist a binary notion of coherence, that captures the relationship of a set
of polyadic proof-nets and an arbitrary MELL proof-net. This example can be extended to show
that there is no 𝑛-ary notion of coherence capturing it, for any 𝑛 ∈ N. In Section 6.3, we will
introduce a notion of coherence for polyadic proof-nets that (translated to resource proof-nets)
extends coherence for the resource λ-calculus, and shares its properties but only with respect to
box-coherent ones: two resource proof-nets will be coherent if and only if they are in the resource
Taylor expansion of the same box-connected MELL proof-net.

Disjointness of reducts

6.1.6 To a term 𝑡, we associate its Taylor expansion 𝒯𝑡. There is a reduction on the approximation lan-
guage, that is moreover strongly terminating. Can we use it to compute a normal form for the term
𝑡, that would coincide with the usual notion of normal form for the original calculus?

6.1.7 In the general case, the Taylor expansion is not a set, but the elements of the Taylor expansion
are weighted by coefficients in a semi-ring. This allows to capture quantitative behavior. So, the
reduction of a formal sum 𝑠 = ∑𝑎𝑖𝑡𝑖, weighted by coefficients, is another formal sum 𝑠′ = ∑𝑎′𝑖 𝑡′𝑖 .
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Figure 6.1: Three incoherent resource proof-nets

A priori, some of the coefficients in 𝑠′ are not finite (as one term in 𝑠 can reduce to many terms,
and the formal sums considered are in general infinite), which means that 𝑠′ is not well-defined (in
absence of a topology on the space of formal sums). So, a simplification of the first question is: are
the set of reducts of approximations of the same term disjoint?

6.1.8 It is the case in the λ-calculus (Ehrhard and Regnier 2008, Theorem 22). This result uses coherence
and uniformity in a crucial way.

In proof-nets, it is not the case, as shown by the above example.

Example : This counter-example is due to Mazza and Pagani. The proof-net of Figure 6.2 has the two resource
proof-nets of Figure 6.3 and Figure 6.3 in its Taylor expansion. Both reduce to the the resource proof-net
of Figure 6.5.

6.1.9 In this Chapter, we will not tackle this problem, but the definition of coherence we give can be an
important tool.

Computing a term from its Taylor expansion

6.1.10 Given an approximation with enough information, we can compute back the approximated term
in the λ-calculus: indeed, any approximation with no empty application has the same tree-like
structure of applications and abstraction than the original term, only fattened. It is impossible to
do so in proof-nets. Indeed, we can exhibit two MELL proof-nets with an element in the resource
Taylor expansion of both. Even worse, we can exhibit two MELL proof-nets whose resource Taylor
expansions have an infinite intersection.
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Figure 6.2: A proof-net R
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Figure 6.3: A resource proof-net ρ1 ∈ 𝒯R
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⊥ ⊥ 1 1 1 ⊥ ⊥

?(1 ⊗ 1) !(⊥`⊥)

?(1 ⊗ 1) !(⊥`⊥)!(⊥`⊥)!(⊥`⊥)

ax
ax

⊗
1 ⊗ 1

`
⊥`⊥

!
!(⊥`⊥)

! ! !? ?
?(1 ⊗ 1)
!

!?(1 ⊗ 1)
?

?!(⊥`⊥)

⊥ ⊥ 1

`
⊥`⊥

!
!(⊥`⊥)

ax

?
?1

?
?!(⊥`⊥)

cut

(a) A resource proof-net ρ2

•

1 2

2 2

⟶ •

1 2

1 2

(b) The thick subtree from
which it arose

Figure 6.4: A resource proof-net ρ2 ∈ 𝒯R

1 ⊥ ⊥

?(1 ⊗ 1) !(⊥`⊥)!(⊥`⊥)!(⊥`⊥)

`
⊥`⊥

!
!(⊥`⊥)

! ! !?

?
?!(⊥`⊥)

⊥ ⊥1

?
?1

Figure 6.5: A resource proof-net, reduct both of ρ1 and ρ2

. B-

6.2.1 To solve these shortcomings, we introduce a geometric restriction on proof-nets, box-connexity, for
which the interaction between a proof-net and its approximants is reminiscent of the one between
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a λ-term and its approximants.
The notion of box-connexity is ill-behaved: it is not stable under reduction (see the example

of §6.2.4). Nonetheless, it is essential in our proofs, and any failure of box-connexity leads to the
construction of counter-examples to the properties we are interested in. Moreover, the class of box-
connected MELL proof-net contain many classes of proof-nets of interest:

• acyclical and connex (in the sense of (Danos and Regnier 1989)) MELL proof nets without ⊥
cells and weakenings;

• call-by-name translations of λ-terms;

• translations of MELL sequent calculus derivations (without the mix rule).
In a sense, box-connexity is an intermediate notion, designed to extend connexity (which is a

well-behaved, well-understood notion) to encompass the very tame kind of non-connexity that we
find in the λ-calculus. A better notion ought to be defined.

Definition 47 (?-accessibility)

A ?-path on a (polyadic or MELL) proof-net R is a finite sequence (𝑓0, … , 𝑓𝑛) of pairwise
distincts flags in R such that, by induction on 𝑛:

(i) either 𝑛 = 0 and (𝑓0) is a ?-path, for all 𝑓0 flag in R;

(ii) or (𝑓0, … , 𝑓𝑛−1) is a ?-path and 𝑗τ(𝑓𝑛−1) = 𝑓𝑛 (that is, {𝑓𝑛−1, 𝑓𝑛} is an edge);

(iii) or (𝑓0, … , 𝑓𝑛−1) is a ?-path and 𝑓𝑛−1 is an output of the boundary 𝑐 of 𝑓𝑛;
(iv) or (𝑓0, … , 𝑓𝑛−1) is a ?-path and

• 𝑓𝑛−1 is an input of the boundary 𝑐 of 𝑓𝑛;
• ℓ(𝑐) ≠ ?.

(v) or (𝑓0, … , 𝑓𝑛−1) is a ?-path and

• 𝑓𝑛−1 is an input of the boundary 𝑐 of 𝑓𝑛;
• ℓ(𝑐) = ?;
• for all input 𝑓 of 𝑐, there is a ?-path from 𝑓0 to 𝑓.

A complete support of a ?-path (𝑓0, … , 𝑓𝑛) is the union of {𝑓𝑛} and the complete support of
(𝑓0, … , 𝑓𝑛−1) in the Items i to iv and the union of {𝑓𝑛} and a complete support of a ?-path from
𝑓0 to all inputs of 𝑐 in the Item v.

A flag 𝑓′ is ?-accessible from a flag 𝑓 if there is a ?-path from 𝑓 to 𝑓′.

Remark 9
Accessibility is preserved by isomorphisms and by the quotients ≃? and ≃!?.

6.2.2 The main interest of the notion of complete support is to allow us to do inductions on them, whereas
we can not perform inductions on ?-paths.

Lemma 4

For every ?-path (𝑓0, … , 𝑓𝑛), and every element 𝑓 in a complete support S of this path, there is a
?-path from 𝑓0 to 𝑓 whose complete support is included in S.

6.2.3 Using the definition of ?-accessibility, we can define box-connexity.



6.2. Box-connexity 105

Definition 48 (box-connexity)

Let R be a MELL proof-net.
Let 𝑣 a non-root vertex of the box-tree 𝒯 of R. A ?-path of R is inside the box of 𝑣 if the

image of a complete support of the path via box is above 𝑣.
R is box-connected if, for every non-root vertex 𝑣 of the box-tree 𝒯 of R, and every flag 𝑓

inside 𝑣, there is a path inside the box 𝑣 from the principal door of 𝑣 to 𝑓.

6.2.4

A A A⊥ A⊥ A A A⊥ A⊥

ax

ax

`
A⊥ `A⊥

ax

ax

⊗
A ⊗ A

cut?
?A

!
!A⊥

?
?A

(a) R, box-connected

A A A⊥ A⊥ A A A⊥ A⊥

ax

ax

ax

ax

cut
cut

?
?A

!
!A⊥

?
?A

(b) R ′, not box-connected

Figure 6.6: A box-connected proof-net and its non-box-connected reduct

Example : The proof-net R is box-connected. It reduces to the proof-net R ′ which is not.

Box-connexity and fatness

6.2.5 Lemma 3 shows that the underlying graph of a MELL proof-net can be recovered by a polyadic proof-
net in its Taylor expansion that does not erase any box. In the case of box-connexity, some elements
of the Taylor expansion give even further information.
Definition 49 (fatness)

A polyadic proof-net is 𝑛-fat if all its !-cells have at least 𝑛 inputs.

Informally, let us consider a MELL proof-netR and ρ a polyadic proof-net in itsTaylor expansion.
The different copies of a box of R in ρ are disjoint. If ρ is 2-fat, the ?-accessibles of a premise of a
?-cell can not go outside the copy of the box related to the said premise. If R is box-connected, all
the copy of the box is ?-accessible from its premise. So the ?-accessibles allow us to precisely recover
the border of the boxes. The remainder of this Section is dedicated to proving the theorem:
Theorem 12

Let R and R ′ be two box-connected MELL proof-nets, and
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𝑡 R𝑡 R

𝑡′ R ′
𝑡′ R ′

φ

φ′

ψ

ψ′

be two elements of their Taylor expansion, such that R𝑡 and R ′
𝑡′ are 2-fat, and 𝑓 ∶ R𝑡 ≃ R ′

𝑡′ as
polyadic proof-nets.

𝑓 induces an isomorphism of MELL proof-nets R ≃ R ′.

In other words, a box-connected MELL proof-net is entirely characterized by any of the 2-fat
elements of its Taylor expansion.

6.2.6 The ?-accessibles of a fat enough element of the Taylor expansion of a box-connected proof-net R
are related to the ?-accessibles of R. More precisely, ?-accessibility can be transported from a 1-fat
element of the Taylor expansion of R back to R.
Lemma 5

Let R be a box-connected MELL proof-net. Let R𝑡 be a 1-fat element in its Taylor expansion:

𝑡 R𝑡 R
φ ψ

Let 𝑐 be a !-cell in R𝑡 and 𝑓 one of its premises. Let 𝑓′ be ?-accessible from ψ(𝑓) inside the box
of ψ(𝑐). There exists an element in ψ−1(𝑓′) that is ?-accessible from 𝑓.

Proof : By induction on the cardinal of a complete support of the ?-path from ψ(𝑓) to 𝑓′, thanks to
Lemma 4, and case disjonction on the last step of the said path.

Let (ψ(𝑓), 𝑓1, … , 𝑓′) be a ?-path whose complete support is inside the box of 𝑐.

(i) if 𝑓′ = ψ(𝑓), then 𝑓 is the accessible element of the statement;
(ii) if (ψ(𝑓), … , 𝑓𝑛−1) is a ?-path and 𝑗τ(𝑓𝑛−1) = 𝑓𝑛, then, by induction hypothesis, let 𝑔 ∈

ψ−1(𝑓𝑛−1) be accessible from 𝑓, and let 𝑓′ be the other side of edge of 𝑔;
(iii) if (ψ(𝑓), … , 𝑓𝑛−1) is a ?-path and 𝑓𝑛−1 is an output of the boundary 𝑐𝑛 of 𝑓𝑛, then, by induc-

tion hypothesis, let 𝑔 ∈ ψ−1(𝑓𝑛−1) be accessible from 𝑓. 𝑔 is an output of the boundary of a
flag 𝑓′ ∈ ψ−1(𝑓𝑛−1), which is accessible from ψ(𝑓);

(iv) or (ψ(𝑓), … , 𝑓𝑛−1) is a ?-path and
• 𝑓𝑛−1 is an input of the boundary 𝑑 of 𝑓𝑛;
• ℓ(𝑑) ≠ ?,

then, by induction hypothesis, let 𝑔 ∈ ψ−1(𝑓𝑛−1) be accessible from 𝑓. 𝑔 is an input of the
boundary of a flag 𝑓′ ∈ ψ−1(𝑓𝑛−1), which is accessible from ψ(𝑓);

(v) or (ψ(𝑓), … , 𝑓𝑛−1) is a ?-path and
• 𝑓𝑛−1 is an input of the boundary 𝑑 of 𝑓𝑛;
• ℓ(𝑑) = ?;
• for all input ℎ of 𝑐, there is a ?-path inside the box of ψ(𝑐) from ψ(𝑓) to ℎ,

then, by induction hypothesis, let 𝑔 ∈ ψ−1(𝑓𝑛−1) be accessible from 𝑓. 𝑔 is an input of the
boundary of a flag 𝑓′ ∈ ψ−1(𝑓𝑛−1), which is accessible fromψ(𝑓), as all inputs of the boundary
of 𝑓′ are accessible from ψ(𝑓), by induction hypothesis.
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6.2.7 For a 2-fat element, the ?-accessible are more related.
Lemma 6

Let R be a box-connected MELL proof-net. Let R𝑡 be a 2-fat element in its Taylor expansion:

𝑡 R𝑡 R
φ ψ

Let 𝑐 be a ! cell in R𝑡 and 𝑓 one of its premises.
Let (𝑓⋯𝑓𝑛) be a ?-path in R𝑡. Its image via ϕ is above ϕ(𝑓).

Proof : By induction on a complete support path (𝑓⋯𝑓𝑛).

(i) if 𝑓 = 𝑓𝑛, it is obvious;
(ii) if (𝑓0, … , 𝑓𝑛−1) is a ?-path and 𝑗τ(𝑓𝑛−1) = 𝑓𝑛, by induction hypothesis, ϕ(𝑓𝑛−1) is above ϕ(𝑓)

and so is ϕ(𝑓𝑛), by definition of the boxes;
(iii) if (𝑓0, … , 𝑓𝑛−1) is a ?-path and 𝑓𝑛−1 is an output of the boundary of 𝑓𝑛, by induction hypoth-

esis, ϕ(𝑓𝑛−1) is above ϕ(𝑓), and so is ϕ(𝑓𝑛), as boxes are upwards-closed;
(iv) if (𝑓0, … , 𝑓𝑛−1) is a ?-path and

• 𝑓𝑛−1 is an input of the boundary 𝑑 of 𝑓𝑛;
• ℓ(𝑑) ≠ ?,

then by induction hypothesis, ϕ(𝑓𝑛−1) is aboveϕ(𝑛), and so isϕ(𝑓𝑛), as boxes are downwards-
closed on non ?-cells;

(v) if (𝑓0, … , 𝑓𝑛−1) is a ?-path and
• 𝑓𝑛−1 is an input of the boundary 𝑑 of 𝑓𝑛;
• ℓ(𝑑) = ?;
• for all input 𝑔 of 𝑑, there is a ?-path from 𝑓0 to 𝑔,

then, by induction hypothesis, all inputs 𝑔 of the boundary 𝑑 of 𝑓𝑛 are such that ϕ(𝑔) if above
ϕ(𝑓). As R𝑡 is 2-fat, if 𝑑 was such that the output of 𝑑 was below ϕ(𝑓) (that is, 𝑑 corresponds
to a border of the box in 𝑐), one of its input would have an image different than ϕ(𝑓). So,
ϕ(𝑓𝑛) is above ϕ(𝑓).

Lemma 7

Let R be a box-connected MELL proof-net. Let R𝑡 be a 2-fat element in its Taylor expansion:

𝑡 R𝑡 R
φ ψ

Let 𝑐 be a ! cell in R𝑡 and 𝑓 one of its premises.
Let (𝑓⋯𝑓𝑛) be a ?-path in R𝑡. Its image via ψ is a ?-path in the box of ψ(𝑐).

Proof : By induction on a complete support of the path (𝑓⋯𝑓𝑛):

(i) if 𝑓 = 𝑓𝑛, it is obvious;
(ii) if (𝑓0, … , 𝑓𝑛−1) is a ?-path and 𝑗τ(𝑓𝑛−1) = 𝑓𝑛, by induction hypothesis, (ψ(𝑓0), … , ψ(𝑓𝑛−1))

is a ?-path inside the box of ψ(𝑐). In particular, ψ(𝑓𝑛−1) is in the box of ψ(𝑐), and so is ψ(𝑓𝑛),
by definition of the boxes;
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(iii) if (𝑓0, … , 𝑓𝑛−1) is a ?-path and 𝑓𝑛−1 is an output of the boundary of 𝑓𝑛, by induction hypoth-
esis, ψ(𝑓𝑛−1) is inside the box of ψ(𝑐), and so is ψ(𝑓𝑛), as boxes are upwards-closed;

(iv) if (𝑓0, … , 𝑓𝑛−1) is a ?-path and
• 𝑓𝑛−1 is an input of the boundary 𝑑 of 𝑓𝑛;
• ℓ(𝑑) ≠ ?.

then by induction hypothesis, ψ(𝑓𝑛−1) is inside the box of ψ(𝑐), and so is ψ(𝑓𝑛), as boxes are
downwards-closed on non ?-cells;

(v) if (𝑓0, … , 𝑓𝑛−1) is a ?-path and
• 𝑓𝑛−1 is an input of the boundary 𝑑 of 𝑓𝑛;
• ℓ(𝑑) = ?;
• for all input 𝑔 of 𝑑, there is a ?-path from 𝑓0 to 𝑔,

by induction hypothesis, and the same argument that in the preceding lemma, ψ(𝑑) is not the
border of the box of ψ(𝑐), so, ψ(𝑓𝑛) is inside the box of ψ(𝑐), which concludes.

These Lemmas 5 and 7 combine and give:
Proposition 3

Let R be a box-connected MELL proof-net. Let R𝑡 be a 2-fat element in its Taylor expansion:

𝑡 R𝑡 R
φ ψ

Let 𝑐 be a ! cell in R𝑡 and 𝑓 one of its premises. Let A 𝑙 be the set of cells ?-accessible from 𝑙.
ψ(A 𝑙 ∪ {𝑐}) is the box of ψ(𝑐).

6.2.8 Moreover, the different copies of the same box can be distinguished in a way that is preserved by
isomorphism of resource proof-nets.
Lemma 8 (copies preservation)

Let R and R ′ be two box-connected MELL proof-nets. We note boxR ∶ R → 𝒯 ⟲
R and boxR′ ∶ R ′ →

𝒯 ⟲
R′ their boxing functions. Let

𝑡 R𝑡 R

𝑡′ R ′
𝑡′ R ′

φ

φ′

ψ

ψ′

be two elements of their Taylor expansion, such that R𝑡 and R ′
𝑡′ are 2-fat, and 𝑓 ∶ R𝑡 ≃ R ′

𝑡′ as
polyadic proof-nets.

Two cells 𝑐, 𝑐′ of R𝑡 have the same image by φ and boxR ∘ ψ if and only if 𝑓(𝑐) and 𝑓(𝑐′) have
the same image by φ′ and boxR′ ∘ ψ′.

Proof : Let 𝑐, 𝑐′ be two cells of R𝑡 such that

φ(𝑐) = φ(𝑐′)
boxR ∘ ψ(𝑐) = boxR ∘ ψ(𝑐′).
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Let 𝑑 be a !-cell in R𝑡. By Proposition 3 and Lemma 6, 𝑐 is accessible from 𝑑 if and only if ψ(𝑐) is in
the box of ψ(𝑑) and φ(𝑐) is above φ(𝑑). So, 𝑐 is accessible from 𝑑 if and only if 𝑐′ is acessible from 𝑑.

Accessibility is preserved by isomorphism, so 𝑓(𝑐) is accessible from 𝑓(𝑑) if and only if 𝑓(𝑐′) is
accessible from 𝑓(𝑑), or, as all !-cells in R ′

𝑡′ are of the form 𝑓(𝑑)

φ′(𝑓(𝑐)) = φ′(𝑓(𝑐′))
boxR′ ∘ ψ′(𝑓(𝑐)) = boxR′ ∘ ψ′(𝑓(𝑐′)),

which concludes, as the other direction is symmetrical.

This lemma can be generalized:
Lemma 9 (box preservation)

Let R and R ′ be two box-connected MELL proof-nets. We note boxR ∶ R → 𝒯 ⟲
R and boxR′ ∶ R ′ →

𝒯 ⟲
R′ their boxing functions. Let

𝑡 R𝑡 R

𝑡′ R ′
𝑡′ R ′

φ

φ′

ψ

ψ′

be two elements of their Taylor expansion, such that R𝑡 and R ′
𝑡′ are 2-fat, and 𝑓 ∶ R𝑡 ≃ R ′

𝑡′ as
polyadic proof-nets.

Two cells 𝑐, 𝑐′ of R𝑡 have the same image by boxR ∘ψ if and only if 𝑓(𝑐) and 𝑓(𝑐′) have the same
image by boxR′ ∘ ψ′.

Proof : Let 𝑐, 𝑐′ be two cells of R𝑡 such that

boxR ∘ ψ(𝑐) = boxR ∘ ψ(𝑐′).

Suppose φ(𝑐) ≠ φ(𝑐′) (or else, conclude with the last Lemma).

Let 𝑔 be the flag in R𝑡 whose boundary is sent, via ψ, to the principal door of the box boxR ∘ψ(𝑐)
and from which 𝑐 is accessible.

Let 𝑔′ be the flag inR𝑡 whose boundary is sent, viaψ, to the principal door of the box boxR ∘ψ(𝑐)
and from which 𝑐′ is accessible.

𝑓(𝑔) and 𝑓(𝑔′) have the same image via ψ′: they are inputs of a !-cell, whose image via ψ′ only
have one output. By Lemma 8, 𝑓(𝑔) and 𝑓(𝑐) have the same image via boxR ∘ψ, and 𝑓(𝑔′) and 𝑓(𝑐′)
too. So

boxR′ ∘ ψ′(𝑓(𝑐)) = boxR′ ∘ ψ(𝑓(𝑐′)).

The other direction is symmetrical.

Finally,
Lemma 10

Let R and R ′ be two box-connected MELL proof-nets. We note boxR ∶ R → 𝒯 ⟲
R and boxR′ ∶ R ′ →
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𝒯 ⟲
R′ their boxing functions. Let

𝑡 R𝑡 R

𝑡′ R ′
𝑡′ R ′

φ

φ′

ψ

ψ′

be two elements of their Taylor expansion, such that R𝑡 and R ′
𝑡′ are 2-fat, and 𝑓 ∶ R𝑡 ≃ R ′

𝑡′ as
polyadic proof-nets.

Let 𝑐 be any cell in R𝑡. boxR ∘ ψ(𝑐) and boxR′ ∘ ψ′(𝑓(𝑐)) have the same number of pre-images
in their respective thick subtrees 𝑡 and 𝑡′.

Proof : By induction on the depth of ψ(𝑐). If ψ(𝑐) is of depth 0, then 𝑐 is not ?-accessible from any
!-cell. boxR ∘ ψ(𝑐) is the root of 𝒯R, and as 𝑓(𝑐) is not accessible from any !-cell too, boxR′ ∘ ψ′(𝑐) is
the root of 𝒯R′. There is only one pre-image of a root in a thick subtree, which concludes.

Else, let 𝑑 be be the !-cell from which 𝑐 is ?-accessible and such that ψ(𝑐) is immediately in
the box of ψ(𝑑). boxR ∘ ψ(𝑑) have a certain number 𝑛 of pre-images by in the thick subtree 𝑡. By
induction hypothesis, boxR′ ∘ ψ′(𝑓(𝑑)) have the same number 𝑛 of pre-images in the thick subtree
𝑡′. The number of pre-images of boxR ∘ ψ(𝑐) is the sum, for each of the pre-images of boxR ∘ ψ(𝑑), of
their input arities, which are preserved by the isomorphism.

6.2.9 Let R be a box-connected MELL proof-net and

𝑡 R𝑡 R
φ ψ

be a 1-fat element of its Taylor expansion. Asψ is surjective, there exists sections ofψ (functions
σ ∶ R → R𝑡 such that ψ ∘ σ = idR). Any such section σ can be specified by its composite φ ∘ σ.
Among all the sections, one is such that φ ∘ σ is the left-most branch of the tree 𝑡. We call this
section canonical. We are now ready to give the main proof of this Section:
Proof of Theorem 12 : ψ is surjective. Let σ be the canonical section of ψ. Let us call χ = ψ′ ∘ 𝑓 ∘ σ.

χ is well-defined, we just have to show that it is an isomorphism.

R𝑡 R

R ′
𝑡′ R ′

σ

𝑓
ψ′

χ

injectivity Let 𝑝, 𝑝′ cells in R. If box(𝑝) ≠ box(𝑝′), without loss of generality, suppose 𝑝 is in the
box of a !-cell 𝑐 but not 𝑝′. σ(𝑝) is accessible from the left-most premise of σ(𝑐) but not σ(𝑝′).
As 𝑓 is an isomorphism, 𝑓(σ(𝑝)) is accessible from a premise of the !-cell 𝑓(𝑐), and 𝑓(σ(𝑝′)) is
not. So χ(𝑝) is in a box in which χ(𝑝′) is not, and in particular, χ(𝑝) ≠ χ(𝑝′).
Else, box(𝑝) = box(𝑝′). Remark that, as σ is a section, it is in particular injective, so 𝑓(σ(𝑝)) ≠
𝑓(σ(𝑝′)). As R ′

𝑡′ is defined as a pullback, two different cells in R ′
𝑡′ have different images either

by φ′ or by ψ′.
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As σ is canonical, φ(σ(𝑝)) = φ(σ(𝑝′)) and so, by Lemma 8, φ′(𝑓(σ(𝑝))) = φ′(𝑓(σ(𝑝′))),
which implies that

ψ′(𝑓(σ(𝑝)) ≠ ψ′(𝑓(σ(𝑝′)).

χ is injective.
surjectivity Let 𝑞 be a cell in R ′. (ψ′)−1(𝑞) is a set of cells of R ′

𝑡′ of arity 𝑛 ⩾ 1 (as R ′
𝑡′ is 2-fat, so,

in particular 1-fat), and all elements of (ψ′)−1(𝑞) have the same image via boxR′ ∘ ψ′. As 𝑓 is
an isomorphism, 𝑓−1((ψ′)−1(𝑞)) is also a set of arity 𝑛 whose elements have the same image
via boxR ∘ ψ, by Lemma 9.
As the elements of (ψ′)−1(𝑞) have pairwise disjoint images via φ′, by the contrapositive of
Lemma 8, it is also the case that 𝑓−1((ψ′)−1(𝑞)) have 𝑛 pairwise disjoint images via φ.

𝑓−1((ψ′)−1(𝑞)) 𝑡⟲

𝒯 ⟲
R

φ

boxR ∘ ψ

By Lemma 10, boxR ∘ ψ(𝑓−1((ψ′)−1(𝑞))) have 𝑛 pre-images in its thick subtree 𝑡, so, all the
pre-images are in the image of 𝑓−1((ψ′)−1(𝑞)) via φ.
We have shown that there is an element of 𝑓((ψ′)−1(𝑞)) in the image of σ, which means that
𝑞 is in the image of χ.

morphism of MELL proof-nets χ is a morphism of labelled, colored, oriented graphs. Moreover the
box-preservation conditions, applied to a cell and any of the inputs of a box, imply that χ is
an isomorphism of MELL proof-nets.

Remark 10
In the above proof, the canonical section plays no particular role. Any section would define the same isomorphism.

. G    -

6.3.1 In the polyadic λ-calculus’ case, empty approximants represent a loss of information: there is no
way to guess which term ⟨⟩ is an approximation of. In the polyadic proof-net’s case, the situation
is far worse: a box approximated by the empty proof-net not only can not be recovered, but cause
a loss of information on the structure of the term: indeed, all our method is predicated on finding
the border of the boxes thanks to the ?-accessibles, which require cells from the box to be present.

We are going to present a rewriting system for sets of fat polyadic proof-nets, whose main prop-
erty will be that a successful rewriting allows to reconstruct a box-connected MELL proof-net. In a
second time, we will extend it to non-fat polyadic proof-nets.

Polyadic proof-nets with daimon

6.3.2 Let us consider the set of polyadic proof-nets. For technical reasons, we need to extend the cells
of the polyadic proof-nets with a new family of cells, the daimon, with no inputs and an arbitrary
number of outputs. The daimon is used to represent a part of a net from which no informations
can be gathered, apart from the number and types of its outputs.
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Definition 50

A polyadic module with daimon and a polyadic proof-net with daimon is defined as in Defini-
tion 27 by adding a new family of cells, the daimon✠𝑝 with 𝑝 outputs.

Formally, ℓ can take the value ✠𝑝 and we add a case to the condition on the cells:
• if ℓ(𝑣) = ✠𝑝, the corolla τ𝑣 has no inputs and 𝑝 outputs 𝑜1, … , 𝑜𝑝 and no conditions on

the types.

For the remainder of this chapter, a polyadic proof-net is implicitly intended as polyadic proof-
net with daimon. When needed, we will refer to a proof-net as in Definition 27 as a daimonless
proof-net.

6.3.3 We say that two polyadic proof-nets have the same interface if there is an increasing bijection between
their conclusions that preserves the types.

We will consider the conclusion of a set of polyadic proof-nets that have the same interface to
be numbered, that is, we will name the conclusions by the only increasing function from a finite
initial segment of N to the set of conclusions. When adding or removing a conclusion, we will do
the renumbering on the fly: if we add a conclusion 𝑖 to a proof-net, all the conclusions grater than
𝑖 are incremented by 1.
Definition 51

We define the set PolyPN∗
✠ as the set whose elements are finite lists of polyadic proof-nets (with

daimon) with the same interface.
We will note by ε𝑛 ∈ PolyPN∗

✠ the list of 𝑛 empty polyadic proof-nets, or if the length of
the list does not matter, ε.

Glueability of fat polyadic proof-nets

6.3.4 As polyadic proof-nets have no inductive structure, we can not define coherence inductively, con-
trarily to the λ-calculus’ case. Instead, we will define a rewriting system on arbitrary number of
polyadic proof-nets that do the same rewriting on all of them, stripping them from their cells, in a
way compatible to their putative structure of approximants of the same MELL proof-net.
Definition 52 (rewriting system on PolyPN∗

✠)

We define the following rewriting rules that rewrites a resource proof-net ρ into a (possibly
empty) list of resource proof-nets:

axiom If there are two conclusions 𝑖 < 𝑗, such that ρ is the disjoint union of a polyadic proof-net
π and an axiom in 𝑖 and 𝑗,

ax𝑖,𝑗 ∶

π

𝑖 𝑗
ax

⟶ π

ρ reduces to π.

daimon If there are conclusions 𝑖1 < ⋯ < 𝑖𝑘, such that ρ is the disjoint union of a polyadic
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proof-net π and a daimon in 𝑖1, … , 𝑖𝑘

✠𝑖1,…,𝑖𝑘 ∶

π

𝑖1 … 𝑖𝑘
✠

⟶ π

ρ reduces to π.

multiplicatives If there is a conclusion 𝑖, such that ρ is the disjoint union of a polyadic proof-
net π and a 1 in 𝑖,

1𝑖 ∶

π

𝑖
1

⟶ π

ρ reduces to π.
If there is a conclusion 𝑖 such that ρ is the disjoint union of a polyadic proof-net π and a
⊥ in 𝑖,

⊥𝑖 ∶

π

𝑖
⊥

⟶ π

ρ reduces to π.
If there is a conclusion 𝑖 such that ρ is a ⊗ on 𝑖 connected to a proof-net π,

⊗𝑖 ∶ π

⊗
𝑖

⟶ π

𝑖 𝑖 + 1

ρ reduces to π with the two conclusions changed.
If there is a conclusion 𝑖 such that ρ is a ` on 𝑖 connected to a proof-net π,

`𝑖 ∶ π

`
𝑖

⟶ π

𝑖 𝑖 + 1

ρ reduces to π with the two conclusions changed.
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multiplicatives/axiom If there is a conclusion 𝑖 such that ρ is a ax whose second conclusion is
the right input of a ⊗ cell, connected to a proof-net π,

ax𝑖⊗ ∶

π

𝑖
ax

⊗
⟶

π

𝑖 𝑖 + 1
ax

In the same way, there are rules ax𝑖`, `ax𝑖, ⊗ax𝑖 for similar situations involving axioms
connected to ⊗-cells and `-cells.

cut If there is a cut such that ρ is a cut whose two premises are connected to a proof-net π,

cut ∶

π

cut
⟶

π

𝑛+ 1𝑛 + 2

it reduces to π with two new conclusions with fresh names.
?/axiom If there is a conclusion 𝑖 such that ρ is a ax whose second conclusion is a premise of

a ? cell with other premises,

?ax𝑖 ∶

π

⋯ 𝑖
ax

?

⟶

π

⋯
?

ρ reduces to π connected to the ?-cell with the conclusions changed.
If there is a conclusion 𝑖 such that ρ is a ax whose second conclusion is a premise of a ?
with no other premises,

?1ax𝑖 ∶ π 𝑖
ax

?

⟶ π

ρ reduces to π.
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contraction If there is a conclusion 𝑖 such that ρ is a ? with 𝑛 inputs connected to a proof-net
π,

?𝑛𝑖 ∶ π

⋯
?
𝑖

⟶ π

𝑖⋯𝑖 + 𝑛

then ρ reduces to π.

?-split If there exists a ?-conclusion 𝑖 and a !-conclusion 𝑗, we split 𝑖 in ρ in two !, one whose
all premises are accessible from a premise of 𝑗, the other with no premise accessible from
a premise of 𝑗. One of the !-cells might be of empty inputs.

!-split If there exists a !-conclusion 𝑖 such that all the conclusions of its connected component
are ? such that every premise is accessible from exactly one premise of 𝑖, then the connected
component of 𝑖 is is the disjoint union of a family (π𝑘)1⩽𝑘⩽𝑛 whose conclusions are all
premises of the same ? conclusions, or of the ! conclusion 𝑖.

⋮

!𝑖 ∶ π′

π𝑛

π1

!
𝑖

??

⟶ π′ π𝑘

𝑖??

⋮

the proof-net ρ reduces to the 𝑘 proof-nets made from the disjoint union of π′ and one
π𝑘.

Let I be any initial subset of N and ρ = (ρℓ)ℓ∈I be an element of PolyPN∗
✠. The rewriting

rules aforewritten extend to a rewriting system on PolyPN∗
✠ in the following way: the same rule

or, not for all ℓ ∈ I,
daimon-split If there is a conclusions 𝑖, such that ρ is a daimon on 𝑖 connected to a polyadic

proof-net π,

✠𝑛
𝑖 ∶ π … 𝑖

✠
⟶

π … 𝑖 ⋯ 𝑖 + 𝑛
✠

ρ reduces toπ, with a daimon where the conclusion 𝑖 has been rplaced with 𝑛 conclusions.
has to be used on all of the (ρℓ)ℓ∈I (in particular in the rule contraction, which depends on the
arity) so that the interfaces of the obtained list remain the same.
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6.3.5 The rules we just describe allow to unwind the structure of a list (ρℓ)ℓ∈I ∈ PolyPN∗
✠ step-by-step.

Glueability is defined as the possibility to be fully unwind.
Definition 53 (Glueability)

We say that 𝑛 fat polyadic proof-nets 𝑟1, … , 𝑟𝑛 are glueable, if they have the same interface and
there exists a rewriting (𝑟1, … , 𝑟𝑛) → ε in PolyPN∗

✠.

6.3.6 The relation of glueability is commutative.
Lemma 11

Two polyadic proof-nets with no ! cells are glueable if and only if they are isomorphic.

Proof : Two isomorphic proof-nets are glueable. Reciprocally, first remark that the path witnessing their
glueability does not contain !-split or ?-split. So, the proof-nets along a path witnessing their glue-
ability are of a decreasing number of cells. So, the proof can be done by induction on the number of
cells, and by case disjunction on the first rule of the path witnessing the glueability.

Lemma 12

Let (𝑟1, 𝑟′1) and (𝑟2, 𝑟′2) be objects in PolyPN∗
✠.

𝑟1 ⊔ 𝑟2 is glueable with 𝑟′1 ⊔ 𝑟′2 if and only if 𝑟1 is glueable with 𝑟′1 and 𝑟2 glueable with 𝑟′2.

X⊥ X⊥ X X X⊥ X⊥ X X
ax ax

ax

ax

`
X⊥ ` X⊥

`
X⊥ ` X⊥

⊗
X ⊗ X

⊗
X ⊗ X

`
(X⊥ ` X⊥)` (X ⊗ X)

`
(X⊥ ` X⊥)` (X ⊗ X)
!

!((X⊥ ` X⊥)` (X ⊗ X))
Figure 6.7: A non-uniform polyadic proof-net

Example : Let ϕ be the cocontraction of !tt and !ff. ϕ is depicted Figure 6.7. ϕ is not uniform, that is not
glueable with itself.

Indeed, the left and right co-contracted proof-nets are not glueable, as they are multiplicative and not
isomorphic. The only reduction applicable to (ϕ, ϕ) is !-split, which reduces to (tt⊔ tt⊔ff⊔ff, tt⊔ff⊔
tt ⊔ ff), which is made of two unglueable polyadic proof-nets.

6.3.7

Example : The three resource proof-nets of Figure 6.1 are not glueable: indeed, as the ? conclusions are
disconnected from the rest of the proof-nets (in all three proof-nets), the only rule that could be applicable
to them is contraction, but it is not, as the arity changes in the different proof-nets.
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Unwinding of box-connected MELL proof-nets

6.3.8 We define a rewriting system for box-connected MELL proof-net. In a sense, this rewriting system
reduces a box-connected proof-net to the empty proof-net, exhibiting a sequential structure in the
construction of the proof-net.
Definition 54 (rewriting system for box-connected proof-nets)

Let R be a box-connected MELL proof-net.
axiom If there are two conclusions 𝑖 < 𝑗, such that R is the disjoint union of a proof-net R and

an axiom in 𝑖 and 𝑗,

ax𝑖,𝑗 ∶

R

𝑖 𝑗
ax

⟶ R ′

R reduces to R ′, a box-connected proof-net.

daimon If there are conclusions 𝑖1 < ⋯ < 𝑖𝑘, such that R is the disjoint union of a proof-net
R ′ and a daimon in 𝑖1, … , 𝑖𝑘

✠𝑖1,…,𝑖𝑘 ∶

R

𝑖1 … 𝑖𝑘
✠

⟶ R ′

R reduces to R ′.

multiplicatives If there is a conclusion 𝑖, such that R is the disjoint union of a proof-net R ′

and a 1 in 𝑖,

1𝑖 ∶

R

𝑖
1

⟶ R ′

R reduces to R ′.
If there is a conclusion 𝑖, such that R is the disjoint union of a proof-net R ′ and a ⊥ in 𝑖,

⊥𝑖 ∶

R

𝑖
⊥

⟶ R ′

R reduces to R ′.
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If there is a conclusion 𝑖 such that R is a ⊗ on 𝑖 connected to a proof-net R ′,

⊗𝑖 ∶ R

⊗
𝑖

⟶ R ′

𝑖 𝑖 + 1

R reduces to R ′ with the two conclusions changed.

If there is a conclusion 𝑖 such that R is a ` on 𝑖 connected to a proof-net R ′,

`𝑖 ∶ R

`
𝑖

⟶ R ′

𝑖 𝑖 + 1

R reduces to R ′ with the two conclusions changed.

multiplicatives/axiom If there is a conclusion 𝑖 such that R is a ax whose second conclusion
is the right input of a ⊗ cell, connected to a proof-net R ′,

ax𝑖⊗ ∶

R ′

𝑖
ax

⊗
⟶

R ′

𝑖 𝑖 + 1
ax

In the same way, there are rules ax𝑖`, `ax𝑖, ⊗ax𝑖 for similar situations involving axioms
connected to ⊗-cells and `-cells.

cut If there is a cut such that R is a cut whose two premises are connected to a proof-net R ′,

cut ∶

R ′

cut
⟶

R ′

𝑛 + 1𝑛 + 2

it reduces to R ′ with two new conclusions with fresh names.

?/axiom If there is a conclusion 𝑖 such that R is a ax whose second conclusion is a premise of
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a ? cell with other premises,

?ax𝑖 ∶

R ′

⋯ 𝑖
ax

?

⟶

R ′

⋯
?

ρ reduces to R ′ connected to the ?-cell with the conclusions changed.
If there is a conclusion 𝑖 such that R is a ax whose second conclusion is a premise of a ?
with no other premises,

?1ax𝑖 ∶ R ′ 𝑖
ax

?

⟶ R ′

R reduces to R ′.
contraction If there is a conclusion 𝑖 such that R is a ? with 𝑛 inputs connected to a proof-net

R ′,

?𝑛𝑖 ∶ R ′

⋯
?
𝑖

⟶ R ′

𝑖⋯𝑖 + 𝑛

then R reduces to R ′.
?-split If there exists a ?-conclusion 𝑖 and a !-conclusion 𝑗, we split 𝑖 in ρ in two !, one whose

all premises are accessible from a premise of 𝑗, the other with no premise accessible from
a premise of 𝑗. One of the !-cells might be of empty inputs.

box If there exists a !-conclusion 𝑖 such that all the conclusions of its connected component are
?-cells,

box𝑖 ∶ R1

!
𝑖

R2

??

⟶ R1

!
𝑖

R2

??
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6.3.9 The reduction systems we defined on polyadic proof-nets and on MELL proof-nets are actually con-
nected: a reduction in polyadic proof-nets can be backwards simulated in MELL proof-nets.

In the remainder of this Section, we will say that ρ ∈ PolyPN∗
✠ projects to a MELL proof-net R,

which we write

ρ ↦ R

if, all polyadic proof-nets ρℓ are endowed with the two projections to R and a thick subtree of its
boxing tree of R making them elements of 𝒯R.

Proposition 4 (The Taylor projection is a backward simulation)

Let R be a box-connected proof-net and (ρ𝑖)1⩽𝑖⩽𝑛 be elements of its polyadic Taylor expansion. This
family defines an element of PolyPN∗

✠ together with a projection ρ ↦ R.
For all rewritings (ρ′𝑖 )1⩽𝑖⩽𝑚 → (ρ𝑖)1⩽𝑖⩽𝑛,

(ρ′𝑖 )1⩽𝑖⩽𝑚 (ρ𝑖)1⩽𝑖⩽𝑛

R

there exists a reduction R ′ → R such that there is a projection ρ′ ↦ R ′.

(ρ′𝑖 )1⩽𝑖⩽𝑚 (ρ𝑖)1⩽𝑖⩽𝑛

R ′ R

Proof : If the reduction is an axiom, daimon, a multiplicative reduction, involves an axiom, contrac-
tion or ?-split, it is straightforward, as the rewriting on the polyadic proof-nets are matched with a
rewriting that does not change the boxing function of the MELL proof-net.

Consider, as an example, the rule contraction. Let (ρ′ℓ)ℓ∈I′ be a family of polyadic proof-net
such that ρ is the image of ρ′ through ?𝑐𝑖 . It means that the ρ′ℓ are of the shape of ρ𝑒𝑙𝑙 grafted with a
?-cell on the conclusions 𝑖, … , 𝑖 + 𝑘:

ρ′ℓ = ρℓ

⋯
?
𝑖

with the right renumbering.
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As conclusions 𝑖, … , 𝑖 + 𝑘 of R are conclusions, they are not in any box. As such, they can be
grafted to a contraction outside of any box. So, all the ρ′ℓ are in the Taylor expansion of

R ′ = R

⋯
?
𝑖

For the rule !-split, the connected component of the !-conclusion 𝑖 is to be boxed: the boxing
tree of R ′ is obtained from the boxing tree of R by adding a new son to the root, which is the image
via the boxing function of the connected component of 𝑖, and whose sons are selected among the
other sons of the root such that the boxing function respects the conditions of a boxing function.

6.3.10 Moreover, the reduction system on MELL proof-nets can help us build reduction sequences for
polyadic proof-nets: indeed, given a sequence of polyadic proof-nets that project to a MELL proof-
net, we can build a reduction step in both.
Proposition 5

Let R be a box-connected proof-net and (ρ𝑖)1⩽𝑖⩽𝑛 of PolyPN∗
✠ together with a projection ρ ↦ R.

There exists a reduction ρ → ρ′ and a reduction R → R ′ such that ρ′ ↦ R ′ and R ′ is strictly
smaller than R in the lexicographic order (𝔪R, |R|), where

• 𝔪R the multiset of arities of ? in R;
• |R| the number of cells in R.

(ρ𝑖)1⩽𝑖⩽𝑛 (ρ′𝑖 )1⩽𝑖⩽𝑚

R R ′

Proof : If R has a conclusion 𝑖 which is the conclusion of a multiplicative, in all the ρℓ, the conclusion
in 𝑖 is the same multiplicative (as it is not in a box), and we can apply the rule associated to it in both
R and all the ρℓ. The obtained proof-net as one less cell, so is strictly smaller.

In the same way, if R contains a cut outside of a box, we can apply the cut rule on all the
proof-nets, which makes the MELL proof-net decrease.

So, we might suppose that all conclusions of R are either ! or ?. There is at most one box by
connected component of R. If there is a !-conclusion 𝑖 such that, in all the ρℓ, all its connected
component is accessible from the premises of 𝑖, we can apply the rule box𝑖 to R and !𝑖 in all ρℓ. Else,
let 𝑗 be one conclusion whose premises are not accessible in one of the ρℓ. If 𝑗 is the border of a box
in R, we apply a ?-split in 𝑖, else, we apply a contraction in 𝑖.

Theorem 13

A set of fat polyadic proof-nets is gluable if and only if it is in the Taylor expansion of a box-connected
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MELL proof-net.

Proof : Let (ρ𝑖)1⩽𝑖⩽𝑛 be a clique of fat polyadic proof-nets. By the definition of coherence, there exists a
reduction path (ρ𝑖)1⩽𝑖⩽𝑛 → ε. By induction on the length of the path, and by repeatedly applying
Proposition 4, (ρ𝑖)1⩽𝑖⩽𝑛 is in the Taylor expansion of a MELL proof-net R.

Reciprocally, let (ρ𝑖)1⩽𝑖⩽𝑛 ↦ R. By Proposition 5, (ρ𝑖)1⩽𝑖⩽𝑛 reduces to (ρ′𝑖 )1⩽𝑖⩽𝑚 and R reduces
to R ′ such that

(ρ𝑖)1⩽𝑖⩽𝑚 (ρ′𝑖 )1⩽𝑖⩽𝑛

R R ′

AsR ′ is strictly smaller in the well-ordering, this construction can be carried to a smaller element,
which can only be ε. So the ρ𝑒𝑙𝑙 are glueable.

. C  

6.4.1 Glueability is a relation between an arbitrary (even possibly infinite) number of polyadic proof-nets,
whereas coherence is binary. Before linking the two, we first state results about glueability.
Lemma 13

Let ρ be a 1-fat polyadic proof-net.
All MELL proof-nets projection of a glueable family of polyadic proof-nets containing ρ have iso-

morphic underlying graph (and so, only differ by their boxing function).

Proof : By induction on the number of !-cells in ρ.

The following Lemma is a restatement of Theorem 12.

Lemma 14

Let ρ be a 2-fat polyadic proof-net.
All MELL proof-nets projection of a glueable family of polyadic proof-nets containing ρ are iso-

morphic.

6.4.2 We defined glueability as family of 𝑛-ary relations, but it really is generated by a binary coherence
relation.
Definition 55 (Coherence)

Let ρ1 and ρ2 be two 1-fat polyadic proof-nets. We say that ρ1 and ρ2 are coherent, written

ρ1 ¨ ρ2

if the family {ρ1, ρ2} is glueable.
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A glueable family is obviously a ¨-clique: a rewriting path ending in ε for a family is a rewriting
path ending in ε for any of its subsets. We conjecture that the converse is true.

. G    -

6.5.1 By adding ✠ nodes, we reach arbitrary polyadic proof-nets.
Definition 56

Let ϕ be a daimonless polyadic proof-net. We say that a polyadic proof-net with daimons ρ is
a ✠-fattening of ϕ if:

• all the daimon cells in ρ have exactly one output which is is the lone input of a !-cell, and
all the other outputs of a daimon cell are inputs of ?-cells;

• ϕ is ρ stripped of all its daimon cells.

Definition 57

Let (ρℓ)ℓ𝑖𝑛I ∈ PolyPN∗
✠ be a list of daimonless polyadic proof-nets. We say that they are

glueable if there is a glueable family (ρ′ℓ)ℓ𝑖𝑛I ∈ PolyPN∗
✠ of fat polyadic proof-net such that,

for all ℓ𝑖𝑛I, ρ′ℓ is a ✠-fattening of ρℓ.

We define MELL proof-nets with daimons in the obvious way: by adding ✠ cells that can only
inside boxes of which they are the exclusive content, and their Taylor expansion.
Theorem 14

Let (ρℓ)ℓ𝑖𝑛I ∈ PolyPN∗
✠ be a list of daimonless polyadic proof-nets.

(ρℓ)ℓ𝑖𝑛I are gluable if and only if they are in the Taylor expansion of a box-connected MELL

proof-net.
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. R -

7.1.1 We introduced the polyadic Taylor expansion of proof-nets as a tool to study their resource Taylor
expansion. We can now lift all the results of the Chapter to resource proof-nets and the resource
Taylor expansion of box-connected proof-structures.

Reduction

7.1.2 Reduction of resource proof-nets is inherently non-deterministic. Indeed, consider the reduction
of Figure 4.6(c), for polyadic proof-nets. Given a resource proof-net which is the quotient of the
left projection of this reductive polyadic proof-net, there is a reduction for each permutation of
𝑛 elements, which all have a different right projection. So, we consider that a resource proof-net
reduces to a set of resource proof-nets.
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Definition 58 (equivalence of polyadic reductive proof-net)

Two polyadic reductive proof-net are equivalent if their left projection are equivalent.
A resource reductive proof-net is an equivalence class of polyadic reductive proof-nets.

It is important to note that the set of left-hand sides of a resource proof-net is not an equivalence
class. The image of a resource proof-net under a resource reductive proof-net is the reunion of all
the left-hand sides.

Fat resource proof-nets and box-connexity

7.1.3 The definition of fatness is stable by ≃!?-equivalence, so we define 𝑛-fat resource proof-nets as re-
source proof-nets whose representative polyadic proof-nets are 𝑛-fat. It is immediate that Theo-
rem 12 still holds in the quotient:
Theorem 15

Let R and R ′ be two box-connected MELL? proof-nets, and ρ ∈ 𝒯 !?
R , ρ′ ∈ 𝒯 !?

R′ that are 2-fat, and
such that 𝑓 ∶ ρ ≃!? ρ′.

𝑓 induces an isomorphism of MELL? proof-nets R ≃ R ′.

Coherence

7.1.4 Coherence too, still makes sense in the quotient.
Definition 59 (coherence of resource proof-nets)

Two resource proof-nets ρ and ρ′ are coherent if there exists two polyadic proof-nets π and π′,
representing respectively ρ and ρ′, such that π ¨ π′.

Theorem 16

A family of resource proof-nets is a ¨-clique if and only if it is in the Taylor expansion of a box-
connected MELL? proof-net.

. T  

Abstractly

7.2.1 Recall that, for MELL proof-nets, the type system of (simply-typed) polyadic proof-nets enjoys both
subject reduction and subject expansion. Moreover, as we saw, if we are to consider MELL proof-
nets through ≃?, we have to consider not polyadic proof-nets, but polyadic proof-nets quotiented
through the ≃!? equivalence, that is resource proof-nets.

The morphism of cyclic Cat-operads

𝒯 ∶ MELL → 𝔇𝔦𝔰𝔱𝑠

can be composed with the morphism induced by the ≃!? equivalence, yielding a morphism

𝒯!? ∶ MELL? → 𝔇𝔦𝔰𝔱𝑠
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that associates to a MELL proof-net (quotiented by ≃?) the set of resource proof-nets in its resource
Taylor expansion.

7.2.2 We can go further and build a denotational model from this functor. Indeed, we can forget precisely
which resource proof-net approximates aMELL proof-net, but just remembering that there exists one.
In this way, all the reductions collapse.

Let us consider the operad ℛ𝑒ℓ whose objects are sets and multiarrows A 1, … ,A 𝑛 → B two-
valued distributors A 1 ×⋯×A 𝑛 × B → {∅,⋆} (that we can alternatively view as relations). We
will view ℛ𝑒ℓ as a Cat-operad by adding trivial 2-arrows.

There is an obvious morphism of cyclic Cat-operads from the sub-operad of 𝔇𝔦𝔰𝔱𝑠 consisting of
sets, multi-distributors and bi-entire relations to ℛ𝑒ℓ:

• on objects, it is the identity;

• on a multi-arrow, it is the post-composition with the terminal function.
It is a morphism because the relations are bi-entire. So, by post-composing𝒯!? with this functor, we
get a morphism of cyclic Cat-operads that identifies all images of multi-arrows related by a 2-arrow:

J⋅K ∶ MELL? → ℛ𝑒ℓ

7.2.3 We can describe this functor more explicitly. First of all, we will describe its action on formulæ.
Proposition 6

For all formulæ A,B,

JA ⊗ BK ≃ JA` BK ≃ JAK × JBK
J!AK ≃ J?AK ≃ ℳfin(JAK)

JA⊥K ≃ JAK.

Proof : All these bijections come from the fact that we require all our constructions to be compatible
with extensionality.

A B A⊥ B⊥

A ⊗ B A⊥ ` B⊥

ax ax

⊗
A ⊗ B

`
A⊥ ` B⊥

cut

ax

(a) The proof-net R

𝑎 𝑏 𝑎 𝑏

(𝑎, 𝑏) (𝑎, 𝑏)

ax ax

⊗
(𝑎, 𝑏)

`
(𝑎, 𝑏)

cut

ax

(b) An experiment of R

Figure 7.1: A MLL proof-structure R and an experiment of R
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7.2.4 Experiments have been introduced by Girard (1987, p. 3.16) to define the coherent semantics of
linear logic proof-nets without having to go through sequent calculus. The tradition since has been
to represent experiments as functions, defined on the wires of proof-nets, that associate to each wire
the partial interpretation of the net it represents, as is shown in Figure 7.1. The content of the
boxes are treated as distinct proof-nets, which are also susceptible to be experimented on, a multiple
number of times. So, this gives the definition, by induction on the depth of a proof-net (the maximal
nesting of boxes):
Definition 60 (experiment of resource proof-nets)

Let R be a MELL? proof-net.
An experiment of R is a function e on the edges outside of any boxes of R satisfying the

following conditions on cells outside of any box:
• for all cell 𝑐 of type ax, with 𝑜1 and 𝑜2 its two outputs, e(𝑜1) = e(𝑜2);
• for all cell 𝑐 of type cut, with 𝑖1 and 𝑖2 its two inputs, e(𝑖1) = e(𝑖2);
• for all cell 𝑐 of type 1, with 𝑜 its only input, e(𝑜) = {∗};
• for all cell 𝑐 of type ⊥, with 𝑜 its only input, e(𝑜) = {∗};
• for all cell 𝑐 of type ⊗ or `, with 𝑖1 < 𝑖2 its two inputs and 𝑜 its output, e(𝑜) =
(e(𝑖1), e(𝑖2));

• for all cell 𝑐 of type ! or ?, with 𝑖1, … , 𝑖𝑛 be its inputs and 𝑜 its output, e(𝑜) = [e(𝑖1),⋯ , e(𝑖𝑛)].

We verify easily that the image of an edge is in the web of its type, where the web of a type is
defined recursively:

• for an atom A, the web JAK is any infinite countable set;
• J⊥K = J1K = {∗};
• JA ⊗ BK = JA` BK = JAK × JBK;
• J!AK = J?AK = ℳfin(JAK).

7.2.5 The conclusions of a resource proof-net are ordered: this allows to define unequivocally the result
of an experiment on it.
Definition 61 (result of an experiment)

Let R be a resource proof-net with conclusions 𝑜1 < ⋯ < 𝑜𝑛 and e be an experiment of R.
The result of e on R is the tuple (e(𝑜1),⋯ , e(𝑜𝑛)).
Let R be a pointed MELL? proof-net with distinguished conclusion 𝑜 and other conclusions

𝑜1 < ⋯ < 𝑜𝑛 and e be an experiment of R.
The result of e on R is the couple e(R) = ((e(𝑜1),⋯ , e(𝑜𝑛)), e(𝑜)).

So, the J⋅K functor associates, to a formula A, its web and to a MELL? proof-net R the relation:

JRK = 􏿺e(ρ) ∣ ρ ∈ 𝒯 !?
R , e experiment of ρ􏿽

. M   

7.3.1 The cyclic Set-operad ℛ𝑒ℓ has more structure than just being endowed with an arrow MELL? →
ℛ𝑒ℓ. Indeed, it is a denotational model of multiplicative-exponential linear logic, which means not
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only that linear logic proofs can be interpreted into ℛ𝑒ℓ, but also that ℛ𝑒ℓ behaves as a logical
system obeying the same rules as MELL?. We will present that observation more formally.

There are different notions of models of linear logic (Seely categories, Lafont categories, linear-
non-linear adjunctions… see (Melliès 2008) for a nice survey). We will only describe Lafont cate-
gories.
Definition 62 (Lafont category)

A Lafont category is a symmetric monoidal category such that, for every object A, there exists
a free commutative comonoid !A, that is, an object !A endowed with maps

!A !A ⊗ !A

!A 1

!A A

δ

η

ε

such that the swap of the category followed by δ is equal to δ and for every commutative
comonoid X and morphism 𝑓 ∶ X → A, there exists a unique comonoid morphism 𝑓† ∶ X →
!A such that

!A

X

A

𝑓†

𝑓
ε

commutes.

Coherence spaces

Coherence spaces are the original semantics of linear logic, from which it sprung.
Definition 63 (Coh, Girard (1987, section 3))

A coherence space is a pairA = (|A|,¨A) of a set |A| (theweb ofA) and a reflexive binary relation
¨A on the elements of |A|, the coherence ofA. A clique ofA is a set of pairwise coherent elements
of |A|.

Every coherence space A has a dual coherence space A⊥ with same web |A| and coherence
relation

𝑎 ¨A⊥ 𝑏 ⇔ 𝑎 = 𝑏 or ¬(𝑎 ¨A 𝑏)

The coherence of the dual is called the incoherence of the primal and written 𝑎 ˚A 𝑏.
For every coherence spaces A and B, we define their tensor product as the coherence space



130 Chapter 7. Relational model and box-connexity

A ⊗ B with web |A| × |B| and coherence defined by

𝑎 ⊗ 𝑏 ¨A⊗B 𝑎′ ⊗ 𝑏′ ⇔ 𝑎 ¨A 𝑎′ and 𝑏 ¨B 𝑏′

where 𝑎 ⊗ 𝑏 is just a semantically-flavoured notation for the couple (𝑎, 𝑏).
For every coherence spaces A and B, we define their cartesian product as the coherence space

A& B with web |A| + |B| and coherence defined by

𝑎 ¨A&B 𝑎′ ⇔ 𝑎 ¨A 𝑎′

𝑏 ¨A&B 𝑏′ ⇔ 𝑏 ¨B 𝑏′

𝑎 ¨A&B 𝑏

The category Coh is defined as the category with coherence spaces as objects and cliques of
A ⊸ B = (A ⊗ B⊥)⊥ as morphisms. For clarity’s sake, we explicit the coherence of A ⊸ B.

𝑎 ⊸ 𝑏 ¨A⊸B 𝑎′ ⊸ 𝑏′ ⇔ 􏿼
𝑎 ¨A 𝑎′ ⇒ 𝑏 ¨B 𝑏′
𝑎 ˚A 𝑎′ ⇒ 𝑏 ˚B 𝑏′

where 𝑎 ⊸ 𝑏 is again a notation for (𝑎, 𝑏). There is a forgetful functor from cliques of A ⊸ B
to relations of A and B. As such, cliques compose as relations.

It is a Lafont category with finite products.

Finiteness spaces

Definition 64 (Fin, Ehrhard (2005))

Let E be a countable set. Two subsets 𝑢 and 𝑢′ ⊆ E are orthogonal (written 𝑢⊥𝑢′) when their
intersection 𝑢 ∩ 𝑢′ is finite.

The orthogonal of a family ℱ of subsets of E is then defined as

ℱ ⊥ = {𝑢 ∈ E|∀𝑣 ∈ ℱ , #(𝑢 ∩ 𝑣) < ℵ0}

A finiteness space is a couple (|E|, F(E)) of a set |E|, the web of E and F(E) ⊆ 𝔓(E) the
finiteness of E, a family verifying F(E)⊥⊥ = F(E). The elements of F(E) are called finitary, the
ones of F(E)⊥ are called antifinitary.

For every finiteness space E, we define its dual by E⊥ = (|E|, F(E)⊥).
For every finiteness spaces E and F, we define their tensorial product as the space E⊗F with

web |E| × |F| and finiteness defined by:

F(E ⊗ F) = {𝑤 ⊆ |E| × |F|, πΕ(𝑤) ∈ F(E), πF(𝑤) ∈ F(F)}

where πΕ and πF are the usual projections. The unit of the tensor product is defined by |1| = {∗}
and F(1) = {∅, {∗}}.

For every finiteness spaces E and F, we define their cartesian product as the space E&F with
web |E| ⊔ |F| and finiteness F(E) ⊔ F(F).

We say that a relation R ⊆ |E| × |F| between two finiteness spaces E and F is finitary if

∀𝑢 ∈ F(E), R(𝑢) = {𝑓 ∈ |F|, ∃𝑒 ∈ 𝑢, 𝑒R𝑓} ∈ F(F)
∀𝑣 ∈ F(F)⊥, 𝑡R(𝑣) = {𝑒 ∈ |E|, ∃𝑓 ∈ 𝑢, 𝑒R𝑓} ∈ F(E)⊥
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The linear implication E ⊸ F is defined as the space with web |E| × |F| and finiteness structure
F(E ⊸ F) the set of finitary relations between E and F.

The category Fin of finiteness spaces has finiteness spaces as objects and finitary relations as
morphisms. It is a Lafont category with finite products.

Conway Games

Definition 65 (Conway−)

A Conway game A is an oriented rooted well-founded graph (VA, EA, λA) consisting of a set
VA of vertices (the positions of the game), a set EA ⊆ VA×VA of edges (the moves of the game),
and a function λA ∶ EA → {−1; +1} indicating wether a move is played by Opponent (−1) or
Proponent (+1). We write ⋆A for the root of the underlying graph. A Conway game is called
negative when all its moves starting from the root are played by Opponent.

A play 𝑠 = 𝑚1 ⋅ 𝑚2 ⋅ ⋯ ⋅ 𝑚𝑘 of a Conway game A is a path 𝑠 ∶ ⋆A ↠ 𝑥𝑘 starting
from the root ⋆A whose vertices are labeled by 𝑚1,…,𝑚𝑘. A play is alternating when ∀𝑖 ∈
{1, …, 𝑘 − 1}, λA(𝑚𝑖+1) = −λA(𝑚𝑖).

Every Conway game A induces a dual game A⊥ by reversing the polarities of the moves.
For every Conway games A and B, we define their tensor product as the game A ⊗ B with

set of vertices VA⊗B = VA × VB, moves defined as

𝑥 ⊗ 𝑦 → 􏿼
𝑧 ⊗ 𝑦 if 𝑥 → 𝑧 in the game A
𝑥 ⊗ 𝑧 if 𝑦 → 𝑧 in the game B

and the polarity of a move in A ⊗ B defined as the polarity of the underlying move in the
component A or the component B. The Conway game 1 with a unique position ⋆ and no
moves is the neutral element of the tensor product.

For every negative Conway games A and B, we define their cartesian product A& B as the
game whose

• set of positions is the amalgamated sum of the positions of A and B under the initial
position;

• Opponent moves from the initial position ⋆A&B are of two kinds

⋆A&B → 􏿼
𝑥 if ⋆A → 𝑥 in the game A
𝑦 if ⋆B → 𝑦 in the game B

• moves from a position 𝑥 in the component A (respectively B) are exactly the moves from
𝑥 in the Conway game A (respectively B), with the same polarity.

A strategy of a Conway game A is defined as a non empty set of alternating plays of even
length such that every non-empty play starts with an Opponent move, σ is closed by even length
prefix, and σ is deterministic, that is, for all plays 𝑠 and all moves 𝑚, 𝑛, 𝑛′,

𝑠 ⋅ 𝑚 ⋅ 𝑛 ∈ σ ∧ 𝑠 ⋅ 𝑚 ⋅ 𝑛′ ⇒ 𝑛 = 𝑛′

The category Conway− has negative Conway games as objects and strategies σ of A⊥ ⊗B as
morphisms σ ∶ A → B. It is symmetric monoidal closed and has finite and infinite products.



132 Chapter 7. Relational model and box-connexity

Lafont categories and approximations

7.3.2 Each monoidal category 𝒞 defines a Set-operad whose multimorphisms 𝑎1, … , 𝑎𝑛 → 𝑏 are the
morphisms 𝑎1 ⊗ ⋅ ⊗ 𝑎𝑛 → 𝑏 in the original category. If it endowed by a duality, that is a full and
faithful functor

(⋅)∗ ∶ 𝒞 op → 𝒞

such that there is a natural isomorphism, for all A,B, C ∈ 𝒞, 𝒞 (A ⊗ B,C ∗) ≃ 𝒞 (A, (B ⊗ C)∗), it
even defines a cyclic Set-operad. Moreover:
Proposition 7

Let 𝒞 be a Lafont category with a duality. By abuse of notation, we will also write 𝒞 its associated
cyclic operad. There exists a morphism of cyclic operad

MELL? → 𝒞 .

7.3.3 We built the relational model and interpretations of proof-nets into it through approximations: we
defined the interpretation of an approximation, and then transfered the definition to MELL?. Alas,
it is not possible for the other semantics we presented: more precisely, by returning to Girard’s
approximation’s theorem that we touched in the introduction, we can say that defining brutally the
interpretation of a MELL? proof-net as the union of the interpretation of its approximants amounts
to consider the exponential of A to be equal to the projective limit (the categorical generalization
of the union) of the A⊗𝑛. It is indeed the case in the relational model, where we have

!A = 􏾌
𝑛∈N

A⊗𝑛/𝔖𝑛.

(where the quotient denotes the action of the symmetric group by permutation), but not in the
other models we presented.

. B- 

Injectivity and full completeness, or Syntax vs. Semantics

7.4.1 If we consider a calculus and a denotational semantics for it

𝑓 ∶ 𝒞 → 𝒟

we can ask whether every multi-arrow in 𝒟 is the image of a term of 𝒞, that is, whether the syntax
allows to represent everything that the semantics contain?

This problem is called full completeness.
7.4.2 Let us consider a calculus 𝒞. If the calculus is confluent, there is an equivalence induced on the

terms by the reduction: two terms (of the same type) are equivalent if they reduce to the same
normal form.

If we consider moreover a denotational semantics for 𝒞,

𝑓 ∶ 𝒞 → 𝒟
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another equivalence arises: two terms are equivalent if they have the same image by 𝑓. By definition
of a denotational model, this equivalence is coarser than the syntactic one. If they coincide, the
model is said injective.

7.4.3 A model both fully complete and injective would be a representation of the normal terms of the
calculus.

7.4.4 The problem of injectivity of the relational model has been positively solved by Carvalho (2016). To
distinguish to MELL proof-nets, it uses elements of the relational model of a complexity that depends
on the proof-nets.

The box-connected case

7.4.5 The box-connected case is very different. Indeed, as 2-fat points of the relational model characterize
reduction classes of resource proof-nets, that resource proof-nets characterize equivalence classes of
polyadic proof-nets, and 2-fat polyadic proof-nets characterize the MELL box-connected proof-net
whose Taylor expansion they are in, we get the theorem:
Theorem 17

Let R and R ′ be two box-connected proof-net. R ≃? R ′ if and only if they have the same 2-point.
In particular, the relational model is injective for box-connected proof-nets.
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¦
8.0.1 We have left two problems open, when trying to construct semantics from approximations:

• the set of approximants of a λ-term does not have a structure of a model of the λ-calculus;

• usual semantics of linear logic can not be defined through approximations.
We will now consider one solution to each of these problems, the first due to Mazza (2012), the
second one to Melliès, Tabareau, and Tasson (2009), and show that they are actually very related.

. T    λ-

A limit of approximations to get back the exponential

8.1.1 It is possible to view the exponential as a limit of polyadic terms, due to Mazza (2012), topological,
and directly based on the syntax. Consider the Cat-operad AffPoly of §4.1.4, extended by a special
term ⊥, that can not be substituted. This calculus is affine, in the sense that no duplication is
performed, and in fact it strongly normalizes even in absence of types (the size of terms strictly
decreases with reduction).

135
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The set of terms is equipped with the structure of uniform space, a generalization of a met-
ric space that has a well-behaved notion of Cauchy sequence. The Cauchy-completion of the
set of terms, denoted by Λaff

∞, contains infinitary terms, i.e. terms allowing infinite sequences
⟨𝑢1, 𝑢2, 𝑢3, …⟩. The original calculus embeds (and is dense) in Λaff

∞ by considering a finite sequence
as an almost-everywhere ⊥ sequence. Reduction, which is continuous, is defined as above, except
that infinitely many substitutions may occur. This yields non-termination, in spite of the calculus
still being affine: if Δ𝑛 ∶= λ𝑥.𝑥0⟨𝑥1, … , 𝑥𝑛⟩, then Δ ∶= lim𝑛→∞ Δ𝑛 = λ𝑥.𝑥0⟨𝑥1, 𝑥2, 𝑥3, …⟩ and
Ω ∶= Δ⟨Δ, Δ, Δ,…⟩ → Ω.

8.1.2 Ideally, these infinitary terms should correspond to usual λ-terms. But there is a continuum of
them, definitely too many. The solution is to consider a partial equivalence relation ≃ such that, in
particular, 𝑥𝑖 ≃ 𝑥𝑗 for all 𝑖, 𝑗 and 𝑡⟨𝑢1, 𝑢2, 𝑢3, …⟩ ≃ 𝑡′⟨𝑢′1, 𝑢′2, 𝑢′3, …⟩ whenever 𝑡 ≃ 𝑡′ and, for all
𝑖, 𝑖′ ∈ N, 𝑢𝑖 ≃ 𝑢′𝑖′. After introducing a suitable notion of reduction ⇒ on the equivalence classes of
≃, one finally obtains a term calculus for intuitionistic affine logic, isomorphic to a calculus similar
to that of (Benton et al. 1993). In particular, Girard’s translation of intuitionistic logic in linear
logic may be encapsulated in the construction, as done in (Mazza 2012), obtaining the subcalculus
generated by

𝑡, 𝑢 ∶∶= 𝑥𝑖 | λ𝑥.𝑡 | 𝑡⟨𝑢1, 𝑢2, 𝑢3, …⟩,

which we denote by Λaff
∞. Then, one has the isomorphism for the reduction relations

(Λaff
∞/≃,⇒) ≅ (Λ,→β),

where (Λ,→β) is the usual pure λ-calculus with β-reduction. Similar infinitary calculi (also with
a notion of partial equivalence relation) were considered by Kfoury (2000) and Melliès (2004),
although without a topological perspective. The indices identifying the occurrences of exponential
variables are also reminiscent of Abramsky, Jagadeesan, and Malacaria (2000) games semantics.

So, the infinitary polyadic λ-calculus manages to build usual λ-terms as a quotient of a topo-
logical limit of polyadic λ-terms. In a sense, it consists of enriching the space of approximations of
λ-terms with infinitary approximations.

. F   K 

Functorial semantics

8.2.1 The idea of functorial semantics is to describe an algebraic theory as a certain category constituted
of the different powers of the domain of the theory as the objects, the operations of the theory as
morphisms, and encode the relations between the operations in the composition operation. We will
not consider algebraic theories as Lawvere did, but the more general symmetric monoidal theories,
or PROPs – standing for product and permutation categories (MacLane 1965) .
Definition 66 (symmetric monoidal theory)

An 𝑛-sorted symmetric monoidal theory is defined as a symmetric monoidal category 𝕋 whose
objects are 𝑛-tuples of natural numbers and with a tensorial product defined as the point-wise
arithmetical sum.

A model of 𝕋 in a symmetric monoidal category (SMC) 𝒞 is a symmetric strong monoidal
functor 𝕋 → 𝒞.
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A morphism of models of 𝕋 in 𝒞 is a monoidal natural transformation between models of
𝕋 in 𝒞. We will denote as Mod(𝕋,𝒞 ) the category with models of 𝕋 in 𝒞 as objects and
morphisms between models as morphisms.

8.2.2 The simplest symmetric monoidal theory, denoted by 𝔹, has as objects the natural numbers seen
as finite ordinals and as morphisms the bijections between them (the permutations). Alternatively,
𝔹 can be seen as the free symmetric monoidal category on one object (the object 1, with monoidal
unit 0). As such, a model of 𝔹 is nothing but an object A in a symmetric monoidal category 𝒞,
and the categories 𝒞 and Mod(𝔹,𝒞 ) are equivalent.

A A A A A A A

A A A A A A A

Figure 8.1: A morphism 7 → 7 of 𝔹, presented on an object A ∶ 𝒞

8.2.3 The key non-trivial example in our context is that of commutative (co)monoids. We remind that a
commutative monoid in a SMC 𝒞 is a triple (A, μ ∶ A ⊗ A → A, η ∶ I → A), with A an object
of 𝒞, such that the arrows μ and η interact with the associator, unitors and symmetry of 𝒞 to give
the usual laws of associativity, neutrality and commutativity (see MacLane 1978). A morphism of
monoids 𝑓 ∶ (A, μ, η) → (A′, μ′, η′) is an arrow 𝑓 ∶ A → A′ such that 𝑓 ∘ μ = μ′ ∘ (𝑓 ⊗ 𝑓)
and 𝑓 ∘ η = η′. We denote the category of monoids of 𝒞 and their morphisms as Mon(𝒞 ).
The dual notion of comonoid, and the relative category Comon(𝒞 ), is obtained by reversing the
arrows in the above definition. Now, consider the symmetric monoidal theory 𝔽 whose objects are
the natural numbers seen as finite ordinals and its morphisms are the functions between them ( 𝔽
is the skeleton of the category of finite sets). We easily check that Mod(𝔽,𝒞 ) ≃ Mon(𝒞 ) and
Mod(𝔽op, 𝒞 ) ≃ Comon(𝒞 ). Indeed, a strict symmetric monoidal functor from 𝔽 to 𝒞 picks an
object of 𝒞 and the image of any arrow 𝑚 → 𝑛 of 𝔽 is unambiguously obtained from the images
of the unique morphisms 0 → 1 and 2 → 1 in 𝔽, which are readily verified to satisfy the monoid
laws.

A A A A A

A A A A A A A
(a) A morphism 5 → 7 of 𝔽

A A A A A A A

A A A A A
(b) A morphism 7 → 5 of 𝔽op

Figure 8.2: 𝔽 and 𝔽op, presented on an object A ∶ 𝒞

Summing up, finding the free commutative comonoid A∞ on an object A of a SMC 𝒞 is the
same thing as turning a strict symmetric monoidal functor𝔹 → 𝒞 into a strict symmetric monoidal
functor 𝔽op → 𝒞 which is universal in a suitable sense. This is where Kan extensions come into the
picture.

Kan extensions

8.2.4 Kan extensions allow to extend a functor along another. Let K ∶ 𝒞 → 𝒟 and F ∶ 𝒞 → ℰ be two
functors. Let us suppose we have the following diagram in Cat:
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𝒞 ℰ

𝒟

F

K

If we think of K as an inclusion functor, it seems natural to try to define a functor 𝒟 → ℰ that
would in a sense be universal among those that extend F. There are two ways of formulating this
statement precisely, yielding left and right Kan extensions.

Definition 67 (Kan extension)

Let 𝒞 ,𝒟 ,ℰ be three categories and F ∶ 𝒞 → ℰ, K ∶ 𝒞 → 𝒟 two functors.
A left Kan extension of F along K is a functor LanKF ∶ 𝒟 → ℰ together with a natural

transformation η ∶ F ⇒ LanKF ∘K such that for any other pair (G ∶ 𝒟 → ℰ , γ ∶ F ⇒ G∘K),
γ factors uniquely through η:

𝒞 𝒟

ℰ

K

F G

η

The right Kan extension of F alongK is a functorRanKF ∶ 𝒟 → ℰ together with a natural
transformation ε ∶ RanKF ∘K ⇒ F such that for any other pair (G ∶ 𝒟 → ℰ , γ ∶ G ∘K ⇒ F),
γ factors uniquely through ε:

𝒞 𝒟

ℰ

K

F G

ε

These two notions are obviously dual. We will only be interested in right Kan extensions.
It is easy to check that Cat(G,RanKF) ≃ Cat(G ∘ K, F) (with Cat seen as a 2-category of small

categories, functors and natural transformations). In other words, RanK is right adjoint to UK,
the functor precomposing with K (whence the terminology “right”—the left adjoint to UK is the
left Kan extension). This observation is important because it tells us that Kan extensions may be
relativized to any 2-category. In particular, we may speak of symmetric monoidal Kan extensions by
taking the underlying 2-category to be SymMonCat (symmetric monoidal categories, strict sym-
metric monoidal functors and monoidal natural transformations).

8.2.5 Kan extensions can be explained very elegantly via distributors (see §5.1.2). We first fix some ter-
minology.

We will view allow ourselves to view a distributor F ∶ 𝒞 ⇸ 𝒟 as a presheaf 􏾦F ∶ 𝒟 → 􏾧𝒞.
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We say that a distributor F ∶ 𝒞 ⇸ 𝒟 is represented by a functor ϕ ∶ 𝒞 → 𝒟 if F is the
curryfication of the composite

𝒞 𝒟 􏾧𝒟
F Y

where 􏾧𝒟 is the category of pre-sheafs over 𝒟 and Y the Yoneda embedding. A distributor is
said to be representable if it is represented by a functor.

The following lemma is folklore:

Lemma 15

Let 𝑓 ∶ 𝒞 → 𝒟 and 𝑗 ∶ 𝒞 → ℰ be two functors. The representative of the distributor 𝑓∗ ∘ 𝑗∗ (if it
exists) is the left Kan extension of 𝑓 along 𝑗.

Proof : Let 𝑔 ∶ ℰ → 𝒟. We will note Lan𝑗𝑓 the representative of 𝑓∗ ∘ 𝑗∗.

Cat(Lan𝑗𝑓, 𝑔) ≃ Dist(𝑓∗ ∘ 𝑗∗, 𝑔∗)
≃ Dist(𝑓∗, 𝑔∗ ∘ 𝑗∗)
≃ Dist(𝑓∗, (𝑔 ∘ 𝑗)∗)
≃ Cat(𝑓, 𝑔 ∘ 𝑗)

Proposition 8

Let 𝑓 ∶ 𝒞 → 𝒟 and 𝑗 ∶ 𝒞 → ℰ be two functors. If it exists, the coend

􏾙
𝑐∈𝒞

ℰ (𝑗(𝑐),—) ⊗ 𝑓(𝑐)

is the left Kan extension of 𝑓 along 𝑗. Dually,

􏾙
𝑐∶𝒞

ℰ (—, 𝑗(𝑐)) ∘ 𝑓(𝑐)

is the right Kan extension of 𝑓 along 𝑗.
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Proof : Let 𝑔 ∶ ℰ → 𝒟 be any functor.

Dist 􏿴𝑓∗ ∘ 𝑗∗, 𝑔∗􏿷

≃Dist 􏿵(𝑑, 𝑒) ↦ 􏾙
𝑐
ℰ (𝑗𝑐, 𝑒) × 𝒟 (𝑑, 𝑓𝑐), (𝑑, 𝑒) ↦ 𝒟(𝑑, 𝑔𝑒)􏿸

≃􏾙
𝑒
􏾧𝒟 􏿵𝑑 ↦ 􏾙

𝑐
ℰ (𝑗𝑐, 𝑒) × 𝒟 (𝑑, 𝑓𝑐), 𝑑 ↦ 𝒟(𝑑, 𝑔𝑒)􏿸 , by MacLane’s parameter’s theorem

≃􏾙
𝑒
􏾙
𝑐
􏾧𝒟 􏿴𝑑 ↦ ℰ (𝑗𝑐, 𝑒) × 𝒟 (𝑑, 𝑓𝑐), 𝑑 ↦ 𝒟(𝑑, 𝑔𝑒)􏿷 , by continuity of the Hom functor

≃􏾙
𝑒
􏾙
𝑐
􏾧𝒟 􏿴ℰ (𝑗𝑐, 𝑒) ⊗ 𝑑 ↦ 𝒟(𝑑, 𝑓𝑐), 𝑑 ↦ 𝒟(𝑑, 𝑔𝑒)􏿷

≃􏾙
𝑒
􏾙
𝑐
Set 􏿴ℰ (𝑗𝑐, 𝑒), 􏾧𝒟 (𝑑 ↦ 𝒟(𝑑, 𝑓𝑐), 𝑑 ↦ 𝒟(𝑑, 𝑔𝑒))􏿷

≃􏾙
𝑒
􏾙
𝑐
Set 􏿴ℰ (𝑗𝑐, 𝑒),𝒟 (𝑓𝑐, 𝑔𝑒))􏿷 , by the Yoneda lemma

≃􏾙
𝑒
􏾙
𝑐
𝒟(ℰ (𝑗𝑐, 𝑒) ⊗ 𝑓𝑐, 𝑔𝑒)

≃􏾙
𝑐
Cat(𝑒 ↦ ℰ (𝑗𝑐, 𝑒) ⊗ 𝑓𝑐, 𝑔), by Fubini’s theorem and MacLane’s parameter theorem

≃Cat 􏿶􏾙
𝑐
𝑒 ↦ ℰ (𝑗𝑐, 𝑒) ⊗ 𝑓𝑐, 𝑔􏿹 , by continuity of the Hom functor

So, the functor

􏾙
𝑐
𝑒 ↦ ℰ (𝑗𝑐, 𝑒) ⊗ 𝑓𝑐

is the representative of 𝑓∗ ∘ 𝑗∗. It is the left Kan extension of 𝑓 along 𝑗.

8.2.6 There is a well-known formula for computing Kan extensions in Cat.
Definition 68 (cotensor product of an object by a set)

Let 𝒞 be a (locally small) category. Let A be an object in 𝒞 and E a set. The cotensor product
E ∘ A of A by E is defined by:

∀B ∈ 𝒞 ,𝒞 (B, E ∘ A) ≃ Set(E,𝒞 (B,A))

Any locally small category with products is cotensored over Set (all of its objects have cotensor
products with any set) and the cotensor product is given by:

E ∘ A = 􏾟
Ε

A

We will write 􏾉𝑓𝑒􏽼𝑒∈Ε ∶ B → E ∘ A for the infinite pairing of arrows 𝑓𝑒 ∶ B → A and
π𝑒 ∶ E ∘ A → A the projections.

Theorem 18 (MacLane 1978, X.4, Theorem 1)

With the notations of Definition 67, whenever the objects exist:

RanKF(𝑑) = 􏾙
𝑐∶𝒞

𝒟(𝑑,K𝑐) ∘ F𝑐.
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The symmetric monoidal case

8.2.7 Recall from §5.1.1 the notion of discrete fibration and of presheaf, and the following lemma (essen-
tially a reformulation of Theorem 3

Lemma 16

A functor F ∶ 𝒞 → ℬ is a discrete fibration if and only if𝒞 is isomorphic to the category of elements
ℰ ℓ(φ) of a presheaf overℬ, and, up to the isomorphism, F is the first projection.

Every functor factors essentially uniquely as a composite of a final functor and a discrete fibration.
As such, any functor ℬ → 𝒞 can be seen as a presheaf over 𝒞. This allows to reify diagrams in 𝒞
as presheafs over 𝒞 ; which offers a language to formalize the fact that diagrams of a certain shape
have colimits.

Consider a class ℱ of diagram shapes (that is, of small categories), containing 1. The category
𝒞ℱ of the diagrams of shape ℱ in 𝒞 corresponds to a subcategory 𝒞 of 􏾧𝒞 by the aforementioned
correspondence. As ℱ contains 1, the Yoneda embedding 𝒞 → 􏾧𝒞 restricts to

𝑦 ∶ 𝒞 → 𝒞
𝑐 ↦ (1 ↦ 𝑐)

We can reason about the properties of this embedding. As a restriction of the Yoneda embedding,
it is fully faithful. Moreover, for every category 𝒜 and functor 𝑓 = 𝒜 → 𝒞, a computation based
on the Yoneda lemma shows that

Dist(𝑦∗ ∘ 𝑓∗, 𝑦∗ ∘ 𝑔∗) = Cat(𝑓, 𝑔)

If it exists, the functor colim ∶ 𝒞 → 𝒞 that associates to every diagram in 𝒞 its colimit is the
left adjoint of 𝑦. So, the fact that the diagrams of a certain shape have a colimit in 𝒞 can be formally
expressed as the fact that the Yoneda embedding associated to that shape has a left adjoint; the fact
that the colimits commute with the tensor product can be expressed as the fact that the left adjoint
is symmetric monoidal.

Lemma 17

Let 𝑓 ∶ ℬ ⇸ 𝒞 be a distributor and 𝒞 be a full subcategory of 􏾧𝒞 (the presheaf category over 𝒞)
containing 𝒞. Suppose that the Yoneda embedding of 𝒞 into 𝒞 has a left adjoint

colim ⊣ 𝑦 ∶ 𝒞 → 𝒞

and that 𝑓 factors through 𝑦∗ as

ℬ 𝒞 𝒞
𝑓∗ 𝑦∗

where 𝑓 ∶ ℬ → 𝒞 is a functor. The functor colim ∘ 𝑓 is a representative of 𝑓.
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Proof :

Dist(𝑓, 𝑔∗) = Dist(𝑦∗ ∘ 𝑓∗, 𝑔∗)

≃ Dist(𝑦∗ ∘ 𝑓∗, 𝑦
∗ ∘ 𝑦∗ ∘ 𝑔∗), as the Yoneda embedding is fully faitfull

≃ Cat(𝑓, 𝑦 ∘ 𝑔)

≃ Cat(colim ∘ 𝑓, 𝑔)

Definition 69

Let T ∶ Cat → Cat be the monad associating to any category its free symmetric monoidal
category. If A is an algebra over T, we will write [] ∶ TA → A the structure map.

A symmetric monoidal distributor is a distributor F making

TA TB

A B

TF

[—]∗

F
[—]∗

commute for all F ∶ A ⇸ B.

Lemma 18

Let 𝑗 ∶ 𝒜 → ℬ be a monoidal symmetric functor between two monoidal symmetric categories. 𝑗∗ is
symmetric monoidal if and only if

􏾙
A∶Τ𝒜

𝒜 (𝑎, [A]) × Tℬ (T𝑗A, B) → ℬ (𝑗𝑎, B)

is an isomorphism.

Theorem 19 ((Melliès and Tabareau 2008))

Let𝒜 ,ℬ ,𝒞 be symmetric monoidal categories.
Suppose that the Yoneda embedding 𝑦 ∶ 𝒞 → 𝒞 has a left adjoint colim ⊣ 𝑦 and that both

colim and 𝑦 are symmetric monoidal.
Let 𝑗 ∶ 𝒜 → ℬ be a symmetric monoidal functor such that 𝑗∗ is a symmetric monoidal distrib-

utor, and 𝑓 ∶ 𝒜 → 𝒞 be a symmetric monoidal functor. If the distributor 𝑓∗ ∘ 𝑗∗ factors through 𝑦∗
as:

ℬ 𝒞 𝒞
𝑔∗ 𝑦∗

then the forgetful functor

U𝑗 ∶ SymMonCat(ℬ ,𝒞 ) → SymMonCat(𝒜 ,𝒞 )
has a left adjoint

Lan𝑗 ∶ SymMonCat(𝒜 ,𝒞 ) → SymMonCat(ℬ ,𝒞 )
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computed with a Kan extension.

Proof : The functor colim ∘ 𝑔 is the Kan extension of 𝑓 along 𝑗: by Lemma 17, it is the representative of
𝑓∗ ∘ 𝑗∗, and by Lemma 15, the representative of 𝑓∗ ∘ 𝑗∗ is the Kan extension of 𝑓 along 𝑗.

It remains to check that it is symmetric monoidal. As colim is (by hypothesis), it suffices to show
that 𝑔 is. By hypothesis, 𝑓∗∘𝑗∗ is symmetric monoidal. As composition with 𝑦∗ induces a fully faithful
functor, 𝑔 is symmetric monoidal. The same argument gives the functoriality of the construction.

TheMelliès-Tabareau-Tasson construction

8.2.8 Melliès, Tabareau, and Tasson (2009) showed that may build free commutative comonoids as fol-
lows:

• compute the free co-pointed object A• on A (which is A & 1 if the category has binary
products);

• compute the symmetric versions of the tensorial powers of A•, i.e. the following equalizers,
where 𝔖𝑛 is the set of canonical symmetries of (A•)⊗𝑛:

A⩽𝑛 (A•)⊗𝑛 𝔖𝑛

• compute the following projective limit, whereA⩽𝑛 ⟵ A⩽𝑛+1 is the canonical arrow “throw-
ing away” one component:

1 A⩽1 A⩽2 ⋯ A⩽𝑛 ⋯

A∞

At this point, for A∞ to be the commutative comonoid on A it is enough that all relevant limits
(the equalizers and the projective limit) commute with the tensor. Although not valid in general,
this condition holds in several Lafont categories of very different flavor, such as Conway games and
coherence spaces.

The idea of Melliès, Tabareau, and Tasson 2009 was to decompose the Kan extension in two, so
that the commutation condition is weaker and satisfied by more Lafont categories. The intermediate
step uses a symmetric monoidal theory denoted by 𝕀, whose objects are natural numbers (seen as
finite ordinals) and morphisms are the injections. Note that Mod(𝕀op, 𝒞 ) is equivalent to the slice
category 𝒞 ↓ 1. By definition, this is the category of copointed objects of 𝒞: pairs (A,𝑤 ∶ A → I)
(with I the tensor unit, not necessarily terminal), with morphisms 𝑓 ∶ (A,𝑤) → (A′, 𝑤′) arrows
𝑓 ∶ A → A′ such that 𝑤 = 𝑤′ ∘ 𝑓1.

8.2.9 Its models in a SMC 𝒞 are pointed objects, i.e. pairs (A, 𝑝) consisting of an object A of 𝒞 and a
morphism 𝑝 ∈ 𝒞 (1, A), where I is the monoidal unit (which is not required to be terminal). A
morphism of pointed objects 𝑓 ∶ (A, 𝑝) → (A′, 𝑝′) is an arrow 𝑓 ∶ A → A′ such that 𝑓 ∘ 𝑝 = 𝑝′, so
the category of pointed objects of 𝒞 and their morphisms is just the slice category 1 ↓ 𝒞. We invite

1. The 𝑤 stands for weakening.
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the reader to check that Mod(𝕀, 𝒞 ) ≃ 1 ↓ 𝒞. Dually, the models of 𝕀op are co-pointed objects, that
is, objects A endowed with a map A → 1, and we have Mod(𝕀op, 𝒞 ) ≃ 𝒞 ↓ 1.

There are of course strict symmetric monoidal injections 𝑗 ∶ 𝔹 → 𝕀op and 𝑗′ ∶ 𝕀op → 𝔽op, such
that 𝑗′ ∘ 𝑗 = 𝑖. Unsurprisingly, Ran𝑗A(1) is the free copointed object on A, which we denoted by
A• above. Since Kan extensions compose (assuming they exist), we have A∞ = Ran𝑗′A•(1):

𝔹 𝕀op 𝔽op

𝒞

𝑗 𝑗′

A

A•

A∞

8.2.10 For the second Kan extension to be computed in SymMonCat using the Cat formula, a milder
commutation condition than requiring countable biproducts suffices. It is the commutation con-
dition we mentioned above when we recalled the three-step computation of A∞ (free copointed
object, equalizers, projective limit), which indeed results from specializing the general Kan exten-
sion formula.

. T   λ-  K ’ 

8.3.1 The bridge between the categorical and the topological approach, that will allow us to bring the
infinitary calculus to semantic shores will be built upon a further decomposition of the Kan exten-
sion: in the second step, we interpose a 2-sorted theory, denoted by ℙ (this is why we introduced
multi-sorted theories, all theories used so far are 1-sorted):

𝔹 𝕀op ℙ 𝔽op

𝒞

𝑗 𝑘 𝑙

A

(Aω, A•)

A∞
A•

We will call the models of ℙ partitionoids. Intuitively, the free partitionoid on A allows to speak
of infinite streams on A•, from which one may extract arbitrary elements and substreams via maps
of type Aω → (A•)⊗𝑚 ⊗ (Aω)⊗𝑛. Such maps are the key to model the infinitary affine λ-calculus.

Example : This intuition is especially evident in Rel (the category of sets and relations), where Aω is the set
of all functions N → A• which are almost everywhere ∗ (in Rel, A• = A ⊎ {∗}). The free object

Aω ∶= Ran𝑘A•(1, 0)

is characterized by maps

Aω → (A•)⊗𝑚 ⊗ (Aω)⊗𝑛

for each choice of 𝑖1, … , 𝑖𝑚 ∈ N and injections β1, … , β𝑛 ∶ N → N. These maps, intuitively, take a stream
⟨𝑢0, 𝑢1, 𝑢2, …⟩ and return

𝑢𝑖1 ⊗⋯⊗ 𝑢𝑖𝑚 ⊗ ⟨𝑢β1(0), 𝑢β1(1), …⟩ ⊗⋯ ⊗ ⟨𝑢β𝑛(0), 𝑢β𝑛(1), …⟩.
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They are able to extract and manipulate elements of the stream arbitrarily.

8.3.2 In the end, our alternative formula for computing the free commutative comonoidA∞ on an object
A of a symmetric monoidal category may be summarized as follows:

• from the free copointed object A• on A, compute the limit of the following projective dia-
gram, which we call Aω:

1 A• (A•)⊗2 ⋯ (A•)⊗𝑛 (A•)⊗𝑛+1 ⋯
ε1 ε2 ε𝑛 ε𝑛+1

where each arrow “throws away” the rightmost component;

• under certain conditions, Aω is a “copointed comagma”, i.e. it is endowed with arrows δ ∶
Aω → Aω⊗Aω and ε ∶ Aω → I satisfying no equation. Then,A∞ is the following equalizer:

Aω

A∞ Aω (Aω)⊗3

(Aω)⊗2

id(ε ⊗ id) ∘ δ

(δ ⊗ id) ∘ δ

(id ⊗ δ) ∘ δ

δswap ∘ δ

The infinitary affine λ-calculus

8.3.3 In order for the notations to be still manageable, we will not present the infinitary affineλ-calculus as
an operad, with a language for the reductions. Nonetheless, the translation to an operadic language
is fairly immediate.

We consider three pairwise disjoint, countable sets of linear, affine and exponential variables,
ranged over by 𝑘, 𝑙, 𝑚…, 𝑎, 𝑏, 𝑐 … and 𝑥, 𝑦, 𝑧…, respectively. The terms of the infinitary affine
λ-calculus belong to the following grammar:

𝑡, 𝑢 ∶∶= 𝑙 | λ𝑙.𝑡 | 𝑡𝑢 | 𝑘 ⊗ 𝑙 [⟨𝑢⟩ ∶= 𝑡] | 𝑡 ⊗ 𝑢 linear
| 𝑎 | 𝑎• [⟨𝑢⟩ ∶= 𝑡] | •𝑡 affine
| 𝑥𝑖 | 𝑥ω [⟨𝑢⟩ ∶= 𝑡] | ⟨𝑢0, 𝑢1, 𝑢2, …⟩ exponential

The linear part of the calculus comes from Benton et al. 1993. It is the internal language of symmetric
monoidal closed categories. As usual, let constructs are binders. The notation ⟨𝑢0, 𝑢1, 𝑢2, …⟩ stands
for an infinite sequence of terms. We use u to range over such sequences and write u(𝑖) for 𝑢𝑖.
Note that each 𝑢𝑖 is inductively smaller than u, so terms are infinite but well-founded. The usual
linearity/affinity constraints apply to linear/affine variables, with the additional constraint that if
𝑥𝑖, 𝑥𝑗 are distinct occurrences of an exponential variable in a term, then 𝑖 ≠ 𝑗. Furthermore, the free
variables of a term of the form u (resp. •𝑡) must all be exponential (resp. exponential or affine).
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The reduction rules are as follows:

(λ𝑙.𝑡)𝑢 → 𝑡[𝑢/𝑙] 𝑘 ⊗ 𝑙 [⟨𝑢 ⊗ 𝑣⟩ ∶= 𝑡] → 𝑡[𝑢/𝑘][𝑣/𝑙]
𝑎• [⟨•𝑢⟩ ∶= 𝑡] → 𝑡[𝑢/𝑎] 𝑥ω [⟨u⟩ ∶= 𝑡] → 𝑡[u(𝑖)/𝑥𝑖]

In the exponential rule, 𝑖 ranges over N, so there may be infinitely many substitutions to be per-
formed. There are also the usual commutative conversions involving let binders, which we omit for
brevity. The reduction is confluent, as the rules never duplicate any subterm.

The results of Mazza 2012 are formulated in an infinitary calculus with exponential variables
only, whose terms and reduction are defined as follows:

𝑡, 𝑢 ∶∶= 𝑥𝑖 | λ𝑥.𝑡 | 𝑡⟨𝑢0, 𝑢1, 𝑢2, …⟩, (λ𝑥.𝑡)u → 𝑡[u(𝑖)/𝑥𝑖]

(the abstraction binds all occurrences of 𝑥). Such a calculus may be embedded in the one introduced
above, as follows:

𝑥∘𝑖 ∶= 𝑎• [⟨𝑥𝑖⟩ ∶= 𝑎]
(λ𝑥.𝑡)∘ ∶= λ𝑙.𝑥ω [⟨𝑙⟩ ∶= 𝑡∘]

(𝑡⟨𝑢0, 𝑢1, 𝑢2, …⟩)∘ ∶= 𝑡∘⟨•𝑢∘0, •𝑢∘1, •𝑢∘2, …⟩

and we have 𝑡 → 𝑡′ implies 𝑡∘ →∗ 𝑡′∘, so we do not lose generality. However, the categorical
viewpoint adopted in the present paper naturally leads us to consider a simply-typed version of the
calculus, given in Figure 8.3. It is for this calculus that our construction provides Although it may
appear additive, the treatment of contexts is multiplicative also in the exponential case, as enforced
by the condition in the caption of Figure 8.3. The typing system enjoys the subject reduction
property, as can be proved by an induction on the depth of the reduced redex.

Denotational semantics

Definition 70 (reduced fpp, monoidal theory ℙ)
A finite partial partition (fpp) is a finite (possibly empty) sequence (S1, … , S𝑘) of non-empty,
pairwise disjoint subsets of N.

Fpp’s have an operadic structure: let β ∶= (S1, … , S𝑘), with S𝑖 infinite, and let β′ ∶=
(S ′

1, … , S ′
𝑘′); we define

β′ ∘𝑖 β ∶= (S1, … , S𝑖−1, T1, … , T𝑘′, S𝑖+1, … , S𝑘),

where each T𝑗 is obtained as follows: let 𝑛0 < 𝑛1 < 𝑛2 < ⋯ be the elements of S𝑖 in increasing
order; then, T𝑗 ∶= {𝑛𝑚 ∣ 𝑚 ∈ S ′

𝑗 }.
We will only consider reduced fpp’s, in which each S𝑖 is either a singleton or infinite. We

will use the notation (S1, … , S𝑚; T1, … , T𝑛) to indicate that the S𝑖 are singletons and the T𝑗 are
infinite, and we will say that such an fpp has size 𝑚+ 𝑛. Note that the composition of reduced
fpp’s is reduced. The set of all reduced fpp’s will be denoted by 𝒫.

Reduced fpp’s induce a 2-sorted monoidal theory ℙ, as follows: each β ∈ 𝒫 of size 𝑚 + 𝑛
induces an arrow β ∶ (0, 1) → (𝑚, 𝑛) ofℙ. There is also an arrow𝑤 ∶ (1, 0) → (0, 0) to account
for partiality. Composition is defined as above.
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Example : Let β ∶= (E,O), where E and O are the even and odd integers, and let β′ ∶= ({0},N ⧵ {0}) (these
are actually total partitions). Then β′ ∘1 β = ({0}, E ⧵ {0}, O), whereas β ∘2 β′ = ({0}, O, E ⧵ {0}).

Definition 71 (partitionoid )

A partitionoid in a symmetric monoidal category 𝒞 is a strict symmetric monoidal functor

G ∶ ℙ → 𝒞 .

Spelled out, it is a tuple (G0, G1, 𝑤, (𝑟β)β∈𝒫)) with (G0, 𝑤) a copointed object and 𝑟β ∶ G1 →
G⊗𝑚

0 ⊗ G⊗𝑛
1 whenever β is of size 𝑚 + 𝑛, such that the composition of compatible 𝑤 and 𝑟β

satisfies the equations induced by ℙ.
A morphism of partitionoid s G → G ′ is a pair of arrows 𝑓0 ∶ G0 → G ′

0, 𝑓1 ∶ G1 → G ′
1

such that 𝑓0 is a morphism of copointed objects and 𝑟′β ∘ 𝑓1 = (𝑓⊗𝑚0 ⊗ 𝑓⊗𝑛1 ) ∘ 𝑟β for all β ∈ 𝒫
of size 𝑚 + 𝑛.

We say that F is the free partitionoid onA if it is endowed with an arrow 𝑒 ∶ F0 → A such
that, for every partitionoid G with an arrow 𝑓 ∶ G0 → A, there exists a unique morphism of
partitionoid s (𝑢0, 𝑢1) ∶ G → F such that 𝑓 = 𝑒 ∘ 𝑢.

Example : For any set X, (X, XN, !Χ, (𝑟β)β∈𝒫) is a partitionoid in Set, where !Χ is the terminal arrow X → 1
and, if

β = ({𝑖1}, … , {𝑖𝑚}; {𝑗11 < 𝑗12 < ⋯},… , {𝑗𝑛1 < 𝑗𝑛2 < ⋯})

and 𝑓 ∶ N → X,

𝑟β(𝑓) ∶= (𝑓(𝑖1), … , 𝑓(𝑖𝑚), 𝑘 ↦ 𝑓(𝑗1𝑘), … , 𝑘 ↦ 𝑓(𝑗𝑛𝑘 )) ∈ X𝑚 × (XN)𝑛.

Lemma 19

If (F0, F1) is the free partitionoid on A, then F0 = A•, the free co-pointed object on A.

Proof : This follows from observing that (A•, F1) is also a partitionoid on A.

8.3.4 We are ready to define the categories that model the infinitary affine calculus.
Definition 72 (infinitary affine category)

LetA be an object in a symmetric monoidal category. We denote by †A the following diagram:

1 A• (A•)⊗2 ⋯ (A•)⊗𝑛 (A•)⊗𝑛+1 ⋯
ε1 ε2 ε𝑛 ε𝑛+1

where ε1 = ε is the copoint of A• and ε𝑛+1 ∶= (id)⊗𝑛 ⊗ ε, the arrow erasing the rightmost
component.

If X is another object, we denote by X ⊗ †A the above diagram in which each (A•)⊗𝑛 and
ε𝑛 are replaced by X ⊗ (A•)⊗𝑛 and idΧ ⊗ ε𝑛, respectively.

We set Aω ∶= lim †A (if it exists).
An infinitary affine category is a symmetric monoidal closed category such that, for all A, the

free partitionoid on A exists and is (A•, Aω).
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Several well-known categories are examples of affine infinitary categories: sets and relations,
coherence spaces and linear maps, Conway games. Finiteness spaces are a non-example. We give
the relational example here, which is a bit degenerate but easy to describe and grasp.

Example : The category Rel has sets as objects and relations as morphisms. It is symmetric monoidal closed:
the Cartesian product (which, unlike in Set, is not a categorical product in Rel!) acts both as ⊗ (with
unit the singleton {∗}) and ⊸. Let A be a set and let us assume that ∗ ∉ A. The free copointed object
on A is (up to iso) A ∪ {∗}, with copoint the relation {(∗, ∗)}. The F1 part of the free partitionoid
on A in Rel is (up to iso) the set of all functions N → A• which are almost everywhere ∗. Given a
reduced fpp β ∶= ({𝑖1}, … , {𝑖𝑚}; {𝑗10 < 𝑗11 < …},… , {𝑗𝑛0 < 𝑗𝑛1 < …}), the corresponding morphism of type
Aω → (A•)⊗𝑚 ⊗ (Aω)⊗𝑛 is

𝑟β ∶= {(a, (𝑎𝑖1, … , 𝑎𝑖𝑚, ⟨𝑎𝑗10, 𝑎𝑗11, …⟩, … , ⟨𝑎𝑗𝑛0 , 𝑎𝑗𝑛1 , …⟩)) ∣ a ∈ Aω},

where we wrote ⟨𝑎0, 𝑎1, 𝑎2, …⟩ for the function a ∶ N → A•, 𝑖 ↦ 𝑎𝑖. This example is especially instructive
because one sees very concretely how the infinite sequences in the calculus are modelled in the semantics.

Theorem 20

An infinitary affine category is a denotational model of the infinitary affine λ-calculus.

Proof : The interpretation of types is parametric in an assignment of an object to the base type X, and it
is straightforward (notations are identical). In fact, we will confuse types and the objects interpreting
them.

Let now Γ; Δ; Σ ⊢ 𝑡 ∶ A be a typing judgment. The type of the corresponding morphism will be
of the formC1⊗⋯⊗C𝑛 ⟶ A, where theC𝑖 come from the context and are defined as follows. If it
comes from 𝑙 ∶ C ∈ Σ (resp. 𝑎 ∶ C ∈ Δ), then C𝑖 ∶= C (resp. C𝑖 ∶= C•). If it comes from 𝑥 ∶ C ∈ Γ,
then C𝑖 ∶= Cω if 𝑥 appears infinitely often in 𝑡, otherwise, if it appears 𝑘 times, C𝑖 ∶= (C•)⊗𝑘.

The morphism interpreting a type derivation of Γ; Δ; Σ ⊢ 𝑡 ∶ A is defined as customary by
induction on the last typing rule. The lin-ax rule and all the rules concerning ⊗ and ⊸ are modeled
in the standard way, using the symmetric monoidal closed structure. The only delicate point is
modeling the seemingly additive behavior of the exponential context Γ in the binary rules (the same
consideration will hold for the elimination rules of • and ω as well). Let us treat for instance the ⊗I
rule, and let us assume for simplicity that Γ = 𝑥 ∶ C, 𝑦 ∶ D, 𝑧 ∶ E, with 𝑥 (resp. 𝑧) appearing infinitely
often (resp. 𝑚 and 𝑛 times) in 𝑡 and 𝑢, whereas 𝑦 appears infinitely often in 𝑡 but only 𝑘 times in 𝑢.
Let us also disregard the affine and linear contexts, which are unproblematic. The interpretation of
the two derivations gives us two morphisms

[𝑡] ∶ Cω ⊗ Dω ⊗ (E•)⊗𝑚 ⟶ A, [𝑢] ∶ Cω ⊗ (D •)⊗𝑘 ⊗ (E•)⊗𝑛 ⟶ B.

Now, we seek a morphism of type Cω ⊗ Dω ⊗ (E•)⊗(𝑚+𝑛) ⟶ A ⊗ B, because 𝑥 and 𝑦 appear
infinitely often in 𝑡 ⊗ 𝑢, whereas 𝑧 appears 𝑚+ 𝑛 times. This is obtained by precomposing [𝑡] ⊗ [𝑢]
with the morphisms 𝑟β ∶ Cω → Cω ⊗ Cω and 𝑟β′ ∶ Dω → (D •)⊗𝑘 ⊗ Dω associated with the
fpp’s β = (; T𝑡, T𝑢) such that T𝑡 (resp. T𝑢) contains all 𝑖 such that 𝑥𝑖 is free in 𝑡 (resp. in 𝑢), and
β′ = (S ′

𝑢; T ′
𝑡 ) is defined in a similar way with the variable 𝑦.

The weakening on exponential and affine variables in all axiom rules is modeled by the canonical
morphisms A• → 1 and Aω → 1. For the rules aff-ax and exp-ax, we use the canonical morphism
A• → A and the identity on A•, respectively.

The •I rule is modeled by observing that objects of the form Γω ⊗ Δ• are copointed (from
tensoring their copoints), so from an arrow Γω⊗Δ• ⟶ Awe obtain a unique arrow Γω⊗Δ• ⟶ A•

by universality of A•. The •E rule is just composition.
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For what concerns the ωI rule, let us assume for simplicity that Γ = 𝑥 ∶ C. This defines a
sequence of objects (C𝑖)𝑖∈N such that C𝑖 is either Cω or (C•)⊗𝑘𝑖 according to whether 𝑥 appears in
u(𝑖) infinitely often or 𝑘𝑖 many times. Let now S𝑖 ∶= {𝑗 ∈ N ∣ 𝑥𝑗 is free in u(𝑖)}, define the fpp
β𝑖 = (S0, … , S𝑖) and let

ε′𝑖 ∶= (id)⊗𝑖 ⊗ 𝑤𝑖 ∶ C0 ⊗⋯⊗ C𝑖−1 ⊗ C𝑖 ⟶ C0 ⊗⋯⊗ C𝑖−1,

where 𝑤𝑖 ∶ C𝑖 → 1 is equal to 𝑟∅ if C𝑖 = Cω (with ∅ the empty fpp) or it is equal to ε⊗𝑘𝑖 if
C𝑖 = (C•)⊗𝑘𝑖. Let 􏾦β𝑖 be the reduced fpp obtained from β𝑖 by “splitting” its finite sets into singletons.
If we set θ𝑖 ∶= 𝑟􏾦β𝑖, we have that for all 𝑖 ∈ N, ε′𝑖 ∘ θ𝑖+1 = θ𝑖. Let now 𝑓𝑖 be the interpretations of the
derivations of 𝑥 ∶ C; ; ⊢ u(𝑖) ∶ A• and consider the diagram

Cω

1 C0 C0 ⊗ C1 C0 ⊗ C1 ⊗ C2 ⋯

1 A• (A•)⊗2 (A•)⊗3 ⋯

θ0

θ1
θ2 θ3

θ𝑛

ε′0 ε′1 ε′2 ε′3

ε1 ε2 ε3 ε4

id 𝑓0 𝑓0 ⊗ 𝑓1 𝑓0 ⊗ 𝑓1 ⊗ 𝑓2

We showed above that all the upper triangles commute. It is easy to check that the bottom
squares commute too, making (Cω, ((𝑓0 ⊗⋯ ⊗ 𝑓𝑖−1) ∘ θ𝑖)𝑖∈N) a cone for †A. Since Aω = lim †A,
this gives us a unique arrow 𝑓 ∶ Cω → Aω, which we take as the interpretation of the derivation.
The ωE rule is just composition, modulo the interposition of the canonical arrow Aω → (A•)⊗𝑘 in
case 𝑥 appears 𝑘 times in 𝑡.

It remains to check that the above interpretation is stable under reduction, which may be done
via elementary calculations.

From Infinitary Affine Terms to Linear Logic

8.3.5 In (Mazza 2012), it was shown that usual λ-terms may be recovered as uniform infinitary affine
terms. The categorical version of this result is that, in certain conditions, a model of the infinitary
affine λ-calculus is also a model of linear logic.
Theorem 21

Let 𝒞 be an infinitary affine category. If, for every objects X and A in 𝒞, the canonical morphism

X ⊗􏾙
(𝑛,𝑚)∈ℙ

(Aω)⊗𝑛 ⊗ (A•)⊗𝑚 ⟶ 􏾙
(𝑛,𝑚)∈ℙ

X ⊗ (Aω)⊗𝑛 ⊗ (A•)⊗𝑚

is an isomorphism, then 𝒞 is a Lafont category. Moreover, the free commutative comonoid A∞

on A may be computed as the equalizer of the diagram:
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Aω

A∞ Aω (Aω)⊗3

(Aω)⊗2

id(ε ⊗ id) ∘ δ

(δ ⊗ id) ∘ δ

(id ⊗ δ) ∘ δ

δswap ∘ δ

where δ ∶ Aω → Aω ⊗ Aω and ε ∶ Aω → 1 are the morphisms induced by the fpp (; E,O)
(even and odd numbers) and the empty fpp, respectively, and swap ∶ Aω ⊗ Aω → Aω ⊗ Aω is the
symmetry of 𝒞.

Proof : Let 𝑙 ∶ ℙ → 𝔽op be the strict monoidal functor mapping (𝑚, 𝑛) ↦ 𝑚 + 𝑛 and collapsing every
arrow (0, 1) → (𝑚, 𝑛) to the unique morphism 1 → 𝑚 + 𝑛 in 𝔽op. By composing Kan extensions,
we know that A∞ = Ran𝑙(A•, Aω)(1). Remark that 𝔽op(1, 𝑝) is a singleton for all 𝑝 ∈ N, so the
hypothesis is exactly what allows to apply Theorem 19, giving us

A∞ = 􏾙
(𝑚,𝑛)∈ℙ

(Aω)⊗𝑛 ⊗ (A•)⊗𝑚 .

Now, ∫
(𝑚,𝑛)∈ℙ

(Aω)⊗𝑛 ⊗ (A•)⊗𝑚 is the universal object making

∫
(𝑚,𝑛)∈ℙ

(Aω)⊗𝑛 ⊗ (A•)⊗𝑚

(A•)⊗𝑛 ⊗ (Aω)⊗𝑚 (A•)⊗𝑛′ ⊗ (Aω)⊗𝑚′

κ𝑛,𝑚

κ𝑛′,𝑚′

commute. We are going to show that ∫
(𝑚,𝑛)∈ℙ

(Aω)⊗𝑛 ⊗ (A•)⊗𝑚 is a cone for the diagram of the
Theorem. We will only show that

∫
(𝑚,𝑛)∈ℙ

(Aω)⊗𝑛 ⊗ (A•)⊗𝑚

(Aω)⊗2 (Aω)⊗2

δ ∘ κ0,1

swap ∘ δ ∘ κ0,1

commutes. The family (ι𝑛⊗ι𝑚 ∘ δ ∘κ0,1)𝑛,𝑚 is a cone for †⊗2A . Moreover, the θ𝑛,𝑚 ∘ δ are defined
in terms of the operations of ℙ, they actually are the canonical maps, and

∀𝑛,𝑚, ι𝑛 ⊗ ι𝑚 ∘ δ ∘ κ0,1 = κ0,𝑛+𝑚
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The exact same reasoning gives:

∀𝑛,𝑚, ι𝑛 ⊗ ι𝑚 ∘ swap ∘ δ ∘ κ0,1 = κ0,𝑛+𝑚
But (κ0,𝑛+𝑚)𝑛,𝑚 factors uniquely through (Aω)⊗2 (the limit of †⊗2A ) and as such,

∀𝑛,𝑚, δ ∘ κ0,1 = swap ∘ δ ∘ κ0,1

which is what we wanted. So ∫
(𝑚,𝑛)∈ℙ

(Aω)⊗𝑛 ⊗ (A•)⊗𝑚 is a cone for the diagram of the Theorem.

Let us now prove that every cone for this diagram is a cone of the diagrams defining∫
(𝑚,𝑛)∈ℙ

(Aω)⊗𝑛⊗

(A•)⊗𝑚.

It is easy to verify that any object B making the diagram defining A∞ commute is endowed with
exactly one map B → (Aω)⊗𝑛 for all 𝑛 ∈ N, built from δ and ε which, is moreover, stable under all
swaps. In particular, by composing these maps (B → (Aω)⊗𝑛)𝑛∈N with the arrow Aω → A•, it is
clear that there is a unique family of arrows

∀𝑛,𝑚 ∈ N, B → (A•)⊗𝑛 ⊗ (Aω)⊗𝑚

stable under extractions and weakenings. So any cone for the diagram defining Aω is a cone for the
diagram defining ∫

(𝑚,𝑛)∈ℙ
(Aω)⊗𝑛 ⊗ (A•)⊗𝑚 and as such, factorizes through it. So ∫

(𝑚,𝑛)∈ℙ
(Aω)⊗𝑛 ⊗

(A•)⊗𝑚 is the limit of the diagram of the Theorem, and thus isomorphic to A∞.

Intuitively, this construction amounts to collapsing the family of non-associative and non-
commutative “contractions” built with δ, ε and swap.

It should be remarked that the particular δ used is not canonical, other morphisms would yield
the same result. Indeed, from (Mazza 2012) we know that recovering usual λ-terms from infini-
tary affine terms is possible using uniformity which, as recalled in the introduction, amounts to
identifying

λ𝑥.⟨𝑥0, 𝑥1, 𝑥2, …⟩ ≈ λ𝑥.⟨𝑥β(0), 𝑥β(1), 𝑥β(2), …⟩,
for every injection β ∶ N → N. Theorem 21 amounts to defining a congruence on terms verifying

λ𝑥. 􏾉𝑥0, 𝑥1, 𝑥2, …􏽼 ≃ λ𝑥. 􏾉𝑥0, 𝑥2, 𝑥4, …􏽼
λ𝑥. 􏾉𝑥0, 𝑥2, 𝑥4, …􏽼 ⊗ 􏾉𝑥1, 𝑥3, 𝑥5, …􏽼 ≃ λ𝑥. 􏾉𝑥1, 𝑥3, 𝑥5, …􏽼 ⊗ 􏾉𝑥0, 𝑥2, 𝑥4, …􏽼

which is sufficient to recover ≈.

Comparison between the approaches

8.3.6 We saw how the functorial semantic framework provides a bridge between the categorical and topo-
logical approaches to expressing the exponential modality of linear logic as a form of limit. This gives
a way to construct, under certain hypotheses, denotational models of the infinitary affine λ-calculus.
Moreover, it gives us a formula for computing the free exponential which is alternative to that of
Melliès et al. Since both formulas apply only under certain conditions, it is natural to ask whether
one of them is more general than the other. Although we do not have a general result, we are able
to show that, under a mild condition verified in all models of linear logic we are aware of, our
construction is applicable in every situation where Melliès et al.’s is.

Indeed, Melliès et al.’s construction amounts to checking that the Kan extension along𝑚 (below,
left) is a monoidal Kan extension, whereas the one exposed in this article amounts to checking that
the two Kan extensions along 𝑘, then 𝑙 are monoidal (below, right):
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𝒞

𝕀op 𝔽op
𝑚

ℙ

𝒞

𝕀op 𝔽op

𝑘 𝑙

As Kan extensions compose, it suffices to know that the Kan extension along 𝑚 is monoidal,
that 𝑚 = 𝑘 ∘ 𝑙, and that there exists two monoidal natural transformations inside the two upper
triangles that can be composed to the last one to be sure that the Kan extensions along 𝑘 and along
𝑙 are monoidal too. We thus get:
Proposition 9

Let 𝒞 be a symmetric monoidal category with all free partitionoids. Assume that Melliès et al.’s
formula works and that Aω exists. If there exists, for all integers 𝑛,𝑚 monoidal maps

(A∞)⊗𝑛+𝑚 →(Aω)⊗𝑛 ⊗ (A•)⊗𝑚

(Aω)⊗𝑛 ⊗ (A•)⊗𝑚 → (A•)⊗𝑛+𝑚

that composed together are the 𝑛 + 𝑚 tensor of the map A∞ → A⩽1 → A• then 𝒞 is an infinitary
affine category and a Lafont category.

Actually, in all models we are aware of, either both formulas work, or neither does. For instance,
our construction fails for finiteness spaces (Ehrhard 2005), as does the construction given in (Melliès,
Tabareau, and Tasson 2009).
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Γ; Δ; 𝑙 ∶ A ⊢ 𝑙 ∶ A
(lin-ax)

Γ; Δ, 𝑎 ∶ A;⊢ 𝑎 ∶ A
(aff-ax)

𝑖 ∈ N
Γ, 𝑥 ∶ A; Δ;⊢ 𝑥𝑖 ∶ A• (exp-ax)

Γ; Δ; Σ, 𝑙 ∶ A ⊢ 𝑡 ∶ B
Γ; Δ; Σ ⊢ λ𝑙.𝑡 ∶ A ⊸ B

(⊸ I)

Γ; Δ; Σ ⊢ 𝑡 ∶ A ⊸ B Γ;Δ′; Σ ′ ⊢ 𝑢 ∶ A
Γ; Δ, Δ′; Σ, Σ ′ ⊢ 𝑡𝑢 ∶ B

(⊸ Ε)

Γ; Δ; Σ ⊢ 𝑡 ∶ A Γ; Δ′; Σ ′ ⊢ 𝑢 ∶ B
Γ; Δ, Δ′; Σ, Σ ′ ⊢ 𝑡 ⊗ 𝑢 ∶ B

(⊗I)

Γ; Δ; Σ ⊢ 𝑢 ∶ A ⊗ B Γ; Δ′; Σ ′, 𝑘 ∶ A, 𝑙 ∶ B ⊢ 𝑡 ∶ C
Γ; Δ, Δ′; Σ, Σ ′ ⊢ 𝑘 ⊗ 𝑙 [⟨𝑢⟩ ∶= 𝑡] ∶ C

(⊗Ε)

Γ; Σ;⊢ 𝑡 ∶ A
Γ; Σ;⊢ •𝑡 ∶ A• (•I)

Γ; Δ; Σ ⊢ 𝑢 ∶ A• Γ; Δ′, 𝑎 ∶ A; Σ ′ ⊢ 𝑡 ∶ C
Γ; Δ, Δ′; Σ, Σ ′ ⊢ 𝑎• [⟨𝑢⟩ ∶= 𝑡] ∶ C

(•Ε)

… Γ; ; ⊢ u(𝑖) ∶ A• …
Γ; ; ⊢ u ∶ Aω (ωI)

Γ; Δ; Σ ⊢ 𝑢 ∶ Aω Γ, 𝑥 ∶ A; Δ′; Σ ′ ⊢ 𝑡 ∶ C
Γ; Δ, Δ′; Σ, Σ ′ ⊢ 𝑥ω [⟨𝑢⟩ ∶= 𝑡] ∶ C

(ωΕ)

Figure 8.3: The simply-typed infinitary affine λ-calculus. In every non-unary rule we require that
𝑡, 𝑢 (or, for the ωI rule, u(𝑖), u(𝑗) for all 𝑖 ≠ 𝑗 ∈ N) contain pairwise disjoint sets of occurrences of
the exponential variables in Γ.
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𝑥0 𝑥3 𝑥24 𝑥1 𝑥0
𝑥1 𝑥4 𝑥2
𝑥2 𝑥7 𝑥6
𝑥3 𝑥8 𝑥11
𝑥4 ⋮ ⋮
𝑥5
⋮
𝑥24
⋮

Figure 8.4: A depiction of the fpp {{3}, {24}, {1, 4, 7, 8, … }, {0, 2, 6, 11, … }}

𝑥0 𝑥0 𝑥1
𝑥1 𝑥2 𝑥3
𝑥2 𝑥4 𝑥5
𝑥3 𝑥6 𝑥7
𝑥4 ⋮ ⋮
𝑥5
𝑥6
𝑥7
⋮

(a) The even/odd fpp β

𝑥0 𝑥0 𝑥1 𝑥0 𝑥2
𝑥1 𝑥2 𝑥3 𝑥4 𝑥6
𝑥2 𝑥4 𝑥5 ⋮ ⋮
𝑥3 𝑥6 𝑥7
𝑥4 ⋮ ⋮
𝑥5
𝑥6
𝑥7
⋮

(b) β ∘1 β

𝑥0 𝑥0 𝑥1 𝑥1 𝑥3
𝑥1 𝑥2 𝑥3 𝑥5 𝑥7
𝑥2 𝑥4 𝑥5 ⋮ ⋮
𝑥3 𝑥6 𝑥7
𝑥4 ⋮ ⋮
𝑥5
𝑥6
𝑥7
⋮

(c) β ∘2 β

Figure 8.5: Operations on the even/odd fpp
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