F. Hildebrand, Biomaterials -a history of 7000 years, BioNanoMaterials, vol.14, p.119, 2013.

A. and C. , A dictionary of world mythology, 1986.

J. D. Irish, A 5,500-Year-Old Artificial Human Tooth from Egypt: A Historical Note, Int. J. Oral Maxillofac. Implants, vol.19, pp.645-647, 2004.

, 000-Year-Old Artificial Eye Found on Iran-Afghan Border". foxnews, London Times, vol.5, 2007.

D. F. Williams, Definitions in biomaterials, J. Polym. Sci. Part C Polym. Lett, vol.26, p.414, 1987.

B. D. Ratner and S. J. Bryant, Biomaterials: Where We Have Been and Where We Are Going, Annu. Rev. Biomed. Eng, vol.6, pp.41-75, 2004.

N. Alwall, Historical Perspective on the Development of the Artificial Kidney, Artif. Organs, vol.10, pp.86-99, 1986.

S. J. Mellon, A. D. Liddle, and H. Pandit, Hip replacement: Landmark surgery in modern medical history, Maturitas, vol.75, pp.221-226, 2013.

C. A. Engh, A. M. Young, C. A. Engh-sr, and R. H. Hopper, Clinical consequences of stress shielding after porous-coated total hip arthroplasty, Clin. Orthop. Relat. Res, vol.417, pp.157-163, 2003.

M. Ridzwan, S. Shuib, A. Y. , H. Ahmed-shokri, A. Ibrahim et al., Problem of Stress Shielding and Improvement to the Hip Implant Designs: A, Review. Journal of Medical Sciences, vol.7, 2007.

R. M. Nerem, Tissue engineering in the USA, Med. Biol. Eng. Comput, vol.30, pp.8-12, 1992.

R. Langer and J. P. Vacanti, Tissue engineering. Science, vol.260, pp.920-926, 1993.

F. Port and . Optn/, SRTS annual report. Sci. Regist. Transpl. Recip. Organ Procure. Transplant. Network, 2002.

, Share & Trends Analysis Report By Application (Cord Blood & Cell Banking, 2018.

G. W. Hastings, Definitions in biomaterials: progress in biomedical engineering 4, p.72, 1987.

G. U. Auffarth, A. Golescu, K. A. Becker, and H. E. Völcker, Quantification of posterior capsule opacification with round and sharp edge intraocular lenses, Ophthalmology, vol.110, pp.772-780, 2003.

D. F. Williams, On the mechanisms of biocompatibility, Biomaterials, vol.29, pp.2941-2953, 2008.

D. F. Williams, Biocompatibility Pathways: Biomaterials-Induced Sterile Inflammation, Mechanotransduction, and Principles of Biocompatibility Control, ACS Biomater. Sci. Eng, vol.3, pp.2-35, 2017.

S. M. Nalluri, Hydrophilic polyurethane matrix promotes chondrogenesis of mesenchymal stem cells, Mater. Sci. Eng. C, vol.54, pp.182-195, 2015.

K. Kojio, S. Kugumiya, Y. Uchiba, Y. Nishino, and M. Furukawa, The microphase-separated structure of polyurethane bulk and thin films, Polym. J, vol.41, p.118, 2009.

A. Testouri, Generation of Crystalline Polyurethane Foams Using Millifluidic Lab-on-a-Chip Technologies, Adv. Eng. Mater, vol.15, pp.1086-1098, 2013.

K. Ashida, Polyurethane and related foams: chemistry and technology, 2006.

H. Inoue, K. Fujimoto, Y. Uyama, and Y. Ikada, Ex vivo and in vivo evaluation of the blood compatibility of surface-modified polyurethane catheters, J. Biomed. Mater. Res. An Off. J. Soc. Biomater. Japanese Soc. Biomater, vol.35, pp.255-264, 1997.

W. J. Der-giessen, Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary arteries, Circulation, vol.94, pp.1690-1697, 1996.

Y. Marois, In vivo evaluation of hydrophobic and fibrillar microporous polyetherurethane urea graft, Biomaterials, vol.10, pp.521-531, 1989.

H. J. Fabris, Thermal and oxidative stability of urethanes, Adv. urethane Sci. Technol, vol.6, pp.173-196, 1978.

Q. H. Zhao, Human plasma $?$2-macroglobulin promotes in vitro oxidative stress cracking of Pellethane 2363-80A: In vivo and in vitro correlations, J. Biomed. Mater. Res, vol.27, pp.379-388, 1993.

J. A. Hunt, B. F. Flanagan, P. J. Mclaughlin, I. Strickland, and D. F. Williams, Effect of biomaterial surface charge on the inflammatory reponse: Evaluation of cellular infiltration and TNF$?$ production, J. Biomed. Mater. Res. An Off. J. Soc. Biomater. Japanese Soc. Biomater, vol.31, pp.139-144, 1996.

S. C. Neves, R. F. Pereira, M. Araújo, and C. Barrias, , pp.101-125, 2018.

P. B. Malafaya, G. A. Silva, and R. L. Reis, Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications, Adv. Drug Deliv. Rev, vol.59, pp.207-233, 2007.

C. H. Lee, A. Singla, and Y. Lee, Biomedical applications of collagen, Int. J. Pharm, vol.221, pp.1-22, 2001.

E. Caló and V. V. Khutoryanskiy, Biomedical applications of hydrogels: A review of patents and commercial products, Eur. Polym. J, vol.65, pp.252-267, 2015.

S. Gerecht, Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells, Proc. Natl. Acad. Sci, vol.104, pp.11298-11303, 2007.

J. Elisseeff, A. Ferran, S. Hwang, S. Varghese, and Z. Zhang, The Role of Biomaterials in Stem Cell Differentiation: Applications in the Musculoskeletal System, Stem Cells Dev, vol.15, pp.295-303, 2006.

M. I. Sabir, X. Xu, and L. Li, A review on biodegradable polymeric materials for bone tissue engineering applications, J. Mater. Sci, vol.44, pp.5713-5724, 2009.

J. Lehn, Supramolecular Chemistry-Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture), Angew. Chemie Int. Ed. English, vol.27, pp.89-112, 1988.

T. G. Van-tienen, Tissue ingrowth and degradation of two biodegradable porous polymers with different porosities and pore sizes, Biomaterials, vol.23, pp.1731-1738, 2002.

T. G. Tienen, Replacement of the knee meniscus by a porous polymer implant: a study in dogs, Am. J. Sports Med, vol.34, pp.64-71, 2006.

A. Matsiko, J. P. Gleeson, and F. J. O'brien, Scaffold Mean Pore Size Influences Mesenchymal Stem Cell Chondrogenic Differentiation and Matrix Deposition, Tissue Eng. Part A, vol.21, pp.486-497, 2014.

J. Yang, Fabrication and surface modification of macroporous poly (L-lactic acid) and poly (L-lactic-co-glycolic acid)(70/30) cell scaffolds for human skin fibroblast cell culture, J. Biomed. Mater. Res. An Off. J. Soc. Biomater. Japanese Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater, vol.62, pp.438-446, 2002.

H. Wang, J. Pieper, F. Péters, C. A. Van-blitterswijk, and E. N. Lamme, Synthetic scaffold morphology controls human dermal connective tissue formation, J. Biomed. Mater. Res. Part A, vol.74, pp.523-532, 2005.

I. Bru?auskait?, D. Bironait?, E. Bagdonas, and E. Bernotien?, Scaffolds and cells for tissue regeneration: different scaffold pore sizes-different cell effects, Cytotechnology, vol.68, pp.355-369, 2016.

B. Feng, The effect of pore size on tissue ingrowth and neovascularization in porous bioceramics of controlled architecture in vivo, Biomed. Mater, vol.6, p.15007, 2011.

L. R. Madden, Proangiogenic scaffolds as functional templates for cardiac tissue engineering, Proc. Natl. Acad. Sci. U. S. A, vol.107, pp.15211-15217, 2010.

A. J. Marshall, Biomaterials with tightly controlled pore size that promote vascular in-growth, Polym. Prepr, vol.45, pp.100-101, 2004.

T. S. Karande, J. L. Ong, and C. M. Agrawal, Diffusion in musculoskeletal tissue engineering scaffolds: design issues related to porosity, permeability, architecture, and nutrient mixing, Ann. Biomed. Eng, vol.32, pp.1728-1743, 2004.

M. Descamps, Manufacture of macroporous ??-tricalcium phosphate bioceramics, J. Eur. Ceram. Soc, vol.28, pp.149-157, 2008.

G. Lutzweiler, Modulation of Cellular Colonization of Porous Polyurethane scaffolds via the control of pore interconnection size and nanoscale surface modifications, ACS Appl. Mater. Interfaces, 2019.
URL : https://hal.archives-ouvertes.fr/inserm-02145504

X. Xiao, The promotion of angiogenesis induced by three-dimensional porous betatricalcium phosphate scaffold with different interconnection sizes via activation of PI3K/Akt pathways, Sci. Rep, vol.5, p.9409, 2015.

S. Choi, Y. Zhang, and Y. Xia, Three-dimensional scaffolds for tissue engineering: the importance of uniformity in pore size and structure, Langmuir, vol.26, pp.19001-19006, 2010.

J. M. Kemppainen and S. J. Hollister, Differential effects of designed scaffold permeability on chondrogenesis by chondrocytes and bone marrow stromal cells, Biomaterials, vol.31, pp.279-287, 2010.

M. Costantini, Correlation between porous texture and cell seeding efficiency of gas foaming and micro fluidic foaming scaffolds, vol.62, pp.668-677, 2016.

M. Rumpler, A. Woesz, J. W. Dunlop, J. T. Van-dongen, and P. Fratzl, The effect of geometry on three-dimensional tissue growth, J. R. Soc. Interface, vol.5, pp.1173-1180, 2008.

Y. Guyot, A computational model for cell/ECM growth on 3D surfaces using the level set method: a bone tissue engineering case study, Biomech. Model. Mechanobiol, vol.13, pp.1361-1371, 2014.

C. M. Bidan, Geometry as a Factor for Tissue Growth: Towards Shape Optimization of Tissue Engineering Scaffolds, Adv. Healthc. Mater, vol.2, pp.186-194, 2013.

L. J. Gibson and M. F. Ashby, Cellular solids: structure and properties, 1999.

Y. Haiying, W. M. Howard, H. W. Paul, and Y. Shang-you, Effect of Porosity and Pore Size on Microstructures and Mechanical Properties of Poly-e-Caprolactone-Hydroxyapatite Composites, J. Biomed. Mater. Res. Part B Appl. Biomater, vol.86, pp.541-547, 2008.

J. M. Sobral, S. G. Caridade, R. A. Sousa, J. F. Mano, and R. L. Reis, Three-dimensional plotted scaffolds with controlled pore size gradients: effect of scaffold geometry on mechanical performance and cell seeding efficiency, Acta Biomater, vol.7, pp.1009-1018, 2011.

W. L. Murphy, D. H. Kohn, and D. J. Mooney, Growth of continuous bonelike mineral within porous poly (lactide-co-glycolide) scaffolds in vitro, J. Biomed. Mater. Res. An Off. J. Soc. Biomater. Japanese Soc. Biomater, vol.50, pp.50-58, 2000.

A. L. Hook, High throughput methods applied in biomaterial development and discovery, Biomaterials, vol.31, pp.187-198, 2010.

C. Hepburn and . Polyurethane, , 2012.

R. Briones, L. Serrano, R. Llano-ponte, and J. Labidi, Polyols obtained from solvolysis liquefaction of biodiesel production solid residues, Chem. Eng. J, vol.175, pp.169-175, 2011.

M. Modesti and A. Lorenzetti, An experimental method for evaluating isocyanate conversion and trimer formation in polyisocyanate--polyurethane foams, Eur. Polym. J, vol.37, pp.949-954, 2001.

L. Aubert, Collagen-based medical device as a stem cell carrier for regenerative medicine, Int. J. Mol. Sci, vol.18, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02163909

A. J. Marshall and B. D. Ratner, Quantitative characterization of sphere-templated porous biomaterials, AIChE J, vol.51, pp.1221-1232, 2005.

P. Lindner and T. Zemb, Neutron, X-ray and light scattering: introduction to an investigative tool for colloidal and polymeric systems, 1991.

D. W. Van-krevelen and K. .-&-te-nijenhuis, Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions, 2009.

, Selected Applications: A Review, Adv. Eng. Mater, vol.20, p.1800252, 2018.

A. G. Evans, J. W. Hutchinson, and M. F. Ashby, Multifunctionality of cellular metal systems, Prog. Mater. Sci, vol.43, pp.171-221, 1998.

M. Inagaki, J. Qiu, and Q. Guo, Carbon foam: Preparation and application, Carbon N. Y, vol.87, pp.128-152, 2015.

L. Glicksman, M. Schuetz, and M. Sinofsky, Radiation heat transfer in foam insulation, Int. J. Heat Mass Transf, vol.30, pp.187-197, 1987.

I. Cantat, S. Cohen-addad, F. Elias, F. Graner, R. Hohler et al., Foams: Structure and Dynamics, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01390071

H. Janik and M. Marzec, A review: Fabrication of porous polyurethane scaffolds, Mater. Sci. Eng. C, vol.48, pp.586-591, 2015.

E. C. Hammel, O. L. Ighodaro, . .-r, and O. I. Okoli, Processing and properties of advanced porous ceramics: An application based review, Ceram. Int, vol.40, pp.15351-15370, 2014.

M. S. Silverstein, N. R. Cameron, and M. A. , Porous Polymers, 2011.

J. Banhart, Manufacture, characterisation and application of cellular metals and metal foams, Prog. Mater. Sci, vol.46, pp.559-632, 2001.

V. H. Trinh, Tuning membrane content of sound absorbing cellular foams: Fabrication, experimental evidence and multiscale numerical simulations, Mater. Des, vol.162, pp.345-361, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01949817

D. Jahani, Open-cell cavity-integrated injection-molded acoustic polypropylene foams, Mater. Des, vol.53, pp.20-28, 2014.

H. Ke, Y. Donghui, H. Siyuan, and H. Deping, Acoustic absorption properties of open-cell Al alloy foams with graded pore size, J. Phys. D. Appl. Phys, vol.44, p.365405, 2011.

J. .. Richardson, Y. Peng, and D. Remue, Properties of ceramic foam catalyst supports: pressure drop, Appl. Catal. A Gen, vol.204, pp.19-32, 2000.

V. Langlois, Permeability of solid foam: Effect of pore connections, Phys. Rev. E, vol.97, p.53111, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01818152

G. Lutzweiler, Modulation of Cellular Colonization of Porous Polyurethane scaffolds via the control of pore interconnection size and nanoscale surface modifications, ACS Appl. Mater. Interfaces, 2019.
URL : https://hal.archives-ouvertes.fr/inserm-02145504

M. Costantini, Correlation between porous texture and cell seeding ef fi ciency of gas foaming and micro fl uidic foaming scaffolds, vol.62, pp.668-677, 2016.

L. R. Madden, Proangiogenic scaffolds as functional templates for cardiac tissue engineering, Proc. Natl. Acad. Sci. U. S. A, vol.107, pp.15211-15217, 2010.

S. W. Choi, Y. Zhang, M. R. Macewan, and Y. Xia, Neovascularization in Biodegradable Inverse Opal Scaffolds with Uniform and Precisely Controlled Pore Sizes, Adv. Healthc. Mater, vol.2, pp.145-154, 2013.

E. R. Ussman, M. I. Alpin, J. E. Uster, R. A. Oon, and B. U. Atner, Porous Implants Modulate Healing and Induce Shifts in Local Macrophage Polarization in the Foreign Body Reaction, vol.42, pp.1508-1516, 2014.

S. Andrieux, W. Drenckhan, and C. Stubenrauch, Generation of Solid Foams with Controlled Polydispersity Using Microfluidics, Langmuir, vol.34, pp.1581-1590, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02405739

C. Stubenrauch, A. Menner, A. Bismarck, and W. Drenckhan, Emulsions-und Schaumtemplatierung -vielversprechende Methoden zur Herstellung maßgeschneiderter poröser Polymere, Angew. Chemie, vol.130, pp.10176-10186, 2018.

M. S. Silverstein and . Polyhipes, Recent advances in emulsion-templated porous polymers, Prog. Polym. Sci, vol.39, pp.199-234, 2014.

S. D. Kimmins and N. R. Cameron, Functional Porous Polymers by Emulsion Templating: Recent Advances, Adv. Funct. Mater, vol.21, pp.211-225, 2011.

W. Drenckhan and A. Saint-jalmes, The science of foaming, Adv. Colloid Interface Sci, vol.222, pp.228-259, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01230234

H. Kim, S. Lee, Y. Han, and J. Park, Control of pore size in ceramic foams: Influence of surfactant concentration, Mater. Chem. Phys, vol.113, pp.441-444, 2009.

A. Testouri, Generation of Crystalline Polyurethane Foams Using Millifluidic Lab-on-a-Chip Technologies, Adv. Eng. Mater, vol.15, pp.1086-1098, 2013.

M. Costantini, Highly ordered and tunable polyHIPEs by using microfluidics, J. Mater. Chem. B, vol.2, p.2290, 2014.

K. Yasunaga, R. A. Neff, X. D. Zhang, and C. W. Macosko, Study of Cell Opening in Flexible Polyurethane Foam, J. Cell. Plast, vol.32, pp.427-448, 1996.

D. Tammaro, Validated modeling of bubble growth, impingement and retraction to predict cell-opening in thermoplastic foaming, Chem. Eng. J, vol.287, pp.492-502, 2016.

A. Stein, Sphere templating methods for periodic porous solids, Microporous Mesoporous Mater. 44, vol.45, pp.227-239, 2001.

P. X. Ma and J. Choi, Biodegradable Polymer Scaffolds with Well-Defined Interconnected Spherical Pore Network, Tissue Eng, vol.7, pp.23-33, 2001.

A. J. Marshall and B. D. Ratner, Quantitative characterization of sphere-templated porous biomaterials, AIChE J, vol.51, pp.1221-1232, 2005.

K. and S. L. , SINTERING, densification, grain growth & microstructure, 2005.

S. I. Somo, Pore Interconnectivity Influences Growth Factor-Mediated Vascularization in Sphere-Templated Hydrogels, Tissue Eng. Part C Methods, vol.21, pp.773-85, 2015.

R. Chen, H. Ma, L. Zhang, and J. D. Bryers, Precision-porous templated scaffolds of varying pore size drive dendritic cell activation, Biotechnol. Bioeng, vol.115, pp.1086-1095, 2018.

V. J. Chen and P. X. Ma, Nano-fibrous poly(l-lactic acid) scaffolds with interconnected spherical macropores, Biomaterials, vol.25, pp.2065-2073, 2004.

J. Zhang, H. Zhang, L. Wu, and J. Ding, Fabrication of three dimensional polymeric scaffolds with spherical pores, J. Mater. Sci, vol.41, pp.1725-1731, 2006.

S. Grenier, M. Sandig, and K. Mequanint, Polyurethane biomaterials for fabricating 3D porous scaffolds and supporting vascular cells, J. Biomed. Mater. Res. A, vol.82, pp.802-811, 2007.

K. Takagi, T. Takahashi, K. Kikuchi, and A. Kawasaki, Fabrication of bioceramic scaffolds with ordered pore structure by inverse replication of assembled particles, J. Eur. Ceram. Soc, vol.30, pp.2049-2055, 2010.

K. Zhao, Y. F. Tang, Y. S. Qin, and D. F. Luo, Polymer template fabrication of porous hydroxyapatite scaffolds with interconnected spherical pores, J. Eur. Ceram. Soc, vol.31, pp.225-229, 2011.

M. Descamps, Manufacture of macroporous ?-tricalcium phosphate bioceramics, J. Eur. Ceram. Soc, vol.28, pp.149-157, 2008.

J. Frenkel-&-j, Viscous flow of crystalline bodies under the action of surface tension, J. Phys, vol.9, p.385, 1945.

L. Verbelen, Characterization of polyamide powders for determination of laser sintering processability, Eur. Polym. J, vol.75, pp.163-174, 2016.

O. Pokluda, C. T. Bellehumeur, and J. Vlachopoulos, Modification of Frenkel's model for sintering, AIChE J, vol.43, pp.3253-3256, 1997.

C. T. Bellehumeur, M. Kontopoulou, and J. Vlachopoulos, The role of viscoelasticity in polymer sintering, Rheol. Acta, vol.37, pp.270-278, 1998.

S. T. Milner, Early stages of spreading and sintering, ArXiv, p.5862, 1907.

L. M. Ramírez, S. T. Milner, C. E. Snyder, R. H. Colby, and D. Velegol, Controlled Flats on Spherical Polymer Colloids. Langmuir, vol.26, pp.7644-7649, 2010.

S. Himran, A. Suwono, and G. A. Mansoori, Characterization of alkanes and paraffin waxes for application as phase change energy storage medium, Energy Sources, vol.16, pp.117-128, 1994.

L. D. Landau and E. M. , Fluid Mechanics, 1987.

D. A. Spence, The Hertz contact problem with finite friction, J. Elast, vol.5, pp.297-319, 1975.

M. Rubinstein, Polymer Physics, 2003.

G. Ginot, R. Höhler, S. Mariot, A. Kraynik, and W. Drenckhan, Juggling bubbles in square capillaries: an experimental proof of non-pairwise bubble interactions, Soft Matter, vol.15, pp.4570-4582, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02396401

I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, 2014.

J. M. Karp, P. D. Dalton, and M. S. Shoichet, Scaffolds for Tissue Engineering, MRS Bull, vol.28, pp.301-306, 2003.

V. Karageorgiou and D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials, vol.26, pp.5474-5491, 2005.

D. W. Hutmacher, Scaffolds in tissue engineering bone and cartilage, Biomaterials, vol.21, pp.2529-2543, 2000.

N. E. Vrana, Y. Liu, G. B. Mcguinness, and P. A. Cahill, Characterization of Poly(vinyl alcohol)/Chitosan Hydrogels as Vascular Tissue Engineering Scaffolds, Macromol. Symp, vol.269, pp.106-110, 2008.

N. E. Vrana, Hybrid titanium/biodegradable polymer implants with an hierarchical pore structure as a means to control selective cell movement, PLoS One, vol.6, 2011.

M. Jafari, Polymeric scaffolds in tissue engineering: a literature review, J. Biomed. Mater. Res. -Part B Appl. Biomater, vol.105, pp.431-459, 2017.

M. W. Laschke, Angiogenesis in Tissue Engineering: Breathing Life into Constructed Tissue Substitutes, Tissue Eng, vol.12, pp.2093-2104, 2006.

M. Bil, J. Ryszkowska, and K. J. Kurzyd?owski, Effect of polyurethane composition and the fabrication process on scaffold properties, J. Mater. Sci, vol.44, pp.1469-1476, 2009.

A. E. Hafeman, Injectable Biodegradable Polyurethane Scaffolds with Release of Plateletderived Growth Factor for Tissue Repair and Regeneration, Pharm. Res, vol.25, p.2387, 2008.

Q. Lv and Q. Feng, Preparation of 3-D regenerated fibroin scaffolds with freeze drying method and freeze drying/foaming technique, J. Mater. Sci. Mater. Med, vol.17, pp.1349-1356, 2006.

K. Hung, C. Tseng, and S. Hsu, Synthesis and 3D Printing of Biodegradable Polyurethane Elastomer by a Water-Based Process for Cartilage Tissue Engineering Applications, Adv. Healthc. Mater, vol.3, pp.1578-1587, 2014.

S. H. Oh, T. H. Kim, G. Im, and J. H. Lee, Investigation of pore size effect on chondrogenic differentiation of adipose stem cells using a pore size gradient scaffold, Biomacromolecules, vol.11, pp.1948-1955, 2010.

F. J. O'brien, B. A. Harley, I. V. Yannas, and L. J. Gibson, The effect of pore size on cell adhesion in collagen GAG scaffolds, Biomaterials, vol.26, pp.433-441, 2005.

J. M. Sobral, S. G. Caridade, R. A. Sousa, J. F. Mano, and R. L. Reis, Three-dimensional plotted scaffolds with controlled pore size gradients: Effect of scaffold geometry on mechanical performance and cell seeding efficiency, Acta Biomater, vol.7, pp.1009-1018, 2011.

M. Costantini, Microfluidic Foaming: A Powerful Tool for Tailoring the Morphological and Permeability Properties of Sponge-like Biopolymeric Scaffolds, ACS Appl. Mater. Interfaces, vol.7, pp.23660-23671, 2015.

E. Pamula, The influence of pore size on colonization of poly(l-lactide-glycolide) scaffolds with human osteoblast-like MG 63 cells in vitro, J. Mater. Sci. Mater. Med, vol.19, pp.425-435, 2008.

H. Stenhamre, U. Nannmark, A. Lindahl, P. Gatenholm, and M. Brittberg, Influence of pore size on the redifferentiation potential of human articular chondrocytes in poly(urethane urea) scaffolds, J. Tissue Eng. Regen. Med, vol.5, pp.578-588, 2010.

A. Matsiko, J. P. Gleeson, and F. J. O'brien, Scaffold Mean Pore Size Influences Mesenchymal Stem Cell Chondrogenic Differentiation and Matrix Deposition, Tissue Eng. Part A, vol.21, pp.486-497, 2014.

Y. Reinwald, Interconnectivity and permeability of supercritical fluid-foamed scaffolds and the effect of their structural properties on cell distribution, Polymer (Guildf), vol.55, pp.435-444, 2014.

M. Mastrogiacomo, Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics, Biomaterials, vol.27, pp.3230-3237, 2006.

L. R. Madden, Proangiogenic scaffolds as functional templates for cardiac tissue engineering, Proc. Natl. Acad. Sci. U. S. A, vol.107, pp.15211-15217, 2010.

P. X. Ma and J. Choi, Biodegradable Polymer Scaffolds with Well-Defined Interconnected Spherical Pore Network, Tissue Eng, vol.7, pp.23-33, 2001.

A. Oloffs, Biocompatibility of silver-coated polyurethane catheters and silvercoated Dacron® material, Biomaterials, vol.15, pp.753-758, 1994.

M. W. Laschke, In vivo biocompatibility and vascularization of biodegradable porous polyurethane scaffolds for tissue engineering, Acta Biomater, vol.5, 1991.

Z. Li, S. Yao, M. Alini, and M. J. Stoddart, Chondrogenesis of Human Bone Marrow Mesenchymal Stem Cells in Fibrin-Polyurethane Composites Is Modulated by Frequency and Amplitude of Dynamic Compression and Shear Stress, Tissue Eng. Part A, vol.16, pp.575-584, 2009.

Y. Li and Y. Huang, The study of collagen immobilization on polyurethane by oxygen plasma treatment to enhance cell adhesion and growth, Surf. Coatings Technol, vol.201, pp.5124-5127, 2007.

H. Lin, Synthesis, surface, and cell-adhesion properties of polyurethanes containing covalently grafted RGD-peptides, J. Biomed. Mater. Res, vol.28, pp.329-342, 2018.

B. and M. P. , Mussel-Inspired Surface chemistry for Multifunctionnal Coatings. Science (80-. ), vol.318, pp.426-431, 2007.

S. H. Ku and C. B. Park, Human endothelial cell growth on mussel-inspired nanofiber scaffold for vascular tissue engineering, Biomaterials, vol.31, pp.9431-9437, 2010.

W. B. Tsai, W. T. Chen, H. W. Chien, W. H. Kuo, and M. J. Wang, Poly(dopamine) coating of scaffolds for articular cartilage tissue engineering, Acta Biomater, vol.7, pp.4187-4194, 2011.

S. Grenier, M. Sandig, and K. Mequanint, Polyurethane biomaterials for fabricating 3D porous scaffolds and supporting vascular cells, J. Biomed. Mater. Res. A, vol.82, pp.802-811, 2007.

Q. L. Loh and C. Choong, Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size, Tissue Eng. Part B Rev, vol.19, pp.485-502, 2013.

A. J. Marshall and B. D. Ratner, Quantitative characterization of sphere-templated porous biomaterials, AIChE J, vol.51, pp.1221-1232, 2005.

F. Pennella, A Survey of Methods for the Evaluation of Tissue Engineering Scaffold Permeability, Ann. Biomed. Eng, vol.41, pp.2027-2041, 2013.

J. R. Smith, Standardizing Umbilical Cord Mesenchymal Stromal Cells for Translation to Clinical Use: Selection of GMP-Compliant Medium and a Simplified Isolation Method, Stem Cells Int, p.14, 2016.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nat. Methods, vol.9, pp.671-675, 2012.

M. V. Li and W. , A permeability measurement system for tissue engineering scaffolds, Meas. Sci. Technol, vol.18, p.208, 2007.

J. M. Kemppainen and S. J. Hollister, Differential effects of designed scaffold permeability on chondrogenesis by chondrocytes and bone marrow stromal cells, Biomaterials, vol.31, pp.279-287, 2010.

S. Myung, Y. Yeom, Y. Jang, H. Choi, and D. Cho, Preparation of a reticulated polyurethane foam grafted with poly(acrylic acid) through atmospheric pressure plasma treatment and its lysozyme immobilization, J. Mater. Sci. Mater. Med, vol.16, pp.745-751, 2005.

M. R. Sanchis, O. Calvo, O. Fenollar, D. Garcia, and R. Balart, Characterization of the surface changes and the aging effects of low-pressure nitrogen plasma treatment in a polyurethane film, Polym. Test, vol.27, pp.75-83, 2008.

M. R. Sanchis, O. Calvo, O. Fenollar, D. Garcia, and R. Balart, Surface modification of a polyurethane film by low pressure glow discharge oxygen plasma treatment, J. Appl. Polym. Sci, vol.105, pp.1077-1085, 2007.

D. Vecchia and N. F. , Tris Buffer Modulates Polydopamine Growth, Aggregation, and Paramagnetic Properties, Langmuir, vol.30, pp.9811-9818, 2014.

S. A. Ferreira, Bi-directional cell-pericellular matrix interactions direct stem cell fate, Nat. Commun, vol.9, p.4049, 2018.

K. H. Vining, Synthetic Light-Curable Polymeric Materials Provide a Supportive Niche for Dental Pulp Stem Cells, Adv. Mater, vol.30, p.1704486, 2017.

J. Fan, X. Jia, Y. Huang, B. M. Fu, and Y. Fan, Greater scaffold permeability promotes growth of osteoblastic cells in a perfused bioreactor, J. Tissue Eng. Regen. Med, vol.9, pp.210-218, 2013.

C. J. Galban and B. R. Locke, Analysis of cell growth in a polymer scaffold using a moving boundary approach, Biotechnol. Bioeng, vol.56, pp.422-432, 2000.

F. Bernsmann, Dopamine?Melanin Film Deposition Depends on the Used Oxidant and Buffer Solution, Langmuir, vol.27, pp.2819-2825, 2011.

S. H. Ku, J. S. Lee, and C. B. Park, Spatial Control of Cell Adhesion and Patterning through Mussel-Inspired Surface Modification by Polydopamine, Langmuir, vol.26, pp.15104-15108, 2010.

S. Jo, Enhanced Adhesion of Preosteoblasts inside 3D PCL Scaffolds by Polydopamine Coating and Mineralization, Macromol. Biosci, vol.13, pp.1389-1395, 2013.

P. Davoudi, Biomimetic modification of polyurethane-based nanofibrous vascular grafts: A promising approach towards stable endothelial lining, Mater. Sci. Eng. C, vol.80, pp.213-221, 2017.

K. Yang, Polydopamine-mediated surface modification of scaffold materials for human neural stem cell engineering, Biomaterials, vol.33, pp.6952-6964, 2012.

Y. Chen, Osteogenic and angiogenic potentials of the cell-laden hydrogel/musselinspired calcium silicate complex hierarchical porous scaffold fabricated by 3D bioprinting, Mater. Sci. Eng. C, vol.91, pp.679-687, 2018.

C. Kao, Surface Modification of Calcium Silicate via Mussel-Inspired Polydopamine and Effective Adsorption of Extracellular Matrix to Promote Osteogenesis Differentiation for Bone Tissue Engineering, Materials, vol.11, 2018.

R. O. Hynes, Integrins: versatility, modulation, and signaling in cell adhesion, Cell, vol.69, pp.11-25, 1992.

M. H. Sonntag, J. Schill, and L. Brunsveld, Integrin-Targeting Fluorescent Proteins: Exploration of RGD Insertion Sites, ChemBioChem, vol.18, pp.441-443, 2017.

U. Hersel, C. Dahmen, and H. Kessler, RGD modified polymers: biomaterials for stimulated cell adhesion and beyond, Biomaterials, vol.24, pp.4385-4415, 2003.

C. J. Wilson, R. E. Clegg, D. I. Leavesley, and M. Pearcy, J. Mediation of Biomaterial-Cell Interactions by Adsorbed Proteins: A Review. Tissue Eng, vol.11, pp.1-18, 2005.

K. S. Siow, L. Britcher, S. Kumar, and H. J. Griesser, Plasma methods for the generation of chemically reactive surfaces for biomolecule immobilization and cell colonization-a review, Plasma Process. Polym, vol.3, pp.392-418, 2006.

S. A. Guelcher, Biodegradable Polyurethanes: Synthesis and Applications in Regenerative Medicine, Tissue Eng. Part B Rev, vol.14, pp.3-17, 2008.

P. Vermette, H. J. Griesser, G. Laroche, and R. Guidoin, Biomedical applications of polyurethanes, vol.6, 2001.

Y. Jhon, I. Cheong, and J. Kim, Chain extension study of aqueous polyurethane dispersions, Colloids Surfaces A Physicochem. Eng. Asp, vol.179, pp.71-78, 2001.

H. S. Lee and S. L. Hsu, An analysis of phase separation kinetics of model polyurethanes, Macromolecules, vol.22, pp.1100-1105, 1989.

S. Abouzahr and G. L. Wilkes, Structure property studies of polyester-and polyether-based MDI-BD segmented polyurethanes: Effect of one-vs. two-stage polymerization conditions, J. Appl. Polym. Sci, vol.29, pp.2695-2711, 1984.

B. J. Tyler, B. D. Ratner, D. G. Castner, and D. Briggs, Variations between Biomer TM lots. I. Significant differences in the surface chemistry of two lots of a commercial poly (ether urethane), J. Biomed. Mater. Res, vol.26, pp.273-289, 1992.

Y. Li, T. Gao, and B. Chu, Synchrotron SAXS studies of the phase-separation kinetics in a segmented polyurethane, Macromolecules, vol.25, pp.1737-1742, 1992.

H. N. Ng, A. E. Allegrezza, R. W. Seymour, and S. L. Cooper, Effect of segment size and polydispersity on the properties of polyurethane block polymers, Polymer (Guildf), vol.14, pp.255-261, 1973.

Y. Yuan, Engineering of endothelial cell response on biphasic polyurethane matrix, Technology, vol.4, pp.139-151, 2016.

S. M. Nalluri, Hydrophilic polyurethane matrix promotes chondrogenesis of mesenchymal stem cells, Mater. Sci. Eng. C, vol.54, pp.182-195, 2015.

H. Mi, Properties and fibroblast cellular response of soft and hard thermoplastic polyurethane electrospun nanofibrous scaffolds, J. Biomed. Mater. Res. Part B Appl. Biomater, vol.103, pp.960-970, 2015.

C. Hepburn and . Polyurethane, , 2012.

M. Modesti and A. Lorenzetti, An experimental method for evaluating isocyanate conversion and trimer formation in polyisocyanate--polyurethane foams, Eur. Polym. J, vol.37, pp.949-954, 2001.

L. Aubert, Collagen-based medical device as a stem cell carrier for regenerative medicine, Int. J. Mol. Sci, vol.18, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02163909

P. Lindner and T. Zemb, Neutron, X-ray and light scattering: introduction to an investigative tool for colloidal and polymeric systems, 1991.

D. W. Van-krevelen and K. .-&-te-nijenhuis, Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions, 2009.

G. Lutzweiler, Modulation of Cellular Colonization of Porous Polyurethane scaffolds via the control of pore interconnection size and nanoscale surface modifications, ACS Appl. Mater. Interfaces, 2019.
URL : https://hal.archives-ouvertes.fr/inserm-02145504

R. J. Zdrahala, R. M. Gerkin, S. L. Hager, and F. E. Critchfield, Polyether-based thermoplastic polyurethanes. I. Effect of the hard-segment content, J. Appl. Polym. Sci, vol.24, pp.2041-2050, 1979.

D. E. Discher, P. Janmey, and Y. Wang, Tissue cells feel and respond to the stiffness of their substrate. Science (80-. ), vol.310, pp.1139-1143, 2005.

I. R. Clemitson, Castable polyurethane elastomers, 2015.

M. M. Bernal, M. A. Lopez-manchado, and R. Verdejo, In situ foaming evolution of flexible polyurethane foam nanocomposites, Macromol. Chem. Phys, vol.212, pp.971-979, 2011.

H. Okuto, Studies on the structure of polyurethane elastomers. II. High resolution NMR spectroscopic determination of allophanate and biuret linkages in the cured polyurethane elastomer: Degradation by amine, Die Makromol. Chemie, vol.98, pp.148-163, 1966.

S. C. Yoon and B. D. Ratner, Surface and bulk structure of segmented poly (ether urethanes) with perfluoro chain extenders. 2. FTIR, DSC, and X-ray photoelectron spectroscopic studies, Macromolecules, vol.21, pp.2392-2400, 1988.

H. Lin, Endothelial cell adhesion on polyurethanes containing covalently attached RGDpeptides, Biomaterials, vol.13, pp.905-914, 1992.

Y. Deslandes, G. Pleizier, D. Alexander, and P. Santerre, XPS and SIMS characterisation of segmented polyether polyurethanes containing two different soft segments, Polymer (Guildf), vol.39, pp.2361-2366, 1998.

B. S. Kim, H. Y. Jeong, and B. K. Kim, Surface characterizations of polyurethanes having different types of soft segment, Colloids Surfaces A Physicochem. Eng. Asp, vol.268, pp.60-67, 2005.

K. Nakamae, T. Nishino, S. Asaoka, and . Others, Microphase separation and surface properties of segmented polyurethane-Effect of hard segment content, Int. J. Adhes. Adhes, vol.16, pp.233-239, 1996.

D. K. Chattopadhyay, B. Sreedhar, and K. V. Raju, Influence of varying hard segments on the properties of chemically crosslinked moisture-cured polyurethane-urea, J. Polym. Sci. Part B Polym. Phys, vol.44, pp.102-118, 2006.

L. Ning, W. De-ning, and Y. Sheng-kang, Crystallinity and hydrogen bonding of hard segments in segmented poly(urethane urea) copolymers. Polymer (Guildf), vol.37, pp.3577-3583, 1996.

A. J. Ryan, Dynamics of (micro)phase separation during fast, bulk copolymerization: some synchrotron SAXS experiments, Macromolecules, vol.24, pp.2883-2889, 1991.

S. Velankar and S. L. Cooper, Microphase separation and rheological properties of polyurethane melts. 1. Effect of block length, Macromolecules, vol.31, pp.9181-9192, 1998.

J. T. Koberstein and R. S. Stein, Small-angle X-ray scattering studies of microdomain structure in segmented polyurethane elastomers, J. Polym. Sci. Polym. Phys. Ed, vol.21, pp.1439-1472, 1983.

L. J. Buckley, P. T. Hammond, and M. F. Rubner, A morphological investigation of polyurethane/diacetylene segmented copolymers, Macromolecules, vol.26, pp.2380-2382, 1993.

J. T. Garrett, J. S. Lin, and J. Runt, Influence of preparation conditions on microdomain formation in poly (urethane urea) block copolymers, Macromolecules, vol.35, pp.161-168, 2002.

C. H. Kim, M. S. Khil, H. Y. Kim, H. U. Lee, and K. Y. Jahng, An improved hydrophilicity via electrospinning for enhanced cell attachment and proliferation, J. Biomed. Mater. Res. Part B Appl. Biomater, vol.78, pp.283-290, 2006.

M. R. Alexander and P. Williams, Water contact angle is not a good predictor of biological responses to materials, Biointerphases, vol.12, pp.2-201, 2017.

M. J. Hearn, B. D. Ratner, D. Briggs, and . Sims, XPS studies of polyurethane surfaces. 1. Preliminary studies, vol.21, pp.2950-2959, 1988.

S. Hsu and Y. Kao, Cell Attachment and Proliferation on Poly(carbonate urethanes) with Various Degrees of Nanophase Separation, Macromol. Biosci, vol.4, pp.891-900, 2004.

L. Xu, J. Runt, and C. A. Siedlecki, Dynamics of hydrated polyurethane biomaterials: Surface microphase restructuring, protein activity and platelet adhesion, Acta Biomater, vol.6, pp.1938-1947, 2010.

J. G. Archambault and J. L. Brash, Protein repellent polyurethane-urea surfaces by chemical grafting of hydroxyl-terminated poly (ethylene oxide): effects of protein size and charge, Colloids Surfaces B Biointerfaces, vol.33, pp.111-120, 2004.

T. K. Kwei, Phase separation in segmented polyurethanes, J. Appl. Polym. Sci, vol.27, pp.2891-2899, 1982.

T. Wang and T. Hsieh, Effect of polyol structure and molecular weight on the thermal stability of segmented poly(urethaneureas), Polym. Degrad. Stab, vol.55, pp.95-102, 1997.

K. Gisselfält and B. Helgee, Effect of soft segment length and chain extender structure on phase separation and morphology in poly (urethane urea) s, Macromol. Mater. Eng, vol.288, pp.265-271, 2003.

J. W. Van-bogart, P. E. Gibson, and S. L. Cooper, Structure-property relationships in polycaprolactone-polyurethanes, J. Polym. Sci. Polym. Phys. Ed, vol.21, pp.65-95, 1983.

A. Saiani, Origin of multiple melting endotherms in a high hard block content polyurethane. 2. Structural investigation, Macromolecules, vol.37, pp.1411-1421, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00250169

M. J. Dalby, M. O. Riehle, H. J. Johnstone, S. Affrossman, and A. S. Curtis, Polymer-Demixed Nanotopography: Control of Fibroblast Spreading and Proliferation, Tissue Eng, vol.8, pp.1099-1108, 2002.

M. J. Dalby, The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder, Nat. Mater, vol.6, p.997, 2007.

R. Tzoneva, Fibrinogen adsorption and platelet interactions on polymer membranes, J. Biomater. Sci. Polym. Ed, vol.13, pp.1033-1050, 2002.

T. H. Groth, Protein adsorption, lymphocyte adhesion and platelet adhesion/activation on polyurethane ureas is related to hard segment content and composition, J. Biomater. Sci. Polym. Ed, vol.6, pp.497-510, 1995.

G. Lutzweiler, Modulation of Cellular Colonization of Porous Polyurethane scaffolds via the control of pore interconnection size and nanoscale surface modifications, ACS Appl. Mater. Interfaces, 2019.
URL : https://hal.archives-ouvertes.fr/inserm-02145504

C. M. Murphy, M. G. Haugh, and F. J. O'brien, The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering, Biomaterials, vol.31, pp.461-466, 2010.

K. Sadtler, Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells. Science (80-. ), vol.352, pp.366-370, 2016.

J. M. Anderson, Biological responses to materials, Annu. Rev. Mater. Res, vol.31, pp.81-110, 2001.

D. Eyrich, In Vitro and In Vivo Cartilage Engineering Using a Combination of Chondrocyte-Seeded Long-Term Stable Fibrin Gels and Polycaprolactone-Based Polyurethane Scaffolds, Tissue Eng, vol.13, pp.2207-2218, 2007.

S. Grad, L. Kupcsik, K. Gorna, S. Gogolewski, and M. Alini, The use of biodegradable polyurethane scaffolds for cartilage tissue engineering: Potential and limitations, Biomaterials, vol.24, pp.5163-5171, 2003.

M. Imaninezhad, L. Hill, G. Kolar, K. Vogt, and S. P. Zustiak, Templated Macroporous Polyethylene Glycol Hydrogels for Spheroid and Aggregate Cell Culture, Bioconjug. Chem, vol.30, pp.34-46, 2018.

S. Atzet, S. Curtin, P. Trinh, S. Bryant, and B. Ratner, Degradable poly (2-hydroxyethyl methacrylate)-co-polycaprolactone hydrogels for tissue engineering scaffolds, Biomacromolecules, vol.9, pp.3370-3377, 2008.

M. W. Tibbitt and K. S. Anseth, Hydrogels as extracellular matrix mimics for 3D cell culture, Biotechnol. Bioeng, vol.103, pp.655-663, 2009.

S. Ahmed and S. Ikram, Chitosan based scaffolds and their applications in wound healing, Achiev. life Sci, vol.10, pp.27-37, 2016.

T. Andersen, P. Auk-emblem, and M. Dornish, 3D cell culture in alginate hydrogels. Microarrays, vol.4, pp.133-161, 2015.

J. Glowacki and S. Mizuno, Collagen scaffolds for tissue engineering, Biopolym. Orig. Res. Biomol, vol.89, pp.338-344, 2008.

S. Searle, Hyaluronic acid based hydrogel droplets: A potential injectable cell culture scaffold, EUROoC, vol.24, p.35, 2018.

A. Kaiser, A. Kale, E. Novozhilova, and P. Olivius, The effects of Matrigel®on the survival and differentiation of a human neural progenitor dissociated sphere culture, Anat. Rec, 2019.

C. Yan and D. J. Pochan, Rheological properties of peptide-based hydrogels for biomedical and other applications, Chem. Soc. Rev, vol.39, pp.3528-3540, 2010.

M. Zhu, Gelatin methacryloyl and its hydrogels with an exceptional degree of controllability and batch-to-batch consistency, Sci. Rep, vol.9, 2019.

B. L. Ekerdt, Thermoreversible Hyaluronic Acid-PNIPAAm Hydrogel Systems for 3D Stem Cell Culture, Adv. Healthc. Mater, vol.7, p.1800225, 2018.

A. D. Martin, A. B. Robinson, and P. Thordarson, Biocompatible small peptide superhydrogelators bearing carbazole functionalities, J. Mater. Chem. B, vol.3, pp.2277-2280, 2015.

M. Criado-gonzalez, Enzyme-assisted self-assembly within a hydrogel induced by peptide diffusion, Chem. Commun, vol.55, pp.1156-1159, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02157051

P. W. Frederix, Exploring the sequence space for (tri-) peptide self-assembly to design and discover new hydrogels, Nat. Chem, vol.7, p.30, 2015.

D. J. Adams, L. M. Mullen, M. Berta, L. Chen, and W. J. Frith, Relationship between molecular structure, gelation behaviour and gel properties of Fmoc-dipeptides, Soft Matter, vol.6, pp.1971-1980, 2010.

H. Cox, M. Cao, H. Xu, T. A. Waigh, and J. R. Lu, Active Modulation of States of Prestress in Self-Assembled Short Peptide Gels, Biomacromolecules, vol.20, pp.1719-1730, 2019.

R. S. Jacob, Self healing hydrogels composed of amyloid nano fibrils for cell culture and stem cell differentiation, Biomaterials, vol.54, pp.97-105, 2015.

A. L. Sieminski, C. E. Semino, H. Gong, and R. D. Kamm, Primary sequence of ionic selfassembling peptide gels affects endothelial cell adhesion and capillary morphogenesis, J. Biomed. Mater. Res. Part A An Off. J. Soc. Biomater. Japanese Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater, vol.87, pp.494-504, 2008.

P. W. Kopesky, E. J. Vanderploeg, J. S. Sandy, B. Kurz, and A. J. Grodzinsky, Self-assembling peptide hydrogels modulate in vitro chondrogenesis of bovine bone marrow stromal cells, Tissue Eng. Part A, vol.16, pp.465-477, 2009.

M. Zhou, Self-assembled peptide-based hydrogels as scaffolds for anchorage-dependent cells, Biomaterials, vol.30, pp.2523-2530, 2009.

K. M. Galler, L. Aulisa, K. R. Regan, R. N. Souza, and J. D. Hartgerink, Self-assembling multidomain peptide hydrogels: designed susceptibility to enzymatic cleavage allows enhanced cell migration and spreading, J. Am. Chem. Soc, vol.132, pp.3217-3223, 2010.

M. M. Harper, Cell Culture on Self-Assembling Peptide Gels BT -Peptide Self-Assembly: Methods and Protocols, pp.283-303, 2018.

E. Alakpa, Tunable supramolecular hydrogels for selection of lineage-guiding metabolites in stem cell cultures, vol.1, pp.298-319, 2016.

M. Alini, The potential and limitations of a cell-seeded collagen/hyaluronan scaffold to engineer an intervertebral disc-like matrix. Spine (Phila, vol.28, pp.446-453, 1976.

R. Jin and P. J. Dijkstra, Hydrogels for tissue engineering applications, Biomedical applications of hydrogels handbook, pp.203-225, 2010.

L. Aubert, Collagen-based medical device as a stem cell carrier for regenerative medicine, Int. J. Mol. Sci, vol.18, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02163909

R. L. Surmaitis, C. J. Arias, and J. B. Schlenoff, Stressful Surfaces: Cell Metabolism on a Poorly Adhesive Substrate, Langmuir, vol.34, pp.3119-3125, 2018.

A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, Matrix Elasticity Directs Stem Cell Lineage Specification. Cell, vol.126, pp.677-689, 2006.

S. A. Ferreira, Bi-directional cell-pericellular matrix interactions direct stem cell fate, Nat. Commun, vol.9, p.4049, 2018.

H. Im, S. H. Kim, S. H. Kim, and Y. Jung, Skin regeneration with a Scaffold of predefined shape and bioactive peptide hydrogels, Tissue Eng. Part A, vol.24, pp.1518-1530, 2018.

M. A. Bokhari, G. Akay, S. Zhang, and M. A. Birch, The enhancement of osteoblast growth and differentiation in vitro on a peptide hydrogel-polyHIPE polymer hybrid material, Biomaterials, vol.26, pp.5198-5208, 2005.

K. C. Rustad, Enhancement of mesenchymal stem cell angiogenic capacity and stemness by a biomimetic hydrogel scaffold, Biomaterials, vol.33, pp.80-90, 2012.

J. Jiang, Bioactive Stratified Polymer Ceramic-Hydrogel Scaffold for Integrative Osteochondral Repair, Ann. Biomed. Eng, vol.38, pp.2183-2196, 2010.

J. Kisiday, Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: Implications for cartilage tissue repair, Proc. Natl. Acad. Sci. 99, pp.9996-10001, 2002.

B. C. Isenberg, P. A. Dimilla, M. Walker, S. Kim, and J. Y. Wong, Vascular Smooth Muscle Cell Durotaxis Depends on Substrate Stiffness Gradient Strength, Biophys. J, vol.97, pp.1313-1322, 2009.

F. Mwale, D. Stachura, P. Roughley, and J. Antoniou, Limitations of using aggrecan and type X collagen as markers of chondrogenesis in mesenchymal stem cell differentiation, J. Orthop. Res, vol.24, pp.1791-1798, 2006.

S. P. Grogan, Identification of markers to characterize and sort human articular chondrocytes with enhanced in vitro chondrogenic capacity, Arthritis Rheum. Off. J. Am. Coll. Rheumatol, vol.56, pp.586-595, 2007.

C. Loebel, R. L. Mauck, and J. A. Burdick, Local nascent protein deposition and remodelling guide mesenchymal stromal cell mechanosensing and fate in three-dimensional hydrogels, Nat. Mater, 2019.

R. N. Shah, Supramolecular design of self-assembling nanofibers for cartilage regeneration, Proc. Natl. Acad. Sci, vol.107, pp.3293-3298, 2010.

A. Ranga, 3D niche microarrays for systems-level analyses of cell fate, Nat. Commun, vol.5, p.4324, 2014.

S. Ustun, A. Tombuloglu, M. Kilinc, M. O. Guler, and A. B. Tekinay, Growth and differentiation of prechondrogenic cells on bioactive self-assembled peptide nanofibers, Biomacromolecules, vol.14, pp.17-26, 2012.

J. E. Kim, Effect of self-assembled peptide--mesenchymal stem cell complex on the progression of osteoarthritis in a rat model, Int. J. Nanomedicine, vol.9, p.141, 2014.

M. B. Goldring, K. Tsuchimochi, and K. Ijiri, The control of chondrogenesis, J. Cell. Biochem, vol.97, pp.33-44, 2006.

, Enfin, des tests in-vivo permettraient d'évaluer si les paramètres architecturaux (tailles des pores et des