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Abstract

Cys-loop receptors are pentameric ligand-gated ion channels (pLGIC), which play a 

crucial  role  in  rapid  neurotransmission.  They  are  the  targets  of  a  legion  of  drugs 

(antiemetics,  general  anesthetics,  benzodiazepines,  smoke  cessation  drugs,  etc.)  and 

their  physiological  properties  are  intensively  studied.  When  pLGICs  bind 

neurotransmitters,  they  undergo conformational  changes,  from a  resting  closed  pore 

state to a transient open pore state;  they can also enter a ligand-bound, closed pore, 

desensitized state. Moreover, the gating properties of pLGICs can be influenced by a 

variety  of  compounds (e.g.  lipids,  competitive  inhibitors,  allosteric  modulators,  ions 

such as  Ca2+),  which  makes  them flexible  receptors  capable  of  integrating  different 

signals into conformational changes.

In this thesis we focus on structural studies of the mouse serotonin type 3 receptor 

(m5-HT3R). The first  structure of the m5-HT3R, obtained by X-ray crystallography 

using stabilizing nanobodies, was a closed pore inhibited conformation (Hassaine et al.,  

2014).  As  a  follow  up,  we  aimed  to  obtain  structures  of  the  m5-HT3R  in  other 

conformations, in order to elucidate its gating mechanism. For this purpose we used 

both  X-ray  crystallography  and cryo-electron  microscopy  and thus  the  whole  thesis 

follows two story-lines. 

A general  introduction  of  the  pLGIC family  is  followed  by a  detailed  structural 

description of the m5-HT3R. In the results section, we present the optimized protocol 

for the receptor purification, we report that limiting diffraction is a bottleneck in the 

crystallographic  trials  and  we  emphasize  limits  met  using  nanobodies  for 

conformational stabilization of the receptor. In the electron microscopy results part we 

present the optimization of the sample and grid preparation that ultimately permitted 

data collection. We report four different structures representing distinct functional states 

of the m5-HT3R: an inhibited  tropisetron-bound closed conformation,  an open pore 

state and a putative pre-active state obtained in the presence of serotonin, and finally a 

closely-related putative pre-active state in the presence of serotonin and of the allosteric 

modulator  TMPPAA.  We  compare  our  data  with  structures  of  the  same  receptor 

obtained by other laboratory.

It was shown for the first time in our work how the antagonist (tropisetron) and the 

neurotransmitter  (serotonin)  bind  to  the  full-length  m5-HT3R.  And  our  structures 

deepen the knowledge of the receptor's gating mechanism.
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Résumé

Les  récepteurs  Cys-loop  sont  des  canaux  ioniques  pentamériques  activés  par  un 

ligand (pLGIC), qui jouent un rôle essentiel dans la neurotransmission rapide. Ils sont la 

cible de nombreuses familles de médicaments (antiémétiques, anesthésiques généraux, 

benzodiazépines,  médicaments  pour  arrêter  de  fumer,  etc.)  et  leurs  propriétés 

physiologiques  sont,  en  conséquent,  très  étudiées.  Lorsque  les  pLGIC  lient  des 

neurotransmetteurs,  ils  subissent  des  modifications  conformationnelles,  d’un  état  au 

repos où le pore est  fermé vers un état  transitoire  ouvert.  La liaison de ligand peut 

également  provoquer  un  état  conformationnel  fermé  et  désensibilisé.  En  outre,  les 

propriétés des pLGIC peuvent être influencées par divers composés (lipides, inhibiteurs 

compétitifs, modulateurs allostériques, ions tels que Ca2+), ce qui en fait des récepteurs 

capables d'intégrer différents signaux via des changements de conformation.

Dans cette thèse, nous nous concentrons sur des études structurales du récepteur de la 

sérotonine de type 3 chez la souris (m5-HT3R). La première structure du m5-HT3R, 

obtenue par cristallographie aux rayons X, représentait une conformation inhibée à pore 

fermé,  stabilisée  par  des  nanobodies  (Hassaine et  al.,  2014). Nous avons cherché  à 

obtenir  des  structures  dans  d’autres  conformations,  afin  d’élucider  son  mécanisme 

moléculaire  de  fonctionnement.  Pour  ce  faire,  nous  avons  utilisé  à  la  fois  la 

cristallographie aux rayons X et la cryo-microscopie électronique. Les résultats obtenus 

sont décrits dans 2 chapitres dédiés de la thèse.

Une  introduction  générale  de  la  famille  pLGIC  est  suivie  par  une  description 

détaillée  de la  structure  du m5-HT3R. Dans la  section  résultats,  nous présentons  le 

protocole optimisé pour la purification du récepteur, nous expliquons que la mauvaise 

diffraction est un facteur limitant dans les essais cristallographiques, et nous montrons 

les  freins  rencontrés  lors  de  l'utilisation  des  nanobodies  pour  la  stabilisation 

conformationnelle du récepteur. Dans les résultats de la microscopie électronique, nous 

présentons  l'optimisation  de  la  préparation  de  l'échantillon  et  de  la  grille  qui  a 

finalement permis la collecte de données. Nous décrivons quatre structures différentes 

représentant des états fonctionnels distincts du m5-HT3R : une conformation inhibée 

fermée liée  au Tropisétron  ;  un état  ouvert  et  un état  pré-actif  présumé obtenus  en 

présence de sérotonine ; et enfin un état proche de l’état pré-actif supposé, en présence 

de sérotonine et du modulateur allostérique TMPPAA. Nous comparons nos données 

avec les structures du même récepteur obtenues par un autre laboratoire.
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Notre travail a montré pour la première fois comment l'antagoniste (Tropisétron) et le 

neurotransmetteur  (sérotonine)  se lient  au m5-HT3R. Nos structures  approfondissent 

également la connaissance du mécanisme d’action du récepteur.
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Introduction

1 Introduction

When someone is searching for a job, her/his abilities to communicate represent one 

of the most  appreciated  skills by human resource recruiters.  In  biological  processes 

communication also plays a very important role.  Unicellular organisms developed  the 

ability  to  recognise  stimuli  coming  from  their  surroundings,  ways  to  process  the 

information, and signalling pathways which allow these stimuli to be acted upon (e.g. 

chemotaxis as a response to a chemical stimulus). Cells in multicellular organisms need 

to communicate  with each other to properly develop into different tissues  and organs, 

fulfil their desired role depending on the cell type, accommodate to external conditions 

and react to the requirements of the organism. The scope of this thesis is the structural 

study of  a  ligand-gated  ion  channel,  which  mediates crucial  communication,  which 

takes place in excitable cells.

As early as the  19th century, neurons were declared to be the functional building 

blocks  of  the  nervous system and  defined  to  be  independent  cells,  able  to  transfer 

directionally a signal from dendrite towards axones, and the Nobel prize was awarded to 

Santiago Ramón y Cajal and Camillo Golgi in 1906 for these discoveries. At that time, 

the  propagation  of  the  signal through neurons  was  not  well  understood.  The 

development of electrophysiology during the 20th century permitted the mechanism of 

signal propagation to be elucidated and emphasised the role of ion channels  in  this 

process,  Nobel  prize  in  Physiology  and  Medicine  awarded  to  Alan  Hodgkin  and 

Andrew Huxley in 1963. Our current  molecular  understanding of  how ion channels 

operate arises in part from the ability to obtain atomic structures by crystallography or 

cryo-electron microscopy since the turn of the millennium  (Doyle, 1998; Liao et al.,  

2013).

1.1 Action potential 

The neuronal  signal  transfer  is  divided into two stages:  I)  propagation  along the 

nerve cell  through  changes  in  the membrane potential  (electrical  signal)  and II)  the 

transmission of the signal at the neuron-neuron interface called the synapse, mediated 

by neurotransmitters (coupling). 

The  cytoplasmic  membrane  is  the  semi-permeable  hydrophobic  barrier  which 

encloses  all  living  cells.  While  small  hydrophobic  molecules  can  diffuse  across 

membranes,  charged molecules such as ions  cannot and thus they require specialised 

proteins  to  transport  them.  There  are  two  types  of  transport  across  the  membrane. 
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Active  transport  mediated  by  pumps  and  transporters  consumes  energy to  transport 

molecules  against  their  chemo-electrical  gradient.  Passive  transport  occurs  along  a 

gradient and is mediated by channels. 

 Concentrations  of  ions  differ  at  the  interior  and  exterior  side  of  the  plasma 

membrane.  In a typical  neuron, there are more Na+ ions outside than inside the  cell 

whereas the opposite is true for the K+ ions (Fig.  1).The general charge imbalance on 

different sides of membrane creates electrical field, negative inside, called membrane 

potential. Polarised neurons have a resting membrane potential of about -70 mV. This 

polarisation is maintained by sodium/potassium pumps and K+ channels. For two K+ 

pumped in 3 Na+ ions are pumped out of the nerve cell. If an excitatory stimulus reaches 

the  neuron in  the  resting  state,  this  results  in the  opening of  ion  channels  and the 

passage of sodium ions into the cell. If the stimulus is strong enough, the potential may 

reach  -55 mV and thus overcome a barrier  for an all-or-nothing phenomenon. At  this 

threshold, the change of the potential triggers the opening of voltage-gated ion channels, 

which mediate further depolarisation. This depolarisation  is then propagated along the 

neuronal body to the axon terminal - to the synapse. In synapses, the depolarisation 

opens calcium channels, yielding a flux of Ca2+ into the presynaptic terminal. The rise in 

presynaptic calcium concentration  triggers  the  fusion  of  intracellular  vesicles,  filled 

with neurotransmitters,  with  the  presynaptic  membrane  and the liberation  of 

neurotransmitters  into  the  synaptic  cleft.  Ligand-gated  ion  channels  located  in  the 

postsynaptic neuronal membrane bind these neurotransmitters, open and let  some ions 

pass  through  the  membrane  of  the  cell. This can  result  in  the  depolarisation  or 

hyperpolarisation (depending on the channel  selectivity) of  the new neuron and the 

message may eventually be transported through this new neuron as described above. 
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(Blaus, 2014)

1.2 The ion channels

Because  of  their  crucial  role  in  the  nervous  system the  ion  channels  have  been 

intensively studied more than 60 years (Hodgkin and Huxley, 1952). Together with the 

G-protein coupled receptors and kinases, the pore forming units of ion channels are 

amongst the most abundant genes in the human genome. Almost all ion channels are 

composed of  several  subunits and  form homomers  or  heteromers.  The existence  of 

different  heteromers  increases  the  number  of  the  variants  of  a  certain  type  of  ion 

channel  compared to  the  number of  different  subunits  encoded by  DNA sequences. 

Differences  between the subunits modify the channel properties and thus support their 

specialisation  and  plasticity.  Functional  channels  of  various  oligomeric  states  exist, 

from dimeric channels up to hexameric ones. Very often subunits are arranged around a 

central  pseudo-symmetrical axis  perpendicular  to the plane of the membrane,  which 

coincides with the pore (Fig. 2). 
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The ion channels do basically two things: they close or  open to let the ions pass 

through the highly hydrophobic core of the membrane. The channel stays in its open or 

closed state(s) several milliseconds, and the conformational change from the opened to 

closed  gates  occurs  in  the  order  of  a  hundred  times  per  second  with  the  flux  of

106-7 ions/s (Gadsby, 2009).  The ion channels are either strictly selective to the certain 

type of ions (e.g. K+ (Roux, 2017)) or they manifest promiscuity among either cations or 

anions (e.g. 5-HT3 channel among cations, Na+, K+, Ca2+ etc. and even some organic 

cations (Yang, 1990). We distinguish two classes of ion channels: the leaky and gated 

ion  channels.  Leaky  channels  show  constitutive  opening,  and  even  if  they  can  be 

regulated by external factors (e.g heat or mechanical stress for TREK channels), they do 

not directly  participate in rapid neurotransmission.  The determining characteristic  of 

gated  channels  is  their  ability  to  react  to different  stimuli  coming  from  their 

environment, and their rapid response. They all possess a “gate’’,  which is closed in the 

resting state and open only once the correct stimulus is  detected.  Depending on the 

signal  the channels recognise,  they  can  be  classified  into  further  subgroups. 

Voltage-gated ion channels, as the name suggests, react to changes of the membrane 

potential  and  this  group  comprises  for  example  of  the  K+,  Na+ and  also  the  Ca2+ 

channels.  Members  of  another  class  of  gated  ion  channels  respond  to  mechanical 

stimuli.  The  last  group  of  gated  channels  are  the  ligand-gated  ion  channels.  Their 

opening is dependent on the binding of a chemical compound. This last group comprises 
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of several  super-families: the  tetrameric  glutamate  receptors,  the  TRP channels,  the 

ATP-gated  ion  channels  and  the  Cys-loop  receptors.  The  Cys-loop  receptors  are 

pentameric ligand-gated ion channels and as the serotonin receptor of type 3 (5-HT3R), 

which is the focus of this thesis, belongs to this family, they are discussed in more detail 

in the following sections.

1.3 Discovery and characteristics of pLGIC

The mechanism behind the  chemo-electrical conversion  during  neurotransmission 

has been intensively studied since the beginning of the 20th century. The main limiting 

factors during that period were the available methods and the biological accessibility of 

the material studied. Key discoveries were made hand in hand with the development of 

the pharmacological, electrophysiological and biochemical methods.

Emil du Bois-Reymond, known as the father of electrophysiology, was able to detect 

electrical signals in frog muscle in 1843 and 4 years later, with an improved instrument,  

he was able to repeat his experiment in humans. In 1868 one of his followers, Julius 

Bernstein, measured the first action potential across the cellular membrane. In 1902 he 

formulated  the  membrane  theory  further  developed  by Howard  Curtis  and Kenneth 

Cole.  After  the proposition  of ion channel  existence  in 1952 by Alan Hodgkin and 

Andrew Huxley,  the  first  direct  observation  of  single  functioning  ion  channels  was 

obtained  in  the  1970s  by  the  “patch  clamp”  electrophysiology  method  invented  by 

Erwin Neher and Bert Sakmann. A breakthrough took place with the injection of brain 

extracted  mRNA  into  Xenopus  laevis oocytes,  leading  to  functional  ion  channel 

expression  at  the  cell  surface,  which  could  be  characterised  by  electrophysiology 

(Gurdon et al., 1971). This approach helped to overcome the fact that sequencing and 

cloning techniques were not available during that period and thus it was not possible to 

identify and overexpress the protein of interest. Those limiting factors were solved by 

two  biological  factors  in  the  case  of  the  nicotinic  acetylcholine  receptor  (nAChR), 

which made it the first pLGIC discovered and characterised. First,  cells of the electric 

organ  from  Electrophorus  electricus (Nachmansohn,  1959) were  shown  to  be 

extraordinarily rich in the acetylcholine neurotransmitter sensing receptors. This tissue 

provided sufficient amounts of working material but it was only of low specificity. The 

second biological factor that helped to identify the sensing unit was the discovery of a 

snake  venom  component,  the  alpha-bungarotoxin  (Chang  and  Lee,  1963),  which 

specifically binds to  the  nAChR receptor  and  was  shown  to  be  a blocker  of 

neurotransmission. A close homologue of this toxin, linked to Sepharose beads, served 
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as the first tool for the affinity purification of receptors.  This breakthrough helped to 

clarify that it is the nAChR and not the acetylcholinesterase that interacts with the toxin. 

The nAChR was determined to be the bearer of the neurotransmitter response.

In  parallel  with  the  advancements  being  made  on  the  nAChR,  the  inhibitory 

neurotransmitters glycine and γ-aminobutyric acid (GABA) were used to identify their 

receptors, which were both purified in 1982  (Pfeiffer et al., 1982; Stephenson et al.,  

1982).  Only  five  years  later  the  DNA  regions  encoding these  two  receptors  were 

sequenced  (Grenningloh  et  al.,  1987;  Schofield  et  al.,  1987) and shown  to  be 

homologous to the nAChR. The Cys-loop receptor family was further enlarged with the 

cloning, expression and characterisation of  the 5-HT3R (Maricq et al., 1991) and the 

invertebrate glutamate-gated chloride channels (GluCl) (Cully et al., 1994). Prokaryotic 

homologues were also identified  using sequence analysis  (Tasneem et al., 2005). Two 

of  them,  originating  from  Gloeobacter  violaceus (proton-gated  GLIC receptor)  and 

Erwinia chrysanthemi (GABA-gated ELIC receptor) have been extensively studied in 

structure-function projects  aimed at  understanding gating and transitions.  These two 

receptors lack the characteristic Cys-loop and thus the alternative name  - pentameric 

ligand-gated ion channels can be considered as more precise. All receptors from this 

family  share a similar architecture  but the prokaryotic receptors  lack the intracellular 

domain (ICD).

The  pentameric  ligand-gated  ion  channels  are  classified  according  to  their  ion 

selectivity. The nAChRs and  5-HT3Rs are cation-selective channels, so movement of 

ions through them causes  a depolarisation  of the membrane (excitatory postsynaptic 

potential).  Conversely, the  glycine  receptor  (GlyR)  and  the  GABAA  receptors 

(GABAAR) are anion-selective channels and movement of ions through them leads to a 

hyperpolarisation (inhibitory  postsynaptic  potential).  Both  prokaryotic  homologues 

GLIC and ELIC are cation selective.

The variety of the genetically encoded subunits and the ability of the cell to compose 

pentamers composed of diverse subunits adds to the overall functional plasticity and 

physiological  properties  of  the  receptors.  The  human  genome  codes  for  about  19 

different  subunits  of  GABAAR  and  for  17  different  subunits  of  nAChR.  Smaller 

diversity is observed for the GlyR represented by only 5 different subunits as well as for 

the  5-HT3R  where  the  five  different  subunits  carry  the  names  from  A-E.  The 

phylogenetic  relationships  between the  different  subunits  of  each  receptor  class  are 

shown in (Fig. 3).
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Generally the working  mechanism of all the Cys-loop receptors is the same. They 

open transiently when an agonist binds but after longer  exposure to the agonist they 

switch into the stimuli ignoring state during which the cellular response decreases. This 

state is called the desensitised state and ions are not able to pass through the channel in 

this  state.  After the washout of the agonist  the receptor  returns into its  resting state 

directly, without the need for reopening. This entire process was first described for the 

nAChR  (Katz and Thesleff, 1957). Since then, its binding specificity and the binding 

kinetics have been further studied. It is clear now that a variety of molecules might 

interact with and dissociate from the receptor with different kinetics, which is further 

influenced  by  allostery  and  that  this  process  might  be  dependent  on  the  receptor 

conformational state (Monod et al., 1965).

The Cys-loop receptors are implicated in multiple diseases, for example  in anxiety, 

epilepsy  and  Alzheimer's  disease.  They  are  targets  of  clinically  used  anaesthetics, 

anti-emetics, barbiturates, steroids and on the biological level also of toxins, alcohol and 

nicotine  (Connolly  and Wafford,  2004; Lester,  2004; Thompson et  al.,  2010).  I  will 

focus on the detailed functional  properties of the 5-HT3R and its  structural  features 

compared to the other Cys-loop receptors in the following sections. 
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1.4 The 5-HT3 receptor. Discovery, composition, physiological 
properties and pharmacology

5-hydroxytryptamine (5-HT)  or  serotonin is  the  neurotransmitter  biochemically 

derived from tryptophan.  It  is  mostly produced in the enterochromaffin  cells  of the 

gastrointestinal tract  but  it  is  also  present  in  the  serotonergic  nerves  in  the  central 

nervous system (CNS).  There are  seven classes of receptors  sensing serotonin  - the 

serotonin receptors. The 5-HT3R is the only ion channel out of the 7 different classes of 

serotonin receptors. The rest of the serotonin receptors are G protein-coupled receptors 

and they influence physiological processes such as sleep, memory, learning, respiration, 

mood, anxiety, locomotion and more (the overview of the G-protein coupled serotonin 

receptors can be found in the review of Pytliak et al.( 2011)). 

The initial discovery of the 5-HT3 receptor is linked to the determination of the two 

pharmacologically distinct types of serotonin receptors. The “D” type receptors, which 

can be inhibited by dibenzyline, mediate the contraction of smooth muscle and the “M” 

type, which can be inhibited by morphine, cause the depolarisation of the cholinergic 

neurons in the guinea-pig ileum (Gaddum and Picarelli, 1957). When the classification 

and the unique nomenclature was established the “M” type serotonin receptors became 

the 5-HT3 receptors  (Bradley et al., 1986) and were further characterised as we know 

them today (Maricq et al., 1991). 

5-HT3Rs are located in the peripheral nervous system (PNS) as well as in the CNS 

(Tecott et al., 1993) both, pre- and post-synaptically. The presence of the 5-HT3R was 

proven  in  the  peripheral  preparations  of  myenteric  plexus  (Mawe  et  al.,  1986), 

submucous  plexus  (Derkach  et  al.,  1989),  nodose  ganglion  (Higashi  and  Nishi,  

1982) and  vagus  nerve  (Azami  et  al.,  1985).  After  its  localisation  to  the PNS,  its 

existence was also proven in the CNS by mapping of the 5-HT3R activity in the rat 

brain (Kilpatrick et al., 1987). In the CNS, 5-HT3R is localised to the hippocampus, the 

amygdala, the area postrema and the nucleus tractus solitarius  (Koyama et al., 2017; 

Miquel et al., 2002)  (Fig. 4).
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Five subunits A-E of the 5-HT3R have been identified to date. The A subunit was 

followed by the B subunit  discovery and expression four years later  (Davies  et  al.,  

1999).  Three  more  putative  5-HT3R-encoding  genes  HTR3C,  HTR3D and  HTR3E 

were found in the human brain coding for the C-E subunits (Niesler et al., 2003). Some 

of the subunits exist in  a variety of isoforms. The 5-HT3R A subunit (5-HT3RA) has 

short and long splice variants differing by 32 amino acids, and other post translational 

variants  are  also  known  for  the  5-HT3R  B  (5-HT3RB)  and  E  subunits.  The 

homopentamer receptors can be made only of A subunits (Davies et al., 1999). None of 

the subunits B-E forms functional homopentamers and moreover the heteropentamers 

require the presence of at least  one A subunit.  The functional  properties of the C-E 

subunits and their presence across species is discussed in detail in the work of Holbrook 

and co-workers (Holbrook et al., 2009) and that of Niesler and co-workers (Niesler et  

al., 2007). The rodents genome codes only for the A and B subunits and interestingly, 

they never vomit. The absence of the other subunits as a reason of the phenotype is 

tempting but remains speculative.

The general architecture of all the different subunits is identical. They are composed 
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of  the  extracellular  domain  (ECD)  formed  mostly  by  beta-sheets.  They  have  four 

transmembrane helices. Only helix 2 (M2) is the pore forming helix and the rest of the 

helices protect it from contact with the lipid bilayer. The M3 helix is connected to the 

M4 helix by the long M3-M4 loop. C-terminal to the M3 there is a peri-membrane short 

helix  (MX)  and  then  the  unstructured  longer  loop  connects  the  MX  helix  to  the 

cytoplasmic prolongation of the membrane helix 4 (M4) called the MA helix (Fig.  5). 

The  binding  site  of  the  receptor  is  formed  by  the  contact  of  the  two  consecutive 

subunits. The detailed view of the structural features of the 5-HT3 receptors will be 

provided in section 1.5.2.

1.4.1 Functional properties

The early electrophysiological studies were performed on isolated tissues or on cells 

expressing the 5-HT3R naturally (Hussy et al., 1994). Only after the successful isolation 

of the gene coding for the A subunit were the homopentamers studied in oocytes (van 
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Hooft  et  al.,  1997).  The  single  channel  conductance  of  native  5-HT3Rs was tissue 

dependent and ranged between 9 and 17 pS (Fletcher and Barnes, 1998), whereas it was 

only  in  the  sub-pS  range  for  5-HT3A homopentamers  expressed  in  a  heterologous 

system (Gill et al., 1995). This suggested that multiple forms of the receptor might be 

present. At first, splice variants of the A subunits were hypothesised to be a source of 

the heterogeneity but it was shown that the presence variants had only a minor impact 

on the pharmacological and functional properties of the receptor (Hope et al., 1993). In 

the end, it was a direct comparison between the heterologously expressed 5-HT3RA and 

the  native  receptors  of the  superior  cervical  ganglion  neurons,  which provided  the 

evidence  for  multiple  channel  forms.  Although the  pharmacological  properties  were 

nearly  identical, the conductance of the heterologously expressed receptors was about 

0.4-0.6 pS compared to the 9 pS conductivity  of  the native receptors  (Hussy et  al.,  

1994).  Furthermore,  the  whole-cell  noise  analysis  of  the  mureine  superior  cervical 

ganglion  neuron receptor  revealed  the  single-channel  conductance  of  3.4  pS.  This 

suggested a co-existence between 9 pS conductance channels and channels with a lower 

conductance. It implied the presence of at least two different forms of the receptors. The 

B subunit was discovered and shown to be unable to form a functional homopentamer. 

The conductivity  of the A-B heteromers  fitted well  with the data obtained from the 

measurements  carried out with the 5-HT3Rs expressed natively  (Davies et al., 1999) 

(Fig. 6).
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To further explain the effect of the B subunit on the conductance, chimeric receptors 

swapping domains between the A and B subunits were created (Kelley et al., 2003). The 

conductivity-determining  region was shown to  be  in  the  cytoplasmic  portion  of  the 

receptor.  The  alignment  of  the  sequences  of  the  A  and  B  subunits  from  different 

organisms revealed three highly conserved arginine residues (R416, R420, R424) within 

the cytoplasmic region of the A subunit. When these were mutated to the corresponding 

residues of the B subunit (R416Q, R420D and R424A) and co-expressed with the WT A 

subunit, the conductivity increased. Importantly, this conductivity corresponded to the 

one  observed  in  tissues  expressing  the  A/B  heteromers  natively.  Initially,  it  was 

believed that the positive charge of these residues  was the main determinant of their 

role: they would essentially lower the flux of cations exiting the receptor through lateral 

portals (Kelley et al., 2003). Later on, based on the structural prediction of the MA helix 

and on site directed mutagenesis, it was shown that putative salt bridges could be more 

important  than the  actual  presence  of  the  charge  (Kozuska  et  al.,  2014).  This was 

demonstrated by a study where acid residues E414, E418 and D425 were mutated to 

their amide counterpart (QQN) to break salt bridges made with the other residues. The 

conductivity of this triple mutant was comparable to that of  the initial RRR to QDA 

mutation  and moreover  the  single  mutant  E418Q also presented  a  big conductance. 

General  suggestion  that  the charged residues  in  the intracellular  domain might  play 

stabilising roles being involved in salt bridges was further supported by mutagenesis of 

the other charged residues preceding E418. 

The RRR residues line the portals  of the cytoplasmic  vestibule and it  was under 

question whether they determine only the conductance of the receptor or if they also 

participate in size selectivity towards the permeant ion. By analysis of the ion selectivity 

of the 5-HT3R mutants missing the M3-M4 loop compared to the selectivity of the WT 

receptor, it was shown that the RRR triplet is not essential for ion selection (McKinnon 

et al., 2011).

The  channel  selectivity  filter  was determined  based  on  the  mutagenesis  of  the 

5-HT3R residues analogous to those influencing the ion selectivity properties of the 

other  Cys-loop  receptors  (Gunthorpe  and  Lummis,  2001).  The  alignment  of 

anion-selective and cation-selective Cys-loop receptors revealed the conserved presence 

of  positively  or  negatively  charged  residues  corresponding  to  the  anion- and 

cation-selectivity,  respectively.  These  rings  are  located  on  the  extracellular  and 

intracellular  ends  of  the  pore.  Based on mutagenesis  studies  results,  the  lower  ring 

formed by E250  on the  intracellular  side  seems to  be  the main  determinant  of  the 

5-HT3R  selectivity  (Thompson  and  Lummis,  2003).  The  5-HT3R  is  relatively 
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promiscuous with regard to its selectivity. The selectivity among different cations was 

predicted based on the property to reverse near 0 mV, suggesting similar permeabilities 

for Na+ and K+ cations. The 5-HT3R discriminates between the small monovalent ions 

(Cs+,  K+,  Li+  < Na+  = Rb+)  only weakly  (Yang, 1990).  Moreover,  even some of the 

organic cations (e.g., ammonium and methylamine) are able to pass through the channel 

and unsurprisingly their permeability decreases with their increasing size (Yang, 1990). 

The divalent  cations (Ca2+,  Ba2+,  Mg2+) also pass through the selectivity  filter  of the 

5-HT3R. The calcium permeability of the receptor varies between the splice variants of 

the  5-HT3R  A  subunit,  with  the  shorter  variant  enabling  higher  permeability 

(Hargreaves et al.,  1994).  Moreover, the  presence of divalent cations modulates the 

amplitude of the signal and also the duration of the response to the agonist (Thompson 

and Lummis, 2009). The absence of calcium cations increases both of these factors. The 

Ca2+ inward flux  into presynaptic  terminals results in exocytosis  (Rondé and Nichols,  

1998).  As the presynaptic 5-HT3 receptors were shown to mediate GABA release  in 

proportion to  the Ca2+ concentration  (Turner et al., 2004), it  has been speculated that 

Ca2+ permeability was more relevant to presynaptic physiology than to postsynaptic Ca2+ 

uptake.

1.4.2 Pharmacology

The 5-HT3Rs are proposed to play a role in the development of multiple diseases and 

psychological disorders (Fakhfouri et al., 2019; Gupta et al., 2016). They are the main 

pharmacological  target of  drugs  marketed  for irritable  bowel  syndrome  (Tyers  and 

Freeman, 1992) and chemotherapy induced nausea and vomiting (CINV), as well as for 

post-operative  nausea  and  vomiting (Humphrey  et  al.,  1999).  In  both  of  the 

aforementioned cases the active drugs are antagonists from the ¨setron¨ family (Fig. 7). 

CINV is one of the most dreaded effects of chemotherapy  (Coates et al., 1983). It 

causes discomfort and negatively influences adherence to the chemotherapy treatment 

regime (Bloechl-Daum et al., 2006). Since their discovery in the 1980s, antagonists of 

5-HT3R are used and have been further developed as the most potent drugs for the 

treatment  of  CINV  (Sanger  and Andrews,  2018).  Currently,  together  with  the  NK1 

inhibitors and with steroids, they form the three drug CINV treatment regimen (Gilmore 

et al., 2018). There is a tendency to create universal guidelines for CINV prophylaxis 

but  all  attempts  are  complicated  by  a  lack  of  understanding  of  the  underlying 

pathophysiology and by the subjectivity of nausea assessment by patients.

Some of the drugs  targeting the 5-HT3R such as ondansetron and clozapine have 
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been shown to have a positive effect on schizophrenic symptoms (Meltzer et al., 2003). 

Furthermore, mutations in the 5-HT3R were observed in the genomes of patients with 

bipolar disease  and schizophrenia but their impact on pathology has not been directly 

proven  (Niesler  et  al.,  2001).  Although further  clinical  tests  are  needed it  has been 

concluded that the 5-HT3R antagonists are involved in the treatment of the depression 

(Hewlett  et  al.,  2003).  Indeed,  the recently marketed  Vortioxetine  antidepressant,  in 

addition to its known effects on the serotonin transporter and the 5-HT1 receptors, also 

potently inhibits the 5-HT3R. However, the role of 5-HT3R inhibition in the clinical 

effect of Vortioxetine remains undetermined, even if the marketing of the drug insists 

on  its  “multimodality”  (Katona  and  Katona,  2014).  Substance  abuse  and  addiction 

studied  in  mice  determined  that  the  5-HT3R  is  involved  in  self-administration  of 

ethanol  and  for  cocaine  sensitisation  (Hodge  et  al.,  2004,  2008). Importantly, 

self-administration of ethanol was also shown to be reduced by 5-HT3R antagonists in 

humans (Johnson et al., 2002). The 5-HT3R also reacts to anaesthetics from different 

families including inhalation and intravenous anaesthetics, as well as local anaesthetics 

(Barann et al., 2008; Stevens et al., 2005; Urban et al., 2006).

Amongst natural compounds acting on the 5-HT3R, morphine (the opioid analgesic 

from  unripe  poppy  seeds)  (Gaddum  and  Picarelli,  1957),  alpha-thujone  (the 

psychotropic  component  of absinthe from wormwood)  (Deiml et  al.,  2004),  and the 

gingerols and shogaols (the antiemetic compound from the ginger extracts) (Abdel-Aziz  

et al., 2006) can be mentioned.
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1.5 The 5-HT3R structure and its comparison to other known 
structures of Cys-loop receptors. 

Efforts to elucidate the structure of the Cys-loop receptors began with the soluble 

acetylcholine binding protein, a marine snail protein homologous to the extracellular 

domain of the Cys-loop receptors. Its X-ray structure was solved in 2001 (Brejc et al.,  

2001) and unveiled  the  architecture  of  the  extracellular  domain  of  pLGIC and  the 

organization of the orthosteric binding site. The first structure of a full length Cys-loop 

receptor  was  the  cryo-electron  microscopy  (cryo-EM) structure  of  the  heteromeric 

nicotinic acetylcholine receptor extracted from the  Torpedo marmorata electric  tissue 

(Miyazawa et al., 2003; Unwin, 2005).  It permitted to understand the receptor global 

architecture and provided a first structural framework to interpret the accumulated body 

of  functional  data  on  pLGIC.  However  the  resolution  remained  limited.  As  a 

consequence, the register of the amino acid assignment of this structure was later shown 
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to be out by ~1 helix turn beginning with the M1/M2 loop when compared to newly 

published structures  (Hibbs and Gouaux, 2011). The first  full-length structures to be 

solved by crystallography  were of that of pentameric ligand-gated ion channels from 

prokaryotic organisms, ELIC from Erwinia chrysanthemi (Hilf and Dutzler, 2008) and 

GLIC from  Gloeobacter  violaceus (Bocquet  et  al.,  2008),  hypothesised to  be in the 

closed and the open conformation, respectively. Interestingly, neither ELIC nor GLIC 

possess intracellular domains: they lack the MX helix, the long unstructured loop, and 

the MA cytoplasmic helix. Thus, their subunits are composed only of the ECD and the 4 

membrane helices connected by shorter loops. These structures were followed by the 

first  eukaryotic  structure  of  the  Caenorhabditis  elegans  glutamate-gated  chloride 

channel α, the GluCl channel,  where the natural intracellular domain was replaced by 

the  short  linker  M3-Ala-Gly-Thr-M4 (Hibbs  and  Gouaux,  2011). In  that case, 

stabilising  antigen-binding  fragments  (Fab)  proteins  were  used  as  crystallization 

chaperones to enhance the pentamer stability and also to help with crystal contacts. In 

2014, the structures of the first two mammalian Cys-loop receptors were  obtained by 

X-ray crystallography. These were those of the homomeric GABAA receptor composed 

of β3 subunits, and with its intracellular domain removed (replaced by the SQPARAA 

amino  acid  sequence)  (Miller  and  Aricescu,  2014) and  of  the  m5-HT3RA, which 

included the structured parts of the intracellular domain, the MX and the MA helices 

(Hassaine  et  al.,  2014).  The  latter  was  obtained  in  the  presence  of  stabilising 

nanobodies. The GABAA receptor was supposed to be in the desensitised state and the 

5-HT3R  was speculated to be in the closed conformation based on the fact that the 

stabilising nanobody used in the structure is actually acting as an antagonist. Structures 

of the homomeric glycine receptor in the open, desensitised and closed conformations, 

obtained  by  cryo-electron  microscopy,  enabled  direct  comparison  of  the  different 

conformational states  (Du et al., 2015). The constructs used for that study lacked the 

intracellular domain, which was replaced by M3-Ala-Gly-Thr-M4. At the same time the 

X-ray structure of the GlyRα3 was solved, with a resolution up to 3 Å, in the presence 

of the antagonist  strychnine  (Huang et  al.,  2015). As in most cases, its  intracellular 

domain was absent and the  receptor is supposed to be in the antagonist-bound closed 

conformation. The only known heteromeric structures to date belong to the nAChR and 

GABAA family.  Thirteen years after the low resolution  EM structure  of the  Torpedo 

nAChR, the X-ray structure of the recombinant  2α:3β nAChR α4β2 was solved. The 

structure  was obtained in  the  presence of  nicotine  bound to the  binding site  and is 

believed to be in the desensitised conformation. 

After  the crystallographic  structure  of  2α:3β nAChR α4β2,  the stoichiometrically 

distinct nAChR α4β2 3α:2β was solved by cryo-EM (Walsh et al., 2018). This enabled a 
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direct  comparison between different  assemblies  and elucidated  the  principles  of  the 

subunit  packing  mechanism.  The  cryo-EM  structure  of  the  5-HT3R without  ligand 

(Basak et al., 2018a) revealed only minor differences between the potentially inhibited 

receptor solved in the presence of VHHs and the apo structure. Two conformationally 

distinct structures of the GABAA α1β2γ2 receptor (Zhu et al., 2018) and one additional 

structure  of  GABAA  α1β1γ2  (Phulera  et  al.,  2018) were  recently  solved,  all  by 

cryo-EM,  showing  the  organisation  of  consecutive  subunits,  revealing  the  ECD 

vestibule glycosylations and more importantly illuminating the mode of ligand binding. 

Interestingly, GABAA α1β1γ2 structure revealed the asymmetry of the TMD subunit 

organisation  around  the  pore  axis  and  the  GABAA  α1β2γ2  structure  showed  the 

complete  gamma  subunit  collapse  into  the  TMD  pore.  In  contrast  to  those  two 

structures, the GABAA α1β3γ2 structures (Laverty et al., 2019; Masiulis et al., 2019), 

solved by cryo-EM as well, presented the symmetrical organisation corresponding to 

that of the homopentameric GABAA β3 solved by X-ray crystallography. The potential 

source  of  dissimilarities  might  be  a  use  of  detergents  and  engineered  constructs 

(deletion of ICD) in the case of distorted structures in contrast to the use of nanodiscs 

and full length construct for the symetricaly organised GABAA α1β3γ2 structures. The 

X-ray  structure  of  the  chimeric  ELIC(ECD)  - GABAA  α1(TMD)  indicates  the 

differences  between  the  apo  and  alphaxalone-bound  chimeric  receptor  which  is 

supposed to be desensitised (Chen et al., 2018). Finally our recent structural study of the 

5-HT3RA receptor mapped the changes that occur during the activation of the receptor 

by serotonin. These conclusions are supported by the comparison of the apo (Basak et  

al., 2018a), two open pore structures , two agonist-bound closed pore states (Basak et  

al., 2018b; Polovinkin et al., 2018) and one pre-active state (Polovinkin et al., 2018). A 

simplified overview of the pLGIC structures solved up to 2018 is summarised in Fig. 8 

and  for  the  sake  of  completeness  table  with  structures  of  pLGIC  can  be  found  in 

supplementary data Tab. 1.

The non-physiological membrane domain environment (mostly detergent until last 

year,  and  now  also  nanodiscs)  together  with  the  experimental  conditions  (crystal 

packing  or  freezing)  often  raises  questions  about  the  correlation  of  structures  with 

physiological  conformations  existing in the cell  membrane.  Moreover,  regarding the 

Cys-loop receptors,  the functional  assignments of the captured conformational  states 

might be strenuous. Still the comparison of multiple steady-state structures of the same 

protein is probably the best tool we have at the moment to understand the molecular 

mechanism of operation. As with GlyR, more and more receptors are being solved in 

different  conformations  and  stoichiometries,  permitting  us  to  better  understand  this 

family.
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1.5.1 The overall structure

The 5-HT3R is composed of five subunits arranged in a pseudo-symmetrical manner 

around the axis formed by the ion permeation pathway. The ECDs are formed by  β 

sheets forming a β-sandwich. Each β-sandwich overlaps with the consecutive one on the 

outer  side  of  the  receptor in  a  counter-clockwise  manner.  On  the  interface  of  two 

consecutive ECDs the overlap of the main subunit, the (+) side of the binding pocket, 

and the complementary subunit, the (-) side of the binding site, create the orthosteric 

binding site for the neurotransmitter (Fig. 9). The ECDs form multiple contacts with the 

membrane helices through the loops, which allows signal to be propagated from the 

bound  neurotransmitter  to  the  membrane  portion  of  the  receptor  (Fig.  10).  The 

membrane helices are organised in concentric rings. The innermost ring is formed by 

the M2 helices of each subunit which line the pore. These are enclosed by the middle 
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ring, composed of the M1 and M3 helices, and the M4 

helices form the peripheral ring (Fig. 11). The position 

of the M4 helix provides it with  a large surface with 

which to interact with the lipid environment. The MX 

helices  are  positioned  at  the  outer  side  of  the  M4 

helices, reminiscent of clamps that may keep the entire 

membrane portion together and  may stabilize the M4 

position. There is no structural information about the 

unstructured part of the M3-M4 loop. The continuation 

of the M4 helices protruding into the cytoplasm, the 

MA  helices,  are  slightly  twisted  counter-clockwise 

relative to the ion permeation axis. The M4 ends at the 

extracellular  side,  determining  the  topology  of  the 

protein  whereby both  C- and N- termini  are  located 

outside of the cell.

1.5.2 Detailed structural features

1.5.2.1 Extracellular domain -  neurotransmitter binding site

For the Cys-loop receptors, the neurotransmitter binding site was elucidated by the 

use of the homology,  comparing  the Cys-loop receptor  ECD to the structure of  the 

AChBP  (Brejc et al., 2001). The ECD β-sandwiches are formed by the 10 β-strands 

divided into two main β-sheets. The binding site is formed by “loops” A, B and C from 

the principal subunit and “loops” D, E, F and G from the complementary subunits (Nys 

et al., 2013) (Fig.  9A). It is  worth noting that the term “loops” is not strictly correct, 

because not all of these elements are actually loops. Structurally,  only the following 

elements corresponds to loops: loop A connecting β-strand 4 to β-strand 5 (β4-β5 loop), 

loop C (β9-β10 loop) and loop F (β8-β9 loop). ¨Loops¨ E, D and G are actually portions 

of β-strands. Residues that participate  in ligand binding in the orthosteric binding site 

come from “loop” B and are located partially on the β7 strand and partially on the β7-β8 

loop. Some of the features of this binding site are well conserved among the Cys-loop 

receptors, even though their ligands vary. There is a conserved “aromatic box” within 

the  majority  of  the  Cys-loop  receptors,  located  on  the  interface  of  some  of  these 

conserved elements (Lester, 2004). In the 5-HT3R, the “aromatic box” is defined by 
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aromatic residues W156, Y207, W63, Y126 and F199 from loops B, C, D, E and F, 

respectively. Some of the binding site residues are conserved across all of the different 

types  of  Cys-loop  receptors  as  seen  on  the  sequence  alignment  in  (Fig.  9B). The 

observation  that  the  loop  C  is  generally more  open  in  the  case  of  the 

antagonist-bound/closed or resting/closed state, and moves closer to the binding site if 

an  agonist  is  present  and  induces  the  agonist-bound/open  conformation  or  the 

agonist-bound desensitised/pore closed state, was extrapolated from AChBP to pLGIC. 

Thus the  loop C was commonly used to be a  criterion for the determination of the 

overall receptor functional state. The ligand-bound structures of the pLGIC generally 

manifest  described C loop movement,  but it  might  be very subtle and allows rather 

comparison of two structures than the interpretation of the structural state by itself. The 

subunit-subunit rearrangement is a better guideline to the functional state determination 

(Hassaine et  al.,  2014). The structure of the 5-HT3RA was solved using the VHH15 

nanobody, which binds to the subunit interface from the outside of the binding pocket 

and actually grasps loop C, bending it towards the outside. 

Insights into ligand binding  to the 5-HT3R were obtained by comparison with the 

AChBP solved in the presence of ligands. Mutagenesis of the AChBP binding site to 
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mimic the 5-HT3R binding site led to the creation of the model protein 5-HTBP, which 

has the binding properties of the 5-HT3R (Kesters et al., 2012; Price et al., 2016).

Based  on  functional  studies  of  the  5-HT3R binding  site  mutants,  the  impact  of 

different amino acids on ligand binding was proposed  (Beene et al., 2002; Spier and  

Lummis, 2000; Thompson et al., 2005). The majority of the binding studies were done 

with  antagonists  of  the  receptor  from  the  “setron”  family,  mostly  tropisetron  and 

granisetron. The π electrons from the aromatic residues are supposed to interact with the 

cation  provided  by  the  positively-charged  ring-embedded  nitrogen  what  was 

hypothesised for both, agonists (Spier and Lummis, 2000) and “setron” antagonists. The 

orientation of the ligands within the binding site was speculative and controversial. Yan 

and White (Yan and White, 2005) proposed that the granisetron orients its bicyclic ring 

to interact with residue W63.  Mutagenesis to introduce unnatural amino acids at this 

position  suggested  a different  interaction  mode  between granisetron  and  the  W63 

position, showing that the cation-π interaction might actually occur via W156 (Duffy et  

al., 2012). Recently,  the binding properties of granisetron and tropisetron, which are 

closely related, were discussed. Even though the structures of the AChBP solved in the 

presence of these ligands  implies they are orientated in the same way, the extensive 

mutagenesis of the 5-HT3R binding site and the binding studies of the two agonists 

implied  different  properties,  suggesting  that  these  two  ligands  might  interact 

differentially with the 5-HT3R binding site (Ruepp et al., 2017). Moreover, the binding 

orientations  based on functional  studies  and modelling,  were proposed by the  same 

study. 

A very recent structures of the tropisetron bound (see the results presented in section 

5.2.2) and granisetron bound m5-HT3R (Basak et al., 2019) confirmed the orientation 

of the ligand in the binding pocket; the amin-carrying bicyclic ring points outwards and 

the indazole ring mediates the cation-π interaction deeper in the binding pocket.

1.5.2.2 ECD-TMD interface -  binding signal transduction

pLGICs can possess several orthosteric binding sites (5 in the case of the 5-HT3RA) 

where the binding of a ligand can trigger the channel opening. Conformational changes 

are  often  described  either  as  of  a  ligand-induced  selection  from  the  pre-existing 

conformational states (Monod-Wyman-Changeux model, MWC) or as ligand-induced 

sequential  conformational  changes  (induced  fit  model,  IF).  According  to  the  MWC 

model all subunits of the existing populations of receptor are in the same conformation 
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and the switch of equilibrium induces the concerted change of all the subunits at once. 

In contrast, IF model predicts that the binding of ligand changes the  conformation of 

influenced subunits, what increases the binding affinity of the following ligand up to the 

complete  rearrangement  of  all  subunits.  In  a  way  the  MWC  model  describes  the 

conformational changes rather at the quaternary structure level and the IF model rather 

at  the  tertiary  structure.  The  following  paragraphs  aim  to  point  to  the  structurally 

important  and  interacting  elements  (residues,  secondary,  tertiary  and  quaternary 

structures) regardless the ligand-induced cooperativity scheme they follow.

Considering the available structural knowledge of the Cys-loop receptors, a relevant 

description of the mechanism of signal transduction probably comes from a comparison 

of the multiple conformations of the GlyR solved by EM (Du et al., 2015). This series 

of structures  permits a direct comparison of the interface between the ECD and the 

TMD among different conformational states within one receptor type. Starting with the 

binding  of  a ligand  in  the  binding  pocket,  the  C-loop  moves  outwards when  an 

antagonist  is  bound or  moves inward (towards  the binding site)  when an agonist  is 

present. When we consider only the principal (+) subunit , the binding signal might be 

transduced  through  movements  of  the  β9  and  β10  strands,  thus  influencing  the 

conformation of loop β8-β9 (F loop) and of the β10/pre-M1 loop region (Fig. 10) at the 

ECD-TMD interface.

Conformational changes affecting the M1 helix can directly influence the position of 

the M2 helix. Moreover, the β10/pre-M1 loop region is in contact with the Cys-loop, 

which  in turn interacts  with   the β1-β2 loop and, most importantly,with  the M2-M3 

loop. The M2-M3 loop can then directly influence the conformation of  the M2 helix. 

This is also the place where two neighboring subunits meet each other at the ECD-TMD 

interface. The M2-M3 loop from the (+) subunit interacts with the β8-β9 loop (F loop) 

and the β10/pre-M1 loop from the neighbouring (-) subuni. In the article reporting the 

GlyR structures, a direct link between M2 helix rotation and the position of the ECD 

was described in detail, highlighting residues that play a role in this process (Du et al.,  

2015). The tip of the Cys-loop, which plays the central role in the signal transduction, is 

very well  conserved among the family.  The 142-F/YPXD-145 motif  in  particular  is 

found in  all  the  receptors  of  the  family.  Another  conserved  residue is  the  arginine 

located at position 218 in the m5-HT3RA. R218, reported to be responsible for changes 

in gating properties after  ligand binding  (Hu et al.,  2003) is the key interactor with 

multiple elements on the ECD-TMD interface. It is sandwiched from the top and bottom 

by  the  two  aromatic  residues  W187  of  the  β8-β9  loop  (F  loop)  and  F142  of  the 

Cys-loop.  Moreover,  R218 is  enclosed  by  multiple  negatively  charged  residues, 

specifically by D145 of the Cys-loop from one side, by E186 of the β8-β9 loop (F loop) 
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from the other side, and by E53 located on the β1-β2 loop from the front (Hassaine et  

al.,  2014). Unfortunately,  the tip of the M2-M3 loop is not resolved in the 5-HT3R 

structure and thus hinders the assignment of the interactions of the 4 missing TAIG 

residues. There is actually an alanine insertion in the mouse construct used in structural 

studies from our laboratory, mimicking the human M2-M3 loop. 

1.5.2.3 Transmembrane domain -  ion pathway through the membrane

The actual pore of the pentameric ligand-gated receptors which is in contact with the 

passing ions is formed only by the M2 helices. The M2 helices are enclosed by the ring 

of M1 and M3 helices and are not in direct contact with the M4 helices on the periphery 

(Fig. 11).
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The M2s are oriented more or less perpendicularly  to the membrane plane and the 

pore  is  defined  by  the  amino  acid  side  chain  residues  pointing  inside  to  create 

constrictions  parallel  to  the  membrane  plane.  For  the  purpose  of  simplification  and 

better orientation the M2 helix residues of the first nAChR structure to be solved were 

assigned new numbers, starting with the lowest membrane residue carrying the number 

0’, up to the residue closest to the extracellular part of the membrane having the number 

20’ (Miyazawa et al., 2003). All structures solved later respect this numbering system 

and define the 0’ residue based on sequence alignment. If some residues, shown to be 

before the 0’ residue, are still within the membrane, they are numbered with negative 

numbers starting from -1’ and going from the 0’ residue lower along the M2 helix. 

The  structures  solved  to  date  indicate  the  existence  of  multiple  constrictions 

determining the ion pathway. Generally there are two main constriction sites on the M2 

helices, one in the middle and the second  closer to the intracellular side. The middle 

position is defined by the highly conserved leucine at the 9’ position (Alqazzaz et al.,  

2011).  This residue is a geometrical determinant of ion permeability in closed states 

(Fig.  12)  and together  with the V13'  and I16'  residues forms the hydrophobic gates 

(Miyazawa et al., 2003). The V13'S mutation lead to the gain-of-function phenotypes 

(Dang  et  al.,  2000).  The  L9'  mutations  to  Phe,  Tyr  or  Ala  cause  the  slower 

desensitisation in contrast to the Thr mutation  (Yakel et al., 1993). Its position differs 

among  the  different  conformational  states  of  receptors.  Even  though  the  relative 

38

 

 



Introduction

position  of  the  M2 helices  within  the  receptors  in  the  antagonist-bound/closed  and 

resting/closed conformation vary, the L9’ remains the main restriction determinant in all 

of these structures (5-HT3R, strychnine-GlyRα1 and apo-GluCl). The  ion pathway  at 

the P9’ position is blocked by the too small radius (~1.4 Å) in the closed GlyRα1 but is 

widely open (4-5  Å) in the open and desensitised state of the same receptor.  In the 

5-HT3RA serotonin-bound structure the M2 rotates by 13° in comparison to the apo 

structure,  causing  the  rotation  of  L9'  away  from  the  pore  (Basak  et  al.,  2018b). 

Additionally,  a  tilt  was  observed  at  the  S2'  position,  widening  the  vestibule  at  the 

intracellular end.

                              

In the apparently desensitised structures the L9’ is not a pore size limiting residue. 

All  the  structures of  desensitised receptors  known to date  present  the smallest  pore 

radius in the lower part of the M2. For the GlyRα1 in the closed state it is at the proline 

-2’ position (Du et al., 2015), for the nAChRα4β2 receptor, the channel is tightest at the 

E-2’ position (Morales-Perez et al., 2016), and for GABAA at the A-2’ position as well 
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(Miller  and  Aricescu,  2014) (Fig.  12).  As  mentioned  above,  these  residues  are 

responsible for the selectivity of the ion channels and thus the conserved residues at this 

position vary according to the channel  permeability  (Thompson and Lummis,  2003). 

Anion-selective  channels  usually  have uncharged  amino  acid  residues  here,  and 

cation-selective  channels  contain  mostly  negatively  charged  glutamic  acids  at  this 

position.

The X-ray structure of the 5-HT3RA was solved using stabilising nanobodies, which 

were shown to act as antagonists. The radius formed by the L9’ residues is about 4.6 Å, 

a width that might be too tight for hydrated Na+, which have a radius of about 4.7 Å. 

This  agrees  with  the  suggestion  that  the  structure  is  in  the  closed  conformation. 

Moreover, it is supported by the results of MD performed with the recently obtained 

structures  (Basak et al., 2018b) (and our structures presented in the 5.2.2 section). It 

shows that prediction of the pore de-wetting by MD is a better indicator of the pore 

permeability rather than the measurement of geometrical constriction. Interestingly, the 

comparison of the backbone within the structure with the open channels (GLIC and 

open GluCl) suggests a closer resemblance to these open structures rather than to the 

closed ELIC and GLIC structures,  which led to some speculation questioning if  the 

channel is really closed. The side chain of E-1’ was unfortunately not clearly defined in 

the electron density map and was modeled only as the most plausible rotamer, thus not 

allowing any further interpretation. The X-ray structure mostly agrees with the apo state 

receptor solved by cryo-EM, which supports the theory that the X-ray structure is of a 

closed state and as mentioned above, it is confirmed by the MD.

Different  parts  of  the  TMD were  proposed  to  be  a  predominant  location  where 

allosteric  modulators  bind  (Sauguet  et  al.,  2015).  Those  are  amphipathic  molecules 

including  anesthetics,  ivermectin,  ethanol,  as  well  as  lipids/detergents  (Hibbs  and 

Gouaux, 2011), (Basak et al., 2017), (Nury et al., 2011).

The presence of lipids is a very important factor influencing the functional properties 

of receptors, mediated by the transmembrane portion of the protein. First it was shown 

that nAChR solubilised by detergent maintains its ligand-binding capacity but does not 

allow ion flux (Sobel et al., 1977), requiring the presence of lipids to help regain its 

natural  functional  properties  (Epstein  and  Racker,  1978) (Fig.  13).  Based  on  the 

composition of the membrane naturally surrounding nAChR, tests probing the effects of 

the  addition of  cholesterol  and  of  phosphatidic  acid  (PA,  negatively  charged  head 

group) were done (Baenziger et al., 2000). Both of these lipids are able to maintain the 

coupling  between the  binding of  a  ligand and the  conformation  of  the pore.  In  the 

presence of phosphatidylcholine lipids only, the nAChR enters a so-called “uncoupled” 

state that differs from the desensitised state and has lost the capacity to transduce signal 
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from the binding site to the pore (daCosta et al., 2009). When the effect of lipids on the 

desensitisation process was further studied, the M4 helix, situated at the periphery of the 

membrane bundle and as such the perfect candidate for lipid interaction, was shown to 

play a role in this process, at least for nAChRs (daCosta et al., 2013).

Moreover, the GLIC receptor was shown to be sensitive to  docosahexaenoic acid 

(DHA) that induces the desensitised conformation of the receptor (Basak et al., 2017). 

DHA binds in between the M4 and M3 helices at the ECD-TMD level, inducing small 

changes in side chain residues of neighbouring amino acids (among them Phe260 from 

the M3 and Phe315 from the M4 helix). Another example of the TMD modulators are 

endogenous neurosteroids which interact with residues T305 (M3 of principal subunit) 

and Q241+W245 (M1 from consecutive subunit)  (Laverty et al., 2017).  (Baenziger et 

al., 2017) 
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1.5.2.4 The intracellular domain

Although  the  intracellular  domain has  been  shown to  play  an  important  role  in 

conductance  determination,  in  trafficking,  in  determining  life-time  kinetics  at  the 

synapse and also in protein-protein interactions, structurally it is the least well defined 

element of the Cys-loop receptors. The prokaryotic homologues lack the intracellular 

domain  completely  and  the  majority  of  the  structures  of  eukaryotic  receptors  were 

solved using mutants where the M3-M4 loop was replaced by short linkers. The M3-M4 

loop  comprises  of  the  MX  peripheral  helix,  in  cation-selective  pLGIC, on  the 

intracellular side of the membrane, followed by  an unstructured loop and by the MA 

helix, which becomes the M4 helix  at the membrane border (Fig.  5). The only partial 

structural  information  available  about  the  M3-M4  region comes  from  the  Torpedo 

nAChR structure  (Unwin, 2005) and from the 5-HT3RA structures  (Hassaine et  al.,  

2014) where a part of the unstructured domain, the post-M3 loop, and the MX and MA 

helices are resolved. For the nAChRα4β2 structure, the post-M3 loop and the MX helix 

were left in the expression construct (Morales-Perez et al., 2016). However, the loop 

between the MX helix and the M4 helix is absent in this structure, showing potential 

flexibility  of  the  unnatural  linker.  The  post-M3 loop  is  resolved in  the  very  recent 

GABAA  structures  but  the  existence  of  the  MX  in  anion-selective  pLGIC  remain 

unproven because of the poor densities at this level (Laverty et al., 2019; Masiulis et  

al., 2019). Interestingly, the importance of the length of the M3-M4 loop was studied in 

the 5-HT3R and it was shown that even a loop as short as 2 alanine residues is sufficient 

to obtain the functional receptor  (McKinnon et al.,  2012).  Varying the length of the 

alanine linker resulted in differentially active receptors, suggesting that it is not only the 

loop  length  that  matters  but  also  the  secondary  structure  of  the  linker,  which  may 

influence proper receptor functioning and expression of the protein (McKinnon et al.,  

2012). 

Functional studies of the 5-HT3R have revealed the importance of the intracellular 

domain  region,  particularly  that  of  the  residues  of  the  MA helices  influencing  the 

single-channel  conductance  of  the  receptor  (Kelley  et  al.,  2003).  The  residues 

responsible for the difference in conductivity between the homo- (A subunit only) and 

heteropentamers (AB receptor) were determined to be R416, R420 and R424 (Fig. 14) 

as described in detail in the section 1.4.1.
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The  pathway  for  ions  through  the  ICD  region  is  still  to  be  elucidated  and  is 

speculated not to continue along the pore axis. Cations passing through the 5-HT3R are 

putatively  thought to exit through the lateral portals at the level of the M3-MX loop 

below which the rings of positively charged arginines are located, whose function might 

be the repulsion of the positively charged ions or rather the formation of the salt bridges 

(Kozuska et al., 2014). Further down the membrane the MA helices expose hydrophobic 

residues on the inside of the bundle and this region represents the tightest part of the 

whole pore vestibule with a minimal width of about 4.2 Å.

Regarding  interacting  partners  of  the  5-HT3R,  the  only  known  protein binding 

directly to the ICD is the resistance to inhibitors of cholinesterase type 3 protein (RIC3) 

(Nishtala  et  al.,  2016),  known to  be  a  protein  chaperone.  Its  presence  enables  the 

maturation of multiple Cys-loop receptors  (Halevi et al., 2002, 2003; Lansdell, 2005;  

Walstab et al., 2010).

1.6 X-ray crystallography and cryo-electron microscopy of the 
membrane proteins

During  the  recent  years  we  have  seen  a  complete  revolution  in  macromolecular 

structure  determination.  X-ray  crystallography  was,  for  a  long  time,  the  main  tool 
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supplemented  by  NMR.  However,  methodologic  development  and  technical 

advancement have made it possible to determine the first high-resolution structures of 

membrane proteins by single-particle  cryo-electron  microscopy in 2013  (Cao et  al.,  

2013; Liao et al., 2013). Since then the ratio of membrane protein structures solved by 

X-ray crystallography compared to cryo-EM has decreased  (Fig.  15),  with cryo-EM 

structures representing almost 37% of all membrane protein structures solved during the 

first four months of 2018 (Cheng, 2018).

Without  considering  the  common  difficulties  during  the  overexpression  and 

purification of membrane proteins, both methods have their one specific bottleneck to 

surpass  on  the  way  to  atomic  resolution  structures.  X-ray  crystallography  requires 

crystal  growth,  which  is  generally  a  very  challenging  and  complex  procedure. 

Moreover,  crystal  growth  of  membrane  proteins  is  complicated  by  the  presence  of 

detergent micelles. Solubilised membrane proteins might not be stable enough to form 

crystals, plus the presence of the micelle may limit  the possibility of crystal contact 

formations.  Multiple  techniques  aiming to solve this  problem have been introduced. 

Among them are the use of antibodies/nanobodies to increase the potential  effective 

surface  for  crystal  contact  formation  and  the  insertion  of  proteins  into  the  lipidic 

mesophases that may mimic more native-membrane-like conditions.

The cryo-EM method demands the same high-quality protein sample regarding its 
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purity,  monodispersity  and stability  as X-ray crystallography.  Crystals  are no longer 

required but free micelles might pose a problem. They increase the noise and make data 

analysis more complicated (especially for small proteins analysed in combination with 

large micelle-forming detergents). To eliminate this problem, detergent was replaced by 

amphipol at least in the early cryo-EM studies of membrane proteins. Nowadays, the 

structures  of  membrane  proteins  are  solved  using  not  only  amphipols (Cao  et  al.,  

2013) but also detergents (Du et al., 2015) and nanodiscs (Efremov et al., 2014; Gao et  

al., 2016). Another obstacle is the need to have multiple orientations of protein particles 

in  the  holes  of  the  frozen  grid.  Fluorinated  detergents  can  be  a  helpful  tool  for 

membrane proteins  (Basak et al., 2017; Efremov et al., 2014), but one should keep in 

mind the fact that those detergents can potentially influence the membrane proteins as 

has been recently shown for the ryanodine receptor (Willegems and Efremov, 2018).

At  the  beginning  of  my  PhD  the  only  5-HT3R  structure  available  was  the 

crystallographic  structure  of  the  m5-HT3RA  receptor  obtained  using  stabilising 

nanobodies. We wanted to solve other conformational states of the receptor using X-ray 

crystallography  but  the  fast  development  of  cryo-EM  and  the  first  high-resolution 

structures of membrane proteins solved via the cryo-EM method encouraged us to start 

using this method as well. Moreover, the m5-HT3R is an ideal candidate for cryo-EM 

due to its reasonable size (~250 kDa) and symmetry. The methodology of the X-ray 

crystallographic  and  cryo-EM  structural  studies  together  with  the  results  and  their 

discussion follows after the Objective of the thesis section.
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Objective of the thesis

2 Objective of the thesis

Due  to their  important  role  in  neuronal signaling  and  their  potential  for 

pharmacological intervention, many receptors from the pLGIC superfamily are studied 

extensively, both functionally and structurally. Even though intensive efforts are being 

made, our knowledge of the signal transduction within the receptor remains limited. The 

best way to understand the mechanism of the receptor function is the co-interpretation 

of functional and structural data. Although this thesis focuses on structural studies, all 

the steps  were planned taking into account  the functional  properties  of the receptor 

known  from  the  literature  and  complementary  functional  experiments  were  carried 

when needed. 

As a follow up of the  already described crystallographic structure of the 5-HT3RA 

receptor solved up to a resolution of 3.5 Å, the aim of my thesis was to try to obtain the 

structure(s)  of  an other state(s)  and/or  potentially  obtain  a structure  with  a better 

resolution,  which  would  allow  better  structure-function  interpretation.  In  the  initial 

stages,  the crystallographic approach was prefered; we quickly realized that the rapidly 

developing cryo-electron  microscopy technique  was to  become the best tool  for the 

structural studies of our target. Thus, the main goals of my thesis were:

I) Crystallography: 

Use of nanobodies, which were shown to stabilise the receptor and help to create the 

crystal  contacts,  for  co-crystallisation  with  the  receptor  using  a   classical  vapour 

diffusion method to obtain the receptor locked in (an) other conformation(s). 

Use of the lipidic cubic phase to obtain a better resolution structure of the 5-HT3RA.

Co-crystallisation of the receptor with drugs known to improve its stability to obtain 

better resolution or block the receptor in the open state.

II) Cryo-EM:

To obtain the closed conformation of the receptor as a confirmation of / comparison 

to  the  existing  crystallographic  structure  and  potentially  obtain  a  structure of  the 

desensitised and/or open state of the receptor. 
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3 The m5-HT3R isolation, purification and treatment

3.1 The m-5HT3R preparation - materials and methods

3.1.1 DNA construct(s)

Even if I have generated a variety of constructs during my PhD (including 5-HT3 

receptor constructs for expression in Leishmania tarentolae cells, ɑ4β2 constructs fused 

with GFP ), most of the work described here was performed with a single construct 

encoding for the full-length homomeric receptor. It  originates from previous work on 

the homomeric 5-HT3RA (Hassaine et al., 2013) . 

The DNA construct for the mouse 5-HT3RA  is in a pcDNA5/TO vector, enabling 

transient transfection of mammalian cells  (typically 293F cells),  generation of stable 

inducible cell lines in HEK-Trex cells, and injection into  Xenopus laevis oocytes for 

TEVC functional assays. The insert is composed of a signal sequence, four consecutive 

Strep tags for purification,  a TEV cleavage site  and the mature 5-HT3RA sequence 

(depicted in the Extended Data Figure 1 of our paper (Polovinkin et al., 2018)).

3.1.2 Cell culture 

The  adherent,  stable,  inducible,  cell-line  HEK 293  5-HT3RA receptor  originates 

from previous work on the homomeric 5-HT3RA receptor (Hassaine et al., 2013). This 

cell line expresses constitutively the tetracycline repressor, preventing the expression of 

the target protein in the absence of tetracycline, and it also bears copies of the gene of 

interest.  This cell  line was adapted to be used not only for roller  bottle  expression, 

which  is  a  tedious  and  manpower-heavy  technique,  but  also  for  expression  in 

suspension cultures. 

For  this  purpose  we used the  adherent  stable  cell  line  HEK 293 5-HT3RA.  We 

detached  the  cells  from an  85% confluent  25 mL flask  (Dutscher)  with 5 mL PBS 

(Gibco) by gently pipetting up and down and we transferred 1 mL of the cell suspension 

into  a  100 mL  Erlenmeyer  tube  containing  10 mL  of  FreeStyle  media  (Gibco) 

supplemented with 10% of newborn calf serum (Corning). The serum concentration was 

halved every 3rd day during the passaging of the cells. Cells were plated to the density 

of 0.8 million cells/mL. At every passage, the amount of antibiotics was increased in a 

stepwise manner up to the final concentration of 5 μg/mL of Blasticidin and 100 μg/mL 

of Hygromycin B.  Cells were grown while shaking  in  an orbital shaker at 37 °C, 5% 
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CO2 and 90 rpm.

Typically, expression was induced by adding 4 mg/L of tetracycline to batches of 2 L 

of cultures at 2.106  cells/mL. The day after induction 4 mM valproic acid was added. 

Cells were harvested 48-72 h after induction.

3.1.3 Isolation of the 5-HT3RA

I have optimised the purification protocol of the receptor described in (Hassaine et  

al., 2014) and only the final version is described in the following sections. 

3.1.3.1 Membrane preparation

To avoid contamination by the cytosol debris, I performed a membrane preparation 

step prior to the solubilisation step. 

The collected cells were resuspended in resuspension buffer (10 mM HEPES pH 7.4, 

1 mM EDTA and the inhibitor mix CLAPA (1µg/ml  Chymostatin,1µg/ml Pepstatin, 

1 µg/ml Leupeptin, 1 µg/ml Antipain and 4µg/ml of Aprotinin)) using 10 mL of buffer 

per  1 g  of  cells.  Cells  were  kept  on  ice  and  lysed  using  the  T25  Ultra  Turrax 

homogeniser by five consecutive 30 s steps with increasing rotation of the homogeniser 

followed by a 1 min homogenisation at maximal speed. A low speed centrifugation was 

performed  to  remove  unbroken  cells  (4000  x  g,  20 min,  4 °C).  The  low-speed 

supernatant was further spun down using ultracentrifugation (120 000 x g, 1 h, 4 °C). 

The supernatant was decanted and the pellets containing the membranes were stored at 

-80 °C.

3.1.3.2 Solubilisation

Membrane  proteins  contain  hydrophobic  parts  that  are  immersed  in  cellular 

membranes. To extract this hydrophobic moiety from the membrane and keep it intact 

and soluble  in an aqueous solution, we use amphipathic molecules. These molecules 

consist  of  hydrophobic  regions  which  are in  contact  with  the  transmembrane 

hydrophobic part of the protein and of hydrophilic polar group/s which is/are oriented 

into the solution. The most commonly used surfactants are detergents, which are able to 

extract  the  protein  from the  membrane  and maintain  it  in  solution,  and  amphipols, 
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which  are  not  suitable  for  the  extraction  but  work  well  for protein  stabilisation  in 

solution  (Seddon et al., 2004). Detergents are composed of a hydrophobic carbon tail 

and a  polar  head.  Each detergent  has  specific properties  regarding its  harshness,  its 

capability to extract the protein out of the membrane, the level of the native membrane 

lipids that it is able to remove from around the extracted protein, and its ability to form 

micelles (the  self  assembly  of  single  detergent  molecules  into  a  supramolecular 

structure). An  important  property  of  a  given  detergent  is  its  critical  micellar 

concentration  (CMC: the  concentration  border,  which  once  exceeded  initiates  and 

favours the formation of the micellar formation over free detergent). For solubilisation 

of  membrane  proteins,  high  detergent  concentrations  can  be  necessary  (typically 

10-100xCMC); but to keep the protein soluble it is generally sufficient to keep detergent 

levels at at least 1xCMC.

Our membranes  were resuspended in the solubilisation buffer (50 mM Tris pH 8, 

500 mM  NaCl  and  the  inhibitor  mix  CLAPA)  using  a  1:25  mass  ratio  of 

membranes:buffer.  After  homogenisation  on  the  magnetic  stirrer,  0.15%  C12E9 

(50xCMC) was used to solubilise  the receptor.  Solubilisation was performed on the 

magnetic  stirrer  for  1.5 h at  4 °C followed  by ultracentrifugation (120 000 x g,  1 h, 

4 °C ). The supernatant contained the solubilised protein. 

3.1.4 Purification of the 5-HT3RA

3.1.4.1 Affinity chromatography

The  Strep  tag  on  the  N-terminus  of  the  receptor  was  used  for  affinity 

chromatography on the Strep-Tactin resin (IBA). For  a  typical  purification  we used 

1.5 mL of the resin/1 g of membranes. We used the gravity-flow set up in columns. The 

resin was equilibrated with 5x column volumes (CVs) of equilibration buffer (50 mM 

Tris pH 8, 500 mM NaCl and 0.01% C12E9 ),  the solution containing the solubilised 

protein  was loaded once on the  column and washed  with 5 CVs of  washing buffer 

(50 mM Tris pH 7.4, 125 mM NaCl and 0.01% C12E9).  The  protein was eluted with 

3 CVs  of  the  elution  buffer  (50 mM  Tris  pH 7.4,  125 mM  NaCl  and  0.01% C12E9 

supplemented with 5 mM d-desthiobiotin). The protein was concentrated using Amicon 

concentrators (Merck Millipore) with a 100 kDa molecular weight cut-off.
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3.1.4.2 Size exclusion chromatography

Size  exclusion  chromatography  (SEC)  on  a Superose  6  10/300 GL column  (GE 

Healthcare)  was  performed  after  enzymatic  treatments  (see  the  following  section 

3.1.5.1)  to  separate  the  cleavage  products  or  after  the  amphipol  exchange  (section 

3.1.5.2)  to  remove  the  remaining detergent.  The  column  was  equilibrated  in size 

exclusion  buffer  (50 mM  Tris  pH 7.4).  For  crystallographic  purposes  the  buffer 

contained 0.01% C12E9 and 125 mM NaCl. For the cryo-EM experiments,  the buffer 

contained  0.01% C12E9 and  only  65 mM NaCl.  The  SEC performed  after  amphipol 

exchange was done using the size exclusion buffer (50 mM Tris pH 7.4, 125 mM NaCl) 

in the absence of detergent. The 5-HT3RA eluted from the column at around 13.7-14mL 

and no significant  shift  was  observed  for  the  protein  in  amphipol  compared  to  the 

protein in detergent.

3.1.5 Treatement of the 5-HT3RA

3.1.5.1 Enzymatic treatment

The 5-HT3A contains a partially unstructured intracellular domain, which causes the 

formation of badly diffracting crystals and we were thus using limited proteolysis by 

trypsin (0.0125:1 mass  ratio of trypsin:protein,  2 h at 30 °C) to cleave this region out. 

SEC was performed immediately at the end of incubation with trypsin, in order to avoid 

excessive cleavage which could lead to protein degradation. 

 On the other hand, this unstructured part seemed to prevent aggregation when the 

protein  was used for cryo-EM and thus only the N-terminal Strep tags  were removed 

when  we  prepared  samples  for  cryo-EM.  They  were cleaved  by  the  TEV  protease 

(0.04:1 mass ratio of TEV protease:protein, overnight (ON) at 4 °C). 

The 5-HT3RA has 3 N-glycosylation sites. Glycosylations added heterogeneity and 

were perturbing crystallogenesis. We used PNGase F, which is an amidase that cleaves 

between the innermost GlcNAc and the asparagine residues of high mannose, hybrid, 

and complex oligosaccharides from N-linked glycoproteins. Cleavage  was carried out 

using the 0.1:1 mass ratio of PNGase F:protein (2 h at 4 °C).

3.1.5.2 Amphipol exchange
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The cryoEM structure of TRPV1 (Cao et al., 2013) was a landmark, in the field of 

membrane protein structures solved by this method. That structure was obtained with a 

sample  solubilized  in  amphipol,  and was  the  reason why we and others  performed 

experiments in amphipol.  It has different properties compared to the detergent. It does 

not form micelles but wraps the protein around its hydrophobic part, thus once all the 

proteins are protected by the amphipol molecules, no further free amphipol is needed in 

the solution. Amphipol is a long polymer composed of a different ratio of the monomers 

containing polar and nonpolar side chains  (Tribet  et  al.,  1996; Zoonens and Popot,  

2014). We used commercially available amphipol A8-35 (Anatrace) where the number 

35 indicates the percentage of the overall  amount of polar monomers present in the 

polymer. In principle, once amphipol is added to the protein-detergent solution, it starts 

to compete with the detergent for the hydrophobic parts of the protein. The exchange 

can only be completed by removal of the detergent from the solution either by dialysis 

or by the use of polymeric beads. We decided to use the bio-bead method rather than 

dialysis  and  we  optimised  the  detergent-amphipol  exchange  protocol  based  on  the 

publication  explaining  the  use  of  the  bio-beads  (Rigaud  et  al.,  1997) for  optimal 

detergent removal and the publication describing the exchange of the TRPV1 receptor 

from detergent into amphipol (Liao et al., 2013). Here I present only the final protocol.

First the protein was concentrated to the final concentration of 0.5 mg/mL. Then 

amphipol A8-35 was added in a 4:1 mass ratio of amphipol:protein and the solution was 

incubated  (3 h,  4 °C,  mixing).  After  the incubation  the Bio-Beads (BIO-RAD) were 

added in a 106:1 mass ratio of Bio-Beads:protein and incubated overnight at 4 °C while 

mixing,  to  remove  the  detergent  from  the  protein-detergent-amphipol  solution. 

Bio-beads  with  the  bound  detergent  were  then  removed  from the  protein-amphipol 

solution and SEC was performed as described in the section 3.1.4.2.

3.2 The m5-HT3R preparation - results

My project  started  as  a  follow up of  the  structure  of  the  m5-HT3RA solved by 

crystallography. At the beginning I took over the protocols for the protein purification 

and crystallisation of the receptor  (Hassaine et al., 2014) and I tried to optimise them 

with multiple aspects in mind, specifically aiming to increase the yields, shorten the 

purification  time  and  lower  the  costs.  The  initial  protocol  comprised  of  cell 

homogenisation,  membrane  separation  by  ultracentrifugation,  protein  solubilisation 

followed by ultracentrifugation, which led to solubilised protein solution. The next step 

was a filtration which allowed us to proceed with Strep-Tactin affinity chromatography. 
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Pre-packed  Strep-Tactin  columns  were  used  and  purification  was  done  using  the 

peristaltic pump loading the sample overnight. To improve homogeneity of the sample 

and to remove potential flexible parts of the protein, deglycosylation was carried out by 

PNGase F in a ratio of  1 mg : 0.1 mg receptor to deglycosylase (2 h shaking at 37 °C) 

and limited proteolysis was done by trypsin in a ratio of 1 mg : 0.013 mg receptor to 

protease (incubated 2 h at 30 °C).

I optimised the solubilisation step, trying to lower the concentration of detergent used 

and to shorten the incubation time. In contrast to the initially quite high concentration of 

C12E9 (1%) used for 3 h at 4 °C,  I demonstrated that using a concentration of 0.15% for 

1.5 h at 4 °C solubilised the protein to the same extent (Fig. 16).

A very time-demanding step was the filtration of solubilised protein solution through 

0.22 μm filters.  This step was mandatory because of the clogging of the pre-packed 

Strep-Tactin column filter. We tested the gravity flow set-up and as neither the yield nor 

the purity of the protein was affected  (Fig.  17) we switched to this approach which 

saved us ~ 2 h of filtration.
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A relatively expensive part of sample preparation was the usage of PNGase F. We 

decided to  adapt  the protocol  from  (Loo et  al.,  2002) to  purify PNGase F in-house 

instead of using the commercially available enzyme. I adapted it and we now express 

periplasmic PNGase F and purify it using NiNTA and size exclusion chromatography. 

We verified the activity of in-house purified PNGase F and tested the conditions for its 

activity. Compared to the initial 2 h incubation at 37 °C we have shown that the same 

level of deglycosylation can be achieved even when the reaction is incubated at 4 °C. 

This might prevent protein denaturation caused by increased temperature (Fig, 18).  
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The isolation, purification and enzymatic treatment of 5-HTRA are carried out over 2 

days. Generally, the yields vary from 0.2 - 0.3 mg of pure and treated protein per 1 g of 

membrane  fraction  after  the  final  size  exclusion  chromatography,  where  a  nice 

homogeneous peak corresponding to the pentameric receptor is observed (Fig, 19). 
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4 Crystallography

4.1 Crystallography - materials and methods 

4.1.1 Vapour diffusion trials

All the screening was carried out on the High-Throughput crystallography platform 

(HTX-lab) at the EMBL in Grenoble.

Manual plates were mostly set up using a protein concentration of ~8 mg/mL. During 

the optimisation process different ratios of the protein:reservoir  drops were used. To 

slow down the growth kinetics Ali-oil was used to cover the reservoir in the hanging 

drop  set  up.  Microbatch under-oil  crystallography  was  performed.  Different  initial 

concentrations of the protein were used (from 1 mg/mL up to 10 mg/mL). The seeding 

method  used  was  seeding  into  the  clear  drops.  Stepwise  dehydration  and  direct 

dehydration were tested to improve the crystal X-ray diffraction. 

4.1.2 The lipidic cubic phase (LCP) trials

The protein was concentrated typically to 40 mg/mL. In one of the trials the VHH15 

was  used to  further  stabilise  the  receptor  but  its  use  increased  the  hydrophilic  part 

pointing out of the lipid bilayer, which is not favourable for the LCP method and thus 

we  used  mostly  the  receptor  alone.  In  collaboration  with  the  platform  for 

high-throughput  LCP crystallisation  (Valentin  Gordeliy’s  group,  currently  at  EMBL 

Grenoble),  we  set  up  multiple  plates.  Commercial  screens  (Cubic  phase  I and II 

(QIAGEN) and MemMeso  (Molecular  Dimensions))  as  well  as  plates  based  on the 

optimisation conditions arising from the positive vapour diffusion trials.

4.1.3 The detergent screen with a focus on further use in X-ray 
crystallography

We re-screened  a  dozen  detergents  (C12E9  ,  C12E10  ,  DDM, MNG3,  OGNG, OG, 

cymal5, cymal6,  cymal7, LDAO, LAPAO, FosC12), measuring the receptor stability 

upon heating,  with the aim of selecting one with a shorter hydrophobic tail  forming 

smaller micelles to allow for the formation of better protein-protein crystal contacts. We 

followed the intrinsic  fluorescence of  the protein's  tyrosines and tryptophans during 

thermal denaturation of the receptor. Addition of 9% detergents was followed by 15 min 
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incubation on ice and then the measurement was performed. Typically the measurement 

was performed in the range of 20-100 °C using 2 °C/min steps. The fluorescence at two 

wavelengths,  330  and  350  nm  was  recorded.  The  350/330  nm  ratio  of  the  two 

wavelengths was plotted against temperature and represents the unfolding transitions. 

The data were measured on the Prometheus (NanoTemper).

As a complementary method we used SEC performed after the heat shock. Protein 

was purified using C12E9  during solubilisation and for stability  in solution.  Different 

detergents were added at the 1% concentration and the mixture was incubated 15 min at  

55 °C. After ultracentrifugation to remove potential aggregates, the sample was injected 

onto a Superose 6 column equilibrated with buffer containing 0.01% C12E9. The same 

concentration of this detergent was used in the running buffer (running buffer as for 

protein purification, see 3.1.4.2).

4.1.4 Blue native electrophoresis

Native gels can qualitatively characterise the size of protein complexes. Regarding 

protein-protein  interactions  this  method  can  even  answer  binding  stoichiometry 

questions.  We used native  electrophoresis  for  the  estimation  of  the  binding ratio  in 

between nanobodies and the 5-HT3A. 

All  the  buffers  and  procedures  were  prepared  and  performed  according  to  the 

NativePAGE Novex® Bis-Tris Gel System manual (Novex, LifeTec MAN0000557). 

Briefly, 6% polyacrylamide gels were cast. 10 µg of the purified 5-HT3 were mixed 

with the 1:2 molar  ratio  of  one receptor  subunit:VHH and incubated  on ice for  10 

minutes. The sample was mixed with the sample buffer (for reference see the manual 

mentioned above) and 1 µL of 0.4% Coomassie G-250 per 10 µL of mix. Anode and 

cathode  buffers  were  prepared  according  to  the  manual  and  filled  into  the 

electrophoresis system. We loaded the samples onto the gel prior to complete filling of 

the apparatus with the cathode blue buffer for better visualisation. The electrophoresis 

was performed either in the cold room or on ice at 150 V for ~2 h. When the run is 

complete, the blue cathode buffer, migrated through the gel, should start appearing in 

the normally transparent anode buffer. Extensive destaining of the gel is needed. The 

gel was first fixed by immersion in 100 mL fixing solution (containing 40% methanol 

and  10%  acetic  acid),  then  microwaved  for  45 s  and  incubated  on  the  shaker  for 

20 mins. The fixing solution was decanted. The gel was then destained in 8% acetic 

acid, microwaved for 45 s and incubated until the gel background became transparent.
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4.2 Crystallography - results

4.2.1 Crystallisation of the m5-HT3RA using nanobodies

4.2.1.1 VHHs

Camelids  possess  antibodies  made  of  heavy  chains  only.  Engineered  terminal 

domains of these antibodies are called nanobodies or VHHs. These domains retain their 

antigen-binding  ability,  their  typical  size  is  ~15  kDa,  and  they  can  generally  be 

overexpressed in E. coli. The antigen-binding paratope is made up of 3 complementary 

binding regions (CDR1-3).

The use of nanobodies has multiple  benefits  in structural  biology (Pardon et  al.,  

2014). They might help to solubilise the protein by increasing its polar surface and they 

can  stabilise  the  protein,  which  reduces  heterogeneity  of  the  sample.  Their  use  in 

crystallography can be instrumental in solving the structures of unknown proteins by 

enabling molecular replacement. Additionally their presence might also help to promote 

crystal growth by supporting the formation of crystal  contacts, as was the case with 

crystallisation of the m5-HT3RA/VHH15 complex  (Hassaine et al., 2014). After this 

initial success, our strategy was to try to find another nanobody, which would stabilise 

the receptor in another conformation. 

Nanobodies are obtained following immunisation of the animal (see  Pardon et al.  

(2014) for methods). The protein of interest is injected into an animal and its immune 

response yields new antibodies. A library of all VHHs is created and those interacting 

with the protein of interest are selected by phage display and then assayed using ELISA 

tests  with  the  purified  protein.  The  nanobodies  used  in  our  studies  were  from 

collaborators in Marseille. The information available to us are the VHH sequences and 

their  ELISA  score.  For  better  orientation  in  our  library  composed  of  about  15 

nanobodies we sorted them into six groups according to their sequence similarity (Fig. 

20). 
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4.2.1.2 Co-crystallisation 

Following the current trend in crystallography, after the selection of nanobodies from 

sequentially  different  groups (one for each group)  we used the service of  the HTX 

laboratory on campus to set up commercial screens (generally starting with 6 screens: 

PACT, PEGs, JCSG and Wizzard I+II). 

Protein  was  purified  as  described  in  section  3.1.3-4.  After  size  exclusion 

chromatography, peak fractions were pooled together and concentrated to ~8 mg/mL. 

Before  crystallisation,  the  protein  was  mixed  with  VHH  in  a  1:2  molar  ratio, 

(1 monomer  of  the  m5-HT3RA  with  an  excess  of  2 VHHs).  This  mixture  was 

supplemented  with  1  mM of  Cymal-6.  Here  the  role  of  Cymal-6  is  not  to  further 
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stabilise  the  complex,  as  demonstrated  by  our  thermostability  data  (Fig,  22).  We 

hypothesise that the positive effect of Cymal-6 during crystallisation is caused by a 

decrease of the micelle size that promotes protein/protein contacts and results in better 

crystal packing.

Working towards our goal, we focused on the nanobodies sufficiently distinct from 

VHH15,  hoping  that  they  will  stabilise  the  receptor  in  another  conformation. 

Unfortunately,  even  though  we  have  access  to  biophysical  methods  to  characterise 

receptor-VHH interactions, we lacked a way to characterise them functionally, which 

would  probably  provide  the  optimal  criteria  for  selection  of  the  crystallisation 

candidates.

Using 7  different  nanobodies  we obtained  157 hits,  which  largely  exceeded  our 

expectations. We focused mainly on the conditions which were as different as possible 

from the conditions under which the structure of receptor in complex with VHH15 was 

obtained.  Manually,  we  reproduced  more  than  70  conditions  selected  to  maximise 

diversity. The majority of them gave crystals. The synchrotron measurements confirmed 

that these were, apart from very few exceptions, protein crystals with a poor diffraction, 

ranging from ~30 to ~9 Å at most. We optimised all conditions that yielded crystals but 

this did not improve their diffraction. Altogether we shot around 550 crystals.

The chemical compositions of the hits obtained were very divergent and we could 

not observe any clear  pattern.  Crystals  grew at  different  pHs (5-10),  using different 

organic and inorganic salts and PEGs (from 3350 - 10000) (see examples in (Fig. 21)). 

Changes in chemical composition of the mother liquor (type and amount of ingredients) 

did not  improve the  diffraction  by our  crystals  and we focused mainly  on physical 

parameters.  From the  classical  methods  used  for  diffraction  improvement  we  tried: 

different  growth  temperatures,  seeding,  dehydration  and  growing  under  oil  using 

microbatch  crystallisation.  Using  recently  developed  methods  we  also  tried  to  use 

CrystalDirect plates, which make it possible to shoot crystals without fishing, directly in 

the plate. This approach reduces possible manipulation damage but it is compatible only 

with room-temperature measurements.  Except for the micro-batch method, all  others 

listed  led  to  crystals  but  did  not  affect  diffraction.  We  collected  data  of  crystals 

diffracting to 9 Å in the hope of further processing. We were able to determine the 

space group of crystals grown with two different VHHs but for none of them we were 

able to get a molecular replacement solution. 
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Neither  the  use  of  the  nanobodies  at  our  disposal  nor  the  optimisation  of 

crystallisation conditions led to X-ray diffraction of sufficient quality from any of the 

many  crystals  obtained.  We  thus  concluded  that  larger  changes  were  required  and 

started  to  re-evaluate  the  sample  preparation  protocol.  The  choice  of  detergent 

influences  solubility,  stability  and  of  course  plays  an  important  role  during 

crystallisation. For instance, the crystal quality of the m5-HT3RA/VHH15 complex had 

been improved when Cymal-6 was used as a supplement  to C12E9,  possibly because 

Cymal-6 reduced  the  micelle  size  and thus  favoured  protein-protein  contacts  in  the 

crystals. Consequently,  we performed a new thermal  stability  detergent  screen using 

NanoTemper’s Prometheus and SEC (see 4.1.3). We observed a correlation between the 

length of the carbon tail and the protein stability (see below). Although detergents with 

longer carbon chains were better  at  stabilising the receptor,  some of the shorter tail 

detergents  stood  out  from  the  screen.  Namely  the  Cymals  and  undecyl-maltoside 

(UDM), the latter  being the detergent used for crystallography of the nicotinic α4β2 

receptor (Morales-Perez et al., 2016).

Figure  22 depicts  thermal  denaturation curves for the Cymal series of detergents, 

where an effect of the carbon tail  length was observed, with Tm(Cymal-5)  = 52   <℃  

Tm(Cymal-6)  =57   < Tm℃ (Cymal-7)  = 60   < Tm℃ (C12E9)  = 64  . The comparison of℃  

C12E9 and UDM revealed that UDM might also be a good candidate for crystallographic 

studies  of  5-HT3RA.  These  detergents  stabilise  the  receptor  enough to be  used  for 

crystallography, while potentially enabling easier formation of protein-protein contacts.
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Because of its similarity to DDM in which the receptor remains active and in view of 

the recently solved structure of the other Cys-loop receptor in this detergent, we decided 

to  proceed with  UDM. Moreover,  the  size  exclusion  chromatography  profile  of  the 

m5-HT3R in presence of UDM as compared to C12E9 looked very encouraging (Fig. 23)
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Based on our previous experience with the m5-HT3A receptor we set up he PEGs 

screen and surprisingly observed 5x more promising hits (objects rather than crystals) in 

the conditions where UDM was used compared to where C12E9 was used, even without 

the  use  of  nanobodies.  At  this  point,  the  cryo-EM started  to  provide  early  positive 

results and we decided to focus mainly on it and not to continue with crystallography. 

4.2.1.4 Biochemical characterisation of the nanobodies

From all of the above-mentioned, it is clear that it is not possible to try extensively 

the combination of all approaches with all different nanobodies and all crystallisation 

conditions.  The  difficulties  encountered  emphasised  the  need  for  better  biophysical 

characterisation of our nanobodies. 

Looking at other examples of Cys-loop receptors crystallised with chaperones (either 

Fabs  (Hibbs and Gouaux, 2011) or VHHs) we noted that in all successful cases there 

were 5 chaperones bound per receptor (one per subunit). Thus we sought for a method 

to determine the binding ratio between the receptor and nanobodies. We tested native 

electrophoresis for this purpose. The receptor alone and the receptor pre-incubated with 

VHH15, which binds in a 5 to 1 ratio in the crystal structure, were used as references. 

Early  results  indicated  clearly  the  difference  between  these  two  samples  but  the 

resolution was not good enough. Thus, we turned to BlueNative electrophoresis  and 

replaced the detergent with amphipol. This approach gave us an estimate of the binding 

ratio (Fig. 24). 

For example, VHH4 is very closely related in sequence to VHH15 (97% sequence 

similarity / 6 point mutations), indicating that it should bind in the same ratio; indeed 

those  two  complexes  migrate  to  the  same  position  on  the  gel.  Interestingly, 

preincubation with nanobody VHH10 does not seem to affect the receptor migration on 

the  BlueNative  electrophoresis  gel  and  we  were  able  to  confirm  the  lack  of  this 

nanobody in the corresponding crystals by SDS PAGE (data not shown). 
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Another important parameter influencing the stability of the complex is the binding 

affinity  of  the  antibody  to  the  receptor.  We  performed  labeled  microscale 

thermophoresis and we were able to demonstrate that this method is not appropriate in 

our case (extensive trials, results not shown). The conditions of the protein labeling led 

to  m5-HT3R  denaturation.  The  measurement  obtained  using  the  non-precipitated 

fraction of labeled protein gave an uninterpretable binding isotherm. Surface plasmon 

resonance seems to be a good alternative for assessing protein-protein interactions but, 

as we know from the trial  with VHH15, the single cycle  kinetics  is  the only mode 

possible, somehow complicating data interpretation. 

Finally,  we  lacked  easily  accessible  functional  tests  for  the  elucidation  of  the 

nanobody effect on the protein stability. Functional tests would be probably the best 

indication of stability when looking for the nanobody stabilising the receptor in another 

conformation than VHH15, which acts  as an antagonist.  Some of the experiments  I 

performed on the expression optimisation were reported in a case study in Membrane 

Protein Structure and Function Characterization book (Hassaine et al., 2017).

65

 

 

 



Crystallography

66



Electron microscopy

5 Electron microscopy

Currently,  electron  microscopy is  finding its  place  next  to  the  other  near-atomic 

resolution structural determination methods, such as X-ray crystallography. It is about 

70 years ago when the first biological sample was imaged using EM and since then a 

huge amount of progress was achieved. The electrons being scattered by the air required 

the  evacuation  of  the  microscope  column  and  thus  the  sample  also  needed  to  be 

dehydrated, which caused the limited contrast of the images  obtained  - micrographs. 

This introduced the need for a contrast increase and  that's how negative staining EM 

appeared  (Huxley and Zubay, 1961). In negative staining, the electron-dense solution, 

mostly  uranyl  acetate,  surrounds  the  specimen  being  observed  and  increases  the 

contrast. Passing through the imaging of the 2D crystals kept dehydrated in the glucose 

solution, this led to a resolution of about 7 Å (Henderson and Unwin, 1975), but the real 

breakthrough came with the routine use of sample freezing and the introduction of the 

cryo-stage into the microscope. That was the beginning of the cryo-EM method as we 

know it today. Nowadays, the sample in aqueous solution is rapidly frozen by the liquid 

ethane,  allowing  formation  of  the  amorphous  solid  phase  instead  of  crystalline ice, 

which had resulted in biological sample degradation in the past. 

5.1 Electron microscopy - material and methods

5.1.1 Negative stain EM of m5-HT3RA

As an initial  quality control we performed  negative-staining transmission electron 

microscopy using the electron microscopy platform of IBS. Purified sample (around 1 

mg/mL)  was  deposited  on  a  glow-discharged  carbon  grid  and  stained  with  uranyl 

acetate pH 7. Images were taken with a Tecnai12 Microscope (FEI) operating at 120 

kV, a LaB6 electron source and an Orius 1000 GATAN camera.

5.1.2 Cryo-EM of the m5-HT3RA

During the cryo-EM sample optimisation we performed multiple tests. Samples of 

different concentrations were used, starting from 0.5 up to 24 mg/mL. We used different 

commercially  available  grids.  Samples  were  frozen using  a  variety  of  blotting  time 

lengths. Changing the biochemical sample preparation we went back to the optimisation 

of  grid  preparation  and  fine  tuned  the  conditions  for  all  biochemically  divergent 
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samples. The typical protein concentration used in amphipol or in detergent was around 

10 mg/mL  and  about  3.5 mg/mL,  respectively.  Samples  were  deposited  on  the 

glow-discharged carbon grids and frozen by FEI Vitrobot  in liquid ethane.  Samples 

were stored under liquid nitrogen until being imaged. Imaging was completed either at 

our institute on the EM platform using Tecnai G2 Polara cryo-transmission EM with a 

300 keV field emission gun (FEG) equipped with a K2 Gatan camera, or in the C-CINA 

scientific  group in Basel  on the KRIOS cryo-TEM with a  80-300 keV FEG, Gatan 

Quantum-LS Energy Filter  (GIF) with a  Gatan K2 Summit  direct  electron  detector. 

Particle  picking  was  carried  out  using  Dr.  Kai  Zhang's  Gautomatch  and  the  data 

treatment was done using Relion software (Scheres, 2012). 

5.2 Electron microscopy - results 

The Cys-loop receptors  are  relatively  good candidates  to  be studied by cryo-EM 

because  of  their  size,  their  five-fold  symmetry  and  the  pre-existence  of  models 

(structures solved by X-ray crystallography). The first structure of a Cys-loop receptor 

ever solved was done by cryo-EM and it  was the structure of the nAChR from the 

electric  organ of  the  Torpedo fish  (Miyazawa et  al.,  2003).  At  the  time  we started 

working on the 5-HT3 project, cryo-EM had already been successfully applied to the 

GlyR  (Du  et  al.,  2015),  providing  insights  into  the  open,  closed  and  desensitised 

structures of this receptor.

 In  my hands,  the  X-ray  crystallization  trials  did  not  lead  to  structures  of  other 

conformational states in addition to that already known. Encouraged by the structure of 

TPRV1, a membrane protein,  whose structure was solved at  3.4 Å resolution using 

cryo-EM (Cao et al., 2013; Liao et al., 2013), we decided to use electron microscopy as 

a complementary method (and as time passed by, as our main structural method).

5.2.1 Initial trials and optimisation

In  our  early  microscopic  trials,  a  few  years  back,  we  used  the  5-HT3  receptor 

solubilised in amphipol. Our/the naive rationale was of a dual nature: the pioneering 

study of TRPV1 had proven the usefulness of amphipols in structural studies (finally), 

and microscopists  advised us to avoid the presence of detergent  during the freezing 

process. We adapted the exchange of detergent for amphipol as described in section 

3.1.5.2.  We  could  obtain  a  homogeneous  pentameric  receptor  after  size-exclusion 

chromatography (Fig. 25).
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Apart  from  this  change  in  tensio-active,  we  first  kept  the  protein  preparation 

procedure  similar  to  that  for  the  crystallographic  sample,  reasoning  that  if  it  could 

crystallise, the protein was of good quality. Thus we used receptor deglycosylated by 

PNGase F and partially digested by trypsin leading to the removal of the Strep-tag and 

of the unstructured intracellular region. Negative stain microscopy in the presence of 

VHH15 nanobodies yielded good-looking micrographs, with side and top orientations 

of proteins, and almost no aggregation (Fig. 26A) Unexpectedly, when we proceeded to 

cryo-EM, we observed aggregation  of  the  entire  sample  caused  by the  nanobodies, 

making it impossible to pick single particles (Fig. 26B). The first lesson learnt was thus 

that a good quality negative stain does not necessarily predict the quality of cryo-EM 

micrographs. Thus we decided to optimise the conditions directly by cryo-EM.
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Early  trials  with  the  receptor  in  amphipol  without  nanobody  present  resulted  in 

micrographs containing mostly one orientation of receptors: top views  (Fig.  27A). In 

addition, it  seemed  that  we had an  aggregation  problem,  shown by the  presence  of 

‘darker’ top views with higher contrast and ‘prolonged’ side views  (Fig.  27B), which 

we hypothesised were head-to-head or head-to-tail dimers.
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We screened different surfactants to solve the orientation and aggregation problems. 

We tested the more polar amphipol version A8-75 and observed greater aggregation 

while the orientation problem persisted (Fig. 28).

As fluorinated detergents (F-TAC) had been used to rescue anisotropic orientations 

of membrane proteins on EM grids, we tested the effect of the addition of F-TAC.  The 

addition of 0.2% F-TAC increased the proportion of side views of the receptor. Because 

0.2% roughly correspond to the concentration required to saturate the air/water interface 

in  a grid hole,  one hypothesis  is  that  F-TAC impact  orientation  via  surface  tension 

modification, and not via interaction with the protein or amphipols.  A side effect of the 

addition of F-TAC was that fewer particles were present in the holes. We tested grids 

with a 2-5 nm layer of carbon on top of the holes to increase the number of particles, but 

this resulted in completely crowded unusable micrographs. We were also concerned that 

the carbon layer might preclude the acquisition of high-resolution data and decided to 

instead make changes to the protein concentration. Compensating the lower density of 

receptor  by  an  increased  starting  concentration  (up  to  ~20 mg/mL),  we collected  a 

dataset with this  sample (5-HT3R-Apol-F-TAC) on the G2 Polara cryo-transmission 

EM with  a  300 keV FEG equipped with  a  K2 Gatan  camera  but  it  yielded only a 

reconstruction  of  limited  resolution,  at  about  8  Å.  We  were  concerned  that 
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conformational  flexibility  of  the  receptor  might  prevent  us  from  reaching  a  better 

resolution and we thus collected a second dataset, using a receptor inhibited with 1 mM 

granisetron. The dataset (5-HT3R-Apol-F-TAC-granisetron) was collected on the Titan 

Krios microscope in the Center for Cellular Imaging and NanoAnalytics (C-CINA) in 

Basel. From 421 micrographs, ~125k particles were picked using the low-filtered model 

of  the  crystallographic  structure.  After  several  rounds of  2D classification,  the  best 

looking classes were put together and ~50k particles were used for 3D classification. 

The best class was further refined, trying the application of different masks, and the 

final resolution was ~7 Å (Fig. 29).

One of the parameters, which influences the quality of the data collected is the ice 

thickness.  In  our  case,  the  ice  layer  was  probably  too  thick  (as  evidenced  by  the 

difficulty of seeing side views on raw images) to obtain the atomic resolution of the 

receptor.  Apart  from the  nature  of  the  particles  themselves,  the  composition  of  the 

buffer composition also influences ice thickness. The salt concentration, together with 

the type  of  tensio-active  molecule  used,  can be  crucial.  We thus  decreased the  salt 

concentration by a factor two but were limited by the relatively high concentration of 

F-TAC (0.2 %).
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 We therefore took a step back and returned to the testing of surfactants, focusing on 

detergents at this  time. Specifically,  we tried 0.05% DDM, 0.1% MNG3 and 0.01% 

C12E9.  When  using  DDM  or  MNG3,  the  receptor  was  purified  in  C12E9 and  we 

exchanged detergents during the final SEC. According to the SEC profiles, the receptor 

was perfectly homogenous in the presence of all detergents. Although both alternative 

detergents, DDM and MNG3, seemed to at least partially solve the orientation problem, 

they caused significant aggregation of the receptor (Fig. 30). 

In the end, the detergent C12E9 was thus shown to be the best choice. It enabled the 

observation  of  multiple  orientations  of  protein  on  the  grid  and  we  solved  the 

aggregation  problem,  which  occurred  during  the  freezing  step,  by  omission  of  the 

limited  digestion (using trypsin) step,  which was routinely  used for  crystallographic 

studies. Additionally,  we retained the disordered intracellular domain of the protein in 

the hope that its presence will prevent aggregation. To mimic the natural conditions as 

closely as possible, we used lipid additives (0.01% phosphatidic acid, 0.01% cholesterol 

hemisuccinate, 0.01% brain phosphatidylcholine,  Avanti Polar lipids).  After testing a 

range of  grids,  we decided to  use  the  Cu-Rh grids,  which  resulted  in  good sample 

quality with the required amount and distribution of particles (Fig. 31). These optimised 

conditions were a good starting point for performing structural studies. 
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5.2.2 The gating mechanism of the m5-HT3RA (enclosed publication)

In the last decade, from the appearance of the first ELIC structure (and even before) 

until  today,  huge  efforts  have  been  made  to  elucidate  the  gating  mechanism(s)  of 

Cys-loop receptors. The “steady state” structure-to-function interpretation remains the 

only method available for this purpose. To date, there are only few receptors whose 

structures  have  been  solved  in  multiple  conformational  states,  which  enables  us  to 

understand their complex gating mechanism. Specifically, these are the structures of the 

WT  GLIC  receptor,  the  GluCl  receptor,  the  engineered  GlyR  structures  and  the 

m5-HT3R structures published in parallel. Here I present our recently published data on 

the 5-HT3R. Four structurally distinct states of 5-HT3RA provide, for the first time, 

insights into the gating mechanism of the cation-selective pLGIC. To get the most out 

of the structures obtained, substituted cysteine accessibility mutagenesis (SCAM) and 

voltage-clamp fluorometry (VCF) were performed to identify the residues lining the 

channel and involved in local conformational changes. Moreover, in collaboration with 

F. Dehez and C. Chipot (CNRS, Nancy, France), we performed molecular dynamics 
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simulation studies to further characterise the ion permeation of the channel. Combining 

the structural and functional studies, we propose a functional interpretation of all of the 

four  structures  obtained,  widening  our  knowledge  of  the  gating  mechanism  (see 

enclosed publication that follows (pages 77 – 98) ).

For the sake of completeness I would like to note that the 5-HT3RA open pore and 

agonist-activated  closed  pore  structures  solved  by  cryo-EM  were  published 

independently  by  Basak  and  co-workers  (Basak  et  al.,  2018b) and  the  structural 

comparison follows the enclosed publication with our results and can be found in the 

section 5.3.
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5.3 Electron microscopy - discussion
 

pLGICs are  prominent  pharmacological  targets,  which  are  studied  intensively,  as 

illustrated by the number of structures solved during the last couple of years. However, 

these structures raise new questions and the detailed functional mechanism still remains 

shrouded by mystery. A comparison of the gating mechanism of 5-HT3RA with the 

mechanism  elucidated  for  the  other  pLGICs  (GluCl,  GLIC  and  GlyR)  is  already 

discussed in our paper (e.g Extended Data Figures 6 and 8). Thus, in this section, I will 

focus on the direct comparison of the 5-HT3RA structures obtained by our group and 

independently  by  the  group  of  Chakrapani,  highlighting  the  main  similarities  and 

proposing reasons for potential differences. 

In the following text I will keep the nomenclature of structures identical to that used 

in the original publications. To make it easier for the reader to become oriented in the 

nomenclature, I will also add the assigned functional state in brackets. 

The  mouse  5-HT3RA  structures  solved  by  cryo-EM  were  assigned  to  multiple 

physiological states, with various levels of confidence in the assignments. There is one 

apo resting state (Basak et al., 2018a), one inhibited state (T) (Polovinkin et al., 2018), 

one potentially pre-activated state plus one structurally closely related state (I1 and I2) 

(Polovinkin et al., 2018), a open pore State 1 structure (Basak et al., 2018a) speculated 

to be non-conducting intermediate or a desensitized state, and two independent open 

pore structures (State  2 and F respectively)  (Basak et  al.,  2018b; Polovinkin  et  al.,  

2018). 

The assignment of the function is indeed more ambiguous for the receptors in the 

intermediate states where the ECD and ECD-TMD structures resemble the open state 

but  where  the  pore  remains  closed.  A  structural  comparison  of  the 

intermediate/desensitised structures shows that the I2 state resembles the independently 

obtained  State  1  (agonist-bound  non-conducting)  to  a  greater  degree,  with  a 

root-mean-square deviation (RMSD) of 1.1 Å, than the I1 state (pre-active state), with 

an RMSD of 1.6 Å (Fig. 32). Drawing conclusions from the RMSD comparison of the 

two independently obtained structures using different data processing and reaching only 

limited resolution is tricky. We can speculate that they might be very closely related, but 

regarding  the  RMSD  differences  among  the  structures  of  receptors  from  different 

families (e.g. comparison of the m-5HT3R to the GABAA subunit with the RMSD of 

1.8 Å data shown in the enclosed publication (Extended data Fig 6., page 92) the option 
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that they represent distinct physiological states should not be neglected .

Unexpectedly, the biggest surprise comes from the comparison of the two open pore 

states:  the  F  state  and  State  2.  Unfortunately,  the  electron  density  maps  are  of 

comparable poor resolution at the level of the ICD in both cases, likely illustrating the 

ICD flexibility. In contrast to our competitors, we found the building of a structure into 

this part of the electron density map tricky and thus residues 311-425 were not built in 

the F state structure. For the purposes of overall structural alignment we use only the 

shortened  version  of  the  State  2  structure  cut-down  to  correspond  to  the  residues 

resolved in  the  F state.  The overall  structural  alignment,  with an  RMSD of  1.9  Å, 

indicates  significant  differences.  Interestingly,  almost  the  same  RMSD  (2.0  Å)  is 

observed between the open state F and the inhibited closed state T. Superimposition of 

the  ECDs  only  shows  that  the  conformation  of  the  F  state  and  of  state  2  closely 

resemble each other with an RMSD of 1.1 Å.

Having a closer look at the binding site, the orientation of the serotonin is the same in 

both  structures,  making  cation-π interaction  with  the  W156  (Fig.  33).  The  inward 

motion of loop C in State 2 seems to be slightly less pronounced compared with the 
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F state when an alignment of the ECD is performed. Even though the relative distance 

(displacement) between the C loops of the apo and the open states solved by Basak et al. 

are similar to those of the inhibited state T and the open state F it seems that loop C 

stays further from loop G of the following subunit. It is difficult to judge the possible 

interaction between residues D202 and R65 in State 2 because of the poor density of the 

aspartate and the generally low resolution in this region. 

The  poorly  defined  electron  density  map  makes  a  more  detailed  comparison 

impossible also around the conserved Cys-loop region and in close proximity of R218 

(important structural features triggering the gating mechanism). Thus it is not possible 

to draw any conclusions from the flipped side chain of W187 in the State 2 structure 

compared to all other structures of the receptor solved both by ourselves and by our 

competitors.

The most striking difference is  a different arrangement of the M2 membrane helices, 

forming the pore, and of their immediate environment, which can be documented by an 

RMSD of 3.3 Å for the TMD region. Isolated TMD monomers superimpose with an 

RMSD of 2.1 Å, indicating that the subunit/subunit arrangement accounts for a large 

part of the differences between the F state and State 2. Accordingly, the interface areas 

in the TMD, measured using PISA, differ significantly, with ~1100 Å2 buried for the F 
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state and only ~750 Å2 for State 2. Comparing the pores, the one of State 2 is generally 

wider than the one of the F state.  This difference is due to the positions of the M2 

helices (Fig. 34). The helices start at about the same position on the intracellular site but 

then they diverge. This results in the ion pathways narrowing at different heights. 

Whereas the F state is largely open at the L9' (L260) activation gate, State 2, even 

though it is widely open, is actually narrowest at the level of this residue  (Fig.  35). 

Compared to the F state, State 2 is significantly wider at the intracellular side of the 

transmembrane pore creating the vestibule. The pore radius of State 2 resembles that of 

the GlyR receptor solved by cryo-EM in the presence of glycine (open structure). This 

widely open pore conformation has brought some controversy  (Gonzalez-Gutierrez et  

al., 2017) because the other open pore structures of pLGIC solved to date are narrower 

at the intracellular side. The structural studies of the mutated GLIC receptor together 

with  molecular  dynamics  and  electrophysiology  studies  further  support  the 

physiological relevance of the narrower open channel structures (Gonzalez-Gutierrez et  

al., 2017).
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Additionally, State 2 represents a less compact transmembrane helix bundle compared 

to the F state. The total volume of the State 2 TMD corresponds to 92.17 kÅ3 (void 

27.81 kÅ3; VDW 64.36 kÅ3) with a protein density of 0.698. The F state TMD total 

volume is 89.03 kÅ3 (void 26.29 kÅ3; VDW 62.73 kÅ3) with a protein density of 0.705. 

All data were calculated by ProteinVolume v1.3 (Chen and Makhatadze, 2015). 
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 Another striking difference between the State 2 structure compared with the other 

conformational states of the receptor is the movement of the MX helix (Fig. 36A). This 

peripheral helix located on the intracellular side is in contact with the membrane in the 

structures  of  all  the other  states  but  is  immersed into  the  membrane  in  the State  2 

structure. This movement is in agreement with the F state that is seen on the alignment 

of the electron density maps of the F state and the I1 state (Fig. 36B).

The  C-terminal  end  of  the  MX  helix  moves  ~10  Å  along  the  normal  to  the 

membrane. Examples of helices that can enter the membrane exist (Entova et al., 2018), 

and this motion might be part of the operation mechanism of the receptor. It might also 

be caused by the detergent environment.

The  differences  between  those  two  open  structures  raise  questions  about  their 

assignment to a physiological state. Multiple factors should be kept in mind. The F state 

and State 2 could potentially correspond to two different conformational states of the 

open receptor. The opening of the channel is a complex process complicated by the 

cooperativity of agonists acting at 5 orthosteric binding sites. The existence of multiple 

open forms has already been proposed for pLGIC (Keramidas and Lynch, 2012) and the 

concept  was  proven  to  be  true  for  the  single-channel  study  of  the  ELIC  receptor 

(Marabelli et al., 2015) and for 5-HT3R (Corradi et al., 2009). When comparing the 

two  structures  solved  independently,  it  is  thus  extremely  important  to  consider  the 
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conditions under which they were obtained.

Therefore,  the  differences  between  the  two  open  structures  might  be  for 

physiological  reasons  (two  distinct  open  states  may  actually  exist)  or  due  to  the 

experimental conditions used. Firstly, the F state structure was solved in the presence of 

calcium cations which are known to affect the receptor conductivity. Secondly, pLGIC 

are known to be sensitive to their lipidic environment and here we are comparing a 

structure solved in the detergent C12E9 with added lipids (CHS, PA and PC) in the case 

of the F state and a structure solved in the presence of the same detergent  and the 

addition  of  fluorinated  Fos-choline  8  for  State  2.  Generally,  the  non-fluorinated 

fos-choline detergents are usually efficient in protein solubilisation but they should be 

used with caution because they might have destabilising and denaturing effect on certain 

proteins (Chipot et al., 2018). In addition the fluorinated detergents might complicate 

interpretations since it was shown that they not only interact with ryanodine receptors 

but also it influences the conformational state of the protein (stabilisation of the closed 

conformation by the fluorinated  octyl  maltoside even after  the application of strong 

agonist) through an unknown mechanism (Willegems and Efremov, 2018).

Last  but  not  least,  there  is  an  option  that  one  of  the  structures  is  too  far  from 

biologically existing physiological state, and the result is an artefact.

For a long time, using detergents was the only way to extract membrane proteins 

from the lipid-bilayer (now, the recently developed SAM/DIBMA copolymers forming 

“native nanodiscs” may provide an alternative (Dörr et al., 2014; Oluwole et al., 2017)). 

Even though the detergent micelles do not reproduce the hallmarks of the lipid-bilayer 

environment, they remain the traditional choice for protein solubilisation, stabilisation 

in solution and thus also for structural studies.. Here I would like to sum up the effect of 

lipids on the pLGICs and how they might influence the structures (and not only those 

obtained  by  cryo-EM).  The  effect  of  amphipathic  molecules,  namely  lipids  and 

detergents, on the TMD of nAChRs was discussed in section 1.5.2.3 (Fernández Nievas 

et al., 2008) and the effect of different detergents and lipid additives on the purified 

5-HT3R was shown in section 4.2.1.3 and at the end of this section. Interestingly, the 

5-HT3R contains the sphingolipid binding motif at the extracellular part of the M1 helix 

(Björkholm et al., 2014). But more generally, amphipathic molecules can have a great 

impact on the structure and/or function of pLGIC. They interact with the receptors in 

the allosteric binding site located in the upper and lower part of their TMD. Some lipids, 

included as additives or even being co-purified, were resolved in the pLGIC structures, 

suggesting tight interactions with the transmembrane helices (Basak et al., 2017, 2018a;  
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Bocquet et al., 2008; Chen et al., 2018) and suggesting possible regions of the receptor 

responsible for the lipid-driven modulation.  In addition,  mutagenesis  of the interface 

between the outermost M4 helix and helices M1/M3 separated the pLGIC superfamily 

into two groups based on the compactness and tightness of this lipid-exposed region. 

GLIC, together with GlyR, the GABA receptor and GluCl, have extensive networks of 

interacting aromatic residues that form a densely packed M4-M1/M3 interface along the 

entire length of the M4 helix. In contrast, ELIC, the nAChR and the 5-HT3RA have 

fewer interactions in this region (Therien and Baenziger, 2017). The Ala mutations of 

the aliphatic residues have  have moderate or no effect as well as mutations of polar 

residues  at  the  M4  - M1/M3  interface  with  exception  of  the  M4  - M1  cation-π 

interactions  which mutated abolish the ELIC functioning.  Even though the aromatic 

side chain residues interactions are predominant in both, Ala mutations of single or both 

aromatic residues impair the GLIC whereas it has a little effect on the ELIC function. 

Those two groups, represented either by GLIC or by ELIC, should be potentially less or 

more  prone  to  be  influenced  by  changes  in  the  surrounding  lipid  environment, 

respectively.  Additionally  the  group  to  which  the  5-HT3A  belongs  might  undergo 

conformational changes more readily due to the weaker interactions. 

The  distorted  GABA  structures,  imaged  in  detergent,  show  the  gamma  subunit 

collapsing  into  the  pore  and  assymetric  organisation  of  subunits  the  two  different 

serotonin receptor structures in the open pore conformation could point to amphipathic 

molecules as a common denominator. But how does one choose detergents and lipids? 

Quite often the protein stability is measured prior to structural determination in order to 

get  the  most  stable  sample  possible.  This  method,  popularised  by  the  Gouaux  lab 

(Gouaux et al., 2012), has been used for GluCl, the GABA structure, and was probably 

used even for other structures. However, the generally intuitive idea that conditions, 

which result in the most thermostable proteins equal conditions where receptors are in a 

stable physiological state, may not be true in all cases. The artificial lateral  pressure 

potentially created by the amphipathic molecules may result in non physiological tighter 

packing of the membrane domain helices, thus increasing the intramolecular interaction 

surface. Specifically, in the presence of an increased level of artificial interactions, the 

amount of energy needed to break them is higher. Finally, the higher thermal stability of 

proteins in amphipathic additives might reflect stronger non-native interactions and its 

maximisation  might  lead  to  false  positive  results.  We tested  the  effect  of  different 

detergents on the protein stability and we can conclude that the detergents differ in their  

ability to stabilise the 5-HT3RA. Furthermore, in our hands the 5-HT3RA manifests the 

same thermal stability after the addition of lipid master mix (PA, CHS and brain PC; 

concentrations  corresponding  to  our  cryo-EM  experiments)  as  it  does  in  C12E9 
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(Fig. 38A)  (measured  by  NanoTemper's  Prometheus,  experiment  performed  in 

agreement with the detergent screen described in 4.1.3). Interestingly, the addition of 

CHS during solubilisation by C12E9 affects the thermostability to a greater extent than 

addition of CHS just prior to measurement Fig. 38B) . 
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6 Conclusion and perspectives

The  objectives  of  my  thesis  were  to  obtain  structure(s)  of  other  conformational 

state(s)  compared to  the 2014 crystal  structure and/or  increase the resolution  of  the 

existing structure of 5-HT3RA (to enable for instance the unambiguous placement of 

ligands).  We have shown that  the  5-HT3RA can form crystals  in  a  broad range of 

conditions (temperature, pH, salts, PEGs) using stabilising nanobodies and Cymal-6 as 

an  additive.  We failed  to  improve the  poor  diffraction  of  these  crystals  with many 

standard  methods  (cryoprotection,  dehydration  of  crystals,  on-plate  measurements). 

Larger changes need to be implemented to improve the crystal quality. We have shown 

that changing the detergent might be critical step and we have selected the detergent 

UDM as a good candidate (section 4.2.1.2).

Starting with no prior experience of electron microscopy, we were able to gradually 

optimise the sample and the imaging conditions. In the end we obtained four structures 

of  different  conformations  of  the  5-HT3RA by cryo-EM, and could assign  them to 

physiological states and propose a gating mechanism for this receptor compatible with 

SCAM and VCF experiments, which was also supported by molecular dynamics. The 

proposed gating mechanism shares some common features (quaternary reorganisation of 

the ECD, local movements in the ECD-TMD and the upper TMD region, general twist) 

and  possesses  some  distinct  ones  compared  to  the  mechanisms  inferred  for  other 

pLGICs (in contrast to GLIC and GluCl the 5-HT3A and GlyR don't undergo the ECD 

un-blooming reorganisation, the pore radius of the 5-HT3RA lies in between those of 

the wider  GlyR and the tighter  GLIC pore,  specific  M4 sliding)  (Polovinkin  et  al.,  

2018). Finally, we compared our structures with the structures obtained by Chakrapani's 

group and noted a puzzling difference in the open pore structures (section 5.3). 

The  challenging  dream  to  elucidate  the  gating  mechanism  of  the  pLGICs  is 

becoming more and more realistic but together with a better understanding of the gating 

more  questions  are  raised.  Even  though  the  pLGIC  share  some  highly  conserved 

sequences,  specifically  their  overall  architecture  and  general  gating  apparatus,  their 

actual  mechanism seems to differ.  To generalise  based on what we know about the 

gating mechanism of  one family  of receptors  is  no longer  possible  and conclusions 

generalised to the entire  superfamily should be made with caution. 

Structural studies like ours raise a lot of questions about their physiological relevance 

(as exemplified by a significant portion of the reviewer's comments to our paper) and 

they  are  sometimes  still  received  with  scepticism.  The  purified  protein  stability, 

biochemical environment and physical properties used in those studies are indeed not 
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ideal  mimics  of physiological  conditions.  Yet it  is  undeniable that  structural  studies 

performed  after  careful  biochemistry  deepen  our  understanding  of  how  membrane 

proteins function. 

A potentially controversial point is the assignment of a structure to a functional state. 

This assignment can be non-straightforward for all mechanistic proteins, which undergo 

certain conformational changes during their action. For pLGICs some classical criteria 

have  emerged  from the  accumulated  literature  and are  used  to  guide  the  functional 

labeling of structures: the position of the loop C, the overall channel radius, the width of 

the channel at the 9' position, the constriction at the selectivity filters, etc. Fortunately, 

the field is moving forward with more nuanced definitions of what is a closed/open 

pore, taking advantage of molecular dynamics. Not every structure to be solved can be 

easily categorised into the simple three-state model with a resting closed pore, an active 

open pore  and  a  desensitised  closed  pore  state.  The  structures  of  different  pLGICs 

elucidated under a variety of conditions (presence/absence of ligand; use of stabilising 

nanobodies/Fabs; use of detergents, amphipol or nanodiscs) instead correspond to other 

classes (most of them known also from electrophysiology) like the apo-resting state, the 

ligand-bound resting state, or the ligand-bound pre-active state. 

In  summary,  it  is  clear  that  the  pLGIC field  is  missing  time-resolved  structural 

studies,  ideally  performed  under  native  conditions.  Amongst  the  methods  currently 

available, this may be achievable using X-ray free electron laser (XFEL) measurements. 

For  this  purpose  the  development  of  photo-activatable  ligands  and  easy  growth  of 

nanocrystal would need to be accomplished first. Both of those aspects, together with 

very limited availability of XFEL hardware, lower the probability of success using this 

method.

Considering the “available” methods and instruments, further structural studies by 

cryo-EM  are  of  great  interest.  The  potential  influence  of  detergent,  F-TAC  and 

amphipol on 5-HT3RA could be deduced from structures solved in “membrane-like” 

conditions, using nanodiscs (or other type of discs). This will require the optimisation of 

the  protocol  for  protein  incorporation  into  the  nanodiscs  and  possibly  even  require 

further  rounds  of  grid  preparation  optimisation.  The  structures  of  the  receptor  in 

complex  with  an  allosterically  bound  ligand  (relatively  straightforward),  of  the 

heteropentamer  (requirement  for  sufficient  amounts  of  the  purified  heteropentamer, 

which is more fragile compared to homopentamers) or of the protein with/without ICD 

in combination with/without the use of calcium in the presence of serotonin (in theory, 

only the structure without the ICD in the presence of calcium and serotonin is needed to 

compare with the structure already solved) might bring some insights into the protein 

pharmacology, functioning and assembly.
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8 Supplementary data

Table 1 | The summary of the pLGIC structures solved by different methods.

This table was generated using data and online software provided by rcsb.org (the PDB; Protein Data 

Bank). Data generated on 12 August, 2019.
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