A. Delort, M. Vaïtilingom, P. Amato, M. Sancelme, M. Parazols et al.,

L. Guillaume, A short overview of the microbial population in clouds : Potential roles in atmospheric chemistry and nucleation processes, Atmos. Res, vol.98, p.17, 2010.

C. Kato, L. Li, Y. Nogi, Y. Nakamura, J. Tamaoka et al., Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11,000 meters, Appl. Environ. Microbiol, vol.64, p.17, 1998.

R. Sender, S. Fuchs, and R. Milo, Are We Really Vastly Outnumbered ? Revisiting the Ratio of Bacterial to Host Cells in Humans, Cell, vol.164, p.17, 2016.

J. A. Gilbert, M. J. Blaser, J. G. Caporaso, J. K. Jansson, S. V. Lynch et al., Current understanding of the human microbiome, Nat. Med, vol.24, p.17, 2018.

E. Van, D. Neefjes, and J. , Bacterial infections and cancer, EMBO reports, vol.19, p.17, 2018.

H. Wisplinghoff, T. Bischoff, S. M. Tallent, H. Seifert, R. P. Wenzel et al., Nosocomial Bloodstream Infections in US Hospitals : Analysis of 24,179 Cases from a Prospective Nationwide Surveillance Study

, Clin. Infect. Dis, vol.39, p.17, 2004.

L. Vitetta, D. Kenner, and A. Sali, Bacterial Infections in Terminally Ill Hospice Patients, J. Pain Symptom Manage, vol.20, p.17, 2000.

V. Thai, F. Lau, G. Wolch, J. Yang, H. Quan et al., Impact of Infections on the Survival of Hospitalized Advanced Cancer Patients, J. Pain Symptom Manage, vol.43, p.17, 2012.

H. A. Khan, F. K. Baig, and R. Mehboob, Nosocomial infections : Epidemiology, prevention, control and surveillance, Asian Pacific Journal of Tropical Biomedicine, vol.7, p.17, 2017.

P. Perez-chaparro, V. Meuric, G. D. Mello, and M. Bonnaure-mallet, Bactériémies d'origine buccale, Rev. Stomatol. Chir. Maxillofac, vol.112, p.17, 2011.

H. Minasyan, Sepsis : mechanisms of bacterial injury to the patient, Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, vol.27, p.18, 2019.

H. Minasyan, Mechanisms and pathways for the clearance of bacteria from blood circulation in health and disease, Pathophysiology, vol.23, p.18, 2016.

J. Chalmeau, N. Monina, J. Shin, C. Vieu, and V. Noireaux, Hemolysin pore formation into a supported phospholipid bilayer using cell-free expression, Biochimica et Biophysica Acta (BBA) -Biomembranes, p.18, 1808.

M. D. Serra, M. Coraiola, G. Viero, M. Comai, C. Potrich et al.,

H. Hlga and H. , Can Form Mixed Pores Containing All Components, J. Chem. Inf. Model, vol.45, p.18, 2005.

E. Klieneberger, The natural occurrence of pleuropneumonia-like organism in apparent symbiosis withStrrptobacillus moniliformis and other bacteria, The Journal of Pathology and Bacteriology, vol.40, p.18, 1935.

E. Klieneberger-nobel and . Origin, Development and Significance of L-forms in Bacterial Cultures, Journal of General Microbiology, vol.3, p.18, 1949.

J. Errington, K. Mickiewicz, Y. Kawai, and L. J. Wu, L-form bacteria, chronic diseases and the origins of life, Philosophical Transactions of the Royal Society B : Biological Sciences, p.18, 2016.

D. A. Devine, P. D. Marsh, R. S. Percival, M. Rangarajan, and M. A. Curtis, Modulation of antibacterial peptide activity by products of Porphyromonas gingivalis and Prevotella spp, Microbiology, vol.145, p.18, 1999.

N. Markova, G. Slavchev, and L. Michailova, Presence of mycobacterial L-forms in human blood : Challenge of BCG vaccination, Human Vaccines & Immunotherapeutics, vol.11, p.18, 2015.

M. A. Schembri, D. Dalsgaard, and P. Klemm, Capsule Shields the Function of Short Bacterial Adhesins, J. Bacteriol, vol.186, p.18, 2004.

A. J. Lammers, A. P. Porto, S. Florquin, O. J. De-boer, H. J. Bootsma et al., Enhanced vulnerability for Streptococcus pneumoniae sepsis during asplenia is determined by the bacterial capsule, Immunobiology, vol.216, p.18, 2011.

D. Monroe, Looking for Chinks in the Armor of Bacterial Biofilms, PLoS Biology, vol.5, p.18, 2007.

P. Stoodley, S. Wilson, L. Hall-stoodley, J. D. Boyle, H. M. Lappin-scott et al., Growth and Detachment of Cell Clusters from Mature Mixed-Species Biofilms, Appl. Environ. Microbiol, vol.67, p.19, 2001.

T. Jouenne, Biofilms bactériens. Techniques de l'ingénieur, 2016.

E. Hernández-jiménez, R. Campo, V. Toledano, M. T. Vallejo-cremades, A. Muñoz et al., Biofilm vs. planktonic bacterial mode of growth : Which do human macrophages prefer ?, Biochem. Biophys. Res. Commun, vol.441, p.19, 2013.

R. M. Donlan and J. W. Costerton, Biofilms : Survival Mechanisms of Clinically Relevant Microorganisms, Clin. Microbiol. Rev, vol.15, p.19, 2002.

L. Hall-stoodley, J. W. Costerton, and P. Stoodley, Bacterial biofilms : from the Natural environment to infectious diseases, Nat. Rev. Microbiol, vol.2, p.19, 2004.

A. Kumar, A. Alam, M. Rani, N. Z. Ehtesham, and S. E. Hasnain, Biofilms : Survival and defense strategy for pathogens, Int. J. Med. Microbiol, p.19, 2017.

N. Høiby, T. Bjarnsholt, M. Givskov, S. Molin, and O. Ciofu, Antibiotic resistance of bacterial biofilms, Int. J. Antimicrob. Agents, vol.35, p.19, 2010.

R. M. Donlan, Biofilms and device-associated infections, Emerg. Infect. Dis, vol.7, p.19, 2001.

D. Davies, Understanding biofilm resistance to antibacterial agents, Nat. Rev. Drug Discovery, vol.2, p.19, 2003.

M. Jamal, W. Ahmad, S. Andleeb, F. Jalil, M. Imran et al., Bacterial biofilm and associated infections, J. Chin. Med. Assoc, vol.81, p.19, 2018.

R. C. Bone, R. A. Balk, F. B. Cerra, R. P. Dellinger, A. M. Fein et al., Definitions for Sepsis and Organ Failure and Guidelines for the Use of Innovative Therapies in Sepsis, vol.101, p.19, 1992.

J. S. Botero and M. C. Perez, Sepsis -An Ongoing and Significant Challenge, p.19

G. M. Bearman and R. P. Wenzel, Bacteremias : A Leading Cause of Death, Arch. Med. Res, vol.36, p.19, 2005.

K. B. Laupland, D. B. Gregson, W. W. Flemons, D. Hawkins, T. Ross et al., Burden of community-onset bloodstream infection : a population-based assessment, Epidemiol. Infect, vol.135, p.19, 2006.

M. Goto and M. Al-hasan, Overall burden of bloodstream infection and nosocomial bloodstream infection in North America and Europe, Clinical Microbiology and Infection, vol.19, p.19, 2013.

. Who and . Board, Improving the prevention, diagnosis and clinical management of sepsis, vol.21, p.19

. World-health, . Organization, and . Sepsis,

C. Fleischmann, A. Scherag, N. K. Adhikari, C. S. Hartog, T. Tsaganos et al., Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations, Am. J. Respir. Crit. Care Med, vol.193, p.19, 2016.

S. Esposito, G. D. Simone, G. Boccia, F. D. Caro, and P. Pagliano, Sepsis and septic shock : New definitions, new diagnostic and therapeutic approaches, Journal of Global Antimicrobial Resistance, vol.10, p.19, 2017.

M. J. Schultz, M. W. Dunser, A. M. Dondorp, and N. K. Adhikari, Current challenges in the management of sepsis in ICUs in resource-poor settings and suggestions for the future, Intensive Care Med, vol.43, pp.612-624, 2017.

S. Vergnano, M. Sharland, P. Kazmbe, C. Mwansambo, and P. T. Heath, Neonatal sepsis : an international perspective, Archives of Disease in Childhood -Fetal and Neonatal Edition, vol.90, p.19, 2005.

E. Crétel, I. Veen, A. Pierres, P. Bongrand, and G. Gavazzi, Immunosénescence et infections, mythe ou réalité ?, Médecine et Maladies Infectieuses, vol.40, p.19, 2010.

. Institut-pasteur, Sepsis / septicémie : informations et traitements

E. R. Vazquez-martinez, E. Garcia-gomez, I. Camacho-arroyo, and B. Gonzalez-pedrajo, Sexual dimorphism in bacterial infections, Biology of Sex Differences, vol.9, p.19, 2018.

P. Van-der, T. Van-de, F. L. Veerdonk, B. P. Scicluna, and M. G. Netea, The immunopathology of sepsis and potential therapeutic targets, Nat. Rev. Immunol, vol.17, p.19, 2017.

M. Singer, The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3), JAMA, vol.315, p.19, 2016.

J. Vincent, R. Moreno, J. Takala, S. Willatts, A. D. Mendonça et al., The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure, Intensive Care Med, vol.22, p.20, 1996.

I. Accoceberry, M. Cornet, B. Lamy, . Société, and . De-microbiologie-rémic, Référentiel en microbiologie médicale Tomes 1 et, vol.114, pp.26-28, 2015.

K. Laupland, Incidence of bloodstream infection : a review of population-based studies, Clinical Microbiology and Infection, vol.19, p.20, 2013.

L. M. Weiner, A. K. Webb, B. Limbago, M. A. Dudeck, J. Patel et al., Antimicrobial-Resistant Pathogens Associated With Healthcare-Associated Infections : Summary of Data Reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, Infection Control & Hospital Epidemiology, vol.37, p.21, 2011.

D. S. Uppu, C. Ghosh, and J. Haldar, Surviving sepsis in the era of antibiotic resistance : Are there any alternative approaches to antibiotic therapy ?, Microb. Pathog, vol.80, p.21, 2015.

M. Babu, V. P. Menon, and U. D. ;-p, Prevalence of Antimicrobial Resistant Pathogens in Severe Sepsis and Septic Shock Patients, Journal of Young Pharmacists, vol.10, p.21, 2018.

J. O'neill, Review on Antimicrobial Resistance Antimicrobial Resistance : Tackling a crisis for the health and wealth of nations. London : Review on Antimicrobial Resistance, vol.23, p.21, 2014.

K. De, M. E. Stewardson, A. J. Harbarth, and S. , Will 10 Million People Die a Year due to Antimicrobial Resistance by 2050 ?, PLOS Medicine, vol.13, p.21, 2016.

T. J. Iwashyna, E. W. Ely, D. M. Smith, and K. M. Langa, Long-term Cognitive Impairment and Functional Disability Among Survivors of Severe Sepsis, JAMA, vol.304, p.21, 2010.

H. C. Prescott, J. J. Osterholzer, K. M. Langa, D. C. Angus, and T. J. Iwashyna, Late mortality after sepsis : propensity matched cohort study, BMJ, p.21, 2016.

S. Yende, S. Austin, A. Rhodes, S. Finfer, S. Opal et al., Long-Term Quality of Life Among Survivors of Severe Sepsis, Crit. Care Med, vol.44, p.21, 2016.

C. Adrie, C. Alberti, C. Chaix-couturier, É. Azoulay, L. De et al., Epidemiology and economic evaluation of severe sepsis in France : age, severity, infection site, and place of acquisition (community, hospital, or intensive care unit) as determinants of workload and cost, J. Crit. Care, vol.20, p.21, 2005.

, EUROPEAN CENTRE FOR DISEASE PREVENTION AND CONTROL The bacterial challenge : time to react, p.21, 2009.

E. E. Pliakos, N. Andreatos, F. Shehadeh, P. D. Ziakas, and E. Mylonakis, The Cost-Effectiveness of Rapid Diagnostic Testing for the Diagnosis of Bloodstream Infections with or without Antimicrobial Stewardship

, Microbiol. Rev, p.31, 2018.

K. Reinhart, R. Daniels, N. Kissoon, F. R. Machado, R. D. Schachter et al., Recognizing Sepsis as a Global Health Priority -A WHO Resolution, N. Engl. J. Med, vol.377, p.21, 2017.

A. Rhodes, Surviving Sepsis Campaign : International Guidelines for Management of Sepsis and Septic Shock : 2016. Intensive Care Med, vol.43, p.21, 2017.

M. M. Levy, L. E. Evans, and A. Rhodes, The Surviving Sepsis Campaign Bundle : 2018 update, Intensive Care Med, vol.44, pp.925-928, 2018.

P. E. Marik, POINT : Should the Surviving Sepsis Campaign Guidelines Be Retired ? Yes, vol.155, p.21, 2019.

M. M. Levy, COUNTERPOINT : Should the Surviving Sepsis Campaign Guidelines Be Retired ? No. Chest, vol.155, p.21, 2019.

R. Scala, M. Schultz, L. D. Bos, and A. Artigas, New Surviving Sepsis Campaign guidelines : back to the art of medicine, Eur. Respir. J, vol.52, p.21, 2018.

A. Tabah, Characteristics and determinants of outcome of hospital-acquired bloodstream infections in intensive care units : the EUROBACT International Cohort Study, Intensive Care Med, vol.38, p.21, 1930.

C. E. Edmiston, R. Garcia, M. Barnden, B. Debaun, and H. B. Johnson, Rapid diagnostics for bloodstream infections : A primer for infection preventionists, Am. J. Infect. Control, vol.46, p.21, 2018.

E. J. Zasowski, K. C. Claeys, A. M. Lagnf, S. L. Davis, and M. J. Rybak, Time Is of the Essence : The Impact of Delayed Antibiotic Therapy on Patient Outcomes in Hospital-Onset Enterococcal Bloodstream Infections, Clin. Infect. Dis, vol.62, p.21, 2016.

J. Wilson, S. Elgohari, D. Livermore, B. Cookson, A. Johnson et al., Trends among pathogens reported as causing bacteraemia in England, Clinical Microbiology and Infection, vol.17, p.22, 2004.

K. De, M. Jarlier, V. Monen, J. Heuer, O. Van-de et al., The changing epidemiology of bacteraemias in Europe : trends from the European Antimicrobial Resistance Surveillance System, Clinical Microbiology and Infection, vol.19, p.22, 2013.

C. Royo-cebrecos, C. Gudiol, C. Ardanuy, H. Pomares, M. Calvo et al., A fresh look at polymicrobial bloodstream infection in cancer patients, sous la dir. de GALDIERO, M., e0185768, vol.12, p.22, 2017.

M. Pavlaki, Polymicrobial bloodstream infections : Epidemiology and impact on mortality, Journal of Global Antimicrobial Resistance, vol.1, p.22, 2013.

M. Pammi, D. Zhong, Y. Johnson, P. Revell, and J. Versalovic, Polymicrobial bloodstream infections in the neonatal intensive care unit are associated with increased mortality : a case-control study, BMC Infectious Diseases, vol.14, p.22, 2014.

K. C. Claeys, E. L. Heil, J. M. Pogue, P. R. Lephart, and J. K. Johnson, The Verigene dilemma : gram-negative polymicrobial bloodstream infections and clinical decision making, Diagn. Microbiol. Infect. Dis, vol.91, p.23, 2018.

D. J. Anderson, R. W. Moehring, R. Sloane, K. E. Schmader, D. J. Weber et al., Bloodstream Infections in Community Hospitals in the 21st Century : A Multicenter Cohort Study

P. J. Planet, PLoS ONE, vol.9, p.23, 2014.

K. B. Laupland and D. L. Church, Population-Based Epidemiology and Microbiology of Community-Onset Bloodstream Infections, Clin. Microbiol. Rev, vol.27, p.23, 2014.

S. E. Cosgrove, The Relationship between Antimicrobial Resistance and Patient Outcomes : Mortality, Length of Hospital Stay, and Health Care Costs, Clin. Infect. Dis, vol.42, p.23, 2006.

L. Czaplewski, R. Bax, M. Clokie, M. Dawson, H. Fairhead et al., Alternatives to antibiotics : pipeline portfolio review. The Lancet Infectious Diseases, vol.16, p.23, 2016.

J. T. Poolman and A. S. Anderson, Escherichia coli and Staphylococcus aureus : leading bacterial pathogens of healthcare associated infections and bacteremia in older-age populations, Expert Rev. Vaccines, vol.17, p.23, 2018.

O. Opota, A. Croxatto, G. Prod'hom, and G. Greub, Blood culture-based diagnosis of bacteraemia : state of the art, Clinical Microbiology and Infection, vol.21, p.27, 2015.

T. Escherich, Die Darmbacterien des Neugeborenen und Säuglings, Fortschr Med, vol.1885, p.24

R. Stenutz, A. Weintraub, and G. Widmalm, The structures ofEscherichia coliO-polysaccharide antigens, FEMS Microbiology Reviews, vol.30, p.24, 2006.

A. Cross, A. Artenstein, J. Que, T. Fredeking, E. Furer et al., Safety And Immunogenicity Of A Polyvalent Escherichia Coli Vaccine In Human Volunteers, J. Infect. Dis, vol.170, p.24, 1994.

L. Geue, S. Monecke, I. Engelmann, S. Braun, P. Slickers et al., Rapid microarray-based DNA genoserotyping ofEscherichia coli, Microbiol. Immunol, vol.58, p.24, 2014.

C. Whitfield and A. Paiment, Biosynthesis and assembly of Group 1 capsular polysaccharides in Escherichia coli and related extracellular polysaccharides in other bacteria, Carbohydr. Res, vol.338, p.24, 2003.

J. T. Poolman and M. Wacker, Extraintestinal Pathogenic Escherichia coli , a Common Human Pathogen : Challenges for Vaccine Development and Progress in the Field, J Infect Dis, vol.213, p.24, 2015.

D. A. Williamson, A. Lim, S. Wiles, S. A. Roberts, and J. T. Freeman, Population-based incidence and comparative demographics of community-associated and healthcare-associated Escherichia coli bloodstream infection in Auckland, BMC Infectious Diseases, vol.13, p.24, 2005.

S. Yang, C. Lin, I. A. Aljuffali, and J. Fang, Current pathogenic Escherichia coli foodborne outbreak cases and therapy development, Arch. Microbiol, vol.199, p.24, 2017.

K. De, M. E. Davey, P. G. Grundmann, and H. , Mortality and Hospital Stay Associated with Resistant Staphylococcus aureus and Escherichia coli Bacteremia : Estimating the Burden of Antibiotic Resistance in Europe

S. M. Opal, PLoS Medicine, vol.8, p.24, 2011.

J. Otter, T. Galletly, F. Davies, J. Hitchcock, M. Gilchrist et al., Planning to halve Gram-negative bloodstream infection : getting to grips with healthcareassociated Escherichia coli bloodstream infection sources, J. Hosp. Infect, vol.101, p.24, 2019.

J. Edelsberg, D. Weycker, R. Barron, X. Li, H. Wu et al., Prevalence of antibiotic resistance in US hospitals, Diagn. Microbiol. Infect. Dis, vol.78, p.24, 2014.

A. De-l'alimentation, D. Travail, and É. , Les Escherichia coli entérohémorragiques (EHEC

A. T. Collection and . Éd, Escherichia coli (Migula) Castellani and Chalmers ATCC R 11775

H. F. Wertheim, D. C. Melles, M. C. Vos, W. Van-leeuwen, A. Van-belkum et al., The role of nasal carriage in Staphylococcus aureus infections. The Lancet Infectious Diseases, vol.5, p.25, 2005.

C. Piérard-franchimont, M. Lesuisse, and G. E. Piérard, Deux bactéries et une kyrielle d'infections cutanées communes. Revue Médicale de Liège, p.25, 2012.

L. Thomer, O. Schneewind, and D. Missiakas, Pathogenesis ofStaphylococcus aureusBloodstream Infections

, Annual Review of Pathology : Mechanisms of Disease, vol.11, pp.343-364, 2016.

K. Laupland, O. Lyytikäinen, M. Sgaard, K. Kennedy, J. Knudsen et al., The changing epidemiology of Staphylococcus aureus bloodstream infection : a multinational population-based surveillance study, Clinical Microbiology and Infection, vol.19, p.26, 2013.

L. K. Yaw, J. O. Robinson, and K. M. Ho, A comparison of long-term outcomes after meticillin-resistant and meticillinsensitive Staphylococcus aureus bacteraemia : an observational cohort study. The Lancet Infectious Diseases, vol.14, p.26, 2014.

V. L. Moing, F. Alla, T. Doco-lecompte, F. Delahaye, L. Piroth et al., Staphylococcus aureus Bloodstream Infection and Endocarditis -A Prospective Cohort Study, PLOS ONE, vol.10, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01299980

E. Tacconelli, G. D. Angelis, W. De, C. Cataldo, M. A. Torre et al., Rapid screening tests for meticillin-resistant Staphylococcus aureus at hospital admission : systematic review and meta-analysis. The Lancet Infectious Diseases, vol.9, p.26, 2009.

V. Jarlier, Curbing Methicillin-Resistant Staphylococcus aureus in 38 French Hospitals Through a 15-Year Institutional Control Program, Arch. Intern. Med, vol.170, p.26, 2010.

J. V. Robotham, S. R. Deeny, C. Fuller, S. Hopkins, B. Cookson et al., Cost-effectiveness of national mandatory screening of all admissions to English National Health Service hospitals for meticillin-resistant Staphylococcus aureus : a mathematical modelling study. The Lancet Infectious Diseases, vol.16, p.26, 2016.

G. Fätkenheuer and A. J. Kaasch, How deadly is meticillin-resistant Staphylococcus aureus ? The Lancet Infectious Diseases, vol.14, p.26, 2014.

B. Lamy, S. Dargère, M. C. Arendrup, J. Parienti, and P. Tattevin, How to Optimize the Use of Blood Cultures for the Diagnosis of Bloodstream Infections ? A State-of-the Art, Front. Microbiol, vol.7, p.26, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01326367

R. Patel, E. A. Vetter, W. S. Harmsen, C. D. Schleck, H. J. Fadel et al., Optimized Pathogen Detection with 30-Compared to 20-Milliliter Blood Culture Draws, J. Clin. Microbiol, vol.49, p.27, 2011.

A. Lee, S. Mirrett, L. B. Reller, and M. P. Weinstein, Detection of Bloodstream Infections in Adults : How Many Blood Cultures Are Needed ?, J. Clin. Microbiol, vol.45, p.27, 2007.

D. N. Fredricks and D. A. Relman, Sequence-based identification of microbial pathogens : a reconsideration of Koch's postulates, Clin. Microbiol. Rev, vol.9, p.27, 1996.

A. Nelson, A. D. Soyza, J. D. Perry, I. C. Sutcliffe, and S. P. Cummings, Polymicrobial challenges to Koch's postulates : Ecological lessons from the bacterial vaginosis and cystic fibrosis microbiomes, Innate Immunity, vol.18, p.27, 2012.

S. Mirrett, K. E. Hanson, and L. B. Reller, Controlled Clinical Comparison of VersaTREK and BacT/ALERT Blood Culture Systems, J. Clin. Microbiol, vol.45, p.27, 2006.

Y. Ning, R. Hu, G. Yao, and S. Bo, Time to positivity of blood culture and its prognostic value in bloodstream infection

, European Journal of Clinical Microbiology & Infectious Diseases, vol.35, p.28, 2016.

M. Wang, W. Lin, J. Yan, H. Fang, T. Kuo et al., Early identification of microorganisms in blood culture prior to the detection of a positive signal in the BACTEC FX system using matrix-assisted laser desorption/ionization-time of flight mass spectrometry, Immunology and Infection, vol.48, p.28, 2015.

M. Weinbren, M. Collins, R. Heathcote, M. Umar, M. Nisar et al., Optimization of the blood culture pathway : a template for improved sepsis management and diagnostic antimicrobial stewardship, J. Hosp. Infect, vol.98, p.29, 2018.

J. Perry and A. Freydière, The application of chromogenic media in clinical microbiology, J. Appl. Microbiol, vol.103, pp.2046-2055, 2007.

J. D. Perry, A Decade of Development of Chromogenic Culture Media for Clinical Microbiology in an Era of Molecular Diagnostics, Clin. Microbiol. Rev, vol.30, p.30, 2017.

J. Lin, C. Lai, C. Yang, Y. Huang, H. Lin et al., Comparison of four automated microbiology systems with 16S rRNA gene sequencing for identification of Chryseobacterium and Elizabethkingia species, Sci. Rep, vol.7, p.31, 2017.

B. Buszewski, A. Rogowska, P. Pomastowski, M. Z?och, and V. Railean-plugaru, Identification of Microorganisms by Modern Analytical Techniques, Journal of AOAC International, vol.100, p.32, 2017.

L. G. Stevenson, S. K. Drake, and P. R. Murray, Rapid Identification of Bacteria in Positive Blood Culture Broths by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry, J. Clin. Microbiol, vol.48, p.32, 2009.

N. G. Morgenthaler and M. Kostrzewa, Rapid Identification of Pathogens in Positive Blood Culture of Patients with Sepsis : Review and Meta-Analysis of the Performance of the Sepsityper Kit, International Journal of Microbiology, p.32, 2015.

A. Campigotto, L. Goneau, and L. M. Matukas, Direct identification and antimicrobial susceptibility testing of microorganisms from positive blood cultures following isolation by lysis-centrifugation, Diagn. Microbiol. Infect. Dis, vol.92, p.32, 2018.

E. Idelevich, K. Sparbier, M. Kostrzewa, and K. Becker, Rapid detection of antibiotic resistance by MALDI-TOF mass spectrometry using a novel direct-on-target microdroplet growth assay, Clinical Microbiology and Infection, vol.24, p.33, 2018.

J. Hrabák, E. Chudá?ková, and R. Walková, Matrix-Assisted Laser Desorption Ionization-Time of Flight (MALDI-TOF) Mass Spectrometry for Detection of Antibiotic Resistance Mechanisms

, Clin. Microbiol. Rev, vol.26, p.33, 2013.

M. Ge, A. Kuo, K. Liu, Y. Wen, J. Chia et al., Routine identification of microorganisms by matrix-assisted laser desorption ionization time-of-flight mass spectrometry : Success rate, economic analysis, and clinical outcome, Immunology and Infection, vol.50, p.33, 2017.

T. Hou, C. Chiang-ni, and S. Teng, Current status of MALDI-TOF mass spectrometry in clinical microbiology, J. Food Drug Anal, vol.27, p.33, 2019.

L. Grenga, O. Pible, and J. Armengaud, Pathogen proteotyping : A rapidly developing application of mass spectrometry to address clinical concerns, Clinical Mass Spectrometry, vol.37, p.33, 2019.

J. Armengaud, Microbiology and infectious diseases -A wealth of novelty for the clinical laboratory, Clinical Mass Spectrometry, p.33, 2019.

C. D. Doern and S. M. Butler-wu, Emerging and Future Applications of Matrix-Assisted Laser Desorption Ionization Time-of-Flight (MALDI-TOF) Mass Spectrometry in the Clinical Microbiology Laboratory, The Journal of Molecular Diagnostics, vol.18, p.33, 2016.

H. Frickmann, A. E. Zautner, A. Moter, J. Kikhney, R. M. Hagen et al., Fluorescence in situ hybridization (FISH) in the microbiological diagnostic routine laboratory : a review, Crit. Rev

. Microbiol, , vol.43, p.33, 2017.

C. M. Wojewoda, L. Sercia, M. Navas, M. Tuohy, D. Wilson et al., Evaluation of the Verigene Gram-Positive Blood Culture Nucleic Acid Test for Rapid Detection of Bacteria and Resistance Determinants, J. Clin. Microbiol, vol.51, p.34, 2013.

M. Guido, M. R. Tumolo, A. De-donno, T. Verri, F. Serio et al., In vitro diagnosis of sepsis : a review, Pathology and Laboratory Medicine International, vol.1, p.34, 2016.

A. J. Loonen, M. P. Bos, B. Van-meerbergen, S. Neerken, A. Catsburg et al., Comparison of Pathogen DNA Isolation Methods from Large Volumes of Whole Blood to Improve Molecular Diagnosis of Bloodstream Infections

R. C. Willson, PLoS ONE, vol.8, p.34, 2013.

P. Maffert, S. Reverchon, W. Nasser, C. Rozand, and H. Abaibou, New nucleic acid testing devices to diagnose infectious diseases in resource-limited settings, European Journal of Clinical Microbiology & Infectious Diseases, vol.36, p.35, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01997047

E. A. Idelevich, U. Reischl, and K. Becker, New microbiological techniques in the diagnosis of bloodstream infections, Deutsches Aerzteblatt Online, vol.37, p.35, 2018.

R. Eisenhofer, J. J. Minich, C. Marotz, A. Cooper, R. Knight et al., Contamination in Low Microbial Biomass Microbiome Studies : Issues and Recommendations, vol.27, p.36, 2019.

D. M. Wolk and J. K. Johnson, Rapid Diagnostics for Blood Cultures : Supporting Decisions for Antimicrobial Therapy and Value-Based Care, The Journal of Applied Laboratory Medicine, vol.3, p.36, 2018.

L. E. López-cortés, M. Cueto, and J. Rodriguez-baño, How should we best treat patients with bloodstream infections ? Future Microbiology, vol.12, p.36, 2017.

G. R. Madden, R. A. Weinstein, and C. D. Sifri, Diagnostic Stewardship for Healthcare-Associated Infections : Opportunities and Challenges to Safely Reduce Test Use, Infection Control & Hospital Epidemiology, vol.39, p.36, 2018.

J. , E. Giménez, M. Quesada, M. D. Ausina, V. Martró et al., Improving the Diagnosis of Bloodstream Infections : PCR Coupled with Mass Spectrometry, vol.37, p.36, 2014.

M. Tassinari, S. Zannoli, P. Farabegoli, M. F. Pedna, A. Pierro et al., Rapid diagnosis of bloodstream infections in the critically ill : Evaluation of the broad-range PCR/ESI-MS technology, sous la dir. de GALDIERO, M., e0197436, vol.13, p.36, 2018.

E. Cendejas-bueno, M. P. Romero-gómez, and J. Mingorance, The challenge of molecular diagnosis of bloodstream infections, World J. Microbiol. Biotechnol, vol.35, 2019.

M. Sinha, J. Jupe, H. Mack, T. P. Coleman, S. M. Lawrence et al., Emerging Technologies for Molecular Diagnosis of Sepsis, Clin. Microbiol. Rev, p.37, 2018.

S. Grumaz, P. Stevens, C. Grumaz, S. O. Decker, M. A. Weigand et al., Next-generation sequencing diagnostics of bacteremia in septic patients, Genome Med, vol.8, p.37, 2016.

F. C. Hewitt, S. L. Guertin, K. L. Ternus, K. Schulte, and D. R. Kadavy, Toward Rapid Sequenced-Based Detection and Characterization of Causative Agents of Bacteremia, p.37, 2017.

I. Zacharioudakis, F. Zervou, and E. Mylonakis, T2 Magnetic Resonance Assay : Overview of Available Data and Clinical Implications, Journal of Fungi, vol.4, p.37, 2018.

C. J. Clancy and M. H. Nguyen, T2 magnetic resonance for the diagnosis of bloodstream infections : charting a path forward, J. Antimicrob. Chemother, vol.73, p.37, 2018.

L. A. Neely, M. Audeh, N. A. Phung, M. Min, A. Suchocki et al., T2 Magnetic Resonance Enables Nanoparticle-Mediated Rapid Detection of Candidemia in Whole Blood, Science Translational Medicine, vol.5, p.37, 2013.

N. D. Beyda, M. J. Alam, and K. W. Garey, Comparison of the T2Dx instrument with T2Candida assay and automated blood culture in the detection of Candida species using seeded blood samples. Diagnostic Microbiology and Infectious Disease, vol.77, p.37, 2013.

G. D. Angelis, B. Posteraro, E. D. Carolis, G. Menchinelli, F. Franceschi et al., T2Bacteria magnetic resonance assay for the rapid detection of ESKAPEc pathogens directly in whole blood, J. Antimicrob. Chemother, vol.73, p.37, 2018.

A. Hassibi, Multiplexed identification, quantification and genotyping of infectious agents using a semiconductor biochip, Nat. Biotechnol, p.37, 2018.

Y. Zhang, A. Hu, N. Andini, and S. Yang, A 'culture' shift : Application of molecular techniques for diagnosing polymicrobial infections, Biotechnol. Adv, vol.37, p.37, 2019.

Y. Yang, Y. Lin, Z. Chen, T. Gong, P. Yang et al., Bacterial Whole Cell Typing by Mass Spectra Pattern Matching with Bootstrapping Assessment, Anal. Chem, p.37, 2017.

E. Idelevich, B. Grünastel, G. Peters, and K. Becker, Direct blood culturing on solid medium outperforms an automated continuously monitored broth-based blood culture system in terms of time to identification and susceptibility testing, New Microbes and New Infections, vol.10, p.37, 2016.

S. Puttaswamy, B. D. Lee, and S. Sengupta, Novel Electrical Method for Early Detection of Viable Bacteria in Blood Cultures, J. Clin. Microbiol, vol.49, p.37, 2011.

A. Burklund and J. X. Zhang, Microfluidics-Based Organism Isolation from Whole Blood : An Emerging Tool for Bloodstream Infection Diagnosis, Ann. Biomed. Eng, vol.47, p.38, 2019.

D. Den and R. , FlowPad : a generic microfluidics platform for a wide range of applications

. 20dulk and . Pdf, , p.38

T. N. Dao, E. Y. Lee, B. Koo, C. E. Jin, T. Y. Lee et al., A microfluidic enrichment platform with a recombinase polymerase amplification sensor for pathogen diagnosis, Anal. Biochem, vol.544, p.38, 2018.

H. W. Hou, R. P. Bhattacharyya, D. T. Hung, and J. Han, Direct detection and drug-resistance profiling of bacteremias using inertial microfluidics, Lab. Chip, vol.15, p.38, 2015.

D. Kang, M. M. Ali, K. Zhang, S. S. Huang, E. Peterson et al., Rapid detection of single bacteria in unprocessed blood using

, Nat. Commun, vol.5, p.38, 2014.

R. Renneberg, D. Pfeiffer, F. Lisdat, G. Wilson, U. Wollenberger et al.,

H. Springer-berlin, , p.39, 2008.

P. T. Kissinger, Biosensors-a perspective, Biosens. Bioelectron, vol.20, p.39, 2005.

F. Salam, Y. Uludag, and I. E. Tothill, Real-time and sensitive detection of Salmonella Typhimurium using an automated quartz crystal microbalance (QCM) instrument with nanoparticles amplification, Talanta, vol.115, p.40, 2013.

A. Ahmed, J. V. Rushworth, N. A. Hirst, and P. A. Millner, Biosensors for Whole-Cell Bacterial Detection, Clin. Microbiol. Rev, vol.27, p.40, 2014.

F. Xie, H. Yang, S. Li, W. Shen, J. Wan et al., Amorphous magnetoelastic sensors for the detection of biological agents, Intermetallics, vol.17, p.40, 2009.

D. De, J. Habimana, J. Ji, X. Sun, and . Minireview, Trends in Optical-Based Biosensors for Point-Of-Care Bacterial Pathogen Detection for Food Safety and Clinical Diagnostics, Anal. Lett, vol.2018, p.40

J. Monzó, I. Insua, F. Fernandez-trillo, and P. Rodriguez, Fundamentals, achievements and challenges in the electrochemical sensing of pathogens, The Analyst, vol.140, p.41, 2015.

M. Amiri, A. Bezaatpour, H. Jafari, R. Boukherroub, and S. Szunerits, Electrochemical Methodologies for the Detection of Pathogens, ACS Sensors, vol.3, p.41, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02189343

S. Kuss, H. M. Amin, and R. G. Compton, Electrochemical Detection of Pathogenic Bacteria-Recent Strategies, Advances and Challenges, Chem. Asian J, vol.13, p.41, 2018.

J. Choi, T. W. Seong, M. Jeun, K. H. Lee, and . Field, Effect Biosensors for On-Site Detection : Recent Advances and Promising Targets. Adv. Healthcare Mater. 2017, 1700796, p.41

M. Kaisti, Detection principles of biological and chemical FET sensors, Biosens. Bioelectron, vol.98, p.41, 2017.

B. Thakur, G. Zhou, J. Chang, H. Pu, B. Jin et al., Rapid detection of single E. coli bacteria using a graphene-based field-effect transistor device, Biosens. Bioelectron, vol.110, p.41, 2018.

M. S. Mannoor, H. Tao, J. D. Clayton, A. Sengupta, D. L. Kaplan et al., Graphene-based wireless bacteria detection on tooth enamel, Nat. Commun, vol.3, p.64, 2012.

G. D. Spyropoulos, J. N. Gelinas, and D. Khodagholy, Internal ion-gated organic electrochemical transistor : A building block for integrated bioelectronics, Sci. Adv, p.41, 2019.

S. M. Yoo and S. Y. Lee, Optical Biosensors for the Detection of Pathogenic Microorganisms, Trends Biotechnol, vol.34, p.41, 2016.

E. B. Bahadir and M. K. Sezgintürk, Lateral flow assays : Principles, designs and labels, TrAC Trends in Analytical Chemistry, vol.82, p.41, 2016.

J. Li and J. Macdonald, Multiplexed lateral flow biosensors : Technological advances for radically improving point-ofcare diagnoses, Biosens. Bioelectron, vol.83, p.41, 2016.

O. Pashchenko, T. Shelby, T. Banerjee, and S. Santra, A Comparison of Optical, Electrochemical, Magnetic, and Colorimetric Point-of-Care Biosensors for Infectious Disease Diagnosis, ACS Infectious Diseases, vol.4, p.41, 2018.

F. C. Dudak and B. I. Hakki, Rapid and label-free bacteria detection by surface plasmon resonance (SPR) biosensors

, Biotechnol. J, vol.4, p.47, 2009.

G. A. Lopez, M. Estevez, M. Soler, and L. M. Lechuga, Recent advances in nanoplasmonic biosensors : applications and lab-on-a-chip integration, Nanophotonics, vol.6, p.41, 2016.

H. Guner, E. Ozgur, G. Kokturk, M. Celik, E. Esen et al., A smartphone based surface plasmon resonance imaging (SPRi) platform for on-site biodetection

, , vol.239, p.41, 2017.

T. M. Squires, R. J. Messinger, and S. R. Manalis, Making it stick : convection, reaction and diffusion in surfacebased biosensors, Nat. Biotechnol, vol.26, p.42, 2008.

C. J. Huang, W. Knoll, A. Sessitsch, and J. Dostalek, SPR bacterial pathogen biosensor : The importance of fluidic conditions and probing depth, Talanta, vol.122, p.42, 2014.

J. J. Hawkes, M. J. Long, W. Coakley, and M. B. Mcdonnell, Ultrasonic deposition of cells on a surface, Biosens. Bioelectron, vol.19, p.42, 2004.

M. Zourob, J. J. Hawkes, W. T. Coakley, B. J. Brown, P. R. Fielden et al., Optical Leaky Waveguide Sensor for Detection of Bacteria with Ultrasound Attractor Force, Anal. Chem, vol.77, p.42, 2005.

I. Gall, M. Herzberg, and Y. Oren, The effect of electric fields on bacterial attachment to conductive surfaces, Soft Matter, issue.9, p.42, 2013.

V. Templier, A. Roux, Y. Roupioz, and T. Livache, Ligands for label-free detection of whole bacteria on biosensors : A review, TrAC, Trends Anal. Chem, vol.79, p.42, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01972058

S. D. Jayasena, Aptamers : An Emerging Class of Molecules That Rival Antibodies in Diagnostics, Clin. Chem, vol.45, p.42, 1999.

J. Teng, F. Yuan, Y. Ye, L. Zheng, L. Yao et al., Aptamer-Based Technologies in Foodborne Pathogen Detection, Front. Microbiol, vol.7, p.42, 2016.

N. Alizadeh, M. Y. Memar, S. R. Moaddab, and H. S. Kafil, Aptamer-assisted novel technologies for detecting bacterial pathogens, Biomedicine & Pharmacotherapy, vol.93, p.42, 2017.

A. C. Graziani, M. I. Stets, A. L. Lopes, P. H. Schluga, S. Marton et al., High Efficiency Binding Aptamers for a Wide Range of Bacterial Sepsis Agents, J. Microbiol. Biotechnol, vol.27, p.43, 2017.

?. Richter, M. Janczuk-richter, J. Niedzió?ka-jönsson, J. Paczesny, and R. Ho?yst, Recent advances in bacteriophage-based methods for bacteria detection, Drug Discovery Today, vol.23, p.43, 2018.

E. Bulard, A. Bouchet-spinelli, P. Chaud, A. Roget, R. Calemczuk et al., Carbohydrates as New Probes for the Identification of Closely Related Escherichia coli Strains Using Surface Plasmon Resonance Imaging, Analytical Chemistry, vol.87, p.43, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01587601

T. H. Rider, A B Cell-Based Sensor for Rapid Identification of Pathogens, Science, vol.301, p.43, 2003.

T. Cohen, J. Starosvetsky, U. Cheruti, and R. Armon, Whole Cell Imprinting in Sol-Gel Thin Films for Bacterial Recognition in Liquids : Macromolecular Fingerprinting, International Journal of Molecular Sciences, issue.11, p.43, 2010.

S. Pavan and F. Berti, Short peptides as biosensor transducers, Anal. Bioanal.Chem, vol.402, p.43, 2011.

E. Stern, A. Vacic, N. K. Rajan, J. M. Criscione, J. Park et al., Label-free biomarker detection from whole blood, Nat. Nanotechnol, vol.5, p.44, 2009.

J. Min, M. Nothing, B. Coble, H. Zheng, J. Park et al., Integrated Biosensor for Rapid and Point-of-Care Sepsis Diagnosis, ACS, vol.12, p.44, 2018.

S. Kumar, S. Tripathy, A. Jyoti, and S. G. Singh, Recent advances in biosensors for diagnosis and detection of sepsis : A comprehensive review, Biosens. Bioelectron, p.44, 2019.

J. Z. Kubicek-sutherland, Direct detection of bacteremia by exploiting host-pathogen interactions of lipoteichoic acid and lipopolysaccharide, Sci. Rep, vol.9, p.44, 2019.

T. A. Webster, H. J. Sismaet, J. L. Conte, I. J. Chan, and E. D. Goluch, Electrochemical detection of Pseudomonas aeruginosa in human fluid samples via pyocyanin, Biosens. Bioelectron, vol.60, p.44, 2014.

T. Bachinger, Gas sensor arrays for early detection of infection in mammalian cell culture, Biosens. Bioelectron, vol.17, p.44, 2002.

J. R. Carey, K. S. Suslick, K. I. Hulkower, J. A. Imlay, K. R. Imlay et al., Rapid Identification of Bacteria with a Disposable Colorimetric Sensing Array, J. Am. Chem. Soc, vol.133, p.44, 2011.

Y. W. Chu, B. Y. Wang, D. A. Engebretson, and J. R. Carey, Single step, rapid identification of pathogenic microorganisms in a culture bottle, The Analyst, vol.138, p.44, 2013.

S. H. Lim, S. Mix, Z. Xu, B. Taba, I. Budvytiene et al., Colorimetric Sensor Array Allows Fast Detection and Simultaneous Identification of Sepsis-Causing Bacteria in Spiked Blood Culture, J. Clin

. Microbiol, , vol.52, p.44, 2013.

S. H. Lim, S. Mix, V. Anikst, I. Budvytiene, M. Eiden et al., Bacterial culture detection and identification in blood agar plates with an optoelectronic nose, The Analyst, vol.141, p.44, 2016.

A. Burklund, H. K. Saturley-hall, F. A. Franchina, J. E. Hill, and J. X. Zhang, Printable QR code paper microfluidic colorimetric assay for screening volatile biomarkers, Biosens. Bioelectron, vol.128, p.44, 2019.

X. Shi, X. Zhang, Q. Yao, and F. He, A novel method for the rapid detection of microbes in blood using pleurocidin antimicrobial peptide functionalized piezoelectric sensor, J. Microbiol. Methods, vol.68, pp.63-65, 2016.

J. Gao, L. Jeffries, K. E. Mach, D. W. Craft, N. J. Thomas et al., A Multiplex Electrochemical Biosensor for Bloodstream Infection Diagnosis, SLAS TECHNOLOGY : Translating Life Sciences Innovation, vol.22, p.44, 2016.

E. M. Hewage, D. Spear, T. M. Umstead, S. Hu, M. Wang et al., An Electrochemical Biosensor for Rapid Detection of Pediatric Bloodstream Infections, SLAS TECHNOLOGY : Translating Life Sciences Innovation, vol.22, p.44, 2017.

V. Templier, T. Livache, S. Boisset, M. Maurin, S. Slimani et al., Biochips for Direct Detection and Identification of Bacteria in Blood Culture-Like Conditions, vol.7, p.99
URL : https://hal.archives-ouvertes.fr/hal-01938222

R. W. Wood, On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum, Proc. Phys. Soc. London, vol.18, p.45, 1902.

U. Fano, The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld's Waves), J. Opt. Soc. Am, vol.31, p.45, 1941.

A. Otto, Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik A Hadrons and nuclei, vol.216, p.45, 1968.

E. Kretschmann, H. Raether, and . Notizen, Radiative Decay of Non Radiative Surface Plasmons Excited by Light. Zeitschrift für Naturforschung A, vol.23, p.45, 1968.

C. Nylander, B. Liedberg, and T. Lind, Gas detection by means of surface plasmon resonance, Sensors and Actuators, vol.3, p.45, 1982.

B. Liedberg, C. Nylander, and I. Lunström, Surface plasmon resonance for gas detection and biosensing, Sensors and Actuators, vol.4, p.45, 1983.

B. Liedberg, C. Nylander, and I. Lundström, Biosensing with surface plasmon resonance -how it all started, Biosens. Bioelectron, vol.10, p.45, 1995.

J. Homola, Springer Series on Chemical Sensors and Biosensors

, , p.45, 2006.

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology, Chem. Rev, vol.105, p.46, 2005.

F. Bardin, A. Bellemain, G. Roger, and M. Canva, Surface plasmon resonance spectro-imaging sensor for biomolecular surface interaction characterization, Biosens. Bioelectron, vol.24, p.46, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00546897

S. Bouguelia, Y. Roupioz, S. Slimani, L. Mondani, M. G. Casabona et al., On-chip microbial culture for the specific detection of very low levels of bacteria, Lab. Chip, vol.13, p.72, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01322346

L. Mondani, Y. Roupioz, S. Delannoy, P. Fach, and T. Livache, Simultaneous enrichment and optical detection of low levels of stressed Escherichia coli O157 :H7 in food matrices, J. Appl. Microbiol, vol.117, p.47, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01983141

V. Templier, Thèse de doctorat dirigée par Livache, Thierry Biotechnologie, instrumentation, signal et imagerie pour la biologie, la médecine et l'environnement Grenoble Alpes, vol.74, p.136, 2016.

M. Zasloff, Antimicrobial peptides of multicellular organisms, Nature, vol.415, p.53, 2002.

J. Tam, S. Wang, K. Wong, and W. Tan, Antimicrobial Peptides from Plants. Pharmaceuticals, vol.8, p.53, 2015.

P. Bulet, C. Hetru, J. Dimarcq, and D. Hoffmann, Antimicrobial peptides in insects : structure and function. Developmental & Comparative Immunology, vol.23, p.53, 1999.

G. Wang, X. Li, and Z. Wang, APD3 : the antimicrobial peptide database as a tool for research and education, Nucleic Acids Res, vol.44, p.53, 2015.

X. Kang, F. Dong, C. Shi, S. Liu, J. Sun et al., DRAMP 2.0, an updated data repository of antimicrobial peptides, Sci. Data, vol.6, 2019.

L. Aguilera-mendoza, Y. Marrero-ponce, R. Tellez-ibarra, M. T. Llorente-quesada, J. Salgado et al., Overlap and diversity in antimicrobial peptide databases : compiling a non-redundant set of sequences, Bioinformatics, vol.31, p.53, 2015.

C. D. Fjell, J. A. Hiss, R. E. Hancock, and G. Schneider, Designing antimicrobial peptides : form follows function, Nat. Rev. Drug Discovery, vol.79, p.76, 2011.

A. Tossi, L. Sandri, and A. Giangaspero, Amphipathic, ?-helical antimicrobial peptides, Biopolymers, vol.55, pp.4-30, 2000.

Y. Huang, J. Huang, and Y. Chen, Alpha-helical cationic antimicrobial peptides : relationships of structure and function, Protein & Cell, vol.1, p.54, 2010.

D. I. Chan, E. J. Prenner, and H. J. Vogel, Tryptophan-and arginine-rich antimicrobial peptides : Structures and mechanisms of action, Biochimica et Biophysica Acta (BBA) -Biomembranes, vol.1758, p.54, 2006.

M. Scocchi, A. Tossi, and R. Gennaro, Proline-rich antimicrobial peptides : converging to a non-lytic mechanism of action, Cellular and Molecular Life Sciences, p.54, 2011.

P. Casteels, C. Ampe, F. Jacobs, M. Vaeck, and P. Tempst, Apidaecins : antibacterial peptides from honeybees, The EMBO journal, vol.8, p.54, 1989.

J. Koehbach and D. J. Craik, The Vast Structural Diversity of Antimicrobial Peptides, Trends in Pharmacological Sciences, vol.40, p.55, 2019.

R. E. Hancock, D. S. Chapple, and . Peptide-antibiotics, Antimicrobial Agents and Chemotherapy, vol.43, p.55, 1999.

S. E. Blondelle and R. A. Houghten, Design of model amphipathic peptides having potent antimicrobial activities, Biochemistry (Mosc.), vol.31, p.55, 1992.

L. T. Nguyen, E. F. Haney, and H. J. Vogel, The expanding scope of antimicrobial peptide structures and their modes of action, Trends Biotechnol, vol.29, p.56, 2011.

M. N. Melo, R. Ferre, and M. A. Castanho, Antimicrobial peptides : linking partition, activity and high membrane-bound concentrations, Nat. Rev. Microbiol, vol.7, p.55, 2009.

D. Roversi, V. Luca, S. Aureli, Y. Park, M. L. Mangoni et al., How Many Antimicrobial Peptide Molecules Kill a Bacterium ? The Case of PMAP-23, ACS Chemical Biology, vol.9, p.55, 2003.

M. Torrent, J. Valle, M. V. Nogues, E. Boix, and D. Andreu, The Generation of Antimicrobial Peptide Activity : A Trade-off between Charge and Aggregation ?, Angew. Chem. Int. Ed, vol.50, p.56, 2011.

P. Mergaert, Role of antimicrobial peptides in controlling symbiotic bacterial populations, Nat. Prod. Rep, vol.57, p.56, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02182330

S. F. Oppedijk, N. I. Martin, and E. Breukink, Hit'em where it hurts : The growing and structurally diverse family of peptides that target lipid-II, Biochimica et Biophysica Acta (BBA) -Biomembranes, vol.1858, p.56, 2016.

H. E. Hasper, N. E. Kramer, J. L. Smith, J. D. Hillman, C. Zachariah et al., An Alternative Bactericidal Mechanism of Action for Lantibiotic Peptides That Target Lipid II, Science, vol.313, p.56, 2006.

J. Pogliano, N. Pogliano, and J. A. Silverman, Daptomycin-Mediated Reorganization of Membrane Architecture Causes Mislocalization of Essential Cell Division Proteins, Journal of Bacteriology, vol.194, p.56, 2012.

E. Y. Lee, M. W. Lee, B. M. Fulan, A. L. Ferguson, and G. C. Wong, What can machine learning do for antimicrobial peptides, and what can antimicrobial peptides do for machine learning ? Interface Focus, vol.7, p.56, 2017.

M. Scocchi, M. Mardirossian, G. Runti, and M. Benincasa, Non-Membrane Permeabilizing Modes of Action of Antimicrobial Peptides on Bacteria, Current Topics in Medicinal Chemistry, vol.16, p.56, 2015.

M. Mattiuzzo, A. Bandiera, R. Gennaro, M. Benincasa, S. Pacor et al., Role of the Escherichia coli SbmA in the antimicrobial activity of proline-rich peptides, Molecular Microbiology, vol.66, p.57, 2007.

A. A. Handler, J. E. Lim, and R. Losick, Peptide inhibitor of cytokinesis during sporulation in Bacillus subtilis, Molecular Microbiology, vol.68, p.57, 2008.

S. S. Yadavalli, J. N. Carey, R. S. Leibman, A. I. Chen, A. M. Stern et al., Antimicrobial peptides trigger a division block in Escherichia coli through stimulation of a signalling system, Nature Communications, vol.7, p.57, 2016.

M. Otto, Contributions to Microbiology, vol.KARGER, p.57, 2009.

J. N. Cole and V. Nizet, Virulence Mechanisms of Bacterial Pathogens

, American Society of Microbiology, vol.59, p.57, 2016.

A. Stacy and Y. Belkaid, Microbial guardians of skin health, Science, vol.363, p.57, 2019.

H. Boucher, G. Talbot, J. Bradley, J. Edwards, D. Gilbert et al., No Drugs : No ESKAPE ! An Update from the Infectious Diseases Society of America, Clinical Infectious Diseases, vol.48, p.57, 2009.

A. Giuliani, G. Pirri, A. Bozzi, A. D. Giulio, M. Aschi et al., Antimicrobial peptides : natural templates for synthetic membrane-active compounds, Cellular and Molecular Life Sciences, vol.65, pp.2450-2460, 2008.

K. Gould, Antibiotics : from prehistory to the present day, Journal of Antimicrobial Chemotherapy, vol.71, p.57, 2016.

C. Loose, K. Jensen, I. Rigoutsos, and G. Stephanopoulos, A linguistic model for the rational design of antimicrobial peptides, Nature, vol.443, p.57, 2006.

W. Porto, A. Pires, and O. Franco, Computational tools for exploring sequence databases as a resource for antimicrobial peptides, Biotechnol. Adv, vol.35, p.57, 2017.

W. F. Porto, I. C. Fensterseifer, S. M. Ribeiro, and O. L. Franco, Joker : An algorithm to insert patterns into sequences for designing antimicrobial peptides, Biochimica et Biophysica Acta (BBA) -General, vol.1862, p.57, 2018.

M. D. Torres, S. Sothiselvam, T. K. Lu, F. De-la, and C. , Peptide Design Principles for Antimicrobial Applications, J. Mol. Biol, vol.79, p.58, 2019.

J. Li, J. Koh, S. Liu, R. Lakshminarayanan, C. S. Verma et al., Membrane Active Antimicrobial Peptides : Translating Mechanistic Insights to Design, vol.11, p.58, 2017.

A. Cherkasov, K. Hilpert, H. Jenssen, C. D. Fjell, M. Waldbrook et al., Use of Artificial Intelligence in the Design of Small Peptide Antibiotics Effective against a Broad Spectrum of Highly Antibiotic-Resistant Superbugs, ACS Chem. Biol, vol.4, p.58, 2009.

A. Hänchen, S. Rausch, B. Landmann, L. Toti, A. Nusser et al., Alanine Scan of the Peptide Antibiotic Feglymycin : Assessment of Amino Acid Side Chains Contributing to Antimicrobial Activity, ChemBioChem, vol.14, p.58, 2013.

T. Saga and K. Yamaguchi, History of Antimicrobial Agents and Resistant Bacteria, Japan Medical Association Journal, vol.52, p.58, 2009.

G. Bell and P. Gouyon, Arming the enemy : the evolution of resistance to self-proteins. Microbiology, vol.149, p.59, 2003.

A. Buckling, M. Brockhurst, and . Resistance, Nature, vol.438, p.59, 2005.

R. E. Hancock, Concerns regarding resistance to self-proteins. Microbiology, vol.149, p.59, 2003.

O. Fleitas and O. L. Franco, Induced Bacterial Cross-Resistance toward Host Antimicrobial Peptides : A Worrying Phenomenon, Frontiers in Microbiology, vol.7, p.59, 2016.

S. Maria-neto, A. De, K. C. Macedo, M. L. Franco, and O. L. , Understanding bacterial resistance to antimicrobial peptides : From the surface to deep inside, Biochimica et Biophysica Acta (BBA) -Biomembranes, vol.1848, p.59, 2015.

J. Z. Kubicek-sutherland, H. Lofton, M. Vestergaard, K. Hjort, H. Ingmer et al., Antimicrobial peptide exposure selects for Staphylococcus aureus resistance to human defence peptides, Journal of Antimicrobial Chemotherapy, vol.72, p.59, 2016.

M. E. Bauer and W. M. Shafer, On the in vivo significance of bacterial resistance to antimicrobial peptides, Biochimica et Biophysica Acta (BBA) -Biomembranes, vol.1848, p.59, 2015.

G. Yu, D. Y. Baeder, R. R. Regoes, and J. Rolff, Predicting drug resistance evolution : insights from antimicrobial peptides and antibiotics, Proceedings of the Royal Society B : Biological Sciences, p.59, 2018.

A. Rodriguez-rojas, O. Makarova, J. Rolff, and . Antimicrobials, Stress and Mutagenesis, sous la dir. de ZASLOFF, M., e1004445, vol.10, p.59, 2014.

Z. Amso and Z. Hayouka, Antimicrobial random peptide cocktails : a new approach to fight pathogenic bacteria, Chem. Commun, vol.55, p.59, 2007.

C. Da, N. B. Cobacho, N. B. Viana, J. F. Lima, L. A. Sampaio et al., The next generation of antimicrobial peptides (AMPs) as molecular therapeutic tools for the treatment of diseases with social and economic impacts, Drug Discovery Today, vol.22, p.59, 2017.

X. Zhu, N. Dong, Z. Wang, Z. Ma, L. Zhang et al., Design of imperfectly amphipathic ?-helical antimicrobial peptides with enhanced cell selectivity, Acta Biomaterialia, vol.10, p.59, 2014.

U. Piotrowska, M. Sobczak, and E. Oledzka, Current state of a dual behaviour of antimicrobial peptides -Therapeutic agents and promising delivery vectors, Chemical Biology & Drug Design, p.59, 2017.

L. S. Biswaro, M. G. Sousa, T. M. Rezende, S. C. Dias, and O. L. Franco, Antimicrobial Peptides and Nanotechnology, Recent Advances and Challenges, Frontiers in Microbiology, vol.9, p.59, 2018.

B. Gomes, M. T. Augusto, M. R. Felicio, A. Hollmann, O. L. Franco et al., Designing improved active peptides for therapeutic approaches against infectious diseases, Biotechnology Advances, vol.36, p.59, 2018.

C. Ghosh, P. Sarkar, R. Issa, and J. Haldar, Alternatives to Conventional Antibiotics in the Era of Antimicrobial Resistance, Trends in Microbiology, vol.27, p.59, 2019.

L. Brandenburg, J. Merres, L. Albrecht, D. Varoga, and T. Pufe, Antimicrobial Peptides : Multifunctional Drugs for Different Applications, Polymers, vol.4, p.59, 2012.

S. Da, F. P. Machado, and M. C. , Antimicrobial peptides : Clinical relevance and therapeutic implications, Peptides, vol.36, p.59, 2012.

B. Oyinloye, A. Adenowo, and A. Kappo, Reactive Oxygen Species, Apoptosis, Antimicrobial Peptides and Human Inflammatory Diseases, Pharmaceuticals, vol.8, p.59, 2015.

M. L. Mangoni, A. M. Mcdermott, and M. Zasloff, Antimicrobial peptides and wound healing : biological and therapeutic considerations, Experimental Dermatology, vol.25, p.59, 2016.

S. Mai, M. T. Mauger, L. Niu, J. B. Barnes, S. Kao et al., Potential applications of antimicrobial peptides and their mimics in combating caries and pulpal infections, Acta Biomaterialia, vol.49, p.59, 2017.

T. Schuerholz, K. Brandenburg, and G. Marx, Antimicrobial peptides and their potential application in inflammation and sepsis, Critical Care, vol.16, p.60, 2012.

M. S. Zharkova, D. S. Orlov, O. Y. Golubeva, O. B. Chakchir, I. E. Eliseev et al., Application of Antimicrobial Peptides of the Innate Immune System in Combination With Conventional Antibiotics -A Novel Way to Combat Antibiotic Resistance ? Frontiers in Cellular and Infection Microbiology, vol.9, p.60, 2019.

D. Gaspar, A. S. Veiga, and M. A. Castanho, From antimicrobial to anticancer peptides. A review, Frontiers in Microbiology, vol.4, p.60, 2013.

N. Thakur, A. Qureshi, and M. Kumar, AVPpred : collection and prediction of highly effective antiviral peptides, Nucleic Acids Research, vol.40, p.60, 2012.

M. Rautenbach, A. M. Troskie, and J. A. Vosloo, Antifungal peptides : To be or not to be membrane active, Biochimie, vol.130, p.60, 2016.

S. Sinha, A. Singh, B. Medhi, and R. Sehgal, Systematic Review : Insight into Antimalarial Peptide, International Journal of Peptide Research and Therapeutics, vol.22, p.60, 2016.

L. Giovati, T. Ciociola, W. Magliani, and S. Conti, Antimicrobial peptides with antiprotozoal activity : current state and future perspectives, Future Medicinal Chemistry, vol.10, p.60, 2018.

E. Montesinos and E. Bardaji, Synthetic Antimicrobial Peptides as Agricultural Pesticides for Plant-Disease Control, Chemistry & Biodiversity, vol.5, p.60, 2008.

M. Rai, R. Pandit, S. Gaikwad, and G. Kövics, Antimicrobial peptides as natural bio-preservative to enhance the shelf-life of food, Journal of Food Science and Technology, vol.53, p.60, 2016.

M. Hoyos-nogués, J. Buxadera-palomero, M. Ginebra, J. M. Manero, F. Gil et al., All-in-one trifunctional strategy : A cell adhesive, bacteriostatic and bactericidal coating for titanium implants, Colloids Surf., B, vol.169, p.61, 2018.

K. Glinel, P. Thebault, V. Humblot, C. Pradier, and T. Jouenne, Antibacterial surfaces developed from bio-inspired approaches, Acta Biomater, vol.8, p.60, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00689996

K. Yu, J. C. Lo, M. Yan, X. Yang, D. E. Brooks et al.,

, Anti-adhesive antimicrobial peptide coating prevents catheter associated infection in a mouse urinary infection model, Biomaterials, vol.116, p.61, 2017.

A. Rai, S. Pinto, M. B. Evangelista, H. Gil, S. Kallip et al., High-density antimicrobial peptide coating with broad activity and low cytotoxicity against human cells, Acta Biomater, vol.33, p.61, 2016.

M. Gabriel, K. Nazmi, E. C. Veerman, A. V. Nieuw-amerongen, and A. Zentner, Preparation of LL-37-Grafted Titanium Surfaces with Bactericidal Activity, Bioconjugate Chem, vol.17, p.61, 2006.

M. Godoy-gallardo, C. Mas-moruno, M. C. Fernandez-calderon, C. Perez-giraldo, J. M. Manero et al., Covalent immobilization of hLf1-11 peptide on a titanium surface reduces bacterial adhesion and biofilm formation, Acta Biomater, vol.10, p.61, 2014.

X. W. Tan, T. W. Goh, P. Saraswathi, C. L. Nyein, M. Setiawan et al., Effectiveness of Antimicrobial Peptide Immobilization for Preventing Perioperative Cornea Implant-Associated Bacterial Infection, Antimicrob. Agents Chemother, vol.58, p.61, 2014.

G. A. Buckholtz, N. A. Reger, W. D. Anderton, P. J. Schimoler, S. L. Roudebush et al., Reducing Escherichia coli growth on a composite biomaterial by a surface immobilized antimicrobial peptide, Materials Science and Engineering : C, vol.65, p.61, 2016.

G. M. Jeong, H. Seong, S. G. Im, B. H. Sung, S. C. Kim et al., Coating of an antimicrobial peptide on solid substrate via initiated chemical vapor deposition, J. Ind. Eng. Chem, p.61, 2017.

M. M. Welling, A. Lupetti, H. S. Balter, S. Lanzzeri, B. Souto et al., H. 99mTc-labeled antimicrobial peptides for detection of bacterial and Candida albicans infections, Society of Nuclear Medicine, vol.42, p.61, 2001.

M. S. Akhtar, M. B. Imran, M. A. Nadeem, and A. Shahid, Antimicrobial Peptides as Infection Imaging Agents : Better Than Radiolabeled Antibiotics, International Journal of Peptides, vol.2012, p.61, 2012.

M. M. Welling, A. W. Hensbergen, A. Bunschoten, A. H. Velders, H. Scheper et al., Fluorescent imaging of bacterial infections and recent advances made with multimodal radiopharmaceuticals, Clinical and Translational Imaging, vol.7, p.61, 2019.

L. C. Shriver-lake, S. H. North, S. N. Dean, and C. R. Taitt, Antimicrobial Peptides for Detection and Diagnostic Assays. Designing Receptors for the Next Generation of Biosensors, p.61, 2012.

R. R. Silva, K. Y. Avelino, K. L. Ribeiro, O. L. Franco, M. D. Oliveira et al., Optical and dielectric sensors based on antimicrobial peptides for microorganism diagnosis, Front. Microbiol, vol.5, p.61, 2014.

M. Hoyos-nogués, F. J. Gil, and C. Mas-moruno, Antimicrobial Peptides : Powerful Biorecognition Elements to Detect Bacteria in Biosensing Technologies, Molecules, vol.23, p.61, 2018.

J. E. Dover, G. M. Hwang, E. H. Mullen, B. C. Prorok, and S. Suh, Recent advances in peptide probe-based biosensors for detection of infectious agents, J. Microbiol. Methods, vol.78, p.61, 2009.

J. Soares, K. Morin, C. Mello, and D. T. De-center, Antimicrobial peptides for use in biosensing applications. sous la dir

. Soares-morin/76bfeea21b2639f29b4f0b906dc542106e08b72f, , vol.62, p.61

N. V. Kulagina, M. E. Lassman, F. S. Ligler, and C. R. Taitt, Antimicrobial Peptides for Detection of Bacteria in Biosensor Assays, Anal. Chem, vol.77, p.61, 2005.

N. V. Kulagina, K. M. Shaffer, G. P. Anderson, F. S. Ligler, and C. R. Taitt, Antimicrobial peptide-based array for Escherichia coli and Salmonella screening, Anal. Chim. Acta, vol.575, p.62, 2006.

N. Kulagina, K. Shaffer, F. Ligler, and C. Taitt, Antimicrobial peptides as new recognition molecules for screening challenging species, Sens. Actuators, B, vol.121, p.81, 2007.

N. Kulagina, C. Taitt, G. Anderson, and F. Ligler, Affinity-based detection of biological targets., US8658372 B2, US Patent 8,658, vol.372, p.62, 2014.

S. Arcidiacono, P. Pivarnik, C. M. Mello, and A. Senecal, Cy5 labeled antimicrobial peptides for enhanced detection of Escherichia coli O157 :H7, Biosens. Bioelectron, vol.23, p.70, 2008.

M. S. Mannoor, S. Zhang, A. J. Link, and M. C. Mcalpine, Electrical detection of pathogenic bacteria via immobilized antimicrobial peptides, Proceedings of the National Academy of Sciences, vol.107, p.67, 2010.

T. Yonekita, R. Ohtsuki, E. Hojo, N. Morishita, T. Matsumoto et al., Development of a novel multiplex lateral flow assay using an antimicrobial peptide for the detection of Shiga toxin-producing Escherichia coli, J. Microbiol. Methods, vol.93, p.62, 2013.

M. F. Zampa, I. M. Araújo, V. Costa, C. H. Costa, J. R. Santos et al., Leishmanicidal Activity and Immobilization of dermaseptin 01 antimicrobial peptides in ultrathin films for nanomedicine applications, Nanomed. Nanotechnol. Biol. Med, vol.5, p.62, 2009.

Y. Li, R. Afrasiabi, F. Fathi, N. Wang, C. Xiang et al., Impedance based detection of pathogenic E. coli O157 :H7 using a ferrocene-antimicrobial peptide modified biosensor

. Bioelectron, , vol.58, p.62, 2014.

K. Jiang, H. Etayash, S. Azmi, S. Naicker, M. Hassanpourfard et al., Rapid label-free detection of E. coli using antimicrobial peptide assisted impedance spectroscopy, Anal. Methods, vol.7, p.62, 2015.

E. Lv, J. Ding, and W. Qin, Potentiometric Detection of Listeria monocytogenes via a Short Antimicrobial Peptide Pair-Based Sandwich Assay, Anal. Chem, vol.90, p.62, 2018.

P. B. Lillehoj, C. Ho, W. Shi, C. Kaplan, and J. He, IEEE 6th International Conference on Nano/Molecular Medicine and Engineering (NANOMED), p.62, 2012.

P. B. Lillehoj, C. W. Kaplan, J. He, W. Shi, C. Ho et al., Electrical Impedance Detection of Bacterial Pathogens Using Immobilized Antimicrobial Peptides, Journal of Laboratory Automation, vol.19, p.62, 2013.

H. Etayash, K. Jiang, T. Thundat, and K. Kaur, Impedimetric Detection of Pathogenic Gram-Positive Bacteria Using an Antimicrobial Peptide from Class IIa Bacteriocins, Anal. Chem, vol.86, p.67, 2014.

C. A. Andrade, J. M. Nascimento, I. S. Oliveira, C. V. Oliveira, C. P. Melo et al., Nanostructured sensor based on carbon nanotubes and clavanin A for bacterial detection, Colloids Surf, vol.135, p.70, 2015.

M. Hoyos-nogues, S. Brosel-oliu, N. Abramova, F. Muñoz, A. Bratov et al., Impedimetric antimicrobial peptide-based sensor for the early detection of periodontopathogenic bacteria

, Biosens. Bioelectron, vol.86, p.62, 2016.

X. Liu, M. Marrakchi, D. Xu, H. Dong, and S. Andreescu, Biosensors based on modularly designed synthetic peptides for recognition, detection and live/dead differentiation of pathogenic bacteria, Biosens. Bioelectron, vol.80, p.62, 2016.

M. De, J. L. Oliveira, M. D. Oliveira, I. S. Frias, I. A. Franco et al., A Simple Nanostructured Biosensor Based on Clavanin A Antimicrobial Peptide for Gram-Negative Bacteria Detection, Biochem

. J. Eng, , vol.65, p.68, 2017.

A. G. Junior, M. D. Oliveira, I. S. Oliveira, R. G. Lima-neto, S. R. Sá et al., A simple nanostructured impedimetric biosensor based on clavanin A peptide for bacterial detection

B. Actuators, , vol.255, p.71, 2018.

D. Wilson, E. M. Materón, G. Ibáñez-redín, R. C. Faria, D. S. Correa et al., Electrical detection of pathogenic bacteria in food samples using information visualization methods with a sensor based on magnetic nanoparticles functionalized with antimicrobial peptides, Talanta, vol.194, p.69, 2019.

Z. Dong and G. Zhao, Label-free detection of pathogenic bacteria via immobilized antimicrobial peptides, Talanta, vol.137, p.62, 2015.

Y. Chen, Z. P. Michael, G. P. Kotchey, Y. Zhao, and A. Star, Electronic Detection of Bacteria Using Holey Reduced Graphene Oxide, ACS Applied Materials & Interfaces, vol.6, p.67, 2014.

M. C. Mcalpine and M. S. Mannoor, Use and making of biosensors utilizing antimicrobial peptides for highly sensitive biological monitoring., US Patent 9, vol.168, p.62, 2015.

B. J. Johnson, C. R. Taitt, A. Gleaves, S. H. North, A. P. Malanoski et al., Porphyrin-modified antimicrobial peptide indicators for detection of bacteria, Sens. Bio-Sens. Res, vol.8, p.81, 2016.

K. Yuan, Antimicrobial peptide based magnetic recognition elements and Au@Ag-GO SERS tags with stable internal standards : a three in one biosensor for isolation, discrimination and killing of multiple bacteria in whole blood

, Chem. Sci, vol.9, p.65, 2018.

Q. Chen, L. Zhang, Y. Feng, F. Shi, Y. Wang et al., Dual-functional peptide conjugated gold nanorods for the detection and photothermal ablation of pathogenic bacteria, J. Mater. Chem. B, p.65, 2018.

T. N. Dao, J. Yoon, C. E. Jin, B. Koo, K. Han et al., Rapid and sensitive detection of Salmonella based on microfluidic enrichment with a label-free nanobiosensing platform, Sens. Actuators, B, vol.262, p.65, 2018.

E. Tenenbaum and E. Segal, Optical biosensors for bacteria detection by a peptidomimetic antimicrobial compound, Analyst, vol.140, p.65, 2015.

S. A. Guralp, I. H. Gubbuk, S. Kucukkolbasi, and E. Gulari, Universal cell capture by immobilized antimicrobial peptide plantaricin, Biochem. Eng. J, vol.101, p.65, 2015.

J. Xiong, W. Wang, and Z. Fu, Fluorimetric sandwich affinity assay for Staphylococcus aureus based on dual-peptide recognition on magnetic nanoparticles, vol.184, p.65, 2017.

M. Chang, J. H. Yoo, D. H. Woo, and M. Chun, Efficient detection of Escherichia coli O157 :H7 using a reusable microfluidic chip embedded with antimicrobial peptide-labeled beads, The Analyst, vol.140, p.65, 2015.

J. H. Yoo, D. H. Woo, M. Chang, and M. Chun, Microfluidic based biosensing for Escherichia coli detection by embedding antimicrobial peptide-labeled beads, Sens. Actuators, B, vol.191, p.65, 2014.

N. N. Li, J. Z. Li, P. Liu, D. Pranantyo, L. Luo et al., An antimicrobial peptide with an aggregation-induced emission (AIE) luminogen for studying bacterial membrane interactions and antibacterial actions, Chem. Commun, vol.53, p.65, 2017.

J. Han, H. Cheng, B. Wang, M. S. Braun, X. Fan et al., A Polymer/Peptide Complex-Based Sensor Array That Discriminates Bacteria in Urine, Angew. Chem. Int. Ed, vol.56, p.65, 2017.

J. Wang, M. J. Morton, C. T. Elliott, N. Karoonuthaisiri, L. Segatori et al., Rapid Detection of Pathogenic Bacteria and Screening of Phage-Derived Peptides Using Microcantilevers, Anal. Chem, vol.86, p.67, 2014.

O. Schwartz and M. Bercovici, Microfluidic Assay for Continuous Bacteria Detection Using Antimicrobial Peptides and Isotachophoresis, Anal. Chem, vol.86, p.67, 2014.

S. Azmi, K. Jiang, M. Stiles, T. Thundat, and K. Kaur, Detection of Listeria monocytogenes with Short Peptide Fragments from Class IIa Bacteriocins as Recognition Elements, ACS Combinatorial Science, vol.17, p.73, 2015.

Z. Li, H. Yang, L. Sun, H. Qi, Q. Gao et al., Electrogenerated chemiluminescence biosensors for the detection of pathogenic bacteria using antimicrobial peptides as capture/signal probes, Sens. Actuators, B, vol.210, p.68, 2015.

C. Zhou, H. Zou, M. Li, C. Sun, D. Ren et al., Fiber optic surface plasmon resonance sensor for detection of E. coli O157 :H7 based on antimicrobial peptides and AgNPs-rGO, Biosens. Bioelectron, vol.117, p.68, 2018.

É. Pardoux, A. Roux, R. Mathey, D. Boturyn, and Y. Roupioz, Antimicrobial peptide arrays for wide spectrum sensing of pathogenic bacteria, Talanta, vol.203, p.69, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02348312

H. Etayash, L. Norman, T. Thundat, and K. Kaur, Peptide-Bacteria Interactions using Engineered Surface-Immobilized Peptides from Class IIa Bacteriocins, Langmuir, vol.29, p.70, 2013.

H. Etayash, L. Norman, T. Thundat, M. Stiles, and K. Kaur, Surface-Conjugated Antimicrobial Peptide Leucocin A Displays High Binding to Pathogenic Gram-Positive Bacteria, ACS Applied Materials & Interfaces, vol.6, p.73, 2014.

I. H. Lee, C. Zhao, Y. Cho, S. S. Harwig, E. L. Cooper et al., Clavanins, ?-helical antimicrobial peptides from tunicate hemocytes, FEBS Letters, vol.400, p.71, 1997.

I. H. Lee, Y. Cho, and R. I. Lehrer, Effects of pH and salinity on the antimicrobial properties of clavanins, Infect. Immun, vol.65, p.71, 1997.

K. Van, E. J. Ganchev, D. N. Snel, M. M. Chupin, V. Van-der et al., The Peptide Antibiotic Clavanin A Interacts Strongly and Specifically with Lipid Bilayers ?, Biochemistry (Mosc.), vol.42, p.71, 2003.

M. Zasloff, Magainins, a class of antimicrobial peptides from Xenopus skin : isolation, characterization of two active forms, and partial cDNA sequence of a precursor, Proceedings of the National Academy of Sciences, vol.84, p.71, 1987.

V. Humblot, J. Yala, P. Thebault, K. Boukerma, A. Héquet et al., The antibacterial activity of Magainin I immobilized onto mixed thiols Self-Assembled Monolayers, Biomaterials, vol.30, p.71, 2009.

J. Peyre, V. Humblot, C. Méthivier, J. Berjeaud, and C. Pradier, Co-Grafting of Amino-Poly(ethylene glycol) and Magainin I on a TiO2 Surface : Tests of Antifouling and Antibacterial Activities, The Journal of Physical Chemistry B, vol.116, p.71, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00808576

K. Matsuzaki, Magainins as paradigm for the mode of action of pore forming polypeptides, Biochimica et Biophysica Acta (BBA) -Reviews on Biomembranes, vol.1376, pp.391-400, 1998.

K. S. Moore, C. L. Bevins, M. M. Brasseur, N. Tomassini, K. Turner et al., Antimicrobial peptides in the stomach of Xenopus laevis, The Journal of biological chemistry, vol.266, p.71, 1991.

P. Alvarez-sieiro, M. Montalbán-lópez, D. Mu, and O. P. Kuipers, Bacteriocins of lactic acid bacteria : extending the family, Appl. Microbiol. Biotechnol, vol.100, p.72, 2016.

M. Papagianni, S. Anastasiadou, and . Pediocins, The bacteriocins of Pediococci. Sources, production, properties and applications. Microb. Cell Fact, vol.8, 2009.

M. Zacharof and R. Lovitt, Bacteriocins Produced by Lactic Acid Bacteria a Review Article, APCBEE Procedia, vol.2, p.72, 2012.

J. T. Henderson, A. L. Chopko, and P. Van-wassenaar, Purification and primary structure of pediocin PA-1 produced by Pediococcus acidilactici PAC-1.0, Arch. Biochem. Biophys, vol.295, pp.5-12, 1992.

M. L. Chikindas, M. J. García-garcerá, A. J. Driessen, A. M. Ledeboer, J. Nissen-meyer et al., Pediocin PA-1, a bacteriocin from Pediococcus acidilactici PAC1.0, forms hydrophilic pores in the cytoplasmic membrane of target cells, Appl. Environ. Microbiol, vol.59, p.72, 1993.

G. Fimland, O. R. Blingsmo, K. Sletten, G. Jung, I. F. Nes et al., New biologically active hybrid bacteriocins constructed by combining regions from various pediocin-like bacteriocins : the C-terminal region is important for determining specificity, Appl. Environ. Microbiol, vol.62, p.72, 1996.

J. W. Hastings, M. Sailer, K. Johnson, K. L. Roy, J. C. Vederas et al., Characterization of leucocin A-UAL 187 and cloning of the bacteriocin gene from Leuconostoc gelidum, J. Bacteriol, vol.173, p.73, 1991.

B. Mojsoska and H. Jenssen, Peptides and Peptidomimetics for Antimicrobial Drug Design, Pharmaceuticals, vol.8, p.79, 2015.

E. F. Haney, Y. Brito-sánchez, M. J. Trimble, S. C. Mansour, A. Cherkasov et al., Computer-aided Discovery of Peptides that Specifically Attack Bacterial, Biofilms. Sci. Rep, vol.8, p.79, 2018.

B. Vishnepolsky and M. Pirtskhalava, Prediction of Linear Cationic Antimicrobial Peptides Based on Characteristics Responsible for Their Interaction with the Membranes, J. Chem. Inf. Model, vol.54, p.79, 2014.

J. A. Beltran, L. Aguilera-mendoza, and C. A. Brizuela, Optimal selection of molecular descriptors for antimicrobial peptides classification : an evolutionary feature weighting approach, BMC Genomics, vol.19, p.79, 2018.

F. Lira, P. S. Perez, J. A. Baranauskas, and S. R. Nozawa, Prediction of Antimicrobial Activity of Synthetic Peptides by a Decision Tree Model, Appl. Environ. Microbiol, vol.79, p.79, 2013.

E. Glukhov, L. L. Burrows, and C. M. Deber, Membrane interactions of designed cationic antimicrobial peptides : The two thresholds, Biopolymers, vol.89, p.79, 2008.

M. Fernández-vidal, S. Jayasinghe, A. S. Ladokhin, and S. H. White, Folding Amphipathic Helices Into Membranes : Amphiphilicity Trumps Hydrophobicity, J. Mol. Biol, vol.370, p.79, 2007.

X. Tian, F. Sun, X. Zhou, S. Luo, and L. Chen, Role of peptide self-assembly in antimicrobial peptides, J. Pept. Sci, vol.21, p.79, 2015.

D. Romeo, B. Skerlavaj, M. Bolognesi, and R. Gennaro, Structure and bactericidal activity of an antibiotic dodecapeptide purified from bovine neutrophils, The Journal of biological chemistry, vol.263, p.80, 1988.

K. Hilpert, M. R. Elliott, R. Volkmer-engert, P. Henklein, O. Donini et al., Sequence Requirements and an Optimization Strategy for Short Antimicrobial Peptides, Chemistry & Biology, vol.13, p.80, 2006.

K. Hilpert, R. Volkmer-engert, T. Walter, and R. E. Hancock, High-throughput generation of small antibacterial peptides with improved activity, Nat. Biotechnol, vol.23, p.80, 2005.

R. Mikut, S. Ruden, M. Reischl, F. Breitling, R. Volkmer et al., Improving short antimicrobial peptides despite elusive rules for activity, Biochimica et Biophysica Acta (BBA) -Biomembranes, vol.1858, p.80, 2016.

M. Wu and R. E. Hancock, Improved derivatives of bactenecin, a cyclic dodecameric antimicrobial cationic peptide, Antimicrob. Agents Chemother, vol.43, p.80, 1999.

R. Frank, The SPOT-synthesis technique, J. Immunol. Methods, vol.267, pp.13-26, 2002.

K. Hilpert, M. Elliott, H. Jenssen, J. Kindrachuk, C. D. Fjell et al., Screening and Characterization of Surface-Tethered Cationic Peptides for Antimicrobial Activity, Chemistry & Biology, vol.16, p.80, 2009.

W. Van-der, N. L. Hancock, R. E. Anderson, and M. A. , Permeabilization of Fungal Hyphae by the Plant Defensin NaD1 Occurs through a Cell Wall-dependent Process, J. Biol. Chem, vol.285, p.80, 2010.

N. Kulagina, G. Anderson, F. Ligler, K. Shaffer, and C. Taitt, Antimicrobial Peptides : New Recognition Molecules for Detecting Botulinum Toxins, Sensors, vol.7, p.81, 2007.

H. Steiner, D. Hultmark, Å. Engström, H. Bennich, and H. G. Boman, Sequence and specificity of two antibacterial proteins involved in insect immunity, Nature, vol.292, p.81, 1981.

H. Boman, D. Wade, I. Boman, B. Wåhlin, and R. Merrifield, Antibacterial and antimalarial properties of peptides that are cecropin-melittin hybrids, FEBS Letters, vol.259, p.81, 1989.

D. Wade, A. Boman, B. Wahlin, C. M. Drain, D. Andreu et al., All-D amino acid-containing channel-forming antibiotic peptides, Proceedings of the National Academy of Sciences, vol.87, p.81, 1990.

E. Habermann and J. Jentsch, Sequence analysis of melittin from tryptic and peptic degradation products

, Hoppe-Seyler's Z. Physiol. Chem, vol.348, p.81, 1967.

D. Andreu, J. Ubach, A. Boman, B. Wåhlin, D. Wade et al., Shortened cecropin A-melittin hybrids Significant size reduction retains potent antibiotic activity, FEBS Letters, vol.296, pp.190-194, 1992.

P. Juvvadi, S. Vunnam, E. L. Merrifield, H. G. Boman, and R. B. Merrifield, Hydrophobic Effects on Antibacterial and Channel-forming Properties of Cecropin A-Melittin Hybrids, J. Pept. Sci, vol.2, p.82, 1996.

F. Abrunhosa, S. Faria, P. Gomes, I. Tomaz, J. C. Pessoa et al., Interaction and Lipid-Induced Conformation of Two Cecropin-Melittin Hybrid Peptides Depend on Peptide and Membrane Composition, The Journal of Physical Chemistry B, vol.109, p.82, 2005.

J. M. Saugar, M. J. Rodriguez-hernandez, T. De-la, B. G. Pachon-ibanez, M. E. Fernandez-reyes et al., Activity of Cecropin A-Melittin Hybrid Peptides against Colistin-Resistant Clinical Strains of Acinetobacter baumannii : Molecular Basis for the Differential Mechanisms of Action

, Antimicrob. Agents Chemother, vol.50, p.82, 2006.

H. Oh, M. Hedberg, D. Wade, and C. Edlund, Activities of Synthetic Hybrid Peptides against Anaerobic Bacteria : Aspects of Methodology and Stability, Antimicrob. Agents Chemother, vol.44, p.82, 2000.

A. Rai, S. Pinto, T. R. Velho, A. F. Ferreira, C. Moita et al., One-step synthesis of high-density peptide-conjugated gold nanoparticles with antimicrobial efficacy in a systemic infection model, Biomaterials, vol.85, p.82, 2016.

K. Gregory and C. M. Mello, Immobilization of Escherichia coli Cells by Use of the Antimicrobial Peptide Cecropin P1, Appl. Environ. Microbiol, vol.71, p.82, 2005.

H. Steiner, D. Andreu, and R. Merrifield, Binding and action of cecropin and cecropin analogues : Antibacterial peptides from insects, Biochimica et Biophysica Acta (BBA) -Biomembranes, vol.939, p.82, 1988.

D. Derossi, A. H. Joliot, G. Chassaing, and A. Prochiantz, The third helix of the Antennapedia homeodomain translocates through biological membranes, The Journal of biological chemistry, vol.269, p.82, 1994.

D. Derossi, G. Chassaing, and A. Prochiantz, Trojan peptides : the penetratin system for intracellular delivery, Trends Cell Biol, vol.8, p.82, 1998.

N. B. Last, D. E. Schlamadinger, and A. D. Miranker, A common landscape for membrane-active peptides, Protein Sci, vol.22, p.82, 2013.

J. S. Bahnsen, H. Franzyk, A. Sandberg-schaal, and H. M. Nielsen, Antimicrobial and cell-penetrating properties of penetratin analogs : Effect of sequence and secondary structure, Biochimica et Biophysica Acta (BBA) -Biomembranes, vol.1828, p.82, 2013.

A. D. Garro-and-m, J. A. Olivella, . Bombasaro-and-b, A. Lima, . Tapia-and-g et al.,

D. Enriz, Penetratin and Derivatives Acting as Antibacterial Agents, Chemical Biology & Drug Design, vol.82, p.82, 2013.

J. S. Bahnsen, H. Franzyk, E. J. Sayers, A. T. Jones, and H. M. Nielsen, Cell-Penetrating Antimicrobial Peptides -Prospectives for Targeting Intracellular Infections, Pharm. Res, vol.32, p.82, 2015.

R. G. Nuzzo and D. L. Allara, Adsorption of bifunctional organic disulfides on gold surfaces, J. Am. Chem. Soc, vol.105, p.83, 1983.

C. D. Bain and G. M. Whitesides, Molecular-Level Control over Surface Order in Self-Assembled Monolayer Films of Thiols on Gold, Science, vol.240, p.83, 1988.

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, Self-assembled monolayers of thiolates on metals as a form of nanotechnology, Chem. Rev, vol.105, p.84, 2005.

S. A. Onaizi and S. S. Leong, Tethering antimicrobial peptides : Current status and potential challenges, Biotechnol. Adv, vol.29, p.84, 2011.

P. Kingshott, J. Wei, D. Bagge-ravn, N. Gadegaard, and L. Gram, Covalent Attachment of Poly(ethylene glycol) to Surfaces, Critical for Reducing Bacterial Adhesion, Langmuir, vol.19, p.84, 2003.

L. Li, S. Chen, J. Zheng, B. D. Ratner, and S. Jiang, Protein Adsorption on Oligo(ethylene glycol)-Terminated Alkanethiolate Self-Assembled Monolayers : The Molecular Basis for Nonfouling Behavior, The Journal of Physical Chemistry B, vol.109, p.84, 2005.

K. Reimhult, K. Petersson, and A. Krozer, QCM-D Analysis of the Performance of Blocking Agents on Gold and Polystyrene Surfaces, Langmuir, vol.24, p.84, 2008.

A. Andrea, N. Molchanova, and H. Jenssen, Antibiofilm Peptides and Peptidomimetics with Focus on Surface Immobilization. Biomolecules, vol.8, p.84, 2018.

R. R. Silva, K. Y. Avelino, K. L. Ribeiro, O. L. Franco, M. D. Oliveira et al., Chemical immobilization of antimicrobial peptides on biomaterial surfaces, Frontiers in bioscience, vol.8, p.84, 2016.

J. D. Green, T. Fulghum, and M. A. Nordhaus, A review of immobilized antimicrobial agents and methods for testing, Biointerphases, vol.6, p.84, 2011.

F. Costa, I. F. Carvalho, R. C. Montelaro, P. Gomes, and M. C. Martins, Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces, Acta Biomater, vol.7, p.84, 2011.

B. Mishra, T. Lushnikova, R. M. Golla, X. Wang, and G. Wang, Design and surface immobilization of short anti-biofilm peptides, Acta Biomater, p.84, 2016.

K. Rapsch, F. F. Bier, M. Tadros, and M. Nickisch-rosenegk, Identification of Antimicrobial Peptides and Immobilization Strategy Suitable for a Covalent Surface Coating with Biocompatible Properties, Bioconjugate Chem, vol.25, p.84, 2014.

S. H. North, J. Wojciechowski, V. Chu, and C. R. Taitt, Surface immobilization chemistry influences peptidebased detection of lipopolysaccharide and lipoteichoic acid, J. Pept. Sci, vol.18, p.84, 2012.

M. Bagheri, M. Beyermann, and M. Dathe, Immobilization Reduces the Activity of Surface-Bound Cationic Antimicrobial Peptides with No Influence upon the Activity Spectrum, Antimicrob. Agents Chemother, vol.53, p.84, 2008.

Y. Li, S. Wei, J. Wu, J. Jasensky, C. Xi et al., Effects of Peptide Immobilization Sites on the Structure and Activity of Surface-Tethered Antimicrobial Peptides, The Journal of Physical Chemistry C, vol.119, p.84, 2015.

M. Bagheri, M. Beyermann, and M. Dathe, Mode of Action of Cationic Antimicrobial Peptides Defines the Tethering Position and the Efficacy of Biocidal Surfaces, Bioconjugate Chem, vol.23, p.84, 2012.

J. W. Soares, R. Kirby, L. A. Doherty, A. Meehan, and S. Arcidiacono, Immobilization and orientationdependent activity of a naturally occurring antimicrobial peptide, J. Pept. Sci, vol.21, p.84, 2015.

I. E. Ivanov, A. E. Morrison, J. E. Cobb, C. A. Fahey, and T. A. Camesano, Creating Antibacterial Surfaces with the Peptide Chrysophsin-1, ACS Applied Materials & Interfaces, vol.4, p.84, 2012.

X. Han, Y. Liu, F. Wu, J. Jansensky, T. Kim et al., Different Interfacial Behaviors of Peptides Chemically Immobilized on Surfaces with Different Linker Lengths and via Different Termini, The Journal of Physical Chemistry B, vol.118, p.84, 2014.

K. Yu, J. C. Lo, Y. Mei, E. F. Haney, E. Siren et al., Toward Infection-Resistant Surfaces : Achieving High Antimicrobial Peptide Potency by Modulating the Functionality of Polymer Brush and Peptide, ACS Applied Materials & Interfaces, vol.7, p.84, 2015.

L. C. Shriver-lake, G. P. Anderson, and C. R. Taitt, Effect of Linker Length on Cell Capture by Poly(ethylene glycol)-Immobilized Antimicrobial Peptides, vol.33, p.84, 2017.

X. Han, J. Zheng, F. Lin, K. Kuroda, and Z. Chen, Interactions between Surface-Immobilized Antimicrobial Peptides and Model Bacterial Cell Membranes, vol.34, p.85, 2017.

R. Kügler, O. Bouloussa, and F. Rondelez, Evidence of a charge-density threshold for optimum efficiency of biocidal cationic surfaces, Microbiology, vol.151, p.85, 2005.

R. Behrendt, P. White, and J. Offer, Advances in Fmoc solid-phase peptide synthesis, J. Pept. Sci, vol.22, p.85, 2016.

R. B. Merrifield, Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide, J. Am. Chem. Soc, vol.85, p.85, 1963.

M. Boulade, Imagerie SPR optimisée en résolution pour l'étude et la détection de bactéries, p.92, 2019.

R. Midura and M. Yanagishita, Chaotropic Solvents Increase the Critical Micellar Concentrations of Detergents, Anal. Biochem, vol.228, p.96, 1995.

C. Daniel, Y. Roupioz, D. Gasparutto, T. Livache, and A. Buhot, Solution-Phase vs Surface-Phase Aptamer-Protein Affinity from a Label-Free Kinetic Biosensor, sous la dir. de WANUNU, M., e75419, vol.8, p.101, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01983222

R. Bos, M. Van-der, H. C. Busscher, and H. J. , Physico-chemistry of initial microbial adhesive interactions -its mechanisms and methods for study, FEMS Microbiology Reviews, vol.23, pp.179-230, 1999.

H. H. Tuson and D. B. Weibel, Bacteria-surface interactions, Soft Matter, vol.9, p.102, 2013.

H. G. Boman, Antibacterial peptides : basic facts and emerging concepts, J. Intern. Med, vol.254, p.107, 2003.

B. Baudin, Les tests de diagnostic rapide en biochimie médicale : intérêts, limites et dangers. Revue Francophone des Laboratoires, p.111, 2015.

J. B. Reece, N. A. Campbell, . Biology, J. B. Eng, and . Reece, Rev, p.111, 2011.

M. D. Johnson, . Human-biology, M. D. Eng, and . Johnson, Includes bibliographical references and index, p.111, 2012.

F. R. Cockerill, J. G. Hughes, E. A. Vetter, R. A. Mueller, A. L. Weaver et al., Analysis of 281,797 Consecutive Blood Cultures Performed over an Eight-Year Period : Trends in Microorganisms Isolated and the Value of Anaerobic Culture of Blood, Clin. Infect. Dis, vol.24, p.113, 1997.

T. Kirn and M. Weinstein, Update on blood cultures : how to obtain, process, report, and interpret. Clinical Microbiology and Infection, vol.19, p.113, 2013.

J. Spaargaren, C. P. Van-boven, and G. P. Voorn, Effectiveness of resins in neutralizing antibiotic activities in bactec plus Aerobic/F culture medium, J. Clin. Microbiol, vol.36, p.113, 1998.

D. Flayhart, A. P. Borek, T. Wakefield, J. Dick, and K. C. Carroll, Comparison of BACTEC PLUS Blood Culture Media to BacT/Alert FA Blood Culture Media for Detection of Bacterial Pathogens in Samples Containing Therapeutic Levels of Antibiotics, J. Clin. Microbiol, vol.45, p.113, 2006.

N. S. Miller, D. Rogan, B. L. Orr, and D. Whitney, Comparison of BD Bactec Plus Blood Culture Media to VersaTREK Redox Blood Culture Media for Detection of Bacterial Pathogens in Simulated Adult Blood Cultures Containing Therapeutic Concentrations of Antibiotics, J. Clin. Microbiol, vol.49, p.113, 2011.

N. Standards, Principles and Procedures for Blood Cultures, vol.27, p.114, 2007.

J. Eng, Effect of sodium polyanethol sulfonate in blood cultures, J. Clin. Microbiol, vol.1, p.114, 1975.

F. J. Walker and C. T. Esmon, The molecular mechanisms of heparin action, Biochem. Biophys. Res. Commun, vol.83, pp.1339-1346, 1978.

W. H. Traub and B. L. Lowrance, Anticomplementary, anticoagulatory, and serum-protein precipitating activity of sodium polyanetholsulfonate, Appl. Microbiol, vol.20, p.114, 1970.

T. V. Haebler and A. A. Miles, The action of sodium polyanethol sulphonate ("liquoid") on blood cultures, The Journal of Pathology and Bacteriology, vol.46, p.114, 1938.

M. E. Belding and S. J. Klebanoff, Effect of sodium polyanetholesulfonate on antimicrobial systems in blood, Appl. Microbiol, vol.24, p.114, 1972.

J. Eng and H. Iveland, Inhibitory effect in vitro of sodium polyanethol sulfonate on the growth of Neisseria meningitidis, J. Clin. Microbiol, vol.1, p.114, 1975.

D. J. Krogstad, P. R. Murray, G. G. Granich, A. C. Niles, J. H. Ladenson et al., Sodium polyanethol sulfonate inactivation of aminoglycosides, Antimicrob. Agents Chemother, vol.20, p.114, 1981.

B. Zhu, T. Eurell, R. Gunawan, and D. Leckband, Chain-length dependence of the protein and cell resistance of oligo(ethylene glycol)-terminated self-assembled monolayers on gold, J. Biomed. Mater. Res, vol.56, pp.406-416, 2001.

W. Norde and D. Gage, Interaction of Bovine Serum Albumin and Human Blood Plasma with PEO-Tethered Surfaces : Influence of PEO Chain Length, Grafting Density, and Temperature, Langmuir, vol.20, p.120, 2004.

M. Rabe, D. Verdes, and S. Seeger, Understanding protein adsorption phenomena at solid surfaces, Adv. Colloid Interface Sci, vol.162, p.124, 2011.

F. Fang and I. Szleifer, Competitive adsorption in model charged protein mixtures : Equilibrium isotherms and kinetics behavior, The Journal of Chemical Physics, vol.119, p.124, 2003.

D. Shin, Y. Liu, Y. Gao, T. Kwa, Z. Matharu et al., Micropatterned Surfaces Functionalized with Electroactive Peptides for Detecting Protease Release from Cells, Anal. Chem, vol.85, p.129, 2013.

K. J. Albert, N. S. Lewis, C. L. Schauer, G. A. Sotzing, S. E. Stitzel et al., Cross-Reactive Chemical Sensor Arrays, Chem. Rev, vol.100, p.140, 2000.

S. Brenet, A. John-herpin, F. Gallat, B. Musnier, A. Buhot et al., Highly-Selective Optoelectronic Nose Based on Surface Plasmon Resonance Imaging for Sensing Volatile Organic Compounds, Anal. Chem, vol.90, p.140, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01925324

F. Husson, S. Lê, and J. Pagès, Analyse de données avec R, PU Rennes, p.141, 2016.

K. L. Goodner, J. Dreher, and R. L. Rouseff, The dangers of creating false classifications due to noise in electronic nose and similar multivariate analyses, Sens. Actuators, B, vol.80, p.141, 2001.

S. Lê, J. Josse, and F. Husson, FactoMineR : An R Package for Multivariate Analysis, Journal of Statistical Software, vol.25, p.141, 2008.

M. Mächler, P. Rousseeuw, A. Struyf, M. Hubert, K. Hornik et al., Finding Groups in Data, Cluster Analysis Extended. CRAN 2019, vol.172, p.141

B. J. Swihart, B. Caffo, B. D. James, M. Strand, B. S. Schwartz et al., Lasagna Plots. Epidemiology, vol.21, p.170, 2010.

F. Husson, J. Josse, and J. Pages, Principal component methods-hierarchical clustering-partitional clustering : why would we need to choose for visualizing data ?, Technical Report -Agrocampus, vol.2010, p.171

J. H. Ward, Hierarchical Grouping to Optimize an Objective Function, Journal of the American Statistical Association, vol.58, p.171, 1963.

, Finding Groups in Data

L. Kaufman and P. J. Rousseeuw, , 1990.