D. Strickland and G. Mourou, Compression of amplified chirped optical pulses, Opt. Comm, vol.55, issue.6, pp.447-449, 1985.

N. Blanchot, G. Béhar, J. C. Chapuis, C. Chappuis, S. Chavardoine et al., 1.15 PW -850 J compressed beam demonstration using the PETAL facility, Opt. Express, vol.25, issue.15, pp.16957-16969, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02371628

L. Gallais and M. Commandré, Laser-induced damage thresholds of bulk and coating optical materials at 1030 nm, 500 fs, Appl. Opt, vol.53, issue.4, pp.186-1966, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00937940

M. Mende, S. Schrameyer, and H. Ehlers, Laser damage resistance of ion-beam sputtered
URL : https://hal.archives-ouvertes.fr/hal-00797202

, Sc2O3/SiO2 mixture optical coatings, Appl. Opt, vol.52, issue.7, pp.1368-1376, 2013.

B. Mangote, L. Gallais, M. Commandré, M. Mende, L. Jensen et al.,

J. Melninkaitis, V. Mirauskas, S. Sirutkaitis, T. Kicas, R. Tolenis et al., Femtosecond laser damage resistance of oxide and mixture oxide optical coatings, Opt. Lett, vol.37, issue.9, pp.1478-1480, 2012.

J. Tauc, R. Grigorovici, and A. Vancu, Optical properties and electronic structure of amorphous germanium, phys. stat. sol, vol.15, issue.627, p.1966

, Experimental validation of our algorithm: Optimization for air use

.. .. ,

, 123 6.2 Influence of the environment on multilayers dielectric mirrors

. .. , 126 6.2.2.1 Stress variations with the environment for the three deposited designs

, Evaluation of the possible impact of stress on the LIDT

, Intrinsic LIDT determination in vacuum from multilayers

.. .. ,

, LIDT for p-polarization in ambient air

, 141 1.2. Broadband chirped mirrors (15 fs)

, 1.3. Effect of the relative humidity: reversible phenomenon

.. .. Summary,

, Conclusion (français)

C. N. Danson, C. Haefner, J. Bromage, T. Butcher, F. Jean-christophe et al.,

A. Enam, A. Chowdhury, L. A. Galvanauskas, J. H. Gizzi, I. David et al.,

Y. Hopps, E. A. Kato, R. Khazanov, G. Kodama, R. Korn et al.,

A. A. Rocca, C. W. Shaykin, C. Siders, S. Spindloe, R. M. Szatmári et al., Petawatt and exawatt class lasers worldwide, High Power Laser Science and Engineering, vol.7, issue.54, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02326266

T. H. Maiman, Simulated optical radiation, Nature, vol.187, issue.4736, pp.493-494, 1960.

G. A. Mourou, C. L-labaune, M. Dunne, N. Naumova, and V. Tikhonchuk, Relativistic laser-matter interaction: from attosecond pulse generation to fast ignition, Plasma Phys. Control. Fusion, vol.49, pp.667-675, 2007.

C. Danson, D. Hillier, N. Hopps, and D. Neely, Petawatt class lasers worldwide, High Power Laser Science and Engineering, vol.3, issue.e3, pp.1-14, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02326266

, Laboratory for Laser Energetics, 2019.

A. Casner, T. Caillaud, S. Darbon, A. Duval, I. Thfouin et al.,

B. Rosse, R. Rosch, N. Blanchot, B. Villette, R. Wrobel et al., LMJ/PETAL laser facility: overview and opportunities for laboratory astrophysics, Special Issue: 10th International Conference on High Energy Density Laboratory Astrophysics, vol.17, 2015.

W. Zheng, X. Zhang, W. Xiaofeng, J. Feng, and S. Zhan, Zheng Kuixin

J. Xiaodong, S. Jingqin, Z. Hai, L. Mingzhong, W. Jianjun et al., You Yong, Fan Dianyuan, and Zhang Weiyan. Status of the sg-iii solid-state laser facility, J. Phys.: Conf. Ser, vol.112, 2008.

D. Strickland and G. Mourou, Compression of amplified chirped optical pulses, Opt. Comm, vol.55, issue.6, pp.447-449, 1985.

L. J. Waxer, D. N. Maywar, J. H. Kelly, T. J. Kessler, B. E. Kruschwitz et al.,

S. F. Meyerhofer, C. Morse, J. D. Stoeckl, and . Zuegel, High-energy Petawatt capability for the Omega laser

, Opt. Photon. News, vol.16, issue.7, pp.30-36, 2005.

, Laboratory for Laser Energetics, 2019.

M. Koga, Y. Arikawa, H. Azechi, Y. Fujimoto, S. Fujioka et al.,

H. Hosoda, T. Jitsuno, T. Johzaki, J. Kawanaka, R. Kodama et al., , p.150

A. Sunahara, M. Isobe, A. Iwamoto, T. Mito, O. Motojima et al., Present states and future prospect of fast ignition realization experiment (FIREX) with gekko and LFEX lasers at ILE. Nuclear Instruments and Methods in, Physics Research A, vol.653, pp.84-88, 2011.

N. Blanchot, G. Behar, T. Berthier, B. Busserole, C. Chappuis et al.,

F. Granet, C. Grosset-grange, J. Goossens, L. Hilsz, F. Laborde et al., Overview of PETAL, the multi-Petawatt project in the LMJ facility, EPJ Web of Conferences, vol.59, 2013.

N. Blanchot, G. Béhar, J. C. Chapuis, C. Chappuis, S. Chavardoine et al.,

J. Dupont, P. Duthu, J. P. Garcia, F. Goossens, C. Granet et al., 15 PW -850 J compressed beam demonstration using the PETAL facility, Opt. Express, vol.25, issue.15, pp.16957-16969, 2017.

J. Miquel, N. Blanchot, F. Lanniesse, E. Prené, and D. Batani,

. Chocs, , pp.91-100, 2019.

D. N. Papadopoulos, J. P. Zou, C. L. Blanc, G. Chériaux, P. Georges et al.,

P. Ramirez, L. Martin, A. Fréneaux, A. Beluze, N. Lebas et al., The Apollon 10 PW laser: experimental and theoretical investigation of the temporal characteristics, High Power Laser Science and Engineering, vol.4, issue.e34, pp.1-7, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01763846

. Thalès, Record mondial : Le système laser le plus puissant au monde développé par thalès et ELI-NP a atteint une puissance record de 10 Péta Watts !, 2019.

S. Kühn, S. Mathieu-dumergue, and . Kahaly,

B. Farkas, B. Major, Z. Várallyay, E. Cormier, M. Kalashnikov et al.,

A. L. Johnsson, R. Huillier, S. Lopez-martens, and . Haessler,

G. Vernier and . Iaquaniello,

F. Tzallas, D. Lépine, K. Charalambidis, K. Varjú, G. Osvay et al., The ELI-ALPS facility: the next generation of attosecond sources, J. Phys. B: At. Mol. Opt. Phys, vol.50, p.132002, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01634510

, Comprehensive Test Ban Treaty Observatory. www.ctbto.org

, The list Top 500, 2018.

R. Betti and O. A. Hurricane, Inertial-confinement fusion with lasers, Nature Physics, p.12, 2016.

M. Pfiffer, Amélioration de la tenue au flux laser des composants optiques du laser Mégajoules par traitement chimique, 2017.

J. Zuegel, J. D. Borneis, C. Barty, B. Legarrec, C. Danson et al., Laser challenges for fast ignition, Fusion Sci. and Technol, vol.49, pp.453-482, 2006.

W. Theobald, W. Theobald, and . To-complete, Intial cone-in-shellfast-ignition experiment on OMEGA

, Phys. Plasmas, vol.18, issue.056305, 2011.

J. Ongena, R. Koch, R. Wolf, and H. Zohm, Magnetic-confinement fusion, Nature Physics, vol.12, pp.398-410, 2016.

L. Megajoule, The Mégajoule Laser -leaflet

, Iso 21254-1 -laser and laser-related equipment -test methods for laser-induced damage threshold, 2011.

C. and M. Strickley, The laser damage meeting: early years, Proc. SPIE Laser damage in Optical Material, vol.1805, 2018.

M. J. Soileau, Laser-Induced Damage in optical materials, chapter Laser-Induced Damage Phenomena in Optics: a historical Overview, pp.3-9, 2015.

H. and A. Macleod, The early days of optical coatings, J. Opt. A: Pure Appl. Opt, vol.1, pp.779-783, 1999.

L. Gallais, Métrologie de l'endommagement laser. Technique de l'ingénieur, 2010.

S. Papernov, Laser-Induced Damage in optical materials, chapter Defect-induced Damage, pp.25-75, 2015.

E. Lavastre, J. Iriondo, F. Tournemenne, S. Bouillet, R. Parreault et al.,

, Study of downstream impacts induced by defects of sol-gel and antireflection layers in high power lasers, OSA Optical Interference Coating Conference, 2019.

E. G. Gamaly, A. V. Rode, B. Luther-davies, and V. T. Tikhonchuk, Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics, physics of plasmas, vol.9, issue.3, pp.949-957, 2001.

J. Jasapara, A. V. Nampoothiri, W. Rudolph, D. Ristau, and K. Starke, Femtosecond laser pulse induced breakdown in dielectric thin films, Physical Review B, vol.63, issue.045117, pp.1-5, 2001.

J. H. , Optical coating design with reduced electric field intensity, Appl. Opt, vol.16, issue.7, pp.1880-1885, 1977.

A. A. Kozlov, J. C. Lambropoulos, J. B. Oliver, B. N. Hoffman, and S. G. ,

, Mechanisms of picosecond laser-induced damage in common multilayer dielectric coatings, Sci. Rep, vol.9, issue.607, 2019.

M. Mende, S. Schrameyer, and H. Ehlers, Laser damage resistance of ion-beam sputtered Sc2O3/SiO2 mixture optical coatings, Appl. Opt, vol.52, issue.7, p.152, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00797202

L. Gallais and M. Commandré, Laser-induced damage thresholds of bulk and coating optical materials at 1030 nm, 500 fs, Appl. Opt, vol.53, issue.4, pp.186-1966, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00937940

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, Scaling laws femtosecond laser pulse induced breakdown in oxide films, Phys. Rev. B, vol.71, pp.1-7, 2005.

L. V. Keldysh, Ionization in the field of a strong electromagnetic wave, Sov. Phys. JETP, vol.20, 1307.

L. Benoit-mangote, M. Gallais, M. Commandré, L. Mende, H. Jensen et al.,

M. Jupé and D. Ristau, Andrius. Melninkaitis

R. Tolenis and . Drazdys, Femtosecond laser damage resistance of oxide and mixture oxide optical coatings, Opt. Lett, vol.37, issue.9, pp.1478-1480, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00690763

A. Hervy, L. Gallais, G. Chériaux, and D. Mouricaud, Femtosecond laser-induced damage threshold of electron beam deposited dielectrics for 1-m class optics, Opt. Eng, vol.56, issue.1, pp.11001-11002, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01586650

J. Clark and M. , A dynamical theory of the electromagnetic field, Phil. Trans. R. Soc. London, vol.155, p.1865

M. Born and E. Wolf, Principles of Optics. Cambridge, 1999.

H. and A. Macleod, Thin film Optical filters, 2010.

P. Lissberger, Optical applications of dielectric thin films, Rep. Prog. Phys, vol.33, issue.197, pp.197-268, 1970.

F. Abelès, Sur la propagation des ondes électromagnétique dans les milieux stratifiés, Ann. de Phys, vol.12, issue.3, pp.504-520, 1948.

F. Abelès, Recherches sur la propagation des ondes électromagnétiques sinusoïdales dans les milieux stratifiés application aux couches minces, Ann. de Phys, vol.5, pp.596-640, 1950.

F. Abelès, Recherche théoriques sur les propriétés optiques des lames minces. Le journal de la physique et le Radium, vol.11, pp.307-309, 1950.

S. Heavens, Optical properties of thin films, Rep. Prog. Phys, vol.23, issue.1, pp.1-64, 1960.

S. Heavens, Optical Properties of Thin Solid Films Dover, 1965.

R. M. Azzam and N. M. Bashara, Reflection and Transmission of Polarized light by stratified planar structure, pp.269-363, 1977.

K. Ohta and H. Ishida, Matrix formalism for calculation of electric field intensity of light in stratified multilayered films, Appl. Opt, vol.29, issue.13, pp.1952-1959, 1990.

W. H. Lowdermilk, D. Milam, and F. Rainer, Optical coatings for laser fusion applications, Thin Solid Films, vol.73, pp.155-166, 1980.

J. B. Oliver, A. L. Rigatti, T. Noll, J. Spaulding, J. Hettrick et al., Large-aperture coatings and for fusion-class and laser systems, OSA Optical Interference Coating Conference, 2019.

C. J. Stolz, F. Y. Genin, T. A. Reitter, N. E. Molau, R. P. Bevis et al.,

. Anzellotti, Effect of SiO_2 overcoat thickness on laser damage morphology of hfO_2/SiO_2 brewsterâ??s angle polarizers at 1064 nm, UCRL-JC-124875 PREPRINT, p.153, 1997.

J. H. Apfel and J. S. Matteuci, The role of electric field strength in laser damage of dielectric multilayers, Boulder1976, pp.301-309, 1976.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore et al., Nanosecond-tofemtosecond laser-induced breakdown in dielectrics, Phys. Rev. B Condens. Matter, vol.53, pp.1749-1761, 1996.

A. Melninkaitis, T. Tolenis, and L. Mazule,

X. Mangote, M. Fu, L. Zerrad, M. Gallais, and . Commandré, Simonas Kicas, and Ramutis Drazdys. Characterization of zirconia-and niobia-silica mixture coatings produced by ion-beam sputtering, 2011.

. Benoit-mangote, Tenue au flux des couches minces optiques en régime subpicoseconde

I. Marseille, , 2011.

I. B. Angelov, M. Von-pechmann, M. K. Trubestov, F. Krausz, and V. Pervak, Optical breakdown of multilayer thin-films induced by ultrashort pulses at MHz repetition rates, Opt. Express, vol.21, issue.25, pp.31453-31461, 2013.

M. Sozet, S. Bouillet, J. Berthelot, J. Néauport, L. Lamaignère et al., Sub-picosecond laser damage growth on high reflective coatings for high power applications, Opt. Express, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01622286

S. Melchoir and -. Bonnet, The Mirror: a history, 2014.

N. Kaiser, Keynote presentation: New trends and developments in the field of optical interference coatings, OSA Opitcal Interference Coatings Conference, 2019.

H. K. Pulker, Optical interference coatings, chapter Film Deposition Methods, pp.131-154

. Springer, , 2003.

C. J. Stolz, L. M. Sheehan, M. K. Von-gunten, R. P. Bevis, and D. J. Smith, Advantages of evaporation of hafnium in a reactive environment for manufacture of high-damage threshold multilayer coatings by electronbeam deposition, Proc. SPIE, vol.3738, pp.318-324, 1999.

N. Kaiser and H. K. Pulker, Optical interference Coatings, 2003.

K. H. Guenther, Microstructure of vapor-deposited optical coatings, Appl. Opt, vol.23, issue.21, 1984.

G. N. Strauss, Optical Interference coatings, chapter Mechanical Stress in Optical Coatings, pp.207-230, 2003.

M. Matthew, L. Braun, and . Pilon, Effective optical properties of non-absorbing nanoporous thin films, Thin Solid Films, vol.496, pp.505-514, 2006.

C. J. Stolz, R. A. Negres, and E. Feigenbaum, Trends observed in ten years of thin film laser damage competitions, OSA Optical Interference Coating Conference, 2019.

B. Cimma, D. Forest, and P. Ganau,

J. Michel, N. Montorio, R. Morgado, L. Pignard, A. Pinard et al., Ion beam sputtering coatings on large substrates: toward an improvement of the mechanical and optical performances, Applied optics, vol.45, issue.7, 2006.
URL : https://hal.archives-ouvertes.fr/in2p3-00025834

M. J. Webber, Handbook of Optical Materials, vol.154, 2003.

B. Wang and L. Gallais, A theoretical investigation of the laser damage threshold of metal multidielectric mirrors for high power ultrashort application, Opt. Express, vol.21, issue.12, pp.14698-14711, 2013.

D. Schiltz, D. Patel, L. Emmert, C. Baumgarten, B. Reagan et al., Modification of multilayer mirror toplayer design for increased laser damage resistance, Proc SPIE, vol.9237, p.6200, 2014.

G. Abromavicius, R. Buzelis, R. Drazdys, A. Melninkaitis, and V. Sirutkaitis, Influence of electric field distribution on laser induced damage threshold and morphology of high reflectance optical coatings, Proc. SPIE, vol.6720, 2007.

S. Chen, Y. Zhao, Z. Yu, Z. Fang, D. Li et al., Femtosecond laser-induced damage of hfo2/sio2 mirror with different stack structure, Appl. Opt, vol.51, issue.25, pp.6188-6195, 2012.

J. Bellum, ,. E. Field, D. Kletecka, and F. Long, Reactive ion-assisted deposition of e-beam evaporated titanium for high refractive index TiO_2 layers and laser damage resistant, broad bandwidth, high-reflection coatings, Appl. Opt, vol.53, issue.4, pp.205-211, 2014.

H. Becker, D. Tovona, M. Sundermann, L. Jensen, M. Gyamfi et al., Advanced femtosecond laser coatings raise damage threshold, Proc. SPIE, vol.9627, 2015.

S. Chen, Y. Zhao, H. He, and J. Shao, Effects of standing-wave field distribution on femtosecond laserinduced damage in HfO_2/SiO_2 mirror coating. Chin, Opt. Lett, vol.9, issue.8, p.83101, 2011.

D. Patel, D. Schiltz, P. F. Langton, L. Emmert, L. N. Acquaroli et al., Improvements in the laser damage behavior of Ta2O5/SiO2 interference coatings by modification of the top layer design, Proc SPIE, vol.8885, 2013.

J. B. Oliver, P. Kupinski, A. L. Rigatti, A. W. Schmid, J. C. Lambropoulos et al., Stress compensation in hafnia/silica optical coatings by inclusion of alumina layers

, Opt. Express, vol.20, issue.15, pp.16596-16610, 2012.

M. Jupé, M. Lappschies, L. Jensen, K. Starke, and D. Ristau, Improvement in laser irradiation resistance of fs-dielectric opticsusing silica mixtures, vol.6403, p.64031, 2006.

L. O. Jensen, M. Mende, H. Blaschke, D. Ristau, D. Nguyen et al., Investigation on SiO_2/HfO__2 mixture for nanosecond and femtosecond pulses. In SPIE, editor, Laser Induced damage in Optical Material, vol.7842, p.784207, 2010.

F. Demichelis, E. Mezzetti-minetti, L. Tallone, and E. Tresso, Optimization of optical parameters and electric field distribution in multilayers, 1984.

A. V. Tikhonravov, M. K. Trubetskov, and G. W. Debell, Application of the needle optimization technique to the design of optical coatings, Appl. Optics, vol.35, issue.28, pp.5493-5508, 1996.

A. V. Tikhonravov, M. K. Trubetskov, and G. W. Debell, Optical coating design approaches based on the needle optimization technique, Appl. Optics, vol.46, issue.5, pp.704-710, 2007.

A. V. Tikhonravov and M. K. Trubetskov, OptiLayer Thin Film Software Manual. OptiLayer GmbH, 2015.

Y. Shi, W. Li, A. Raman, and S. Fan, Optimization of multilayer optical films with memetic algorithm and mixed integer programming, ACS Photonics, vol.5, issue.3, p.155, 2017.

J. B. Oliver, Impact of deposition-rate fluctuation on thin film thicknes and uniformity, Opt. Lett, vol.41, issue.22, pp.5182-5185, 2016.

, Guide to the expression of uncertainty in measurement (GUM), JCGM, 2008.

, International vocabulary of metrology -Basic and general concepts and associated terms (VIM), JCGM, 2012.

M. Sozet, Étude de l'endommagement laser des composants réflectifs en régime sub-picoseconde

, École centrale Marseille École Doctorale and Physique and et Sciences and de la Matière, 2016.

M. Sozet, J. Néauport, E. Lavastre, N. Roquin, L. Gallais et al., Assessment of mono-shot measurement as a fast and accurate determination of the laser-induced damage threshold in the sub-picosecond regime, Opt. Lett, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01313486

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau et al., Opt. Eng, vol.44, p.51107, 2005.

A. A. Kozlov, S. Papernov, J. B. Oliver, A. Rigatti, B. Taylor et al., Study of the picosecond laser damage in HfO2/SiO2 based thin-film coatings in vacuum, Proc. SPIE: Laser-induced damage in Optical Materials, vol.10014, 2016.

L. Lamaignère, A. Ollé, M. Chorel, N. Roquin, A. A. Kozlov et al.,

S. G. Hoffman, L. Demos, A. Gallais, and . Melninkaitis, Round-robin measurement of optical coatings laser-induced damage threshold in the subpicosecond range, to be plushied in SPIE Laser-Induced Damage 2019 : annual symposium on optical materials for High-power lasers, 2019.

, Refractive index information website, 2019.

M. Chorel, S. Papernov, A. A. Kozlov, B. N. Hoffman, J. B. Oliver et al.,

L. Lavastre, N. Lamaignère, B. Roquin, N. Bousquet, J. Bonod et al., Influence of absorption-edge properties on subpicosecond intrinsic laser-damage threshold at 1053 nm in hafnia and silica monolayers, Opt. Express, vol.27, issue.10, pp.16922-16934, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02398339

J. Tauc, R. Grigorovici, and A. Vancu, Optical properties and electronic structure of amorphous germanium, phys. stat. sol, vol.15, issue.627, 1966.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore et al., Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses, Phys. Rev. Lett, vol.74, pp.2248-2251, 1995.

L. A. Emmert, M. Mero, and W. Rudolph, Modeling the effect of native and laser induced states on the dielectric breakdown of wide band gap optical material by multilple subpicosecond pulses, Journal of Appl

. Phys, , vol.108, 2010.

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver et al., Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy, Journal of Appl. Phys, vol.109, pp.1-7, 2011.

S. Papernov, M. D. Brunsman, J. B. Oliver, B. N. Hoffman, A. A. Kozlov et al., Optical properties of oxygen vacancies in HfO2 thin films studied by absorption and luminescence spectroscopy

, Opt. Express, vol.26, issue.13, p.156, 2018.

S. Papernov, Spectroscopic set-up for submicrometric resolution mapping of low-signal absorption and luminescence using photothermal heterodyne imaging and photon-counting techniques, Appl. Opt, vol.58, issue.14, pp.3908-3912, 2019.

L. O. Jensen, M. Jupé, H. Mädebach, H. Ehlers, K. Starke et al., Damage threshold investigations of high-power laser optics under atmospheric and vacuum conditions, Boulder Damage Symposium XXXVIII: Annual Symposium on Optical Materials for High Power Lasers, volume Proc. SPIE 6403, 2006.

W. Riede, P. Allenspacher, L. Jense, and M. Jupé, Analysis of the air-vacuum effect in dielectric coatings, Boulder Damage Symposium XL Annual Symposium on Optical Materials for High Power Lasers, vol.71320, 2008.

R. R. Austin, R. Michaud, A. H. Guenther, and J. Putman, Effects of structure, composition, and stress on the laser damage threshold of homogeneous and inhomogeneouss ingle films and multilayers, Appl. Opt, vol.12, issue.4, pp.665-675, 1973.

L. O. Jensen, T. B¨ontgen, H. Kessler, and D. Ristau, Effects of film stress in laser-induced damage, Laser-Induced Damage in Optical Materials 2018: 50th Anniversary Conference, volume Proc. SPIE 10805, 2018.

C. Gingreau, T. Lanternier, L. Lamaignère, T. Donval, R. Courchinoux et al., Impact of mechanical stress induced in silica vacuum windows on laser-induced damage, Opt. Lett, vol.43, issue.8, pp.1706-1709, 2018.

, Improved optical and resistance of broadband chirped mirrors, OSA Optical Interference Coating Conference 2019, number ThB6, 2019.

J. Néauport, E. Lavastre, G. Razé, G. Dupuy, N. Bonod et al., Effect of electric field on laser induced damage threshold of multilayer dielectric gratings, Opt. Express, vol.15, issue.19, pp.12508-12522, 2007.