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Toxoplasma gondii is a prevalent parasite of medical and veterinary impact. In 

intermediate hosts, tachyzoïtes and bradyzoïtes are responsible for acute and chronic 

toxoplasmosis (AT and CT), respectively. In immunocompetent patients, AT evolves, 

due to the host immunity, into a persistent CT, which manifests as latent tissue cysts in 

the brain and skeletal muscles. CT correlates with several neuro-pathologies and cancers. 

In immunocompromised patients, CT may reactivate and poses a life threatening 

condition. Current treatments primarily target AT, are limited to general anti-

parasitic/anti-bacterial drugs, and associate with several limitations. Here, we focused on 

targeting CT and understanding its molecular mechanisms. First, we explored the 

efficacy of Imiquimod against AT and CT. During AT, Imiquimod led to recruitment of 

T cells to peritoneum and spleen of treated mice and significantly decreased the number 

of brain cysts upon establishment of CT. Remarkably, gavage of mice with the remaining 

brain cysts from Imiquimod treated mice, failed to induce CT. Post-establishment of CT, 

we demonstrated that Imiquimod sharply reduced the number of brain cysts in 

chronically infected mice, and significantly increased Toll-Like Receptors 11 and 12. 

These TLRs are usually expressed by dendritic cells and monocytes, and bind a 

tachyzoïte actin-binding protein, profilin. Concomitantly, TLR-7 was upregulated, likely 

by its agonist Imiquimod. Imiquimod induced interconversion as documented by the 

decreased protein levels of P21, and increased protein levels of P30, exclusively 

expressed in bradyzoïtes and tachyzoïtes respectively. Pathways downstream from TLR-

11/12 were activated, through MyD88 dependent TLR signaling, which resulted in 

subsequent immune response induction. In vitro, Toxoplasma strain lacking profilin, does 

not respond to Imiquimod, suggesting a role through Profilin/TLR-11/12. Finally, 

Imiquimod treatment upregulated the transcript expression levels of Chemokine (C-X-C 

motif) ligand 9 (CXCL9) and 10 (CXCL10), known to induce T cell recruitment to 

reactivated Toxoplasma foci to clear the infection. 

Then, we focused on molecular mechanisms involved in AT and notably CT. We 

characterized P18, a Surface-Antigen 1 (SAG-1) Related Sequence (SRS) superfamily 

member. When we deleted P18, the virulence was attenuated during AT. Indeed, P18 

depletion led to a faster clearance of the parasites from the peritoneum of mice, paralleled 

by a substantial recruitment of dendritic cells, presumably a vehicle for tachyzoïte 
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dissemination. Concomitantly, a lower number of tachyzoïtes was detected in the spleens 

while a higher number of parasites reached the brains of infected mice. P18 depletion 

increased the number of bradyzoïte cysts, in vitro and in the brains of infected mice. An 

induced expression of cytokines/chemokines, including CXCL9 and 10 was also 

observed. Immunosuppression of infected mice with KO P18, delayed reactivation. Oral 

infection of Severe Combined Immunodeficiency (SCID) (with IFN-γ secreting 

macrophages), and NOD/Shi-scid/IL-2Rγnull (NSG) mice (lacking IFN-γ), showed a 

significant prolonged survival in infected SCID but not NSG mice. This underlines a role 

for IFN-γ in the conversion from bradyzoïtes to tachyzoïtes. Collectively, these data 

support a role of P18 in orchestrating the immune response, which ultimately facilitates 

tachyzoïte trafficking to the brain and favors cyst formation. P18 plays also a central role 

in parasite reactivation and dissemination in an IFN- γ dependent fashion. 

Altogether, we showed the promising therapeutic potential of Imiquimod against 

toxoplasmosis and characterized P18 role in immunomodulation to control dissemination 

and interconversion. Our study paves the path towards new therapeutic approaches 

against toxoplasmosis. It tackled key questions pertaining to establishment, maintenance 

and reactivation of CT and should result in a comprehensive solution to this endemic 

disease. 

 

Keywords: chronic toxoplasmosis, Toll-like receptors 11, 12, 7, Interferon-γ, 

reactivation, Imiquimod, p18. 
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Toxoplasma gondii est un parasite répandu, ayant un impact médical et vétérinaire. 

Chez les hôtes intermédiaires, les tachyzoïtes et les bradyzoïtes sont responsables de la 

toxoplasmose aiguë (TA) et chronique (TC), respectivement. Sous la réponse 

immunitaire, la TA évolue en TC, se manifestant par des kystes latents dans le cerveau et 

les muscles squelettiques. De plus, une forte corrélation existe entre la TC et plusieurs 

neuropathologies et cancers. Chez les patients immunodéprimés, la TC peut être réactivée 

et conduire à une maladie potentiellement fatale. Les traitements actuels ciblent 

principalement les TA, et présentent plusieurs effets secondaires. Nous nous sommes 

concentrés sur la TC et la compréhension de ses mécanismes moléculaires. Nous avons 

d’abord étudié l’efficacité de l’imiquimod contre la TA et la TC. Au cours de la TA, 

l'imiquimod a entraîné le recrutement de cellules T dans le péritoine et la rate de souris 

traitées et a considérablement diminué le nombre de kystes cérébraux lors de 

l'établissement de la TC. Remarquablement, le gavage de souris avec les kystes cérébraux 

restants chez des souris traitées à l'imiquimod n'a pas pu induire de TC. Après 

l'établissement de la TC, nous avons démontré que l'imiquimod réduisait 

considérablement le nombre de kystes cérébraux chez les souris chroniquement infectées 

et augmentait les récepteurs Toll-Like 11 et 12, qui se lient à une protéine du tachyzoïte, 

la profiline. Parallèlement, l’expression de TLR-7 augmentait, probablement par son 

agoniste, l'imiquimod. L'imiquimod induit une interconversion, comme l'indiquent la 

diminution du taux de protéine P21 et l'augmentation du taux de protéine P30, exprimées 

exclusivement et respectivement chez les bradyzoïtes et les tachyzoïtes. Les voies en aval 

de TLR-11/12 ont été activées via la voie MyD88 de signalisation, entraînant une 

induction ultérieure de la réponse immunitaire. In vitro, l'imiquimod n’affecte pas la 

souche Toxoplasma dépourvue de profiline, suggérant un rôle via le complexe 

Profilin/TLR-11/12. Enfin, le traitement par l'imiquimod a régulé positivement les 

transcrits des ligands 9 (CXCL9) et 10 (CXCL10), connus pour induire le recrutement de 

lymphocytes T dans des foyers réactivés du Toxoplasme afin d'éliminer l'infection. 

Ensuite, nous nous sommes concentrés sur les mécanismes moléculaires impliqués 

dans la TA et particulièrement dans la TC. Nous avons caractérisé P18, un membre de la 

superfamille SRS. Lorsque nous avons supprimé P18, la virulence était atténuée au cours 

de la TA, dû à un échappement plus rapide des tachyzoïtes du péritoine de souris, 
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parallèle à un recrutement significatif de cellules dendritiques. De manière concomitante, 

moins de tachyzoïtes étaient détectés dans la rate, tandis que plus de parasites ont atteint 

le cerveau de souris infectées. L’élimination de P18 a augmenté le nombre de kystes de 

bradyzoïtes in vitro et dans le cerveau de souris infectées. Une expression induite de 

cytokines, notamment CXCL9 et 10, a également été observée. L’immunosuppression de 

souris KO P18 infectées a retardé la réactivation. L’infection orale de souris 

immunodéficientes ayant des macrophages fonctionnels a montré un prolongement de 

survie, contrairement aux souris n’ayant pas de macrophage, soulignant un rôle de l'IFN- 

γ dans l’interconversion. Collectivement, ces données confirment le rôle de P18 dans la 

modulation de la réponse immunitaire, facilitant le passage des tachyzoïtes dans le 

cerveau et favorisant la formation de kystes. P18 joue également un rôle central dans la 

réactivation et la dissémination de parasites de manière dépendante de l'IFN-γ. Dans 

l'ensemble, nous avons montré le potentiel thérapeutique prometteur de l'imiquimod 

contre la toxoplasmose et caractérisé le rôle de P18 dans l'immunomodulation afin de 

contrôler la dissémination et l'interconversion. Notre étude ouvre la voie à de nouvelles 

approches thérapeutiques contre la toxoplasmose, sa persistance et sa réactivation. 

 

 

Mots-clés : toxoplasmose chronique, récepteurs Toll-like 11, 12, 7, interféron-γ, 

réactivation, Imiquimod, p18. 
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Chapter I: Generalities 

1.1 Apicomplexa phylum 

 The phylum Apicomplexa includes the malaria-causing parasite (Plasmodium 

spp.), in addition to several major animal pathogens (e.g. Eimeria spp., Theileria spp., 

Babesia spp., Neospora caninum), as well as the causative agents of toxoplasmosis (T. 

gondii) and cryptosporidiosis (Cryptosporidium spp.) (Table 1). Some of these parasites 

are responsible for the most deadly parasitic diseases afflicting humans. They are also 

responsible for many diseases of veterinary and economic importance. 

 

Table 1. Some members of the apicomplexan phylum, their classification, diseases and 

infectious stages pertaining to infection. 

 

Class Order Species Parasitosis 

Hematozoea 

Haemosporida Plasmodium Malaria 

Piroplasmida 

 

Babesia Animal and human Babesiosis 

Theileria Animal and human Theileriosis 

Coccidea 

 

EimeriaTenella Animal Coccidiosis 

Sarcocystis 
Animal and Human Infection Cyst 

forms 

Cryptospridium Animal and Human Infection Diarrhea 

Toxoplasma 
Animal and Human Toxoplasmosis 

Infection by cysts/Oocysts 

Perkinsidea Perkinsus sp. Oyster Parasite 
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 Most apicomplexan parasites exhibit a complex life cycle and some require 

multiple hosts. All members of this phylum undergo several stages of development, 

restricted to one host or another. Being essentially intracellular, these parasites majorly 

benefit by gaining a considerably safe route to evade the host immune system (Blader & 

Saeij, 2009). In case of T. gondii, this is primarily achieved by infecting macrophages and 

dendritic cells, altering and down regulating the secretion of pro inflammatory cytokines 

such as IL-12 and activating anti-apoptotic machinery, hence securing a safe low profile 

vehicle to spread to various tissues (Melo, Jensen, & Saeij, 2011). 

1.2 Toxoplasma gondii: Origin and Taxonomy 

1.2.1. Origin 

 In 1908, Nicolle and Manceaux were the first to describe Toxoplasma gondii (T. 

gondii) in an African hamster-like rodent called Ctenoductylus gundi, used primarily for 

Leishmania research at the Pasteur Institute in Tunis (Ferguson, 2009) (Nicolle & 

Manceaux, 1908). In parallel, Splendore discovered the same parasite in a rabbit in 

Brazil. The name Toxoplasma is based on the morphological appearance of the parasite 

whereby in Greek “Toxo” is equivalent to “arc” or “bow” and “plasma” means “Life”. 

The first viable specimen of T. gondii was isolated by Sabin and Olitsky in 1937 (Sabin 

& Olitsky, 1937), and the first case in humans was described in a neonate girl in 1938 

who died at one month of age from an acute encephalomyelitis (Wolf, Cowen, & Paige, 

1939). Later, many cases of acquired and congenital toxoplasmosis were described, and 

the development of a serological test, the “Dye” test, by Sabin and Feldman in 1948, 

further showed that T.gondii is widespread among humans and mammals (Sabin & 

Feldman, 1948). Over the next fifty years, more attention was given to the immune 

response against T.gondii, with the major discovery of the lymphoid cell mediated-

immunogenicity against it. A crucial role of T-cells was confirmed when athymic nude 

mice infected with T.gondii failed to develop protective immunity against this parasite 

(Frenkel, 1988). In 1991, Gazzinelli showed that CD8
+
 T lymphocytes producing 

interferon gamma (IFN-γ) are key players in the immune response to toxoplasmosis in 

vivo (R. T. Gazzinelli, Hakim, Hieny, Shearer, & Sher, 1991). Furthermore, the 80’s and 



26 

 

90’s witnessed attempts to determine genetic differences between various T. gondii 

isolates from humans and animals (J. P. Dubey et al., 2008). The complete sequencing of 

the parasite’s genome was accomplished in 2005 (A. Khan et al., 2005), aiming to set a 

basis for better understanding of the disease mechanisms, and subsequently for designing 

better treatment or even prevention (J. P. Dubey, 2008). 

1.2.2. Taxonomy 

The systematic classification of T. gondii goes back to 1980 (Levine et al., 1980) 

(Figure 1). Discoveries at the level of life cycle and advancements in electron microscopy 

yielded to the identification of a complex structure and a number of unique organelles. 

Similarities were shown between the previously considered unrelated parasites such as 

Plasmodium and Eimeria species (Scholtyseck & Mehlhorn, 1970). These led to a major 

change in the classification of Protozoa, to add a new Phylum, the Apicomplexa, 

accounting for all this relatedness,  and to encompass the parasites of the genera Babesia, 

Theileria, Plasmodium, Eimeria, Toxoplasma, Neospora, and Cryptosporidium 

(Ferguson, 2009). 

 

Figure 1. Scientific classification of Apicomplexan parasites. Retrieved from 

http://www.ncbi.nlm.nih.gov/Taxonomy. 
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1.3 Toxoplasma gondii life cycle  

      T. gondii is an obligate intracellular parasite that infects all warm-blooded 

animals, including approximately 30% of the human population worldwide (Tenter, 

Heckeroth, & Weiss, 2000). Its complete life cycle requires a sexual life cycle restricted 

to the feline intestinal epithelium and an asexual life cycle within any warm-blooded 

animal (Figure 2) (Hutchison, Dunachie, Siim, & Work, 1970; Sheffield & Melton, 

1970). Intermediate hosts such as humans can acquire T. gondii by ingestion of meat 

contaminated with cysts. Ingestion of sporulated oocysts in contaminated salads also 

results in an infection with T. gondii (Fox et al., 2011; Weiss & Kim, 2000). 

 

1. Sexual life cycle 

 Oocysts are the result of the sexual cycle of T. gondii, which begins when a 

domestic cat or any other member of the Felidae family feeds on an infected prey, 

containing the latent bradyzoïte stage of the parasite. The release of bradyzoïtes in the 

digestive tract, results in the initiation of the sexual development in the enterocytes of the 

cat’s ileum. Approximately 2 days post infection, gametogony begins and gamonts 

appear throughout the ileum inside enterocytes within a span of 3 to 15 days (J. Dubey, 

2009). Following gametogenesis, microgametes and macrogametes develop as the male 

and female gametes respectively. The female macrogamete has numerous organelles 

while the male microgamont harbors up to 21 microgametes which possess a top end 

perforatorium organelle, as well as flagella used to swim; these penetrate and fertilize 

mature female macrogametes (Speer & Dubey, 2005). 

After fertilization of a macrogamete by a microgamete, a zygote is formed in the 

intestinal lining cells of the infected feline definite host. Intestinal epithelial cells then 

rupture and oocysts are shed into the intestinal lumen as immature oocysts about 3-7 days 

following ingestion of the infected prey. Upon defecation, unsporulated oocysts are 

released in nature. Sporulation occurs in the outside environment. This process starts with 

a single, relatively amorphous zygote and ends after 1 to 5 days post excretion and under 

appropriate environmental conditions with a sporulated oocyst containing 2 sporocysts 
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harboring 4 sporozoites each and ready to start a new cycle (Dabritz & Conrad, 2010; 

Dabritz et al., 2007; J. P. Dubey, 1998).  

 

 

Figure 2. Life cycle of T. gondii. A. The sexual reproduction in feline (Final hosts). B. Asexual 

replication in intermediate hosts (including birds, rodents and humans). Unsporulated oocysts are 

shed in the cat’s feces . Oocysts sporulate within 1-5 days in the environment and become 

infective. Intermediate hosts in nature become infected after ingesting any organic or inorganic 

material contaminated with sporulated oocysts . Oocysts rupture and liberate sporozoites which 

transform into tachyzoïtes shortly after ingestion . These tachyzoïtes are capable of infecting all 

types of nucleated cells and even cross the placental barrier and infect the fetus . Under the 

control of the immune system, these tachyzoïtes will transform into encysted bradyzoïtes in the 

brain, and the skeletal muscles . In immunocompromised patients, these bradyzoïtes can 

reactivate into tachyzoïtes . Cats become infected after predation of intermediate hosts harboring 

tissue cysts . Cats may also become infected directly by ingestion of sporulated oocysts .   

 

 

 



29 

 

2. Asexual life cycle 

Upon oral ingestion of contaminated food with sporulated oocysts by any warm-

blooded animal, the asexual or intermediate life cycle begins (Figure 2). The digestive 

enzymes of the gastro-intestinal tract lead to the liberation of sporozoites which will 

rapidly transform into tachyzoïtes in the blood. These tachyzoïtes are responsible for the 

acute phase of infection and are capable of invading any nucleated cell as well as 

crossing the blood-placental barrier. Approximately 5 days after ingestion, and under the 

immune response, these tachyzoïtes transform into bradyzoïtes, which encyst in the brain 

and skeletal muscles. These tissue cysts may remain dormant for years, until a predator 

eats an intermediate host and a new cycle starts (J. P. Dubey et al., 1998; J. P. Dubey, 

2007). The reactivation of bradyzoïtes into tachyzoïtes can be encountered in 

immunocompromised patients (HIV patients or patients with organ or bone marrow 

transplantation), where it can become life threatening (Mele, Paterson, Prentice, Leoni, & 

Kibbler, 2002). 
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Chapter II: Morphology and stages of Toxoplasma gondii 

 Although T. gondii was discovered in 1908, the full life cycle remained 

unravelled until 1970, whereby only the asexual section of the life cycle and its namely 

tachyzoïtes and bradyzoïtes stages were known (J. P. Dubey, 2009). Uncovering the 

sexual part of the life cycle, was initiated by the work of Dr. J.K. Frenkel who 

investigated the screening on felids and several potential host species for shedding of 

oocysts (J. Dubey & Frenkel, 1972). During its life cycle, T. gondii exhibits three 

morphologically distinct infectious stages: tachyzoïtes, bradyzoïtes, and sporozoites. 

2.1. Tachyzoïtes 

In Greek, ‘tacos’ stands for ‘speed’. Tachyzoïtes are so called by Frenkel 

(Frenkel, J.K., 1973) and represent the anteriorly pointed and posteriorly rounded 

proliferative intracellular forms, responsible for the acute phase of the infection. After 

endodyogeny inside a host cell, each tachyzoïte divides into two daughter tachyzoïtes, 

lysing the mother parasite (Figure 3). The process continues until the host cell can no 

longer embrace the huge number of proliferating tachyzoïtes, and simply bursts releasing 

these stages to infect neighboring cells. At the nano-structural level, the tachyzoïte is an 

assembly of several organelles, inclusions, an outer covering (pellicle), sub-pellicular 

microtubules, polar rings, apical rings, rough and smooth endoplasmic reticula, 

mitochondrion, conoid, rhoptries, micronemes, dense granules, micropore, Golgi 

complex, a plant inherited plastid-like organelle called apicoplast, in addition to a 

centrally localized nucleus mainly featuring a central nucleolus surrounded by chromatin 

clumps (Figure 3) (J. P. Dubey, 2009; McGovern & Wilson, 2013a). 

Invasion by Toxoplasma gondii tachyzoïtes is a multistep process that begins 

upon contact with the host cell and apical reorientation of the parasite. This  results in a 

burst of microneme secretion, immediately followed by the discharge of rhoptry 

organelles content (Dubremetz, 2007). T. gondii possesses 8–12 rhoptries that cluster 

together at the apical pole of the parasite and occupy 10%–30% of the total cell volume. 

Data from stereological analysis suggest that only one organelle can discharge at a time 

(Paredes-Santos, de Souza, & Attias, 2012). Micronemes (MICs) are rice-grain-like 
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structures, usually fewer than 100 in number, situated at the conoidal end of T. gondii. 

Upon secretion and redistribution on the parasite surface, transmembrane MICs are 

thought to connect external receptors to the submembranous actin–myosin motor that 

provides the power for parasite gliding and host cell invasion (Cerede et al., 2005; 

Dubremetz, 2007; Joiner & Dubremetz, 1993). In addition to the rhoptries and the 

micronemes, the parasite contains dense granules which play a major role in the structural 

modifications, stability and maintenance of the parasitophorous vacuole (Gold et al., 

2015). In addition, some dense granule proteins that are released regulate host cell gene 

expression (Bougdour et al., 2013; Bougdour, Tardieux, & Hakimi, 2014; Braun et al., 

2013), and immune response (Pernas et al., 2014; Rosowski, Nguyen, Camejo, Spooner, 

& Saeij, 2014; Shastri, Marino, Franco, Lodoen, & Boothroyd, 2014), making them an 

essential component in parasite survival and disease pathogenesis. 

 

 

Figure 3. A. Endodyogeny process. Daughter Toxoplasma gondii parasites form inside the mother 

parasite (Murray, J., PLoS Pathogens Issue Image, 2006. 2006). B. Clicher of Jean-François 

Dubremetz: An intracellular T. gondii tachyzoïte inside a parasitophorous vacuole C. Schematic 

drawing showing the ultrastructure of T. gondii tachyzoïte (Ajioka, Fitzpatrick, & Reitter, 2001).  
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2.2. Bradyzoïtes 

 In 1973, Frenkel proposed the term “Bradyzoïte”, with “brady” meaning “slow” in 

Greek, to describe the slow growing developmental stage of T. gondii, encysting in 

tissues. Dubey and Beattie (1988) proposed that cysts should be called tissue cysts to 

avoid confusion with oocysts. The first characterization of these cysts appeared when 

they were found resistant to digestion by gastric enzymes, in contrast to tachyzoïtes 

which were readily destroyed. This highlights the importance of encysted forms of T. 

gondii as key part for the life cycle’s continuity. In the same year, isolation of viable 

bradyzoïtes from T. gondii tissues cysts of chronically infected animals, was performed 

using pepsin digestion. Tissue cysts (Figure 4) vary in size; young tissue cysts may be as 

small as 5 μm in diameter and contain only two bradyzoïtes, while older ones may reach 

an average of 50 to 70 µm in diameter, with around one thousand bradyzoïtes in mature 

cysts formed in the brain, and up to 100 µm with a more elongated form and definitely 

larger bradyzoïte content (Knoll, L.J., T. Tomita, and L.M. Weiss, 2014). Bradyzoïtes 

(Figure 4) are responsible for the chronic phase of toxoplasmosis. They are formed after 

the immune system reacts against the virulent tachyzoïte stage (J. P. Dubey, 2009). In 

immunocompromised patients, bradyzoïtes reactivate back to tachyzoïtes and may 

become life threatening (Bannoura, El Hajj, Khalifeh, & El Hajj, 2018; Rajapakse, 

Weeratunga, Rodrigo, de Silva, & Fernando, 2017; Z. D. Wang et al., 2017). 

Ultrastructure analysis showed that bradyzoïtes differ from tachyzoïtes in several 

features (Table 2), including the posterior position of the nucleus in bradyzoïtes, in 

comparison to its central location in tachyzoïtes. Amylopectin granules in these latent 

forms are abundant, as compared to their rarity or absence in tachyzoïtes (J. P. Dubey, 

2008). Furthermore, in comparison to the labyrinthine rhoptries in tachyzoïtes, these 

organelles are electron dense in mature bradyzoïtes and often appear convoluted and 

looping back on themselves (J. Dubey, 1998). Micronemes are rather numerous in 

bradyzoïtes and more slender than those of tachyzoïtes. Lipid bodies that are occasionally 

present in tachyzoïtes, are virtually completely absent in bradyzoïtes. The cyst wall has 

an average thickness of less than 0.5 µm (L. J. Knoll, Tomita, & Weiss, 2014). 
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Figure 4: Structure of bradyzoïtes. A. Transmission electron micrographs of bradyzoïtes (Br) 

within a tissue cyst. Note the presence of cyst wall (CW) and numerous amylopectin granules (AG) 

in the cytoplasm of bradyzoïtes. B. Higher magnification of ultrastructural morphology of 

bradyzoïtes. Note the presence of rhoptries (Rh) and micronemes (Mi)  C. Tissue cysts of T. gondii 

in mouse brains with numerous bradyzoïtes (arrow heads) enclosed in a cyst wall (arrow) (J. P. 

Dubey, 1998).   

 

Table 2. Comparison between tachyzoïtes and bradyzoïtes. 

 

2.3 Sporozoites 

Felids are the only definitive hosts for T. gondii and harbor sexual reproduction 

occurs in their intestine, which culminates in the production of oocysts subsequently shed 

Tachyzoïtes Bradyzoïtes 

Fast replicating forms Slowly replicating forms 

Intracellular and divide by endodyogeny 

More centrally located nucleus Posteriorly located nucleus 

Labyrinthine rhoptries Solid rhoptries 

Absent or few amylopectin granules Numerous amylopectin granules 

Occasionally presence of lipid bodies Absence of lipid bodies 

More susceptible to destruction by 

proteolytic enzymes 

Less susceptible to destruction by proteolytic 

enzymes 
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to the environment in feces. An oocyst is essentially a cytoplasm containing a 

nucleoplasm, surrounded and protected by a double-layered wall, which makes it 

resistant to environmental stress; the inside content of a cyst is known as a “sporont”. 

Upon excretion, oocysts are unsporulated (Figure 5). Sporulation occurs outside the cat 

within 1 to 5 days of excretion depending upon aeration and temperature conditions (J. P. 

Dubey, 1998). During the initial phase of the sporulation, the nucleus divides twice and 

gives rise to 4 nuclei. Then the cytoplasm divides and 2 spherical sporoblasts are formed, 

each harboring 2 nuclei (Figure 5). As the sporulation continues, the sporoblasts elongate 

and the sporocysts are formed. Later, each nucleus divides into two, and following 

cytoplasmic cleavage, four infective sporozoites form within each sporocyst. It is worth 

noting that an infected cat may shed as many as one billion oocysts, which are resistant to 

chemical and physical methods of inactivation (waste-water and sewage) (Fritz, Bowyer, 

Bogyo, Conrad, & Boothroyd, 2012). They can survive and remain infective for years in 

fresh water and for at least 24 months in salt water (Lindsay & Dubey, 2009). 

 

 

Figure 5. Toxoplasma gondii oocysts. An unsporulated oocyst (blue arrow) and a sporulated 

oocyst (red arrow) seen at high power (40 X) (University of Pennsylvania School of Veterinary 

Medicine, 2008). (A) Unsporulated oocyst. Note the central mass (sporont) occupying most of the 

oocyst. (B) Sporulated oocyst with two sporocysts. Four sporozoites (arrows) are visible in one of 

the sporocysts. (C) Transmission electron micrograph of a sporulated oocyst. Note the thin oocyst 

wall (large arrow), two sporocysts (arrowheads), and sporozoites, one of which is cut longitudinally 

(small arrows) (J. P. Dubey, 2009). 
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Chapter III: Toxoplasmosis 

3.1. Epidemiology of Toxoplasmosis 

      Toxoplasmosis is one of the most common zoonotic diseases. Sero-prevalence varies 

from one country to another, from 7 to 80%. Low sero-prevalence ranging between 10 

and 30%, was observed in North America, South-East Asia, and Northern Europe. 

Moderate sero-prevalence ranging between 30 and 50%, was found in Central and 

Southern Europe, while high prevalence is common in Latin America and tropical 

African countries (Robert-Gangneux & Darde, 2012).  

 T. gondii is capable of infecting approximately 30% of the world’s human 

population, and more than 40 million  people in the United States (CDC 2019), in 

addition to warm-blooded vertebrates and avian species (Skariah, McIntyre, & Mordue, 

2010). At the American University of Beirut, Bouhamdan et al. realized a retrospective 

study targeting information related to IgG and IgM anti-T. gondii antibodies. They found 

that the overall Toxoplasma seropositivity was 62.2% for IgG and 6.8% for IgM 

(Bouhamdan, Bitar, Saghir, Bayan, & Araj, 2010), reflecting a high exposure of the 

Lebanese population to Toxoplasma infection. In France, we estimated seroprevalence to 

be 41 to 53% and this prevalence increased with age (Fromont, Riche, & Rabilloud, 

2009). Suprisingly, the USA present with a high parasite burden, yet with a low 

awareness among physicians and citizens at both the prevalence of the disease, and the 

costs associated with it.  Hence, the Centers for Disease Control and Prevention (CDC) 

considered recently toxoplasmosis as a neglected parasitic infection, requiring public 

health action (Ben-Harari & Connolly, 2019). 

 

3.2. Modes of Transmission 

     The mechanism of transmission of T. gondii remained a mystery until its life cycle 

was unraveled in 1970. Intermediate as well as definitive hosts can contract an infection 

by T. gondii mainly via one of two main modes of transmission:  



36 

 

(1) Horizontal mode of transmission either following oral ingestion of infectious 

sporulated oocysts in food contaminated by cats feces, or upon and ingestion of tissue 

cysts that can be potentially present in raw or partially raw meat.  

(2) Vertical mode of transmission via the placental spread of tachyzoïtes from a 

pregnant primo-infected mother to her fetus/baby.  

These routes of transmission allow a high level of sustainability of T.gondii in the 

environment. Indeed, transmission is not limited by any means; infection can move back 

and forth between definitive and intermediate hosts with all the needed routes available. 

Thus, carnivores can acquire T. gondii infection via carnivorism, herbivores via ingestion 

of infectious oocysts, and humans, being omnivores, are prone to infection via both 

means. Furthermore, the asexual life cycle can sustain the parasites indefinitely via the 

transmission of tissue cysts in-between intermediate hosts (Pereira, Franco, & Leal, 2010; 

Tenter et al., 2000).  

3.3. Diagnosis 

     T. gondii infection can be diagnosed using serologic tests, ultrasound scans, PCR  and 

amniocentesis (Chaudhry, Gad, & Koren, 2014). Results of serologic tests measure 

immunoglobulin IgM and IgG (Figure 6). Following acute infection, IgM antibody titers 

rise starting on day 5 and reach the maximum level at 1 to 2 months. In contrast, IgG 

antibodies are usually detectable within 1 to 2 weeks after acute infection, reach their 

peak within 12 weeks to 6 months, and generally remain detectable throughout life 

(Liesenfeld et al., 1997).  Serological surveys alone do not provide information about the 

prevalence of viable parasites. PCR-based methods were developed to detect parasite 

DNA especially in pregnant women (Robert-Gangneux & Darde, 2012), and made a 

significant improvement in both the prenatal diagnosis of congenital toxoplasmosis, as 

well as the detection of acute disease in the immunocompromised patient. A positive 

PCR requires urgent initiation of treatment in these patients (Bastien, 2002; Bourdin et 

al., 2014). In addition, when Toxoplasma DNA is detected in the amniotic fluid, the 

treatment is required, with postnatal clinical follow-up (Villard et al., 2016). 
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Figure 6.  Kinetics of the antibody (Ab) response (Robert-Gangneux & Darde, 2012). 

 

3.4. Pathogenesis of Toxoplasma gondii 

More and more associations are being made between various medical conditions 

and T. gondii infections (Flegr, Prandota, Sovickova, & Israili, 2014). Some reports show 

that elevated levels of immunoglobulin G in pregnant ‘toxo-positive’ women are linked 

to prenatal anxiety and depression (Abo-Al-Ela, 2019; Okusaga et al., 2011), others 

associate infection with T. gondii to behavioral disorders (Fekadu, Shibre, & Cleare, 

2010; McConkey, Martin, Bristow, & Webster, 2013), and yet others correlate various 

mental health disorders like schizophrenia, depression and even suicide attempts with 

seropositivity to T. gondii (Fuglewicz, Piotrowski, & Stodolak, 2017; Hsu, Groer, & 

Beckie, 2014). The manifestations of toxoplasmposis differ between immunocompetent 

and immunocompromised patients. 
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3.4.1. Toxoplasmosis in immunocompetent patients  

A recently acquired infection, corresponds to the acute phase of infection, and is 

asymptomatic in more than 80% of immune-competent individuals (Montoya & 

Liesenfeld, 2004; Reza Yazdani et al., 2018). In these patients, toxoplasmosis occurs 

after an incubation of a few days, and manifests with mononucleosis-like symptoms, with 

cervical posterior adenopathies, myalgias, and asthenia. In addition, various non-specific 

clinical signs are encountered and include skin rash, fever, and elevation of monocytes 

with hyper-basophilic lymphocytes (Montoya & Liesenfeld, 2004). The severity of 

infection is also related to the genotype of the infecting parasite strain. Acquisition of 

toxoplasmosis during childhood or adulthood may account for high levels of visual 

impairment, and toxoplasmosis is a leading cause of blindness in South America (de 

Boer, Wulffraat, & Rothova, 2003). Furthermore, “Atypical” strains, which caused lethal 

infections in immune-competent individuals, were isolated in French Guiana. These 

subjects developed fatal pneumonitis, myocarditis, meningo-encephalitis, or polymyositis 

(inflammatory myopathies) (Carme et al., 2002; Robert-Gangneux & Darde, 2012). 

 

3.4.2. Toxoplasmosis in immunocompromised patients: 
Neurotoxoplasmosis 

The host immune response plays a key role in the control of parasite replication 

and maintenance of tissue cysts. With the growing number of individuals receiving 

therapies against immune-mediated inflammatory diseases and malignancies, clinicians 

are aware of the potential occurrence of Toxoplasma encephalitis, not only during 

reactivation of latent infection, but also presenting as a primary infection (Gharamti et al., 

2018). Reactivation of the latent phase of the infection can occur in immunocompromised 

patients, due to various factors impairing the protective cellular immune response such as 

HIV infection, immunosuppressive therapies administered in the context of 

hematopoietic stem cells- (HSCT) or solid organ transplant, or chemotherapy against 

cancer (Kollu, Magalhaes-Silverman, Tricot, & Ince, 2018; Robin et al., 2019; Roche, 

Rowley, Brett, & Looby, 2018). In HIV patients, toxoplasmic encephalitis is the 

predominant manifestation of the disease, while pulmonary or disseminated 
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toxoplasmosis is more characteristic of transplant patients (Rajapakse et al., 2017; 

Robert-Gangneux & Darde, 2012). Despite the availability of prophylactic and treatment 

options, reactivation of chronic toxoplasmosis still occurs and can become life 

threatening (Bannoura et al., 2018; Kodym et al., 2015; Montoya & Liesenfeld, 2004). 

These patients present with neurologic symptoms, most frequently diffuse 

encephalopathy, meningoencephalitis, cerebral mass lesions, headaches, confusion, poor 

coordination, and seizures. At advanced stages, the recrudescence of chronic 

toxoplasmosis can lead to pneumonia and encephalitis, and thus to fatality (Bannoura et 

al., 2018; Hunter & Remington, 1994; Montoya & Liesenfeld, 2004). Our group recently 

reported a case of a child with a ten-day history of upper respiratory tract illness, 

vomiting, and headaches. Unfortunately the child died and postmortem brain autopsy 

revealed a wide reactivation of cerebral toxoplasmosis, with both tachyzoïte and 

bradyzoïte stages of the parasite detected in his brain (Bannoura et al., 2018). Acute 

toxoplasmic encephalitis was also reported in a 65-year-old male while receiving 

treatment of pseudo-lymphoma. Analysis of his cerebrospinal fluid demonstrated mild 

lymphocytic pleocytosis and the presence of T. gondii by PCR (Gharamti et al., 2018). 

Furthermore, several cases of reactivation of cerebral toxoplasmosis following rituximab 

therapy were reported (Safa & Darrieux, 2013) (Morjaria et al., 2016) (Holland et al 

2015). 

 

3.4.3. Congenital toxoplasmosis 

In sero-negative pregnant women, primary infection with T. gondii occurs 

following the placental transmission of the parasite to the fetus. The degree of severity of 

congenital toxoplasmosis is inversely related to the gestational trimester at which the 

infection is contracted (Dunn et al., 1999) (L. Yamamoto et al., 2017). Infection of the 

fetus during the first trimester of pregnancy, often leads to abortion, stillbirth or a child 

born with severe abnormalities of the brain and eyes, such as hydrocephalus, intracranial 

calcifications, deafness, mental retardation, seizures, retinochoroiditis, and even 

blindness (Figure 7) (Robert-Gangneux & Darde, 2012; Singh, 2016; Swisher, Boyer, & 

McLeod, 1994). Transmission to the fetus in the second or third trimester is less likely to 
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cause such severe clinical manifestations, but may result in subclinical disease, which 

may lead to retinochoroiditis or learning difficulties after birth (Weiss & Dubey, 2009). 

Fortunately, only few pregnant women acquire the infection during pregnancy (Nahouli, 

El Arnaout, Chalhoub, Anastadiadis, & El Hajj, 2017; Nowakowska et al., 2006). 

     Overall, the screening and its correct timing, the appropriate treatment, and the 

development of novel modalities are still badly required in case of this neglected disease. 

 

 

Figure 7. Clinical manifestations of congenital toxoplasmosis. Hydrocephalus (upper panels), 

retinochoroiditis (left lower panel) and intra-cranial calcifications (right lower panel). 

 

3.4.4. Toxoplasmosis and other associated diseases 

Until recently, parasite persistence in healthy individuals was regarded as 

clinically asymptomatic. However, an increasing number of reports indicates that chronic 

toxoplasmosis is associated with aberrant host behavior (Luft & Remington, 1992). 

Chronic toxoplasmosis influences also the progression of several neurological disorders 

such as schizophrenia, and Parkinson disease among others (Gaskell, Smith, Pinney, 

Westhead, & McConkey, 2009; Severance et al., 2016; Webster & McConkey, 2010). 

Recently, it was proved that a major mental illness-related susceptibility factor, the 
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“Disrupted in schizophrenia” (DISC1), is involved in host immune responses against 

T.gondii infection, and that certain genotypes of DISC1 correlate with higher serology 

against this parasite (Kano et al., 2018).  Epidemiologic studies indicate that Toxoplasma 

infection can alter behavior and neurotransmitter function causing an increase in the level 

of dopamine, a condition widely observed in schizophrenics (Webster & McConkey, 

2010). Additionally a survey approach revealed that individuals with schizophrenia were 

more exposed to cats in comparison to control non-schizophrenic groups (Yolken, 

Dickerson, & Fuller Torrey, 2009). Some medications used to treat schizophrenia inhibit 

the replication of T. gondii in cell culture (Torrey & Yolken, 2003). Altered dopamine 

levels have been also associated with this infection, along with several neurological 

conditions and imbalances; these are related to mood control, sleep patterns, Parkinson’s 

disease, and even attention deficit disorder, in addition to several others (Gaskell et al., 

2009). Furthermore, the prevalence of anti-T. gondii antibodies was reported to be higher 

in different types of cancer patients (e.g. lung, cervix, brain and endometrial cancers) 

(Cong et al., 2015). A positive association between seropositivity for T. gondii and brain 

cancer incidence was associated with the ability of the parasite to interfere with the brain 

cells miRNAome (Thirugnanam, Rout, & Gnanasekar, 2013). It was also reported that 

the incidence of adult brain cancers is higher in countries where the infection with 

T.gondii is common (Jung et al., 2016; Thomas et al., 2012). 

 

3.5. Treatment of toxoplasmosis 

Common treatments for toxoplasmosis remain limited to general anti-

parasitic/anti-bacterial drugs. These include spiramycin, azithromycin, atovaquone, 

pyrimethamine-sulfadiazine, pyrimethamine-clindamycin and trimethoprim-

sulfamethoxazole (Dard et al., 2018). Indeed, unlike its mammalian host, T. gondii is 

unable to use preformed dietary folates and synthesizes folates de novo (Katlama, 

Mouthon, Gourdon, Lapierre, & Rousseau, 1996). Thus, the recommended first-line 

therapy remains the synergistic combination of pyrimethamine, an inhibitor of the 

dihydrofolate reductase (DHFR) enzyme, with sulfadiazine, an inhibitor of the 

dihydropteroate synthase (Lapinskas & Ben-Harari, 2019; Montoya & Liesenfeld, 2004). 
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This combination is usually administered with folinic acid (leucovorin) (Katlama, 

Mouthon, et al., 1996) and blocks the biosynthesis of parasite folate, thus nucleic acid 

synthesis and parasite replication. However, this combination associates with several 

limitations, including, hematological side effects such as neutropenia severe drop of 

platelet count, thrombocytopenia, leucopenia (Ben-Harari, Goodwin, & Casoy, 2017), 

elevation in serum creatinine and serum liver enzymes, hypersensitivity or allergic 

reactions  (Katlama, De Wit, O'Doherty, Van Glabeke, & Clumeck, 1996)  and 

emergence of resistant parasites (Dupouy-Camet, 2004; Montazeri et al., 2018), 

especially in immunocompromised patients (Rodriguez-Diaz, Martinez-Grueiro, & 

Martinez-Fernandez, 1993). Pyrimethamine can be teratogenic and should not be used 

during the early months of pregnancy (Rodriguez-Diaz et al., 1993).  

In addition, these drugs, whether given as prophylactic or therapeutic agents, target 

only the acute phase of the infection and remain useless against the tissue cysts 

characterizing the chronic form of toxoplasmosis (Schmidt et al., 2006). Indeed, to date, 

there is no approved therapy that eliminates tissue cysts responsible for chronic infections 

(Alday & Doggett, 2017; Montazeri et al., 2016; Montazeri et al., 2017). Degerli et al. 

evaluated the effectiveness of azithromycin, a protein synthesis inhibitor in both T.gondii 

tachyzoïte and bradyzoïte stages. The main limitation is the needed prolonged period of 

treatment with the drug (Degerli, Kilimcioglu, Kurt, Tamay, & Ozbilgin, 2003). In 

pregnant women, treatment is based on the administration of spiramycin or sulfadiazine-

pyrimethamine-folinic acid (SPFA) if fetal infection is confirmed (Degerli et al., 2003).      

A summary of the currently used treatment of toxoplasmosis in immunocompetent, in 

immunocompromised patients and in pregnant women is provided in tables 3, 4 and 5 

respectively.  
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Table 3.  Treatment of toxoplasmosis in immunocompetent patients (Dunay, Gajurel, 

Dhakal, Liesenfeld, & Montoya, 2018). 
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Table 4.  Treatment of toxoplasmosis in immunocompromised patients (Dunay et al., 

2018) 

 
Table 5. Treatment of acute toxoplasmosis in pregnant women and newborns (Dunay et 

al., 2018). 
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In a systematic review, Montazeri et al. evaluated the in vitro and in vivo activities 

of anti-Toxoplasma drugs and compounds during the period 2006-2016.  Eighty clinically 

available drugs and a large number of new compounds with more than fourty 

mechanisms of action were summarized. The know mechanism of action of select drugs 

is described in Figure 8. Several target based drug screens were also identified including 

mitochondrial electron transport chain, calcium-dependent protein kinase 1, type II fatty 

acid synthesis, DNA synthesis, DNA replication among several others (Montazeri et al., 

2017) (Figure 8). Most of these drugs are effective against tachyzoïtes, and only very 

little trigger bradyzoïtes or the back and forth switch between both stages (Montazeri et 

al., 2017). It is worth noting that an ideal drug against toxoplasmosis, should not only be 

effective against the proliferative tachyzoïte stage of the parasite, but it should also exert 

an activity against the tissue cyst stage especially that the chronic form of the disease is 

the most prevalent one. In addition, these drugs should be capable to cross the blood 

brain barrier and to penetrate the cysts targeting bradyzoïtes (Benmerzouga et al., 2015). 

Hence, new effective drugs against toxoplasmosis are still needed.  
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Figure 8: Drugs/compounds with known mechanisms of action on life stages of T.gondii 
tachyzoïtes (T), and bradyzoïtes (B). 1: apical end; 2: Cell membrane; 3: microneme; 4: cytosol; 5: 

endoplasmic reticulum; 6: core; 7: mitochondria; 8: apicoplast (Montazeri et al., 2017). 

 

3.6. Vaccination against toxoplasmosis 

Due to the high burden of toxoplasmosis and the failure/adverse effects of the 

currently used treatment strategies against the parasite, several attempts were made to 
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develop vaccines against T. gondii. In 1995, the first commercial vaccine for 

toxoplasmosis, Ovilis Toxovax, was developed and used against congenital 

toxoplasmosis in sheep. It consisted of an injectable suspension of attenuated parasites of 

the strain S48, an originally isolated strain from a case of ovine abortion in New Zealand. 

Following approximately 3,000 passages in mice, this strain lost its ability to differentiate 

into tissue cysts in mice and into oocysts in cats (Buxton & Innes, 1995; Innes, Bartley, 

Buxton, & Katzer, 2009). This strain was used to prevent abortions due to toxoplasmosis 

in sheep but cannot be used in humans because of the high risk of parasite reactivation in 

this live vaccine. Other vaccine candidates were tested, including in particular apical 

complex proteins from T. gondii (rhoptries, micronemes and dense granules), multi-

antigen vaccines, and other adjuvants (Dodangeh et al., 2019; Faridnia, Daryani, Sarvi, 

Sharif, & Kalani, 2018). However, these searches could not yield to a proper prevention 

of toxoplasmosis in humans (M. Zhang et al., 2013). 

Some classes of antigens were proposed to be potential vaccine candidates; these include: 

i. Recombinant Surface Antigen-1 (SAG-1), which is a GPI-anchored and highly 

immunogenic surface marker of the tachyzoïte stage of T. gondii and which may 

protect against acute toxoplasmosis (Siachoque, Guzman, Burgos, Patarroyo, & 

Gomez Marin, 2006; Yang, Wu, & Morrow, 2004), and thus brain cyst formation 

(Bonenfant et al., 2001; Letscher-Bru et al., 1998). 

ii. Recombinant GRA4 and ROP2 given with Alum adjuvant, which provided 

protection against brain cysts in C57BL/6 mice (Martin et al. 2004). 

iii.  A mixture of SAG1, GRA1 and Merozoite Antigen-1 (MAG1), given with 

Freund’s complete Adjuvant, which reduced brain cyst burden by 90% in BALB/c 

mice. 

iv. A mixture of GERBU: an adjuvant based on cationic lipid solid nanoparticles and 

Nacetylglucosaminyl- N-acetylmuramyl-l-alanyl-d-isoglutamine, a glycopeptide 

derived from Lactobacillus bulgaricus cell walls ( Biochemicals GmbH, Gaiberg, 

Germany) with GRA7 and a MIC2-MIC3-SAG1 chimeric protein which provided 

an 80% reduction in brain cysts in outbred SWISS mice following challenge with 

T. gondii 76K (Jongert, Verhelst, Abady, Petersen, & Gargano, 2008). 
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v. The double Knock out of MIC1-MIC3 genes, which markedly impaired virulence 

and conferred protection against T. gondii challenge (Cerede et al., 2005). 

 An ideal vaccine must have different antigens in all three infected stages of T. 

gondii, high pathogenicity, and capacity to induce strong immune responses (Rezaei et 

al., 2019). Some studies related to vaccine development proposed multi-epitope DNA 

vaccines composed of CD8
+
 T cell-eliciting, rhomboid protease 4 and GRA14 of the 

Toxoplasma gondii RH strain, as well as  CD4
+
 helper T lymphocyte epitope(s) 

administered with lipid adjuvant (El Bissati et al., 2016), coated with calcium phosphate 

nanoparticles (Rahimi et al., 2017) or recombinant proteins formulated in Poly (DL-

lactide-co-glycolide microspheres (Allahyari et al., 2016), or virus-like particles (VLPs) 

(Lee et al., 2016) to  increase both the cellular and humoral responses by augmentation of  

memory CD8
+
 T cells, to induce a higher IFN-γ production. These multi-epitope vaccines 

protected mice against parasite burden when challenged with T. gondii.  

     In light of the absence of an effective treatment, mostly against the chronic phase of 

the infection, there is an urgent need for seeking effective strategies against T. gondii 

tissue cysts, to prevent disease relapse in immunocompromised patients and to reduce the 

risk of progression of neuro-pathologies or brain tumors in seropositive 

immunocompetent patients.  
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Chapter IV: Clonal strains  

4.1. Virulence 

Many parameters of virulence are associated with the success of T. gondii to 

invade the host cells. Host cells have immunity related transcription signaling factors that 

can be modulated by the parasite (Hunter & Sibley, 2012; Rosowski et al., 2014) (Melo et 

al., 2011; Saraf, Shwab, Dubey, & Su, 2017). Virulence of T. gondii was always 

associated with the amount of tachyzoïtes needed to infect and kill a mouse (Saeij, Boyle, 

& Boothroyd, 2005). However, when it comes to humans, the case is different since it is 

not possible to know the initial count of parasites infecting a human host, thus the 

virulence  is partly based on the organ location and septicemia (Dubremetz & Lebrun, 

2012). In addition, virulence of T. gondii is not only related to the parasite itself, but also 

to factors pertaining to the host it is infecting, and the nature of the immune responses it 

triggers (Dubremetz & Lebrun, 2012; Melo et al., 2011; Saraf et al., 2017; Tait et al., 

2010). More importantly, virulence is still shifting towards the crucial genes responsible 

for drawing the final image of the severity of the infection (Dubremetz & Lebrun, 2012). 

 

4.2. Clonal strains 

A combination of phylogenetic and statistical analyses indicates that T. gondii has 

a highly clonal population structure. It was accepted for a long period of time that T. 

gondii belongs to one of the three widespread clonal lineages i.e. types I, II, or III (Table 

6). These differ by less than 1% at the DNA level (Howe & Sibley, 1995; Weilhammer & 

Rasley, 2011). Type II strains are the most commonly isolated from patients (Ajzenberg 

et al., 2002; Ferreira et al., 2011).  

Although these strains are genetically quite similar, they show strong phenotypic 

differences in the laboratory mouse models, whereby virulence in mice is associated with 

the parasite genotype. Infection by type I strains is fatal (LD50 = 1) in all strains of 

laboratory mice, whereas infection with type II (LD50 ~ 10
2
) or type III (LD50 ~ 10

3
) 

strains generally result in controlled persistent infections (Sibley & Boothroyd, 1992) 

(Table 6).  
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Strains Type I Type II Type III 

Genetic 98 % similar 

virulence High Intermediate low 

Examples RH 

ME49, Pru 

(Prugniaud), Pru 

ΔKU80, 76K  

NED 

Characteristics 

● unable to 

make cysts of 

bradyzoïtes 

because it lyses 

cells before 

making cysts 

● grows faster 

than types II & 

III 

● completely 

lyses a flask of 

cultured cells 

much faster than 

types II & III 

● Extracellular 

parasites remain 

infectious for a 

longer time 

compared with 

the  types II & 

III 

● able to make 

bradyzoïtes cysts 

● grow slower than 

type I 

● completely lyses 

a flask of cultured 

cells much slower 

than types I 

● Extracellular 

parasites remain 

infectious for a 

shorter time 

compared with the  

types I 

● able to make 

bradyzoïtes cysts 

● grow slower than 

type I 

●  completely lyses 

a flask of cultured 

cells much slower 

than types I 

● Extracellular 

parasites remain 

infectious for a 

shorter time 

compared with the  

types I 

Table 6.  Comparison between Type I, II and III strains of T. gondii (Saeij et al., 2005). 

 

Recently, more genotypes were included and differ in their DNA sequences and 

geographical distribution. Updates in ToxoDB following many molecular techniques, 

such as polymerase chain reaction-restriction fragment length polymorphisms analysis 

(PCR-RFLP) (Howe & Sibley, 1995), microsatellite DNA analysis (Ajzenberg et al., 

2002; Ajzenberg, Collinet, Mercier, Vignoles, & Darde, 2010), and multi-locus DNA 

sequence typing of introns (A. Khan et al., 2011) allowed to refine the population 

structure of T. gondii into 189 ToxoDB PCR-RFLP genotypes from 1457 samples 
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(Shwab et al., 2014). The 10 most frequently identified are genotypes #2, #3, #1, #5, #4, 

#9, #6, #7, #8 and #10, accounting for 13.8, 12.6, 12.2, 5.0, 4.5 3.8, 3.3, 2.6, 2.3 and 

2.1% of the samples, respectively. Genotypes #1 and #3, which differ only at the Apico 

locus, compose the conventional Type II lineage and account for 24.8% (362/1457) of the 

population. Genotype #1 is also referred to as Type II clonal, whereas #3 as Type II 

variant (Table 7). Genotype #2, also known as Type III, account for 13.8% (201/1457) of 

the samples. Genotypes #4 and #5, which differ only at the SAG-1 locus and are 

collectively known as Type 12, account for 9.5% (139/1457) of the population. 

Genotypes #1, #2 and #3 (Type II clonal, Type III and Type II variant) are identified 

worldwide, and are highly prevalent in Europe. Genotypes #1, #2, #3, #4 and #5 

dominate in North America. Genotypes #2 and #3 (Types III and II variant) dominate in 

Africa, and genotypes #9 and #10 (Chinese 1 and Type I) are prevalent in East Asia 

(Shwab et al., 2014). 

 

Table 7.  Genotypes of major Toxoplasma gondii lineages (Shwab et al., 2014). 
 

4.3. Effective genetic model of type II: Pru ΔKU80 

Double Strand Break (DSB) repair in most eukaryotes occurs primarily via two 

different recombination pathways (Haber, 2000). The homologous recombination 

pathways repair a DSB using mechanisms that recognize highly homologous DNA 

sequences, while the non-homologous end-joining (NHEJ) pathway does not rely on 
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DNA sequence homology. Instead, NHEJ involves direct ligation of the ends of broken 

DNA strands. KU70 and KU80 proteins form a heterodimer that tightly binds the DNA 

ends at the DSB, an early and essential step of NHEJ (Walker, Corpina, & Goldberg, 

2001; Wu et al., 2008). Many eukaryotes preferentially use the NHEJ pathway to repair a 

DSB, and exogenous targeting DNA can be integrated anywhere into the genome 

independent of DNA sequence homology (Haber, 2000). The NHEJ pathway also 

appears to be preferentially used by T. gondii based on the high rates of non-homologous 

recombination and low gene targeting frequencies observed experimentally (Donald & 

Roos, 1998; Fox & Bzik, 2002; Gubbels, White, & Szatanek, 2008). Fox et al. relied on 

this NHEJ pathway and developed KU80 knockouts (Δku80) in type II T. gondii (Fox, 

Ristuccia, Gigley, & Bzik, 2009). These Δku80 are void of the dominant pathway 

mediating random integration of targeting episomes and hence allow for increased 

efficiency of double-crossover homologous recombination at targeted loci (Fox et al., 

2009). Fox et al. targeted the deletion of four parasite antigen genes (GRA4, GRA6, 

ROP7, and tgd057) that encode characterized CD8
+
 T cell epitopes that elicit 

corresponding antigen-specific CD8
+
 T cell populations associated with control of 

infection (Fox et al., 2011), thus highlighting the importance and value of such knock-

outs.  

Since then, this strain has been widely used to generate several parasite knock-outs, 

and it still used despite the introduction of the crispr-cas9 technology to the genetic 

manipulation of the parental Pru strain. This mainly due to technical drawbacks and 

impossibility to generate knock-outs/tagging of certain genes using the Pru strain. We 

used this strain to deplete P18 encoding gene (introduced in the following chapter) and 

characterize its function (Second article of the results section). 
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Chapter V: Bradyzoïte expressed SAG1-related sequences superfamily 
of proteins (SRS)  

Studies have shown that the various T. gondii developmental stages can be quite 

different in their molecular marker expression profiles; such molecular markers can be 

those pertaining to metabolic iso-enzymes, secreted proteins, or surface and cytoplasmic 

molecules (D. Ferguson, 2004) (Boothroyd, 2009). Along with stage conversion that T. 

gondii undergoes, changes in morphology and biomolecular changes mainly represented 

by stage-specific antigen expression occur (Luder & Rahman, 2017; Lyons, McLeod, & 

Roberts, 2002). Studies in this area have yielded the identification of several stage-

specific surface antigens, enzymes and even heat shock proteins specific to either one of 

the developmental stages.  

 

In this thesis, we are interested, not only in targeting chronic toxoplasmosis 

by identifying effective immunomodulatory drugs against this phase of the infection, 

but also in understanding molecular and cellular mechanisms related to the 

establishment, persistence and reactivation of cerebral toxoplasmosis. One of the 

markers we studied is P18, belonging to the SRS family. This chapter will elaborate 

on this family of proteins, with an attention to those expressed in the bradyzoïte 

stage. 

 

5.1. SAG1-related sequences superfamily of proteins (SRS) 

 The surface of T. gondii is coated with developmentally expressed, 

glycosylphosphatidylinositol (GPI)-linked proteins. Collectively, these surface antigens 

are known as the SRS (SAG1-related sequences) superfamily of 144 proteins (Wasmuth 

et al., 2012). An SRS gene typically contains one or two domains, each with four to six 

cysteines (4-Cys or 6-Cys) that participate in disulfide bonds and a 

glycosylphosphatidylinositol (GPI) anchor for attachment to the parasite cell surface. 

SRS proteins are expressed in a stage-specific manner. SAG1, SAG2A, SAG2B, SAG3, 

SRS1, SRS2, and SRS3 are mainly expressed on the tachyzoïte surface. Contrary to 
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SAG2A and SAG2B, which are expressed in tachyzoïtes, SAG2C, -2D, -2X, and -2Y 

appeared to be expressed exclusively on the surface of bradyzoïtes (Saeij, Arrizabalaga, 

& Boothroyd, 2008). Comparing SRS gene expression between strains revealed 44 

differentially expressed SRS genes; 8 genes were downregulated in type I, 2 genes were 

downregulated and 25 genes were upregulated in type II, and 7 genes were 

downregulated and 8 genes were upregulated in type III (Wasmuth et al., 2012). The SRS 

superfamily segregated into two families and eight distinct domain subfamilies, 

subfamilies 1 to 6 (which includes SRS34A) and subfamilies 7 and 8 (which includes 

SRS29B) (Wasmuth et al., 2012). Some SRS proteins are very closely related, while 

others share less than 30% sequence identity. It is known that SRS29B and SRS34A 

(formerly SAG2A) are highly immunogenic during infection, whereas SRS29B and 

SRS57 function as adhesins (Dzierszinski, Mortuaire, Cesbron-Delauw, & Tomavo, 

2000). An interaction with cellular ligands is supported by structural evidence that 

SRS29B forms a homodimer with a deep, positively charged groove capable of docking 

sulfated proteoglycans (Boulanger, Tonkin, & Crawford, 2010). 

Moreover, SRS25 possesses a degraded SRS domain containing only three cysteines, is 

expressed in both Neospora and Toxoplasma, and is not strictly stage specific. SRS33 is 

the only gene with evidence of strong expression across all coccidian parasites. SRS54 is 

highly polymorphic and differentially expressed among Toxoplasma strains (Wasmuth et 

al., 2012). 

 A pellicular surface antigen, P36 was extensively studied, and belongs to the 

SRS family and was used as a bradyzoïte marker. Indeed, Knoll and Boothroyd found 

that the BSR4 protein, a member of the SAG1 family, encodes the P36-reactive protein 

(Knoll & Boothroyd, 1998). Surprisingly, the BSR4 transcript was found to be equally 

abundant in tachyzoïtes and bradyzoïtes, suggesting post-transcriptional regulation of this 

gene (Knoll & Boothroyd, 1998). Investigation of other proteins detected by this antibody 

revealed SRS9 as the primary target of the P36 mAb. SRS9 encodes a bradyzoïte-specific 

protein with high similarity to members of the SRS family of surface antigens and is 

located immediately downstream of BSR4 (Van, Kim, Camps, Boothroyd, & Knoll, 

2007). Kim et al. created a bioluminescent strain lacking the SRS9 gene and revealed that 

during an acute infection; wild-type and Δsrs9 strains replicated at similar rates and could 



55 

 

disseminate systemically following similar kinetics, and initially yielded similar brain 

cyst numbers. However, during a chronic infection, Δsrs9 cyst loads substantially 

decreased compared to those of the wild type, suggesting that SRS9 plays a role in 

maintaining parasite persistence in the brain. When chronically infected mice were 

treated with the immunosuppressant dexamethasone, however, the Δsrs9 strain 

reactivated in the intestinal tissue after only 8 to 9 days, versus 2 weeks for the wild-type 

strain. Thus, SRS9 appears to play an important role in both persistence in the brain and 

reactivation in the intestine (S. K. Kim, Karasov, & Boothroyd, 2007). Furthermore, a 

bradyzoïte specific cyst wall, CST1, a 250 kDa protein localized to the granular material 

in the cyst wall was identified as a key contributor to cyst wall robustness and hence cyst 

persistence (Tomita et al., 2013; Weiss, LaPlace, Tanowitz, & Wittner, 1992; Y. W. 

Zhang, Halonen, Ma, Wittner, & Weiss, 2001). Parasites deficient of CST1 were shown 

to result in reduced cyst number and fragility of brain cyst wall along with thinning and 

easy disruption of the cyst wall underlying granular region (Tomita et al., 2013). 

Recently, Tu et al. expanded their functional analysis to two other cyst wall proteins, 

CST2 and CST3. The generation of the respective knock out strains revealed a normal 

phenotype with respect to growth or cyst formation in vitro, yet, CST2-KO parasites were 

markedly less virulent during the acute infection in mice (Tu et al., 2019). In addition, 

Tomita et al. identified in the cyst wall, a novel mucin domain containing SRS protein, 

SRS13 and found that it is upregulated in bradyzoïtes. SRS13 localized to the cyst wall, 

but showed to be dispensable for normal cyst wall formation (Tomita, Ma, & Weiss, 

2018). 

 

5.2. SAG-4 or p18: discovery and cloning 

 For quite a long while, research in the field of toxoplasmosis remained centered 

around the readily available tachyzoïte developmental stage. However, with the emerging 

interest in stage conversion, many studies were directed towards the characterization of 

stage specific developmentally regulated molecules. Antibodies against stage-specific 

markers for bradyzoïtes and tachyzoïtes were developed (Tomavo et al., 1991). These 

antibodies were selected by differential immunofluorescence assays aiming to isolate 
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them from hybridomas produced against these organisms. Antigenically reactive markers 

to these antibodies were found on human isolates of T. gondii, as well as on laboratory 

strain bradyzoïtes obtained from either brain cysts or in vitro-grown parasites (Tomavo et 

al., 1991). These monoclonal antibodies are T8 4A12 recognizing the previously 

mentioned 36 kDa protein called P36, T8 2C2 recognizing a 34 kDa protein called P34, T8 

4G10 recognizing a 21 kDa protein called P21 and T8 3B1 recognizing an 18 kDa protein 

called P18 (Tomavo et al., 1991). These proteins represent four pellicular antigens, three 

of which are exposed on the surface of the organism (Tomavo et al., 1991). Among the 

three bradyzoïte markers (P34, P21 and P18), only the gene encoding for P18 was 

sequenced and published (Odberg-Ferragut et al., 1996). Real time using P18-specific 

primers demonstrated the stage expression of this gene in the bradyzoïtes transcripts. The 

sequenced gene showed no substantial homology to any of the known genes, hence it was 

recognized as novel and in accordance to the nomenclature proposed by Sibley, the P18 

gene was given the name SAG4 (Odberg-Ferragut et al., 1996). Later on, SAG4 or P18 

was attributed to the SRS family and its encoding gene was SRS35. Although antibodies 

against P18 were generated against bradyzoïtes, Expressed Sequence Tag (EST) data 

revealed a low expression of P18 transcripts in tachyzoïtes, while in the badyzoites, it is 

one of the most abundantly expressed SRS (Wasmuth et al., 2012).  Insights towards a 

functional characterization of P18 are still absent. In the results section, the second 

article will be allocated to functionally characterize this protein in vitro and in vivo. 
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Chapter VI: Toll-like receptors and downstream signaling pathways  

Innate immunity is the first line of host defense against pathogen infection (Sasai & 

Yamamoto, 2013). Following infection with T. gondii, innate immune cells migrate to the 

site of infection where they detect the parasite, mainly via Toll-like receptors (TLRs) 

(Pifer & Yarovinsky, 2011; Yarovinsky, 2014). Before covering the innate and adaptive 

immune responses triggered by T. gondii infection, we will dedicate this chapter to TLRs 

and their context in case of this parasitic infection.  

6.1. Overview  

The mammalian immune system consists of innate and adaptive branches, which 

cooperate to eliminate infectious pathogens (Akira, Uematsu, & Takeuchi, 2006). The 

“rapidly sensing” innate immune system is the first line of host defense against pathogens 

and is mediated by phagocytes including macrophages and dendritic cells (DCs) (Akira et 

al., 2006). These cells recognize pathogen-associated molecular patterns (PAMPs) or 

Damage-Associated Molecular Patterns (DAMPs) via germ line-encoded pattern 

recognition receptors (PRRs) present in their extracellular milieu and intracellular 

compartments (Amarante-Mendes et al., 2018; Kawai & Akira, 2009). Adaptive 

immunity involves a tightly regulated interplay between antigen-presenting cells (APC) 

and T and B lymphocytes, which facilitate pathogen-specific immunologic effector 

pathways, generation of immunologic memory, and regulation of host immune 

homeostasis (Bonilla & Oettgen, 2010). 

6.2. Pattern Recognition Receptors  

Pattern Recognition Receptors (PRRs) are denoted by common characteristics that define 

their role in the immune system. They are non-clonal, germline encoded receptors 

expressed on all cells of a given type, independent of the immunologic memory. PAMPs 

recognized by PRRs are essential for the survival of microorganisms and are therefore 

difficult to be altered. PAMPs recognition initiates transcriptional responses along with 

non-transcriptional responses, such as the induction of phagocytosis, autophagy, cell 

death, and cytokine processing (Brubaker, Bonham, Zanoni, & Kagan, 2015). The signal 
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transduction pathways that are activated via PRRs coincide on a common set of signaling 

modules including NF-κB, activator protein-1 (AP-1), and mitogen-activated protein 

kinase (MAPK). These modules activate microbicidal and pro-inflammatory responses 

required to eliminate or, at least, to contain the infectious agents by initiating innate and 

adaptive immune responses (Amarante-Mendes et al., 2018).  

6.3. Toll-like receptors  

Toll-like receptors (TLRs) represent a unique category of pattern recognition 

receptors that recognize distinct pathogenic components, often utilizing the same set of 

downstream adaptors (Patra, Kwon, Batool, & Choi, 2018). These are type I 

transmembrane receptors localized on the cytoplasmic membrane and 

endosomal/lysosomal cellular compartments, that play a role in the coupling of innate to 

adaptive immunity (Gay & Gangloff, 2007). Thirteen different types of TLRs (TLR1-

TLR13) were discovered and described in mammals (Vijay, 2018) after the first 

discovery of TLR-4 in humans, in late 1997 (Medzhitov, Preston-Hurlburt, & Janeway, 

1997). 

6.3.1. Classification 

There are 10 human and 12 mouse TLRs. TLRs 11, 12 and 13 are exclusively 

expressed in mice, whereas TLR 10 is expressed only in human. The rest of the TLRs are 

commonly expressed in both (Dominic De Nardo, 2015). These can be broadly 

subdivided into two groups: the ones localized on the plasma membrane and the ones 

localized within the acidified endo-lysosomal compartments (Figure 9). The former 

group includes TLRs 1, 2, 4, 5, and 6, whereas the latter comprises of TLRs 3, 7, 8, 9, 11, 

12 and 13 (Table 8). Plasma membrane TLRs interact directly with components of 

microbial pathogens that contact the host cell. On the contrary, endolysosomal TLRs 

sense nucleic acid of endocytosed pathogens after their breakdown in these organelles.  

This compartmentalization is crucial to avoid contact with host or self-nucleic acid 

present in the extracellular milieu, protecting from autoimmune responses (Barton & 

Kagan, 2009). 
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Figure 9: Cell surface and intracellular Toll-like receptors (TLRs) and their ligands 
(Goulopoulou, McCarthy, & Webb, 2016). TLRs are divided into two groups based on their 

cellular localization when sensing their respective ligands. TLRs 1, 2, 4–6, and 11 localize to the 

cell surface (cell surface TLRs) and TLRs 3 and 7–9 reside at endosomal compartments 

(intracellular TLRs). Cell surface TLRs respond to microbial membrane materials such as lipids, 

lipoproteins, and proteins, whereas intracellular TLRs recognize bacteria- and virus-derived nucleic 

acids.   
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Table 8.  Toll-like receptors classification, localization and ligands (Dominic De Nardo, 

2015). 

 

The below two sections will focus mostly, on four TLRs: TLR-11, 12, and 7. Indeed 

TLR-11 and 12 are well described and very important in the context of Toxoplasma 

infection. TLR-7 is well characterized in the context of the treatment with the 

immunomodulatory drug, Imiquimod being the drug of focus in the first 

manuscript of our results section.  

6.4. TLR-11 and TLR-12 

TLR-11 is plasma membrane TLR, known to recognize uro-pathogenic 

Esherichia coli and T. gondii parasite. The bacterial ligand binding this receptor is still 

unknown (Anders & Patole, 2005), however T.gondii ligand binding to it, is a motor 

protein called profilin (Plattner et al., 2008). Profilin is an actin binding protein 

dispensable for the intracellular growth, but indispensable for invasion, and active egress 

from cells (Plattner et al., 2008). Furthermore, TLR-11 recognizes flagellin, a main 

flagellar protein of flagellate organisms, causing dimerization of the receptor, activation 

of NF-κB and production of inflammatory cytokines, in mouse intestine (Hatai, Lepelley, 

Zeng, Hayden, & Ghosh, 2016). Indeed, TLR-11 is essential for the development of the 
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protective immune response in infected mice, through the induction of massive IL-12 

production by dendritic cells (DCs) (Ishii, Uematsu, & Akira, 2006; Sanecka & Frickel, 

2012). In humans, the TLR-11 gene is expressed but leads to a non-functional protein 

(Salazar Gonzalez et al., 2014). Phylogenetic analysis between human and mouse species 

showed that human TLR-5 seemed to be the evolutionarily closest member to the mouse 

TLR-11 (Salazar Gonzalez et al., 2014; Yarovinsky et al., 2005). 

Similar to TLR-11, TLR-12 is a second receptor for T. gondii profilin, that 

colocalizes with TLR-11 and forms a heterodimer complex that interacts with the nucleic 

acid-sensing TLR trafficking protein UNC93B1 (W. A. Andrade et al., 2013; Pifer, 

Benson, Sturge, & Yarovinsky, 2011). UNC93B1 is a chaperone required to bring TLRs 

from the endoplasmic reticulum (ER) to the endocytic system (Y. M. Kim, Brinkmann, 

Paquet, & Ploegh, 2008). Mice carrying a single point mutation in UNC93B1, retain the 

protein in the endoplasmic reticulum thus preventing intracellular TLR trafficking. These 

mice were shown to be highly susceptible to Toxoplasma and to produce less IL-12 upon 

intraperitoneal infection (Melo et al., 2010). 

 

6.5. TLR-7  

TLR-7 is continuously discussed with TLR-8 because they are often referred to 

together (TLR-7/8), and present a high degree of homology and similarity in 

function. These are intracellular endosomal TLRs. To encounter these endosomal TLRs, 

pathogens are internalized into the endocytic pathway, a hostile environment capable of 

detecting infection and reporting it, first to the phagocytic cell and then to other cells of 

the body. TLR-7/8 respond both to purine rich single stranded ribonucleic acid (ssRNA) 

(Figure 10) (Gantier et al., 2008). They exist as preformed dimers regardless of ligand 

assembly. Although both TLRs are phylogenetically and structurally related, their 

expression varies in different cell types and thus their agonists differ in target cell 

selectivity and cytokine induction profile (Gorden et al., 2005). Constitutive expression 

of TLR-7 is predominant in plasmacytoid dendritic cells (pDCs) and B cells compared to 

other circulating immune cells. TLR-8 is highly expressed in myeloid cells and to a lesser 

extend in pDCs (Gorden et al., 2005). TLR-7 activation induces the production of IFN 
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and IFN-regulated chemokines whereas TLR-8 is more effective in inducing pro-

inflammatory cytokines and chemokines production (Gorden et al., 2005). Due to the 

importance of these two TLRs in nucleic acid pathogen recognition, some nucleoside 

analogs were synthesized as agonists, to enhance their activation. One example is 

Imiquimod, a synthetic tricyclic imidazoquinoline that was generated as a TLR-7 agonist 

(Schon & Schon, 2007) (see chapter VIII/section 8.1). 

                                           

Figure 10.  Downstream signaling of endosomal Toll-like receptors (Takeuchi & Akira, 
2010). Stimulation with ligands or infection by viruses induces trafficking of endosomal TLRs from 

the ER to the endolysosome via UNC93B1. A complex of MyD88, IRAK-4, TRAF6, TRAF3, 

IRAK-1, IKK-α, and IRF7 is recruited to the TLR. Phosphorylated IRF7 translocates into the 

nucleus and upregulates the expression of type I IFN genes.  

 

6.6. TLRs downstream signaling pathways   

The ligand induced TLR dimerization results in the recruitment of Toll-

interleukin 1 receptor (TIR) domain-containing adaptors, to connect the receptor to 



63 

 

downstream effector proteins. Five adaptors have been identified to  play a role in TLR 

signaling: MyD88, MAL (Myelin and lymphocyte), TIRAP (TIR Domain Containing 

Adaptor Protein), TRIF (TIR-domain-containing adapter-inducing interferon-β), TRAM 

(Translocation Associated Membrane Protein ) and SARM (Sterile Alpha And TIR Motif 

Containing) (O'Neill & Bowie, 2007). Broadly, these adaptors trigger two main 

pathways, MyD88 dependent and independent pathways (TRIF dependent pathway) 

(Mason et al., 2004). The former pathway is required for the production of inflammatory 

cytokines and for the upregulation of co-stimulatory molecules and major 

histocompatibility complex (MHC) class II, in antigen presenting cells (APCs) 

(Brutkiewicz, 2016; Pasare & Medzhitov, 2003). The latter is required for the 

upregulation of costimulatory molecules and MHC class II in dendritic cells (DCs) 

(Pasare & Medzhitov, 2003; ten Broeke, Wubbolts, & Stoorvogel, 2013). MyD88 

dependent pathway is essential for the downstream signaling of all TLRs, except TLR-3 

that signals through TRIF dependent pathway (Figure 11). TLR-7 and TLR-8 signal in a 

MyD88-dependent pathway. This leads to the activation of the IRF family of 

transcription factors responsible for the expression of IFNs (Negishi et al., 2006). A 

common signaling event downstream both pathways is the activation of the canonical 

NF-κB pathway, which is responsible for transcriptional induction of pro-

inflammatory cytokines, chemokines and additional inflammatory mediators in 

different types of innate immune cells.  
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Figure 11.  Myd88 dependent and independent pathways (O'Brien et al., 2008). Overview of 

TLR signaling pathways. MyD88 dependent pathway: Activated TLR interacts through its TIR 

domain with MyD88 TIR domain. IRAKs are recruited to the receptor once ligand is bound. 

TRAF6 is then activated by IRAKs which in turn activates IB kinase complex. This complex 

phosphorylates IB and results in the nuclear translocation of NF-B and induces the expression of 

inflammatory cytokines. TIRAP/Mal adaptor protein is also required for TLRs 2 & 4. MyD88 

independent pathway: Activated TLR (3 or 4) interact through its TIR domain with TRIF TIR 

domain. TLR-4 (but not TLR-3) requires TRAM also. TRIF interacts with IKK, IKKi and TBK1. 

This complex phosphorylates IRF3 and results in the nuclear translocation of IRF3 and induces the 

expression of Type I interferons. TRIF also interacts with TRAF6 and induces late phase NF-B.   

 

6.7. Toll-like receptors is the context of toxoplasmosis 

     Following infection with T. gondii, innate immune cells migrate to the site of infection 

where they detect the parasite, mainly via TLRs (Yarovinsky, 2014). For instance, DCs 

recognize PAMPs via TLRs that mainly signal via the adaptor protein MyD88 (Arnold-

Schrauf, Berod, & Sparwasser, 2015). This signaling pathway is required for the immune 

protection during many infections, which are lethal in the absence of MyD88 (Torres et 
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al., 2013). TLRs play a major role in T.gondii recognition, via two well-identified 

parasitic PAMPs, the above mentioned profilin and the cyclophilin-18 (Figure 12).  

The actin binding protein profilin is indispensable for invasion, and active egress 

from cells (Egan, Sukhumavasi, Butcher, & Denkers, 2009; Kucera et al., 2010; Plattner 

et al., 2008). Parasites lacking profilin are unable to induce TLR-11-dependent 

production of IL-12 both in vitro and in vivo (Plattner et al., 2008). Indeed, profilin is 

essential in the context of T. gondii infection through two main aspects: it binds TLR-11 

(Yarovinsky et al., 2005) and TLR-12 (Koblansky et al., 2013; Sanecka & Frickel, 2012), 

and enhances the production of IL-12 via MyD88 dependent pathway (Figure 12).  

Cyclophilin-18 is recognized by both mouse and human C-C chemokine receptor 

type 5 (CCR5) (Yarovinsky et al., 2004) and enhances the proliferation and migration of 

macrophages and spleen cells (mainly T lymphocytes), to the site of infection for 

maintenance of the interaction between the parasite and host (Ibrahim, Xuan, & 

Nishikawa, 2010) (Figure 12).  

 

Figure 12.  Recognition of T.gondii by innate immune cells leads to activation of 
acquired immunity. Macrophages and DCs produce various inflammatory cytokines and 

chemokines to promote IFN-γ production from T cells, NK cells or ILC1 and recruitment of 
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neutrophils and inflammatory monocytes to the infected sites (Sasai, Pradipta, & Yamamoto, 

2018). 

Although humans do not express either TLR-11 or TLR-12, human monocytes 

produce pro-inflammatory cytokines in response to T. gondii infection, suggesting that 

other TLRs in humans recognize different compartments of T. gondii to produce IL-12 in 

antigen-presenting cells (W. A. Andrade et al., 2013). The difference of relevant TLR 

expression in humans and mice towards Toxoplasma infection, prompted us to give a 

separate overview of these TLRs between the two species. 

 

a) In mouse models: 

As discussed earlier, MyD88 protein plays a key role in the activation of several 

signaling pathways including NF-κB, and MAPK, which subsequently leads to the 

production of IL-12, and IFN-γ among others (Figure 11). The role of MyD88 in 

resistance to bacterial, viral and protozoan parasitic infections (Scanga et al., 2002) is 

widely demonstrated.  MyD88-deficient mice are highly susceptible to T. gondii infection 

whereas mice lacking IL-1 exhibit normal resistance to T. gondii infection suggesting that 

the absence of MyD88 alters the function of T. gondii TLR signaling (Scanga et al., 2002; 

Yarovinsky, Hieny, & Sher, 2008).  

In vitro studies on Chinese hamsters (CHO) showed that TLR-2 and TLR-4 

synthesis depend on the secretion of TNF-α, in the presence of 

glycosylphosphatidylinositol (GPI) extracted from tachyzoïtes (Debierre-Grockiego et 

al., 2007). A KO mouse for TLR-2 produces IL-12, but succumbs due to the high parasite 

burden of virulent strains of T. gondii (Scanga et al., 2002). Similarly, TLR-4 is not 

involved in the production of IL-12 (Scanga et al., 2002), but it may be a co-activator the 

transmission of cytokine signaling in the murine model (Debierre-Grockiego et al., 2007).  

TLR-9 was also shown to be required for the activation of a Th1 inflammatory 

response, following oral infection with T. gondii and the chaperone protein UNC93B1 

would promote the translocation of TLR-7 and 9 necessary for resistance mechanisms 

(Minns et al., 2006).  

In addition to the previously described TLRs, TLR-11 receptor signaling 

mediated by MyD88, is essential for activation of the innate immune response in mice 
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(Pifer et al., 2011; Yarovinsky et al., 2005). In fact, inhibition of the expression of 

UNC93B, a chaperone protein involved in intracellular trafficking of TLRs, leads to a 

loss of the mechanism of resistance to toxoplasmic infection in mice (Melo et al., 2011; 

Pifer et al., 2011). This protein interacts directly with TLR-11 and induces regulation of 

the response of dendritic cells against T. gondii (Pifer et al., 2011; Sanecka & Frickel, 

2012). Moreover, TLR-11 is important for the secretion of IL-12 in mice, as the KO 

mouse model for TLR-11 displayed low levels of IL-12 production (Sher, Tosh, & 

Jankovic, 2017; Yarovinsky et al., 2005). TLR-11 also works by forming a heterodimeric 

complex with TLR-12, only in the mouse. The formation of this complex is also 

important for dendritic cell response and IL-12 production (W. A. Andrade et al., 2013; 

Koblansky et al., 2013). TLR-12 has the same role as TLR-11, but is expressed 

specifically in hematopoietic cells, unlike TLR-11, which is expressed in these cells as 

well as in endothelial cells (Koblansky et al., 2013). A deficiency of the gene coding for 

TLR-12 results in a loss of resistance to toxoplasmic infection as well as a deficiency of 

the gene encoding MyD88 (Koblansky et al., 2013; Sher et al., 2017).  

 

b) In humans: 

Unlike the mouse model, the TLRs responsible for the activation of the immune 

reaction are poorly defined in humans, during T. gondii infection. It has been described 

that parasite recognition by intracellular TLRs (TLR-3, 7 and 9) in humans facilitates 

resistance to toxoplasmic infection and activation of monocytes and human dendritic 

cells (W. A. Andrade et al., 2013; Sher et al., 2017). In humans, TLR-11 exists, but is 

non-functional and TLR-12 does not exist. Thus, the mechanisms of activation of the 

immune reaction and the production of IL-12 and IFN-γ in humans, appears to be 

different from that activated in mice. It was reported that the human TLR-5 might have a 

similar role to the murine TLR-11 in activating cytokine production (Salazar Gonzalez et 

al., 2014). Other studies based on genetic association analysis for congenital 

toxoplasmosis in humans revealed several genes that may be involved in modulating 

immune responses to T. gondii.  These include the TLR-9, the P2X7 purinergic receptor 

and a member of the NALP1 NOD-like receptor family (Lees et al., 2010; Peixoto-

Rangel et al., 2009; Witola et al., 2011). The P2X7 purinergic receptor is associated with 
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congenital and ocular toxoplasmosis (Jamieson et al., 2010). It was found on the surface 

of macrophages, which are activated by extracellular ATP and can be upregulated 

synergistically by IFNγ and TNFα (Krishnamurthy, Konstantinou, Young, Gold, & Saeij, 

2017). A polymorphism of P2RX7 (a gene encoding the P2X7 receptor) influences the 

susceptibility of T. gondii infection (Jamieson et al., 2010). Blocking NAPL1 gene 

expression enhances proliferation of T. gondii in human cells (Witola et al., 2011) and 

NALP1 could be involved in the process of eliminating the intracellular parasite. To date, 

the molecular events responsible of NALP1 activation in the cytosol of infected cells are 

not yet elucidated. Identification of the involvement of NALP1 in the T. gondii 

elimination process could be one of the keys to the intracellular recognition system of T. 

gondii in humans (Krishnamurthy et al., 2017).  

 

In summary, in murine models, T. gondii itself has ligands for endosomal TLR-7, 

TLR-9, TLR-11, and TLR-12 and for surface-expressed TLR-2 and intestinal 

bacteria can pass the mucosal barrier during T. gondii-mediated inflammation and 

contain ligands for TLR-2, TLR-4, and TLR-9 (Sturge & Yarovinsky, 2014). 

Activation of TLRs leads to downstream signaling pathways playing a key role in 

first dissemination and then control of the infection. 
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Chapter VII: Immune response against toxoplasmosis  

Immune responses vary from one Toxoplasma gondii strain to another, and each 

strain has unique combinations of effectors and inducers of different pathways to promote 

or inhibit inflammation and other cellular responses. Some of the parasite virulence 

factors are secretory rhoptry and granule dense proteins, belonging to the apical complex 

and playing a key role during invasion and host response modulation. These proteins can 

be different between types of strains of T. gondii, hence making the modulation of host 

cell signaling pathways variable between these strains (Melo et al., 2011). In fact, at early 

time points, type I parasites do not activate pro-inflammatory responses while Type II 

parasites are very effective in activating an early response (Melo et al., 2011). 

 

In this thesis work, our main focus is the molecular and cellular characterization 

along with the therapeutic targeting of mostly the chronic phase of the infection. 

Since Type I strains fail to establish a successful chronic phase, we will focus in this 

chapter, on type II strains and their effect on modulating the host immune 

responses.   

7.1. Innate immune response 

When the parasite crosses the intestinal epithelial barrier, tachyzoïtes infect first 

monocytes and neutrophils (Coombes et al., 2013), then macrophages, and innate 

lymphoid cells which represent an identified lymphocyte subset related to innate 

immunity (Gregg et al., 2013). These innate immune cells produce IL-12, which 

participates in the differentiation of naive T cells into Th1-type T cells. T cells will then 

secrete IFN-γ to activate other immune cells such as natural killer (NK) cells (Pepper et 

al., 2008). IFN-γ is a key mediator of resistance against T. gondii in mice. This cytokine 

initiates multiple intracellular mechanisms to eliminate the parasite and inhibit its 

replication (Sasai et al., 2018).   
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7.1.1. Dendritic Cells 

Dendritic cells (DCs) are a heterogeneous population with distinct surface 

markers, transcription factor requirements, and functions (Belz & Nutt, 2012). All DC 

originate from a common bone marrow progenitor, but they subsequently differentiate 

into distinct subsets, including monocyte-derived DC, conventional DC, and 

plasmacytoid DC according to cytokines and transcription factors implicated (Miller et 

al., 2012; Pierog et al., 2018). Conventional DC contains three populations: CD8
+
 DC, 

CD4
+
 DC and CD8

-
CD4

-
 DC (Schnorrer et al., 2006). The CD8

+
 DC are unique since 

they can present exogenous antigens on their MHC class I molecules, and represent the 

most relevant subset of DC for IL-12 production (Schnorrer et al., 2006; Tosh et al., 

2016). DC secreted IL-12, along with other IL-12 innate cell producers, play a critical 

role in orchestrating the innate immune functions to trigger adaptive immune response, 

promoting IFN-γ production and controlling the parasite (Lakhrif et al., 2018; LaRosa et 

al., 2008). Indeed, infection with T. gondii induces increased numbers of DCs at the site 

of infection, then in the spleen, and lymph nodes (Mashayekhi et al., 2011). More 

importantly, T. gondii binds to TLR-11 and 12, expressed in DCs (see section 6.1), to 

activate MyD88 signaling among others, leading to the expression of  Interferon 

Regulatory Factor 8 (IRF8) which in turn, induces IL-12 and subsequent production of 

IFN-γ by natural killer (NK) cells and T cells (Sasai et al., 2018). Moreover, the atypical 

Iκ-B family member, Bcl-3, associates with p50/NF-κB1 or p52/NF-κB2 homodimers in 

nuclei, thereby either positively or negatively modulating transcription in a context-

dependent manner. Bcl-3 is required in dendritic cells to prime protective T-cell-mediated 

immunity to T. gondii (Tassi et al., 2015). 

7.1.2. Natural killer cells 

Natural killer (NK) cells are also involved in immunity against T. gondii. NK cell 

activity peaks early during acute infection. Although their activity is elevated during 

chronic toxoplasmosis, they do not appear to be significant contributors to immunity 

during the chronic stage of infection (Denkers, Gazzinelli, Martin, & Sher, 1993; Dupont, 

Christian, & Hunter, 2012). IL-12 produced by macrophages, monocytes and dendritic 
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cells stimulates IFN-γ secretion by NKs to fight against the parasite. In addition to IFN-γ, 

NK cells produce the cytokine IL-10 that represent a negative feedback loop when IL-12 

is highly expressed (Perona-Wright et al., 2009). The rapid transfer of T. gondii from 

infected DCs to effector NK may contribute to the parasite's sequestration and shielding 

from immune recognition shortly after infection (Sultana et al., 2017).  NK cells can also 

act to promote adaptive immune responses. Mice that lack T cells exhibit a limited 

resistance against the infection, through the ability of their NK to produce IFN-γ to help 

mounting a cytotoxic response by the CD8
+
 T cells (Combe, Curiel, Moretto, & Khan, 

2005). Finally, NK cells can be directly invaded by the parasite and this invasion alters 

NK cell migration, producing a hyper-motile phenotype (Petit-Jentreau, Glover, & 

Coombes, 2018).  

7.1.3. Monocytes  

Monocytes play a key role in toxoplasmosis and are largely manipulated by the 

parasite. Indeed, the parasite highjacks monocytes and changes their motility via it 

secreted rhoptry protein,  ROP17, to promotes its dissemination (Drewry et al., 2019). In 

vitro, monocytes are able to inhibit T. gondii replication (Mordue & Sibley, 2003). Oral 

infection of mice with T. gondii induces IFN-β production by inflammatory monocytes 

(IM) in mesenteric lymph nodes (Han et al., 2014). Ly6C
+
 IMs are essential to host 

defense against T. gondii, are recruited after stimulation of TLR-11 by the parasite 

profilin in a C-C chemokine receptor type 2 (CCR2) - dependent manner and confer 

resistance in mice (Neal & Knoll, 2014). Furthermore, IMs are capable of producing IL-

12 in vitro and in vivo, when stimulated by T. gondii (Aldebert et al., 2007; Robben, 

LaRegina, Kuziel, & Sibley, 2005). They can also produce IL-1 in response to soluble 

antigens of T. gondii to enhance anti-toxoplasmic effector mechanisms in macrophages 

and astrocytes in vitro (Hammouda, Rashwan, Hussien, Abo el-Naga, & Fathy, 1995). In 

addition, IL-1 reacts synergistically with IL-12 to promote the production of IFN-γ from 

the innate and adaptive immune cells (Borthwick, 2016). IMs also contribute to the direct 

control of T. gondii via expression of the nitric oxide inducible synthase (iNOS), and the 

production of NO, which inhibits parasite replication (Dunay, Fuchs, & Sibley, 2010). 

Finally, monocytes are able to differentiate into dendritic cells, to induce adaptive 
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immune responses (Dominguez & Ardavin, 2010), or into macrophages that can then 

control infection by GTPase-dependent immune mechanisms (Dominguez & Ardavin, 

2010).  

In humans, distinct monocyte subpopulations are described based on their 

expression of CD14 and CD16 (Heimbeck et al., 2010). The so-called classical 

monocytes are CD14
+
 and CD16

− 
and account for !85% of the circulating monocyte 

pool under steady state conditions. These appear to be the human counterparts of Ly6C
+
 

CD43 
low

 CCR2 
high

 murine monocytes used during Toxoplasma infection (Ehmen & 

Luder, 2019).  

7.1.4. Macrophages  

Macrophages are antigen-presenting cells that strongly activate adaptive 

immunity (Sasai et al., 2018). After recognition of parasite components by macrophages, 

they induce the expression of genes encoding chemokines such as the chemokine (C-C 

motif) ligand 2 (CCL2) (referred to as monocyte chemoattractant protein 1 MCP1) which 

induce the migration of Ly6C
high

CCR2
+
 monocytes and neutrophils to the infection site 

(McGovern & Wilson, 2013b). Activated macrophages by T.gondii, produce IL-1β and 

TNF-α (Philip & Epstein, 1986). Importantly, IL-12 production from macrophages 

triggers the proliferation of NK cells, CD8 T cells and CD4 T cells, which mediate 

cytotoxicity and high amounts of IFN-γ (Sasai et al., 2018), a dominant factor that 

enhances the ability of macrophages to destroy T. gondii  (Yarovinsky, 2014). 

Furthermore, inactivation of the Nuclear factor erythroid 2-related factor 2 (Nrf2), a 

pathway necessary for maintaining redox homeostasis in activated macrophages, impairs 

parasite growth (Pang et al., 2019). 

NLRP1 and 3 (nucleotide-binding domain leucine-rich repeats protein family) sense T. 

gondii infection in monocytes and macrophages as part of an inflammasome complex 

which mediates the secretion of IL-1β (Gov, Schneider, Lima, Pandori, & Lodoen, 2017) 

to limit parasite load and dissemination (Chu et al., 2016). 

Macrophages have also the ability to induce inhibition of tachyzoïte 

multiplication via iNOS, arginase-1 as well as the expression of the inhibitory proteins 

indoleamine 2,3- dioxygenase (IDO) and the expression of the effector proteins 



73 

 

immunity-related GTPases (IRGs) (Yarovinsky, 2014). IDO causes the depletion of 

tryptophan, an essential amino acid required for T. gondii survival while being unable to 

synthesize it. NO is generated downstream of IFN-γ and interacts with the parasite 

directly in the parasitophorous vacuole (Cabral, Wang, Sibley, & DaMatta, 2018) and the 

IRGs contribute to the parasitophorous vacuole destruction (Yarovinsky, 2014) (Figure 

13). Finally, the parasite SRS protein SAG2A antigen was shown to induce phenotypic 

and classical activation of macrophages in mice during the acute phase of the disease 

(Leal-Sena et al., 2018). 

 

 

 

 

Figure 13. Effector mechanisms of IFNγ-mediated parasite elimination in infected 
macrophages: induction of the expression of indoleamine 2,3-dioxygenase (IDO) and inducible 

nitric oxide synthase (iNOS) as well as immunity-related GTPases (IRGs) and guanylate-binding 

proteins (GBPs) (Yarovinsky, 2014). 
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7.1.5. Neutrophils 

Neutrophils control infectious pathogens by phagocytosing, degrading microbes, 

and producing IL-12 and reactive oxygen species (ROS) (Mantovani, Cassatella, 

Costantini, & Jaillon, 2011). They can also contain and eliminate extracellular microbes 

by releasing neutrophil extracellular traps (NETs) (Brinkmann et al., 2004). Through the 

release of chemokines and cytokines, neutrophils cross-talk with other immune cell types, 

such as macrophages, dendritic cells, and lymphocytes (Leliefeld, Koenderman, & Pillay, 

2015). In the context of T. gondii infection, an increase in extracellular DNA is obtained 

at the site of the infection along with a recruitment of neutrophils. Indeed, neutrophils 

release DNA to form extracellular traps for Toxoplasma (Abi Abdallah et al., 2012). 

These traps decreased the parasite viability in vitro and may be used in vivo to fight 

against the infection (Abi Abdallah et al., 2012). Furthermore, T. gondii is able to inhibit 

IL-1β production in human neutrophils by impairing the activation of the NF-κB 

signaling pathway and by inhibiting the inflammasome (Lima, Gov, & Lodoen, 2018). 

This targeting the IL-1β pathway may facilitate the survival and spread 

of T. gondii during acute infection. 

 

To conclude this section, it has been proposed that following a T. gondii 

infection in a mouse, the parasite actin binding protein, profilin, binds to the 

endosomal TLR-11/TLR-12 complex, and initiates MyD88 downstream signaling, 

leading to activation of the transcription factor IRF8. This results in IL-12 

production by DCs, eliciting an IFN-γ production by NK cells. Infected 

macrophages and monocytes may also respond to T. gondii infection through 

NLRP1 and NLRP3 inflammasomes. IL-1β and TNF-α are involved in inducing 

IFN-γ production from neutrophils. IL-1β production can also enhance the response 

of NK cells (Figure 14). It is worth noting that following sensing T.gondii by innate 

immune cells, IFN-γ is produced by NK, neutrophils and subsequently by adaptive 

immune cells, primarily by T cells. This cytokine plays a pleiotropic role at multiple 

levels during toxoplasmosis. 
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Figure 14. Current model for T. gondii infection and IFN-γ production by different innate 
immune cells (Sturge & Yarovinsky, 2014). 

 

7.2. Adaptive immune response 

The importance of adaptive immune responses against T. gondii is demonstrated 

by the increased susceptibility of patients to toxoplasmosis, when primary or acquired 

defects in T cell functions occur. Both CD4
+
 and CD8

+
 T cells are important in the 

context of the infection and they do not play redundant or overlapping functions since 

individual depletion of these subsets of T cells, do not produce same phenotype, and do 

not recapitulate same phenotype as upon the simultaneous depletion of both subsets (R. 
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Gazzinelli, Xu, Hieny, Cheever, & Sher, 1992). In addition, mice lacking all T cells 

succumb during the acute phase of the infection  (Hunter & Remington, 1994). Depletion 

of these cells in the chronic phase, leads to reactivation of the disease (R. Gazzinelli et 

al., 1992). Although CD8 T cells play an important effector role in controlling the 

chronic infection, their maintenance is dependent on the critical help provided 

by CD4 T cells. A recent study showed that reactivation of the infection in chronically 

infected hosts is a consequence CD4 T cell exhaustion yielding a CD8 T dysfunction. 

Treatment of chronically infected hosts with antigen-specific non-exhausted CD4 T cells 

restored CD8 T cell function and prevented reactivation of the disease (I. A. Khan, 

Hwang, & Moretto, 2019).  

Adaptive immunity largely depends on antigen-presenting cells (APCs), such as 

DCs and macrophages, and their ability to present T. gondii antigen and activate CD4
+ 

and CD8
+
 T and B cells, in secondary lymphoid organs. Once activated, B cells serve as 

APCs to stimulate CD4
+
 T cells (Gigley, Fox, & Bzik, 2009). Activation of T cells elicits 

immunity to T. gondii, and a transfer of activated T cells can confer resistance to naive 

hosts (Gigley et al., 2009). CD4
+
 and CD8

+
 T cells are essential for long-term survival of 

the host, acting synergistically to prevent reactivation of cysts, and are important for the 

development of protective immunity against reinfection  (S. Hwang & Khan, 2015) 

(Figure 15).  

7.2.1. CD4+ T cells 

The importance of CD4
+
 T cells in toxoplasmosis was defined in HIV-positive 

immunosuppressed patients and in murine models. Initiation of T cell responses requires 

that CD4
+
 T cells and naive CD8

+
 T cells recognize APCs, carrying their corresponding 

antigen on MHC I or MHC II. B cells, macrophages and dendritic cells are all capable of 

presenting the antigen to CD4
+
 T cells (Goldszmid et al., 2009). CD4

+
 T cells mediate the 

resistance to toxoplasmosis via their complementary activity to CD8
+
 cells and B cells (I. 

A. Khan et al., 2019; Lutjen, Soltek, Virna, Deckert, & Schluter, 2006). CD4
+
 T cells 

control the chronic infection through their ability to produce IFN-γ and to express CD40L 

(CD154) which a ligand necessary for the recognition of the antigen presented by APCs 

(R. Gazzinelli et al., 1992; Portillo et al., 2010).  
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7.2.2. CD8+ T cells 

CD8
+
 T cells can control infection through the production of inflammatory 

cytokines such as IFN-γ, through CD40/CD40Ligand interactions, and through the 

perforin-mediated cytolysis of infected host cells (R. M. Andrade, Portillo, Wessendarp, 

& Subauste, 2005). Indeed, mice deficient in CD8
+
 T cells show increased susceptibility 

to toxoplasmosis (Subauste & Wessendarp, 2006). T. gondii inactivates host innate and 

adaptive immune responses by targeting different host immunity related molecules such 

us the host endoplasmic reticulum-localizing transcription factor, ATF6β, to 

downregulate CD8
+
 T cell-mediated type I adaptive immune responses (M. Yamamoto & 

Takeda, 2012). The response of CD8
+ 

T cells depends on the virulence of the strain (Tait 

et al., 2010). Type II strain infected mice developed a robust DC response at the site of 

infection and the draining lymph node and generated a population of endogenous CD8
+
 T 

cells (Tait et al., 2010). CD8
+
 T cells specific for parasite antigens can directly kill 

infected cells. This can be illustrated with CD8
+
T cells specific for an 

immunodominant T. gondii epitope, P30, which were found to kill both extracellular 

parasites and infected macrophages in vitro (Kasper, Khan, Ely, Buelow, & Boothroyd, 

1992; I. A. Khan, Smith, & Kasper, 1988). CD8
+
 T cells generated from mice vaccinated 

with a temperature-sensitive mutant of T. gondii (ts-4) are cytotoxic in vitro for parasite-

infected or antigen-pulsed cells in a major histocompatibility complex class I (MHC-I)-

restricted manner (Hakim et al., 1991). CD8
+
 T cells are the dominant T cell responders 

in BALB/c models, which have a corresponding TCR restriction, Vβ8 CD8
+
 cells in their 

brain (X. Wang, Claflin, Kang, & Suzuki, 2005).  Adoptive transfer experiments showed 

that Vβ8 CD8
+
 cells are large producer of IFN-γ and were more protective than Vβ8 

CD4
+
 cells in response to parasite infection (X. Wang et al., 2005). CD8

+
 T cell responses 

to epitopes of several identified antigenic T. gondii proteins, including P30, GRA4, 

GRA6, GRA1, GRA7, ROP2 and ROP7 in mice (Duquesne et al., 1991; Frickel et al., 

2008; Hunter & Remington, 1994; Jacobs, Vercammen, & Saman, 1999; Kasper et al., 

1992).  

While CD8
+
 T cells play an important role in BALB/c mice during the chronic 

stage of the infection, there is a considerable amount of conflicting literature as to 

whether this protection is mediated by secreted IFN-γ or by their direct cytolytic ability. 



78 

 

For example, perforin-deficient mice lacking cytolytic ability survive acute T. 

gondii infection and have an unimpaired level of IFN-γ, but they have a higher cyst 

burden and slightly increased susceptibility at later time points of the infection. These 

results indicate that the cytolytic abilities of CD8
+
 T cells contribute to control of 

encysted parasites (Denkers et al., 1997). In contrast, adoptive transfer of perforin-

deficient CD8
+
 T cells was still effective at preventing toxoplasmic encephalitis in a 

chronic reactivation model utilizing sulfadiazine-treated athymic nude mice (X. Wang et 

al., 2005). Although adoptive transfer of perforin-deficient CD8
+
 T cells is effective at 

preventing reactivation, the model of cytolytic cyst control is more likely to be correct, as 

transferred IFN-γ-deficient CD8
+
 T cells are able to greatly reduce cyst burden in a 

chronic reactivation model (Y. Suzuki et al., 2010). The multifaceted effects of IFN-γ on 

the immune system make it difficult to separate the contribution of CD8
+
 T cell IFN-γ 

from that of other sources of this cytokine. IFN-γ itself increases expression of 

endothelial vascular cell adhesion molecule 1 (VCAM-1) to aid in recruitment of CD8
+
 T 

cells to the brain of chronically infected mice and thus enhances any effects of CD8
+
 T 

cells on immunity to T. gondii (X. Wang, Michie, Xu, & Suzuki, 2007). It seems likely 

that both IFN-γ and cytolytic functions of CD8
+
 T cells are contributing to host resistance 

to pathogenesis (Y. Suzuki, Sa, Gehman, & Ochiai, 2011). 
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Figure 15.  Cellular immune response to initial Toxoplasma infection: Cells of the innate and 

adaptive immune system as well as arrows indicating migration and communication between cells. 

INF-γ is central to host resistance to Toxoplasma as it activates many host mechanisms that kill the 

parasite (Jensen Lab). 

 

7.3. Central Nervous System (CNS) immune response 

The central nervous system is closely linked to the immune system in several 

levels. The brain parenchyma is separated from the periphery by the blood brain barrier 

(BBB), whose integrity is maintained by the tight endothelial junctions. This barrier in 

normal conditions prevents the entry of mediators such as activated leukocytes, 

antibodies, complement factors and cytokines. Myeloid cells play a crucial role in the 

development of immune response in the central level, it has two major subtypes: the 

microglial cells which are spread in the brain parenchyma; and the perivascular 

macrophages located in the capillaries of the basal lamina and the choroid plexus of the 

brain (Elsheikha & Khan, 2010) (Figure 16). 



80 

 

  

Figure 16: Structure of the Brain Blood Barrier (Francis, van Beek, Canova, Neal, 
& Gasque, 2003). 

 

Toxoplasma can be classified as a primarily neurotropic pathogen having a 

selective higher affinity for the CNS over other organs (Schluter & Barragan, 2019). In 

order to reach the brain parenchyma from the cerebral blood circulation, Toxoplasma has 

to cross the brain endothelium, primarily to the capillary bedding through two strategies 

by hijacking leukocytes and, as free parasites, with significant differences between 

Toxoplasma genotypes (Ginhoux & Jung, 2014; Schaeffer et al., 2009; Schluter, Deckert, 

Hof, & Frei, 2001; Selleck et al., 2013; Serbina, Hohl, Cherny, & Pamer, 2009). 

A brain host immune response is thus triggered and T. gondii switches to the 

chronic phase of the infection. Indeed, the parasites persist as intraneuronal cysts that are 

controlled, but not eliminated by the immune system (Blanchard, Dunay, & Schluter, 

2015). Brain-resident cells including astrocytes, microglia and neurons contribute to the 

intracerebral immune response by the production of cytokines, chemokines and 

expression of immune-regulatory cell surface molecules, such as major histocompatibility 

(MHC) antigens (Blanchard et al., 2015). Wandering immune cells are also recruited to 
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the site of infection in the CNS and contribute to the response against the infection 

(Blanchard et al., 2015).  

IFN-γ is key driver of this process. In the early phase of toxoplasmosis, the IFN-γ 

production by NK cells and type I innate lymphoid cells is important for parasite control 

(Klose et al., 2014). Notably, brain recruited DCs are the main producers of IL-12, which 

is crucial for the maintenance of IFN-γ during the latent phase (Figure 17) (Fischer, 

Bonifas, & Reichmann, 2000). Toxoplasma induces a hyper-migratory phenotype in 

human and mouse DCs. This hyper-migration of infected DCs potentiates systemic 

parasite dissemination in mice, including the CNS, and may cooperate with chemotactic 

responses of DCs (Schluter & Barragan, 2019). Although NK produce IFN-γ, the main 

source of this cytokine remains the recruited T cells, which infiltrate into the brain 

following infection (Blanchard et al., 2015; X. Wang et al., 2005).  

In parallel to the parasite spread to the brain, inflammatory leukocytes are 

recruited to the CNS. These inflammatory infiltrates are mainly composed of CD4
+
 and 

CD8
+
 T cells along with the F4/80

+
 macrophages, CD11

c+
 DCs, and Ly6C

high
 

inflammatory monocytes (Kwok et al., 2003). The number of infiltrated CD11
c+

 brain 

DCs strongly increases in cerebral toxoplasmosis, and these cells home to the 

inflammatory foci in the infected brain. The inflammatory monocytes are actively 

recruited to sites of infection serving an immediate precursor for antigen-presenting DCs 

and macrophages (Serbina et al., 2009). 

IFN-γ can be also produced by the brain-resident microglia, leading to their 

activation and the production of NO to control the chronic cerebral infection (Blanchard 

et al., 2015; Chao et al., 1993; Sa et al., 2015). In murine toxoplasmosis, microglia cells 

are strongly activated throughout the entire brain as evidenced by upregulation of MHC 

class I and II antigens (Schluter, Lohler, Deckert, Hof, & Schwendemann, 1991). 

Microglia cells suppress the proliferation of intracerebral T cells, most probably to 

prevent excessive T cell proliferation and immunopathology due to the continuous T cell 

stimulation with the persisting parasite antigens (Schluter et al., 2001). 

Neurons express MHC class I under certain circumstances, including activity 

dependent, long-term structural and synaptic modifications (Corriveau, Huh, & Shatz, 

1998), and in functionally inactive IFN-γ-stimulated neurons. Some cyst-harboring 
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neurons remain MHC class I negative and, thus, escape elimination by CD8
+
 T cells, 

which in principle effectively remove cysts from the brain in a perforin-dependent 

manner (Neumann, Cavalie, Jenne, & Wekerle, 1995; Schluter & Barragan, 2019). 

Interestingly, expression of the common IL6-cytokine family receptor in neurons is 

required to prevent hyper-inflammation, neuronal loss, parasite replication and, death 

from toxoplasmic encephalitis (Handel et al., 2012). The gp130 receptor mediates 

survival of neurons under inflammatory conditions and is important for the production of 

immunosuppressive induction of TGF- β1 and IL-27 by neurons. During the chronic 

stage of toxoplasmosis the chemokines (CXCL9/ MIG, CXCL10/IP-10, and 

CCL5/RANTES), in addition to adhesion molecules play important roles in recruiting 

immune T cells and macrophages into the brain to maintain the latency of infection and 

to prevent toxoplasmic encephalitis (Y. Suzuki et al., 2010). 

Finally, immunosuppressive cytokines are also expressed in the brain and play an 

important role to prevent immunopathology in toxoplasmosis. The inflammatory 

monocytes produce IL-10, which alleviates the immune-pathological response to the T. 

gondii-inflamed brain (Biswas et al., 2015). In addition, microglia, macrophages, 

regulatory B cells, and some CD8
+
 T cells produce IL-10. IL-10 protects from lethal 

immunopathology in acute systemic and down-regulates the immune response in chronic 

cerebral toxoplasmosis (R. T. Gazzinelli et al., 1996). Astrocytes produce IL-27, which 

also inhibits immunopathological Th17 responses in TE (Stumhofer et al., 2006). 
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Figure 17: Immune response to T. gondii in the infected brain by resident and 
recruited immune cells (Blanchard et al., 2015). 

 

A summary of CNS produced cytokines in the context of toxoplasmosis is 

provided in the table below (Table 9). The source of each cytokine, from resident and 

wandering brain immune cells is also presented.   

 

Cytokines/Chemokines Source of production Type References 
Interferon-γ Wandering cell:  

Phagocytic cells 

T cells 

Pro-

inflammatory 

(Filisetti & 

Candolfi, 

2004) 

Interleukin-12 Wandering cell: 
Dendritic cell 

Resident cell: 
Microglia 

Pro-

inflammatory 

(Robben et al., 

2004) 

Interleukin-1β Wandering cell: 
Monocytes/Macrophages 

Resident cell: 
Astrocytes 

Pro-

inflammatory 

(Blanchard et 

al., 2015) 

Interleukin-2 Wandering cell: 
LT(CD4+) 

Pro-

inflammatory 

(Filisetti & 

Candolfi, 

2004) 
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Interleukin-6 Wandering cell: 
Macrophages 

Resident cell: 
Neuron/Astrocyte/Microglia 

Pro-

inflammatory 

(Filisetti & 

Candolfi, 

2004) 

Interleukin-15 Wandering cell: 
Macrophages 

Resident cell: 
Microglia  

Pro-

inflammatory 

(Blanchard et 

al., 2015) 

RANTES/CCL2 Wandering cell: 
Leucocytes/Dentritic cell 

Resident cell: 
Microglia 

Pro-

inflammatory 

(Blanchard et 

al., 2015) 

MIP Wandering cell: 
Leucocytes/Dentritic cell 

Resident cell: 
Neuron  

Pro-

inflammatory 

(Blanchard et 

al., 2015) 

iNOS Wandering cell: 
Monocytes 

Pro-

inflammatory 

(Blanchard et 

al., 2015) 

TNF-α Wandering cell: 
Monocytes/T cells 

Pro-

inflammatory 

(Blanchard et 

al., 2015) 

Interleukin-10 Wandering cell: 
Monocytes 

Resident cell: 
Microglia 

Anti-

inflammatory 

(Blanchard et 

al., 2015) 

Table 9. Summary of cytokines secreted by resident and wandering immune cells. 
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Chapter VIII: Imiquimod  

8.1. Imiquimod  

       Imiquimod (Figure 18), (S-26308, R-837) (1-(2-methylpropyl)-1H-imidazo[4,5-

c]quinolin-4-amine), is the first member of the imidazoquinoline family, and belongs to 

the class of medications called immune response modifiers. 

   
Figure 18: chemical structure of Imiquimod 

 

This non-osidic nucleoside analogue of the imidazoquinoline family was the first 

immune response modifier used for the treatment of infectious skin conditions and shown 

great anti-viral and anti-tumor activities in vivo (reviewed in Kamath, Darwin, Arora, & 

Nouri, 2018). This agent was approved in 1997 by the United States Food and Drugs 

Administration (FDA) for topical use against some viral infections such as perianal and 

genital human papilloma virus (HPV) disease/genital warts by increasing the activity of 

the body’s immune system (Miller, Gerster, Owens, Slade, & Tomai, 1999; Smith, 

Hamza, & Skelton, 2003). This drug is also efficacious as a topical therapy for certain 

types of skin cancers: basal cell carcinoma, Bowen's disease, superficial squamous cell 

carcinoma, some superficial malignant melanomas, and actinic keratosis (Oumata et al., 

2013). Imiquimod inhibits melanogenesis and proliferation of human melanocytes. Its 

therapeutic spectrum was also extended to cutaneous B-cell lymphomas (Oumata et al., 

2013). The exact mechanism of action in which Imiquimod activate the immune system 

is not yet known. Nevertheless, it is known that Imiquimod activates immune cells by 

ligating the Toll-like receptor 7 (TLR-7), commonly involved in pathogen recognition, on 

the endosomal surface of cells (Arevalo et al., 2001). Cells activated by Imiquimod via 

TLR-7 secrete cytokines (primarily IFN-α, IL-6, and TNF-α). There is evidence that 
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Imiquimod, when applied to skin, can lead to the activation of Langerhans cells, which 

subsequently migrate to local lymph nodes to activate the adaptive immune system 

(Arevalo et al., 2001). Other cell types activated by Imiquimod include natural killer 

cells, macrophages, and B lymphocytes. There are case reports and preliminary studies 

suggesting Imiquimod effectiveness in the treatment of CL (Raman, Duthie, Fox, 

Matlashewski, & Reed, 2012). However, the effects of Imiquimod on innate immune 

responses, via toll-like receptors, suggest a potential anti leishmanial activity that was 

demonstrated by inducing the release of nitric oxide (El Hajj et al., 2018). Less than 1% 

of the drug is recovered in urine after topical application. Topical Imiquimod (5% cream) 

is only mildly irritating and does not lead to systemic toxic effects. Imiquimod was used 

in combination with a systemic antimonial administration in the treatment of CL and 

presented a cure rate of 90% in patients with refractory CL to pentavalent antimonial 

treatment (Arevalo et al., 2001). It was also shown that it is also more effective in the 

initial treatment of CL (Arevalo et al., 2007). Another clinical trial in Peru, Miranda-

Verastegui et al. showed that this combination was better than placebo plus pentavalent 

antimony (Miranda-Verastegui et al., 2009).   
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RESULTS part 1: 

Imiquimod as a novel therapeutic 

modality against toxoplasmosis: host 

immune response modulation through 

MyD88-dependent Toll Like 

receptors  
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Abstract 

Toxoplasma gondii is a prevalent protozoan parasite of medical and veterinary 

importance. In intermediate hosts, tachyzoïtes and bradyzoïtes are responsible for acute 

and chronic toxoplasmosis (AT and CT), respectively. Following AT, the disease evolves 

into a persistent CT, in part due to the host immune system. In immunocompetent hosts, 

CT manifests in the brain and skeletal muscles as latent tissue cysts, which correlates 

with several neuro-pathologies and cancers. In immunocompromised patients, CT may 

reactivate and poses a life threatening condition. Current treatments primarily target AT, 

and present with adverse side effects.  

Imiquimod is an approved immunomodulatory drug, with documented efficiency 

against some viral infections and cutaneous leishmaniasis. In this study, we have 

explored the potential efficacy of Imiquimod against AT and CT. During AT, Imiquimod 

led to recruitment of T cells to the peritoneum and spleen of treated mice, and 

significantly decreased the number of brain cysts upon establishment of CT. Remarkably, 

gavage of mice with the remaining brain cysts from Imiquimod treated mice, failed to 

induce CT.  

CT remains with no effective treatment, although it is the most common form of 

toxoplasmosis in humans. Post-establishment of CT, we demonstrated that Imiquimod 

sharply reduces the number of brain cysts, concomitant with increased Toll-Like 

Receptors 11 and 12 expression. These TLRs are expressed by dendritic cells (DCs) and 

monocytes, and bind the tachyzoïte actin-binding protein, Profilin. TLR-7 was also 

upregulated, likely due to Imiquimod reported agonistic activity. Furthermore, 

Imiquimod mediated interconversion as documented by the decreased protein levels of 

P21, and increased protein levels of P30, exclusively expressed in bradyzoïtes and 

tachyzoïtes, respectively. Pathways downstream from TLR-11/12 were activated, through 

MyD88 dependent TLR signaling, which resulted in the induction of the innate immune 

response and the upregulation of specific chemokines, potentially recruiting T cells to 

reactivated Toxoplasma foci, to clear the infection. Imiquimod presumably enhances the 

interaction of Profilin with the heterodimerized TLR-11/12 since in vitro, Toxoplasma 

strain lacking Profilin, which fails to bind to TLR-11/12, does not respond to Imiquimod. 



91 

 

Collectively, we showed that Imiquimod targets AT and more prominently CT, via 

conversion of bradyzoïtes to tachyzoïtes, leading to the upregulation of TLR-7, 11 and 

12, subsequently activating MyD88 downstream signaling, to induce immune response 

and clear the infection. This study paves the way to tackle the disease at several levels, by 

eliminating neuro-pathologies and cancer associated with toxoplasmosis, and abrogating 

the transmission of the parasite in its hosts, which is at the root for human infection. This 

will result in lessening the consequent economic burden associated with the disease and 

in improved animal health. 

 

Keywords: cerebral toxoplasmosis, dendritic cells, Toll-like receptors, cytokines, T cells, 

pathogen-host interaction. 
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Introduction 

Toxoplasma gondii (T. gondii) is the etiologic agent of toxoplasmosis, a common 

human and zoonotic disease. T. gondii infects approximately 30% of the world’s human 

population [1], with a sero-prevalence ranging from 7 to 80% according to regions [2]. 

More than 40 million people in the United States are infected, which prompted the 

Centers for Disease Control and Prevention (CDC) to classify toxoplasmosis as a 

neglected parasitic infection, requiring public health action [3]. Toxoplasmosis manifests 

as acute and chronic forms (AT and CT respectively). AT is caused by the presence of 

fast-replicating tachyzoïtes, which deploy innate immune cells, namely dendritic cells 

(DCs), and monocytes, as vehicles to reach the brain and the skeletal muscles, where they 

convert into persistent bradyzoïte cysts [4, 5].  

While toxoplasmosis is considered asymptomatic in more than 80% of 

immunocompetent patients, more associations are made between various medical 

conditions and T. gondii infections [6]. Elevated levels of immunoglobulin G in pregnant 

‘toxo-positive’ women were linked to prenatal anxiety and depression [7, 8]. Depression 

and suicide attempts also correlate with seropositivity to parasite antigens [9, 10]. CT 

also promotes the progression of several behavioral and neuropathies such as 

schizophrenia and Parkinson disease among others [11-18]. Higher anti-T. gondii 

antibodies are also reported in different types of cancer [19-21], particularly in brain 

cancers due to the ability of the parasite to interfere with the brain cells miRNAome [22]. 

In immunocompromised patients, CT may reactivate and associates with severe 

morbidity that might lead to death [23-26]. Reactivation usually occurs in HIV patients or 

in those who receive immunosuppressive therapies in the context of hematopoietic stem 

cells, solid organ transplant, or chemotherapy against cancer [26-30]. With the growing 

number of these individuals, scientists are aware of the potential occurrence of 

Toxoplasma encephalitis, not only during reactivation of latent infection, but also 

presenting as a primary infection [31]. 

Common treatments for toxoplasmosis remain limited to general anti-

parasitic/anti-bacterial drugs. These include spiramycin, azithromycin, atovaquone, 

pyrimethamine-sulfadiazine, pyrimethamine-clindamycin and trimethoprim-

sulfamethoxazole (reviewed in [32]). The recommended first-line therapy remains the 
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synergistic combination of pyrimethamine, an inhibitor of the dihydrofolate reductase 

(DHFR) enzyme, with sulfadiazine, an inhibitor of the dihydropteroate synthase reviewed 

in [25, 33]. However, this combination associates with several limitations, including, 

hematological side effects [34], elevation in serum creatinine and serum liver enzymes, 

hypersensitivity or allergic reactions [35] and emergence of resistant parasites [36, 37]. In 

addition, these drugs, whether given as prophylactic or therapeutic agents, target only AT 

and remain ineffective against CT [38-41].   

Imiquimod is an FDA approved immune-modulatory drug, used against some 

viral infections [42, 43]. Imiquimod binds Toll-like receptor-7 (TLR-7) [44, 46, 47] [44, 

45], which activates the innate immune response [44] through MyD88 signaling pathway. 

This drug also proved potent against a parasitic infection causing cutaneous 

leishmaniaisis [47-49].  

 TLR family of proteins are transmembrane receptors localized on the 

cytoplasmic membrane and endosomal/lysosomal cellular compartments, which 

recognize distinct pathogenic constituents [50], to couple innate to adaptive immunity 

[51]. Thirteen different TLRs (TLR1-13) are described in mammals reviewed in [52]. 

TLRs 11, 12 and 13 are exclusively expressed in mice [53]. Following infection with T. 

gondii, TLRs expressed on innate immune cells detect the parasite [54]. TLR-11 and 12 

of DCs, recognize Profilin, a Toxoplasma Pathogen-associated molecular pattern (PAMP) 

[55-57], to primarily signal through the adaptor protein MyD88 [58], leading to the 

activation of several signaling pathways including nuclear factor kappa-light-chain-

enhancer of activated B cells (NF-κB), and mitogen-activated protein kinase (MAPK). 

This subsequently mounts the protective immune response through the production of 

interleukin-12 (IL-12), Interferon-gamma (IFN-γ) among others [56, 59]. Indeed, TLR-11 

heterodimerizes with TLR-12, and is important for DC response and IL-12 production 

[55, 60]. TLR-11
-/-

 mice display low levels of IL-12 production [56, 61], and TLR-12
-/-

 

results in a loss of resistance to toxoplasmic infection as well as a deficiency of the gene 

encoding MyD88 [55, 61]. While Profilin is indispensable for invasion, and active egress 

from cells [62-64], parasites lacking Profilin are unable to induce TLR-11-dependent 

production of IL-12 both in vitro and in vivo [64].       
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In this study, we explored the potency of Imiquimod against AT and CT. 

Treatment of mice during AT resulted in recruitment of T cells to the peritoneum and 

spleen, and significantly decreased the number of brain cysts upon establishment of CT. 

Remarkably, the remaining brain cysts from Imiquimod treated mice, failed to establish a 

new CT. In light of the absence of an efficient treatment against CT, we investigated the 

efficacy of Imiquimod on chronically infected mice. Interestingly, Imiquimod sharply 

reduced the number of brain cysts in an established CT, and significantly increased TLR-

11, 12 and 7. Since these TLRs are expressed by innate immune cells upon contact with 

tachyzoïtes, we showed that Imiquimod induced interconversion. TLR-11/12 

upregulation resulted in the activation of the MAPK pathway and induced its subsequent 

immune response, through MyD88 dependent TLR signaling. In vitro, a Toxoplasma 

strain depleted for Profilin, does not respond to Imiquimod treatment, suggesting that this 

drug promotes the interaction between this PAMP and TLR-11/12. Collectively, we 

showed that Imiquimod targets AT and more prominently CT, via conversion of 

bradyzoïtes to tachyzoïtes. This led to the upregulation of TLR-7, 11 and 12, 

subsequently activating MyD88 signaling to induce immune response and clear the 

infection. This study provides insights towards eradicating the disease through interfering 

with its persistence and transmission and paves the path towards better treatment 

modalities against toxoplasmosis and its associated diseases.  

 

Materials and methods 

Parasite lines and mammalian cell cultures 

76K strain was provided by Dr. Mathieux Gissot. Profilin knock-out strain 

∆TgPRFe/TgPRFi and its control RHTATi-1 were provided by Dr. Dominique-Favre 

Soldati. Tachyzoïtes were serially passaged in human foreskin fibroblasts (HFFs) 

(American Type Culture Collection-CRL 1634) cultured in Dulbecco's Modified Eagle's 

Medium (DMEM) (GIBCO, Invitrogen) and supplemented with 10% of fetal bovine 

serum (FBS), 1% penicillin-streptomycin, and 1% glutamine.  

Human THP-1 cells (American Type Culture Collection (ATCC TIB-202), 

Manassas, VA) were maintained in RPMI medium with L-Glutamine, supplemented with 
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10% FBS, 1% penicillin-streptomycin, and 1% glutamine (Invitrogen). The 

differentiation of THP-1 cells was performed as described [48]. Briefly, one million of 

THP-1 monocytes were seeded in a 6-well-plate, and incubated with 50 ng/mL of phorbol 

12-myristate 13-acetate (Sigma) overnight. Following their adherence, differentiated 

macrophages were activated with 1µg/mL of lipopolysacharide for 4h, infected with the 

76K strain, at 1:3 parasite to macrophage ratio for 24h, then treated with 1µm of 

Imiquimod (Molekula, CAS N°99011-02-6)  for 24h. 

Peritoneal macrophages were harvested from BALB/c mice, following their 

induced recruitment by thioglycollate (38.5 g/L, Sigma). After peritoneal lavage, cells 

were collected by centrifugation. One million murine macrophages were seeded in 6-

well-plates and cultured in RPMI medium supplemented with 10% FBS, 1% penicillin-

streptomycin, and 1% glutamine (Invitrogen). Infection with RHTATi-1 and 

∆TgPRFe/TgPRFi at 1:3 parasite to macrophage ratio for 24h, prior to their treatment 

with 1µm of Imiquimod for 48h. 

 

In vitro interconversion from tachyzoïtes to bradyzoïtes 

Confluent HFF cells were cultured in a 6-well plate and infected with 1000 

tachyzoïtes of the 76K strain/well. After 24h of incubation in complete DMEM medium 

under 5% CO2, cells were maintained in induction medium (RPMI 1640 without 

NaHCO3, HEPES 50mM, 3% FBS, pH 8.2) and in absence of CO2. The basic medium 

was changed every other day to maintain the pH at 8.2. After 10 days, cells infected with 

bradyzoïtes were treated every other day with 1µm of Imiquimod. On day 14, infected 

cells with bradyzoïtes were harvested for western blot and immuno-fluorescence assays.  

Immunofluorescence and confocal microscopy 

Bradyzoïte conversion was confirmed by staining the cyst wall with Biotinylated 

Dolichos biflorus lectin (DBA) [65]. Following in vitro switch, coverslips of cells 

infected with cysts of 76K, were fixed with 4% paraformaldehyde in PBS for 20 minutes, 

permeabilized in 0.2% Triton for 10 minutes, blocked with 10% FBS in PBS for 30 min. 

T83B1 or T82C2 primary monoclonal antibodies directed against P18 and P34 respectively 
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[66] were used at the dilution of 1:500. Biotinylated DBA (Sigma, Cat. NoB-1035) was 

used at the dilution of 1:100. Anti-mouse secondary antibody (Abcam, ab150116) was 

used at the concentration of 1:500. Streptavidin (Sigma) was used at the dilution of 1:100. 

Coverslips were mounted on slides using a Prolong anti-fade kit (Invitrogen, P36930). Z-

section images were acquired by confocal microscopy using confocal microscopy (Zeiss 

LSM 710) and all images were analyzed using Zeiss Zen software.  

 

Western blot analysis 

Proteins from various experimental procedures were separated on polyacrylamide 

gels with different percentages according to the molecular weight of desired proteins and 

transferred to nitrocellulose membranes (BIO RAD Cat# 162-0112). Membranes were 

probed with different primary antibodies followed by anti-mouse (m-IgGk BP-HRP, sc-

516102) and anti-Rabbit (Mouse anti-rabbit IgG-HRP, sc-2357) (Santa Cruz, 1:5000) 

secondary antibodies conjugated to Horseradish peroxidase (HRP). Bands were 

visualized using luminol chemiluminescent substrate (Bio-Rad, Cat# 170-5061).  

Primary antibodies used in our study are: T8 3B1 primary monoclonal antibody 

directed against p18 (1:1000) (Gift from Jean-Francois Dubremetz)[66, 67], T4 1E5 

monoclonal antibody directed against P30 (SAG-1/1:1000) (Gift from Jean-Francois 

Dubremetz)[66], TLR-11, 12, and 7 TLR-12 polyclonal antibodies Thermofisher (Cat# 

PA1-41080; 1:1000;  Cat# PA1-41037; 1:500), Cat#PA5-11605; 1:500, respectively), 

MYD88 monoclonal antibody Abcam (Cat#ab135693; 1:1000), total ERK1/2 (137F5) 

Rabbit polyclonal cell signaling (Cat#4695; 1:1000), Phospho–P44/42 MAPK ERK1/2 

(Thr202/Tyr204) Rabbit polyclonal antibody cell signaling (Cat#4397; 1:1000), β-Actin 

Mouse cell signaling (Cat#8H10D10; 1:1000), GAPDH antibody conjugated to HRP 

from Abnova (Cat#MAB5476; 1:20000).     

 

Quantitative Real Time PCR (qRT PCR)  

  qRT PCR was performed using CFX96 (Biorad). Primers to detect different 

transcripts in the brains of BALB/c infected mice (Timeline described in Figure 3A), are 

listed in (Table 1). Glyceraldehyde-3-Phosphate dehydrogenase (GAPDH) was used as 
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housekeeping gene (Table 1). In qRT-PCR, individual reactions were prepared with 0.25 

μM of each primer, 150 ng of cDNA and SYBR Green PCR Master Mix to a final 

volume of 10 μl. PCR reaction consisted of a DNA denaturation step at 95°C for 3min, 

followed by 40 cycles (denaturation at 95°C for 15 sec, annealing at the appropriate 

temperature o the used primers for 60 sec, extension at 72°C for 30 sec). For each 

experiment, reactions were performed in duplicates and the expression of individual 

genes was normalized to GAPDH Ct values. The Threshold cycle (Ct) corresponds to the 

cycle at which there is a significant detectable increase in fluorescence. Data were plotted 

by calculating ΔCt (Cttarget gene – CtGAPDH). Thereafter, ΔΔCt is calculated according to the 

Livak method: 2
-ΔΔCt

 to obtain the percentage of expression [68]. 

 

Table 1. Summary of primers used for Real-time quantitative PCR  

Primer Sequence 5’à3’ Annealing T
0
C 

GAPDH Forward Primer 5’-CATggCCTTCCgTgTTCCTA-3’ 59.4 

GAPDH Reverse Primer 5’-CCTgCTTCACCACCTTCTTgAT-3’ 60.3 

SAG-1 Forward primer  5’-ACT CAC CCA ACA ggC AAA TC 3’ 56.5 

SAG-1  Reverse primer 5’- gAg ACT AgC AgA ATC CCC Cg-3’ 56.6 

BAG-1 Forward primer 5´-gCggAgAAAgTggACgATgATgg-3´ 62 

BAG-1 Reverse primer 5´-gTCgggCTTgTAATTACTCggg-3´ 62 

TLR-11 Forward primer TCCTTCCTCTGATTAGCTGTCCTAA 57 
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TLR-11 Reverse primer TCCACATAATTTCCACCAACAAGT 57 

TLR-12 Forward primer GCCGCCATTCCAAGCTATC 57 

TLR-12 Reverse primer CTCCACAGTCCGAGGTACAACTT 57 

TLR-7 Forward primer TTCCTTCCGTAGGCTGAACC 57 

TLR-7 Reverse primer GTAAGCTGGATGGCAGATCC 57 

CXCL9 Forward Primer 5'-TgT ggA gTT CgA ggA ACC CT-3'            60.5 

CXCL9 Reverse Primer 5'-TgC CTT ggC Tgg TgC Tg-3' 57.2 

CXCL10 Forward Primer 5'-AgA ACg gTg CgC TgC AC-3' 57.2 

CXCL10 Reverse Primer 5'-CCT ATg gCC CTg ggT CTC A-3' 61.7 

 

Enzyme-linked immunosorbent assay (ELISA) 

Brains from infected BALB/c mice with 76K were harvested after three weeks of 

treatment with 50µg of Imiquimod/mouse. Following brain homogenization, supernatants 

were collected, and ELISA was performed using Multi-Analyte ELISArray Kit (Qiagen) 

according to the manufacturer’s instructions. Briefly, supernatants were spun for 10 min 

at 1000g and transferred to new Eppendorf tubes, and diluted using a specific cocktail of 

antigens (IL-12, IL-1β, and IFN-γ) provided by the kit. Samples were then transferred to 

ELISA plate, and were incubated for 2 hours. After three washes, the detection antibody 

was added and incubated for 2 hours, followed by Avidin-HRP addition for 30 min. 
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Wells were washed and developed in the dark for 15 min, before addition of the stop 

solution. Optical density was recorded at 450 and 570 nm.  

 

In vivo studies  

Eight to ten weeks old female BALB/c mice (5 mice per condition) were 

intraperitoneally injected with 250 parasites of 76K and with 50 and 100 µg of 

Imiquimod per mouse to determine dose efficacy, or Sulfadiazine (200mg/L administered 

in drinking water) (Timeline described in Figure 1A). Imiquimod treatment was 

performed every other day from day 2 until day 8 and mice were sacrificed on day 10 to 

assess tachyzoïte burden in the spleen.  

To assess the effect of Imiquimod on immune cell recruitment during AT, eight to 

ten weeks old female BALB/c mice (5 mice per condition) were intraperitoneally injected 

with 1000 parasites of 76K. Treatment with 50 μg/mouse was performed on days 2 and 3 

and mice were sacrificed on day 4 p.i. (Timeline described in Figure 1C).  

To test the potency of Imiquimod on brain cyst formation, eight to ten weeks old 

female BALB/c mice (10 mice per condition) were intraperitoneally injected with 250 

parasites of 76K, and treated during AT, with 50μg of Imiquimod from day 4 until day 32 

(Timeline described in Figure 2B). Mice were then sacrificed, brains were harvested, and 

cysts were extracted using an optimized Percoll method (GE Healthcare Percoll Bio-

Sciences AB Lot 10221921) [69, 70]. To test the viability of the remaining cysts found in 

the brains of treated mice, 20 cysts were orally injected into new BALB/c mice (10 mice 

per condition) (Timeline described Figure 2B).  

To explore the effect of Imiquimod on CT, eight to ten weeks old female BALB/c 

mice (20 mice per condition) were intraperitoneally injected with 250 parasites of 76K. 

Chronically infected mice were treated with 50 μg of Imiquimod, every other day, and 

starting day 21 and until day 49 p.i. (Timeline described in 2C). On day 49 p.i., mice 

were sacrificed and brain cysts were counted following an optimized percoll extraction 

method [69, 70].  
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To assess the upregulation and the time point at which TLR-11, 12, and 7 are 

upregulated, eight to ten weeks old female BALB/c mice (5 mice per condition) were 

intraperitoneally injected with 250 parasites of 76K. Chronically infected mice were 

treated with 50 μg of Imiquimod, every other day, starting day 21 and until day 49 p.i. 

(Timeline described in 3A). Mice were sacrificed on a weekly basis (days 35, 42 and 49) 

p.i. Total brains were harvested and TLR-11, 12 and 7 transcript levels were assessed by 

qRT PCR. All remaining molecular studies on in vivo treated mice, were performed on 

brains of mice sacrificed at day 49 p.i. 

 

Ethics statement 

All mice protocols were approved by the Institutional Animal Care and 

Utilization Committee (IACUC) of the American University of Beirut (AUB) (Permit 

Number: #18-02-461). All animals were housed in specific pathogen free facility with a 

12h ON/OFF light cycle. Humane endpoints were fully respected as per AUB IACUC 

following Association for Assessment and Accreditation of Laboratory Animal Care 

International guidelines and guide of animal care use book (Guide, NRC 2011). Mice 

were monitored on a daily basis. To verify the acute phase of the infection, blood was 

withdrawn following deep anesthesia with isoflurane by inhalation. Mice were sacrificed 

if any abnormal ethical features are noticed.  

 

Statistics 

All in vivo experiments were analysed using two-tailed Student’s t-tests to 

determine the statistical significance of differences observed between indicated groups 

for parametric comparisons and presented as averages with standard deviations. 

Statistical significance is reported as * for P value between 0.05 and 0.01, ** for P value 

between 0.01 and 0.001, and *** for P value less than 0.001. 
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Results 

Imiquimod exhibits a toxoplasmicidal effect in vitro 

We investigated the potency of Imiquimod on infected macrophages with 

tachyzoïte stage. Macrophages were infected at 1:3 parasite to cell ratio. Twenty-four 

hours p.i., cells were treated with 1 μM of Imiquimod for 24h (Timeline described in 

Figure1A). Cells were harvested 24h post-treatment, and the effect of Imiquimod on 

tachyzoïtes was assessed using a monoclonal antibody directed against SAG-1. 

Imiquimod significantly decreased the protein expression of SAG-1 by more than 70% 

(Figure 1A), proving the anti-parasitic efficacy of this drug on tachyzoïtes in vitro. 

 

Imiquimod potently decreased parasite burden during acute toxoplasmosis in vivo 

BALB/c mice were infected intraperitoenally with 250 tachyzoïtes of the 76K 

strain. Initially, we tested the dose of 50 and 100 μg of Imiquimod/mouse [71], every 

other day, from day 2 until day 8 (Timeline described in Figure 1B). Mice were sacrificed 

on day 10 p.i., and spleens were harvested to evaluate parasite burden. SAG-1 transcripts 

were quantified by real time PCR. Consistent with the in vitro potency of Imiquimod on 

the tachyzoïtes stages, we observed a significant decrease of SAG-1 transcripts in the 

spleen of treated mice, presumably reflecting a diminished number of disseminated 

tachyzoïtes to this organ (Figure1B). Testing at 100 μg concentration did not result in 

significant difference as compared to the dose of 50 μg (Figure 1B). Hence, the dose of 

50 μg was adopted throughout the study.  

 

Imiquimod recruites T cells to the peritoneum and spleen of mice during AT 

Upon intraperitoneal infection with tachyzoïtes of T. gondii, innate immune cells, 

namely DCs and monocytes are recruited to the site of infection [61, 72-74]. These cells 

produce IL12, and present T. gondii antigens to prime T cells, leading to high systemic 

levels of IFN-γ required to control AT (reviewed in [61, 75, 76]). Type I strains recruit 

monocytes, macrophages and DCs to peritoneum as early as day 2 p.i., while T cell 

migration to this site peaks at Day 6 p.i. [77-79]. Type II strains are more studied in the 
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brains of infected mice. We assessed the effect of Imiquimod on the recruitment of DCs, 

macrophages and T cells to the peritoneum and spleen of infected mice during AT. 

BALB/c mice were intraperitoneally injected with 1000 tachyzoïtes of the 76K strain 

(Timeline described in Figure 1C). Mice were treated with Imiquimod or sulfadiazine, on 

days 2 and 3 p.i., and sacrificed on day 4 p.i. Immune cell recruitment was assessed by 

Flow cytometry of specific surface markers. Treatment with Imiquimod or sulfadiazine 

led to non-significant effect on peritoneal macrophages, while no DC were detected 

(Figure 1C, and data not shown). However, both treatments led to a significant and higher 

recruitment of macrophages to the spleen of infected mice (Figure 1C). Strikingly, our 

results demonstrate that Imiquimod led to a significant recruitment of T cells to the 

peritoneum and the spleen of infected mice at day 4 p.i., while sulfadiazine has no effect 

on this cell population in the tested infection sites (Figure 1C). This was further asserted 

by the transcriptional upregulation of IFN-γ, predominantly produced by the recruited T 

cells (Figure 1D). These results support a role for Imiquimod on mounting a faster 

adaptive immune response to clear the infection, potentially explaining the lower 

tachyzoïte burden observed during AT.  

 

Imiquimod reduces the number of bradyzoïte cysts in vitro and in vivo 

In vitro interconversion from tachyzoïtes to bradyzoïtes was performed in HFF. 

On day 10, Imiquimod was added to cells infected with bradyzoïtes, at the dose of 1μM 

and maintained for 4 days (Timeline described in Figure 2A). On day 14 p.i., treatment 

with Imiquimod significantly decreased protein levels of the bradyzoïte surface marker 

P18 [66, 67], as compared to the untreated controls (Figure 2A). Similar results were 

obtained by immunofluorescence assay, upon quantification of bradyzoïte cysts using a 

DBA specifically binding to a selectin on the cyst wall [65], and another bradyzoïte 

marker P34 using the T8 2C2 monoclonal antibody [66, 67].  

We then tested the in vivo potency of Imiquimod on the establishment of CT, 

following treatment of mice during AT. BALB/c mice were intraperitoneally infected 

with 250 tachyzoïtes of the 76K. Treatment with 50 μg of Imiquimod was performed 

every other day, from day 4 until day 32 (Timeline described in Figure 3B). AT was 
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verified seven days p.i. by immune reactivity of infected mice on tachyzoïte extracts [80]. 

Thirty-two days p.i., brains were harvested, and bradyzoïte cysts were extracted [69, 70] 

before counting. Interestingly, treatment of mice with Imiquimod during AT, led to a 

significant decrease of cyst number by around three folds (Figure 2B, left panel). We then 

assessed the viability and the capacity of the remaining cysts to establish a successful CT 

infection. Therefore, we followed the same timeline described in Figure 2B. After 

extracting and counting brain cysts, new BALB/c mice were orally infected with 20 cysts 

harvested from brains of either untreated or treated mice with Imiquimod. Similarly, on 

day 7 post-oral infection, the acute phase was verified by immune reactivity of infected 

mice on tachyzoïte extracts [80]. Surprisingly, reactivity with tachyzoïtes was less 

prominent in mice infected with cysts derived from brains of Imiquimod treated mice 

(data not shown), suggesting a potential effect of Imiquimod on either the viability or the 

conversion of bradyzoïtes to establish a successful AT.  We further expanded our results 

to assess CT establishment, and harvested brains of orally infected mice at day 32 post-

oral infection. Brains of infected mice with cysts derived from Imiquimod treated animals 

were free of cysts (Figure 2B, middle panel). To check whether it is a problem of low 

amount of detected cyst, we used the sensitive qRT PCR method and checked for 

bradyzoïte expression using BAG-1 specific primers. Transcript data was very consistent 

with the lack of presence of cysts (Figure 2B, right panel). These results demonstrate the 

potency of Imiquimod on bradyzoïte cysts in vitro and in vivo and support a role for this 

drug either on bradyzoïte viability or on its capacity to convert back to tachyzoïte to 

establish a new infection.  

Imiquimod reduces the number of bradyzoïte cysts in chronically infected mice  

CT is the most common form of toxoplasmosis [25] and correlates with several 

neuro-pathologies and cancers [11-18] [19-21]. Furthermore, CT reactivation may 

become life threatening in immunocompromised patients [23-25].  In light of the lack of 

effective treatment options against CT, we assessed the effect of Imiquimod on 

chronically infected mice. BALB/c mice were infected with 250 tachyzoïtes of the 76K 

strain on day 0. The acute phase was verified seven days p.i. by immune reactivity of 

infected mice on tachyzoïte extracts [80]. Following establishment of CT, Imiquimod 
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treatment was administered at the dose of 50 μg, every other day, from day 21 until day 

49 p.i. (Timeline described in Figure 2C). At this time point, brain cysts were harvested 

and counted [69, 70]. Imiquimod treatment resulted in 50% reduction of the number of 

brain cysts in chronically infected mice (Figure 2C). Together with our in vitro data, 

Imiquimod presents as a potent drug of CT.   

 

Imiquimod induces the expression of TLR-11, TLR-12 and TLR-7 in the brains of 

chronically infected mice 

Toll-Like Receptor (TLR) signaling is one of the first defense systems against 

infections in mammalian innate immune protection. Profilin, a well-characterized 

T.gondii PAMP, plays a role in the recognition of parasite antigens by TLR-11 and 12 of 

DCs and monocytes during murine AT, resulting the production of IL-12 via MyD88 [54-

56, 64, 81]. Due to the importance of TLR-11 and 12, in Toxoplasma recognition, and 

due to the potency of Imiquimod on established CT, we investigated the expression of 

these TLRs. On the other hand, Imiquimod is an immunomodulatory agonist of TLR-7 

which is also known to signal through MyD88 [42, 46, 47]. This prompted us to study 

TLR-7. Chronically infected BALB/c mice were treated with 50µg of Imiquimod every 

other day, from day 21 until day 49 p.i. (Timeline described in figure 3A). Mice were 

sacrificed at days 35, 42 and 49, brains were harvested and TLR-11, TLR-12 and TLR-7 

transcript levels were quantified by real time PCR. At day 35, treatment with Imiquimod 

induced a non-statistically significant increase of transcript levels of the three tested 

TLRs, as compared to untreated or sulfadiazine treated groups (Figure 3A). The 

transcriptional levels of TLR-11, 12 and 7 progressively increased and attained high 

significance at day 42 (Figure 3A) to reach the highest level at day 49 p.i. (Figure 3A). 

Hence, we assessed protein levels of these TLRs at day 49. Predictably, protein levels of 

TLR-11, 12 and 7 proteins were significantly increased upon treatment of chronically 

infected mice with Imiquimod (Figure 3B). These results reinforce a role for Imiquimod 

in signaling through TLR-11, TLR-12 and TLR-7 in chronic murine toxoplasmosis. 
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Imiquimod induces the interconversion of bradyzoïtes to tachyzoïtes in the brains of 

chronically infected mice 

Signaling through TLRs is well documented in the tachyzoïte stages of T.gondii, 

while CT is characterized by the presence of intra-neuronal bradyzoïte cysts. TLR-11, 12 

and 7, known to be expressed in murine DCs, macrophages and monocytes, the presumed 

vehicles for dissemination, are also triggered by the tachyzoïte stage [60]. We studied the 

potential effect of Imiquimod on interconversion from bradyzoïtes to tachyzoïtes. 

Remarkably, the bradyzoïte specific marker P21 [66, 67], was sharply decreased in brains 

of chronically infected mice, after four weeks of treatment with Imiquimod (Figure 4A, 

left panel). This decrease was concomitant with a significant upregulation of the 

exclusively tachyzoïte-expressed surface marker SAG-1 [66](Figure 4A, right panel). 

These results implicate Imiquimod treatment in the interconversion from bradyzoïtes and 

tachyzoïtes in chronically infected mice.  

 

Imiquimod activates MyD88 pathway 

MyD88 signaling pathway is activated as a result of TLR-11/12 binding to the 

parasite [58]. This activation promotes the secretion of IL-12, which in turn, induces 

natural killer (NK) cells and T cells to produce IFN-γ, to fight the infection [54, 56, 59, 

82]. Furthermore, mice deficient in the adapter molecule MyD88 are acutely susceptible 

to toxoplasmosis [56, 83, 84]. We evaluated, following four weeks of treatment of 

chronically infected mice with Imiquimod, MyD-88 expression levels. Consistent with 

TLR-11 and 12 upregulation, MyD88 protein levels were upregulated (Figure 3B).  

MyD88 a key role in the activation of signaling pathways including MAPK [85]. 

A hallmark of the activation of this pathway is the phosphorylation of ERK1/2 (P-

ERK1/2) [85].  We observed a significant and sharp upregulation in P-ERK1/2 in 

chronically infected mice after four weeks of treatment with Imiquimod, indicating the 

activation of MyD88 pathway (Figure 4C). This activation was concurrent with the 

production of IL-12, IL-1β and IFN-γ (Figure 4D), known to be among the cytokines 

necessary to mount a protective immune response against T. gondii infection [56, 60, 85]. 

Altogether, our results demonstrate that Imiquimod induces the conversion to tachyzoïtes, 
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presumably recruiting innate immune cells to the brain. These express TLR-11, 12 and 7 

and activate the MyD88-TLR dependent signaling, which subsequently leads to mount 

the protective immune response, presumably clearing the infection.    

 

Imiquimod upregulates CXCL-9 and CXCL10 in the brains of chronically infected 

mice 

During murine CT, CXCL9, and CXCL10, are predominantly expressed in the 

brains of infected BALB/c mice [86, 87]. Furthermore, CXCL9 is crucial for the 

recruitment of T cells to control reactivation [88]. Interestingly, Imiquimod led to a 

significant upregulation of both CXCL9 and 10 to control the treatment-induced 

reactivation in the brains of chronically infected mice (Figure 5). 

 

Profilin/TLR-11 and 12 complex in vitro influences Imiquimod activity 

Profilin is a parasitic PAMP, playing a major role in TLR binding and hence 

parasite invasion. It binds TLR-11 [56] and TLR-12 [55], and enhances the production of 

IL-12 via MyD88 dependent pathway [62-64]. Parasites lacking Profilin are unable to 

induce TLR-11-dependent production of IL-12 both in vitro and in vivo [64].  To assert 

that Imiquimod signals through TLR-11 and TLR-12, we used a T. gondii line depleted 

for Profilin (∆TgPRFe/TgPRFi) and its control strain (RHTATi-1). Since TLR-11 and 

TLR-12 are only expressed in mice [53], we conducted our experiments in murine 

macrophages. Primary elicited macrophages were extracted from BALB/c mice by 

peritoneal lavage. Differentiated macrophages were infected with ∆TgPRFe/TgPRFi or 

RHTATi-1 at 1:3 parasite to cell ratio. Infected cells were treated, 24h p.i., with 1 μM of 

Imiquimod for 24h. Our results showed that Imiquimod does not exhibit any effect on 

murine macrophages infected with ∆TgPRFe/TgPRFi line as SAG-1 protein levels 

remained unchanged when compared with the significant decrease of this protein marker 

in the treated control strain (Figure 5A). Furthermore, the protein level of TLR-11 and 12 

remained unchanged in the macrophages infected with the knock out Prifilin line (Figure 

5B). These results confirm our earlier data on the effect of Imiquimod on TLR-11/12 

signaling, presumably through enhancing the binding of Profilin to its hetero-dimerized 

receptors. 
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Discussion 

This study unravels the potency of Imiquimod, an immunomodulatory drug, against 

AT and more importantly against CT. During the last decade, eighty clinically available 

drugs, including a large number of new compounds were used against T.gondii in vitro 

and in vivo, with more than forty mechanisms of action (reviewed in [40]). Several target 

based drug screens were also identified [40]. However, most of these drugs are effective 

against tachyzoïtes, and only very little trigger bradyzoïtes or the back and forth switch 

between both stages [40]. It is worth noting that an ideal drug against toxoplasmosis, 

should not only be effective against the proliferative tachyzoïte stage of the parasite, but 

it should also exert an activity against the tissue cyst stage, especially that the chronic 

form is the most common form of the disease in humans and other intermediate hosts. In 

addition, these drugs should be capable to cross the blood brain barrier and to penetrate 

the cysts targeting bradyzoïtes [89]. We showed that Imiquimod induces interconversion 

of bradyzoïtes to tachyzoïtes in the brains of chronically infected mice, leading to 

overexpression of TLR-7, 11 and 12 and their downstream signaling (Figure 6C). 

Activation of these TLRs upon treatment with Imiquimod indicates that this drug could 

successfully cross the blood brain barrier to exert its effect.  

Innate immunity represents the first line of defense again T. gondii. DCs and 

monocytes represent a major forefront exploited by the parasite, due to the capacity of 

both cell types to secrete defense molecules, and to the capacity of DCs to present 

antigens mediating crosstalk to T cells. But the most important feature triggered by the 

parasite is their shuttling role to various organs, hence escaping the induced host 

inflammatory response [90-94]. DCs recognize PAMPs via MyD88 TLRs signaling [58]. 

This signaling pathway is required for the immune protection during many infections, 

which are lethal in the absence of MyD88 [95]. Two parasitic PAMPs, Profilin and 

cyclophilin-18, play a role in TLR recognition. Profilin binds TLR-11 [56] and TLR-12 

[55, 57], and enhances the production of IL-12 via MyD88 dependent pathway. TLR-11 

also works by forming a heterodimeric complex with TLR-12, only in the mouse. The 

formation of this complex is important for DC response and IL-12 production [55, 60]. 

Our results demonstrated that Imiquimod led to the upregulation of TLR-11 and 12, most 
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likely by recruited DCs and monocytes, triggering our observed MyD88-downstream 

signaling, the activation of MAPK, and the subsequent secretion of immune mediators 

including IL-1β, IL-12 and IFN-γ (Figure 6C). The production of IL-12 and IL-1β may 

be essential for the recruitment of neutrophils and natural killer cells, which will produce 

IFN-γ until recruited T cells produce this cytokine and control the infection (reviewed in 

[54, 75, 76, 96-99]). Indeed, infected DCs and monocytes with T. gondii, participate, with 

astrocytes and microglia to present antigens to activated CD4
+
 and CD8

+
, following their 

recruitment to the brain [100, 101], to control the infection [102]. We demonstrated that 

Imiquimod treatment yielded higher expression of CXCL9 which is crucial to recruit T 

cells into tachyzoïte reactivated foci in the brain [88], supporting the recruitment and 

activation of these T cells, hence controlling the Imiquimod-induced conversion to 

tachyzoïtes.  

A strain depleted for Profilin is not affected upon treatment with Imiquimod 

(Figure 6A) and TLR-11 and 12 expression levels in cells infected with this parasite line 

remained unaffected (Figure 6B).  These results suggest that Imiquimod may enhance the 

binding of this parasite PAMP, to induce TLR-11 and 12 mediated MyD88 signaling 

(Figure 6C).  

Since TLR-11 and TLR-12 are functional in mice but not in humans [53], our data 

can be extrapolated to target the transmission of the parasite between intermediate and 

definitive hosts, thus interfering with the transmission and the life cycle of the parasite. 

Although humans do not express either TLR-11 or TLR-12, human monocytes produce 

pro-inflammatory cytokines in response to T. gondii infection, suggesting that other 

TLRs in humans recognize different compartments of T. gondii to produce IL-12 in 

antigen-presenting cells [60]. It has been described that parasite recognition by 

intracellular TLRs (TLR3, 7 and 9) in humans facilitates resistance to toxoplasmic 

infection and activation of monocytes and human DCs [60, 61]. A study of human innate 

receptors showed that the human TLR5 may have a similar role to the mouse TLR-11, in 

activating cytokine production [103]. The effect of Imiquimod on TLR-5 is thus worth 

investigating. Our results showed that Imiquimod, that was initially generated as a TLR-7 

agonist [104], leads to the upregulation of TLR-7. TLR-7 is an endosomal receptor, 
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known to recognize ribonucleic acid [99], and can signal through MyD88 to induce 

inflammatory cytokines [106-109]. The upregulation of TLR-7, after treatment of CT 

with imiquimod, can also contribute to the observed MyD88 signaling and the induced 

immune response. This plausible mechanism can be extrapolated to CT associated 

diseases in humans.  

Noteworthy, the efficient recruitment of T cells to both peritoneum and spleen 

during AT, may imply the other parasite PAMP, cyclophilin-18. Indeed, cyclophilin-18 is 

recognized by both mouse and human C-C chemokine receptor type 5 (CCR5) [110] and 

enhances the proliferation and migration of macrophages and spleen cells (mainly T 

lymphocytes), to the site of infection for maintenance of the interaction between the 

parasite and host [111]. We showed that Imiquimod leads to recruitment of T cells during 

AT. This effect might involve cyclophilin-18, and requires further investigation. We also 

demonstrated that treatment with Imiquimod during AT, reduced the number of cysts 

upon establishment of CT, and the remaining bradyzoïtes were either dead or failed to 

convert to tachyoïtes following oral infection. This result may be extrapolated to treat AT 

infection in both humans and animals.   

Our study has implications in immunocompetent hosts where CT correlates with 

several neuro-pathologies and cancers [1, 11, 22, 23, 25, 31, 34, 35, 47, 53, 55, 70, 81, 

84, 88]. Furthermore, targeting bradyzoïte cysts, which hide in bains and skeletal 

muscles, interferes with parasite survival, and persistence in intermediate hosts, as well as 

with the transmission between intermediate hosts and/or definitive hosts. However, since 

Imiquimod induces interconversion between brain stages, it is less likely to be potentially 

administered to immunocompromised patients. Imiquimod, as supported by our data, 

stands to become a major player in T.gondii related diseases, since it at least equaled or 

exceeded the results obtained from current gold standard treatment.  
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Figure legends 

Figure 1: Imiquimod exhibits a potent effect against acute toxoplasmosis. (A) 

Timeline for the in vitro treatment of infected monocytes derived macrophages with 1µm 

of Imiquimod. Western Blot analysis for SAG-1 (P30) expression (left panel) and 

corresponding densitometry (right panel) in the treated macrophages as compared to the 

untreated one. (B) Timeline schedule for assessment of tachyzoïte expression following 

treatment in BALB/c mice. Briefly, on day 0, BALB/c mice were injected with 1000 

tachyzoïtes/mouse of 76K, on day 2 post injection mice were treated every other day with 

Imiquimod (50µg or 100µg/mouse) or the vehicle (Lipofendin+DMSO). At day 10, 

spleens were harvested and Quantitative Real-Time PCR for SAG-1 (# 5 mice per 

condition). SAG-1 expression was normalized to GAPDH. The results are expressed as 

percentage of untreated control (±) SD. The t-test was performed to validate significance. 

*, ** and *** indicate p values ≤ 0.05; 0.01 and 0.001, respectively. P-values less than 

0.05 were considered significant. (C, D) Timeline schedule for immune cell recruitment 

using CD11b, and CD3 markers by flow cytometry, and cytokine expression in the 

peritoneum and the Spleen. Briefly, on day 0, BALB/c mice were injected with 1000 

tachyzoïtes/mouse of 76K; on day 2 and 3 mice were treated either with imiquimod 

(50ug/mouse) or with sulfadiazine (200mg/L in drinking water). At day 4, spleens and 

peritoneal lavage were performed. Flow cytometry showing the percentage of CD11b and 

CD3 are shown as indicated (C) and quantitative Real-Time PCR for SAG-1, (# 5 mice 

per condition), IL-12 (# 5 mice per condition) and IFN-γ (# 5 mice per condition) (D). 

The t-test was performed to validate significance. *, ** and *** indicate p values ≤ 0.05; 

0.01 and 0.001, respectively. P-values less than 0.05 were considered significant. 

 

Figure 2: Imiquimod reduces cyst number and bradyzoïtes protein in vitro and in 

vivo. (A) Timeline schedule for assessment of bradyzoïte formation/number in vitro 

following treatment with 1µm of Imiquimod. Western Blot analysis for p18 expression 

and corresponding densitometry (left panel) in the treated bradyzoïtes as compared to the 

untreated one following in vitro switch from tachyzoïtes to bradyzoïtes. The 
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quantification of cysts was confirmed by confocal microscopy following IF assay (right 

panel), using a biotinylated lectin (green), with specific binding to a selectin on the cyst 

wall and the bradyzoïte marker P34 (red). The results depict one representative 

experiment among at least three independent ones. Number of cysts was determined in 50 

independent fields per condition. (B) Timeline schedule for assessment the effect of 

Imiquimod on the conversion from acute to chronic toxoplasmosis (CT) in Balb/c mice. 

Briefly, on day 0, BALB/c mice were injected with 250 tachyzoïtes/mouse of 76K. On 

day 4, the treatment starts every other day using 50µm/mouse of Imiquimod during 4 

weeks. At day 32, brains were harvested for cysts quantification or for gavage into new 

Balb/c mice. Cyst count following percoll extraction for the treated Balb/c mice (Left 

panel, 10 mice per condition). Bradyozite cyst count for BALB/c orally injected with 20 

cysts from brains of treated mice with Imiquimod (Middle panel, 10 mice per condition), 

and Quantitative Real-Time PCR for BAG-1 (right panel, 10 mice per condition). BAG-1 

expression was normalized to GAPDH. (C) Timeline schedule for assessment the effect 

of Imiquimod on on a developed CT by treating chronically infected mice at day 21 for 4 

weeks. After treatment, brains of BALB/c mice were harvested. Cyst count following 

percoll extraction for the treated BALB/c mice (10 mice per condition).The results are 

expressed as percentage of untreated control (±) SD. The t-test was performed to validate 

significance. *, ** and *** indicate p values ≤ 0.05; 0.01 and 0.001, respectively. P-

values less than 0.05 were considered significant. 

Figure 3: Imiquimod increases the expression levels of TLR-11, TLR-12 and TLR-7 

over weeks. (A) Timeline schedule for assessment of TLR(s) profile in BALB/c mice. 

Briefly, Balb/c mice were injected with 250 tachyzoïtes/mouse of 76K. After treatment 

with 50µg/mouse of Imiquimod or Sulfadiazine (200mg/L in drinking water), mice were 

sacrificed at days 35, 42, 49 respectively. Quantitative Real-Time PCR for TLR-11, TLR-

12 and TLR-7 (5 mice per condition) from brains of these mice. TLRs expression was 

normalized to GAPDH. The results are expressed as percentage of untreated control (±) 

SD. The t-test was performed to validate significance. *, ** and *** indicate p values ≤ 

0.05; 0.01 and 0.001, respectively. P-values less than 0.05 were considered significant. 

(B) Western Blot analysis (3 representative mice per condition) for TLR-11 (left panel), 
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TLR-12 (middle panel) and TLR-7 (right panel) and their corresponding densitometry in 

the brains of Balb/c mice at day 49 following treatment with Imiquimod. 

Figure 4: Imiquimod induces interconversion and activates the TLR-MyD88 

signaling pathway. (A) Western Blot analysis for P21 (left panel), and SAG-1 (right 

panel) (3 representative mice per condition) and their corresponding densitometry in the 

brains of Balb/c mice at day 49 following treatment with Imiquimod. (B) Western Blot 

analysis for MYD88 (2 representative mice per condition) and their corresponding 

densitometry in the brains of BALB/c mice at day 49 following treatment with 

Imiquimod. (C) Western Blot analysis for P-ERK1/2 (upper gel), Total ERK1/2 (down 

gel) (3 representative mice per condition), and their corresponding densitometry in the 

brains of Balb/c mice at day 49 following treatment with Imiquimod. (D) ELISA showing 

the percentage of secretion levels of IL-1β, IL-12 and IFN-γ in the brains of BALB/c 

mice chronically infected with 76K and treated with 50µg/mouse of Imiquimod (one 

representative experiment out of 2 #2 mice per condition). *, ** and *** indicate p values 

≤ 0.05; 0.01 and 0.001, respectively. 

Figure 5: Imiquimod Induces the upregulation of T cell markers during CT (A) 

Quantitative Real-Time PCR for CXCL-10 (left panel/ 5 mice per condition) and CXCL-

9 (right panel/ 5 mice per condition) from brains of mice injected with 250 parasites of 

76K and treated with Imiquimod or Sulfadiazine (200mg/L in drinking water). CXCL-9 

and CXCL-10 expressions were normalized to GAPDH. The results are expressed as 

percentage of untreated control (±) SD. The t-test was performed to validate significance. 

*, ** and *** indicate p values ≤ 0.05; 0.01 and 0.001, respectively. P-values less than 

0.05 were considered significant. 

Figure 6: Imiquimod signals through Profilin/TLR-11/12 complex. Western Blot 

analysis for (A) SAG-1 and the corresponding densitometry, (B) TLR-12 and the 

corresponding densitometry in the murine macrophages treated with 1µm of Imiquimod 

following infection either with the wild type strain (left panel), or with the KO Profilin 

strain (right panel). The results depict one representative experiment among at least three 

independent ones. *, ** and *** indicate p values ≤ 0.05; 0.01 and 0.001, respectively. P-



122 

 

values less than 0.05 were considered significant. (C) Proposed model for the mechanism 

of action of Imiquimod during CT. 
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RESULTS part 2: 

P18 (SRS35/TgSAG4) is involved in 

the interconversion between acute and 

chronic toxoplasmosis and delays 

reactivation through modulation of 

host immunity in murine models. 
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Abstract 

Chronic toxoplasmosis (CT) is a prevalent disease caused by Toxoplasma gondii. 

Under the control of the host immune system, T. gondii persists as latent brain neuronal 

bradyzoite cysts in infected patients. Host immunosuppression leads to the reactivation of 

cerebral CT, a potentially life-threatening disease, but the parasite factors underlying 

interconversion between chronic and acute phases are poorly understood. Here, we 

investigated the role of the parasite surface antigen P18, belonging to the Surface-

Antigen 1 (SAG-1) Related Sequence (SRS) family. We showed that P18 is an important 

modulator of the reactivation of CT following immunosuppression. Depletion of P18 in a 

cyst-forming strain of T. gondii, results in a decrease of virulence in BALB/c mice, 

during the acute phase. We observed that P18 depletion led to a faster clearance of the 

parasites from the peritoneum of these mice, paralleled by a substantial recruitment of 

dendritic cells, presumably a vehicle for tachyzoite dissemination. This result emphasizes 

a potential role of P18 in the virulence of the parasite through delaying the host immune 

response during the acute phase of the infection. Concomitantly, a lower number of 

tachyzoites was detected in the spleens while a higher number of parasites reached the 

brains of infected mice, resulting in a higher number of bradyzoite cysts. We also 

detected in the brain an increase of expression of immunomodulatory 

cytokines/chemokines, including Chemokine (C-X-C motif) ligand 9 (CXCL9) and 10 

(CXCL10), known to control reactivation. Significantly, a delayed reactivation was 

observed upon immunosuppression of KO P18-BALB/c infected mice. Furthermore, 

upon oral infection of Severe Combined Immunodeficiency (SCID) (with IFN-γ secreting 

innate immune cells), and NOG (NOD/Shi-scid/IL-2Rγnull) (NSG) mice (lacking IFN-γ 

production), a significant prolonged survival of infected SCID but not NSG mice was 

observed. This suggests a role for IFN-γ in the P18-mediated conversion from 

bradyzoites to tachyzoites. All together, these data support a potential role for P18 

surface antigen, in the virulence of the parasite and in orchestrating the host immune 

response, during the acute and more importantly the chronic phase of infection. P18 plays 

also a central role in controlling parasite reactivation and dissemination in an IFN-γ 

dependent fashion. Understanding mechanisms of switch between parasite stages, cysts 

formation and persistence, has far reaching implications in light of the documented 
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association of T. gondii brain cysts and neurological diseases, as well as the reactivation 

of the disease in immunocompromised patients. 

 

Author Summary 

 Chronic toxoplasmosis (CT) is a prevalent disease caused by Toxoplasma gondii. 

Under the control of the host immune system, T. gondii persists as latent brain neuronal 

bradyzoite cysts in infected patients. An increasing number of reports associate sero-

positivity for T. gondii with host behavior, several neurological disorders (e.g. 

schizophrenia, and Parkinson diseases), and brain cancer incidence. Furthermore, host 

immunosuppression leads to the reactivation of cerebral CT, a potentially life-threatening 

disease in immunocompromised patients. In this study, we demonstrated that the surface 

antigen P18, plays a role in the virulence of the parasite and is modulating the host 

immune response. P18 is also implicated in brain cyst formation, reactivation of CT 

following immunosuppression, as well as in interconversion and dissemination of the 

parasite in immunocompromised hosts. Studying the parasite’s factors underlying 

interconversion between stages, cyst formation and persistence in the host, has far-

reaching implications on toxoplasmosis and its documented association with different 

diseases, especially in light of the recent flagging on considering toxoplasmosis as a 

neglected parasitic infection, requiring public health action. 
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Introduction 

 Toxoplasma gondii is an obligate intracellular parasite that infects all warm-

blooded animals. Approximately 30% of the human population is infected worldwide (1). 

According to regions, the sero-prevalence of T. gondii in humans varies between 10 and 

70%, and significantly increases with age (2-4). Tachyzoites, the rapidly multiplying 

forms of T. gondii, lead to tissue damage and are responsible for acute toxoplasmosis. 

Tachyzoites exploit dendritic cells, and monocytes to spread into various organs, and 

subsequently form bradyzoite cysts in the brain and in skeletal muscles (5). These slow-

growing bradyzoites are responsible for a persistent disease known as chronic 

toxoplasmosis (CT). 

Until recently, parasite persistence in healthy individuals was regarded as 

clinically asymptomatic. However, an increasing number of reports associate sero-

positivity for T. gondii with host behavior (6), several neurological disorders (e.g. 

schizophrenia, and Parkinson diseases) (7, 8), and brain cancer incidence (9). In 

immunocompromised patients, despite the availability of prophylactic and treatment 

options, reactivation of CT can still occur, imposing a life threatening situation (10-15). 

These include Human Immunodeficiency Virus (HIV)-infected patients, cancer patients 

after chemotherapy, or following bone marrow or organ transplantation (11-15).  

The interconversion between acute and CT is exquisitely controlled by the host 

immune system (16). During the acute infection, the host’s innate immunity mounts a 

robust anti-Toxoplasma cytokine response, characterized by high interferon-gamma 

(IFN-γ) production by natural killer (NK) and T cells (17-19), following IL-12 

production by dendritic cells, neutrophils and macrophages (20-25). IFN-γ-mediated 

immune response provokes intracellular elimination of tachyzoites (19, 22-25). In the 

brain, IFN-γ production by brain resident and recruited cells, including microglia and 

primarily T-cells, is also crucial for the maintenance of cerebral CT latency (26-28). 

Importantly, IFN-γ regulates the recruitment of immune T cells into the brain of BALB/c 

mice during the acute and chronic phases of the infection (29, 30). During murine CT, 

CXCL9 and 10 CXCL10, are predominantly expressed in the brains of infected BALB/c 

mice (31, 32). Furthermore, CXCL9 is crucial to recruit T cells into the brain and to 
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induce their accumulation in zones of tachyzoite proliferation to prevent reactivation of 

CT (33).  

Toxoplasma expresses 144 proteins belonging to the SRS family (34). These SRS 

are differentially expressed in a life cycle stage specific manner, and are potentially 

involved through mediating attachment to host cells, and regulating the immune 

response, in the successful initiation of infection. In addition, some SRS proteins play 

important functions in the context of parasite reactivation. For instance, p36 

(SRS9/SRS16B), one of the most abundant bradyzoite-specific proteins plays a major 

role in both persistence in the brain and reactivation in the intestine (35). Four 

monoclonal antibodies recognizing four selective pellicular antigens (P36, P34, P21 and 

P18) were generated against the bradyzoite stage (36, 37). Yet, Expressed Sequence Tag 

(EST) data reveal the expression of a very low number of transcripts (7 ESTs) of P18 in 

the tachyzoite stage and a very high number of transcripts (187 ESTs) in the badyzoite 

stage, making P18 transcripts amongst the most abundant expressed EST, between the 

SRS family members (34). The function of P18, encoded by SAG4/SRS35 (38), remains 

to be elucidated.  

In this study, we investigated the role of P18 in the phase of acute infection, in 

brain cyst formation, and along the path towards the reactivation of CT following 

immunosuppression. We showed that P18 deletion impacts the virulence of the parasites, 

by prolonging survival of acute infected mice in a dose dependent manner. P18 depletion 

led to a faster clearance of the parasites from the peritoneum of BALB/c mice, concurrent 

with a higher recruitment of dendritic cells, presumably indicating a role in modulating 

the host immune response. A lower number of tachyzoites was detected in the spleens of 

infected mice with the knock-out strain and a higher number of parasites reached the 

brain at the same time point. Consistent with the higher tachyzoite number reaching the 

brain, P18 depletion induced a higher number of brain bradyzoite cysts in BALB/c 

infected mice. This phenotype is concurrent with the induction of immunomodulatory 

cytokines/chemokines, and the upregulation of CXCL9 and CXCL10, which are 

predominantly expressed on activated T-cells and natural killer cells, and known to play a 

role in the control of reactivation of CT. Furthermore, P18 knock out parasites (KO P18) 
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significantly delayed reactivation, in immunosuppressed BALB/c mice. Notably, SCID 

mice, having normal production of IFN-γ by innate immune cells, survived oral infection 

with the KO P18 but not WT strain cysts. In contrast, NSG mice lacking IFN-γ 

production, succumbed from the infection, clearly indicating a role for IFN-γ in the 

interconversion from bradyzoites to tachyzoites in P18-depleted parasites. Altogether, 

these results implicate P18 in the virulence of the parasite, in the modulation of the host 

immune response, during the acute and chronic phases of the infection from acute to 

chronic toxoplasmosis, in the control of reactivation of cerebral toxoplasmosis, and the 

conversion and dissemination of the infection in immunocompromised hosts.  

 

Results 

 Generation of the P18 knock out and the complemented lines 

To gain insights into P18 function, we generated KO P18 parasites by replacing 

the corresponding SRS35/TgSAG4 gene by the selectable marker hypoxanthine-xanthine-

guanine phosphoribosyl transferase (HXGPRT), in the WT PruΔku80 type II strain (39) 

(Fig 1A). The successful genetic modification was verified by PCR (Fig 1B) and the P18 

expression level was assessed in tachyzoites and upon in vitro switch from tachyzoites to 

bradyzoites, by immunoblot using specific anti-P18 antibodies (36). Consistent with the 

published EST data (34), P18 protein levels were abundantly expressed in bradyzoites of 

the WT strain. Trace levels of P18 were detected in tachzyoites of this strain as they 

required a higher exposure of the nitrocellulose membrane with Luminol (Fig 1C, left 

panel). Importantly, we could confirm P18 abrogation in the KO P18 strain in both 

tachyzoites and bradyzoites, upon deletion of its encoding gene (Fig 1C). We next 

generated the Cpt P18 complemented strain by adding an extra copy of P18, under its 

own promoter (Fig 1A). Stable transgenic clone was isolated (Fig 1B) and showed 

expression of P18 by western blot, in both tachyzoites and bradyzoites of Cpt P18 in vitro 

(Fig 1C). Consistent with the western blot data, a total extinction of P18 expression was 

observed in cysts of the mutant. Differentiating vacuoles was distinguished using a 

fluorescent Dolichos biflorus lectin (DBL) which recognizes N-acetylgalactosamine on 

the bradyzoite-specific cyst-wall protein CST1 (40). After 14 days under alkaline stress, 
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the vacuoles of both control and KO P18 parasites were positive for DBL, but vacuoles of 

the mutant were negative for P18 stained with anti-P18 antibodies (Fig 1D), confirming 

the loss of expression of P18 in the KO P18. P18 expression was restored in the Cpt P18 

strain by IFA (Fig 1D). Collectively, these results showed that P18 depletion and 

complementation were successful and allow a functional characterization of the P18 

protein.  

 

Deletion of P18 dramatically affects the parasite virulence in mice 

The expression of P18 in the tachyzoite stage, even if low, prompted us to 

investigate the phenotype of KO P18 during the acute phase of infection. A clear impact 

of P18 removal was observed on survival of infected mice (Fig 2A). While all BALB/c 

mice survived intraperitoneal infection with 10
5
 tachyzoites of the KO P18 strain, mice 

infected with the WT strain died between 10 and 17 days post-infection. Inoculation of 

mice with a higher dose of parasites (10
6
), does not show any significant difference (Fig 

2A), reflecting an attenuated virulence in vivo.  

The difference in the survival phenotype prompted us to investigate the 

dissemination of the parasites to different organs, during the acute phase of the infection. 

BALB/c mice were infected with 250 tachyzoites of WT, KO P18 or Cpt P18. Four days 

post-infection, we assessed parasite number and expression in the peritoneum and in 

relevant organs to the infection, namely spleen and brain. Interestingly, numbers of 

tachyzoites in the peritoneum of the KO P18 infected mice were significantly lower than 

those of the WT infected control mice (Fig 2B, left panel). This was paralleled with a 

significantly higher number of dendritic cells, as shown in the percentage of CD11c
+
 

using flow cytometry (Fig 2B, middle panel). This result presumably indicates the ability 

of P18 to contribute to the parasite virulence in delaying the host immune response, and 

implies the capacity of the KO P18 to use dendritic cells, as a vehicle (41), for a faster 

dissemination to brain. This hypothesis was further supported by the significant lower 

transcript levels of SAG-1 in the spleen, and their significant higher levels in the brains of 

KO P18 infected mice (Fig 2C). Kinetic studies demonstrated that the spleen is among 

the targeted organs upon infection with type II strains, before reaching the brain to 

establish CT (42, 43). This further supports our hypothesis that the KO P18 highjacks 
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DCs to reach the brain faster and establish CT.  To ascertain that these observed in vivo 

phenotypes are due to P18, we tested Cpt P18 parasites and showed similar tachyzoite 

numbers to those of WT strain in the peritoneum of infected mice (Fig 2B, left panel). 

SAG-1 expression patterns were also very similar between Cpt P18 and WT strains, in 

both the spleens and brains of infected mice with the complemented strain (Fig 2B, right 

panel and Fig 2C). Altogether, these results show that the observed phenotypes implicate 

P18 in modulating the virulence of the WT strain in vivo, and point a role for P18 in 

modulating the host immune system to induce a faster escape to the brain, for the 

establishment of the latent chronic phase of the infection.   

 

 P18 depletion results in increased number of bradyzoite cysts in vitro and in 

vivo  

It is well documented that P18 is expressed in the bradyzoite stage, at both the 

transcript and protein levels (34, 38). We assessed the effect of P18 depletion on 

bradyzoite cyst formation and number. After 14 days of in vitro conversion from 

tachyzoites of WT, KO P18 or Cpt P18 strains, increased number of cysts was observed 

in the P18 depleted strain, suggesting a higher number of bradyzoites (Fig 3A). This 

result was obtained by assessing several fields, by immunofluorescence microscopy. Not 

only the number of cysts formed by the KO P18 strain was significantly higher, but also a 

significant difference in the cyst size was observed (Fig 3A).  

We then investigated the number of brain cysts in vivo using intraperitoneal 

injection of BALB/c mice with 250 parasites of WT, KO P18 or Cpt P18 strains. The 

acute phase was verified seven days post infection by immune reactivity of infected mice 

on tachyzoite extracts (44). Twenty-eight days post infection, brains of infected mice 

with the three different strains were harvested for cyst quantification (Timeline described 

in Fig 3B). P18 depletion significantly increased the number of cysts in the brains of 

infected mice (Fig 3B). Complementation of P18 in the Cpt P18 strain reverted the 

observed phenotype (Fig 3B). Altogether, these results demonstrate a function for P18 in 

the control of bradyzoite cyst number in vitro and in vivo. 
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P18-deficient bradyzoites elicit a stronger brain immune response  

Nitric-oxide (NO), produced by microglial cells and macrophages that infiltrate 

the CNS, inhibits T. gondii replication and plays a vital role in the progression of the 

infection (45-50). Inducible nitric oxide synthase (iNOS) expression is also up-regulated 

in the brains of mice infected with type II strains (51). Consistent with the higher number 

of cysts obtained upon P18 depletion (Fig 3C), iNOS transcriptional levels were elevated 

in the knock out strain (Fig 4A). This increase of expression was restored in the 

complemented strain, suggesting a potential role for NO via iNOS up-regulation in 

mediating stress responses, leading to the conversion of the higher number of tachzyoites 

reaching the brain upon P18 depletion, into bradyzoite cysts. 

Another elicited key immune response upon establishment of CT, is the IFN-γ 

produced by microglia, intracerebral T cells, and NK to control cerebral T. gondii growth 

(27). IFN-γ elicits intracerebral immune response by the production of cytokines and 

chemokines (5, 16, 20, 26, 27, 32). We showed that, upon depletion of P18, the secreted 

levels of IL-12, IL-1β, IFN-γ, IL-6, TNF-α, IL-10, MCP-1, MIP-1α and MIP-1b were 

specifically up-regulated in the brains of chronically infected mice (Fig 4B). Restoring 

P18 expression in the complemented cell line led to cytokine/chemokine levels similar to 

those induced by the parental cell line (Fig 4B). These results indicate that the KO P18 

strain induces a stronger immune response in the brains of infected BALB/c mice.  

During murine CT in BALB/c mice, CXCL9, and CXCL10, are predominantly 

expressed in the brains of infected mice (31, 32). Furthermore, CXCL9 is crucial to 

recruit T cells into the brain and to prevent reactivation of CT (33). Interestingly, P18 

depletion led to a significant upregulation of both CXCL9 and 10, suggesting a role of 

P18 in controlling reactivation (Fig 4C).  

Collectively, the elicited immune response may correlates with the higher parasitic 

burden, manifesting with a high number of tachyzoites reaching the brain, and explaining 

the higher conversion rate from tachyzoites to bradyzoites, thus a greater number of 

bradyzoites in the P18 knock-out strain.  
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KO P18 parasites induce a delayed reactivation upon immunosuppression  

The higher expression of chemokines involved in T cell recruitment to the brain, 

and their documented role in the prevention of CT reactivation (33), prompted us to 

address the potential role of P18 in reactivation. Following establishment of CT, BALB/c 

mice were immunosuppressed using dexamethasone (52) (Timeline decribed in Fig 5A). 

Reactivation of CT in mice infected with the wild type WT strain led to 100% lethality 

between 29 and 33 days post-dexamethasone administration (Fig 5B, left panel). 

Interestingly, reactivation of CT in mice infected with KO P18 parasites was significantly 

delayed and death was recorded between days 80 and 81 after initial administration of 

dexamethasone (Fig 5B, left panel). Upon complementation with P18, the delay of 

reactivation was reverted, and animals succumbed between days 28 and 33 post-

dexamethasone administration (Fig 5B, left panel), indicating a role for P18 in the 

observed phenotype. To confirm that the death of mice is a result of CT reactivation, we 

quantified the tachyzoite marker SAG-1 transcript levels in the brains of infected mice. 

Since the average time of death of mice infected with control or complemented strains 

was day 30 post-dexamethasone administration, we assessed SAG-1 expression at this 

specific time point. Consistent with the survival results, SAG-1 expression was 

significantly lower in the brains of infected mice with the KO P18 parasites (Fig 5B, right 

panel). Altogether, these data support a role for P18 in the reactivation of CT in BALB/c 

mice.  

 

IFN-γ plays a major role in P18 bradyzoite to tachyzoite interconversion  

Due to the delayed reactivation of the KO P18 strain, we explored the capacity of 

bradyzoites to reconvert into tachyzoites and establish a successful acute infection in 

immunocompromised animals. We used SCID and NSG mice. SCID mice lack adaptive 

B and T cells related immunity, but yet retain a normal innate immunity with intact 

macrophages, antigen-presenting cells, and natural killer (NK) cells, thus a normal IFN-γ 

production (53). The NSG model present deletion or truncation of the gamma chain of 

interleukin 2 (IL-2) receptor (54). Thus, NSG mice possess a defective production of a 
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big number of interleukins and a severe impairment of the dendritic cells and mostly their 

capacity in producing IFN-γ upon stimulation (54). 

Harvested cysts (20 cysts) from the brains of BALB-c mice infected with WT, 

KO P18 or Cpt P18 were administered by oral gavage to SCID or NSG mice. While 

SCID mice infected with the wild-type or complemented strains succumbed between 15 

and 18 days post-oral infection, SCIDs infected with P18 depleted parasites, showed a 

significant prolonged survival (26-122 days) in 60% of tested animals, while 40% of the 

mice remained disease free (Fig 5C, left panel). Conversely, oral gavage of NSG mice 

resulted in 100% death of mice after 15 days post-infection (Fig 5C, right panel). These 

results indicate that the P18 bradyzoite conversion to tachyzoites is impaired in SCID but 

not in NSG mice, suggesting a role of IFN-γ in the P18-mediated conversion from the 

chronic to the acute phase of the infecion. 

 

Discussion 

 This study demonstrates a role for P18, not only in the virulence and 

dissemination of the parasite during the acute phase of the infection, but also in the 

persistence of CT and in the reactivation of Toxoplasma bradyzoites. This contributes to 

the general understanding of toxoplasmosis, a disease that poses significant health and 

economical burdens. Our study has implications in both immunocompetent hosts where 

CT correlates with several neuro-pathologies and in immunocompromised patients where 

recurrence of CT is severely morbid and potentially lethal (10-15). Hence, understanding 

the mechanisms of cyst formation and reactivation of CT is essential for our ability to 

interfere with parasite survival and persistence in the host.  

T. gondii exploits the immune system of intermediate hosts, transforming challenges into 

opportunities. Dendritic cells represent a major forefront exploited by the parasite, due to 

their capacity to secrete defense molecules, present antigens mediating crosstalk to T 

cells, but most importantly due to their shuttling role to various organs. Indeed, infection 

with type II Toxoplasma strains leads to both higher migration and hypermotility of DCs 

(55-59). Notably, type II Toxoplasma use DCs more effectively as a shuttle, to travel 

through various tissues, escaping the host inflammatory response (57). Infected DCs and 
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monocytes with T. gondii cross the blood brain barrier, participating, with astrocytes and 

microglia to present antigens to activated CD4
+
 and CD8

+
, following their recruitment to 

the brain (29, 30), to control the infection (60). These activated T cells, in cooperation 

with natural killer cells among others, are the main source of IFN-γ, which plays a role in 

intracellular elimination of tachyzoites (19, 22-25). Moreover, IFN-γ can activate 

microglia (61) and astrocytes (48, 62) to prevent tachyzoite proliferation. IFN-γ is also 

crucial for the maintenance of cerebral CT latency (26-28). Our results showed a higher 

number of recruited DCs upon P18 depletion during the acute phase of infection. 

Recognizing that some of the parasites will be eliminated by dendritic cells, the 

remaining surviving parasites presented with a lower number of tachyzoites in spleens of 

infected mice while a higher number of tachyzoites reaching the brain (42, 43). It is 

worth noting that the recruitment of more innate immune cells upon depletion of P18, 

suggests a role of this marker in attenuating the immune response during the acute phase 

of the infection, contributing to the virulence of the parasite. Moreover, P18 depletion 

yielded higher expression of CXCL9 which is crucial to recruit T cells into the brain and 

to prevent reactivation of CT (33), along with a higher number of cysts and a deficit in 

the reactivation capacity of these parasites. These results may suggest a role for P18 in 

modulating and activating DCs to travel from the infection site to the brain. This role 

might implicate production of IL-12 by DCs, and to present antigens to induce the 

recruitment and activation of T cells, hence controlling both the persistence and 

reactivation of cerebral toxoplasmosis. Furthermore, the IFN-γ mediated P18-converion 

obtained in SCID mice suggests, not only a role of T cells in producing this cytokine as 

dominant and necessary immune response for maintenance and persistence of the 

bradyzoite stage, and prevention of recrudescence to tachyzoites (28), but also involves 

innate immune cells in its production. These are potentially involved in controlling the 

dissemination of the parasite, following conversion to tachyzoites. 

 A critical step in T. gondii pathology is the interconversion between tachyzoite 

and bradyzoite stages, that are crucial for persistence and transmission of the parasite. 

The superfamily of SRS genes comprises 144 members, of which 35 are pseudo genes 

(34). Differential expression of SRS during life cycle stages of the parasite is essential for 

the initiation of infection, modulation of host immunity and establishment of 
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transmissible infections (63-65). Of all the recognized proteins, the tachyzoite-specific 

SAG1/SRS29B functions as an adhesin, influences virulence and induces lethal ileitis in 

mice (64, 66-70). In addition, SAG1/SRS29B, along with other tachyzoite-specific 

members like SRS34A, and SRS29C proteins, elicit high antibody titers during the acute 

phase of the infection (71). This immune response is essential to drive the switch to latent 

bradyzoites expressing specific members of this family. For instance, CST1/SRS44, a 

mucin-like domain glycoprotein, is essential to construct an intact and rigid cyst wall 

(40). This protein presents a heavily glycosylated domain to maintain the cyst wall 

structural integrity (72). Another protein, SRS13 was identified and localized to the cyst 

wall and matrix. However, unlike CST1/SRS44, SRS13 is not necessary for the assembly 

of the cyst wall (73). Recently, Tu et al. expanded their functional analysis to two other 

cyst wall proteins, CST2 and CST3. The generation of the respective knock out strains 

revealed a normal phenotype with respect to growth or cyst formation in vitro, yet, CST2-

KO parasites were markedly less virulent during the acute infection in mice (74).  

 SRS9/SRS16B encodes an abundant bradyzoïte-specific protein, p36 (35). SRS9 

plays an important role in both persistence in the brain and reactivation in the intestine 

(35). Added evidence of p36 role in CT persistence, its deletion decreases the cyst 

number in the brains of infected mice (35). In this study, we identified a role for P18 

(SAG4/SRS35) in cyst formation and reactivation of CT. In contrast to the reported 

function of p36, P18-depleted parasites resulted in more cysts in vitro and in vivo. 

Despite this higher number of cysts, a delayed reactivation of CT was observed upon 

dexamethasone-induced immunosuppression. While p36 was implicated in the 

reactivation in the intestine (35), P18 seems to exert its function in the cerebral 

reactivation, while not excluding also a role in the intestine. Whether p36 may influence 

P18 expression, and affect the number and the persistence of bradyzoite cysts during CT 

is yet to be explored. Our results highlight a non-redundant function of another member 

of the SRS superfamily in the reactivation process.  

Our data support a role for P18 in both the virulence of the parasites and in 

modulating the host immune system to faster escape and reach the brain, where it actively 

converts to CT. It also shows a role of this protein in the persistence and maintenance of 
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CT, as well as a control of reactivation of CT. Moreover, P18 seems to implicate IFN-γ in 

the process of conversion from bradyzoites to tachyzoites, highlighting a modulation of 

the immune system, by this SRS protein at multiple levels within the intermediate host. 

The identified role in conversion and reactivation will set the stage for further studies that 

may lead to novel targets for preventional therapy. This has far reaching implications in 

light of the documented association of T. gondii brain cysts and neurological diseases, 

brain tumors as well as the reactivation of the disease in immunocompromised patients, 

and the recent flagging on considering toxoplasmosis as a neglected parasitic infection, 

requiring public health action (CDC 2019). 

Materials and methods 

Ethics statement 

All mice protocols were approved by the Institutional Animal Care and 

Utilization Committee (IACUC) of the American University of Beirut (AUB) (Permit 

Number: #1312273). All animals were housed in specific pathogen free facility with a 

12h ON/OFF light cycle. Humane endpoints were fully respected as per AUB IACUC 

following AAALAC (Association for Assessment and Accreditation of Laboratory 

Animal Care International) guidelines and guide of animal care use book (Guide, NRC 

2011). Mice were monitored on a daily basis. To verify the acute phase of the infection, 

blood was withdrawn following deep anesthesia with isoflurane by inhalation. Mice were 

sacrificed if any abnormal ethical features are noticed as described previously [63]. 

Animals were deeply anesthetized before cervical dislocation. 

 

Mammalian cells and parasite cultures 

Tachyzoites from PruΔku80 (WT) (deleted for the ku80 gene [64]), 

PruΔku80ΔP18 (KO P18) or the complemented PruΔku80ΔP18+P18 (Cpt P18) were 

used throughout this study. Parasites were maintained by serial passage in human 

foreskin fibroblasts (HFFs) (American Type Culture Collection-CRL 1634), grown in 

Dulbecco's Modified Eagle's Medium (DMEM) (GIBCO, Invitrogen) supplemented with 
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10% of fetal bovine serum (FBS), 1% penicillin-streptomycin, 1% kanamycin and 1% 

glutamine.  

 

Molecular cloning 

Genomic DNA purification from a pellet of 3x10
8
 parasites of WT strain, was 

performed using wizard Genomic DNA purification system Promega (Ref A 2361 

0000035819). PCR amplifications were performed on genomic DNA using PrimeSTAR 

HS DNA/Phusion® High-Fidelity DNA Polymerases (New England Biolabs).  

Plasmid pKO-P18 was designed to replace by double- homologous 

recombination, the genomic sequence of P18 by the open reading frame of HXGPRT 

gene to produce KO P18 line. A genomic fragment of 2274 bp corresponding to the 5’ 

non-coding sequence of P18 was amplified using ML1514 and ML1515 primers and 

subcloned into the HindIII and Apa1 sites of plasmid 2854.HX (75). Then a genomic 

fragment of 2719  pb corresponding to the 3’ non-coding sequence of P18 was amplified 

using ML1516 and ML1517 primers and subcloned at Not I and Spe I sites of plasmid 

2854.HX. Forty micrograms of pKOP18 was digested by HindIII and Spe1 prior to 

transfection in the WT strain and was subjected to Mycophenolic Acid and xanthine 

selection. 

To complement the KO P18 line, we amplified the open reading frame of P18 

flanked by 1024 pb of 5’ non-coding sequence and 502bp of 3’UTR and cloned into 

pLIC-HA vector (76) , containing a DHFR selectable marker.   

  

Table 1. Summary of PCR primers used to generate 5’ P18-P2854 HXPRT- 3’ P18. 

Restriction site specific for each enzyme is underlined and highlighted in yellow and the 

rest of the primer complementary to the 3’ or 5’ regions is highlighted in green. 
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Generation of transgenic parasites 

For transfection, 20 × 10
6
 parasites were re-suspended in 800 μl of cytomix (10 

mM KPO4, 120 mM KCl, 0.15 mM CaCl2, 5mM MgCl2, 25 mM Hepes, 2 mM EDTA) 

complemented with 3 mM ATP and 3 mM of reduced glutathione and electroporated 

with 30–50 μg DNA as described previously [65]. Selections of the transgenic parasites 

were performed with mycophenolic acid (20 μg ml
−1

) and xanthine (50 μg ml
−1

) for 

HXGPRT selection or pyrimethamine (1 μM) for DHFR-TS selection and 

chloramphenicol (20 μM) for chloramphenicol acetyltransferase selection. The isolation 

of clonal transgenic populations was performed using limiting dilution in 96-well plates.  

 

In vitro switch from tachyzoites to bradyzoites 

Confluent HFF cells were cultured in a 6-well plate and on coverslips and 

infected at a concentration of 1000 parasites from WT, KO P18 or Cpt P18/well. After a 

24h incubation in complete DMEM medium under 5% CO2, the medium was changed to 

Primers’ names Primers sequences (5’-3’)  Restriction Enzymes  

ML1514  gcgcGGGCCCCGATCCGCAGACATCT

GGGGGTCTCTTGGCGTTCGTCCCCG

CCAACAAAGCG  

Apa1  

ML1515  cccAAGCTTGGTTGAAGACAGACGA

AAGCAGTTGCAGTATGCTGCGACGC

GTCTTCCGAG  

HindIII  

ML1516  ggACTAGTGAGTTCATTGCCAGTGA

AGAAGGTGACTGGTAGTGTCACATT

TGGCAACTGG  

Spe1  

ML1517  ataagaatGCGGCCGCTTGTTACCTGGC

ACACGTCACTTGCAACATTGTAAAC

TTGTTTGTTGTCTGG  

Not1  
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induction medium (RPMI 1640 without NaHCO3, HEPES 50mM, 3% FBS, pH 8.2). 

Cells were then maintained in absence of CO2. The basic medium was changed every 

other day to maintain the pH at 8.2. After 2 weeks, infected cells with bradyzoites were 

harvested for immuno-fluorescence assay.  

Immunofluorescence and confocal microscopy 

Bradyzoite conversion was confirmed by staining the cyst wall with Biotinylated 

Dolichos biflorus lectin (DBA) (77). Following in vitro switch, coverslips of cells 

infected with cysts of WT, KO P18 or Cpt P18 were fixed with 4% paraformaldehyde in 

PBS for 20 minutes, permeabilized in Triton (0.2%) for 10 minutes, blocked for 30 min 

with 10% FBS in PBS. T83B1 or T82C2 primary monoclonal antibodies directed against 

P18 and P34 respectively (37) were used at the dilution of 1:500. Biotinylated DBA 

(Sigma, Cat. NoB-1035) was used at the dilution of 1:100. Anti-mouse secondary 

antibody (Abcam, ab150116) were used at the concentration of 1:500. Streptavidin 

(Sigma) was used at the dilution of 1:100. Coverslips were mounted on slides using a 

Prolong Anti-fade kit (Invitrogen, P36930). Z-section images were acquired by confocal 

microscopy using a Zeiss LSM 710 confocal microscope (Zeiss, Oberkochen, Germany) 

and all images were analyzed using Zeiss Zen software. 

 

Western blot analysis 

Following in vitro switch, HFF cells infected with cysts of WT, KO P18 or Cpt 

P18 were scrapped, washed with PBS and collected by centrifugation. Pellets were re-

suspended in 1x Laemmli buffer and proteins were separated on 10% polyacrylamide 

gels and transferred to nitrocellulose membranes (BIO RAD Cat# 162-0112). Membranes 

were probed with T8 3B1 primary monoclonal antibody directed against P18 (37), 

followed by anti-mouse secondary antibody conjugated to Horseradish peroxidase (HRP) 

(m-IgGk BP-HRP, Santa Cruz, sc-516102, 1:5000). Bands were visualized using luminol 

chemi-luminescent substrate (Bio-Rad, Cat# 170-5061).  
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Quantitative Real Time PCR (qRT PCR)  

SYBR green qRT PCR was performed using CFX96 (Biorad). SAG-1 primers 

were used to quantify mRNA representing tachyzoites in wild type WT, KO P18 or Cpt 

P18 strains (Table 2). Glyceraldehyde-3-Phosphate dehydrogenase (GAPDH) was used 

as housekeeping gene (Table 2). In qRT-PCR, individual reactions were prepared with 

0.25 μM of each primer, 150 ng of cDNA and SYBR Green PCR Master 53 Mix to a 

final volume of 10 μl. PCR reaction consisted of a DNA denaturation step at 95°C for 

3min, followed by 40 cycles (denaturation at 95°C for 15 sec, annealing at the 

appropriate annealing temperature for each couple of primers (Table 2) for 60 sec, 

extension at 72°C for 30 sec). For each experiment, reactions were performed in 

duplicates and the expression of individual genes was normalized to GAPDH Ct values. 

The Threshold cycle (Ct) corresponds to the cycle at which there is a significant 

detectable increase in fluorescence. Data were plotted by calculating ΔCt (Cttarget gene – 

CtGAPDH). Thereafter, ΔΔCt is calculated according to the Livak method: 2
-ΔΔCt

 to obtain 

the percentage of expression (78). 

 

Table 2. Summary of primers used for Real-time quantitative PCR 

Primer Sequence 5’à3’ Annealing T
0
C 

Mouse GAPDH Forward Primer 5’-CATggCCTTCCgTgTTCCTA-3’ 59.4 

Mouse GAPDH Reverse Primer 5’-CCTgCTTCACCACCTTCTTgAT-3’ 60.3 

SAG-1- Forward primer  5’-ACT CAC CCA ACA ggC AAA TC 3’ 56.5 

SAG-1  Reverse primer 5’- gAg ACT AgC AgA ATC CCC Cg-3’ 56.6 

Mouse CXCL9 Forward Primer 5'-TgT ggA gTT CgA ggA ACC CT-3'             60.5 

Mouse CXCL9 Reverse Primer 5'-TgC CTT ggC Tgg TgC Tg-3' 57.2 

Mouse CXCL10 Forward Primer 5'-AgA ACg gTg CgC TgC AC-3' 57.2 

Mouse CXCL10 Reverse Primer 5'-CCT ATg gCC CTg ggT CTC A-3' 61.7 
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Enzyme-linked immunosorbent assay (ELISA) 

Brains from chronically infected BALB/c mice with WT, KO P18 or Cpt P18 

were harvested at week 4 post-infection (p.i.) with either parasite strain. Following brain 

homogenization, supernatants were collected, and ELISA was performed using Multi-

Analyte ELISArray Kit (Qiagen) according to the manufacturer’s instructions. Briefly, 

supernatants were spun for 10 min at 1000g and transferred to new Eppendorf tubes, and 

diluted using a specific cocktail of antigens (IL-12, IL-1β, IFN-γ, IL-6, Tumor necrosis 

factor-a (TNF-α), IL-10, Monocyte chemoattractant protein 1 (MCP-1), Macrophage 

Inflammatory Proteins MIP-1α and MIP-1b) provided by the kit (Qiagen). Samples were 

then transferred to ELISA plate, and were incubated for 2 hours. After three washes the 

detection antibody was added and incubated for 2 hours, followed by Avidin-HRP 

addition for 30 min. Wells were 4 washed and development solution was added in the 

dark and kept for 15 min, before addition of the stop solution according to manufacturer’s 

instructions. The optical density (O.D) was determined at 450 and 570 nm and calculated 

according to the standard values of a positive control according to manufacturer’s 

instructions.  

 

In vivo study  

Eight to ten weeks old immunocompetent female BALB/c mice were intra-

peritoneally injected with WT, KO P18 or Cpt P18 parasites. Mice experimental 

protocols are indicated in timelines (Figs 2A, 2B, 3B, 4A and 5A).  

To assess the KO P18 virulence in vivo, freshly harvested tachyzoites (10
6
 or 10

5
) 

of KO P18 or WT strains were i.p. injected into ten mice per condition. Invasiveness of 

the parasites was evaluated by simultaneous plaque assay of a similar dose of parasites on 

HFFs. Mouse survival was monitored daily until their death, end-point of all experiments. 

The immune response of surviving animals was tested day 7 post infection and sera of 

infected mice were verified by Western blotting against tachyzoite lysates. 

To assess the pattern of dissemination of the KO P18 parasites during the acute 

phase of infection, 250 freshly harvested tachyzoites of WT, KO P18 or Cpt P18 strains 
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were i.p. injected into ten females per condition. On day 4 post-infection, mice were 

sacrificed, peritoneal lavage was performed to screen for tachyzoites number and 

dendritic cells recruitment. Spleens and brains were harvested to assess tachyzoite burden 

in these organs. 

For cyst quantification, and iNOS and cytokine production, brains of infected 

BALB/c mice were harvested at d28 post-infection. To assess the reactivation capacity of 

the KO P18, ten mice per condition were allowed to establish chronic infection for 28 

days, then mice were immunosuppressed by administrating dexamethasone 

(Medochemie), at the dose of 5mg/L in drinking water, and were assessed for survival.  

To elaborate on the role of IFN-γ, Immunocompromised SCID and NSG mice 

were infected by oral gavage with 20 cysts from WT, KO P18 or Cpt P18, to assess their 

survival (ten mice per condition).  

Survival data were represented in Kaplan Meier plot. Histogram and dot plot 

analysis were performed using GraphPad Prism 7 or Excel software. 

Statistics 

 All in vivo experiments were analyzed using two-tailed Student’s t-tests to 

determine the statistical significance of differences observed between indicated groups 

for parametric comparisons and presented as averages with standard deviations. 

Statistical significance is reported as * for P value between 0.05 and 0.01, ** for P value 

between 0.01 and 0.001, and *** for P value less than 0.001. 

Acknowledgments 

We thank the American University of Beirut Core Facilities for providing access 

to their imaging, Animal Care, and core culture facilities. We also thank the Office of 

Grants and Contracts at the American Unnversity of Beirut. This work was made possible 

through core support from the Medical Practice Plan (Faculty of Medicine, American 

University of Beirut) and the American University of Beirut and the Centre National de 

Recherche Scientique Libanais (AUB- CNRS- L GRP) funds.   

 



150 

 

 

Author Contributions 

Conceptualization: Hiba El Hajj. 

Funding acquisition: Hiba El Hajj. 

Investigation: Hiba El Hajj. 

Methodology: Maguy Hamie, Nadim Tawil, Rana El Hajj, Rania Najm, Rita Hleihel, 

Martin Karam, Sana El Sayyed, Marwan El Sabban, Sébastien Besteiro, and Maryse 

Lebrun. 

Project administration: Hiba El Hajj. 

Supervision: Hiba El Hajj. 

Validation: Hiba El Hajj, Maryse Lebrun, and Jean Francois Dubremetz. 

Writing – original draft: Maguy Hamie, Nadim Tawil, Rana El Hajj. 

Writing – review & editing: Hiba El Hajj, Sébastien Besteiro, Maryse Lebrun, Jean 

Francois Dubremetz and Marwan El Sabban. 

 

 

 

 

 

 

 

 

 



151 

 

References: 

1. Tenter AM, Heckeroth AR, Weiss LM. Toxoplasma gondii: from animals to 

humans. Int J Parasitol. 2000;30(12-13):1217-58. 

2. Bouhamdan SF, Bitar LK, Saghir HJ, Bayan A, Araj GF. Seroprevalence of 

Toxoplasma antibodies among individuals tested at hospitals and private laboratories in 

Beirut. J Med Liban. 2010;58(1):8-11. 

3. Must K, Hytonen MK, Orro T, Lohi H, Jokelainen P. Toxoplasma gondii 

seroprevalence varies by cat breed. PLoS One. 2017;12(9):e0184659. 

4. Nahouli H, El Arnaout N, Chalhoub E, Anastadiadis E, El Hajj H. Seroprevalence 

of Anti-Toxoplasma gondii Antibodies Among Lebanese Pregnant Women. Vector Borne 

Zoonotic Dis. 2017;17(12):785-90. 

5. Hakimi MA, Olias P, Sibley LD. Toxoplasma Effectors Targeting Host Signaling 

and Transcription. Clin Microbiol Rev. 2017;30(3):615-45. 

6. Parlog A, Harsan LA, Zagrebelsky M, Weller M, von Elverfeldt D, Mawrin C, et 

al. Chronic murine toxoplasmosis is defined by subtle changes in neuronal connectivity. 

Dis Model Mech. 2014;7(4):459-69. 

7. Gaskell EA, Smith JE, Pinney JW, Westhead DR, McConkey GA. A unique dual 

activity amino acid hydroxylase in Toxoplasma gondii. PLoS One. 2009;4(3):e4801. 

8. Webster JP, McConkey GA. Toxoplasma gondii-altered host behaviour: clues as 

to mechanism of action. Folia Parasitol (Praha). 2010;57(2):95-104. 



152 

 

9. Zeiner GM, Norman KL, Thomson JM, Hammond SM, Boothroyd JC. 

Toxoplasma gondii infection specifically increases the levels of key host microRNAs. 

PLoS One. 2010;5(1):e8742. 

10. Bannoura S, El Hajj R, Khalifeh I, El Hajj H. Acute disseminated 

encephalomyelitis and reactivation of cerebral toxoplasmosis in a child: Case report. 

IDCases. 2018;13:e00434. 

11. Basavaraju A. Toxoplasmosis in HIV infection: An overview. Trop Parasitol. 

2016;6(2):129-35. 

12. Bossi P, Bricaire F. Severe acute disseminated toxoplasmosis. Lancet. 

2004;364(9434):579. 

13. Chapuis A, Chabrot C, Mirand A, Poirier P, Nourrisson C. Encephalitis caused by 

an unusual human herpes virus type 6 and Toxoplasma gondii co-infection in a cord 

blood transplant recipient. Int J Infect Dis. 2016;46:79-81. 

14. Kodym P, Maly M, Beran O, Jilich D, Rozsypal H, Machala L, et al. Incidence, 

immunological and clinical characteristics of reactivation of latent Toxoplasma gondii 

infection in HIV-infected patients. Epidemiol Infect. 2015;143(3):600-7. 

15. Montoya JG, Liesenfeld O. Toxoplasmosis. Lancet. 2004;363(9425):1965-76. 

16. Blader IJ, Saeij JP. Communication between Toxoplasma gondii and its host: 

impact on parasite growth, development, immune evasion, and virulence. APMIS. 

2009;117(5-6):458-76. 



153 

 

17. Goldszmid RS, Caspar P, Rivollier A, White S, Dzutsev A, Hieny S, et al. NK 

cell-derived interferon-gamma orchestrates cellular dynamics and the differentiation of 

monocytes into dendritic cells at the site of infection. Immunity. 2012;36(6):1047-59. 

18. Mashayekhi M, Sandau MM, Dunay IR, Frickel EM, Khan A, Goldszmid RS, et 

al. CD8alpha(+) dendritic cells are the critical source of interleukin-12 that controls acute 

infection by Toxoplasma gondii tachyzoites. Immunity. 2011;35(2):249-59. 

19. Sher A, Collazzo C, Scanga C, Jankovic D, Yap G, Aliberti J. Induction and 

regulation of IL-12-dependent host resistance to Toxoplasma gondii. Immunol Res. 

2003;27(2-3):521-8. 

20. Denkers EY, Gazzinelli RT, Martin D, Sher A. Emergence of NK1.1+ cells as 

effectors of IFN-gamma dependent immunity to Toxoplasma gondii in MHC class I-

deficient mice. J Exp Med. 1993;178(5):1465-72. 

21. Gazzinelli RT, Denkers EY, Sher A. Host resistance to Toxoplasma gondii: model 

for studying the selective induction of cell-mediated immunity by intracellular parasites. 

Infect Agents Dis. 1993;2(3):139-49. 

22. Sher A, Oswald IP, Hieny S, Gazzinelli RT. Toxoplasma gondii induces a T-

independent IFN-gamma response in natural killer cells that requires both adherent 

accessory cells and tumor necrosis factor-alpha. J Immunol. 1993;150(9):3982-9. 

23. Scharton-Kersten T, Caspar P, Sher A, Denkers EY. Toxoplasma gondii: evidence 

for interleukin-12-dependent and-independent pathways of interferon-gamma production 

induced by an attenuated parasite strain. Exp Parasitol. 1996;84(2):102-14. 



154 

 

24. Scharton-Kersten TM, Wynn TA, Denkers EY, Bala S, Grunvald E, Hieny S, et 

al. In the absence of endogenous IFN-gamma, mice develop unimpaired IL-12 responses 

to Toxoplasma gondii while failing to control acute infection. J Immunol. 

1996;157(9):4045-54. 

25. Suzuki Y, Orellana MA, Schreiber RD, Remington JS. Interferon-gamma: the 

major mediator of resistance against Toxoplasma gondii. Science. 1988;240(4851):516-8. 

26. Suzuki Y, Sa Q, Gehman M, Ochiai E. Interferon-gamma- and perforin-mediated 

immune responses for resistance against Toxoplasma gondii in the brain. Expert Rev Mol 

Med. 2011;13:e31. 

27. Sa Q, Ochiai E, Tiwari A, Perkins S, Mullins J, Gehman M, et al. Cutting Edge: 

IFN-gamma Produced by Brain-Resident Cells Is Crucial To Control Cerebral Infection 

with Toxoplasma gondii. J Immunol. 2015;195(3):796-800. 

28. Kang H, Suzuki Y. Requirement of non-T cells that produce gamma interferon for 

prevention of reactivation of Toxoplasma gondii infection in the brain. Infect Immun. 

2001;69(5):2920-7. 

29. Sa Q, Ochiai E, Sengoku T, Wilson ME, Brogli M, Crutcher S, et al. VCAM-

1/alpha4beta1 integrin interaction is crucial for prompt recruitment of immune T cells 

into the brain during the early stage of reactivation of chronic infection with Toxoplasma 

gondii to prevent toxoplasmic encephalitis. Infect Immun. 2014;82(7):2826-39. 

30. Wang X, Michie SA, Xu B, Suzuki Y. Importance of IFN-gamma-mediated 

expression of endothelial VCAM-1 on recruitment of CD8+ T cells into the brain during 

chronic infection with Toxoplasma gondii. J Interferon Cytokine Res. 2007;27(4):329-38. 



155 

 

31. Strack A, Schluter D, Asensio VC, Campbell IL, Deckert M. Regulation of the 

kinetics of intracerebral chemokine gene expression in murine Toxoplasma encephalitis: 

impact of host genetic factors. Glia. 2002;40(3):372-7. 

32. Wen X, Kudo T, Payne L, Wang X, Rodgers L, Suzuki Y. Predominant 

interferon-gamma-mediated expression of CXCL9, CXCL10, and CCL5 proteins in the 

brain during chronic infection with Toxoplasma gondii in BALB/c mice resistant to 

development of toxoplasmic encephalitis. J Interferon Cytokine Res. 2010;30(9):653-60. 

33. Ochiai E, Sa Q, Brogli M, Kudo T, Wang X, Dubey JP, et al. CXCL9 is important 

for recruiting immune T cells into the brain and inducing an accumulation of the T cells 

to the areas of tachyzoite proliferation to prevent reactivation of chronic cerebral 

infection with Toxoplasma gondii. Am J Pathol. 2015;185(2):314-24. 

34. Wasmuth JD, Pszenny V, Haile S, Jansen EM, Gast AT, Sher A, et al. Integrated 

bioinformatic and targeted deletion analyses of the SRS gene superfamily identify 

SRS29C as a negative regulator of Toxoplasma virulence. MBio. 2012;3(6). 

35. Kim SK, Karasov A, Boothroyd JC. Bradyzoite-specific surface antigen SRS9 

plays a role in maintaining Toxoplasma gondii persistence in the brain and in host control 

of parasite replication in the intestine. Infect Immun. 2007;75(4):1626-34. 

36. Tomavo S, Fortier B, Soete M, Ansel C, Camus D, Dubremetz JF. 

Characterization of bradyzoite-specific antigens of Toxoplasma gondii. Infect Immun. 

1991;59(10):3750-3. 

37. Soete M, Fortier B, Camus D, Dubremetz JF. Toxoplasma gondii: kinetics of 

bradyzoite-tachyzoite interconversion in vitro. Exp Parasitol. 1993;76(3):259-64. 



156 

 

38. Odberg-Ferragut C, Soete M, Engels A, Samyn B, Loyens A, Van Beeumen J, et 

al. Molecular cloning of the Toxoplasma gondii sag4 gene encoding an 18 kDa 

bradyzoite specific surface protein. Mol Biochem Parasitol. 1996;82(2):237-44. 

39. Fox BA, Ristuccia JG, Gigley JP, Bzik DJ. Efficient gene replacements in 

Toxoplasma gondii strains deficient for nonhomologous end joining. Eukaryot Cell. 

2009;8(4):520-9. 

40. Tomita T, Bzik DJ, Ma YF, Fox BA, Markillie LM, Taylor RC, et al. The 

Toxoplasma gondii cyst wall protein CST1 is critical for cyst wall integrity and promotes 

bradyzoite persistence. PLoS Pathog. 2013;9(12):e1003823. 

41. Sanecka A, Frickel EM. Use and abuse of dendritic cells by Toxoplasma gondii. 

Virulence. 2012;3(7):678-89. 

42. Sumyuen MH, Garin YJ, Derouin F. Early kinetics of Toxoplasma gondii 

infection in mice infected orally with cysts of an avirulent strain. J Parasitol. 

1995;81(2):327-9. 

43. Zenner L, Foulet A, Caudrelier Y, Darcy F, Gosselin B, Capron A, et al. Infection 

with Toxoplasma gondii RH and Prugniaud strains in mice, rats and nude rats: kinetics of 

infection in blood and tissues related to pathology in acute and chronic infection. Pathol 

Res Pract. 1999;195(7):475-85. 

44. Erlich HA, Rodgers G, Vaillancourt P, Araujo FG, Remington JS. Identification 

of an antigen-specific immunoglobulin M antibody associated with acute Toxoplasma 

infection. Infect Immun. 1983;41(2):683-90. 



157 

 

45. Liew FY, Cox FE. Nonspecific defence mechanism: the role of nitric oxide. 

Immunol Today. 1991;12(3):A17-21. 

46. Langermans JA, van der Hulst ME, Nibbering PH, van Furth R. Endogenous 

tumor necrosis factor alpha is required for enhanced antimicrobial activity against 

Toxoplasma gondii and Listeria monocytogenes in recombinant gamma interferon-treated 

mice. Infect Immun. 1992;60(12):5107-12. 

47. Langermans JA, Van der Hulst ME, Nibbering PH, Hiemstra PS, Fransen L, Van 

Furth R. IFN-gamma-induced L-arginine-dependent toxoplasmastatic activity in murine 

peritoneal macrophages is mediated by endogenous tumor necrosis factor-alpha. J 

Immunol. 1992;148(2):568-74. 

48. Peterson PK, Gekker G, Hu S, Chao CC. Human astrocytes inhibit intracellular 

multiplication of Toxoplasma gondii by a nitric oxide-mediated mechanism. J Infect Dis. 

1995;171(2):516-8. 

49. Schluter D, Deckert-Schluter M, Lorenz E, Meyer T, Rollinghoff M, Bogdan C. 

Inhibition of inducible nitric oxide synthase exacerbates chronic cerebral toxoplasmosis 

in Toxoplasma gondii-susceptible C57BL/6 mice but does not reactivate the latent 

disease in T. gondii-resistant BALB/c mice. J Immunol. 1999;162(6):3512-8. 

50. Scharton-Kersten TM, Yap G, Magram J, Sher A. Inducible nitric oxide is 

essential for host control of persistent but not acute infection with the intracellular 

pathogen Toxoplasma gondii. J Exp Med. 1997;185(7):1261-73. 

51. Dincel GC, Atmaca HT. Nitric oxide production increases during Toxoplasma 

gondii encephalitis in mice. Exp Parasitol. 2015;156:104-12. 



158 

 

52. Zhang J, Qin X, Zhu YU, Zhang S, Zhang XW, Lu HE. Mechanism of 

dexamethasone in the context of Toxoplasma gondii infection. Parasitology. 

2017;144(11):1551-9. 

53. Bosma GC, Custer RP, Bosma MJ. A severe combined immunodeficiency 

mutation in the mouse. Nature. 1983;301(5900):527-30. 

54. Ohbo K, Suda T, Hashiyama M, Mantani A, Ikebe M, Miyakawa K, et al. 

Modulation of hematopoiesis in mice with a truncated mutant of the interleukin-2 

receptor gamma chain. Blood. 1996;87(3):956-67. 

55. Diana J, Persat F, Staquet MJ, Assossou O, Ferrandiz J, Gariazzo MJ, et al. 

Migration and maturation of human dendritic cells infected with Toxoplasma gondii 

depend on parasite strain type. FEMS Immunol Med Microbiol. 2004;42(3):321-31. 

56. Lambert H, Hitziger N, Dellacasa I, Svensson M, Barragan A. Induction of 

dendritic cell migration upon Toxoplasma gondii infection potentiates parasite 

dissemination. Cell Microbiol. 2006;8(10):1611-23. 

57. Lambert H, Vutova PP, Adams WC, Lore K, Barragan A. The Toxoplasma 

gondii-shuttling function of dendritic cells is linked to the parasite genotype. Infect 

Immun. 2009;77(4):1679-88. 

58. Collantes-Fernandez E, Arrighi RB, Alvarez-Garcia G, Weidner JM, Regidor-

Cerrillo J, Boothroyd JC, et al. Infected dendritic cells facilitate systemic dissemination 

and transplacental passage of the obligate intracellular parasite Neospora caninum in 

mice. PLoS One. 2012;7(3):e32123. 



159 

 

59. Lachenmaier SM, Deli MA, Meissner M, Liesenfeld O. Intracellular transport of 

Toxoplasma gondii through the blood-brain barrier. J Neuroimmunol. 2011;232(1-

2):119-30. 

60. Feustel SM, Meissner M, Liesenfeld O. Toxoplasma gondii and the blood-brain 

barrier. Virulence. 2012;3(2):182-92. 

61. Chao CC, Gekker G, Hu S, Peterson PK. Human microglial cell defense against 

Toxoplasma gondii. The role of cytokines. J Immunol. 1994;152(3):1246-52. 

62. Daubener W, Remscheid C, Nockemann S, Pilz K, Seghrouchni S, Mackenzie C, 

et al. Anti-parasitic effector mechanisms in human brain tumor cells: role of interferon-

gamma and tumor necrosis factor-alpha. Eur J Immunol. 1996;26(2):487-92. 

63. Boothroyd JC, Hehl A, Knoll LJ, Manger ID. The surface of Toxoplasma: more 

and less. Int J Parasitol. 1998;28(1):3-9. 

64. Manger ID, Hehl A, Parmley S, Sibley LD, Marra M, Hillier L, et al. Expressed 

sequence tag analysis of the bradyzoite stage of Toxoplasma gondii: identification of 

developmentally regulated genes. Infect Immun. 1998;66(4):1632-7. 

65. Manger ID, Hehl AB, Boothroyd JC. The surface of Toxoplasma tachyzoites is 

dominated by a family of glycosylphosphatidylinositol-anchored antigens related to 

SAG1. Infect Immun. 1998;66(5):2237-44. 

66. He XL, Grigg ME, Boothroyd JC, Garcia KC. Structure of the immunodominant 

surface antigen from the Toxoplasma gondii SRS superfamily. Nat Struct Biol. 

2002;9(8):606-11. 



160 

 

67. Boulanger MJ, Tonkin ML, Crawford J. Apicomplexan parasite adhesins: novel 

strategies for targeting host cell carbohydrates. Curr Opin Struct Biol. 2010;20(5):551-9. 

68. Rachinel N, Buzoni-Gatel D, Dutta C, Mennechet FJ, Luangsay S, Minns LA, et 

al. The induction of acute ileitis by a single microbial antigen of Toxoplasma gondii. J 

Immunol. 2004;173(4):2725-35. 

69. Pollard AM, Onatolu KN, Hiller L, Haldar K, Knoll LJ. Highly polymorphic 

family of glycosylphosphatidylinositol-anchored surface antigens with evidence of 

developmental regulation in Toxoplasma gondii. Infect Immun. 2008;76(1):103-10. 

70. Mineo JR, McLeod R, Mack D, Smith J, Khan IA, Ely KH, et al. Antibodies to 

Toxoplasma gondii major surface protein (SAG-1, P30) inhibit infection of host cells and 

are produced in murine intestine after peroral infection. J Immunol. 1993;150(9):3951-

64. 

71. Lekutis C, Ferguson DJ, Grigg ME, Camps M, Boothroyd JC. Surface antigens of 

Toxoplasma gondii: variations on a theme. Int J Parasitol. 2001;31(12):1285-92. 

72. Tomita T, Sugi T, Yakubu R, Tu V, Ma Y, Weiss LM. Making Home Sweet and 

Sturdy: Toxoplasma gondii ppGalNAc-Ts Glycosylate in Hierarchical Order and Confer 

Cyst Wall Rigidity. MBio. 2017;8(1). 

73. Tomita T, Ma Y, Weiss L. Characterization of a SRS13: a new cyst wall mucin-

like domain containing protein. Parasitol Res. 2018;117(8):2457-66. 

74. Tu V, Mayoral J, Sugi T, Tomita T, Han B, Ma YF, et al. Enrichment and 

Proteomic Characterization of the Cyst Wall from In Vitro Toxoplasma gondii Cysts. 

mBio. 2019;10(2). 



161 

 

75. Daher W, Klages N, Carlier MF, Soldati-Favre D. Molecular characterization of 

Toxoplasma gondii formin 3, an actin nucleator dispensable for tachyzoite growth and 

motility. Eukaryot Cell. 2012;11(3):343-52. 

76. Huynh MH, Carruthers VB. Tagging of endogenous genes in a Toxoplasma 

gondii strain lacking Ku80. Eukaryot Cell. 2009;8(4):530-9. 

77. Knoll LJ, Boothroyd JC. Isolation of developmentally regulated genes from 

Toxoplasma gondii by a gene trap with the positive and negative selectable marker 

hypoxanthine-xanthine-guanine phosphoribosyltransferase. Mol Cell Biol. 

1998;18(2):807-14. 

78. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative 

C(T) method. Nat Protoc. 2008;3(6):1101-8. 

 

 

 

 

 

 

 

 

 



162 

 

Figure legends 

Fig 1: Generation of P18 knock-out and complemented transgenic lines. (A) 

Schematic representation of the knock-out generation. 5’P18-P2854-3’P18 construct is 

replaced by P18 by the selectable marker hypoxanthine-xanthine-guanine phosphoribosyl 

transferase (HXGPRT). 5’P18-P2854-3’P18 plasmid was then introduced by 

electroporation to the WT type II strain to generate KO P18 parasites. Selection of stably 

depleted parasites was then performed under Xanthine and Mycophenolic acid. P18 gene 

was re-introduced to the KO P18 for confirmation of its role. The LIC-HA3 vector 

containing the dihydrofolate reductase (DHFR) selection was used and P18 was 

introduced under its own promoter. Following electroporation of the KO P18 with the 

LIC-P18 promoter-P18-HA3 generated vector, stable transgenic clones were isolated 

following pyrimethamine and successful generation of the Cpt P18 complemented with 

the P18 gene was obtained. (B) Gel electrophoresis following PCR amplification for the 

verification of the successful integration of the 5’P18-P2854-3’P18 and LIC-P18 

promoter-P18-HA3 in the generated KO P18 and Cpt P18 transgenic strains respectively. 

(C) Western Blot analysis for the verification of the stable generation of KO P18 and Cpt 

P18 strains, in both tachyzoïtes and bradyzoïtes following in vitro switch. Two exposures 

are presented reflecting the abundance of P18 in the bradyzoïtes as compared to its low 

expression in tachyzoïtes of the WT strain. The results depict one representative 

experiment among three independent ones. (D) Confocal microscopy following IFA 

assay on T.gondii cysts after in vitro switch. P18 abrogation is confirmed in the KO P18 

strain (middle panel) as compared to the WT strain (upper panel). P18 gene is restored in 

the complemented Cpt P18 strain (lower panel). P18 protein expression was used using 

T83B1 (green), cysts were stained using a biotinylated lectin (red), with specific binding 

to a selectin on the cyst wall. . Scale bar = 10 μM. The results depict one representative 

experiment among at least three independent ones. 

 

Fig 2: P18 depletion impacts the acute phase of the infection by dramatically 

affecting the parasite virulence, dissemination to organs and recruitment of 

dendritic cells in mice. (A) Timeline schedule for the assessment of lethal parasitic dose. 
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Survival of BALB/c mice infected with 10
6
 (left panel, 10 mice per condition), or 10

5
 

(right panel, 10 mice per condition) of WT or KO P18. (B) Timeline schedule for 

assessment of parasite number, dissemination to organs and recruitment of dendritic cells. 

On day 0, mice were injected with 250 tachyzoïtes/mouse of either WT, KO P18, or Cpt 

P18 strains. Tachyzoïtes count in the peritoneal lavage (left panel, 15 mice per 

condition), percentage of CD11c
+
 (right panel, 8 mice per condition) were assessed at day 

4 post infection as indicated. Quantitative Real-Time PCR for SAG-1 transcripts in 

spleens of mice injected with WT, KO P18, or Cpt P18 strains and sacrificed at day 4 

post-infection (right panel, 15 mice per condition). (C) Quantitative Real-Time PCR for 

SAG-1 transcripts in brains of mice injected with WT, KO P18, or Cpt P18 strains and 

sacrificed at day 4 post-infection (15 mice per condition). SAG-1 expression was 

normalized to GAPDH. The results are expressed as percentage of untreated control (±) 

SD and depict one representative experiment among two independent ones. The t-test 

was performed to validate significance. *, ** and *** indicate p values ≤ 0.05; 0.01 and 

0.001, respectively. P-values less than 0.05 were considered significant. 

 

Fig 3: KO P18 parasites form more bradyzoïte cysts in vitro and in vivo. (A) 

Quantification and size of cysts by confocal microscopy following IF assay, after in vitro 

switch using a biotinylated lectin (green), with specific binding to a selectin on the cyst 

wall and the bradyzoïte marker P34 (red). The results depict one representative 

experiment among at least three independent ones. Number of cysts was determined in 50 

independent fields per condition. Scale bar = 2 μM. (B) Timeline schedule for assessment 

of bradyzoïte formation/number following P18 depletion in BALB/c mice. Briefly, on 

day 0, BALB/c mice were injected with 250 tachyzoïtes/mouse of the WT, KO P18, or 

Cpt P18 strains. Acute toxoplasmosis was verified on day 7 p.i. On day 28 p.i., Brains of 

Toxoplasma positive mice were harvested. Cyst count following percoll extraction (10 

mice per condition). The results are expressed as percentage of untreated control (±) SD 

and depict one representative experiment among at least three independent ones. The t-

test was performed to validate significance. *, ** and *** indicate p values ≤ 0.05; 0.01 

and 0.001, respectively. P-values less than 0.05 were considered significant. 
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Fig 4: KO ΔP18 elicits a higher immune response favoring the higher number of 

bradyzoïtes cysts upon establishment of chronic infection in BALB/c mice. (A) 

Timeline schedule for assessment of immune response following P18 depletion in 

BALB/c mice. Briefly, on day 0, BALB/c mice were injected with 250 tachyzoïtes/mouse 

of the WT, KO P18, or Cpt P18 strains. Acute toxoplasmosis was verified on day 7 post-

infection. On day 28, brains of Toxoplasma sero-positive mice were harvested. 

Quantitative Real-Time PCR for iNOS (right panel, 10 mice per condition) from brains of 

mice injected with WT, KO P18, or Cpt P18 strains. iNOS expression was normalized to 

GAPDH. (B) ELISA showing the secretion levels of different cytokines/chemokines (IL-

12, IL-1β, IFN-γ, IL-6, TNF-α, IL-10, MCP-1, MIP-1α and MIP-1β) in BALB/c mice 

chronically infected with the WT, KO P18, or Cpt P18 strains. (C) Quantitative Real-

Time PCR for CXCL-9 and CXCL-10 (12 mice per condition) from brains of mice 

injected with WT, KO P18, or Cpt P18 strains. CXCL-9 and CXCL-10 expressions were 

normalized to GAPDH. The results are expressed as percentage of untreated control (±) 

SD and depict one representative experiment among at least three independent ones for A 

and B, and of two independent experiments for C. The t-test was performed to validate 

significance. *, ** and *** indicate p values ≤ 0.05; 0.01 and 0.001, respectively. P-

values less than 0.05 were considered significant. 

 

Fig 5: KO P18 parasites induce a delayed reactivation in BALB/c and affects the 

interconversion from bradyzoïtes to tachyzoïtes in an IFN-γ dependent fashion. (A) 

Timeline schedule for establishing chronic infection in BALB/c mice and stimulating 

immunosuppression. On day 0, mice were injected with 250 tachyzoïtes/mouse of either 

WT, KO P18, or Cpt P18 strains. Acute toxoplasmosis was verified on day 7 post-

infection. On day 28, mice were treated with the immunosuppressive dexamethasone 

drug until death. (B) Survival of immunosuppressed BALB/c mice infected with WT, KO 

P18, or Cpt P18 strains following reactivation of chronic toxoplasmosis (left panel, 15 

mice per condition). Quantitative Real-Time PCR for SAG-1 (right panel, 15 mice per 
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condition) from mice injected with WT, KO P18, or Cpt P18 strains. SAG-1 expression 

was normalized to GAPDH. The results are expressed as percentage of untreated control 

(±) SD and depict one representative experiment among at least three independent ones. 

The t-test was performed to validate significance. *, ** and *** indicate p values ≤ 0.05; 

0.01 and 0.001, respectively. P-values less than 0.05 were considered significant. (C) 

Survival of SCID (left panel, 10 mice per condition) versus NSG mice (right panel, 10 

mice per condition) following oral gavage with 20 cysts of the WT, KO P18, or Cpt P18 

strains.  
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Toxoplasma gondii is one of the most successful and widespread parasitic 

pathogen that infects, not only one third of the population worldwide, but also all warm 

blooded animals including mammals, reptiles, and birds (J. P. Dubey, 1998; J. P. Dubey 

et al., 2010) reviewed in (Schluter & Barragan, 2019) . This parasite is responsible for 

health problems and contributes to high economic losses due to its burden in chicken, 

sheep, fish, ovine, and bovine among others (Dong et al., 2018; Innes et al., 2009)  In 

mammals including humans, Toxoplasma causes acute and chronic toxoplasmosis (AT 

and CT) (Blader & Saeij, 2009; J. P. Dubey, 1998). In certain countries including 

Lebanon, the prevalence of this parasitic infection reaches an alarming percentage of 

almost 70% of the population (Bouhamdan et al., 2010). 

In France, we estimated seroprevalence to be 41 to 53% (Fromont et al., 2009). In 

the USA, more than 40 million people are infected and the burden of the parasite is 

leading to high economic losses. This prompted the Centers for Disease Control and 

Prevention (CDC) to consider toxoplasmosis as a neglected parasitic infection, which 

requires public health action (Ben-Harari & Connolly, 2019).  

Toxoplasmosis is largely controlled by the host immune system. Indeed, the 

infection leads, at the first place, to the recruitment of innate immune cells, primarily 

DCs and monocytes, to the site of infection (Dupont et al., 2012). The interplay between 

the parasite and the host immunity was well documented. Indeed the parasite has multiple 

virulence factors known to modulate the host immunity. These include micronemes, 

rhoptry proteins and dense granules among several other factors (Hunter & Sibley, 2012; 

Poncet, Blanchard, & Marion, 2019). Yet, members of the SRS family differentially 

expressed during life cycle stages of the parasite are important for the initiation of 

infection, modulation of host immunity and establishment of transmissible infections 

(Boothroyd et al., 1998; Manger, Hehl, Parmley, et al., 1998; Manger, Hehl, & 

Boothroyd, 1998). For instance, the tachyzoïte-specific SAG1/SRS29B functions as an 

adhesin, and influences virulence in mice (Boulanger et al., 2010; He et al., 2002; 

Manger, Hehl, Parmley, et al., 1998; Mineo et al., 1993; Pollard et al., 2008; Rachinel et 

al., 2004). In addition, SAG1/SRS29B, along with other tachyzoïte-specific members like 

SRS34A, and SRS29C proteins, elicit high antibody titers during the acute phase of the 

infection (Lekutis et al., 2001). We showed that another member of the SRS family, 
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P18/SRS35 plays a role in modulating the host immunity at multiple levels. During AT, 

this protein, albeit not abundantly expressed in the tachyzoites stage (Odberg-Ferragut et 

al., 1996; Wasmuth et al., 2012), seems to lower the recruitment of DCs to the site of 

infection, as its depletion induced higher numbers of DCs to the peritoneum of infected 

mice. This result can suggest that P18/SRS35 may counterbalance the high induced 

immune response by SAG-1/SRS29B to ensure parasite survival and escape from the host 

immune response, thus ensuring its transmission to the brain and skeletal muscles to 

sustain its life cycle.  

Recruited immune cells, mainly DCs, monocytes and macrophages are known to 

be used by the tachyzoïtes as “Trojan Horses”, to present antigens, elicit adaptive 

immune responses, and to spread to various tissues (Hunter & Sibley, 2012; Melo et al., 

2011). Under this immune pressure, tachyzoïtes will transform into bradyzoïte cysts in 

the brain and in skeletal muscles, ensuring the parasite sustainability for further 

propagation between intermediate hosts, or between intermediate and definitive hosts. At 

the molecular level, we showed that P18 depleted parasites presented with a lower 

number of tachyzoïtes in spleens of infected mice while a higher number of tachyzoïtes 

reached the brain (Sumyuen et al., 1995; Zenner et al., 1999). This higher number in the 

brain corroborated with a higher number of bradyzoïte cysts. On the therapeutic level, we 

showed that Imiquimod affects parasite replication in human macrophages proving the 

anti-parasitic efficacy of this drug on the replication of the parasites in vitro. In addition, 

Imiquimod led to a decrease in the number of tachyzoïtes in the spleen and the 

peritoneum of infected mice during AT, by eliciting an adaptive immune response as 

early as two days post-treatment. Our results show, not only a protein marker that plays a 

role in the virulence and the dissemination of the parasite during AT, but also an 

efficacious treatment that increases mounting of a fast adaptive immune response to clear 

the infection during AT. These results can be extrapolated to the human patients who 

present with AT, as well as to animals dying from AT, especially following congenital 

toxoplasmosis, which leads to high economic losses (Wallon & Peyron, 2018). 

 The high burden of disseminated tachyzoïtes to the brains of infected mice upon 

depletion of P18, elicited a stress response translated by higher iNOS levels. This was 

concurrent with a high inflammatory response, which led to the formation of more 
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bradyzoïte cysts in the brain of infected mice when P18 was depleted. On the other hand, 

treatment with imiquimod during AT, sharply reduced the number of bradyzoïte cysts 

upon establishment of CT. Our results offer a better understanding on a surface antigen 

marker, which implicates the immune and stress responses, upon establishment of CT, 

and a therapeutic modality which, when used during AT, negatively impacts the 

establishment of CT in the brain of intermediate hosts, and highly affects the 

interconversion to acute phase. This was demonstrated by the failure of establishment of 

a new AT, upon oral gavage of new mice with cysts from Imiquimod treated mice. These 

results offer a better understanding on the conversion between AT and CT and show the 

efficacy of an immunomodulatory drug, if used during AT, on the establishment of CT, 

and thus affecting the persistence of the parasite. 

On an established CT in murine models, we showed that, albeit the higher number 

of obtained cysts upon depletion of P18, CT failed to reactivate upon immunosuppressing 

the mice with dexamethasone. This offers a better understanding of such an occurring 

condition in immunocompromised patients. Moreover, treatment with Imiquimod 

significantly reduced the number of bradyzoïte cysts in chronically infected mice. This 

result is to our sense, one of the most important findings of this work, in light of the 

absence of a current treatment that targets CT, which is the most common and 

widespread form of the infection (Montazeri et al., 2016; Montazeri et al., 2017). 

Imiquimod decreased p21, exclusively expressed in bradyzoïtes, and increased P30, 

exclusively expressed in tachyzoïtes, indicating the induction of interconversion. While 

this interconversion was important to elicit immune cell responses via TLR expression by 

innate immune cells, Imiquimod is less likely to be potentially administered to 

immunocompromised patients. Indeed, the Imiquimod-induced interconversion of 

bradyzoïtes to tachyzoïtes in the brains of chronically infected mice, led to the 

overexpression of TLR-7, 11 and 12 and their downstream signaling. Activation of these 

TLRs upon treatment with Imiquimod indicates that this drug could successfully cross the 

blood brain barrier to exert its effect. TLR-11 an 12 are known to be express in 

monocytes, macrphages and DCs, which represent a major forefront exploited by the 

parasite, due to their capacity to secrete defense molecules, and to the capacity of DCs to 

present antigens mediating crosstalk to T cells (Sanecka & Frickel, 2012). TLR-7, is 
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expressed by microglia, in addition to these mentioned innate immune cells (Butchi, Du, 

& Peterson, 2010). DCs recognize two parasitic PAMPs, Profilin and cyclophilin-18. 

Profilin binds TLR-11 (Yarovinsky et al., 2005) and TLR-12 (Koblansky et al., 2013; 

Sanecka & Frickel, 2012), and enhances the production of IL-12 via MyD88 dependent 

pathway. Our results demonstrated that Imiquimod upregulates TLR-11 and 12, most 

likely by recruited DCs and monocytes, triggering our observed MyD88-downstream 

signaling, the activation of MAPK, and the subsequent secretion of immune mediators 

including IL-1β, IL-12 and IFN-γ. The production of IL-12 and IL-1β may be essential 

for the recruitment of neutrophils and natural killer cells, which will produce IFN-γ until 

recruited T cells produce this cytokine and control the infection (reviewed in (T. 

Scharton-Kersten, Nakajima, Yap, Sher, & Leonard, 1998; Sher et al., 1993; Sturge & 

Yarovinsky, 2014; Y. Suzuki et al., 1988; Yarovinsky, 2014). A strain depleted for 

Profilin is not affected upon treatment with Imiquimod and TLR-11 and 12 expression 

levels in cells infected with this parasite line.  These results suggest that Imiquimod may 

enhance the binding of this parasite PAMP, to induce TLR-11 and 12 mediated MyD88 

signaling, to activate downstream signaling pathways and the corresponding immune 

response (LaRosa et al., 2008; Yarovinsky et al., 2005). This result coincides with the 

activation of phosphorylated ERK1/2 in the treated mice as compared to the untreated 

one, and the triggered induced immune response upon treatment with Imiquimod. TLR-

11 and TLR-12 are functional in mice but not in humans (D. De Nardo, 2015).  Our 

obtained results are still very promising and can be extrapolated to target the transmission 

of the parasite between intermediate and definitive hosts, thus interfering with the 

transmission and the life cycle of the parasite. Although humans do not express either 

TLR-11 or TLR-12, human monocytes produce pro-inflammatory cytokines in response 

to T. gondii infection, suggesting that other TLRs in humans recognize different 

compartments of T. gondii to produce IL-12 in antigen-presenting cells (W. A. Andrade 

et al., 2013). It has been described that parasite recognition by intracellular TLRs (TLR3, 

7 and 9) in humans facilitates resistance to toxoplasmic infection and activation of 

monocytes and human DCs (W. A. Andrade et al., 2013; Sher et al., 2017). A study of 

human innate receptors showed that the human TLR5 may have a similar role to the 

mouse TLR-11, in activating cytokine production (Salazar Gonzalez et al., 2014). The 
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effect of Imiquimod on TLR-5, and probably on TLR3 and 9, is thus worth investigating. 

Interestingly, we showed that Imiquimod, that was initially generated as a TLR-7 agonist 

(Schon & Schon, 2007) leads to the upregulation of TLR-7. TLR-7 is an endosomal 

receptor, known to recognize ribonucleic acid (Sher et al., 1993), and can signal through 

MyD88 to induce inflammatory cytokines (Goff et al., 2017; Nickerson et al., 2010). This 

TLR is common between human and mouse species, thus can offer a broader 

understanding of the mechanism of action through which Imiquimod exhibits it efficacy 

among different species. This endosomal TLR can be expressed in monocytes, 

macrophages, DCs, microglia among other resident or wandering brain cells (Kielian, 

2006). Previous studies demonstrated that Imiquimod acts in the context of leishmaniasis, 

another parasitic infection, via binding to TLR-7, leading to the activation of the NF-κB 

signaling pathway (Arevalo et al., 2001; El Hajj et al., 2018). In our study, Imiquimod 

proved a high efficiency against another parasitic infection and signaled through TLR-7. 

The observed upregulation of TLR-7, after treatment of CT with imiquimod, can also 

contribute to the observed MyD88 signaling and the induced immune response.  This 

result shows first the importance of repositioning medicine, and second reflects a broader 

anti-parasitic activity of this immuno-modulatory drug proving its promissing potency. 

Adaptive immune response is a key mechanism by which the host fights against 

Toxoplasma (Dupont et al., 2012). Noteworthy, the efficient recruitment of T cells to 

both peritoneum and spleen during AT, may imply the other parasite PAMP, cyclophilin-

18, which is recognized by both mouse and human C-C chemokine receptor type 5 

(CCR5) (Yarovinsky et al., 2004). During AT, we showed that Imiquimod leads to an 

relatively early recruitment of T cells to the sites of infection. This effect demonstrates 

that Imiquimod enhances mounting the adaptive immune response and might involve 

cyclophilin-18, which requires further investigation.  

At the level of the brain, P18 depletion treatment yielded higher expression of 

CXCL9, which is crucial to recruit T cells into the brain and to prevent reactivation of CT 

(Ochiai et al., 2015), along with a higher number of cysts and a deficit in the reactivation 

capacity of these parasites. On the other hand, Imiquimod treatment induced the 

interconversion from bradyzoïtes to tachyzoïtes and led to the activation of innate 

immune response, which thereafter was accompanied by the increase of CXCL9 and 10, 
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presumably indicating the recruitment of T cells to clear the infection at the reactivated 

foci. Indeed, these results may suggest a role for P18 in modulating and activating DCs to 

travel from the infection site to the brain. Similarly, Imiquimod treatment may exhibit a 

similar role on DCs. This might implicate production of IL-12 by DCs, and to present 

antigens to induce the recruitment and activation of T cells, hence controlling both the 

persistence and reactivation of cerebral toxoplasmosis. Within the brain, CT correlates 

with several neuro-pathologies and cancers (Bannoura et al., 2018; Ben-Harari et al., 

2017; Fekadu et al., 2010; Gharamti et al., 2018; Katlama, De Wit, et al., 1996; 

Koblansky et al., 2013; Miranda-Verastegui et al., 2009; Montoya & Liesenfeld, 2004; 

Ochiai et al., 2015; Skariah et al., 2010; Thirugnanam et al., 2013; Watts et al., 2017). 

Thus, understanding the molecular mechanisms of CT and reducing the cyst number 

within the established CT may strongly help affecting parasite survival, to eradicate its 

persistence and transmission, hence targeting its related diseases. 

During the last decade, eighty clinically available drugs, including a large number 

of new compounds were used against T.gondii in vitro and in vivo (reviewed in 

(Montazeri et al., 2017). However, most of these drugs are effective against tachyzoïtes, 

and only very little trigger bradyzoïtes or the back and forth switch between both stages. 

An ideal drug against toxoplasmosis, should not only be effective against the proliferative 

tachyzoïte stage of the parasite, but it should also exert an activity against the tissue cyst 

stage, especially that the chronic form is the most common form of the disease in humans 

and other intermediate hosts. Throughout our work, we proved the potency of Imiquimod 

agaisnt bradyzoïte cysts. We also proved that deleting P18 led to higher number of brain 

cysts, yet a delay in the reactivation. Hence, our study offers a better molecular 

characterization of persistence and reactivation of CT, and more importantly an efficient 

therapeutic modality targeting it. This study can address diseases associated with CT and 

has a far-reaching impact on animal health, since it is important to keep in mind that 

rodents play a crucial role in the predator-bait life cycle of the parasite, whereas humans 

are accidental intermediates host of T. gondii (R. T. Gazzinelli, Mendonca-Neto, Lilue, 

Howard, & Sher, 2014). Imiquimod, as supported by our data, stands to become a major 

player in T.gondii related diseases, since it at least equaled or exceeded the results 

obtained from current gold standard treatment. 
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Together, our approach should result in a better understanding of Host/Parasite 

interaction in the context of Toxoplasma infection and paves the path towards a 

comprehensive solution to this endemic disease. 
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1. Généralités  

La toxoplasmose est une parasitose infectieuse causée par le protozoaire 

intracellulaire obligatoire Toxoplasma gondii, appartenant au phylum des Apicomplexes. 

Ce parasite est capable d’infecter tous les animaux à sang chaud, y compris l’homme. Le 

cycle de vie du toxoplasme nécessite un hôte définitif, qui peut être n’importe quel 

membre des félidés, le plus souvent un chat, chez lequel se déroule la partie sexuée du 

cycle. Ceci conduit à la formation des oocystes excrétés dans les crottes de l’animal. 

Dans l’environnement, ces oocystes deviennent sporulés, et contiennent deux sporocystes 

contenant quatre sporozoïtes chacun. L’ingestion de ces oocystes par un hôte 

intermédiaire, déclenche la voie asexuée du cycle parasitaire. Suite à l’acidité 

de l’appareil digestif, les sporozoïtes sont libérés dans l’intestin de l’hôte intermédiaire, et 

se transforment rapidement en tachyzoïtes, formes réplicatives rapides responsables de la 

phase aigüe de la maladie. Ces stades sont capables d’infecter toutes les cellules nucléées, 

et se transforment, suite à la pression de la réponse immunitaire de l’hôte intermédiaire, 

en formes réplicatives plus lentes, dites bradyzoïtes. Ces derniers stades s’enkystent dans 

le cerveau et les muscles squelettiques, causant la phase chronique de toxoplasmose. 

 Environ un tiers de la population mondiale est infecté par ce parasite. De plus, la 

prévalence augmente avec l’âge et varie en fonction des régions, de l’environnement, du 

régime alimentaire et de l’hygiène. En France, comme au Liban, la prévalence de ce 

parasite peut aboutir à 70% de la population. Aux Etats Unis, plus de quarante millions 

de personnes sont infectées par ce parasite. Récemment, le Centre de contrôle et de 

prévention des maladies infectieuses (CDC) a considéré la toxoplasmose comme une 

infection parasitaire tropicale négligée, nécessitant des mesures de santé publique. 

L’homme contracte ce parasite suite à la consommation de viande crue ou mal cuite, 

contaminée par des kystes de bradyzoïtes, des crudités mal lavées ou de l’eau souillée par 

des oocystes libérés dans les crottes du chat.  

Bien que la toxoplasmose soit considérée comme asymptomatique chez plus de 

80% de patients immunocompétents, des associations assez récentes sont établies entre 

cette infection et un nombre de maladies. En effet, certains affirment que les niveaux 

élevés d'immunoglobuline G chez les femmes enceintes, séropositives pour le parasite, 

sont liées à l'anxiété et à la dépression prénatale. D'autres établissent un lien entre la 
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séropositivité au Toxoplasme, la dépression et les tentatives de suicide. De plus, la phase 

chronique de la maladie corrèle positivement avec la progression de plusieurs troubles 

comportementaux et neurologiques tels que la schizophrénie et la maladie de Parkinson, 

parmi d’autres. Les anticorps anti-Toxoplasme ont également été signalés plus élevés 

chez des patients ayant différents types de cancers, en particulier ceux atteint d’un cancer 

du cerveau ; cela pourrait être dû à la capacité du parasite à interférer avec le micro-

ARNome cérébral.  

Chez les patients immunodéprimés, la maladie peut devenir grave, voire même 

fatale. C’est le cas dans le contexte d’une toxoplasmose congénitale ou d’une neuro-

toxoplasmose. La toxoplasmose congénitale est une embryo-fœtopathie caractérisée par 

des lésions oculaires, viscérales ou intracrâniennes secondaires à une primo-infection 

maternelle par le parasite durant la grossesse. Quant à la neuro-toxoplasmose, elle se 

manifeste chez les patients immunodéprimés, la réactivation des bradyzoïtes en 

tachyzoïtes est responsable de la nécrose des tissus cérébraux. Cette réactivation peut 

également se produire chez les patients sidéens, ou chez ceux qui reçoivent des 

traitements immunosuppresseurs, dans le contexte de greffe de cellules souches 

hématopoïétiques, de greffe d'organe ou de chimiothérapie contre le cancer.  

 

2. Traitements de la toxoplasmose 

Les traitements actuels de la toxoplasmose demeurent limités aux drogues anti-

parasitaires et antibactériennes classiques. Il s’agit de la spiramycine, l'azithromycine, 

l'atovaquone, la pyriméthamine-sulfadiazine, la pyriméthamine-clindamycine et le 

triméthoprime-sulfaméthoxazole. En outre, le traitement recommandé reste l’association 

de la pyriméthamine, un inhibiteur de l'enzyme dihydrofolate réductase (DHFR), et de la 

sulfadiazine, un inhibiteur de dihydropteroate synthase. Cette association est 

habituellement administrée avec de l'acide folinique, ce qui bloque la biosynthèse du 

folate, donc la synthèse des acides nucléiques du parasite inhibant sa réplication. 

Cependant, ce régime de traitement s’avère être associée à plusieurs effets secondaires 

hématologiques tels que la neutropénie, une baisse importante du nombre de plaquettes, 

la thrombocytopénie, la leucopénie, une élévation du taux de créatinine et des enzymes 
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hépatiques, des réactions allergiques d’hypersensibilité et surtout l’émergence de 

parasites résistants, en particulier chez les patients immunodéprimés. 

De plus, ces médicaments, administrés comme agents prophylactiques ou 

thérapeutiques, ne ciblent que la phase aiguë de l’infection et demeurent inefficaces 

contre les kystes tissulaires, caractérisant la forme chronique de la toxoplasmose. A 

l’heure actuelle, aucun traitement utilisé n'élimine les kystes tissulaires et cérébraux 

responsables de la toxoplasmose chronique.  

 

3. SAG-4 ou p18 : découverte et clonage 

Pendant de longues années, la recherche sur le toxoplasme fut focalisée sur le 

stade tachyzoïte, qui est facile à cultiver. Cependant, l’importance de l’interconversion de 

la phase aigüe à la phase chronique, pour le maintien du cycle parasitaire et le progrès de 

la maladie, suscita l’intérêt pour l’étude du bradyzoïte.  Des anticorps contre les 

marqueurs spécifiques des bradyzoïtes furent donc développés. Ces anticorps 

monoclonaux incluent T8 4A12 reconnaissant une protéine de 36 kDa nommée P36, T8 

2C2 reconnaissant une protéine de 34 kDa appelée P34, T8 4G10 reconnaissant une 

protéine de 21 kDa appelée P21 et T8 3B1 reconnaissant une protéine de 18 kDa appelée 

P18. Ces protéines représentent quatre antigènes pelliculaires, dont trois sont exposés à la 

surface du parasite. Parmi ces trois marqueurs de surfaces de bradyzoïtes (P34, P21 et 

P18), seul le gène codant pour P18 a été séquencé et publié et ne présentait aucune 

homologie substantielle avec aucun des gènes connus. Conformément à la nomenclature 

proposée par Sibley, le gène P18 a été nommé SAG4. Plus récemment, par analogie de 

séquence, SAG4 ou P18 a été attribué à la famille de protéines de surface (Surface-

Antigen 1 (SAG-1) Related Sequence) (SRS), et le gène codant pour cette protéine était 

nommé SRS35. Bien que des anticorps dirigés contre P18 aient été générés contre le 

stade du bradyzoïte, des études plus récentes de transcriptome (Express Sequnce Tag ou 

EST) ont révélé l’expression des transcrits de P18, très faible, dans les tachyzoïtes. Chez 

les bradyzoïtes, les EST (Express Sequence Tag) de P18 sont très abondants, faisant de 

cette protéine l’une des SRS les plus abondamment exprimée chez ce stade. La fonction 

de P18 demeure énigmatique. 
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4. Les récepteurs Toll-Like dans le contexte de la toxoplasmose 

Suite à l'infection par T. gondii, les cellules immunitaires de type inné migrent 

vers le site de l'infection où elles détectent le parasite, principalement via les récepteurs 

de type Toll-Like (TLR). Les TLR jouent un rôle majeur dans la reconnaissance de 

T.gondii, via deux « Pathogen-associated molecular pattern » (PAMP) parasitaires bien 

identifiées, la profiline et la cyclophiline-18. La profiline est une protéine parasitaire, qui 

ressemble à l’actine, et qui s’avère indispensable à l'invasion et à la sortie active du 

parasite à partir des cellules infectées. La profiline se lie au TLR-11, en formant un 

hétérodimère   avec TLR-12, induisant la production de l’interleukine-12 (IL-12) par les 

cellules dendritiques, suite à l’activation de la voie de signalisation MyD88, et par 

conséquent, la réponse immunitaire correspondante. Des parasites dépourvus de profiline 

sont incapables d'induire la production d'IL-12 dépendante de TLR-11, à la fois in vitro et 

in vivo. La cyclophiline-18 est reconnue par le récepteur de chimiokine CC de type 5 

(CCR5) aussi bien chez les souris que les êtres humains. La cyclophiline-18 favorise la 

prolifération et la migration des macrophages et des cellules de la rate (principalement 

des lymphocytes T), vers le site de l’infection, afin de maintenir l'interaction entre le 

parasite et les cellules immunitaires de l'hôte, notamment les neutrophiles et les 

monocytes inflammatoires, au niveau du site de l’infection. 

Bien que ni les TLR-11 ni TLR-12 ne soient pas exprimés chez l’homme, les 

monocytes humains produisent des cytokines pro-inflammatoires en réponse à l'infection 

par T. gondii ; ceci suggère que d’autres TLR chez l'homme reconnaissent différents 

compartiments du parasite, pour produire l'IL-12 par les cellules présentatrices 

d'antigène. 

 

5. Imiquimod 

L’Imiquimod, (S-26308, R-837) (1- (2-méthylpropyl) -1H-imidazo [4,5-c] 

quinoléine-4-amine), est le premier membre de la famille des imidazoquinoléines, et 

appartient à la classe de médicaments appelés modificateurs de la réponse immunitaire. 

Cet analogue nucléosidique non osidique de la famille des imidazoquinoléines est le 

premier modificateur de la réponse immunitaire, et est utilisé pour le traitement des 

maladies cutanées infectieuses, notamment les maladies cutanées virales.  En effet, 
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l’Imiquimod présente une activité antivirale et anti tumorale considérable in vivo. Cet 

agent a été approuvé en 1997, comme traitement topique activant le système immunitaire 

contre certaines infections virales, telles que le virus du papillome humain (VPH) causant 

des verrues génitales et périanales. Ce médicament s’avère également efficace contre 

certains types de cancers de la peau tels que le carcinome baso-cellulaire, la maladie de 

Bowen, certains mélanomes ... En effet, L'Imiquimod inhibe la mélanogénèse et la 

prolifération des mélanocytes humains. Son spectre thérapeutique est également étendu 

aux lymphomes cutanés à cellules B. Le mécanisme d'action exact par lequel l'Imiquimod 

active le système immunitaire n'est pas encore connu. Néanmoins, il est connu que 

l'Imiquimod active les cellules immunitaires, en se liant au récepteur endosomal TLR-7, 

couramment impliqué dans la reconnaissance des agents pathogènes. Les cellules 

activées par l'Imiquimod via TLR-7, sécrètent des cytokines, principalement IFN-α, IL-6 

et TNF-α. L’Imiquimod peut aussi entraîner l'activation des cellules de Langerhans, qui 

migrent ensuite vers les ganglions lymphatiques locaux pour activer le système 

immunitaire adaptatif. Récemment, l’Imiquimod a montré son efficacité contre une 

parasitose causée par certaines espèces de Leishmania, la leishmaniose cutanée. Cette 

activité antiparasitaire est principalement due à l’interaction de l’Imiquimod avec le 

TLR-7, et à l’activation de la voie NF-κB et par conséquent, la réponse immunitaire pro-

inflammatoire permet de lutter contre cette infection parasitaire.  

 

6. Objectifs et résultats  

Dans ce travail de thèse, nous avons axé nos travaux sur l’identification 

potentielle d’une nouvelle approche thérapeutique de la toxoplasmose et sur l’obtention 

d’une meilleure compréhension des mécanismes moléculaires de de cette maladie. Notre 

intérêt s’est plus particulièrement focalisé sur l’étude de la phase chronique. En effet, 

cette phase est la plus commune de la maladie, elle s’associe à des neuropathologies et 

des cancers, elle peut devenir fatale lorsqu’elle est réactivée chez les patients 

immunodéprimés, et surtout elle demeure sans traitement efficace jusqu’à l’heure.  

Dans la première partie de ce travail, nous avons exploré l’activité potentielle de 

l’Imiquimod contre la toxoplasmose aiguë et chronique. En premier lieu, nous avons testé 

l’effet de l’Imiquimod sur des macrophages humains infectés par la souche 76K. Nos 
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résultats ont montré que l'Imiquimod affecte plus de 70% de la réplication parasitaire, 

prouvant son efficacité antiparasitaire in vitro. De plus, l’Imiquimod entraine une 

réduction significative du nombre des tachyzoïtes disséminés dans la rate chez des souris 

BALB/c infectées durant la phase aigüe de l’infection, et une diminution considérable du 

nombre de kystes cérébraux lors de l’établissement de la phase chronique de la maladie. 

D’une manière importante, les kystes de bradyzoïtes qui restent dans le cerveau de souris, 

suite au traitement à l’Imiquimod, sont incapables d’induire une nouvelle infection aigüe 

ainsi qu’une nouvelle infection chronique. Ceci souligne l’efficacité de l’Imiquimod 

contre la phase aigüe, affectant l’établissement de la phase chronique, ce qui suggère soit 

la mort des bradyzoïtes soit leur échec de se reconvertir en tachyzoïtes.  

Nous nous sommes par la suite intéressés à étudier l’effet de l’Imiquimod contre 

la phase chronique de la toxoplasmose. Nos données ont montré une diminution du 

nombre de kystes suite au traitement à l’Imiquimod in vitro et in vivo. En effet, après 

établissement de la phase chronique dans un modèle murin, le traitement des souris 

chroniquement infectées par l’Imiquimod, réduit significativement le nombre de kystes 

parasitaires cérébraux. Ce résultat qui, à notre sens, est parmi les résultats les plus 

importants de notre travail en vue de l’absence de traitements actuels ciblant cette phase, 

prouve l'efficacité de l'Imiquimod contre la toxoplasmose chronique dans des hôtes 

immunocompétents. Ceci nous a mené à notre second objectif qui était le mode d’action 

potentiel de cette molécule. Des études antérieures ont montré que l'Imiquimod, un 

agoniste du TL-7, est efficace contre une autre infection parasitaire, la leishmaniose 

cutanée causée par certaines espèces. L’Imiquimod agit dans le contexte de la 

leishmaniose via la liaison à TLR-7, conduisant à l'activation de la voie de signalisation 

NF-κB, qui par conséquent entraine une réponse immunitaire de l’hôte. Dans nos travaux, 

nous avons d’abord étudié le TLR-7, vue son activation par l’Imiquimod, et les TLR-11 

et TLR-12, vue leurs importances dans la reconnaissance du parasite par les cellules 

dendritiques et les monocytes. Nos données ont montré que les niveaux de transcrits des 

trois TLR augmentent progressivement depuis la deuxième semaine de traitement des 

souris porteuses de toxoplasmose chronique et traitées par l’Imiquimod, pour atteindre un 

maximum à la quatrième semaine après traitement. Nous avons donc choisi cette 

quatrième semaine pour mesurer le taux protéique de ces TLRs. En accord avec les 
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niveaux de transcrits, les niveaux protéiques sont significativement augmentés dans les 

cerveaux des souris infectées par la toxoplasmose chronique et traitées par l’Imiquimod. 

L’activation des TLRs se fait normalement par les tachyzoïtes, par liaison de la profiline 

ou la cyclophiline 18 parasitaire aux TLRs dans les monocytes et les cellules 

dendritiques. Nous avons donc testé l’effet de l’imiquimod sur l’interconversion de 

bradyzoïtes en tachyzoïtes.  Nos résultats montrent que l'Imiquimod a diminué la P21, 

exclusivement exprimée dans les bradyzoïtes, et a augmenté la P30, exclusivement 

exprimée dans les tachyzoïtes, indiquant l'induction de l'interconversion. Nous avons par 

la suite examiné l’activation des TLRs, en étudiant la voie de signalisation MyD88 qui 

est en aval, et qui est connue être activée dans le contexte de la toxoplasmose pour 

induire la réponse immunitaire. Le traitement par l’Imiquimod stimule MyD88, active la 

voie de signalisation de la protéine kinase activée par un mitogène (MAPK), se traduisant 

par la phosphorylation d’ERK1/2 et conduisant à améliorer la réponse immunitaire IL-1β, 

IL-12 et IFN-γ dans le cerveau des souris traitées. Afin de confirmer que l'Imiquimod 

induit une activation des TLR-11/12, nous avons utilisé une souche de T.gondii 

dépourvue de la profiline. Nos données ont démontré que cette souche qui est incapable 

de se lier aux TLR 11/12 et ne répond pas au traitement par l’Imiquimod. Ceci suggère 

que cette drogue augmente l’interaction de la profiline à aux deux TLRs pour stimuler la 

réponse immunitaire anti-parasitaire.  En outre, une augmentation significative des 

niveaux de transcription des 2 chimiokines, le ligand 9 (motif C-X-C) (CXCL9) et le 

ligand (motif C-X-C) 10 (CXCL10), a également été remarquée suite au traitement par 

l’imiquimod, indiquant probablement le recrutement des lymphocytes T pour éliminer les 

foyers réactivés de Toxoplasma et éliminer l'infection. 

Globalement, la première partie de cette thèse démontre une activité importante 

de l'Imiquimod contre la phase aigüe et plus particulièrement contre la phase chronique 

de la toxoplasmose. Elle a permis d’identifier le mode d'action potentiel qui est 

l'activation des TLR, conduisant à l'activation de la voie de signalisation MyD88 et 

déclenchant la réponse immunitaire appropriée pour éliminer l'infection. Cette première 

partie de l’étude peut être extrapolée pour proposer une nouvelle modalité de traitement 

des maladies associées à la toxoplasmose chronique et pourrait avoir un impact 

considérable sur la santé animale. En effet, il est important de signaler que les rongeurs 



217 

 

jouent un rôle crucial dans le maintien du cycle de vie du parasite après prédation par les 

hôtes définitifs.  

Dans la deuxième partie de ce travail, nous nous sommes concentrés sur les 

mécanismes moléculaires impliqués dans la toxoplasmose aigüe et surtout dans la 

toxoplasmose chronique. Nous nous sommes intéressés à caractériser P18, un membre de 

la superfamille de la séquence liée à l'antigène de surface 1 (SAG-1), en supprimant le 

gène codant pour cette protéine. Nos résultats ont montré que l’élimination de cette 

protéine atténue la virulence du parasite pendant la phase aiguë, suite à un recrutement 

plus élevé de cellules dendritiques dans le péritoine des souris, une charge parasitaire 

moins abondante dans la rate, et un plus grand nombre de tachyzoïtes arrivant aux 

cerveaux des souris infectées par la souche KO P18. De plus, l’élimination de P18 

entraine une augmentation significative du nombre de kystes de bradyzoïtes in vitro et in 

vivo dans les cerveaux de souris infectées. Ce nombre plus élevé de kystes cérébraux est 

très cohérent avec le nombre plus élevé des tachyzoïtes qui s’infiltrent aux cerveaux en 

s’échappant du système immunitaire pendant la phase aigüe de la maladie. Il et est 

accompagné d’une expression importante des transcrits de iNOS, de sécrétion des 

cytokines et de chimiokines immuno-modulatrices, et notamment les transcrits CXCL9 et 

CXCL10, connues pour être impliquées dans le recrutement de cellules T dans les 

cerveaux infectées par T.gondii pour empêcher la réactivation. Ceci nous a mené à 

étudier la capacité du KO P18 à se réactiver. Les souris infectées par la souche sauvage 

ou le KO P18, ont été immunodéprimées par la dexaméthasone. A la vue du grand 

nombre de kystes obtenu suite à l’élimination de P18, nous avons noté une réactivation 

retardée de ces souris par rapport aux souris injectées par la souche contrôle. Ces données 

démontrent l’implication de la protéine P18 dans le contrôle de la réactivation. 

Finalement, nous avons exploré la capacité des bradyzoïtes à se reconvertir en 

tachyzoïtes et à établir une infection aiguë. Nous avons utilisé des souris 

immunodéprimées, SCID et NSGn qui diffèrent surtout dans la capacité de leurs cellules 

immunitaires innées, notamment les macrophages, à sécréter l’interféron gamma. Après 

gavage des SCIDs, dont les macrophages sont capables de secréter de l’interferon-

gamma, par des kystes cérébraux dérivant de souris infectées par le KO P18, nous avons 

obtenu un prolongement significatif de survie chez 60% des animaux testés et un échec 
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total des parasites à établir une phase aigüe dans 40% des souris. Cependant, chez les 

souris NSG, dont les macrophages sont incapables de produire de l’interféron gamma, 

toutes les souris succombent après 15 jours de gavage par le KO P18 ou la souche 

sauvage. Nos résultats soulignent un rôle de P18, dépendant de l’interféron gamma, dans 

la conversion de la phase chronique en phase aiguë de l'infection.  

La deuxième partie de cette thèse montre le rôle de P18 dans la phase aigüe, et 

surtout la phase chronique de la toxoplasmose. Cette protéine s’avère jouer un rôle de 

modulation de la réponse immunitaire à plusieurs niveaux de l’infection. Pendant la 

phase aigüe, la P18 semble atténuer le recrutement des cellules dendritiques, 

probablement pour moduler la réponse immune induite par la P30. Cette protéine semble 

également être importante pour moduler à la fois la réponse immunitaire et le stress 

oxydatif pendant l’établissement de la phase chronique de la toxoplasmose. Finalement, 

P18 semble moduler la réactivation, la conversion de la phase chronique vers la phase 

aigüe et la dissémination du parasite. Cette régulation de conversion semble être 

dépendante de l’interféron gamma.      

Dans l'ensemble, ce travail de thèse a démontré le potentiel thérapeutique 

prometteur de l'imiquimod contre la toxoplasmose et caractérisé le rôle de P18 dans 

l'immunomodulation afin de contrôler la dissémination et l'inter-conversion. Notre étude 

ouvre la voie à de nouvelles approches thérapeutiques contre la toxoplasmose, sa 

persistance et sa réactivation. Notre approche devrait ouvrir des horizons pour trouver 

une solution globale à cette maladie endémique. 
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Imidazoquinoxaline Derivative EAPB0503: A Promising

Drug Targeting Mutant Nucleophosmin 1 in Acute

Myeloid Leukemia

Ali I. Nabbouh, MS1,2; Rita S. Hleihel, MS1,3; Jessica L. Saliba, PhD4; Martin M. Karam, MS1,5; Maguy H. Hamie, MS1,5;

Hsin-Chieh J.M. Wu, PhD6; Caroline P. Berthier6; Nadim M. Tawil, MS7; Pierre-Antoine A. Bonnet, PhD2;

Carine Deleuze-Masquefa, PhD2; and Hiba A. El Hajj, PhD1,5

BACKGROUND: Nucleophosmin 1 (NPM1) is a nucleocytoplasmic shuttling protein mainly localized in the nucleolus. NPM1 is frequently

mutated in acute myeloid leukemia (AML). NPM1c oligomerizes with wild-type nucleophosmin 1 (wt-NPM1), and this leads to its con-

tinuous cytoplasmic delocalization and contributes to leukemogenesis. Recent studies have shown that Cytoplasmic NPM1 (NPM1c)

degradation leads to growth arrest and apoptosis of NPM1c AML cells and corrects wt-NPM1 normal nucleolar localization. METHODS:

AML cells expressing wt-NPM1 or NPM1c or transfected with wt-NPM1 or NPM1c as well as wt-NPM1 and NPM1c AML xenograft mice

were used. Cell growth was assessed with trypan blue or a CellTiter 96 proliferation kit. The cell cycle was studied with a propidium

iodide (PI) assay. Caspase-mediated intrinsic apoptosis was assessed with annexin V/PI, the mitochondrial membrane potential, and

poly(adenosine diphosphate ribose) polymerase cleavage. The expression of NPM1, p53, phosphorylated p53, and p21 was analyzed

via immunoblotting. Localization was performed with confocal microscopy. The leukemia burden was evaluated by flow cytometry

with an anti-human CD45 antibody. RESULTS: The imidazoquinoxaline 1-(3-methoxyphenyl)-N-methylimidazo[1,2-a]quinoxalin-4-

amine (EAPB0503) induced selective proteasome-mediated degradation of NPM1c, restored wt-NPM1 nucleolar localization in NPM1c

AML cells, and thus yielded selective growth arrest and apoptosis. Introducing NPM1c to cells normally harboring wt-NPM1 sensitized

them to EAPB0503 and led to their growth arrest. Moreover, EAPB0503 selectively reduced the leukemia burden in NPM1c AML xe-

nograft mice. CONCLUSIONS: These findings further reinforce the idea of targeting the NPM1c oncoprotein to eradicate leukemic cells

and warrant a broader preclinical evaluation and then a clinical evaluation of this promising drug. Cancer 2017;123:1662-73. VC 2017

American Cancer Society.

KEYWORDS: acute myeloid leukemia, apoptosis, 1-(3-methoxyphenyl)-N-methylimidazo[1,2-a]quinoxalin-4-amine (EAPB0503), nucle-

ophosmin 1, xenograft mice.

INTRODUCTION

Acute myeloid leukemia (AML) is a complex, heterogeneous blood malignancy in which a failure to differentiate and an

overproliferation of undifferentiated myeloid precursors result in impaired hematopoiesis and bone marrow (BM) failure.

AML is associated with a highly variable prognosis and a high mortality rate, with overall survival exceeding 2 years for

only 20% of elderly patients and 5 years for less than 50% of adult patients.1

The prognosis of AML is mostly dependent on somatic genetic alterations used to classify the risk as favorable, inter-

mediate, or unfavorable.2 In AML patients with a normal karyotype, the most important genetic mutations influencing

both the prognosis and the treatment strategies are mutations in nucleophosmin 1 (NPM1) and FMS-like tyrosine kinase

3 (FLT-3) internal tandem duplication.3 Recently, more heterogeneous genomic categories for AML have been reported.4
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NPM1 is an essential gene5 encoding a phospho-

protein6 continuously shuttling between the nucleus,

nucleolus, and cytoplasm but mainly residing in the nu-

cleolus.7,8 NPM1 has many functions, including p14Arf

stabilization, ribosomal biogenesis regulation, centroso-

mal duplication control, and p53 activation in response to

stress stimuli.5,6,9 In AML, NPM1 mutations account for

approximately one-third of patients, and this makes it one

of the most frequently mutated genes.6,10 These muta-

tions lead to the creation of a de novo nuclear export sig-

nal,6,10,11 which results in cytoplasmic accumulation of

NPM1c, along with wild-type nucleophosmin 1 (wt-

NPM1) and thus leukemogenesis in these AML

patients.10

Despite all the advances in genetic and epigenetic

changes in AML, there is still little progress in the treat-

ment of the disease. Although complete remission is

reached by almost 70% of patients with standard induc-

tion chemotherapy, refractory disease is common, and re-

lapse represents the major cause of treatment failure.12

Stem cell transplantation remains the best chance for

long-term survival but is associated with several complica-

tions.13 Therefore, new therapeutic approaches, specifi-

cally ones directly targeting the products of AML genetic

alterations, are needed.

In NPM1c AML, degradation of the NPM1c onco-

protein leads to leukemic cell growth arrest and apopto-

sis.14-16 We and others have recently shown that arsenic

trioxide and retinoic acid selectively induce NPM1c pro-

teasomal degradation and thus lead to apoptosis in

NPM1c AML cells.15,16 This combined treatment restores

NPM1 nucleolar localization ex vivo and in vivo. Howev-

er, although the clearance of AML blasts was observed in a

few treated patients, no cure was achieved, likely because

of the complexity and status of the disease burden. This

underlies the need for novel therapies to improve treat-

ment outcomes.

Imiquimod is a toll-like receptor 7 immunomodula-

tor17,18 used to treat certain skin cancers19 and genital

warts.20 Imiquimod analogues, called imidazoquinoxa-

lines, have been synthesized21; among them, 1-(2-phenyl-

ethyl)-N-methylimidazo[1,2-a]quinoxalin-4-amine

(EAPB0203) and 1-(3-methoxyphenyl)-N-methylimi-

dazo[1,2-a]quinoxalin-4-amine (EAPB0503) have been

reported with promising antitumor activity.22,23 Indeed,

EAPB0203 displayed pronouncedly higher in vitro poten-

cy against melanoma and adult T-cell leukemia cells in

comparison with imiquimod.23,24 Later, EAPB0503

showed 10-fold higher cytotoxicity than EAPB0203

against melanoma cells.25 More recently, EAPB0503

showed a potent apoptotic effect in chronic myeloid leu-

kemia cells through BCR-ABL degradation.26

Here we demonstrate that EAPB0503 induces

NPM1c proteasomal degradation selectively in NPM1c

AML cells and leads to their apoptosis. Importantly, in-

troducing NPM1c to wt-NPM1–harboring cells sensitizes

them to EAPB0503. Moreover, EAPB0503 treatment

restores wt-NPM1 nucleolar localization in vitro and also

in ex vivo treated blasts and selectively reduces the leuke-

mia burden in NPM1c AML xenograft mice. These find-

ings expand the antileukemic use of EAPB0503, reinforce

the idea of targeting oncoprotein degradation to kill leu-

kemic cells, and warrant a broader preclinical evaluation

and then a clinical evaluation of this promising drug.

MATERIALS AND METHODS

Cell Lines

KG-1a, ML-2, and THP-1 cell lines (from F. Mazurier)

and IMS-M2 (from H. de Th�e) were grown in Roswell

Park Memorial Institute 1640 medium. OCI-AML3 cells

(from D. Bouscary) were grown in minimum essential

medium a. Cells were seeded at a concentration of

23 105/mL. EAPB0203 or EAPB0503 was used at 0.1 to

5lM, the caspase inhibitor Z-Val-Ala-DL-Asp(OMe)-

fluoromethylketone (zVAD) (Bachem Bioscience) was

used at 50 mM, and the proteasome inhibitor PS-341 was

used at 10 nM.15 Cell growth was assessed with trypan

blue or a CellTiter 96 proliferation kit (Promega).

Primary AML cells from patients’ BM were

extracted as described by El Hajj et al15 after approval by

the institutional review board at the American University

of Beirut and after the patients had consented according

to the Declaration of Helsinki.

Drugs

The synthesis of EAPB0203 and EAPB0503 was

performed as described by Deleuze-Masquefa et al.21,22

Further optimization of EAPB0503 synthesis was

achieved with microwave-assisted chemistry.27

Generation of Cells Expressing wt-NPM1 or

NPM1c

Green fluorescent protein (GFP) wt-NPM1 or NPM1c

inserts were amplified and ligated into a pBybe lentiviral

vector by the EcoRI site. Stable OCI-AML2 expressing wt-

NPM1 or NPM1c was generated by lentiviral transduction

followed by blasticidin selection. GFP-positive cells were

sorted with the FACSAria Special Order Research Product

(Becton Dickinson) and grown in minimum essential me-

dium a before the cell growth assessment.
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HeLa cells were transfected with pcDNA hemagglu-

tinin (HA) expressing wt-NPM1 or NPM1c (from G.

Tell)28 with Lipofectamine 2000 (Invitrogen) according

to the manufacturer’s recommendations and were grown

in Dulbecco’s modified Eagle’s medium.

Xenograft Animal Studies

NOD/Shi-scid IL2rc2/2 (NSG) mice were obtained

from Jackson Laboratories (United States). Mouse proto-

cols were approved by the institutional animal care and

utilization committee of the American University of Bei-

rut. OCI-AML3 or THP-1 cells (13 106) were injected

into the tail vein of 8-week-old females (5 mice per

group). On day 5 after the AML injection, the mice were

treated with EAPB0503 (15mg/kg) for 5 days a week

over a period of 2 weeks. EAPB0503 was dissolved in di-

methyl sulfoxide and diluted in an equal volume of lipo-

fundin (vehicle) before its intraperitoneal administration

to the mice.24,29

Flow Cytometry

Cell cycle analysis

Propidium iodide (PI) staining was used to assess the cell

cycle as described by El Hajj et al.15

Annexin V staining

An annexin V–fluorescein isothiocyanate kit (BD Phar-

mingen) was used to assess phosphatidylserine exposure.

Cells were treated with 1lM EAPB0503 for 24 hours be-

fore annexin V/PI labeling and flow cytometry analysis.

Mitochondrial membrane potential (MMP)

The MMP was assessed by a cell’s ability to retain

rhodamine 123 (Sigma-Aldrich), as described by Saliba

et al.26

A Becton Dickinson FACS instrument was used;

10,000 events per condition were acquired, and FlowJo

software (FlowJo LLC) was used for the analysis of the

results.

Human CD45 staining

BM from the femurs and tibias of euthanized animals was

flushed at the end of week 3 after AML inoculation. Cell

surface staining was performed on 100lL of a sample

with 20 lL of an anti-human CD45 Peridinin Chloro-

phyll Protein (PerCP) conjugated antibody (345809;

Becton Dickinson). After incubation for 15 minutes in

the dark, erythrocytes were lysed with 1mL of an FACS

lysis solution (Becton Dickinson). Labeled samples were

washed twice and analyzed on a Guava flow cytometer.

Immunoblot Analysis

After 48 hours of treatment with EAPB0203 or

EAPB0503, proteins were probed with poly(adenosine di-

phosphate ribose) polymerase (PARP), p53, p21, HA

(Santa Cruz), phosphorylated p53 (Biolabs), or NPM1

(Abcam) before incubation with the monoclonal horse-

radish peroxidase–conjugated secondary antibodies. The

loading control was performed via probing with the

mouse horseradish peroxidase–conjugated glyceraldehyde

3-phosphate dehydrogenase antibody (Abnova) or b-actin

(Abcam). Immunoblots were detected with a luminol de-

tection kit (Santa Cruz), and images were captured with

the X-OMAT or BioRad ChemiDocMP system.

Immunofluorescence Microscopy

AML cells or patients’ blasts were spun down onto glass

slides, fixed, and permeabilized with ice-cold methanol

for 30 minutes. Immunostaining was performed with a

monoclonal antibody against anti-B23 NPM1 (Santa

Cruz) and a polyclonal antibody against the nucleolar

marker fibrillarin (Abcam). Primary antibodies were

revealed by Alexa Fluor 488– or Fluor 594–labeled sec-

ondary antibodies (Santa Cruz). Images were acquired

with a Zeiss LSM 710 laser scanning microscope operated

with Zen 2009 software (Carl Zeiss).

Statistical Analysis

Data are reported as averages and standard deviations. Sta-

tistical analyses were performed with the Student t test; a

P value less than .05 was considered significant.

RESULTS

EAPB0203 and EAPB0503 Induce Growth

Arrest in NPM1c AML Cells

We used 3 wt-NPM1 cell lines (THP-1, KG-1a, and

MOLM-13) and the 2 available NPM1c AML cell lines

(OCI-AML3 and IMS-M2) to test for EAPB0203 and

EAPB0503 effects on cell growth and viability. We tested

a range of drug concentrations (0.1-5mM) and assessed

cell growth for 5 days after treatment. Both treatments

resulted in pronounced time-dependent growth inhibi-

tion of OCI-AML3 cells (Fig. 1A,B). EAPB0203 at 5mM

resulted in significant OCI-AML3 growth inhibition

(P< .05), which started 72 hours after treatment. Strik-

ingly, EAPB0503 was more potent and at 0.1mM resulted

in significant growth inhibition, which started 96 hours

after treatment (P< .001). Similarly significant results

were obtained for both OCI-AML3 and IMS-M2: a con-

centration of 0.5mM induced growth inhibition starting

72 hours after treatment (P< .001), and concentrations
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of 1 and 5 mM induced the same inhibitory effect 24 hours

after treatment (P< .05 and P< .001, respectively; Fig.

1B). Importantly, a median inhibitory concentration of

1 mM in OCI-AML3 and IMS-M2 cells was achieved 2

days after treatment with EAPB0503 (P< .05 and

P< .001, respectively), whereas a concentration of 5 mM

was achieved after treatment with EAPB0203 in OCI-

AML3 (Fig. 1A,B). This more potent effect of EAPB0503

versus EAPB0203 is in line with previously reported

results.26 THP-1 and KG-1a cells were minimally sensi-

tive to the compounds, with only approximately 20%

growth inhibition even 5 days after treatment (Fig. 1A,B).

MOLM-13 cells were also minimally sensitive to

EAPB0203 but displayed approximately 50% growth in-

hibition 72 hours after treatment with EAPB0503 (Fig.

1A,B). This percentage did not become more pronounced

even 5 days after treatment, and the only significant result

was obtained with concentrations of 1 and 5mM, 120 and

72 hours after treatment, respectively (P< .05; Fig. 1B).

Introduction of NPM1c Into wt-NPM1–Expressing

Cells Sensitizes Them to EAPB0503

To examine whether the growth inhibition solely ob-

served in NPM1c cell lines was due to NPM1 mutations,

we introduced NPM1c to wt-NPM1–expressing cells and

checked for their sensitivity to EAPB0503. We used the

Figure 1. EAPB0503 induces selective growth inhibition in NPM1c AML cells. AML cell lines with normal NPM1 (THP-1, KG-1a, and
MOLM-13) and NPM1c (OCI-AML3 and IMS-M2) were treated with increasing concentrations (0.1-5 mM) of (A) EAPB0203 and (B)

EAPB0503 for 24, 48, 72, 96, and 120 hours. (C) Stably transfected OCI-AML2 with green fluorescent protein wt-NPM1 or NPM1c

was treated with increasing concentrations (0.1-5 mM) of EAPB0503 for 24, 48, 72, 96, and 120 hours. (D) HeLa cells transfected

with hemagglutinin-tagged wt-NPM1 or NPM1c were treated with 1 mM EAPB0503 alone or in combination with 10nM PS-341 for
24, 48, and 72 hours as indicated. Cell growth (percentage of the control) was assayed in triplicate. The results represent the

average of at least 3 independent experiments. AML indicates acute myeloid leukemia; EAPB0203, 1-(2-phenylethyl)-N-methylimi-

dazo[1,2-a]quinoxalin-4-amine; EAPB0503, 1-(3-methoxyphenyl)-N-methylimidazo[1,2-a]quinoxalin-4-amine; NPM1, nucleophosmin

1; wt-NPM1, wild-type nucleophosmin 1; Cytoplasmic NPM1 (NPM1c) Hemagglutinin (HA)-tagged confirmed green fluorescent pro-
tein (GFP)-tagged wt-NPM-1 or NPM-1c.
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wt-NPM1–expressing AML cell line (OCI-AML2) and

generated by lentiviral transduction and then blasticidin se-

lection cells stably expressing either GFP-tagged wt-NPM1

or NPM1c. GFP-positive cells were sorted, and a range of

EAPB0503 concentrations (0.1-5mM) were tested to assess

cell growth more than 5 days after treatment. Interestingly,

stable expression of NPM1c in OCI-AML2 resulted in sig-

nificantly pronounced growth inhibition at 0.1mM that

started 72 hours after treatment and at 0.5, 1, and 5mM

that started 48 hours after treatment (P< .05; Fig. 1C). A

minimal effect was observed in wt-NPM1 OCI-AML2:

maximum growth inhibition of 30% (nonsignificant) was

obtained 48 hours after treatment with concentrations of

0.5, 1, and 5mM (Fig. 1C). Similar results were obtained

with HeLa cells: a concentration of 1mM induced growth

arrest starting 48 hours after treatment in HA NPM1c-

transfected cells (P< .001) but not wt-NPM1–transfected

cells (Fig. 1D). This growth inhibition was reversed upon

the addition of PS-341 only in NPM1c-expressing cells

both 24 and 48 hours after treatment (P< .05; Fig. 1D).

Our results strongly suggest that introducing NPM1c into

cells harboring wt-NPM1 sensitizes them to EAPB0503.

Because of its potency, especially in NPM1c AML cells,

only EAPB0503 was adopted at its median inhibitory con-

centration of 1mM for the remainder of the study.

EAPB0503 Induces Massive Apoptosis in NPM1c

AML Cells

To examine the mechanisms dictating growth inhibition

and cell death, a cell cycle analysis was performed 48 hours

after treatment with 1mMEAPB0503. A sharp increase in

the pre-G0 cell percentage, which reached more than

80%, was obtained upon the treatment of OCI-AML3

with EAPB0503. Minimal effect was observed in the wt-

NPM1 cells (THP-1, KG-1a, and MOLM-13; Fig. 2A

and Supporting Fig. 1A [see online supporting informa-

tion]). The cell cycle distribution showed no major varia-

tion in all the tested AML cells untreated or treated with

EAPB0503 (Fig. 2B and Supporting Fig. 1A [see online

supporting information]), and this shows that the drug is

mostly inducing pre-G0 accumulation in NPM1c AML

without affecting the other cell cycle phases.

To confirm the apoptosis, annexin V/PI labeling was

performed, and a significant increase of 40% in annexin V

positivity was observed only in OCI-AML3 cells treated

with 1mMEAPB0503 for 24 hours (P< .005; Fig. 2C and

Supporting Fig. 1B [see online supporting information]).

In contrast, all wt-NPM1 cells remained virtually annexin

V–negative upon treatment with the drug (Fig. 2C and

Supporting Fig. 1B [see online supporting information]).

EAPB0503-Induced Apoptosis in NPM1c AML

Cells Involves the Dissipation of MMP and

Caspase Activation

The intrinsic apoptotic cascade is characterized by many

steps, the earliest of which is the disruption of the

MMP.30 Because EAPB0503 induces apoptosis in

NPM1c AML cells, we measured MMP in untreated cells

or 2 days after treatment with EAPB0503. Treated OCI-

AML3 cells failed to retain the rhodamine 123 dye inside

their mitochondria (Fig. 2D and Supporting Fig. 1C [see

online supporting information]). Conversely, all wt-

NPM1 AML cells showed no loss of MMP up to 48 hours

after treatment (Fig. 2D and Supporting Fig. 1C [see on-

line supporting information]).

To study the effect of MMP dissipation in

EAPB0503-treated AML cells on the caspase cascade, we

examined PARP cleavage. The treatment of OCI-AML3

for 48 hours with EAPB0503 but not with EAPB0203 led

to PARP cleavage into its death-associated fragment (Fig.

2E); this occurred to a much lesser extent in the wt-NPM1

AML cells treated with either drug (Fig. 2E). Interesting-

ly, the cotreatment of cells with the general caspase inhibi-

tor zVAD and EAPB0503 reversed EAPB0503 growth-

induced inhibition in OCI-AML3 (Fig. 2F), whereas no

effect was observed in wt-NPM1 cells (THP-1 and

MOLM-13; Fig. 2F). Altogether, our results indicate that

the selective growth arrest obtained in NPM1c AML with

EAP0503 involves caspase activation.

EAPB0503 Treatment Activates p53 Signaling in

NPM1c AML Cells

To determine whether the EAPB0503-associated growth in-

hibition and apoptosis were p53-mediated, p53 protein lev-

els were monitored 48 hours after treatment with 1mM

EAPB0203 or EAPB0503, and the results were compared

with untreated controls. EAPB0503 induced substantial

upregulation of total p53 protein levels and the p53 phos-

phorylated form exclusively in the NPM1c OCI-AML3 cell

line (Fig. 2G), whereas no effect was observed upon the

treatment of these cells with EAPB0203 (Fig. 2G). Accord-

ingly, p21 protein levels were upregulated only in

EAPB0503-treated OCI-AML3 (Fig. 2G). Because p53 is

mutated in both THP-1 and KG-1a cell lines,31 we tested

p53 only in the wt-NPM1 MOLM-13 cell line and found

that p53, phosphorylated p53, and p21 protein levels

remained unchanged upon treatment with either drug (Fig.

2G). Altogether, these results show that EAPB0503 is a po-

tent inducer of apoptosis exclusively inNPM1c AML cells.
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EAPB0503 Induces NPM1c Proteasomal

Degradation and Restores wt-NPM1 Nucleolar

Localization in NPM1c AML Cells

Given the selective activity of EAPB0503 in NPM1c

AML cells, we examined its effect on NPM1c oncoprotein

degradation. Although no effect of EAPB0203 or

EAPB0503 on NPM1 expression was obtained in THP-

1, MOLM-13, or KG-1a cells (Fig. 3A), EAPB0503 but

not EAPB0203 triggered NPM1 downregulation in OCI-

AML3 cells (Fig. 3B), and this suggests that NPM1c is the

Figure 2.
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primary target of EAPB0503. Critically, adding the pro-

teasome inhibitor PS-341 reversed both NPM1 downre-

gulation and growth arrest (Fig. 3C) specifically in OCI-

AML3 (Supporting Fig. 2 [see online supporting infor-

mation]). To eliminate any potential off-target effect of

the treatment, we treated HA-tagged, wt-NPM1– or

NPM1c-transfected HeLa cells with EAP0503 alone or in

combination with PS-341. With an anti-HA antibody,

our results showed that EAPB0503 proteasome-mediated

degradation was selective for NPM1c and was reversed

upon the addition of PS-341 (Fig. 3D). Using primers

specific for either wt-NPM1 or NPM1c messenger RNA,

we found that neither transcript level was affected in

EAPB0503-treated cells (Supporting Fig. 3 [see online

supporting information]), and this shows that NPM1

downregulation occurs at the protein level. Collectively,

these results strongly suggest that EAPB0503-treated

NPM1c AML cells are secondary to oncoprotein

degradation.

In NPM1c AML, wt-NPM1 oligomerized with

NPM1c and was delocalized to the cytoplasm (Fig.

3E),6,10,11 whereas the treatment of THP-1 cells with

EAPB0503 did not affect NPM1 nucleolar localization

(Fig. 3E), EAPB0503 treatment of OCI-AML3 restored

the nucleolar localization of the remaining NPM1 protein

(Fig. 3E). This suggests that EAPB0503-triggered degra-

dation of NPM1c releases wt-NPM1 and thus corrects

the nucleolar organization defect.

EAPB0503 Selectively Inhibits Proliferation,

Induces NPM1c Degradation, and Restores

wt-NPM1 Nucleolar Localization in Ex Vivo

Treated NPM1c AML Blasts

Primary blasts derived from the BM of 6 AML patients

were treated with EAPB0503. Patient 1 had acute promye-

locytic leukemia with PML/RARA rearrangement, patients

2 and 6 were AML patients with wt-NPM1, and patients 3

to 5 harbored an NPM1 mutation without FLT-3 internal

tandem duplication. Although leukemic cells derived from

patients 1, 2, and 6 were not sensitive to EAPB0503 treat-

ment, those derived from patients 3 to 5 were highly sensi-

tive, and almost all died within the first 48 hours after

treatment (Fig. 4A). Moreover, EAPB0503 induced

NPM1c selective degradation in patients 3 to 5 (Fig. 4B)

and restored the wt-NPM1 nucleolar localization only in

those patients (Fig. 4C). Collectively, EAPB0503 exerts its

growth-inhibition effect, induces NPM1c degradation,

and corrects the wt-NPM1 nucleolar localization selectively

in treatedNPM1cAML blasts ex vivo.

EAPB0503 Selectively Reduces the Leukemia

BM Burden in OCI-AML3 Xenograft Mice

Several xenograft mouse models have been generat-

ed.32,33 Furthermore, OCI-AML3 and THP-1 cells are

known to express the hCD45 marker.33,34 To assess the

in vivo efficacy of EAPB0503, we injected NSG mice

with OCI-AML3 or THP-1 cells. Five days after the

AML cell injection, xenograft mice were treated intraper-

itoneally with EAPB0503 or its respective vehicle (di-

methyl sulfoxide/lipofundin) once daily for 5

consecutive days a week over a period of 2 weeks. At the

end of week 3 after the AML cell inoculation, BM was

flushed from the femurs and tibias of untreated mice and

vehicle- or EAPB0503-treated mice. Human AML xeno-

graft cells were stained with the human-specific

hCD451 antibody and analyzed with flow cytometry.

Our results show that the OCI-AML3 BM burden was

markedly reduced from 34% to 10% upon EAPB0503

treatment (P< .05; Fig. 5A,B), whereas the THP-1 bur-

den was not affected (22% for untreated mice vs 23% for

EAPB0503-treated mice; Fig. 5B,C). These results indi-

cate that EAPB0503 is a promising drug that selectively

Figure 2. EAPB0503 induces caspase-mediated apoptosis in NPM1c AML cells. (A) Pre-G0 cell population after PI staining upon

the treatment of AML cell lines with the median inhibitory concentration dose (1 mM) of EAPB0503 for 48 hours. (B) Percentage

of cycling cell populations after PI staining upon the treatment of AML cells for 48 hours as described previously. Histograms rep-

resent the relative distributions of nonapoptotic cells between the G0/G1, S, and G2/M phases. (C) Annexin V staining of AML cells
treated for 48 hours as described previously. (D) MMP assay. After the treatment with AML cells as described previously and rho-

damine 123 staining, rhodamine 123 was excited at 488nm, and the fluorescence emission at 525nm was assessed with flow

cytometry. (E) Western blot analysis for PARP upon the 48-hour treatment of AML cells with EAPB0203 and EAPB0503. (F) Pro-

liferation assay after the treatment of AML cells (THP-1, MOLM-13, and OCI-AML3) with 1 mM EAPB0503 alone or in combination
with 50mM zVAD (general caspase inhibitor) for 24, 48, and 72 hours. Cell growth is represented as the percentage of the control

as indicated. (G) Western blot analysis for p53, P-p53, p21, and GAPDH in OCI-AML3 and MOLM-13 cells treated for 48 hours

as described. In all flow cytometry assays, histograms represent 1 of 3 independent experiments. P values less than .05 were

considered significant (*P� .05, **P� .01, ***P� .001). AML indicates acute myeloid leukemia; EAPB0203, 1-(2-phenylethyl)-N-
methylimidazo[1,2-a]quinoxalin-4-amine; EAPB0503, 1-(3-methoxyphenyl)-N-methylimidazo[1,2-a]quinoxalin-4-amine; GAPDH,

glyceraldehyde 3-phosphate dehydrogenase; MMP, mitochondrial membrane potential; PARP, poly(adenosine diphosphate ri-

bose) polymerase; PI, propidium iodide; P-p53, phosphorylated p53; zVAD: z-Val-Ala-DL-Asp(Ome)-fluoromethylketone Rhoda-

mine 123 phosphorylated-p53.
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Figure 3. EAPB0503 induces proteasomal degradation of the NPM1c protein and restores the correct wt-NPM1 nucleolar localiza-
tion in the NPM1c OCI-AML3 cell line. Western blot analysis of NPM1 recognizing both NPM1 (wt1c) and actin in (A) AML cell lines

with wt-NPM1 (THP-1, MOLM-13, and KG-1a) and (B) NPM1c OCI-AML3 cell lines treated with 1 mM EAPB0203 or EAPB0503 for 48

hours as indicated. (C) NPM1 (wt1c) and GAPDH in OCI-AML3 treated with 1 mM EAPB0503 alone or in combination with 10nM

PS-341 (proteasome inhibitor) for 48 hours as indicated and proliferation assay after the treatment of OCI-AML3 with 1 mM
EAPB0503 alone or in combination with 10nM PS-341 for 24, 48, and 72 hours. Cell growth is presented as the percentage of the

control as indicated. (D) Western blot analysis for HA, NPM1 (wt1c), and actin in HeLa cells transfected with HA-tagged wt-NPM1

or NPM1c and treated with 1 mM EAPB0503 alone or in combination with 10nM PS-341 for 48 hours as indicated. (E) Confocal mi-

croscopy analysis of NPM1 localization in THP-1 or OCI-AML3 cells after treatment with EAPB0503 for 48 hours. NPM1 was
stained with an antibody recognizing NPM1 (wt1c) (green), nucleoli were stained with anti-fibrillarin (red), and nuclei were

stained with 4�,6-diamidino-2-phenylindole (blue). Images represent z-sections. AML indicates acute myeloid leukemia;

EAPB0203, 1-(2-phenylethyl)-N-methylimidazo[1,2-a]quinoxalin-4-amine; EAPB0503, 1-(3-methoxyphenyl)-N-methylimidazo[1,2-

a]quinoxalin-4-amine; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; HA, hemagglutinin; NPM1, nucleophosmin 1; wt-
NPM1, wild-type nucleophosmin 1; NPM1c, cytoplasmic NPM1; NPM-1 (wt+c): wild type and cytoplasmic NPM1.
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reduces the NPM1c AML BM burden in xenograft ani-

mals and warrants more preclinical investigation and

then a clinical investigation.

DISCUSSION

In this report, we examine the effects of EAPB0503 and

EAPB0203, 2 imidazoquinoxaline agents, on AML cell

Figure 4. EAPB0503 inhibits proliferation, induces the degradation of NPM1c, and restores the nucleolar localization of wt-NPM1

selectively in ex vivo treated blasts derived from NPM1c AML patients. Primary leukemic blasts were harvested from 3 patients
and treated with 1 mM EAPB0503. Patient 1 had APL with PML/RARA rearrangement, patients 2 and 6 were AML patients with

wt-NPM1, and patients 3 to 5 were AML patients harboring an NPM1 mutation without FLT-3 internal tandem duplication. (A) Pro-

liferation of AML blasts after treatment for 24, 48, and 72 hours. Cell growth is represented as the percentage of the control. (B)

Western blot analysis for NPM1 (wt1c) and GAPDH in treated AML blasts as indicated previously. (C) Confocal microscopy of de-
rived blasts from patients 2 and 3. NPM1 (wt1c) was stained with an anti-NPM1 (wt1c) antibody (green), nucleoli were stained

with anti-fibrillarin (red), and nuclei were stained with 4�,6-diamidino-2-phenylindole (blue). Images represent z-sections. AML

indicates acute myeloid leukemia; APL, acute promyelocytic leukemia; EAPB0503, 1-(3-methoxyphenyl)-N-methylimidazo[1,2-

a]quinoxalin-4-amine; FLT-3, FMS-like tyrosine kinase 3; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; NPM1, nucleophos-
min 1; wt-NPM1, wild-type nucleophosmin 1; NPM1c, cytoplasmic NPM1; NPM1 (wt+c), wild-type and cytoplasmic NPM1.
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lines. Imidazoquinoxalines have arisen as promising anti-

cancer drugs on the basis of their in vitro activity in T-cell

leukemia and chronic myeloid leukemia and their in vivo

activity in melanoma.22,23,26 We show that EAPB0503

has a specific growth-inhibition effect on NPM1c

OCI-AML3 and IMS-M2 cells in a dose- and time-

dependent manner. EAPB0503 activity in OCI-AML3

cells is considerably more pronounced than EAPB0203

Figure 5. EAPB0503 selectively reduces the leukemia bone marrow burden in OCI-AML3 xenograft NSG mice. Eight-week-old fe-
male NSG mice were injected with 13 106 OCI-AML3 or THP-1 cells intravenously. EAPB0503 or its vehicle was administered for 5

days per week over a period of 2 weeks intraperitoneally. At the end of week 3, bone marrow was harvested from femurs and tib-

ias of xenograft mice and then stained with the anti-hCD45 antibody. (A) Histograms showing the hCD45 PerCP percentage in

xenograft animals. (B) Unstained and stained OCI-AML3 cell lines with the hCD45 antibody. (C) Representative histograms of
stained and untreated OCI-AML3 xenograft mice, OCI-AML3 xenograft mice treated with the vehicle, and OCI-AML3 xenograft

mice treated with EAPB0503. (D) Representative histograms of stained and untreated THP-1 xenograft mice, THP-1 xenograft

mice treated with the vehicle, and THP-1 xenograft mice treated with EAPB0503. EAPB0503 indicates 1-(3-methoxyphenyl)-N-

methylimidazo[1,2-a]quinoxalin-4-amine; NSG, NOD/Shi-scid IL2rg2/2; PerCP: peridinin chlorophyll protein (*P< .05, **P< .01,
***P< .001); SSC, side scatter.
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activity, and this in line with its higher antitumor potency

in other cancer types.24,25 Introducing NPM1c into cells

harboring wt-NPM1 sensitizes them to EAPB0503. The

phenyl group is directly linked to the core imidazoqui-

noxaline heterocycle in EAPB0503, whereas an ethyl link

exists in EAPB0203 between the 2 parts. This ethyl linker

in EAPB0203 appears to abolish the antileukemic activity

in most of the tested leukemia models in comparison with

the direct linkage in the EAPB0503 compound.26 Indeed,

this change in the EAPB0503 structure enhanced its in

vitro activity and led to better bioavailability in rats.29

We have shown that EAPB0503 induces growth ar-

rest and apoptosis in NPM1c AML cells. Apoptosis is ac-

companied by the dissipation of MMP and PARP

cleavage, and this strongly suggests the involvement of the

intrinsic apoptotic pathway. Our results are consistent

with previous studies showing antitumor activity of

EAPB0503 in melanoma and chronic myeloid leukemia

with a mode of action similar to the mode of this

compound.23,26

NPM1c characterizes one-third of AML patients,6,10

and when it alone is present in the case of a normal karyo-

type, it confers a better prognosis.35 NPM1 mutations

mediate malignancies as observed in transgenic and

knock-in mice.36 Mutated NPM1 is the key hallmark of

OCI-AML3 and IMS-M2 cells for maintaining their ma-

lignant proliferation. In NPM1c AML, emerging studies

have shown that therapies targeting NPM1c oncoprotein

degradation lead to inhibition of proliferation and the cell

death of leukemic cells.14-16 In line with these findings,

we have demonstrated that EAPB0503 degrades the

NPM1c oncoprotein in a proteasome-dependent manner.

This results in correcting the wt-NPM1 nucleolar locali-

zation in both NPM1c AML cells and ex vivo treated

blasts derived from NPM1c AML patients. Furthermore,

in in vivo NPM1c AML xenograft animals, EAPB0503

showed a selective reduction of the BM leukemia burden.

Recently, EAPB0503 was shown to exert potent in-

hibition of tubulin polymerization that correlated with its

antiproliferative activity.27 Therefore, the corrective effect

of wt-NPM1 nucleolar localization after NPM1c degra-

dation warrants testing the disruption of the microtubule

network in NPM1c AML cells to further explain the

mechanism of cell death.

Nowadays, most AML patients are still dying, espe-

cially because the basic therapies have remained un-

changed or have only slightly changed over the last 2

decades. Nonetheless, before novel clinical therapies are

introduced, a deep understanding of the therapeutic ap-

proach is required. The evolutionary changes emerging in

AML classification based on the morphology and cytoge-

netic/genetic changes reflect the importance of identifying

the subtype-specific biology to determine the appropriate

targeted therapy triggering degradation of the byproducts

of these genetic modifications.13 Our results suggest that

EAPB0503 holds promise for the treatment of NPM1c

AML, especially in those patients with mutation A,37

which represents 80% ofNPM1mutations in AML38 and

is the hallmark mutation present in OCI-AML3 and

IMS-M2.39 These promising results were translated in

vivo: among treated mice, EAPB0503 decreased the BM

leukemia burden only in NPM1c xenograft mice. Further

in vivo studies (survival and organ infiltration) and ex vivo

studies (treated blasts) are required for us to have a com-

plete idea of EAPB0503’s mechanism of action.
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Abstract: Acute myeloid leukemia (AML) is one of the most frequent, complex, and heterogeneous

hematological malignancies. AML prognosis largely depends on acquired cytogenetic, epigenetic,

and molecular abnormalities. Despite the improvement in understanding the biology of AML,

survival rates remain quite low. Animal models offer a valuable tool to recapitulate different AML

subtypes, and to assess the potential role of novel and known mutations in disease progression.

This review provides a comprehensive and critical overview of select available AML animal models.

These include the non-mammalian Zebrafish and Drosophila models as well as the mammalian rodent

systems, comprising rats and mice. The suitability of each animal model, its contribution to the

advancement of knowledge in AML pathophysiology and treatment, as well as its advantages and

limitations are discussed. Despite some limitations, animal models represent a powerful approach to

assess toxicity, and permit the design of new therapeutic strategies.

Keywords: Zebrafish; Drosophila; rats; mice; NPM-1; FLT3 ITD; ETO-1; IDH1/2

1. Introduction

Acute myeloid leukemia (AML) is an aggressive and heterogeneous hematological group of

neoplasms characterized by increased proliferation of myeloid progenitor cells and a reduced capacity

to differentiate. This results in the accumulation of myeloblasts in the bone marrow (BM), which

negatively impacts hematopoiesis and leads to BM failure [1]. AML is one of the most common

acute leukemia in adults [2]. Its incidence rate is 2.5 per 100,000 cases/year and the median overall

survival (OS) is approximately nine months [3]. AML treatment and prognosis largely depend on the

patients’ age [4–6]. AML was historically divided into eight major groups according to cell morphology

and immune phenotype (M0 to M7) [7]. This classification has been revised several iterations since

then [8–12]. Exome sequencing in AML patients led to the current classification through identification

of more than 20 driver recurrent mutations [13]. These mainly include Nucleophosmin-1 (NPM1),

DNA methyltransferase 3A (DNMT3A), Fms-like tyrosine kinase-3 (FLT3), isocitrate dehydrogenase (IDH),

Ten–Eleven Translocation 2 (TET-2), Runt-related transcription factor (RUNX-1), CCAAT enhancer binding

protein α (CEBPA), additional sex comb-like 1 (ASXL1), mixed lineage leukemia (MLL), tumor protein p53
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(TP53), c-KIT [14]. These mutations dictate the response to treatment, rates of complete remission,

disease-free survival, overall survival, and classify AML into three prognostic risk factors (favorable,

intermediate, and adverse) (Table 1).

Animal models provide an excellent tool to understand the biology of pathological mechanisms

involved in human diseases. Diverse animal species were used to answer pivotal questions related to

disease progression, genetic mutations, immunity, and response to treatment. Among these models,

Zebrafish was exploited to generate different mutations mimicking several subtypes of human AML.

Table 1. 2017 European LeukemiaNet (ELN) prognostic groups according to genetic abnormalities of

acute myeloid leukemia (AML) [12].

Prognostic Group Genetic Mutations and Abnormalities

Favorable

• t(8;21)/RUNX1-RUNX1T1

• inv(16) or t(16;16)/CBFB-MYH11

• Mutated NPM1 without FLT3-ITD

• or with FLT3-ITD low *

• Biallelic mutated CEBPA

Intermediate

• Mutated NPM1 and FLT3-ITD high *

• Wild-type NPM1 without FLT3-ITD or with FLT3-ITD low *

• t(9;11)/MLLT3-KMT2A

• Cytogenetic abnormalities not classified as favorable or adverse

Adverse

• t(6;9)/ DEK-NUP214

• t(v;11q23.3)/KMT2A rearranged

• t(9;22)/BCR-ABL1

• inv(3) or t(3;3)/GATA2,MECOM(EVI1)

• Complex karyotype

• Monosomal karyotype

• Wild-type NPM1 and FLT3-ITD high *

• Mutated RUNX1  

• Mutated ASXL1  

• Mutated TP53

* Low, low allelic ratio (<0.5); high, high allelic ratio (>0.5);  these mutations should not be used as an adverse
prognostic marker if they co-occur with favorable-risk AML subtypes.

2. Zebrafish: Characteristics and Relevance to Human Blood Malignancies

Danio rerio, commonly known as Zebrafish, shares genetic and molecular mechanisms of

hematopoiesis with humans [15]. This model offers many advantages, including low-cost, optically

transparent embryos, high fecundity, rapid embryogenesis, and short gestation time. The genome

editing in zebrafish was known since 1970s, when the first transgenic zebrafish was generated by

inserting naked linear DNA [16]. Since then, the genetic manipulation of this model evolved to include

clustered regularly interspaced short palindromic repeats (CRISPR) technology [17], which renders

zebrafish an attractive model for studying specific gene involvement and for drug screening in blood

malignancies [18–20].

During normal zebrafish hematopoiesis, both the primitive and definitive waves arise from the

mesoderm germ layer under the control of the Transforming Growth Factor beta (TGF-β) superfamily

proteins, known as bone morphogenic proteins (BMP such as bmp2b and bmp7) [21–23]. The generated

transient primitive erythroid and myeloid cells are essential for the embryonic development, while the

hematopoietic stem cells (HSCs) and progenitor cells (HSPCs) produce blood lineages in the adult

fish [24]. In the below section, we will provide an overview of AML models of Zebrafish (summarized

in Table 2).
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2.1. AML Models of Zebrafish

2.1.1. Spi-1: MYST3/NCOA2-EGFP

MYST3 (MOZ) is a member of the MOZ, YBF2, SAS2, TIP60 (MYST) family of histone

acetyl-transferases (HAT), while NCOA2 (TIF2) is a member of the p160 HAT family [25–28]. The first

AML model in Zebrafish was created by expressing the fusion protein, MYST3/NCOA2 (MOZ/TIF2).

This fusion targets hematopoietic cells under the control of spi-1 (pu.1), an early myeloid promoter [29].

pu.1 is an ETS-domain transcription factor expressed in both immature lymphoid/hematopoietic cells

and myeloid cells during zebrafish hematopoiesis [30]. Cells expressing pu.1 differentiate into myeloid

progeny, whereas cells with low pu.1 expression shift to the erythroid fate [31]. After an extended latent

period, a small percentage of transgenic fish developed AML [29]. These animals presented with an

extensive invasion of kidneys by myeloid blast cells, proving the oncogenic potency of MYST3/NCOA2

fusion gene [29]. Although this model is useful as a chemical library screen, especially for compounds

that target epigenetic regulation of gene expression [29], the long latency and low incidence waned the

enthusiasm for its use.

2.1.2. hsp70: AML1-ETO

A chromosomal translocation between chromosomes 8 and 21 (t(8;21)(q22;q22)) occurs in 12–15%

of AML patients [32]. This chromosomal rearrangement yields a fusion transcription factor encoding

AML1 (RUNX1) linked to ETO, forming the AML1-ETO fusion product [33–35]. This translocation was

introduced under the control of the heat shock promoter hsp70 in zebrafish embryos (hsp70: AML1-ETO).

Transgenic Zebrafish recapitulated the human AML features, at both the cytological and transcriptional

levels [36]. The expression of this fusion protein led to the accumulation of non-circulating hematopoietic

cells, whereby the intermediate cell mass was enriched with myeloperoxidase positive neutrophils

and morphologically immature hematopoietic blasts [36]. The disruption of definitive hematopoiesis

led to switching the cells fate from the erythroid to the myeloid lineage [36]. Overexpression of the

transcription factor reversed the observed phenotypes, implicating scl, as major player downstream

of AML1-ETO [36]. This model enabled the screening of a small molecule library and discovery of

compounds that antagonize the activity of AML1-ETO in the hematopoietic progenitor cells (HPCs) [36].

Inhibition of COX-2 and β-catenin signaling antagonized AML1-ETOs effects on HPCs differentiation

and may have implications in human AML [37].

2.1.3. MYCN: HSE: EGFP

MYCN (N-myc) proto-oncogene is upregulated in many types of hematological malignancies [38,39]

including 20 to 40% of pediatric AML patients [40]. To unravel the molecular and transcriptional

networks by which MYCN induces malignancy, Shen et al. established a transgenic embryonic zebrafish

model, Tg (MYCN: HSE: EGFP), expressing the murine MYCN under a heat shock promoter [41]. MYCN

overexpression induced immature myeloid blast cell expansion and reprogrammed the hematopoietic

cell fate through MYCN downstream-regulated gene 1b (ndrg1b) and other lineage-specific

hematopoietic transcription factors regulation [41]. The primitive hematopoiesis was enhanced

through scl and lmo2 upregulation. Furthermore, erythroid differentiation was blocked through

downregulation of gata1, while myelopoiesis was promoted by pu.1 overexpression [41]. This model

presents a high AML incidence (∼75% of transgenic zebrafish) and a rapid onset occurrence, providing

a platform for whole-organism chemical suppressor screens, to identify compounds that can reverse

MYCN function in vivo [41].

2.1.4. FLT3-ITD and NPM1c+Models in Zebrafish

FLT3-ITD and NPM1 are two major players in defining the prognosis and response to treatment

in AML patients. FLT3 is a tyrosine kinase receptor that plays a major role in hematopoiesis through

the regulation of proliferation, differentiation, and apoptosis of HPCs [42]. It is highly expressed on
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leukemic blasts of 70–100% of AML patients [43,44]. Several mutations occur in the FLT3 receptor,

the most common of which leads to an internal tandem duplication (ITD) [45]. FLT3-ITD occurs in 20%

of AML patients and is strongly associated with poor prognosis [46,47]. NPM1, a shuttling protein

between the nucleoplasm and the cytoplasm, plays several roles, notably ribosomal biogenesis [48,49].

NPM1 is mutated (NPM1c+) in around 30% of AML patients with normal karyotype [50]. NPM1c+ is

continuously translocated to the cytoplasm contributing to leukemogenesis [50].

FLT3-ITD plays a role in embryonic primitive and definitive hematopoiesis in zebrafish. Transgenic

zebrafish embryos with human FLT3-ITD showed expansion and clustering of myeloid cells [51].

Thus far, the impact of FLT3-ITD on adult zebrafish remains underexplored.

Bolli et al. generated a transgenic zebrafish model expressing NPM1c+, which perturbed primitive

hematopoiesis by promoting the early expansion of pu.1+ myeloid cells [52]. This phenotype was

even more pronounced in a p53-deficient background [52]. An increase in the number of gata1+/lmo2

indicating expansion of erythro-myeloid progenitors (EMPs) was also observed. These EMPs highly

expressed both c-myb and CD41 but not RUNX1, suggesting a disruption of definitive hematopoiesis

where these cells could be the main target of NPM1c+. This model provides a tractable in vivo

system for the study of the mechanisms through which hematopoietic development is perturbed in the

presence of NPM1c+ [52].

Transgenic zebrafish models expressing either human FLT3-ITD or NPM1 proteins under the

control of pu.1 promoter were also generated [53]. For that purpose, spi-1: FLT3-ITD-2A-EGFP/CG2

expressing mutant FTL3-ITD and spi-1: NPM1-Mut-PA/CG2 expressing mutant NPM1 constructs

were designed. This double mutant transgenic fish (FLT3-ITD/NPM1.Mut) exhibited an accelerated

rate of myeloid leukemogenesis [53]. By the age of six months, around 66% of the transgenic fish

produced significantly increased precursor cells in the kidney marrow along with dedifferentiated

myeloid blasts [53].

2.1.5. Spi-1: CREB-EGFP

The cAMP response element binding protein (CREB) plays a major role in hematopoiesis through

the regulation of proliferation and differentiation of myeloid progenitor cells [54]. Overexpression

of CREB is associated with immortalization, growth factor-independent proliferation and blast-like

phenotype in BM progenitor cells [55]. CREB is highly expressed in BM samples of both adult and

pediatric AML patients [56]. Tregnago et al. generated a transgenic zebrafish model (spi-1: CREB-EGFP)

expressing the CREB gene downstream pu.1 promoter in the myeloid cell lineage. CREB overexpression

resulted in upregulation of erythroid and myeloid genes, altering primitive hematopoiesis. Among

adult transgenic zebrafish, 80% of the fish developed AML after 9–14 months through the blockage of

myeloid differentiation [57]. These fish showed aberrant expression of a set of 20 genes in common

with pediatric AML. The most intriguing is the CCAAT-enhancer-binding-protein-δ (C/EBPδ) that acts

downstream CREB. It resulted in impaired myeloid differentiation that could be reversed through

inhibition of the CREB-C/EBPδ axis. These findings are complementary with the data obtained by

screening for CREB and C/EBPδ in pediatric AML patients, offering an opportunity to test for novel

therapeutics through this model [57].

2.1.6. Spi-1: SOX4-EGFP

SOX4 is a transcription factor belonging to the SOX (Sry-related high-mobility groupbox)

family [58]. In AML patients, SOX4 overexpression results in poor prognosis and short overall

survival [59]. SOX4 was reported to contribute to the leukemic phenotype of C/EBPα mutant AML

in murine models as well as in human AML. C/EBPα protein typically inhibits the self-renewal of

leukemic cells and restores cellular differentiation. SOX4 overexpression results in C/EBPα inactivation,

enabling leukemic cells proliferation and AML development [60,61].

Lu et al. generated a transgenic zebrafish model Tg (spi-1:SOX4-EGFP) expressing SOX4 protein

downstream the spi-1 myeloid promoter. Early developmental stages of transgenic zebrafish did not
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reveal a difference of expression of SOX4. However, by the age of five months, Tg (spi-1:SOX4-EGFP)

zebrafish kidneys started showing mild vacuoles in the renal tubule which evolved into effacement,

distorted structure, and increased infiltration of myeloid cells by the ages of 9 and 12 months. A higher

number of myeloid progenitor cells and excess blast cells with focal aggregation were observed in the

kidney marrow blood cells of 9-, 12-, and 15-months old fish but not younger ones, highlighting that

myeloid transformation is age-dependent [59].

2.1.7. IDH 1/2 Mutation

Mutations identified in a family of enzymes involved in the citric acid cycle, isocitrate

dehydrogenases 1/2 (IDH1/2), account for 16% of AML patients [62]. These mutations substitute

arginine residue almost exclusively at codon 132 in IDH1 (IDH1-R132H) and codons 140 and 172 in

IDH2 [62]. To study the involvement of IDH in AML, zidh1 was either suppressed or deleted and

resulted in the blockage of differentiation and accumulation of early myeloid progenitor cells, while

decreasing macrophage and natural killer progenitor cells [63]. The importance of IDH1 mutation was

asserted when plasmids of IDH1-R132H were injected into zebrafish embryos [63]. An increase in

2-hydroxyglutarate (2-HG) level, a reduction of 5-Hydroxymethylcytotsine (5-hmC), and an expansion

of myelopoiesis were obtained in these embryos. A human IDH1-R132H–specific inhibitor significantly

ameliorated both hematopoietic and 2-HG responses in human but not zebrafish IDH1 mutant

expression [63]. This result is not surprising and highlights some of the drawbacks using Zebrafish as

a model for human diseases. On the other hand, studies on zidh2 were restricted to the regulation of

embryonic hematopoiesis in zebrafish but with no relevance to the human AML [63].

Even with the drawbacks of not possessing many mammalian-like organs, zebrafish still provides

an excellent, affordable, and rapid platform for evaluating several aspects of AML. The variations in the

biological microenvironment might impede drug delivery and performance in humans. Additionally,

zebrafish are ectothermic (cold-blooded), so their physiology is not identical to humans, which might

affect enzyme kinetics and metabolism. The genetic diversity detected between individual zebrafish

belonging to the same strain confounds data and could be misleading [64]. The sparsity of reagents to

study zebrafish at the molecular level is contrasted by the abundance of mouse-specific reagents.

3. Rodent Models

Due to the complexity and heterogeneity of AML in humans, rodent models have been instrumental

in providing a platform for answering pivotal questions related to AML pathogenesis, disease

progression, and developing new effective therapeutic approaches. Among these models, rats and

mice represent the closest accepted mammalian models to AML.

3.1. Rats

Several transplantable leukemia rat models were established using carcinogens, radiations, and

pollutants [65–67].

Transplantable Rat Models

Acute Myeloid Leukemia/ Chronic Meylogenous Leukemia (AML/CML) leukemia: Repeated

intravenous injections of 7, 12-dimethylbenz (a) anthracene (DMBA) into WOP/H-Onc strain or

Wistar/H-Onc strain, induced leukemia in 10% of the rats in 5–9 months. This leukemia has myeloid

characteristics as revealed by hematological and histological examination, as well as infiltration of

myeloid blasts into several organs (BM, liver, spleen, and lymph nodes). This myeloid nature showed

similarities with both human CML (as demonstrated by high peroxidase and Sudan black B positive

cells and reduction in alkaline phosphatase positivity) and human AML (non-specific esterase activity,

highly reduced in the peripheral blood but slightly reduced in BM). These findings do not support the

use of these rats as an exclusive AML model [68].
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Brown Norwegian Myelogenous Leukemia (BNML): The transplantable promyelocytic leukemia

in BN rat (BNML) was first described in 1971. This slow growing leukemia shares many common

characteristics with AML, including the disappearance of normal hematopoiesis [69]. Similarities

in in vitro colony forming assays between AML patients and BNML rats validated it as a model for

AML [70,71]. Several therapeutic modalities were optimized using this model; these include the

combination of anthracyclines, [72,73] Ara-C, [74,75], 4′-(9-acridinylamino) methanesulfon-m-anisidide

(AMSA) [76], and other therapeutics [77–79]. One of the most significant advantages in the BNML model

is its contribution to the improvement of minimal residual disease (MRD) detection by karyotyping [80]

and multidimensional flow cytometry [81,82].

3.2. Mice

Mice offer an invaluable model due to their small size, cost-effectiveness, and easy maintenance,

availability of research tools, and ease of manipulation to produce and recapitulate several human

diseases, including cancer. Since hematopoiesis in mice has been well characterized, they provide a

reasonably reproducible model to study AML pathogenesis and potential therapies. Murine AML

models include induced, transgenic animals, and humanized mouse models (Table 3) among others.

3.2.1. Chemically-Induced Model

AML models were generated using the L1210 and p388 cell lines, isolated from DBA/2 mice

chemically exposed to the carcinogen 3-methylcholantrene [83]. These models were transplantable

and provided a platform for testing chemotherapeutic drugs, studying their kinetics, and evaluating

their anti-leukemic effectiveness [84]. The L1210 model was used to screen anthracyclines [85] and

antimetabolites [86,87] including Cytarabine [88]. The p388 model was used to investigate the efficacy

of natural products as topoisomerase II inhibitors [89]. These models allowed significant improvement

in the treatment of AML, including the currently used Cytarabine [90]. The main limitation of using

these animal models is the induction of more lymphoid than myeloid leukemia, and the needed

prolonged exposure to those carcinogens to develop leukemia [91].

3.2.2. Radiation-Induced Model

The correlation between radiation and leukemia was established in patients exposed to x-rays,

and survivors of nuclear attacks. Among this cohort of subjects, children presented mostly with ALL,

whereas adults were more prone to CML and AML [92–95]. All established radiation-induced AML

models carry deletions on chromosome 2, where the hematopoietic transcription factor Sfpi1/pu.1 is

located [96].

RF Model

The RF strain was developed by Furth in 1933 at the Rockefeller Institute [97]. In this model,

myeloid leukemia was developed following exposure to fission neutron irradiation or gamma

irradiation [98]. In the RF model, a single dose of ionizing radiation-induced myeloid leukemogenesis

in 4–6 months, with symptoms reminiscent to human AML [99]. Flt3-ITD mutations were identified in

10% of RF mice [100], which correlates with the occurrence of this mutation in human AML [101].

SJL/J Model

This model is characterized by high spontaneous frequency of reticulum cell neoplasm type B

at an early age [102]. The radiation-induced AML in this model is similar to the secondary human

AML occurring after irradiation of Hodgkin disease patients [103]. The efficient development of

AML required the addition of promoting factors, such as corticosteroids and growth factors, colony

stimulating factor CSF-1, known to be high in AML patients [104].
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C3H/He and CBA Models (CBA/Ca, CBA/Cne, and CBA/H)

These models were generated in 1920, by cross-breeding Bragg albino with DBA mice. While

C3H/He was specifically selected for the high incidence of mammary tumors [105], CBA was selected

for a lower incidence of mammary tumors. The C3H/He was detected 24 h after irradiation in

BM cells; this indicates that chromosomal 2 alteration is responsible for the initiation of myeloid

leukemogenesis [106]. CBA showed chromosome 2 and 4 aberrations [107,108]. Moreover, an 8%

decrease in DNA methylation was observed after exposure to radiation. This hypomethylation

played a role in leukemogenesis [109]. The CBA model is considered the most favorable model in

radiation-inducedAML because of low spontaneous leukemia incidence (0.1 to 1%), high incidence of

AML after exposure to radiation or benzene, with lower latency, compared to other models, and more

importantly, it mimics human AML at the cytological, histopathological, and molecular levels.

3.2.3. Virally Induced Leukemia Models

Murine leukemia viruses (MuLV) induce non-B and non-T cell leukemia in mice [110,111] and are

considered among the simplest retroviruses that shed light on the pathogenesis of leukemia [112,113].

A model was created by injecting cell-free filtrates, including replication-deficient spleen focus forming

virus (SFFV) and a replication-competent Friend MuLV [114,115]. It was noticed that the same infection

of MuLV induces several subtypes of AML (Table 4), resembling French–American–British (FAB)

classification of human AML [116]. Furthermore, MuLV-induced AML led to the discovery of several

genes with a significant role in the regulation of growth, death, lineage determination, and development

of hematopoietic precursor cells [117]. MuLV induced AML is considered a critical landmark for

understanding the pathogenesis of human AML, since it unraveled relevant unknown oncogenes to

leukemogenesis (Table 4).

3.2.4. Transposon Models

Sleeping Beauty (SB) transposon is an insertional mutagenesis system, allowing overexpression or

inactivation of specific genes depending on the transposon orientation and integration site [118,119].

SB consists of a mobilized piece of DNA, transposon, and a transposase enzyme [120]. In a transgenic

animal with a humanized NPM1c+ knock-in allele, this system enhanced the incidence and onset

of AML in NPM1c+ mice [121]. An advantage of this model was the identification of mutations in

leukemia genes [121].

3.2.5. Transgenic Models: Single Mutation

PML-RARα t(15;17)

Acute promyelocytic leukemia (APL) is a subtype of AML, characterized by t(15;17) chromosomal

translocation, resulting in the promyelocytic leukemia-retinoic acid receptor α (PML-RARα) fusion

protein [122,123]. PML-RARα was expressed in three mouse models under the myeloid regulatory

promoters. Under the CD11b promoter, transgenic mice showed abnormal myelopoiesis and increased

radiation sensitivity, however, did not develop any leukemia [124]. Mice expressing the transgene

under the human cathepsin G (HCG) and human MRP8 (hMRP8) promoters [124–126] developed APL

phenotypes after a long period of latency [125,126]. These two models recapitulated the remissions

seen after all trans-retinoic acid (ATRA) treatment in human APL [125,126].

AML1-Eight-Twenty One Oncoprotein

AML1-Eight-Twenty One oncoprotein (ETO) chimeric product, encoded by the t(8;21), occurs

in around 12–15% of AML [32]. Knock-in mice expressing AML1-ETO is embryonic lethal due

to the complete absence of liver-derived definitive hematopoiesis [127,128]. Embryonic livers

contained dysplastic multilineage hematopoietic progenitors that had an abnormally high self-renewal



Genes 2019, 10, 614 8 of 35

capacity in vitro, a phenotype typical of leukemic cells [129]. To bypass the embryonic lethality,

inducible transgenic models were generated. These mice expressed AML1-ETO in their BM progenitor

cells [130,131]. Although abnormal maturation and proliferation of progenitor cells were observed,

mice failed to develop leukemia [130,131]. Expression of AML1-ETO under the control of hMRP8

promoter was unable to develop AML until their exposure to a robust DNA-alkylating mutagen,

N-ethyl-N-nitrosourea [132]. To further enhance AML development, this mouse model was modified

by either the expression of other factors or mutations in tyrosine kinases such as c-KIT, FLT3-ITD,

or the TEL- platelet-derived growth factor receptor β (PDGFbR) [133,134].

CBFB-MYH11

The beta subunit of the core binding complex (CBFB) is a heterodimeric core-binding transcription

factor, with a critical role in hematopoiesis [135]. CBF products, due to chromosomal translocations,

account for approximately 25% of pediatric and 15% of adult AML patients [136]. The translocation

Inv(16) (p13;q22) is a result of the binding of CBFB subunit to the tail region of the smooth muscle myosin

heavy chain (SMMHC) gene, MYH11 [137]. The resulting fusion protein (CBFB-MYH11) competes with

the binding of CBF to target genes, disrupting transcriptional regulation, thus contributing to leukemic

transformation [137]. Similar to embryos with homozygous mutations in AML1 [128], knock-in

embryonic mice (Cbfb+/Cbfb-MYH11) lacked definitive hematopoiesis and died during gestation [138].

Chemically or retrovirally induced mutations in heterozygous CBFB-MYH11 adults led to AML

development [138,139]. A conditional knock-in mouse model expressing CBFB-MYH11 fusion protein

in adult mice (Cbfb+/56M) was also generated [140] and led to AML development in 90% of the mice

within five months [140].

Mutant Nucleophosmin-1 (NPM1c+)

Mutations in the Nucleophosmin-1 (NPM1) gene represent one of the most frequent genetic

aberrations in AML [141] and account for 30% of AML patients [50]. Transgenic mice harboring the

NPM1c+mutation developed myeloproliferation in BM and spleen, supporting a role of NPM1c+ in

AML [142]. Chou et al. generated a knock-in transgenic mouse model by inserting the most frequent

mutation, TCTG called mutation A, in the C-terminus of wt-NPM1 [143]. Mice homozygous for

the transgene encountered embryonic lethality, whereas one-third of the heterozygotes (Npm1wt/c+)

developed the fetal myeloproliferative disease but not AML [143]. Conditional expression of NPM1c+

with further genetic manipulations resulted in two models [121,144]. In one model, one-third of the

transgenic mice developed leukemia after a long period of latency associated with AML features [144].

In the other model, the expression of humanized NPM1c+ in the hematopoietic stem cells caused HOX

overexpression, enhanced self-renewal, and expanded myelopoiesis [121].

Fms-Related Tyrosine Kinase 3 Internal Tandem Repeats

The second most common genetic aberrations in de novo AML patients occur in the fms-related

tyrosine kinase 3 internal tandem repeats (FLT3-ITD) gene on chromosome 13. These associate with

poor prognosis and short overall survival (OS) [145]. A transgenic mouse model expressing FLT3-ITD

under the vav hematopoietic promoter was created [146]. The majority of transgenic mice developed a

myeloproliferative syndrome (MPS) characterized by megakaryocytic hyperplasia and thrombocytosis

but not AML [146]. In FLT3-ITD knock-in mice, loss of FLT3 wild-type allele contributed to myeloid

expansion and aggressiveness of the MPS disease [147]. Several other models expressing this mutation

also revealed MPS but not AML [148,149].

Mixed Lineage Leukemia (MLL)

The translocation t(9;11)(p22;q23) produces the fusion product MLL-AF9 [150,151]. In one

model, embryonic stem cells were generated from an in-frame fusion of AF9 with exon 8 of mouse

MLL [152]. Other models conditionally expressed MLL-AF9 [153]. These models developed only
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AML despite the widespread activity of the MLL promoter [152,153]. Conditional expression of

MLL-AF9 in long-term hematopoietic stem cells (LT-HSC) produced aggressive AML with extensive

tissue infiltration, chemo-resistance, and expressed genes related to epithelial-mesenchymal transition

in solid cancers [154]. MLL early introduction results in abnormalities of myeloid cell proliferation

and differentiation [155]. Moreover, HOXa9 was found to be essential for the MLL-dependent

leukemogenesis in vivo [156].

The translocation t(4;11)(q21;q23) produces the fusion product MLL-AF4. This translocation is

associated with pro-B-ALL and rarely AML [157]. Although several models have been established

for this translocation, only few models resulted in AML. MLL-AF4 models generated using both a

knock-in [158] and Cre-inducible invertor model [159] produced large B-cell lymphoma rather than the

immature acute leukemia observed in humans [158,159]. The MLL-AF4 expression in hematopoietic

precursors, during mouse embryonic development, developed long latency B-cell lymphoma [159,160].

Furthermore, MLL-AF4 knock-in followed by in vitro inducible transduction generated mice with both

AML and pre-B-ALL as well as a few MLLs [161].

Leukemia with the t(11;19)(q23;p13.3) translocation express MLL-ENL fusion proteins capable of

malignant transformation of myeloid and/or lymphoid progenitor(s). Immortalized cells containing

MLL-ENL proviral DNA or enriched primary hematopoietic stem cells transduced with MLL-ENL

induced myeloid leukemia in syngeneic and SCID recipients [162]. Using an in vitro B-cell

differentiation system, retroviral transduction of MLL-ENL generated a leukemia reminiscent of

human MLL-ENL ALL [163]. Other models expressed MLL-ENL-ERTm, the ligand-binding domain

of the estrogen receptor modified to specifically recognize synthetic but not endogenous estrogens,

using retroviral transduction approach [164]. Several other models were generated encountering more

mutation along with MLL-ENL [165,166].

IDH 1/2

A conditional knock-in mouse model was created by inserting the mutated human IDH1 (R132H)

into the endogenous murine idh1 locus. IDH1 (R132H) was expressed in all hematopoietic cells under

the vav promoter (vav-KI mice) or specifically in cells of the myeloid lineage (LysM-KI mice) [167].

Transgenic mice showed increased number of early hematopoietic progenitors and developed

splenomegaly and anemia with extramedullary hematopoiesis, characteristics of a dysfunctional

BM niche, along with partial blockage in myeloid differentiation [167]. Moreover, LysM-KI cells have

hypermethylated histones and changes to DNA methylation similar to those observed in human IDH1-

or IDH2-mutant AML, demonstrating the induction of leukemic DNA methylation signature in the

mouse model [167].

3.2.6. Transgenic Models: Compound Transgenic Mouse Models

K-RAS-G12D + PML-RARα

4% and 10% of APL patients with PML-RARα fusion had oncogenic N-RAS and K-RAS mutations,

respectively [168,169]. The conditional expression of oncogenic K-RAS and PML-RARα in mice

induced a rapid-onset and highly penetrant, lethal APL-like disease [170].

These mice may be used to test for the therapeutic efficacy of inhibitors of RAS post-translational

modifications and RAS downstream signaling [170].

N-RASD12 + BCL-2

N-RAS, a protein belonging to the family of RAS GTP-ases, is mutated in patients at risk of

leukemic transformation after chemotherapy and/or radiotherapy [171]. N-RAS mutation at codon

12 is the most frequent abnormality in myelodysplastic syndromes (MDS), associated with AML

transformation and poor OS [172]. B-cell lymphoma 2 (BCL-2) protein is an apoptosis regulatory

protein. BCL-2 is overexpressed in AML patients [173], which blocks the differentiation of myeloid
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progenitors [174]. Both mutants have been previously identified as risk factors for AML in MDS

patients [172].

Two murine models of initiation and progression of human MDS/AML were generated [175].

The transplantable model expressing hBCL-2 in a primitive compartment by mouse mammary tumor

virus–long terminal repeat (MMTVtTA /TBCL-2/NRASD12) represents human MDS, whereas the

constitutive MRP8 [BCL-2/NRASD12] model is closer to AML [175]. Both models showed expanded

leukemic stem cell (Lin−/Sca-1+/c-Kit+) populations. hBCL-2 is observed in the increased RAS-GTP

complex within the expanded Sca-1+ compartment [175]. The difference of hBCL-2 oncogenic

compartmentalization associates with the pro-apoptotic mechanisms in MDS and the anti-apoptotic

in AML mice [175]. Downregulation of hBCL-2 in MDS mice partially reversed the phenotype and

prolonged survival; however BM blasts and tissue infiltration persisted [175]. This model revealed that

the two candidate oncogenes BCL-2 and mutant N-RAS can cooperate to give rise to malignant disease

with a penetrance of around 80% and a latency period of 3 to 6 months [175].

Mixed Lineage Leukemia-Partial Tandem Duplication + FLT3-ITD

Mixed lineage leukemia-partial tandem duplication (MLL-PTD) is expressed in 5 to 7% of cytogenetically

normal (CN)-AML patients [176,177]. Approximately 25% of these patients have constitutive activation

of FLT3-ITD, conferring a poor prognosis [178]. To recapitulate the MllPTD/WT:flt3ITD/WT AML found in

humans, a double knock-in mouse model was generated by expressing these two mutated genes under

their respective endogenous promoters [179]. After a period of latency, this model developed AML

with a short life span, extensive extramedullary involvement, and increased aggressiveness [179].

Reminiscent of this subtype of AML in humans, these transgenic mice have normal chromosomal

structures, reduced MLL-WT expression, loss of FLT3-WT, and increased total FLT3 expression [179–182].

Moreover, increased HOXA9 transcript levels were observed, rendering this model valuable for the

assessment of epigenetic modifying agents combined with tyrosine kinase inhibitors [179].

NUP98-HOXD13 + FLT3-ITD

The chromosomal translocation t(2;11)(q31;p15) leads to the fusion of Nucleoporin (NUP98),

a structural component of the nuclear pore complex, to the homeobox protein NHD13 (HOXD13),

inducing leukemogenesis [183]. NUP98-HOX fusions are observed in human and murine MDS [184].

Clinical and experimental evidence demonstrated that high rate of FLT3-ITD mutations was observed

in patients with NUP98 translocations [185]. High-level transcriptional expression of NUP98-HOX

correlated with higher transcript levels of FLT3 and an increased incidence of FLT3 activating

mutations [185]. A novel model combining an FLT3-ITD mutation with NHD13 (HOXD13) was

generated using their respective endogenous promoters [186]. Initially, these transgenic mice developed

leukemia with both primitive myeloid and lymphoid origin. Later, strictly myeloid leukemia with

minimal differentiation were monitored [186]. Indeed, NHD13 transgene enhanced the overexpression

of the HOX genes, HOXA7, HOXA9, HOXB4, HOXB6, HOXB7, HOXC4, and HOXC6 [186], shown to

play an important role in HSC self-renewal and are upregulated in acute leukemia [187–189]. Nevertheless,

mice encountered a spontaneous loss of heterozygosity with a high frequency, resulting in the loss of

WT FLT3 allele, [186], a characteristic of patients with FLT3-ITD mutations [180]. These transgenic mice

provide a model to study the molecular pathways underlying MDS-related AML [186].

NPM1c+/FLT3

NPM1c+ and FLT3-ITD double mutations are found in about 40% of AML patients [190].

A compound transgenic mouse model with a double mutation in NPM1 and FLT3 was generated

by crossing conditional Npm1flox−cA/+ with constitutive Flt3ITD/+ mice [191]. Inducing recombination

of Npm1flox−cA in hematopoietic stem cells was accomplished by crossing the double heterozygous

mice into Mx1-Cre transgenic mice [191]. Double mutant mice developed AML and died by the age

of 31–68 days. Peripheral blood showed increased leukocyte counts, reduced numbers of circulating
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B and T lymphocytes along with a marked population of immature blasts, while BM cells exhibited

increased self-renewal potential [191]. Solid organs were infiltrated with abnormal myeloid cells

inducing splenomegaly and hepatomegaly by the time of death, highlighting the role of this double

mutation in leukemogenesis [191].

N-RAS-G12D + CBFB-MYH11

A knock-in mice (NrasLSL-G12D; Cbfb56M) with an allelic expression of oncogenic N-RASG12D and

CBFB-MYH11 developed leukemia in a cell-autonomous manner, with a short median latency and

high leukemia-initiating cell activity [192]. Mice displayed an increased survival of pre-leukemic

short-term HSCs and myeloid progenitor cells with a sustained blocked differentiation induced by the

fusion protein [192]. NrasLSL-G12D; Cbfb56M leukemic cells were sensitive to pharmacologic inhibition

of the MEK/ERK signaling pathway [192], highlighting the importance of this pathway in AML and

proposing MEK inhibitors as potential therapeutic agents in inv16/ N-RASG12D AML [192].

NPM1c + N-RAS-G12D

One of the most common mutations with NPM1c+ is the N-RAS mutation occurring in 20%

of NPM1c+ AML patients [190]. NPM1 and N-RAS double mutant transgenic mice (Npm1cA/+;

NrasG12D/+) developed high penetrance, enhanced self-renewal capacity in hematopoietic progenitors,

and AML-like myeloid differentiation bias [193]. At the genomic level, frequent amplification of

the mutant N-RAS-G12D allele was observed, along with other somatic mutations in AML driver

genes [193]. Within the HOX genes, which were overexpressed, HOXa genes and downstream targets

were crucial for the survival of the double-mutant mice [193].

WT1-R394W + FLT3-ITD

Wilms tumor 1 (WT1) is a zinc finger transcriptional regulator of target genes implicated in

cell differentiation and quiescence [194]. Mutations in WT1 occur in 10–15% of CN-AML, and it

is frequently associated with mutations in several genes [194,195]. FLT3-ITD and WT1 mutations,

when present concomitantly, identify a group of AML patients that fail to respond to the standard

induction chemotherapy, which results in poor OS [195,196]. Double mutant mice Flt3+/ITD/Wt1+/R394W

displayed manifestations of shortened survival, myeloid expansion in the BM, anemia, and erythroid

dysplasia [197]. Although this model did not appear sufficient to consistently recapitulate human

AML, it demonstrated that the combined mutations resulted in a more aggressive disease than either

mutant genotype [197].

3.2.7. Humanized Models

Humanized mouse models, injected with AML cell lines or patient-derived AML blasts, offered a

faster approach and were instrumental in studying different aspects of AML. Several models were

attempted to study AML in Nude mice with little success [198,199]. This section will focus on promising

models for AML studies.

SCID Mice

The severe combined immuno-deficient (SCID) mice lacking B and T cell immunity [200], represent

essential humanized AML mouse models [201]. Indeed, patient-derived AML cells engraftment

enabled the identification of leukemia-initiating cells (LIC), expressing CD34+ CD38− surface markers,

recapitulating the human HSCs signature [202]. Engraftment of AMLs from different FAB classes into

SCID mice reflected their intrinsic biologic behavior, suggesting a clinical correlation to the growth and

dissemination of these leukemic subtypes [203]. However, lack of species cross-reactivity of cytokines

and the innate host immunity against human AML cells resulted in poor engraftment of the BM [204].

In an attempt to overcome these limitations, exogenous human cytokines and growth factors were
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provided, which resulted in better engraftment of human cells [202,204–206]. One limitation of this

model is the “leakiness” of the SCID mutation occurring in around 10% of the mice [207]. These mice

present functional B and T cells, enhanced natural killer (NK) cell activity, and complement activation

decreasing the engraftment efficiency [208]. An attempt to bypass this problem uses radiation and/or

anti-asialo-GM1 antibody pretreatment. Unfortunately, it reduced the survival of the host, rendering

this model unsuitable for human xenograft [209,210].

NOD/SCID Mice

To further improve tumor engraftment, a non-obese diabetic (NOD/SCID) model exhibiting

further impairment of NK activity, reduced mature macrophage, and total lack of B and T cells

was generated [211]. This model yielded higher engraftment rates with fewer human AML

cells, yet with preserved morphological, phenotypical, and genotypical characteristics of the AML

donors [212–215]. This model was used successfully in the screening for new therapeutics in

AML [216]. In addition, human AML cells engraftment enabled the fractionation of LICs (CD34+

CD38−) into CD34+/CD71−/HLA-DR [217], CD34 Thy1 hematopoietic stem cells [218] and CD34/CD117

(or ckit) [219] subpopulations. Nevertheless, the NOD/SCID model presents the limitation by which

higher engraftment rates required the supplementation of human cytokines or transplantation of

growth-factor producing cells [220,221]. Moreover, long term engraftments (more than 8.5 months)

were disabled due to the development of thymic lymphomas and restoration of NK cells activity during

this period [211]. A variant with NOD/SCID background is the NSS model (N/S-S/GM/3) expressing

Steel factor (SF), granulocyte macrophage-colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3)

human growth factors was generated [222]. NSS displayed enhanced engraftment of pre-leukemic

myeloid cell cultures, as well as primary human AML samples, suggesting that the NSS mouse is a

better host for at least a subset of AML samples [223].

NSG Mice

NOD/SCID mice were further immunosuppressed to generate the NOD/SCID b2-microglobulin

null mice with a complete abolishment of the NK cell activity [224]. Importantly, a NOD/SCID

IL2-Rγ−/− or NSG model was generated by deletion or truncation of the gamma chain of IL-2R [225].

In addition to all the abnormalities of their predecessors, NSG mice possess a defective production of

IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21 as well as a severe impairment of the dendritic cell (DC) and their

capacity to produce interferon γ (IFN-γ) upon stimulation [225,226]. Engraftment of newborn NSG

mice with human CD34+ HSCs leads to the generation of a complete hematopoietic system, including

red blood cells and platelets [226]. Studies revealed a significantly higher potential of AML cells

engraftment in adult NSG mice in comparison to previous immunodeficient hosts [227,228]. Attempts

to create different subtypes of AML were successful in NSGs [228]. NSG mice xenotransplanted with

five well-characterized AML cell lines established AML models of particular relevance and significance

to drug-sensitivity studies [228]. These models were exploited to study the in vivo potency of an

Imidazoquinoxalines immunomodulatory drug, EAPB0503, and showed its specific activity in NPM1c+

AML subtype [229]. The usability of NSG model allowed the evaluation of the effect of a synthetic

retinoid ST1926, or its encapsulated form in nanoparticles (ST1926-NP). El-Houjeiri et al. demonstrated

that ST1926-NP is more potent in NSG injected with THP-1 cells [230]. MOLM-13-injected NSG mice

showed strong efficacy to chemotherapy (cytarabine, 50 mg/kg) and 5+3 regimen of daunorubicin

(1.5 mg/kg) [231]. These models enabled the in vivo tracking of UCB-NK cells, demonstrating their

capability to migrate to BM and inhibit progression of human leukemia cells. Administering a low

dose of human IL-15 enhanced survival of these mice, emphasizing the role of innate immunity in AML

outcome [232]. In that sense, utilization of NSG model enabled the assessment of the combination of

HSPC-NK cell adoptive transfer with the hypomethylating agents (HMAs), azacitidine (AZA), and

decitabine (DAC). Cany et al. signified that the therapeutic combination exerted a significant delay in

AML progression in these mice [233].
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Table 2. A summary of generated AML Zebrafish models and their contribution to the understanding of the disease.

Zebrafish Model Zebrafish Manipulation Model Features and Major Findings

spi-1: MYST3/NCOA2-EGFP
Transgenic expression of human MYST3/NCOA2 fusion under the
spi-1/pu.1 promoter

First AML model in zebrafish
1.1% of transgenic fishes expressing the transgene developed AML after
long latency

hsp70: AML1-ETO
Transgenic expression of human AML1-ETO fusion under hsp70
promoter

A phenotype similar to human AML
Disruption of definitive hematopoiesis: the switch of cell fates from erythroid
to myeloid through gata1 downregulation and pu.1 overexpression
AML1-ETOs effects on HPCs differentiation was mediated through
Cycloxygenase-2 (COX-2) and β-catenin signaling pathways

mRNA: NPMc+
mRNAs injection into 1-cell–stage embryos followed by morpholinos
(MOs) targeting npm1a and npm1b

Perturbation of primitive and definitive hematopoiesis
Alterations in the expression of major transcription factors (pu.1
csf1r+, c-myb, CD41, RUNX1)

HSE-MYCN-EGFP Induction of murine N-myc gene through heat-shock promoter

AML development with high incidence and rapid onset
Enhancement of primitive hematopoiesis through alteration of transcription
factors (pu.1, gata1, scl, lmo2, p27kip and p21cip1)
Activation of major cancer signaling pathways

IDH1/2 mutants

Knockdown of zebrafish idh1 and idh2 (zidh1 and zidh2) by morpholino
knockdown and Transcription activator-like effector nuclease
(TALEN-)mediated mutagenesis

zidh1 suppression/deletion is correlated with a blockage of di
the myeloid lineage
zidh1 effects definitive hematopoiesis exclusively
zidh2 affects primitive hematopoiesis exclusively

Transgenic expression of human IDH1 mutation Embryos recapitulated the features of human AML

FLT3-ITD-2A-EGFP spi-1:
NPM1-Mut-PA spi-1:

Transgenic expression of human FLT3-ITD or/and NPM1 mutations
under the spi-1 promoter

Myeloproliferative neoplasm (MPN) development as a result of a single
mutation.
66.6% of double mutant transgenic fish showed increased precursor cells in
the kidney marrow along with dedifferentiated myeloid blasts.

spi-1: CREB-EGFP Expression of CREB-EGFP under spi-1 promoter in myeloid lineage
Alteration of primitive hematopoiesis in embryos
AML development in 79% of adult fishes by 9–14 months
Aberrant expression of 20 genes diagnosed in pediatric AML

Spi-1: SOX4-EGFP Expression of SOX4 protein downstream the spi-1 promoter
Increase in the number of myeloid progenitor cells and blast cells in the
kidney marrow
Distortion of the kidney structure
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Table 3. A summary of generated AML mice models and their contribution to the understanding of the disease.

Mouse Model Manipulation Outcomes and Major

Chemically-Induced Model

Transplantable AML models were generated
using the L1210 and p388 cell lines, isolated
from DBA/2 mice chemically exposed to the
carcinogen 3-methylcholantrene.

Provide a platform for testing
chemotherapeutic drugs, studying their
kinetics, and evaluating their
effectiveness (mainly Cytarabine)

Radiation- Induced Model

RF model
Myeloid leukemia was developed following
exposure to fission neutron irradiation or γ
irradiation

FLT3-ITD mutations were identified in 10%
of RF-AML mice which correlates with the
occurrence of mutation of human AML

SJL/J model

The radiation induced AML (RI-AML) in
this model, is similar to the secondary
human AML occurring after irradiation of
Hodgkin disease patients

The efficient development
model was achieved by adding promoting
factors, corticosteroids and
like colony stimulating factor
to be high in AML patients

C3H/He and CBA models (CBA/Ca,
CBA/Cne, and CBA/H)

These models were generated by cross
breeding Bragg albino with DBA mice

CBA model is considered the most favorable
model in RI-AML
High incidence of AML after exposure to
radiation or benzene with lower latency
compared to other models,
Mimics human AML at the cytological,
histopathological, and molecular

Virally-induced leukemia models MuLV
Murine leukemia viruses (MuLV) induce
non-B and non-T cell leukemia in mice

Same infection of MuLV induces several
subtypes of AMLthat resembles FAB
classification
Identifies unknown oncogenes
to leukemogenesis.

Transposon models

Sleeping Beauty (SB) transposon is another
insertional mutagenesis system, allowing
overexpression or inactivation of specific
genes depending on the transposon
orientation and integration site

Identification of mutations in leukemia
genes, which provided new pathogenetic
insights and potential therapeutic
NPM1c+ AML
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Table 3. Cont.

Mouse Model Manipulation Outcomes and Major

Trans-genic
models

Single mutation

Promyelocytic Leukemia protein
(PML)-RARα t(15;17)

Expressing PML-RARα
under CD11b promoter

Abnormal myelopoiesis and
radiation sensitivity
No AML development

Expressing PML-RARα under human
cathepsin G (HCG) promoter

APL phenotype after long
Remission seen after All Trans Retinoic Acid
(ATRA) treatment in APL

Expressing PML-RARα under human MRP8
(hMRP8) promoter

APL phenotype after long
Remission seen after ATRA treatment in APL

AML1- Eight-Twenty One
oncoprotein (ETO)

Knock-in of AML1-ETO into mouse embryos
(AML1-ETO/+)

Absence of liver-derived definitive
hematopoiesis
Embryonic lethality

Expressing AML1-ETO in adult bone
marrow progenitor cells

Abnormal maturation and
progenitor cells
No AML development

Expressing AML1-ETO under human MRP8
(hMRP8) promoter

AML development after
N-ethyl-N-nitrosourea

CBFB-MYH11

Knock-in embryonic mice
(Cbfb+/Cbfb-MYH11)

Lack of definitive hematopoiesis
Embryonic lethality

Chemical/ retroviral mutagens on
heterozygous CBFB-MYH11 adults

AML development

Conditional knock-in adult mice (Cbfb+/56M)
AML development in 90% of mice after 5
months

Mutant Nucleophosmin-1
(NPM1c+)

Knock-in mice expressing NPM1 with
mutation A (NPM1c+)

Homozygotes encountered embryonic
lethality
1/3 of the heterozygotes (
developed fetal myeloproliferative
but not AML
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Table 3. Cont.

Mouse Model Manipulation Outcomes and Major

Expression of NPM1 with mutation A
(NPM1c+) under the pCAG promoter

1/3 of the transgenic mice developed
leukemia after a long period of latency

Expression of humanized NPM1c+ in the
hematopoietic stem cells

HOX overexpression
Enhanced self-renewal
Expanded myelopoiesis

Fms-related tyrosine kinase 3
internal tandem repeats (FLT3-ITD)

Expressing FLT3-ITD under the vav
hematopoietic promoter

Myeloproliferative syndr
Megakaryocytic hyperplasia
thrombocytosis
No AML development

FLT3-ITD knock-in mice with lost FLT3
wild-type allele

Myeloid expansion and aggr
the MPS disease
No AML development

Mixed Lineage Leukemia (MLL)

Embryonic stem cell formed by in-frame
fusion of AF9 with exon 8 of mouse MLL

AML development

Conditional expression of MLL-AF9 using
programmed interchromosomal
recombination

AML development

Conditional expression of MLL-AF9 in
LT-HSC

Aggressive AML
Extensive tissue infiltration
Chemoresistance
Expression of genes related to
epithelial-mesenchymal transition
solid cancers

Early introduction of MLL
Abnormalities of myeloid cell proliferation
and differentiation

IDH 1/2
Expressing IDH1/2 under the vav promoter
(Vav-KI mice) or specifically in cells of the
myeloid lineage (LysM-KI mice)

Increased number of early hematopoietic
progenitors
Splenomegaly
Anemia
Extramedullary hematopoiesis,
characteristics of a dysfunctional BM niche
and partial blockage in myeloid
differentiation
Induction of leukemic DNA methylation
signature in mouse model
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Table 3. Cont.

Mouse Model Manipulation Outcomes and Major

Compound mutations

K-RAS-G12D + PML-RARα
Constitutive expression of K-RAS and
PML-RARα

Rapid-onset and highly penetrant,
APL-like disease

N-RAS12D + BCL-2

MMTVtTA /TBCL-2/NRASD12
Expression of hBCL2 in a primitive
compartment by mouse mammary tumor
virus–long terminal repeat

MDS development
Expanded leukemic stem
(Lin−/Sca-1+/c-Kit+) populations
Increased apoptosis
Malignant disease with a penetrance of
around 80% and a latency period of 3 to 6
months

MRP8 [BCL-2/NRASD12]
Constitutive expression of BCL-2 under
human MRP8 promoter

AML development
Expanded leukemic stem
(Lin−/Sca-1+/c-Kit+) populations
No apoptotic cells
Malignant disease with a penetrance of
around 80% and a latency period of 3 to 6
months

MLL-PTD + FLT3-ITD
Expressing MLL-PTD and FLT3-ITD under
their respective endogenous promoters

Latent AML with a short life span, extensive
extramedullary involvement
aggressiveness
Normal chromosomal str
Reduced MLL-WT expression
Loss of FLT3-WT and incr
expression
Increased HOXA9 transcript

NUP98-HOXD13 + FLT3-ITD
Expressing FLT3-ITD and NHD13 (HOXD13)
under their respective endogenous
promoters

Myeloid leukemia with minimal
differentiation
Overexpression of several
Spontaneous loss of heterozygosity with a
high frequency, resulting in the loss of WT
FLT3 allele

NPM1c+ - FLT3
Crossing conditional Npm1flox−cA/+ with
constitutive Flt3ITD/+ mice

AML development
Lethality by the age of 31-68 days
Modified blood cell counts
Immature blasts in BM
Myeloid cells infiltration
Splenomegaly and hepatomegaly
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Table 3. Cont.

Mouse Model Manipulation Outcomes and Major

N-RAS-G12D + CBFB-MYH11
Allelic expression of oncogenic N-RASG12D

and CBFB-MYH11

Leukemia development in a cell-autonomous
manner with a short median latency
High leukemia-initiating
Increased survival of pre-leukemic
short-term HSCs and myeloid
cells with blocked differentiation
Leukemic cells were sensitive to MEK
inhibitors

NPM1c + N-RAS-G12D
Conditional expression of NPM1c+ and
N-RAS-G12D

AML-like myeloid differentiation bias
Hematopoietic progenitors with high
penetrance and enhanced
capacity
Frequent amplification of the mutant
N-RAS-G12D allele
Somatic mutations in AML driver genes
Overexpression of HOX genes

WT1-R394W + FLT3-ITD
Crossing Flt3+/ITD mice with Wt1+/R394W

mice

MDS/MPN development
Shortened survival
Myeloid expansion in the BM,
Anemia
Erythroid dysplasia

Xenograft/humanized models

SCID mice Autosomal recessive mutation

Lack of B and T cells
Retained innate immunity
Identification of leukemia initiating cells
(LIC)
Poor engraftment of human AML cells in the
BM

NOD/SCID mice
NOD/SCID model:
Express additional mutations

Impairment of NK activity
Reduced mature macrophages
Total lack of B and T cells
Fractionation of LIC into subpopulations

NSS model
(N/S-S/GM/3): variant of NOD/SCID mice
expressing SF, GM-CSF and IL-3

Better host for a subset of AML [

NSG mice Deletion or truncation of the γ chain of IL-2R

Defective production of major interleukins
and IFN-γ
Impairment of dendritic cells
Complete abolishment of the NK cell activity
Higher engraftment capacity of human AML
cells than previous models
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Table 4. Murine leukemia virus (MuLV) induced AML models: Major gene discoveries and their involvement in different French–American–British (FAB)

AML subtypes.

MuLV Virus Mouse Strain AML Subtype FAB Classification Major Gene Discoveries References

CasBrM-MuLV NFS Granulocytic M1 or M2 His-1
CasBrE MuLV NIH Swiss Myeloid M1 or M2 Fli-1

Endogenous ecotropic MuLV AKXD-23 Granulocytic M1 or M2 Evi-1
Friend-MuLV C57BL/6 Granulocytic M1 or M2 Ccnd1
Friend-MuLV DBA/2 Myeloblastic M1 or M2 Evi-1, & c-myb

M-MuLV BALB/c Promonocytic M5 c-myb

B ecotropic MuLV BXH-2 Myelomonocytic M4
c-myb, HOXa7, HOXa9, Meis1
Hhex, Rarg, Sharp1, Ccnd3

Clabp, Hmgcr, Nf1
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4. Drosophila Melanogaster

AML1-ETO

The chromosomal translocation t(8:21)(q22;q22) is frequent and common in AML. It represents up

to 40% of AML subtype M2 of the FAB classification [256]. The fusion gene resulting in this translocation

encodes for the chimeric protein AML1-ETO, which contains the N-terminus of AML1 (including its

DNA binding domain) and most of the ETO protein [33,257], and inhibits the expression of AML1 target

genes leading to leukemogenesis [258]. The detailed molecular mechanism governing this interference

is poorly understood, which enticed the generation of several animal models to understand its mode

of action. AML1-ETO alone is not sufficient to induce leukemia unless accompanied by secondary

mutations [130,131,259]. The simplicity of genetics and ease of manipulation in Drosophila presents it

as an attractive model to study this complex translocation. In addition, Drosophila hematopoiesis is

comparable to that of mammals [260]. Two AML1-ETO models of genetically engineered Drosophila

were generated. In the first model, AML1-ETO is a constitutive transcriptional repressor of AML1

target genes. In the second model, AML1-ETO dominantly interferes with AML1 activity by potentially

competing for a common co-factor [261]. The transcription factor Lozenge (Lz) that is similar to human

AML1 protein is necessary for the development of crystal cells, one of the major Drosophila blood cells,

during hematopoiesis [262]. Using these models and by comparison with loss-of-function phenotypes

of Lz, AML-1-ETO was shown to act as a constitutive transcriptional repressor [261]. Osman et al.

reported that AML1-ETO inhibits the differentiation of crystal cell lineage, and induces an increase

in the number of circulating LZ+ progenitors. Moreover, large scale RNA interference screen for

suppressors of AML1-ETO in vivo showed that calpainB is required for AML1-ETO-induced leukemia

in Drosophila. Surprisingly, calpainB inhibition in Kasumi-1 cells (AML patient cell line carrying

t(8;21) translocation) leads to AML1-ETO degradation and impairs their clonogenic potential [263].

Another study identified pontin/RUVBL1as a suppressor of AML1-ETO. Indeed, PONTIN knock-down

inhibits the proliferation of t(8;21) positive cells, and that PONTIN is essential for Kasumi-1 clonogenic

potential and cell cycle progression [264]. Thus, AML1-ETO can be recapitulated in Drosophila blood

for investigating its mechanism and identifying potential targeted therapeutics for this AML subtype.

Despite advances in our understanding of many molecular mechanisms, in vitro research falls

short in determining overall effect of treatment modalities or drug discovery. AML is an intricate

disease where culture consisting of a single cell line system, can never recapitulate the complexity of the

disease. In the difficulty of obtaining primate models of AML, small rodents, zebrafish, and Drosophila

with well characterized genetic background and relative ease of manipulation, are the backbone of

current work where leukemic cells are interfaced with the host immunity, metabolic environment and

importance of the niche ation. Not one model is sufficient to address all posed questions. However,

collectively, these models have expanded our knowledge and understanding of several pathways and

important players in AML pathogenesis.

Author Contributions: All authors listed have made a substantial, direct and intellectual contribution to the
work, and approved it for publication. H.S., B.J., R.H., M.H. writing—original draft preparation, N.D., A.B.
writing—review and editing, M.E.S. and H.E.H. supervision, review and editing.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lowenberg, B.; Downing, J.R.; Burnett, A. Acute myeloid leukemia. N. Engl. J. Med. 1999, 341, 1051–1062.

[CrossRef] [PubMed]

2. Yamamoto, J.F.; Goodman, M.T. Patterns of leukemia incidence in the United States by subtype and

demographic characteristics, 1997–2002. Cancer Causes Control 2008, 19, 379–390. [CrossRef] [PubMed]



Genes 2019, 10, 614 21 of 35

3. Maynadie, M.; Girodon, F.; Manivet-Janoray, I.; Mounier, M.; Mugneret, F.; Bailly, F.; Favre, B.; Caillot, D.;

Petrella, T.; Flesch, M.; et al. Twenty-five years of epidemiological recording on myeloid malignancies: Data

from the specialized registry of hematologic malignancies of Cote d’Or (Burgundy, France). Haematologica

2011, 96, 55–61. [CrossRef] [PubMed]

4. Dohner, H.; Weisdorf, D.J.; Bloomfield, C.D. Acute Myeloid Leukemia. N. Engl. J. Med. 2015, 373, 1136–1152.

[CrossRef] [PubMed]

5. Deschler, B.; Lübbert, M. Acute myeloid leukemia: Epidemiology and etiology. Cancer 2006, 107, 2099–2107.

[CrossRef] [PubMed]

6. Lowenberg, B.; Suciu, S.; Archimbaud, E.; Haak, H.; Stryckmans, P.; de Cataldo, R.; Dekker, A.W.;

Berneman, Z.N.; Thyss, A.; van der Lelie, J.; et al. Mitoxantrone versus daunorubicin in induction-consolidation

chemotherapy—The value of low-dose cytarabine for maintenance of remission, and an assessment of

prognostic factors in acute myeloid leukemia in the elderly: Final report. European Organization for the

Research and Treatment of Cancer and the Dutch-Belgian Hemato-Oncology Cooperative Hovon Group.

J. Clin. Oncol. 1998, 16, 872–881. [PubMed]

7. Bennett, J.M.; Catovsky, D.; Daniel, M.-T.; Flandrin, G.; Galton, D.A.G.; Gralnick, H.R.; Sultan, C. Proposals

for the Classification of the Acute Leukaemias French-American-British (FAB) Co-operative Group. Br. J.

Haematol. 1976, 33, 451–458. [CrossRef] [PubMed]

8. Vardiman, J.W.; Harris, N.L.; Brunning, R.D. The World Health Organization (WHO) classification of the

myeloid neoplasms. Blood 2002, 100, 2292–2302. [CrossRef]

9. Vardiman, J.W.; Thiele, J.; Arber, D.A.; Brunning, R.D.; Borowitz, M.J.; Porwit, A.; Harris, N.L.; Le Beau, M.M.;

Hellström-Lindberg, E.; Tefferi, A.; et al. The 2008 revision of the World Health Organization (WHO)

classification of myeloid neoplasms and acute leukemia: Rationale and important changes. Blood 2009, 114,

937–951. [CrossRef]

10. Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.;

Vardiman, J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and

acute leukemia. Blood 2016, 127, 2391–2405. [CrossRef]

11. Dohner, H.; Estey, E.H.; Amadori, S.; Appelbaum, F.R.; Buchner, T.; Burnett, A.K.; Dombret, H.; Fenaux, P.;

Grimwade, D.; Larson, R.A.; et al. Diagnosis and management of acute myeloid leukemia in adults:

Recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 2010,

115, 453–474. [CrossRef] [PubMed]

12. Dohner, H.; Estey, E.; Grimwade, D.; Amadori, S.; Appelbaum, F.R.; Buchner, T.; Dombret, H.; Ebert, B.L.;

Fenaux, P.; Larson, R.A.; et al. Diagnosis and management of AML in adults: 2017 ELN recommendations

from an international expert panel. Blood 2017, 129, 424–447. [CrossRef] [PubMed]

13. Weinstein, J.N.; Collisson, E.A.; Mills, G.B.; Shaw, K.M.; Ozenberger, B.A.; Ellrott, K.; Shmulevich, I.;

Sander, C.; Stuart, J.M. The Cancer Genome Atlas Pan-Cancer Analysis Project. Nat. Genet. 2013, 45,

1113–1120. [CrossRef] [PubMed]

14. Ley, T.J.; Miller, C.; Ding, L.; Raphael, B.J.; Mungall, A.J.; Robertson, A.; Hoadley, K.; Triche, T.J., Jr.; Laird, P.W.;

Baty, J.D.; et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J.

Med. 2013, 368, 2059–2074. [PubMed]

15. Howe, K.; Clark, M.D.; Torroja, C.F.; Torrance, J.; Berthelot, C.; Muffato, M.; Collins, J.E.; Humphray, S.;

McLaren, K.; Matthews, L.; et al. The zebrafish reference genome sequence and its relationship to the human

genome. Nature 2013, 496, 498–503. [CrossRef]

16. Stuart, G.W.; McMurray, J.V.; Westerfield, M. Replication, integration and stable germ-line transmission of

foreign sequences injected into early zebrafish embryos. Development 1988, 103, 403–412. [PubMed]

17. Hwang, W.Y.; Fu, Y.; Reyon, D.; Maeder, M.L.; Tsai, S.Q.; Sander, J.D.; Peterson, R.T.; Yeh, J.R.; Joung, J.K.

Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 2013, 31, 227–229.

[CrossRef]

18. Rasighaemi, P.; Basheer, F.; Liongue, C.; Ward, A.C. Zebrafish as a model for leukemia and other hematopoietic

disorders. J. Hematol. Oncol. 2015, 8, 35. [CrossRef]

19. Macrae, C.A.; Peterson, R.T. Zebrafish as tools for drug discovery. Nat. Rev. Drug Discov. 2015, 14, 721–731.

[CrossRef]



Genes 2019, 10, 614 22 of 35

20. Pruvot, B.; Jacquel, A.; Droin, N.; Auberger, P.; Bouscary, D.; Tamburini, J.; Muller, M.; Fontenay, M.; Chluba, J.;

Solary, E. Leukemic cell xenograft in zebrafish embryo for investigating drug efficacy. Haematologica 2011, 96,

612–616. [CrossRef]

21. Dick, A.; Hild, M.; Bauer, H.; Imai, Y.; Maifeld, H.; Schier, A.F.; Talbot, W.S.; Bouwmeester, T.;

Hammerschmidt, M. Essential role of Bmp7 (snailhouse) and its prodomain in dorsoventral patterning of

the zebrafish embryo. Development 2000, 127, 343–354. [PubMed]

22. Schmid, B.; Fürthauer, M.; Connors, S.A.; Trout, J.; Thisse, B.; Thisse, C.; Mullins, M.C. Equivalent genetic

roles for bmp7/snailhouse and bmp2b/swirl in dorsoventral pattern formation. Development 2000, 127,

957–967. [PubMed]

23. Kishimoto, Y.; Lee, K.H.; Zon, L.; Hammerschmidt, M.; Schulte-Merker, S. The molecular nature of zebrafish

swirl: BMP2 function is essential during early dorsoventral patterning. Development 1997, 124, 4457–4466.

[PubMed]

24. Paik, E.J.; Zon, L.I. Hematopoietic development in the zebrafish. Int. J. Dev. Boil. 2010, 54, 1127–1137.

[CrossRef] [PubMed]

25. Carapeti, M.; Aguiar, R.C.; Goldman, J.M.; Cross, N.C. A novel fusion between MOZ and the nuclear receptor

coactivator TIF2 in acute myeloid leukemia. Blood 1998, 91, 3127–3133.

26. Coulthard, S.; Chase, A.; Watmore, A.; Swirsky, D.M.; Orchard, K.; Vora, A.; Goldman, J.M. Two cases of

inv(8)(p11q13) in AML with erythrophagocytosis: A new cytogenetic variant. Br. J. Haematol. 1998, 100,

561–563. [CrossRef] [PubMed]

27. Aguiar, R.C.; Chase, A.; Coulthard, S.; Macdonald, D.H.; Carapeti, M.; Reiter, A.; Sohal, J.; Lennard, A.;

Goldman, J.M.; Cross, N.C. Abnormalities of chromosome band 8p11 in leukemia: Two clinical syndromes

can be distinguished on the basis of MOZ involvement. Blood 1997, 90, 3130–3135.

28. Liang, J.; Prouty, L.; Williams, B.J.; Dayton, M.A.; Blanchard, K.L. Acute mixed lineage leukemia with an

inv(8)(p11q13) resulting in fusion of the genes for MOZ and TIF2. Blood 1998, 92, 2118–2122.

29. Zhuravleva, J.; Paggetti, J.; Martin, L.; Hammann, A.; Solary, E.; Bastie, J.-N.; Delva, L. MOZ/TIF2-induced

acute myeloid leukaemia in transgenic fish. Br. J. Haematol. 2008, 143, 378–382. [CrossRef]

30. Hsu, K.; Traver, D.; Kutok, J.L.; Hagen, A.; Liu, T.-X.; Paw, B.H.; Rhodes, J.; Berman, J.N.; Zon, L.I.;

Kanki, J.P.; et al. The pu.1 promoter drives myeloid gene expression in zebrafish. Blood 2004, 104, 1291–1297.

[CrossRef]

31. Voso, M.T.; Burn, T.C.; Wulf, G.; Lim, B.; Leone, G.; Tenen, D.G. Inhibition of hematopoiesis by competitive

binding of transcription factor PU. Proc. Natl. Acad. Sci. USA 1994, 91, 7932–7936. [CrossRef] [PubMed]

32. Rowley, J.D. Identificaton of a translocation with quinacrine fluorescence in a patient with acute leukemia.

Ann. Genet. 1973, 16, 109–112. [PubMed]

33. Erickson, P.; Gao, J.; Chang, K.S.; Look, T.; Whisenant, E.; Raimondi, S.; Lasher, R.; Trujillo, J.; Rowley, J.;

Drabkin, H. Identification of breakpoints in t(8;21) acute myelogenous leukemia and isolation of a fusion

transcript, AML1/ETO, with similarity to Drosophila segmentation gene, runt. Blood 1992, 80, 1825–1831.

[PubMed]

34. Miyoshi, H.; Shimizu, K.; Kozu, T.; Maseki, N.; Kaneko, Y.; Ohki, M. t(8;21) breakpoints on chromosome 21

in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc. Natl. Acad. Sci.

USA 1991, 88, 10431–10434. [CrossRef] [PubMed]

35. Nisson, P.E.; Watkins, P.C.; Sacchi, N. Transcriptionally active chimeric gene derived from the fusion of the

AML1 gene and a novel gene on chromosome 8 in t(8;21) leukemic cells. Cancer Genet. Cytogenet. 1992, 63,

81–88. [CrossRef]

36. Yeh, J.R.; Munson, K.M.; Chao, Y.L.; Peterson, Q.P.; Macrae, C.A.; Peterson, R.T. AML1-ETO reprograms

hematopoietic cell fate by downregulating scl expression. Development 2008, 135, 401–410. [CrossRef]

[PubMed]

37. Yeh, J.-R.J.; Munson, K.M.; Elagib, K.E.; Goldfarb, A.N.; Sweetser, D.A.; Peterson, R.T. Discovering chemical

modifiers of oncogene-regulated hematopoietic differentiation. Nat. Methods 2009, 5, 236–243. [CrossRef]

[PubMed]

38. Hirvonen, H.; Hukkanen, V.; Salmi, T.T.; Mäkelä, T.P.; Pelliniemi, T.T.; Knuutila, S.; Alitalo, R. Expression of

L-myc and N-myc proto-oncogenes in human leukemias and leukemia cell lines. Blood 1991, 78, 3012–3020.

[PubMed]



Genes 2019, 10, 614 23 of 35

39. Hirvonen, H.; Hukkanen, V.; Salmi, T.T.; Pelliniemi, T.T.; Alitalo, R. L-myc and N-myc in hematopoietic

malignancies. Leuk Lymphoma 1993, 11, 197–205. [CrossRef] [PubMed]

40. Ross, M.E.; Mahfouz, R.; Onciu, M.; Liu, H.-C.; Zhou, X.; Song, G.; Shurtleff, S.A.; Pounds, S.; Cheng, C.;

Ma, J.; et al. Gene expression profiling of pediatric acute myelogenous leukemia. Blood 2004, 104, 3679–3687.

[CrossRef] [PubMed]

41. Shen, L.J.; Chen, F.Y.; Zhang, Y.; Cao, L.F.; Kuang, Y.; Zhong, M.; Wang, T.; Zhong, H. MYCN transgenic

zebrafish model with the characterization of acute myeloid leukemia and altered hematopoiesis. PLoS ONE

2013, 8, e59070. [CrossRef] [PubMed]

42. Mackarehtschian, K.; Hardin, J.D.; Moore, K.A.; Boast, S.; Goff, S.P.; Lemischka, I.R. Targeted disruption of

the flk2/flt3 gene leads to deficiencies in primitive hematopoietic progenitors. Immunity 1995, 3, 147–161.

[CrossRef]

43. Carow, C.E.; Levenstein, M.; Kaufmann, S.H.; Chen, J.; Amin, S.; Rockwell, P.; Witte, L.; Borowitz, M.J.;

Civin, C.I.; Small, D. Expression of the hematopoietic growth factor receptor FLT3 (STK-1/Flk2) in human

leukemias. Blood 1996, 87, 1089–1096. [PubMed]

44. Rosnet, O.; Bühring, H.J.; Marchetto, S.; Rappold, I.; Lavagna, C.; Sainty, D.; Arnoulet, C.; Chabannon, C.;

Kanz, L.; Hannum, C.; et al. Human FLT3/FLK2 receptor tyrosine kinase is expressed at the surface of normal

and malignant hematopoietic cells. Leukemia 1996, 10, 238–248. [PubMed]

45. Kiyoi, H.; Ohno, R.; Ueda, R.; Saito, H.; Naoe, T. Mechanism of constitutive activation of FLT3 with internal

tandem duplication in the juxtamembrane domain. Oncogene 2002, 21, 2555–2563. [CrossRef] [PubMed]

46. Horiike, S.; Yokota, S.; Nakao, M.; Iwai, T.; Sasai, Y.; Kaneko, H.; Taniwaki, M.; Kashima, K.; Fujii, H.;

Abe, T.; et al. Tandem duplications of the FLT3 receptor gene are associated with leukemic transformation of

myelodysplasia. Leukemia 1997, 11, 1442–1446. [CrossRef] [PubMed]

47. Kiyoi, H.; Naoe, T.; Nakano, Y.; Yokota, S.; Minami, S.; Miyawaki, S.; Asou, N.; Kuriyama, K.; Jinnai, I.;

Shimazaki, C.; et al. Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia.

Blood 1999, 93, 3074–3080.

48. Yu, Y.; Maggi, L.B.; Brady, S.N.; Apicelli, A.J.; Dai, M.-S.; Lu, H.; Weber, J.D. Nucleophosmin Is Essential for

Ribosomal Protein L5 Nuclear Export. Mol. Cell. Boil. 2006, 26, 3798–3809. [CrossRef]

49. Savkur, R. Preferential cleavage in pre-ribosomal RNA byprotein B23 endoribonuclease. Nucleic Acids Res.

1998, 26, 4508–4515. [CrossRef]

50. Falini, B.; Mecucci, C.; Tiacci, E.; Alcalay, M.; Rosati, R.; Pasqualucci, L.; La Starza, R.; Diverio, D.; Colombo, E.;

Santucci, A.; et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N.

Engl. J. Med. 2005, 352, 254–266. [CrossRef]

51. He, B.-L.; Shi, X.; Man, C.H.; Ma, A.C.H.; Ekker, S.C.; Chow, H.C.H.; So, C.W.E.; Choi, W.W.L.; Zhang, W.;

Zhang, Y.; et al. Functions of flt3 in zebrafish hematopoiesis and its relevance to human acute myeloid

leukemia. Blood 2014, 123, 2518–2529. [CrossRef] [PubMed]

52. Bolli, N.; Payne, E.M.; Grabher, C.; Lee, J.S.; Johnston, A.B.; Falini, B.; Kanki, J.P.; Look, A.T. Expression of the

cytoplasmic NPM1 mutant (NPMc+) causes the expansion of hematopoietic cells in zebrafish. Blood 2010,

115, 3329–3340. [CrossRef] [PubMed]

53. Lu, J.-W.; Hou, H.-A.; Hsieh, M.-S.; Tien, H.-F.; Lin, L.-I. Overexpression of FLT3-ITD driven by spi-1 results

in expanded myelopoiesis with leukemic phenotype in zebrafish. Leukemia 2016, 30, 2098–2101. [CrossRef]

[PubMed]

54. Cheng, J.C.; Kinjo, K.; Judelson, D.R.; Chang, J.; Wu, W.S.; Schmid, I.; Shankar, D.B.; Kasahara, N.; Stripecke, R.;

Bhatia, R.; et al. CREB is a critical regulator of normal hematopoiesis and leukemogenesis. Blood 2008, 111,

1182–1192. [CrossRef] [PubMed]

55. Kinjo, K.; Sandoval, S.; Sakamoto, K.M.; Shankar, D.B. The Role of CREB as a Proto-oncogene in Hematopoiesis.

Cell Cycle 2005, 4, 1134–1135. [CrossRef] [PubMed]

56. Crans, H.N.; Sakamoto, K.M. Transcription factors and translocations in lymphoid and myeloid leukemia.

Leukemia 2001, 15, 313–331. [CrossRef] [PubMed]

57. Tregnago, C.; Manara, E.; Zampini, M.; Bisio, V.; Borga, C.; Bresolin, S.; Aveic, S.; Germano, G.; Basso, G.;

Pigazzi, M. CREB engages C/EBPdelta to initiate leukemogenesis. Leukemia 2016, 30, 1887–1896. [CrossRef]

58. Gubbay, J.; Collignon, J.; Koopman, P.; Capel, B.; Economou, A.; Münsterberg, A.; Vivian, N.; Goodfellow, P.;

Lovell-Badge, R. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of

a novel family of embryonically expressed genes. Nature 1990, 346, 245–250. [CrossRef]



Genes 2019, 10, 614 24 of 35

59. Lu, J.W.; Hsieh, M.S.; Hou, H.A.; Chen, C.Y.; Tien, H.F.; Lin, L.I. Overexpression of SOX4 correlates with

poor prognosis of acute myeloid leukemia and is leukemogenic in zebrafish. Blood Cancer J. 2017, 7, e593.

[CrossRef]

60. Zhang, H.; Alberich-Jorda, M.; Amabile, G.; Yang, H.; Staber, P.B.; Di Ruscio, A.; Welner, R.S.; Ebralidze, A.;

Zhang, J.; Levantini, E.; et al. Sox4 is a key oncogenic target in C/EBPalpha mutant acute myeloid leukemia.

Cancer Cell 2013, 24, 575–588. [CrossRef]

61. Fung, T.K.; Leung, A.Y.; So, C.W. Sox4you: A new player in C/EBPalpha leukemia. Cancer Cell 2013, 24,

557–559. [CrossRef] [PubMed]

62. Paschka, P.; Schlenk, R.F.; Gaidzik, V.I.; Habdank, M.; Krönke, J.; Bullinger, L.; Späth, D.; Kayser, S.;

Zucknick, M.; Götze, K.; et al. IDH1 and IDH2 Mutations Are Frequent Genetic Alterations in Acute Myeloid

Leukemia and Confer Adverse Prognosis in Cytogenetically Normal Acute Myeloid Leukemia with NPM1

Mutation Without FLT3 Internal Tandem Duplication. J. Clin. Oncol. 2010, 28, 3636–3643. [CrossRef]

[PubMed]

63. Shi, X.; He, B.-L.; Ma, A.C.H.; Guo, Y.; Chi, Y.; Man, C.H.; Zhang, W.; Zhang, Y.; Wen, Z.; Cheng, T.; et al.

Functions of idh1 and its mutation in the regulation of developmental hematopoiesis in zebrafish. Blood

2015, 125, 2974–2984. [CrossRef] [PubMed]

64. Guryev, V.; Koudijs, M.J.; Berezikov, E.; Johnson, S.L.; Plasterk, R.H.; van Eeden, F.J.; Cuppen, E. Genetic

variation in the zebrafish. Genome Res. 2006, 16, 491–497. [CrossRef] [PubMed]

65. Svejda, J.; Kossey, P.; Hlavayova, E.; Svec, F. Histological picture of the transplantable rat leukaemia induced

by x-irradiation and methylcholanthrene. Neoplasma 1958, 5, 123–131. [PubMed]

66. Huggins, C.B.; Sugiyama, T. Induction of leukemia in rat by pulse doses of 7,12-dimethylbenz(a)anthracene.

Proc. Natl. Acad. Sci. USA 1966, 55, 74–81. [CrossRef] [PubMed]

67. Huggins, C.B.; Grand, L.; Ueda, N. Specific induction of erythroleukemia and myelogenous leukemia in

Sprague-Dawley rats. Proc. Natl. Acad. Sci. USA 1982, 79, 5411–5414. [CrossRef] [PubMed]

68. Somfai, S.; Szentirmay, Z.; Gál, F. Transplantable Myeloid Rat Leukaemia Induced by

7,12-Dimethylbenz(a)anthracene. Acta Haematol. 1973, 49, 281–290.

69. Bekkum, D.W.; van Hagenbeek, A. Relevance of the BN leukemia as a model for human acute myeloid

leukemia. Blood Cells Mol. Dis. 1977, 3, 565–579.

70. Van Bekkum, D.W.; Van Oosterom, P.; Dicke, K.A. In vitro colony formation of transplantable rat leukemias

in comparison with human acute myeloid leukemia. Cancer Res. 1976, 36, 941–946.

71. Hagenbeek, A.; van Bekkum, D.W. Comparitive evaluation of the L5222 and the BNML rat leukaemia models

and their relavance to human acute leukaemia. Leuk. Res. 1977, 1, 75–256. [CrossRef]

72. Nooter, K.; Sonneveld, P.; Deurloo, J.; Oostrum, R.; Schultz, F.; Martens, A.; Hagenbeek, A. Repeated

daunomycin administration in rats. Cancer Chemother. Pharmacol. 1984, 12, 187–189. [CrossRef] [PubMed]

73. Sonneveld, P.; Van Bekkum, D.W. Different distribution of adriamycin in normal and leukaemic rats.

Br. J. Cancer 1981, 43, 464–470. [CrossRef] [PubMed]

74. Colly, L.P.; Van Bekkum, D.W.; Hagenbeek, A. Enhanced tumor load reduction after chemotherapy induced

recruitment and synchronization in a slowly growing rat leukemia model (BNML) for human acute myelocytic

leukemia. Leuk. Res. 1984, 8, 953–963. [CrossRef]

75. Aglietta, M.; Sonneveld, P. The relevance of cell kinetics for optimal scheduling of 1-beta-D-arabinofuranosyl

cytosine and methotrexate in a slow growing acute myeloid leukemia (BNML). Cancer Chemother. Pharmacol.

1978, 1, 219–223. [CrossRef] [PubMed]

76. Hagenbeek, A.; Martens, A.C. AMSA: In vivo log cell kill for leukemic clonogenic cells versus toxicity for

normal hemopoietic stem cells in a rat model for human acute myelocytic leukemia (BNML). Eur. J. Cancer

Clin. Oncol. 1986, 22, 1255–1258. [CrossRef]

77. Ermens, A.A.; Kroes, A.C.; Lindemans, J.; Abels, J. 5-Fluorouracil treatment of rat leukemia and a reappraisal

of its application in human leukemia. Anticancer Res. 1986, 6, 797–800. [PubMed]

78. Kroes, A.C.M.; Lindemans, J.; Schoester, M.; Abels, J. Enhanced therapeutic effect of methotrexate in

experimental rat leukemia after inactivation of cobalamin (vitamin B12) by nitrous oxide. Cancer Chemother.

Pharmacol. 1986, 17, 114–120. [CrossRef] [PubMed]

79. Sonneveld, P.; Holcenberg, J.; Van Bekkum, D. Effect of succinylated Acinetobacter glutaminase-asparaginase

treatment on an acute myeloid leukemia in the rat (BNML). Eur. J. Cancer (1965) 1979, 15, 1061–1063.

[CrossRef]



Genes 2019, 10, 614 25 of 35

80. Arkesteijn, G.J.A.; Martens, A.C.M.; Jonker, R.R.; Hagemeijer, A.; Hagenbeek, A. Bivariate flow karyotyping

of acute myelocytic leukemia in the BNML rat model. Cytometry 1987, 8, 618–624. [CrossRef]

81. Martens, A.C.M.; Hagenbeek, A. Detection of minimal disease in acute leukemia using flow cytometry:

Studies in a rat model for human acute leukemia. Cytometry 1985, 6, 342–347. [CrossRef] [PubMed]

82. Martens, A.C.M.; Van Bekkum, D.W.; Hagenbeek, A. Minimal residual disease in leukemia: Studies in an

animal model for acute myelocytic leukemia (bnml). Stem Cells 1990, 8, 27–38. [CrossRef] [PubMed]

83. Law, L.W.; Taormina, V.; Boyle, P.J. Response of acute lymphocytic leukemias to the purine antagonist

6-mercaptopurine. Ann. N. Y. Acad. Sci. 1954, 60, 244–250. [CrossRef] [PubMed]

84. Skipper, H.E.; Perry, S. Kinetics of normal and leukemic leukocyte populations and relevance to chemotherapy.

Cancer Res. 1970, 30, 1883–1897. [PubMed]

85. Casazza, A.M.; Pratesi, G.; Giuliani, F.; Di Marco, A. Antileukemic Activity of 4-Demethoxydaunorubicin in

Mice. Tumori J. 1980, 66, 549–564. [CrossRef]

86. Law, L.W.; Dunn, T.B.; Boyle, P.J.; Miller, J.H. Observations on the Effect of a Folic-Acid Antagonist on

Transplantable Lymphoid Leukemias in Mice. J. Natl. Cancer Inst. 1949, 10, 179–192.

87. Kline, I.; Venditti, J.M.; Mead, J.A.; Tyrer, D.D.; Goldin, A. The antileukemic effectiveness of 5-fluorouracil

and methotrexate in the combination chemotherapy of advanced leukemia L1210 in mice. Cancer Res. 1966,

26, 848–852. [PubMed]

88. Kline, I.; Venditti, J.M.; Tyrer, D.D.; Mantel, N.; Goldin, A. Chemotherapy of leukemia L1210 in mice

with 1-beta-D-arabinofuranosylcytosine hydrochloride. II. Effectiveness against intracerebrally and

subcutaneously inoculated leukemic cells. Cancer Res. 1966, 26, 1930–1937. [PubMed]

89. Jensen, P.B.; Roed, H.; Skovsgaard, T.; Friche, E.; Spang-Thomsen, M. Antitumor activity of the two

epipodophyllotoxin derivatives VP-16 and VM-26 in preclinical systems: A comparison of in vitro and

in vivo drug evaluation. Cancer Chemother. Pharmacol. 1990, 27, 194–198. [CrossRef] [PubMed]

90. Skipper, H.E.; Schabel, F.M.; Wilcox, W.S. Experimental evaluation of potential anticancer agents. XXI.

Scheduling of arabinosylcytosine to take advantage of its S-phase specificity against leukemia cells. Cancer

Chemother. Rep. 1967, 51, 125–165. [PubMed]

91. Kawasaki, Y.; Hirabayashi, Y.; Kaneko, T.; Kanno, J.; Kodama, Y.; Matsushima, Y.; Ogawa, Y.; Saitoh, M.;

Sekita, K.; Uchida, O.; et al. Benzene-Induced Hematopoietic Neoplasms Including Myeloid Leukemia in

Trp53-Deficient C57BL/6 and C3H/He Mice. Toxicol. Sci. 2009, 110, 293–306. [CrossRef] [PubMed]

92. Preston, D.L.; Kusumi, S.; Tomonaga, M.; Izumi, S.; Ron, E.; Kuramoto, A.; Kamada, N.; Dohy, H.; Matsuo, T.;

Matsui, T.; et al. Cancer incidence in atomic bomb survivors. Part III. Leukemia, lymphoma and multiple

myeloma, 1950–1987. Radiat. Res. 1994, 137 (Suppl. 2), S68–S97. [CrossRef] [PubMed]

93. Weiss, H.A.; Boice, J.D.; Muirhead, C.R.; Little, M.P.; Darby, S.C.; Day, N.E. Risks of Leukemia in Japanese

Atomic Bomb Survivors, in Women Treated for Cervical Cancer, and in Patients Treated for Ankylosing

Spondylitis. Radiat. Res. 1999, 152, 280.

94. Tomonaga, M. Leukaemia in Nagasaki atomic bomb survivors from 1945 through 1959. Bull. World Health

Organ. 1962, 26, 619–631. [PubMed]

95. Finch, S.C. Radiation-induced leukemia: Lessons from history. Best Pract. Res. Clin. Haematol. 2007, 20,

109–118. [CrossRef] [PubMed]

96. Silver, A.; Moody, J.; Dunford, R.; Clark, D.; Ganz, S.; Bulman, R.; Bouffler, S.; Finnon, P.; Meijne, E.;

Huiskamp, R.; et al. Molecular mapping of chromosome 2 deletions in murine radiation-induced AML

localizes a putative tumor suppressor gene to a 1.0 cM region homologous to human chromosome segment

11p11–12. Genes Chromosome Cancer 1999, 24, 95–104. [CrossRef]

97. Furth, J.; Seibold, H.R.; Rathbone, R.R. Experimental studies on lymphomatosis. Am. J. Cancer 1933, 19,

521–604.

98. Ullrich, R.L.; Preston, R.J. Myeloid leukemia in male RFM mice following irradiation with fission spectrum

neutrons or gamma rays. Radiat. Res. 1987, 109, 165–170. [CrossRef]

99. Wolman, S.R.; McMorrow, L.E.; Cohen, M.W. Animal model of human disease: Myelogenous leukemia in

the RF mouse. Am. J. Pathol. 1982, 107, 280–284.

100. Finnon, R.; Brown, N.; Moody, J.; Badie, C.; Olme, C.-H.; Huiskamp, R.; Meijne, E.; Sutmuller, M.;

Rosemann, M.; Bouffler, S.D. Flt3-ITD mutations in a mouse model of radiation-induced acute myeloid

leukaemia. Leukemia 2012, 26, 1445–1446. [CrossRef]



Genes 2019, 10, 614 26 of 35

101. Small, D. FLT3 mutations: Biology and treatment. Hematol. Am. Soc. Hematol. Educ. Program 2006, 178–184.

[CrossRef] [PubMed]

102. Dunn, T.B. Normal and Pathologic Anatomy of the Reticular Tissue in Laboratory Mice, With a Classification

and Discussion of Neoplasms. J. Natl. Cancer Inst. 1954, 14, 1281–1433. [PubMed]

103. Pedersen-Bjergaard, J.; Philip, P.; Pedersen, N.T.; Hou-Jensen, K.; Svejgaard, A.; Jensen, G.; Nissen, N.I. Acute

nonlymphocytic leukemia, preleukemia, and acute myeloproliferative syndrome secondary to treatment

of other malignant diseases. II. Bone marrow cytology, cytogenetics, results of HLA typing, response to

antileukemic chemotherapy, and survival in a total series of 55 patients. Cancer 1984, 54, 452–462. [PubMed]

104. Haran-Ghera, N.; Krautghamer, R.; Lapidot, T.; Peled, A.; Dominguez, M.G.; Stanley, E.R. Increased

circulating colony-stimulating factor-1 (CSF-1) in SJL/J mice with radiation-induced acute myeloid leukemia

(AML) is associated with autocrine regulation of AML cells by CSF-1. Blood 1997, 89, 2537–2545. [PubMed]

105. Chia, R.; Achilli, F.; Festing, M.F.W.; Fisher, E.M.C. The origins and uses of mouse outbred stocks. Nat. Genet.

2005, 37, 1181–1186. [CrossRef] [PubMed]

106. Ban, N.; Kai, M.; Kusama, T. Chromosome Aberrations in Bone Marrow Cells of C3H/He Mice at an Early

Stage after Whole-Body Irradiation. J. Radiat. Res. 1997, 38, 219–231. [CrossRef] [PubMed]

107. Rithidech, K.; Dunn, J.J.; Bond, V.P.; Gordon, C.R.; Cronkite, E.P. Characterization of genetic instability in

radiation- and benzene-induced murine acute leukemia. Mutat. Res. Mol. Mech. Mutagen. 1999, 428, 33–39.

[CrossRef]

108. Cleary, H. Allelic loss on chromosome 4 (Lyr2/TLSR5) is associated with myeloid, B-lympho-myeloid, and

lymphoid (B and T) mouse radiation-induced leukemias. Blood 2001, 98, 1549–1554. [CrossRef]

109. Giotopoulos, G.; McCormick, C.; Cole, C.; Zanker, A.; Jawad, M.; Brown, R.; Plumb, M. DNA methylation

during mouse hemopoietic differentiation and radiation-induced leukemia. Exp. Hematol. 2006, 34, 1462–1470.

[CrossRef]

110. Siegler, R.; Rich, M.A. Pathogenesis of Virus-Induced Myeloid Leukemia in Mice. J. Natl. Cancer Inst. 1967,

38, 31–50.

111. McGarry, M.P.; Steeves, R.A.; Eckner, R.J.; Mirand, E.A.; Trudel, P.J. Isolation of a myelogenous

leukemia-inducing virus from mice infected with the friend virus complex. Int. J. Cancer 1974, 13,

867–878. [CrossRef] [PubMed]

112. Rein, A. Murine Leukemia Viruses: Objects and Organisms. Adv. Virol. 2011, 2011, 1–14. [CrossRef]

[PubMed]

113. Gross, L. Development and serial cellfree passage of a highly potent strain of mouse leukemia virus. Proc.

Soc. Exp. Biol. Med. 1957, 94, 767–771. [CrossRef] [PubMed]

114. Linemeyer, D.L.; Menke, J.G.; Ruscetti, S.K.; Evans, L.H.; Scolnick, E.M. Envelope gene sequences which

encode the gp52 protein of spleen focus-forming virus are required for the induction of erythroid cell

proliferation. J. Virol. 1982, 43, 223–233. [PubMed]

115. Ruscetti, S.; Wolff, L. Malignant transformation of erythroid cells in vivo by introduction of a nonreplicating

retrovirus vector. Science 1985, 228, 1549–1552.

116. Perkins, A.S. The Pathology of Murine Myelogenous Leukemias. Curr. Top. Microbiol. Immunol. 1989, 149,

3–21.

117. Largaespada, D.A. Genetic heterogeneity in acute myeloid leukemia: Maximizing information flow from

MuLV mutagenesis studies. Leukemia 2000, 14, 1174–1184. [CrossRef]

118. Dupuy, A.J. Transposon-based screens for cancer gene discovery in mouse models. Semin. Cancer Biol. 2010,

20, 261–268. [CrossRef]

119. Largaespada, D.A. Transposon-mediated mutagenesis of somatic cells in the mouse for cancer gene

identification. Methods 2009, 49, 282–286. [CrossRef]

120. Collier, L.S.; Adams, D.J.; Hackett, C.S.; Bendzick, L.E.; Akagi, K.; Davies, M.N.; Diers, M.D.;

Rodriguez, F.J.; Bender, A.M.; Tieu, C.; et al. Whole-body Sleeping Beauty mutagenesis can cause penetrant

leukemia/lymphoma and rare high-grade glioma without associated embryonic lethality. Cancer Res. 2009,

69, 8429–8437. [CrossRef]

121. Vassiliou, G.S.; Cooper, J.L.; Rad, R.; Li, J.; Rice, S.; Uren, A.; Rad, L.; Ellis, P.; Andrews, R.; Banerjee, R.; et al.

Mutant nucleophosmin and cooperating pathways drive leukemia initiation and progression in mice.

Nat. Genet. 2011, 43, 470–475. [PubMed]



Genes 2019, 10, 614 27 of 35

122. Kakizuka, A.; Miller, W.H.; Umesono, K.; Warrell, R.P.; Frankel, S.R.; Murty, V.V.; Dmitrovsky, E.; Evans, R.M.

Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR alpha with a novel

putative transcription factor, PML. Cell 1991, 66, 663–674. [CrossRef]

123. De Thé, H.; Lavau, C.; Marchio, A.; Chomienne, C.; Degos, L.; Dejean, A. The PML-RAR alpha fusion mRNA

generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR.

Cell 1991, 66, 675–684. [CrossRef]

124. Early, E.; Moore, M.A.; Kakizuka, A.; Nason-Burchenal, K.; Martin, P.; Evans, R.M.; Dmitrovsky, E. Transgenic

expression of PML/RARalpha impairs myelopoiesis. Proc. Natl. Acad. Sci. USA 1996, 93, 7900–7904.

[CrossRef] [PubMed]

125. Grisolano, J.L.; Wesselschmidt, R.L.; Pelicci, P.G.; Ley, T.J. Altered myeloid development and acute leukemia

in transgenic mice expressing PML-RAR alpha under control of cathepsin G regulatory sequences. Blood

1997, 89, 376–387. [PubMed]

126. Brown, D.; Kogan, S.; Lagasse, E.; Weissman, I.; Alcalay, M.; Pelicci, P.G.; Atwater, S.; Bishop, J.M.

A PMLRARalpha transgene initiates murine acute promyelocytic leukemia. Proc. Natl. Acad. Sci. USA 1997,

94, 2551–2556. [CrossRef] [PubMed]

127. Wang, Q.; Stacy, T.; Binder, M.; Marin-Padilla, M.; Sharpe, A.H.; Speck, N.A. Disruption of the Cbfa2

gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis.

Proc. Natl. Acad. Sci. USA 1996, 93, 3444–3449. [CrossRef]

128. Okuda, T.; Van Deursen, J.; Hiebert, S.W.; Grosveld, G.; Downing, J.R. AML1, the Target of Multiple

Chromosomal Translocations in Human Leukemia, Is Essential for Normal Fetal Liver Hematopoiesis. Cell

1996, 84, 321–330. [CrossRef]

129. Okuda, T.; Cai, Z.; Yang, S.; Lenny, N.; Lyu, C.J.; Van Deursen, J.M.; Harada, H.; Downing, J.R. Expression of

a knocked-in AML1-ETO leukemia gene inhibits the establishment of normal definitive hematopoiesis and

directly generates dysplastic hematopoietic progenitors. Blood 1998, 91, 3134–3143.

130. Rhoades, K.L.; Hetherington, C.J.; Harakawa, N.; Yergeau, D.A.; Zhou, L.; Liu, L.Q.; Little, M.T.; Tenen, D.G.;

Zhang, D.E. Analysis of the role of AML1-ETO in leukemogenesis, using an inducible transgenic mouse

model. Blood 2000, 96, 2108–2115.

131. Higuchi, M.; O’Brien, D.; Kumaravelu, P.; Lenny, N.; Yeoh, E.-J.; Downing, J.R. Expression of a conditional

AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute

myeloid leukemia. Cancer Cell 2002, 1, 63–74. [CrossRef]

132. Yuan, Y.; Zhou, L.; Miyamoto, T.; Iwasaki, H.; Harakawa, N.; Hetherington, C.J.; Burel, S.A.; Lagasse, E.;

Weissman, I.L.; Akashi, K.; et al. AML1-ETO expression is directly involved in the development of acute

myeloid leukemia in the presence of additional mutations. Proc. Natl. Acad. Sci. USA 2001, 98, 10398–10403.

[CrossRef] [PubMed]

133. Nick, H.J.; Kim, H.G.; Chang, C.W.; Harris, K.W.; Reddy, V.; Klug, C.A. Distinct classes of c-Kit-activating

mutations differ in their ability to promote RUNX1-ETO-associated acute myeloid leukemia. Blood 2012, 119,

1522–1531. [CrossRef]

134. Schessl, C.; Rawat, V.P.; Cusan, M.; Deshpande, A.; Kohl, T.M.; Rosten, P.M.; Spiekermann, K.;

Humphries, R.K.; Schnittger, S.; Kern, W.; et al. The AML1-ETO fusion gene and the FLT3 length mutation

collaborate in inducing acute leukemia in mice. J. Clin. Investig. 2005, 115, 2159–2168. [CrossRef] [PubMed]

135. Wang, S.; Wang, Q.; Crute, B.E.; Melnikova, I.N.; Keller, S.R.; Speck, N.A. Cloning and characterization of

subunits of the T-cell receptor and murine leukemia virus enhancer core-binding factor. Mol. Cell. Boil. 1993,

13, 3324–3339. [CrossRef] [PubMed]

136. Schoch, C.; Kern, W.; Schnittger, S.; Büchner, T.; Hiddemann, W.; Haferlach, T. The influence of age on

prognosis of de novo acute myeloid leukemia differs according to cytogenetic subgroups. Haematologica

2004, 89, 1082–1090. [PubMed]

137. Liu, P.; Tarlé, S.; Hajra, A.; Claxton, D.; Marlton, P.; Freedman, M.; Siciliano, M.; Collins, F. Fusion between

transcription factor CBF beta/PEBP2 beta and a myosin heavy chain in acute myeloid leukemia. Science 1993,

261, 1041–1044. [CrossRef] [PubMed]

138. Castilla, L.H.; Garrett, L.; Adya, N.; Orlic, D.; Dutra, A.; Anderson, S.; Owens, J.; Eckhaus, M.; Bodine, D.;

Liu, P.P. The fusion gene Cbfb-MYH11 blocks myeloid differentiation and predisposes mice to acute

myelomonocytic leukaemia. Nat. Genet. 1999, 23, 144–146. [CrossRef] [PubMed]



Genes 2019, 10, 614 28 of 35

139. Castilla, L.H.; Perrat, P.; Martinez, N.J.; Landrette, S.F.; Keys, R.; Oikemus, S.; Flanegan, J.; Heilman, S.;

Garrett, L.; Dutra, A.; et al. Identification of genes that synergize with Cbfb-MYH11 in the pathogenesis of

acute myeloid leukemia. Proc. Natl. Acad. Sci. USA 2004, 101, 4924–4929. [CrossRef]

140. Kuo, Y.H.; Landrette, S.F.; Heilman, S.A.; Perrat, P.N.; Garrett, L.; Liu, P.P.; Le Beau, M.M.; Kogan, S.C.;

Castilla, L.H. Cbf beta-SMMHC induces distinct abnormal myeloid progenitors able to develop acute myeloid

leukemia. Cancer Cell 2006, 9, 57–68. [CrossRef]

141. Verhaak, R.G.W. Mutations in nucleophosmin (NPM1) in acute myeloid leukemia (AML): Association

with other gene abnormalities and previously established gene expression signatures and their favorable

prognostic significance. Blood 2005, 106, 3747–3754. [CrossRef] [PubMed]

142. Cheng, K.; Sportoletti, P.; Ito, K.; Clohessy, J.G.; Teruya-Feldstein, J.; Kutok, J.L.; Pandolfi, P.P. The cytoplasmic

NPM mutant induces myeloproliferation in a transgenic mouse model. Blood 2010, 115, 3341–3345. [CrossRef]

[PubMed]

143. Chou, S.H.; Ko, B.S.; Chiou, J.S.; Hsu, Y.C.; Tsai, M.H.; Chiu, Y.C.; Yu, I.S.; Lin, S.W.; Hou, H.A.; Kuo, Y.Y.; et al.

A knock-in Npm1 mutation in mice results in myeloproliferation and implies a perturbation in hematopoietic

microenvironment. PLoS ONE 2012, 7, e49769. [CrossRef] [PubMed]

144. Mallardo, M.; Caronno, A.; Pruneri, G.; Raviele, P.R.; Viale, A.; Pelicci, P.G.; Colombo, E. NPMc+ and

FLT3_ITD mutations cooperate in inducing acute leukaemia in a novel mouse model. Leukemia 2013, 27,

2248–2251. [CrossRef] [PubMed]

145. Gilliland, D.G.; Griffin, J.D. The roles of FLT3 in hematopoiesis and leukemia. Blood 2002, 100, 1532–1542.

[CrossRef] [PubMed]

146. Lee, B.H.; Williams, I.R.; Anastasiadou, E.; Boulton, C.L.; Joseph, S.W.; Amaral, S.M.; Curley, D.P.; Duclos, N.;

Huntly, B.J.P.; Fabbro, D.; et al. FLT3 internal tandem duplication mutations induce myeloproliferative or

lymphoid disease in a transgenic mouse model. Oncogene 2005, 24, 7882–7892. [CrossRef] [PubMed]

147. Li, L.; Bailey, E.; Greenblatt, S.; Huso, D.; Small, D. Loss of the wild-type allele contributes to myeloid

expansion and disease aggressiveness in FLT3/ITD knockin mice. Blood 2011, 118, 4935–4945. [CrossRef]

[PubMed]

148. Lee, B.H.; Tothova, Z.; Levine, R.L.; Anderson, K.; Buza-Vidas, N.; Cullen, D.E.; McDowell, E.P.; Adelsperger, J.;

Fröhling, S.; Huntly, B.J.; et al. FLT3 mutations confer enhanced proliferation and survival properties to

multipotent progenitors in a murine model of chronic myelomonocytic leukemia. Cancer Cell 2007, 12,

367–380. [CrossRef]

149. Kharazi, S.; Mead, A.J.; Mansour, A.; Hultquist, A.; Böiers, C.; Luc, S.; Buza-Vidas, N.; Ma, Z.; Ferry, H.;

Atkinson, D.; et al. Impact of gene dosage, loss of wild-type allele, and FLT3 ligand on Flt3-ITD-induced

myeloproliferation. Blood 2011, 118, 3613–3621. [CrossRef]

150. Iida, S.; Seto, M.; Yamamoto, K.; Komatsu, H.; Tojo, A.; Asano, S.; Kamada, N.; Ariyoshi, Y.; Takahashi, T.;

Ueda, R. MLLT3 gene on 9p22 involved in t(9;11) leukemia encodes a serine/proline rich protein homologous

to MLLT1 on 19p13. Oncogene 1993, 8, 3085–3092.

151. Nakamura, T.; Alder, H.; Gu, Y.; Prasad, R.; Canaani, O.; Kamada, N.; Gale, R.P.; Lange, B.; Crist, W.M.;

Nowell, P.C.; et al. Genes on chromosomes 4, 9, and 19 involved in 11q23 abnormalities in acute leukemia

share sequence homology and/or common motifs. Proc. Natl. Acad. Sci. USA 1993, 90, 4631–4635. [CrossRef]

[PubMed]

152. Corral, J.; Lavenir, I.; Impey, H.; Warren, A.J.; Forster, A.; Larson, T.A.; Bell, S.; McKenzie, A.N.; King, G.;

Rabbitts, T.H. An Mll–AF9 Fusion Gene Made by Homologous Recombination Causes Acute Leukemia in

Chimeric Mice: A Method to Create Fusion Oncogenes. Cell 1996, 85, 853–861. [CrossRef]

153. Collins, E.C.; Pannell, R.; Simpson, E.M.; Forster, A.; Rabbitts, T.H. Inter-chromosomal recombination of

Mll and Af9 genes mediated by cre-loxP in mouse development. EMBO Rep. 2000, 1, 127–132. [CrossRef]

[PubMed]

154. Stavropoulou, V.; Kaspar, S.; Brault, L.; Sanders, M.A.; Juge, S.; Morettini, S.; Tzankov, A.; Iacovino, M.;

Lau, I.-J.; Milne, T.A.; et al. MLL-AF9 Expression in Hematopoietic Stem Cells Drives a Highly Invasive

AML Expressing EMT-Related Genes Linked to Poor Outcome. Cancer Cell 2016, 30, 43–58. [CrossRef]

155. Johnson, J.J.; Chen, W.; Hudson, W.; Yao, Q.; Taylor, M.; Rabbitts, T.H.; Kersey, J.H. Prenatal and postnatal

myeloid cells demonstrate stepwise progression in the pathogenesis of MLL fusion gene leukemia. Blood

2003, 101, 3229–3235. [CrossRef] [PubMed]



Genes 2019, 10, 614 29 of 35

156. Ayton, P.M.; Cleary, M.L. Transformation of myeloid progenitors by MLL oncoproteins is dependent on

Hoxa7 and Hoxa9. Genome Res. 2003, 17, 2298–2307. [CrossRef] [PubMed]

157. Meyer, C.; Hofmann, J.; Burmeister, T.; Gröger, D.; Park, T.S.; Emerenciano, M.; Pombo-De-Oliveira, M.D.S.;

Renneville, A.; Villarese, P.; MacIntyre, E.; et al. The MLL recombinome of acute leukemias in 2013. Leukemia

2013, 27, 2165–2176. [CrossRef] [PubMed]

158. Chen, W.; Li, Q.; Hudson, W.A.; Kumar, A.; Kirchhof, N.; Kersey, J.H. A murine Mll-AF4 knock-in model

results in lymphoid and myeloid deregulation and hematologic malignancy. Blood 2006, 108, 669–677.

[CrossRef] [PubMed]

159. Metzler, M.; Förster, A.; Pannell, R.; Arends, M.J.; Daser, A.; Lobato, M.N.; Rabbitts, T.H. A conditional model

of MLL-AF4 B-cell tumourigenesis using invertor technology. Oncogene 2006, 25, 3093–3103. [CrossRef]

160. Barrett, N.A.; Malouf, C.; Kapeni, C.; Bacon, W.A.; Giotopoulos, G.; Jacobsen, S.E.W.; Huntly, B.J.;

Ottersbach, K. Mll-AF4 Confers Enhanced Self-Renewal and Lymphoid Potential during a Restricted

Window in Development. Cell Rep. 2016, 16, 1039–1054. [CrossRef]

161. Krivtsov, A.V.; Feng, Z.; Lemieux, M.E.; Faber, J.; Vempati, S.; Sinha, A.U.; Xia, X.; Jesneck, J.; Bracken, A.P.;

Silverman, L.B.; et al. H3K79 methylation profiles define murine and human MLL-AF4 leukemias. Cancer

Cell 2008, 14, 355–368. [CrossRef] [PubMed]

162. Lavau, C.; Szilvassy, S.J.; Slany, R.; Cleary, M.L. Immortalization and leukemic transformation of a

myelomonocytic precursor by retrovirally transduced HRX-ENL. EMBO J. 1997, 16, 4226–4237. [CrossRef]

[PubMed]

163. Zeisig, B.B.; García-Cuéllar, M.P.; Winkler, T.H.; Slany, R.K. The Oncoprotein MLL–ENL disturbs

hematopoietic lineage determination and transforms a biphenotypic lymphoid/myeloid cell. Oncogene 2003,

22, 1629–1637. [CrossRef] [PubMed]

164. Zeisig, B.B.; Milne, T.; García-Cuéllar, M.-P.; Schreiner, S.; Martin, M.-E.; Fuchs, U.; Borkhardt, A.; Chanda, S.K.;

Walker, J.; Soden, R.; et al. Hoxa9 and Meis1 are key targets for MLL-ENL-mediated cellular immortalization.

Mol. Cell. Boil. 2004, 24, 617–628. [CrossRef] [PubMed]

165. Kennedy, J.A.; Hope, K.J.; Dick, J.E.; Barabé, F. Modeling the Initiation and Progression of Human Acute

Leukemia in Mice. Science 2007, 316, 600–604.

166. Ugale, A.; Säwén, P.; Dudenhöffer-Pfeifer, M.; Wahlestedt, M.; Norddahl, G.L.; Bryder, D. MLL-ENL-mediated

leukemia initiation at the interface of lymphoid commitment. Oncogene 2017, 36, 3207–3212. [CrossRef]

[PubMed]

167. Sasaki, M.; Knobbe, C.B.; Munger, J.C.; Lind, E.F.; Brenner, D.; Brüstle, A.; Harris, I.S.; Holmes, R.;

Wakeham, A.; Haight, J.; et al. IDH1(R132H) mutation increases murine haematopoietic progenitors and

alters epigenetics. Nature 2012, 488, 656–659. [CrossRef]

168. Callens, C.; Chevret, S.; Cayuela, J.M.; Cassinat, B.; Raffoux, E.; de Botton, S.; Thomas, X.; Guerci, A.;

Fegueux, N.; Pigneux, A.; et al. Prognostic implication of FLT3 and Ras gene mutations in patients with

acute promyelocytic leukemia (APL): A retrospective study from the European APL Group. Leukemia 2005,

19, 1153–1160. [CrossRef]

169. Bowen, D.T.; Frew, M.E.; Hills, R.; Gale, R.E.; Wheatley, K.; Groves, M.J.; Langabeer, S.E.; Kottaridis, P.D.;

Moorman, A.V.; Burnett, A.K.; et al. RAS mutation in acute myeloid leukemia is associated with distinct

cytogenetic subgroups but does not influence outcome in patients younger than 60 years. Blood 2005, 106,

2113–2119. [CrossRef]

170. Chan, I.T.; Kutok, J.L.; Williams, I.R.; Cohen, S.; Moore, S.; Shigematsu, H.; Ley, T.J.; Akashi, K.; Le Beau, M.M.;

Gilliland, D.G. Oncogenic K-ras cooperates with PML-RAR alpha to induce an acute promyelocytic

leukemia-like disease. Blood 2006, 108, 1708–1715. [CrossRef]

171. Taylor, C.; McGlynn, H.; Carter, G.; Baker, A.H.; Warren, N.; Ridge, S.A.; Owen, G.; Thompson, E.;

Thompson, P.W.; Jacobs, A. RAS and FMS mutations following cytotoxic therapy for childhood acute

lymphoblastic leukaemia. Leukemia 1995, 9, 466–470. [PubMed]

172. Padua, R.A.; Guinn, B.-A.; Al-Sabah, A.I.; Smith, M.; Taylor, C.; Pettersson, T.; Ridge, S.; Carter, G.; White, D.;

Oscier, D.; et al. RAS, FMS and p53 mutations and poor clinical outcome in myelodysplasias: A 10-year

follow-up. Leukemia 1998, 12, 887–892. [CrossRef] [PubMed]

173. Karakas, T.; Maurer, U.; Weidmann, E.; Miething, C.C.; Hoelzer, D.; Bergmann, L. High expression of bcl-2

mRNA as a determinant of poor prognosis in acute myeloid leukemia. Ann. Oncol. 1998, 9, 159–165.

[CrossRef] [PubMed]



Genes 2019, 10, 614 30 of 35

174. Benito, A.; Grillot, D.; Nuñez, G.; Fernández-Luna, J.L. Regulation and function of Bcl-2 during

differentiation-induced cell death in HL-60 promyelocytic cells. Am. J. Pathol. 1995, 146, 481–490. [PubMed]

175. Omidvar, N.; Kogan, S.; Beurlet, S.; Le Pogam, C.; Janin, A.; West, R.; Noguera, M.-E.; Reboul, M.; Soulié, A.;

Leboeuf, C.; et al. BCL-2 and Mutant NRAS Interact Physically and Functionally in a Mouse Model of

Progressive Myelodysplasia. Cancer Res. 2007, 67, 11657–11667. [CrossRef] [PubMed]

176. Steudel, C.; Wermke, M.; Schaich, M.; Schakel, U.; Illmer, T.; Ehninger, G.; Thiede, C. Comparative analysis

of MLL partial tandem duplication and FLT3 internal tandem duplication mutations in 956 adult patients

with acute myeloid leukemia. Genes Chromosomes Cancer 2003, 37, 237–251. [CrossRef] [PubMed]

177. Shih, L.Y.; Liang, D.C.; Fu, J.F.; Wu, J.H.; Wang, P.N.; Lin, T.L.; Dunn, P.; Kuo, M.C.; Tang, T.C.; Lin, T.H.; et al.

Characterization of fusion partner genes in 114 patients with de novo acute myeloid leukemia and MLL

rearrangement. Leukemia 2006, 20, 218–223. [CrossRef]

178. Whitman, S.P.; Ruppert, A.S.; Marcucci, G.; Mrózek, K.; Paschka, P.; Langer, C.; Baldus, C.D.; Wen, J.;

Vukosavljevic, T.; Powell, B.L.; et al. Long-term disease-free survivors with cytogenetically normal acute

myeloid leukemia and MLL partial tandem duplication: A Cancer and Leukemia Group B study. Blood 2007,

109, 5164–5167. [CrossRef]

179. Zorko, N.A.; Bernot, K.M.; Whitman, S.P.; Siebenaler, R.F.; Ahmed, E.H.; Marcucci, G.G.; Yanes, D.A.;

McConnell, K.K.; Mao, C.; Kalu, C.; et al. Mll partial tandem duplication and Flt3 internal tandem duplication

in a double knock-in mouse recapitulates features of counterpart human acute myeloid leukemias. Blood

2012, 120, 1130–1136. [CrossRef]

180. Whitman, S.P.; Archer, K.J.; Feng, L.; Baldus, C.; Becknell, B.; Carlson, B.D.; Carroll, A.J.; Mrózek, K.;

Vardiman, J.W.; George, S.L.; et al. Absence of the wild-type allele predicts poor prognosis in adult de novo

acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: A cancer

and leukemia group B study. Cancer Res. 2001, 61, 7233–7239.

181. Whitman, S.P.; Liu, S.; Vukosavljevic, T.; Rush, L.J.; Yu, L.; Liu, C.; Klisovic, M.I.; Maharry, K.; Guimond, M.;

Strout, M.P.; et al. The MLL partial tandem duplication: Evidence for recessive gain-of-function in acute

myeloid leukemia identifies a novel patient subgroup for molecular-targeted therapy. Blood 2005, 106,

345–352. [CrossRef] [PubMed]

182. Döhner, K.; Tobis, K.; Ulrich, R.; Fröhling, S.; Benner, A.; Schlenk, R.F. Prognostic Significance of Partial

Tandem Duplications of the MLL Gene in Adult Patients 16 to 60 Years Old With Acute Myeloid Leukemia

and Normal Cytogenetics: A Study of the Acute Myeloid Leukemia Study Group Ulm. J. Clin. Oncol. 2002,

20, 3254–3261. [CrossRef] [PubMed]

183. Raza-Egilmez, S.Z.; Jani-Sait, S.N.; Grossi, M.; Higgins, M.J.; Shows, T.B.; Aplan, P.D. NUP98-HOXD13 gene

fusion in therapy-related acute myelogenous leukemia. Cancer Res. 1998, 58, 4269–4273. [PubMed]

184. Slape, C.; Lin, Y.W.; Hartung, H.; Zhang, Z.; Wolff, L.; Aplan, P.D. NUP98-HOX translocations lead to

myelodysplastic syndrome in mice and men. Journal of the National Cancer Institute. Monographs 2008,

64–68. [CrossRef] [PubMed]

185. Palmqvist, L.; Argiropoulos, B.; Pineault, N.; Abramovich, C.; Sly, L.M.; Krystal, G.; Wan, A.; Humphries, R.K.

The Flt3 receptor tyrosine kinase collaborates with NUP98-HOX fusions in acute myeloid leukemia. Blood

2006, 108, 1030–1036. [CrossRef] [PubMed]

186. Greenblatt, S.; Li, L.; Slape, C.; Nguyen, B.; Novak, R.; Duffield, A.; Huso, D.; Desiderio, S.; Borowitz, M.J.;

Aplan, P.; et al. Knock-in of a FLT3/ITD mutation cooperates with a NUP98-HOXD13 fusion to generate

acute myeloid leukemia in a mouse model. Blood 2012, 119, 2883–2894. [CrossRef]

187. Giampaolo, A.; Felli, N.; Diverio, D.; Morsilli, O.; Samoggia, P.; Breccia, M.; Coco, F.L.; Peschle, C.; Testa, U.

Expression pattern of HOXB6 homeobox gene in myelomonocytic differentiation and acute myeloid leukemia.

Leukemia 2002, 16, 1293–1301. [CrossRef]

188. Amsellem, S.; Pflumio, F.; Bardinet, D.; Izac, B.; Charneau, P.; Roméo, P.-H.; Dubart-Kupperschmitt, A.;

Fichelson, S. Ex vivo expansion of human hematopoietic stem cells by direct delivery of the HOXB4

homeoprotein. Nat. Med. 2003, 9, 1423–1427. [CrossRef]

189. Soulier, J.; Clappier, E.; Cayuela, J.-M.; Regnault, A.; García-Peydró, M.; Dombret, H.; Baruchel, A.;

Toribio, M.-L.; Sigaux, F. HOXA genes are included in genetic and biologic networks defining human acute

T-cell leukemia (T-ALL). Blood 2005, 106, 274–286. [CrossRef]



Genes 2019, 10, 614 31 of 35

190. Papaemmanuil, E.; Gerstung, M.; Bullinger, L.; Gaidzik, V.I.; Paschka, P.; Roberts, N.D.; Potter, N.E.;

Heuser, M.; Thol, F.; Bolli, N.; et al. Genomic Classification and Prognosis in Acute Myeloid Leukemia.

N. Engl. J. Med. 2016, 374, 2209–2221. [CrossRef]

191. Mupo, A.; Celani, L.; Dovey, O.; Cooper, J.L.; Grove, C.; Rad, R.; Sportoletti, P.; Falini, B.; Bradley, A.;

Vassiliou, G.S. A powerful molecular synergy between mutant Nucleophosmin and Flt3-ITD drives acute

myeloid leukemia in mice. Leukemia 2013, 27, 1917–1920. [CrossRef] [PubMed]

192. Xue, L.; Pulikkan, J.A.; Valk, P.J.; Castilla, L.H. NrasG12D oncoprotein inhibits apoptosis of preleukemic cells

expressing Cbfbeta-SMMHC via activation of MEK/ERK axis. Blood 2014, 124, 426–436. [CrossRef] [PubMed]

193. Dovey, O.M.; Cooper, J.L.; Mupo, A.; Grove, C.S.; Lynn, C.; Conte, N.; Andrews, R.M.; Pacharne, S.;

Tzelepis, K.; Vijayabaskar, M.S.; et al. Molecular synergy underlies the co-occurrence patterns and phenotype

of NPM1-mutant acute myeloid leukemia. Blood 2017, 130, 1911–1922. [CrossRef] [PubMed]

194. Ellisen, L.W.; Carlesso, N.; Cheng, T.; Scadden, D.T.; Haber, D.A. The Wilms tumor suppressor WT1 directs

stage-specific quiescence and differentiation of human hematopoietic progenitor cells. EMBO J. 2001, 20,

1897–1909. [CrossRef] [PubMed]

195. Summers, K.; Stevens, J.; Kakkas, I.; Smith, M.; Smith, L.L.; MacDougall, F.; Cavenagh, J.; Bonnet, D.;

Young, B.D.; Lister, T.A.; et al. Wilms’ tumour 1 mutations are associated with FLT3-ITD and failure of

standard induction chemotherapy in patients with normal karyotype AML. Leukemia 2007, 21, 550–551.

[CrossRef] [PubMed]

196. Hou, H.-A.; Huang, T.-C.; Lin, L.-I.; Liu, C.-Y.; Chen, C.-Y.; Chou, W.-C.; Tang, J.-L.; Tseng, M.-H.; Huang, C.-F.;

Chiang, Y.-C.; et al. WT1 mutation in 470 adult patients with acute myeloid leukemia: Stability during disease

evolution and implication of its incorporation into a survival scoring system. Blood 2010, 115, 5222–5231.

[CrossRef]

197. Annesley, C.E.; Rabik, C.; Duffield, A.S.; Rau, R.E.; Magoon, D.; Li, L.; Huff, V.; Small, D.; Loeb, D.M.;

Brown, P. Knock-in of the Wt1 R394W mutation causes MDS and cooperates with Flt3/ITD to drive aggressive

myeloid neoplasms in mice. Oncotarget 2018, 9, 35313–35326. [CrossRef]

198. Nara, N.; Miyamoto, T. Direct and serial transplantation of human acute myeloid leukaemia into nude mice.

Br. J. Cancer 1982, 45, 778–782. [CrossRef]

199. Caretto, P.; Forni, M.; d’Orazi, G.; Scarpa, S.; Feraiorni, P.; Jemma, C.; Modesti, A.; Ferrarini, M.; Roncella, S.;

Foa, R.; et al. Xenotransplantation in immunosuppressed nude mice of human solid tumors and acute

leukemias directly from patients or in vitro cell lines. Res. Clin. Lab. 1989, 19, 231–243.

200. Bosma, G.C.; Custer, R.P.; Bosma, M.J. A severe combined immunodeficiency mutation in the mouse. Nature

1983, 301, 527–530. [CrossRef]

201. De Lord, C.; Clutterbuck, R.; Titley, J.; Ormerod, M.; Gordon-Smith, T.; Millar, J.; Powles, R. Growth of

primary human acute leukemia in severe combined immunodeficient mice. Exp. Hematol. 1991, 19, 991–993.

202. Lapidot, T.; Sirard, C.; Vormoor, J.; Murdoch, B.; Hoang, T.; Caceres-Cortes, J.; Minden, M.; Paterson, B.;

Caligiuri, M.A.; Dick, J.E. A cell initiating human acute myeloid leukaemia after transplantation into SCID

mice. Nature 1994, 367, 645–648. [CrossRef] [PubMed]

203. Yan, Y.; Salomon, O.; McGuirk, J.; Dennig, D.; Fernandez, J.; Jagiello, C.; Nguyen, H.; Collins, N.; Steinherz, P.;

O’Reilly, R.J. Growth pattern and clinical correlation of subcutaneously inoculated human primary acute

leukemias in severe combined immunodeficiency mice. Blood 1996, 88, 3137–3146.

204. Lapidot, T.; Pflumio, F.; Doedens, M.; Murdoch, B.; Williams, D.; Dick, J. Cytokine stimulation of multilineage

hematopoiesis from immature human cells engrafted in SCID mice. Science 1992, 255, 1137–1141. [CrossRef]

[PubMed]

205. Goan, S.R.; Fichtner, I.; Just, U.; Karawajew, L.; Schultze, W.; Krause, K.P.; Von Harsdorf, S.; Von Schilling, C.;

Herrmann, F. The severe combined immunodeficient-human peripheral blood stem cell (SCID-huPBSC)

mouse: A xenotransplant model for huPBSC-initiated hematopoiesis. Blood 1995, 86, 89–100. [PubMed]

206. Cashman, J.D.; Lapidot, T.; Wang, J.C.; Doedens, M.; Shultz, L.D.; Lansdorp, P.; Dick, J.E.; Eaves, C.J. Kinetic

evidence of the regeneration of multilineage hematopoiesis from primitive cells in normal human bone

marrow transplanted into immunodeficient mice. Blood 1997, 89, 4307–4316.

207. Nonoyama, S.; Smith, F.O.; Bernstein, I.D.; Ochs, H.D. Strain-dependent leakiness of mice with severe

combined immune deficiency. J. Immunol. 1993, 150, 3817–3824.

208. Carroll, A.M.; Hardy, R.R.; Bosma, M.J. Occurrence of mature B (IgM+, B220+) and T (CD3+) lymphocytes in

scid mice. J. Immunol. 1989, 143, 1087–1093.



Genes 2019, 10, 614 32 of 35

209. Kudo, T.; Saijyo, S.; Saeki, H.; Sato, N.; Tachibana, T.; Habu, S. Production of a Human Monoclonal Antibody to

a Synthetic Peptide by Active In Vivo Immunization Using a SCID Mouse Grafted with Human Lymphocytes.

Tohoku J. Exp. Med. 1993, 171, 327–338. [CrossRef]

210. Shpitz, B.; Chambers, C.A.; Singhal, A.B.; Hozumi, N.; Fernandes, B.J.; Roifman, C.M.; Weiner, L.M.;

Roder, J.C.; Gallinger, S. High level functional engraftment of severe combined immunodeficient mice with

human peripheral blood lymphocytes following pretreatment with radiation and anti-asialo GM. J. Immunol.

Methods 1994, 169, 1–15. [CrossRef]

211. Shultz, L.D.; Schweitzer, P.A.; Christianson, S.W.; Gott, B.; Schweitzer, I.B.; Tennent, B.; McKenna, S.;

Mobraaten, L.; Rajan, T.V.; Greiner, D.L. Multiple defects in innate and adaptive immunologic function in

NOD/LtSz-scid mice. J. Immunol. 1995, 154, 180–191. [PubMed]

212. Bonnet, D.; Dick, J.E. Human acute myeloid leukemia is organized as a hierarchy that originates from a

primitive hematopoietic cell. Nat. Med. 1997, 3, 730–737. [CrossRef] [PubMed]

213. Ailles, L.E.; Gerhard, B.; Kawagoe, H.; Hogge, D.E. Growth characteristics of acute myelogenous leukemia

progenitors that initiate malignant hematopoiesis in nonobese diabetic/severe combined immunodeficient

mice. Blood 1999, 94, 1761–1772. [PubMed]

214. Lumkul, R.; Gorin, N.-C.; Malehorn, M.T.; Hoehn, G.T.; Zheng, R.; Baldwin, B.; Small, D.; Gore, S.; Smith, D.;

Meltzer, P.S.; et al. Human AML cells in NOD/SCID mice: Engraftment potential and gene expression.

Leukemia 2002, 16, 1818–1826. [CrossRef] [PubMed]

215. Marx, J. Cancer research. Mutant stem cells may seed cancer. Science 2003, 301, 1308–1310. [CrossRef]

[PubMed]

216. Ye, P.; Zhao, L.; McGirr, C.; Gonda, T.J. MYB down-regulation enhances sensitivity of U937 myeloid leukemia

cells to the histone deacetylase inhibitor LBH589 in vitro and in vivo. Cancer Lett. 2014, 343, 98–106.

[CrossRef] [PubMed]

217. Blair, A.; Hogge, D.E.; Sutherland, H.J. Most acute myeloid leukemia progenitor cells with long-term

proliferative ability in vitro and in vivo have the phenotype CD34(+)/CD71(-)/HLA-DR. Blood 1998, 92,

4325–4335.

218. Blair, A.; Hogge, D.E.; Ailles, L.E.; Lansdorp, P.M.; Sutherland, H.J. Lack of expression of Thy-1 (CD90)

on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood 1997, 89,

3104–3112.

219. Blair, A.; Sutherland, H.J. Primitive acute myeloid leukemia cells with long-term proliferative ability in vitro

and in vivo lack surface expression of c-kit (CD117). Exp. Hematol. 2000, 28, 660–671. [CrossRef]

220. Ahmed, F.; Ings, S.J.; Pizzey, A.R.; Blundell, M.P.; Thrasher, A.J.; Ye, H.T.; Fahey, A.; Linch, D.C.; Yong, K.L.

Impaired bone marrow homing of cytokine-activated CD34+ cells in the NOD/SCID model. Blood 2004, 103,

2079–2087. [CrossRef]

221. Bonnet, D.; Bhatia, M.; Wang, J.C.Y.; Kapp, U.; Dick, J.E. Cytokine treatment or accessory cells are required to

initiate engraftment of purified primitive human hematopoietic cells transplanted at limiting doses into

NOD/SCID mice. Bone Marrow Transplant. 1999, 23, 203–209. [CrossRef] [PubMed]

222. Feuring-Buske, M.; Gerhard, B.; Cashman, J.; Humphries, R.K.; Eaves, C.J.; Hogge, D.E.; Humphries, R.

Improved engraftment of human acute myeloid leukemia progenitor cells in beta 2-microglobulin-deficient

NOD/SCID mice and in NOD/SCID mice transgenic for human growth factors. Leukemia 2003, 17, 760–763.

[CrossRef] [PubMed]

223. Wunderlich, M.; Chou, F.-S.; Link, K.I.; Mizukawa, B.; Perry, R.L.; Carroll, M.; Mulloy, J.C. AML xenograft

efficiency is significantly improved in NOD/SCID-IL2RG mice constitutively expressing human SCF, GM-CSF

and IL-3. Leukemia 2010, 24, 1785–1788. [CrossRef] [PubMed]

224. Koller, B.H.; Smithies, O. Inactivating the beta 2-microglobulin locus in mouse embryonic stem cells by

homologous recombination. Proc. Natl. Acad. Sci. USA 1989, 86, 8932–8935. [CrossRef] [PubMed]

225. Ito, M.; Hiramatsu, H.; Kobayashi, K.; Suzue, K.; Kawahata, M.; Hioki, K.; Ueyama, Y.; Koyanagi, Y.;

Sugamura, K.; Tsuji, K.; et al. NOD/SCID/gamma(c)(null) mouse: An excellent recipient mouse model for

engraftment of human cells. Blood 2002, 100, 3175–3182. [CrossRef] [PubMed]

226. Ishikawa, F.; Yasukawa, M.; Lyons, B.; Yoshida, S.; Miyamoto, T.; Yoshimoto, G.; Watanabe, T.; Akashi, K.;

Shultz, L.D.; Harada, M. Development of functional human blood and immune systems in NOD/SCID/IL2

receptor {gamma} chain(null) mice. Blood 2005, 106, 1565–1573. [CrossRef] [PubMed]



Genes 2019, 10, 614 33 of 35

227. Agliano, A.; Martin-Padura, I.; Mancuso, P.; Marighetti, P.; Rabascio, C.; Pruneri, G.; Shultz, L.D.; Bertolini, F.

Human acute leukemia cells injected in NOD/LtSz-scid/IL-2Rgamma null mice generate a faster and more

efficient disease compared to other NOD/scid-related strains. Int. J. Cancer 2008, 123, 2222–2227. [CrossRef]

[PubMed]

228. Saland, E.; Boutzen, H.; Castellano, R.; Pouyet, L.; Griessinger, E.; Larrue, C.; de Toni, F.; Scotland, S.; David, M.;

Danet-Desnoyers, G.; et al. A robust and rapid xenograft model to assess efficacy of chemotherapeutic agents

for human acute myeloid leukemia. Blood Cancer J. 2015, 5, e297. [CrossRef]

229. Nabbouh, A.I.; Hleihel, R.S.; Saliba, J.L.; Karam, M.M.; Hamie, M.H.; Wu, H.-C.J.H.-C.J.M.; Berthier, C.P.;

Tawil, N.M.; Bonnet, P.-A.A.; Deleuze-Masquefa, C.; et al. Imidazoquinoxaline derivative EAPB0503:

A promising drug targeting mutant nucleophosmin 1 in acute myeloid leukemia. Cancer 2017, 123, 1662–1673.

[CrossRef]

230. El-Houjeiri, L.; Saad, W.; Hayar, B.; Aouad, P.; Tawil, N.; Abdel-Samad, R.; Hleihel, R.; Hamie, M.;

Mancinelli, A.; Pisano, C.; et al. Antitumor Effect of the Atypical Retinoid ST1926 in Acute Myeloid Leukemia

and Nanoparticle Formulation Prolongs Lifespan and Reduces Tumor Burden of Xenograft Mice. Mol. Cancer

Ther. 2017, 16, 2047–2057. [CrossRef]

231. Mu, H.; Konopleva, M.; Jacamo, R.; Carter, B.Z.; McQueen, T.; Andreeff, M. Comparison of Induction

Chemotherapy in NSG and NOD- Rag1 null IL2rg null Mouse Models of FLT3 Mutant AML. Blood 2017,

130, 2692.

232. Cany, J.; van der Waart, A.B.; Tordoir, M.; Franssen, G.M.; Hangalapura, B.N.; de Vries, J.; Boerman, O.;

Schaap, N.; van der Voort, R.; Spanholtz, J.; et al. Natural killer cells generated from cord blood hematopoietic

progenitor cells efficiently target bone marrow-residing human leukemia cells in NOD/SCID/IL2Rg(null)

mice. PLoS ONE 2013, 8, e64384.

233. Cany, J.; Roeven, M.W.H.; Hoogstad-van Evert, J.S.; Hobo, W.; Maas, F.; Franco Fernandez, R.;

Blijlevens, N.M.A.; van der Velden, W.J.; Huls, G.; Jansen, J.H.; et al. Decitabine enhances targeting

of AML cells by CD34(+) progenitor-derived NK cells in NOD/SCID/IL2Rg(null) mice. Blood 2018, 131,

202–214. [CrossRef] [PubMed]

234. Hayata, I.; Ishihara, T.; Hirashima, K.; Sado, T.; Yamagiwa, J. Partial deletion of chromosome No. 2 in

myelocytic leukemias of irradiated C3H/He and RFM mice. J. Natl. Cancer Inst. 1979, 63, 843–848. [CrossRef]

235. Fredrickson, T.N.; Langdon, W.Y.; Hoffman, P.M.; Hartley, J.W.; Morse, H.C., 3rd. Histologic and cell surface

antigen studies of hematopoietic tumors induced by Cas-Br-M murine leukemia virus. J. Natl. Cancer Inst.

1984, 72, 447–454. [PubMed]

236. Askew, D.S.; Bartholomew, C.; Buchberg, A.M.; Valentine, M.B.; Jenkins, N.A.; Copeland, N.G.; Ihle, J.N.

His-1 and His-2: Identification and chromosomal mapping of two commonly rearranged sites of viral

integration in a myeloid leukemia. Oncogene 1991, 6, 2041–2047. [PubMed]

237. Rassart, E.; Houde, J.; Denicourt, C.; Ru, M.; Barat, C.; Edouard, E.; Poliquin, L.; Bergeron, D. Molecular

Analysis and Characterization of Two Myeloid Leukemia Inducing Murine Retroviruses. Curr. Top. Microbiol.

Immunol. 1996, 211, 201–210. [PubMed]

238. Bergeron, D.; Poliquin, L.; Houde, J.; Barbeau, B.; Rassart, E. Analysis of proviruses integrated in Fli-1

and Evi-1 regions in Cas-Br-E MuLV-induced non-T-, non-B-cell leukemias. Virology 1992, 191, 661–669.

[CrossRef]

239. Bergeron, D.; Poliquin, L.; Kozak, C.A.; Rassart, E. Identification of a common viral integration region in

Cas-Br-E murine leukemia virus-induced non-T-, non-B-cell lymphomas. J. Virol. 1991, 65, 7–15.

240. Mucenski, M.L.; Taylor, B.A.; Jenkins, N.A.; Copeland, N.G. AKXD recombinant inbred strains: Models for

studying the molecular genetic basis of murine lymphomas. Mol. Cell. Boil. 1986, 6, 4236–4243. [CrossRef]

241. Mucenski, M.L.; Taylor, B.A.; Ihle, J.N.; Hartley, J.W.; Morse, H.C., 3rd; Jenkins, N.A.; Copeland, N.G.

Identification of a common ecotropic viral integration site, Evi-1, in the DNA of AKXD murine myeloid

tumors. Mol. Cell. Biol. 1988, 8, 301–308. [CrossRef] [PubMed]

242. Fredrickson, T.N.; Silver, J.E. Susceptibility to Friend helper virus leukemias in CXB recombinant inbred

mice. J. Exp. Med. 1983, 158, 1693–1702.



Genes 2019, 10, 614 34 of 35

243. Silver, J.; Buckler, C.E. A preferred region for integration of Friend murine leukemia virus in hematopoietic

neoplasms is closely linked to the Int-2 oncogene. J. Virol. 1986, 60, 1156–1158. [PubMed]

244. Chesebro, B.; Portis, J.L.; Wehrly, K.; Nishio, J. Effect of murine host genotype on MCF virus expression,

latency, and leukemia cell type of leukemias induced by Friend murine leukemia helper virus. Virology 1983,

128, 221–233. [CrossRef]

245. Bordereaux, D.; Fichelson, S.; Sola, B.; Tambourin, P.E.; Gisselbrecht, S. Frequent involvement of the fim-3

region in Friend murine leukemia virus-induced mouse myeloblastic leukemias. J. Virol. 1987, 61, 4043–4045.

[PubMed]

246. Nazarov, V.; Wolff, L. Novel integration sites at the distal 3’ end of the c-myb locus in retrovirus-induced

promonocytic leukemias. J. Virol. 1995, 69, 3885–3888. [PubMed]

247. Shen-Ong, G.L.; Wolff, L. Moloney murine leukemia virus-induced myeloid tumors in adult BALB/c mice:

Requirement of c-myb activation but lack of v-abl involvement. J. Virol. 1987, 61, 3721–3725. [PubMed]

248. Bedigian, H.G.; Johnson, D.A.; Jenkins, N.A.; Copeland, N.G.; Evans, R. Spontaneous and induced leukemias

of myeloid origin in recombinant inbred BXH mice. J. Virol. 1984, 51, 586–594. [PubMed]

249. Copeland, N.G.; Buchberg, A.M.; Gilbert, D.J.; Jenkins, N.A. Recombinant Inbred Mouse Strains: Models for

Studying the Molecular Genetic Basis of Myeloid Tumorigenesis. Curr. Top. Microbiol. Immunol. 1989, 149,

45–57.

250. Nakamura, T.; Largaespada, D.A.; Shaughnessy, J.D.; Jenkins, N.A.; Copeland, N.G. Cooperative activation

of Hoxa and Pbx1-related genes in murine myeloid leukaemias. Nat. Genet. 1996, 12, 149–153. [CrossRef]

251. Moskow, J.J.; Bullrich, F.; Huebner, K.; Daar, I.O.; Buchberg, A.M. Meis1, a PBX1-related homeobox gene

involved in myeloid leukemia in BXH-2 mice. Mol. Cell. Boil. 1995, 15, 5434–5443. [CrossRef] [PubMed]

252. Li, J.; Shen, H.; Himmel, K.L.; Dupuy, A.J.; Largaespada, D.A.; Nakamura, T.; Shaughnessy, J.D.; Jenkins, N.A.;

Copeland, N.G. Leukaemia disease genes: Large-scale cloning and pathway predictions. Nat. Genet. 1999,

23, 348–353. [CrossRef] [PubMed]

253. Buchberg, A.M.; Bedigian, H.G.; Jenkins, N.A.; Copeland, N.G. Evi-2, a common integration site involved in

murine myeloid leukemogenesis. Mol. Cell. Boil. 1990, 10, 4658–4666. [CrossRef] [PubMed]

254. Largaespada, D.A.; Brannan, C.I.; Jenkins, N.A.; Copeland, N.G. Nf1 deficiency causes Ras-mediated

granulocyte/macrophage colony stimulating factor hypersensitivity and chronic myeloid leukaemia.

Nat. Genet. 1996, 12, 137–143. [CrossRef] [PubMed]

255. Tian, E.; Sawyer, J.R.; Largaespada, D.A.; Jenkins, N.A.; Copeland, N.G.; Shaughnessy, J.D. Evi27 encodes a

novel membrane protein with homology to the IL17 receptor. Oncogene 2000, 19, 2098–2109. [CrossRef]

256. Peterson, L.F.; Zhang, D.-E. The 8;21 translocation in leukemogenesis. Oncogene 2004, 23, 4255–4262.

[CrossRef] [PubMed]

257. Kozu, T.; Miyoshi, H.; Shimizu, K.; Maseki, N.; Kaneko, Y.; Asou, H.; Kamada, N.; Ohki, M. Junctions of the

AML1/MTG8(ETO) fusion are constant in t(8;21) acute myeloid leukemia detected by reverse transcription

polymerase chain reaction. Blood 1993, 82, 1270–1276.

258. Tonks, A.; Pearn, L.; Musson, M.; Gilkes, A.; Mills, K.I.; Burnett, A.K.; Darley, R.L. Transcriptional

dysregulation mediated by RUNX1-RUNX1T1 in normal human progenitor cells and in acute myeloid

leukaemia. Leukemia 2007, 21, 2495–2505. [CrossRef]

259. De Guzman, C.G.; Warren, A.J.; Zhang, Z.; Gartland, L.; Erickson, P.; Drabkin, H.; Hiebert, S.W.; Klug, C.A.

Hematopoietic Stem Cell Expansion and Distinct Myeloid Developmental Abnormalities in a Murine Model

of the AML1-ETO Translocation. Mol. Cell. Boil. 2002, 22, 5506–5517. [CrossRef]

260. Crozatier, M.; Meister, M. Drosophila haematopoiesis. Cell. Microbiol. 2007, 9, 1117–1126. [CrossRef]

261. Wildonger, J. The t(8;21) translocation converts AML1 into a constitutive transcriptional repressor. Development

2005, 132, 2263–2272. [CrossRef] [PubMed]

262. Lebestky, T. Specification of Drosophila Hematopoietic Lineage by Conserved Transcription Factors. Science

2000, 288, 146–149. [CrossRef] [PubMed]



Genes 2019, 10, 614 35 of 35

263. Osman, D.; Gobert, V.; Ponthan, F.; Heidenreich, O.; Haenlin, M.; Waltzer, L. A Drosophila model identifies

calpains as modulators of the human leukemogenic fusion protein AML1-ETO. Proc. Natl. Acad. Sci. USA

2009, 106, 12043–12048. [CrossRef] [PubMed]

264. Breig, O.; Bras, S.; Martinez Soria, N.; Osman, D.; Heidenreich, O.; Haenlin, M.; Waltzer, L. Pontin is a critical

regulator for AML1-ETO-induced leukemia. Leukemia 2014, 28, 1271–1279. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).



Résumé 

Toxoplasma gondii est un parasite répandu, ayant un impact médical et vétérinaire. Chez les hôtes intermédiaires, les 

tachyzoïtes et les bradyzoïtes sont responsables de la toxoplasmose aiguë (TA) et chronique (TC), respectivement. Sous la réponse 

immunitaire, la TA évolue en TC, se manifestant par des kystes latents dans le cerveau et les muscles squelettiques. De plus, une forte 
corrélation existe entre la TC et plusieurs neuropathologies et cancers. Chez les patients immunodéprimés, la TC peut être réactivée et 

conduire à une maladie potentiellement fatale. Les traitements actuels ciblent principalement les TA, et présentent plusieurs effets 

secondaires. Nous nous sommes concentrés sur la TC et la compréhension de ses mécanismes moléculaires. Nous avons d’abord 
étudié l’efficacité de l’imiquimod contre la TA et la TC. Au cours de la TA, l'imiquimod a entraîné le recrutement de cellules T dans 

le péritoine et la rate de souris traitées et a considérablement diminué le nombre de kystes cérébraux lors de l'établissement de la TC. 

Remarquablement, le gavage de souris avec les kystes cérébraux restants chez des souris traitées à l'imiquimod n'a pas pu induire de 
TC. Après l'établissement de la TC, nous avons démontré que l'imiquimod réduisait considérablement le nombre de kystes cérébraux 

chez les souris chroniquement infectées et augmentait les récepteurs Toll-Like 11 et 12, qui se lient à une protéine du tachyzoïte, la 

profiline. Parallèlement, l’expression de TLR-7 augmentait, probablement par son agoniste, l'imiquimod. L'imiquimod induit une 
interconversion, comme l'indiquent la diminution du taux de protéine P21 et l'augmentation du taux de protéine P30, exprimées 

exclusivement et respectivement chez les bradyzoïtes et les tachyzoïtes. Les voies en aval de TLR-11/12 ont été activées via la voie 

MyD88 de signalisation, entraînant une induction ultérieure de la réponse immunitaire. In vitro, l'imiquimod n’affecte pas la souche 
Toxoplasma dépourvue de profiline, suggérant un rôle via le complexe Profilin/TLR-11/12. Enfin, le traitement par l'imiquimod a 

régulé positivement les transcrits des ligands 9 (CXCL9) et 10 (CXCL10), connus pour induire le recrutement de lymphocytes T dans 

des foyers réactivés du Toxoplasme afin d'éliminer l'infection. Ensuite, nous nous sommes concentrés sur les mécanismes 
moléculaires impliqués dans la TA et particulièrement dans la TC. Nous avons caractérisé P18, un membre de la superfamille SRS. 

Lorsque nous avons supprimé P18, la virulence était atténuée au cours de la TA, dû à un échappement plus rapide des tachyzoïtes du 

péritoine de souris, parallèle à un recrutement significatif de cellules dendritiques. De manière concomitante, moins de tachyzoïtes 
étaient détectés dans la rate, tandis que plus de parasites ont atteint le cerveau de souris infectées. L’élimination de P18 a augmenté le 

nombre de kystes de bradyzoïtes in vitro et dans le cerveau de souris infectées. Une expression induite de cytokines, notamment 

CXCL9 et 10, a également été observée. L’immunosuppression de souris KO P18 infectées a retardé la réactivation. L’infection orale 
de souris immunodéficientes ayant des macrophages fonctionnels a montré un prolongement de survie, contrairement aux souris 

n’ayant pas de macrophage, soulignant un rôle de l'IFN- γ dans l’interconversion. Collectivement, ces données confirment le rôle de 

P18 dans la modulation de la réponse immunitaire, facilitant le passage des tachyzoïtes dans le cerveau et favorisant la formation de 
kystes. P18 joue également un rôle central dans la réactivation et la dissémination de parasites de manière dépendante de l'IFN-γ. Dans 

l'ensemble, nous avons montré le potentiel thérapeutique prometteur de l'imiquimod contre la toxoplasmose et caractérisé le rôle de 

P18 dans l'immunomodulation afin de contrôler la dissémination et l'interconversion. Notre étude ouvre la voie à de nouvelles 
approches thérapeutiques contre la toxoplasmose, sa persistance et sa réactivation. 

Mots-clés: toxoplasmose chronique, récepteurs Toll-like 11, 12, 7, interféron-γ, réactivation, Imiquimod, p18. 
 

Abstract 

Toxoplasma gondii is a prevalent parasite of medical and veterinary impact. In intermediate hosts, tachyzoïtes and 
bradyzoïtes are responsible for acute and chronic toxoplasmosis (AT and CT), respectively. In immunocompetent patients, AT 

evolves, due to the host immunity, into a persistent CT, which manifests as latent tissue cysts in the brain and skeletal muscles. CT 
correlates with several neuro-pathologies and cancers. In immunocompromised patients, CT may reactivate and poses a life 

threatening condition. Current treatments primarily target AT, are limited to general anti-parasitic/anti-bacterial drugs, and associate 

with several limitations. Here, we focused on targeting CT and understanding its molecular mechanisms. First, we explored the 
efficacy of Imiquimod against AT and CT. During AT, Imiquimod led to recruitment of T cells to peritoneum and spleen of treated 

mice and significantly decreased the number of brain cysts upon establishment of CT. Remarkably, gavage of mice with the remaining 

brain cysts from Imiquimod treated mice, failed to induce CT. Post-establishment of CT, we demonstrated that Imiquimod sharply 
reduced the number of brain cysts in chronically infected mice, and significantly increased Toll-Like Receptors 11 and 12. These 

TLRs are usually expressed by dendritic cells and monocytes, and bind a tachyzoïte actin-binding protein, profilin. Concomitantly, 

TLR-7 was upregulated, likely by its agonist Imiquimod. Imiquimod induced interconversion as documented by the decreased protein 

levels of P21, and increased protein levels of P30, exclusively expressed in bradyzoïtes and tachyzoïtes respectively. Pathways 

downstream from TLR-11/12 were activated, through MyD88 dependent TLR signaling, which resulted in subsequent immune 

response induction. In vitro, Toxoplasma strain lacking profilin, does not respond to Imiquimod, suggesting a role through 
Profilin/TLR-11/12. Finally, Imiquimod treatment upregulated the transcript expression levels of Chemokine (C-X-C motif) ligand 9 

(CXCL9) and 10 (CXCL10), known to induce T cell recruitment to reactivated Toxoplasma foci to clear the infection. Then, we 

focused on molecular mechanisms involved in AT and notably CT. We characterized P18, a Surface-Antigen 1 (SAG-1) Related 
Sequence (SRS) superfamily member. When we deleted P18, the virulence was attenuated during AT. Indeed, P18 depletion led to a 

faster clearance of the parasites from the peritoneum of mice, paralleled by a substantial recruitment of dendritic cells, presumably a 

vehicle for tachyzoïte dissemination. Concomitantly, a lower number of tachyzoïtes was detected in the spleens while a higher number 
of parasites reached the brains of infected mice. P18 depletion increased the number of bradyzoïte cysts, in vitro and in the brains of 

infected mice. An induced expression of cytokines/chemokines, including CXCL9 and 10 was also observed. Immunosuppression of 

infected mice with KO P18, delayed reactivation. Oral infection of Severe Combined Immunodeficiency (SCID) (with IFN-γ secreting 
macrophages), and NOD/Shi-scid/IL-2Rγnull (NSG) mice (lacking IFN-γ), showed a significant prolonged survival in infected SCID 

but not NSG mice. This underlines a role for IFN-γ in the conversion from bradyzoïtes to tachyzoïtes. Collectively, these data support 

a role of P18 in orchestrating the immune response, which ultimately facilitates tachyzoïte trafficking to the brain and favors cyst 
formation. P18 plays also a central role in parasite reactivation and dissemination in an IFN- γ dependent fashion. Altogether, we 

showed the promising therapeutic potential of Imiquimod against toxoplasmosis and characterized P18 role in immunomodulation to 

control dissemination and interconversion. Our study paves the path towards new therapeutic approaches against toxoplasmosis. It 
tackled key questions pertaining to establishment, maintenance and reactivation of CT and should result in a comprehensive solution 

to this endemic disease. 
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