
HAL Id: tel-02464499
https://theses.hal.science/tel-02464499

Submitted on 3 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Service composition in opportunistic networks
Fadhlallah Baklouti

To cite this version:
Fadhlallah Baklouti. Service composition in opportunistic networks. Ubiquitous Computing. Univer-
sité de Bretagne Sud, 2019. English. �NNT : 2019LORIS523�. �tel-02464499�

https://theses.hal.science/tel-02464499
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’UNIVERSITE BRETAGNE SUD
COMUE UNIVERSITE BRETAGNE LOIRE

Ecole Doctorale N°601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : INFO : Informatique
Par:

Fadhl Allah Saddam BAKLOUTI

Service composition in opportunistic networks

Composition de services dans les réseaux opportunistes

Thèse présentée et soutenue à VANNES , 1 mars 2019
(UMR 6074) IRISA (Institut de recherche en informatique et systèmes aléatoires)
Thèse N° : 523

Rapporteurs avant soutenance :
Chantal TACONET, Maître de Conférences HDR, Télécom SudParis, Institut Mines Télécom
Abderrahim BENSLIMANE, Professeur des Universités, Université d’Avignon
Composition du jury :

Président : Pierre-François MARTEAU, Professeur des Universités,Université de Bretagne-Sud
Examinateurs : Nathalie MITTON, Directrice de Recherche INRIA, INRIA Lille-Nord Europe

Chantal TACONET, Maître de Conférences HDR, Télécom SudParis, Institut Mines Télécom
Abderrahim BENSLIMANE, Professeur des Universités, Université d’Avignon

Dir. de thèse : Yves MAHÉO, Maître de Conférences HDR, Université de Bretagne-Sud
Encadrant de thèse : Nicolas LE SOMMER, Maître de Conférences, Université de Bretagne-Sud

Service composition in opportunistic networks Fadhlallah Baklouti 2019

Contents

I Introduction and Related Works 11

1 Introduction 13
1.1 Background and motivation . 13
1.2 Challenges . 17

1.2.1 Opportunistic networking challenges 17
1.2.2 Opportunistic computing challenges 19

1.3 Objectives and Contributions . 20
1.4 Outline of the thesis . 21

2 Opportunistic networking and computing 23
2.1 Introduction . 23
2.2 Opportunistic networking . 24
2.3 Opportunistic computing . 28
2.4 Discussion and Conclusion . 30

3 Service-oriented computing 33
3.1 Introduction . 33
3.2 Service discovery . 34

3.2.1 Service discovery in MANET . 37
3.2.2 Service discovery in opportunistic networks 39

3.3 Service selection and invocation . 41
3.4 Service composition . 42

3.4.1 Infrastructure-based and conventional composition 45
3.4.2 Composition in pervasive and wireless environments 46

3.5 Discussion and Conclusion . 49

II Contributions 51

4 Service discovery and composition system 53
4.1 Introduction . 53
4.2 Service discovery and utility functions . 54

4.2.1 Discovery . 54

3

Service composition in opportunistic networks Fadhlallah Baklouti 2019

Contents

4.2.2 Utility function . 55
4.3 Orchestration vs choreography . 57

4.3.1 Choreography-based strategy . 57
4.3.2 Orchestration-based strategy . 58
4.3.3 Mathematical models for composition time estimation and suc-

cess ratio estimation . 59
4.4 Conclusion . 61

5 Composition caching and precomputing 63
5.1 Introduction . 63
5.2 Proactive service computing . 64

5.2.1 General overview . 64
5.2.2 Formal description . 65

5.3 Distributed cache . 68
5.3.1 General overview . 68
5.3.2 Formal description . 69

5.4 Conclusion . 70

III Implementation, Evaluations and Conclusion 73

6 Implementation 75
6.1 Introduction . 75
6.2 C3PO . 75
6.3 Service discovery and composition system 77

6.3.1 Overview of the architecture . 77
6.3.2 Details . 78

6.4 Proactive service precomputing manager 82
6.4.1 Overview of the architecture . 82
6.4.2 Details . 83

6.5 Conclusion . 83

7 Comparison of composition strategies 85
7.1 Introduction . 85
7.2 LEPTON . 85
7.3 Evaluation setup . 87
7.4 Results and analysis . 88
7.5 Conclusion . 96

8 Evaluation of the utility function 97
8.1 Introduction . 97
8.2 Evaluation setup . 97

8.2.1 General setup . 97
8.2.2 Specific setup . 98

Contents 4

Service composition in opportunistic networks Fadhlallah Baklouti 2019

Contents

8.3 Results and analysis . 99
8.3.1 Success ratio . 99
8.3.2 Composition time . 103

8.4 Comparison . 107
8.5 Conclusion . 109

9 DCM evaluation 111
9.1 Introduction . 111
9.2 Evaluation setup . 112
9.3 Results . 113
9.4 Conclusion . 114

10 Conclusions and future works 115
10.1 Summary of the contribution . 115
10.2 Future works . 117

Bibliography 119

Publications 133

Contents 5

Service composition in opportunistic networks Fadhlallah Baklouti 2019

Contents

Contents 6

Service composition in opportunistic networks Fadhlallah Baklouti 2019

List of Figures

1.1 Wireless networks. 14
1.2 Scenarios suitable for opportunistic services. 16
1.3 Connectivity graph snapshots. 18

2.1 Topology based classification . 27

3.1 Client and provider interaction. 34
3.2 Directory-based service discovery. 35
3.3 Directory-less service discovery. 35
3.4 Comparison between discovery algorithms 41
3.5 Service composition. 43

4.1 Choreography example. 58
4.2 Orchestration example. 59

5.1 Proactive service composition. 64
5.2 Arrow between service a and b. 66
5.3 Distributed cache system. 68

6.1 C3PO framework. 76
6.2 General architecture of the service discovery and composition system. . 77
6.3 Communication diagram for the service discovery and composition sys-

tem. 78
6.4 Class diagram of the service discovery and composition system. 79
6.5 Class diagram for messages exchanged by the service discovery and com-

position system. 81
6.6 Data sharing space general architecture. 82
6.7 Data sharing space class diagram. 83

7.1 C3PO/LEPTON integration. 86
7.2 Wi-Fi Direct scenario. 87
7.3 Vannes city map. 89
7.4 Impact of the number of hops on service compositions. 90
7.5 Composition time distribution for 2 hops. 91

7

Service composition in opportunistic networks Fadhlallah Baklouti 2019

List of Figures

7.6 Distribution of node number per composition
with two hops away remote services. 94

7.7 Distribution of node number per composition
with one hop away remote services. 95

8.1 Success ratio against the maximum number of hops between service client
and service provider. 100

8.2 Success ratio against the number of services per composition. 101
8.3 Success ratio against remote service entry inactivity time threshold in

service registries. 102
8.4 Success ratio against number of services per experience. 103
8.5 Median of composition time against the maximum number of hops be-

tween the service client and service provider. 104
8.6 Median of composition time against the number of services per compo-

sition. 105
8.7 Decimal logarithm of median of composition time against remote service

entry inactivity time threshold in service registries. 106
8.8 Average of composition time against number of services per experience. 107

9.1 Median time of different data operations. 113

List of Figures 8

Service composition in opportunistic networks Fadhlallah Baklouti 2019

List of Tables

2.1 Comparison between opportunistic solutions 30

7.1 Evaluation parameters. 88

8.1 Evaluation parameters. 98
8.2 Parameters varying according to the evaluations. 98
8.3 Results from other works. 108

9.1 DCM evaluation parameters. 112

9

Service composition in opportunistic networks Fadhlallah Baklouti 2019

List of Tables

List of Tables 10

Service composition in opportunistic networks Fadhlallah Baklouti 2019

Part I

Introduction and Related Works

11

Service composition in opportunistic networks Fadhlallah Baklouti 2019

Service composition in opportunistic networks Fadhlallah Baklouti 2019

Chapter 1

Introduction

Contents
1.1 Background and motivation . 13

1.2 Challenges . 17

1.3 Objectives and Contributions . 20

1.4 Outline of the thesis . 21

1.1 Background and motivation

Nowadays, our environment is populated with heterogeneous electronic devices (PC,
smart-phones, tablets, sensors, actuators, etc.) which are used for different kinds of
purposes (e.g. environment sensing, smart home control, social communication).

Usually, these devices are connected to a network infrastructure using equipments
such as Wi-Fi access points or base stations (BTS) as shown in Figure 1.1a. The cost
of such infrastructures can be very expensive. This is the main reason why these in-
frastructures are not usually deployed in remote areas with small populations and in
extremely poor countries. Furthermore, these infrastructures could cease to function in
certain situations such as when a considerable damage is caused by catastrophes (Hur-
ricanes, volcanoes, etc.). They can, as well, be subject to censorship for political reasons.
In addition, such infrastructures are vulnerable to a single point of failure in case, an
access point or a BTS breaks down.

One solution to solve this problem is to enable device-to-device communication. In
this communication mode, devices exchange data with each other directly without re-
sorting to an infrastructure that plays the role of intermediate between them, as shown
in Figure 1.1b. This communication mode is also referred to as ad hoc mode. Networks
formed by mobile devices communicating in ad hoc mode are called Mobile Ad Hoc Net-
works (MANETs) (32). In these networks, devices play simultaneously the role of a host
and a router to be able to cope with the fast changing topology of the network.

13

Service composition in opportunistic networks Fadhlallah Baklouti 2019

1.1. Background and motivation

access point

access point

access point

(a) Infrastructure-based communication. (b) Ad hoc communication.

(c) Fragmented network.

Figure 1.1 – Wireless networks.

Chapter 1. Introduction 14

Service composition in opportunistic networks Fadhlallah Baklouti 2019

1.1. Background and motivation

In MANETs, a dynamic routing protocol is needed to enable nodes to communicate
with each other. Dynamic routing protocols determine the set of intermediate nodes
that will transmit packets from a source to a destination. Routing protocols can be split
into two categories: table driven/proactive protocols and reactive protocols. The proactive
ones maintain a table that contains routing informations about other devices in the net-
work. This table is updated regularly. DSDV (89) is an example of such a type of proac-
tive protocols. On the other hand, reactive protocols perform an on demand discovery
and computation of routes. A node, that has packets to send to a certain destination,
starts a route discovery process, and when a route is found the sending process can take
place. AODV (98) is an example of a reactive routing protocol.

Unfortunately, MANET routing protocols are likely to prove inefficient in real con-
ditions. Indeed, the objective of MANET routing protocols is to provide an end-to-end
route between each pair of nodes in order that conventional applications can still run in
these kind of environments. Thus, these protocols assume that the network is enough
dense, stable and connected in order to guarantee the existence of these end-to-end
routes. However, due to the mobility of devices, to the limited radio range of network
technologies, and to the unpredictable failures, the network topology has probably a
fragmented aspect, as shown in Figure 1.1c, where devices form a set of isolated con-
nected islands.

Highly fragmented and disconnected MANETs constitute what we call opportunis-
tic networks (OppNet) (96). OppNets are the target networks of this dissertation. Unlike
MANETs, OppNets do not assume the existence of an end-to-end route between each
and every pair of devices. Thus, OppNets do not rely on dynamic routing protocols.
Instead, OppNets consider a contact established between two nodes as an opportunity
to exchange data. OppNets rely on the “store, carry and forward” principle, which con-
sists of storing messages in a cache memory and exchanging them with other devices
whenever it is possible. OppNets also take advantage of device mobility in order to
deliver data across the network.

OppNets are further extended with the concept of Opportunistic computing (30), whe-
re a user not only has access to the local resources of his device but also to resources
offered by the devices of other users he encounters, and by the devices deployed in
the network such as infostations. Doing so, a given user has more functionalities at his
disposal and has the ability to combine them to create new ones.

Moreover, the techniques, provided by both opportunistic networking and oppor-
tunistic computing, have opened multiple new interesting perspectives for ubiquitous
computing (122) and Internet of Things (IoT) (9). As an example, we can consider a mo-
bile sensor network to monitor a wild animal population and to study their behaviours
as in the project ZebraNet (62), where animals are equipped with wireless devices that
embark GPS modules, flash memories, transceivers and small CPUs. Another example
is the project ASAWoO (87) that uses the concept of Web of Things. In ASAWoO, physi-
cal objects are associated with avatars (Web-based software components) in order to be
able to control and access these objects using Web standards.

One way to implement opportunistic computing is to adopt an approach based on

Chapter 1. Introduction 15

Service composition in opportunistic networks Fadhlallah Baklouti 2019

1.1. Background and motivation

(a) Attraction park. (b) Marathon event.

S1: Read RFID tags S2:tag picture S3:filter photos

(c) Composition scenario in a marathon event.

Figure 1.2 – Scenarios suitable for opportunistic services.

service-oriented computing (SOC) (17; 40), which is the one chosen in this dissertation.
In SOC, each resource (software or hardware) from a given device in the network can
be wrapped in a form of a service, and made publicly accessible through a unique in-
terface with a service description that provides service clients with the informations
they need to invoke these services. SOC guarantees loose coupling and late binding
between software components and allows them to evolve independently from each
others. Moreover, one of the most important principle of SOC is service reusability.
SOC requires services to be designed in way that supports reuse even if reuse oppor-
tunities are not immediately available. One example of reusability, that we focus on in
this thesis, is service composition, where atomic services are aggregated into composite
services in order to create new functionalities.

Opportunistic computing based on service-oriented computing can be applied in
many applications and scenarios such as social networking, disaster relief and data
collection. One example could be a marathon event (Figure 1.2b) where runners wear
RFID tags on their bibs. Consequently, a service can be developed to read these RFID
tags in order to add bib numbers on photos as metadata (S1 in Figure 1.2c). This service
can be, then, composed with a service that applies filters to photos (S2 in Figure 1.2c).
This service is possibly hosted by another node, due to the lack of resources. Another
service could be added to indicate the location coordinates where these photos were
taken (S3 in Figure 1.2c). This sequence of services, invoked one after the other, illus-
trates the principle of reusability based on composition. Likewise, users can share and
comment photos of their favourite runners and follow them closely throughout the
race.

Moreover, we can imagine a scenario where people, in an attraction park (Fig-
ure 1.2a), wish to share informations and feedbacks about their experiences. By relying

Chapter 1. Introduction 16

Service composition in opportunistic networks Fadhlallah Baklouti 2019

1.2. Challenges

on smart-phones carried by people and on several other devices that the park admin-
istration may provide, services may be deployed to produce pictures, comments or
measurements (temperature, queue length, waiting duration, etc).

1.2 Challenges

This thesis focuses on opportunistic networks and on the opportunistic computing
paradigm (based on SOC). To devise solutions dedicated to this kind of opportunis-
tic environments, many challenges and constraints should be taken into consideration.
Some of these challenges would be considered trivial and would be simply ignored in
other types of networks such as MANETs. In this section, we outline the main chal-
lenges and constraints that both opportunistic networking and computing techniques
should cope with.

1.2.1 Opportunistic networking challenges

Throughout the literature, most of the solutions and studies on opportunistic networks
are focused on forwarding algorithms. Generally the goal of a forwarding algorithm
is to maximize message delivery while minimizing delivery delays. In this context,
Thrasyvoulos et al. (116) identify 3 categories of constraints that a forwarding algorithm
should take into consideration: (i) the uncertainty and the stochastic aspect of connec-
tivity links, (ii) the randomness, the heterogeneity and the unpredictability of nodes
mobility and (iii) the limited and heterogeneous resources of each node. Hereafter, we
present these 3 categories in details.

Connectivity Yu et al. (124) provide two definitions for connectivity:(i) the probabil-
ity that an end-to-end path exists between two random nodes or (ii) the percentage of
nodes connected to the largest connected subgraph. Due to the mobility, to the short
radio range and to the lack of resources, connectivity is rarely at a 100 % rate. Usually, it
varies between 0 % (very sparse and fragmented) and 100 % (compact and condensed).
In this same logic, the authors of (42) propose a classification of 3 types of networks
based on their connectivity: Sparse Networks, clusters networks and almost connected net-
works.

Sparse Networks are the type of networks were nodes do not form any large cluster.
Indeed, most of the nodes are isolated most of time and sometimes they come across
other nodes. Nodes exploit their limited contact duration to exchange data. The proba-
bility of having an end-to-end path in this type of networks is close to 0, thus rendering
conventional routing protocols inefficient.

The clusters networks can be considered as the most realistic ones. Indeed, in the real
world, nodes tend to organize themselves in groups. Many examples can be consid-
ered such as a number of vehicles around a crossroad or in front of a traffic light (106), a
group of students in a campus (54), or even a group of animals that move together (62)
(Zebra herd or lion pride). Consequently, these nodes form a set of separated connected

Chapter 1. Introduction 17

Service composition in opportunistic networks Fadhlallah Baklouti 2019

1.2. Challenges

N1

N2

N3

Snapshot 1

N3

N2

N1

Snapshot 2

N3

N2

N1

Snapshot 3

Figure 1.3 – Connectivity graph snapshots.

clusters. The nodes within the same cluster usually have a high connectivity. However
connectivity between clusters is very low and data exchange between them relies usu-
ally on nodes leaving one cluster and joining another.

Sparse Networks and clusters networks represent the two types of networks where con-
ventional routing protocols would fail and where opportunistic forwarding techniques
should provide the alternative. Therefore, it is important for opportunistic forwarding
techniques to figure out how to optimize data delivery between isolated nodes and how
to efficiently relay data between clusters of nodes.

The third type is the almost connected networks. This type is characterized by a high
node density with a few small isolated clusters or solitary nodes. An end-to-end path
is likely to be found between a random pair of nodes, even though due to mobility
and link quality fluctuations, this end-to-end path has in general a short lifetime. This
type of networks is suitable for conventional ad hoc routing protocols (proactive (89)
or reactive (98)). The only case, where opportunistic networking techniques can still
be relevant in this type of networks, is when we want to connect isolated nodes and
clusters to the rest of the network.

Mobility Mobility describes how nodes move around. It is the factor that determines
how the topology of a wireless network evolves overtime. In other words, mobility
defines the sequence of the connectivity graph snapshots of the network and how these
snapshots are related to each others, as illustrated in Figure 1.3. Therefore, in the ab-
sence of any end-to-end routes that can be relied on, it is important to study mobil-
ity patterns and their stochastic properties in order to devise robust forwarding algo-
rithms for opportunistic networks. In (116), the authors identify 5 mobility properties
that might be relevant for forwarding algorithms, namely intensity, locality, regularity,
heterogeneity and correlation.

Intensity is related to the speed, and to the frequency and duration of pauses. Local-
ity is the set of locations that a given node prefers to visit. As shown in studies like (59),
nodes prefer to visit a small number of locations over a large amount of time. Regu-
larity expresses the order, in terms of importance, according to which a node visits its

Chapter 1. Introduction 18

Service composition in opportunistic networks Fadhlallah Baklouti 2019

1.2. Challenges

most frequented locations. Heterogeneity underlines the fact that even though nodes
have same qualitative properties (e.g. limited number of frequented locations), they of-
ten exhibit different choices (e.g. different frequented locations.). Correlation identifies
nodes that have a correlated mobility pattern. For example classmates that are sharing
the same classroom at a certain time of the day.

Resources Despite the important technological advancements, scarcity of resources,
in wireless networks in general and in opportunistic networks in particular, remains
an important challenge to reckon with. We identify two resources constraints: network
resources and local resources.

As far as the network resources are concerned, opportunistic networks inherit the
very same limitations from the traditional wireless networks. Opportunistic networks
will always suffer from limited bandwidth and relatively high probability of link errors.
Therefore forwarding solutions should be devised in a way that reduces signaling and
control information exchanges. Furthermore, due to bandwidth scarcity, forwarding
algorithms should be very prudent with their forwarding decisions.

Local resources depend on the type of nodes forming the networks. Networks, such
as hybrid networks (12), can contain nodes that have relatively significant resources like
infostations as well as nodes with very limited resources like sensors or mobile devices.
Depending on the type of nodes taken into consideration, important resources like pro-
cessing power, memory, storage capacity and battery lifetime (5) could vary dramati-
cally. Therefore, opportunistic techniques should be aware of the amount of resources
that are available in order to function properly, especially in the case of scarcity, where
resources should be used carefully.

1.2.2 Opportunistic computing challenges

Developing applications for opportunistic networks can reveal to be a very complicated
task. Indeed, opportunistic applications can not make the same flexible assumptions
about their environment as conventional applications because of the volatility and the
unpredictability of opportunistic networks. The main objective, when developing ap-
plications for opportunistic networks, is to maintain a certain quality of service while
coping with the problems imposed by such difficult environments. Opportunistic ap-
plications inherit challenges from applications developed for MANETs and have to deal
with new challenges imposed by the nature of opportunistic networks.

A common challenge, that opportunistic applications have with other wireless ap-
plications, as well as with opportunistic forwarding techniques, is the scarcity of re-
sources. Most of mobile devices, composing opportunistic networks, have indeed a
limited processing power, a small memory and storage space, and a relatively short
battery lifetime. Besides, these devices suffer from link errors and limited bandwidth
which can cause connection disruptions. Therefore opportunistic applications should
be lightweight and economical with their local and network resource consumption.

Chapter 1. Introduction 19

Service composition in opportunistic networks Fadhlallah Baklouti 2019

1.3. Objectives and Contributions

Opportunistic applications should also take into consideration that their network ex-
changes could fail and that they need to implement recovery mechanisms.

Opportunistic applications should also take into consideration the scalability prob-
lem. As for any other type of distributed applications, the increase in the number of
nodes should not affect the performance of the application overall.

Similar to opportunistic networking techniques, opportunistic applications have to
cope with the fragmented aspect of the network. Actually, opportunistic networks are
generally formed by isolated nodes or by isolated group of nodes. Nodes, within the
same group, generally have no problem reaching each others. However, it can be diffi-
cult to reach an isolated node or a node in another group. Opportunistic applications
should take into consideration that accessing the resources of a node in another group
could introduce long waiting delays and sometimes could even fail.

Opportunistic applications based on SOC, in particular, face important challenges
when performing service discovery, invocation and selection. Indeed, these applica-
tions should take into consideration, when selecting service providers (devices hosting
services) to invoke, that these providers are only available for a short amount of time
due to mobility and short radio range. Besides, communication delays are inherent to
opportunistic networks, due to the adoption of the “store-carry-and-forward” princi-
ple in the absence of end-to-end routes. Therefore, service invocations should be asyn-
chronous, and selection should favor providers that are likely to offer a minimum of
invocation delay. Similar to other opportunistic applications, opportunistic SOC appli-
cations should take into account connection disruptions especially when performing an
invocation process. Thus, opportunistic SOC applications should implement recovery
mechanisms such as invoking an alternative provider or invoking a group of providers
instead of a single one in order to minimize the probability of failure. Moreover, service
discovery in opportunistic networks should focus on advertising services to clients that
are likely to be able to invoke these services successfully while avoiding those that are
not, in order to guarantee a certain service provision quality and to reduce bandwidth
consumption.

1.3 Objectives and Contributions

In this thesis, we consider studying the service-oriented computing paradigm applied
to opportunistic networks. We try to find a way to exploit this paradigm in order to
create new functionalities, not provided by elementary services, using service compo-
sition. In this context, we suppose that there are enough service redundancy (instances
per service) and enough service diversity (number of services available) in the network
in order to be able to compose new services. In this thesis, we only consider sequential
compositions. Other types of compositions can, indeed, be derived from the sequen-
tial ones. Therefore, our objective is to define a composition mechanism that execute
composition requests with the least time possible while maximizing the composition
success ratio. Our composition solution should be also efficient with resource con-
sumption, given the scarcity of such resources in opportunistic networks.

Chapter 1. Introduction 20

Service composition in opportunistic networks Fadhlallah Baklouti 2019

1.4. Outline of the thesis

Hereafter, we detail our principle contributions in this dissertation.

Service discovery and composition system We define a service discovery and com-
position system that has two main modules: a service discovery module and a service
composition module. The service discovery module implements a discovery algorithm
that follows a directory-less approach where each device implements it own service
registry. This algorithm also uses a proactive discovery mode. The service composition
module allows the use of both an orchestration strategy and a choreography strategy.

Utility function for provider selection We define a utility function that selects service
providers to be enrolled in an invocation of a simple or a composite service. We also
propose two implementations for this utility function: one is based on time and the
other is based on location and distance.

Proactive service precomputing manager To reduce composition time and offer the
user a better quality of service, we propose to compose services proactively without
waiting for the user to decide to start composition requests explicitly. Since, it could
be expensive to execute all possible compositions, we have devised a solution that au-
tomates the process of composition by identifying and executing composition requests
that reflect the user preferences. We call this solution proactive service precomputing
manager (PSP).

Distributed service composition caching Since we rely on opportunistic networking
techniques, each node is supposed to have a cache memory in which it stores messages.
Thus, we propose a solution that considers these cache memories as a distributed stor-
age space that provides access to invocation and composition results from other nodes
in the network instead of initiating new invocations of simple or composite services.
Doing so, the workload and the resource consumption of nodes are reduced, and re-
sults can be returned to the clients more quickly. This solution is called distributed
cache manager (DCM) and it represents an extension module to the service discovery
and composition system.

Evaluation results We run several sets of real time emulations in order to compare the
performances of both composition strategies (choreography and orchestration) mainly
in terms of success ratio and composition time. We do the same, as well, to compare
the two implementations of the utility function in order to study their effects on service
composition. We also evaluate the performances of the DCM.

1.4 Outline of the thesis

The rest of this dissertation is organized as follows:

Chapter 1. Introduction 21

Service composition in opportunistic networks Fadhlallah Baklouti 2019

1.4. Outline of the thesis

In Chapter 2, we introduce both the opportunistic networking paradigm and the
opportunistic computing paradigm. We present the forwarding techniques dedicated
to this kind of networks and some of the applications and middlewares that adopt an
opportunistic computing approach.

In Chapter 3, we introduce the concept of service-oriented computing (SOC) and
we discuss the main notions related to it such as service discovery, invocation, selection
and composition. We also survey the works related to SOC both in MANET and in
opportunistic networks.

In Chapter 4, we present the service discovery and composition system. We define
the two implementations of the utility function (location-based and the time-based)
that are used in order to rate service providers and to select them for invocations of
either simple or composite services. We also present, in this chapter, the two composi-
tion strategies (orchestration, choreography) and we provide a mathematical formula-
tion in order to estimate the composition time and the success ratio. In Chapter 5, we
present the proactive service precomputing manager that automates service composi-
tions based on the user preferences, and the distributed cache manager that shares and
replicates composition results between devices.

In Chapter 6, we present an implementation of the service discovery and compo-
sition system as well as the software environment used in the development process.
In Chapter 7 and 8, we compare the orchestration strategy and the choreography strat-
egy using a set of emulations, and we study the impact of both implementations of
the utility function on the invocation of composite services. In Chapter 9, we evaluate
the performances of the distributed cache manager. Finally, we present our general
conclusions as well as the perspectives for future works.

Chapter 1. Introduction 22

Service composition in opportunistic networks Fadhlallah Baklouti 2019

Chapter 2

Opportunistic networking and
computing

Contents
2.1 Introduction . 23
2.2 Opportunistic networking . 24
2.3 Opportunistic computing . 28
2.4 Discussion and Conclusion . 30

2.1 Introduction

In (42), Kevin Fall states that conventional network protocols are based on the assump-
tions that there is always an end-to-end path between each and every pair of nodes in
the networks, that the transmission delay between a sender and a receiver is relatively
short, and that error rate and message loss are very low. He calls each network that
fails to meet these characteristics a challenged network. Challenged networks have been
widely studied over the years, especially Delay-Tolerant Networks (DTN) (117) and
opportunistic networks (96) that are the closest to the topic of this dissertation. DTN
is considered as an overlay architecture that allows DTN regions (heterogeneous net-
works) to communicate with each others using DTN gateways that deliver data from
one region to another, while opportunistic networks are more considered as discon-
nected mobile ad hoc networks.

In this chapter, we focus on the topic of opportunistic networks and opportunistic
computing. We organize the rest of the chapter as follows. In Section 2.2, we present
the paradigm of the opportunistic networking in general and we discuss the forward-
ing techniques dedicated to this kind of networks. In Section 2.3, we introduce the
paradigm of opportunistic computing and we discuss several examples of platforms
dedicated to this paradigm. Finally, in Section 2.4, we provide a discussion and we give
some conclusions.

23

Service composition in opportunistic networks Fadhlallah Baklouti 2019

2.2. Opportunistic networking

2.2 Opportunistic networking

The concept of opportunistic networks has been introduced to address the short-com-
ings of Mobile Ad hoc Networks’ solutions. Most of the proposed solutions related
to MANETs consider that the network is enough dense to overcome the limited radio
range and the user mobility. Thus, the network guarantees the existence of an end-to-
end path between each and every two nodes, which constitutes the main assumption
upon which almost every MANET routing protocol is conceived. In real scenarios,
such assumptions are not sustainable. Therefore, opportunistic networks rule out the
existence of an end-to-end path between each pair of nodes. Instead, opportunistic
networks rely on mobility that enables nodes to come at range of one another for rel-
atively short contact durations. Nodes then exploit these contact durations in order to
exchange data. To implement this approach, opportunistic networks rely on the princi-
ple of “store, carry and forward”. Basically, when a given node fails to find a suitable
destination to forward data to, it stores the data in a local cache and waits until it finds
an opportunity to send it.

To summarize, a network is considered to be opportunistic if:

• most of the nodes are mobile and their mobility pattern is hard to predict,

• connection between nodes is in ad hoc mode with no infrastructure or access point
to manage it,

• the absence of end-to-end path between nodes,

• relatively long transmission delays.

Most of the works done on opportunistic networks deal with the problem of data for-
warding (84). Usually, in the literature, we use the term “forwarding algorithm” rather
than “routing algorithm” in the context of opportunistic networks. The reason is the
absence of a route between the sender and the receiver in most cases. Consequently,
we focus on finding the best way to forward messages to their destinations instead of
establishing a connected route between each pair of nodes. Forwarding algorithms can
be classified in different ways. The authors of (84) propose to divide forwarding pro-
tocols into three categories based on whether or not these protocols make any use of
context.

Context oblivious Context oblivious protocols do not exploit any kind of device-
related or user-related information. They have no particular knowledge about the net-
work or its topology, and they usually forward messages using a fixed mechanism that
does not change its behaviour no matter what the context is.

An example of this category of protocols is the Epidemic protocol (119). This proto-
col forwards messages as a disease is spread among a population. Each node maintains
a list of messages, that it carries in its cache, in a form of a hash table. The hash table
is described using a summary vector. Upon contact with another node, the summary

Chapter 2. Opportunistic networking and computing 24

Service composition in opportunistic networks Fadhlallah Baklouti 2019

2.2. Opportunistic networking

vectors are exchanged between the pair. Each node determines the messages that it
does not have and then requests them from the other node.

Flooding-based algorithms like Epidemic generally generate a huge overhead and
are very bandwidth and energy consuming. This can cause a considerable problems
for resource-limited nodes. In an attempt to remedy to these problems, the idea was
to limit the number of copies of a given message that flow in the network. This is
the underlying approach behind the spray and wait algorithm (114). Spray and wait
consists of two main steps: (i) Spray phase: each source node creates L copies and
forwards them. Each forwarding node, that has n>1 copies, will forward one or many
copies to the next neighbours and so on. If it has only one copy, it can only perform a
direct transmission to the destination. (ii) Wait phase: if the destination is not reached
in the spraying phase, the nodes carrying the copies will perform a direct transmission
when they come in contact with the destination.

One of the draw-backs of spray and wait is that it needs a highly moving nodes
to guarantee a good performance. Due to the network being relatively sparse, spray
and wait can face a serious problem of node locality which will inhibit the process of
delivering the messages. To answer these shortcomings, a solution called spray and
focus (113) was introduced. Spray and focus also has two phases: (i) Spraying phase:
when a source generates a new message, it creates with it L tokens. A token means
that the node, possessing it, can spawn and forward an additional copy of the message.
A node can transmit a message, with n>1 tokens, to another node that does not have
a copy of it. It is done by simply spawning the message and forwarding it with n/2
tokens. When n=1, we will use the focus phase. (ii) Unlike in Spray and wait, in this
focus phase, when a node carries a message with one single token, it can forward it to
another relay based on a specific criterion. A utility function is used to assess whether
a given node is suitable as a relay or not. This utility function is based on a timer that
calculates the elapsed time since the last encounter with a given node.

Partially context-aware Partially context-aware protocols collect informations about
contacts between nodes and usually attempt to speculate or predict, in someway, their
mobility in order to select the nodes, to which messages should be forwarded.

PROPHET (Probabilistic Routing Protocol using History of Encounters and Transi-
tivity) (76) is an example of a partially context-aware protocol. This forwarding protocol
relies on assessing the probability of a node to deliver messages. It uses a probabilistic
metric called “delivery predictability” that indicates if a given node is likely to success-
fully deliver a message to a certain destination. PROPHET assumes that the nodes’
mobility is not random and that it is possible to predict it.

CAR (Context-Aware Routing) (88) tries to predict if the destination node is within
the same cloud (cluster of nodes) as the sender. If it is the case, the message will be
forwarded using the proactive routing protocol DSDV. Otherwise, CAR selects one or
more carriers that are considered to have the highest chance of delivering the message
according to a metric called delivery probability that is calculated using context informa-
tions. CAR uses as context properties the number of neighbours of a given node and

Chapter 2. Opportunistic networking and computing 25

Service composition in opportunistic networks Fadhlallah Baklouti 2019

2.2. Opportunistic networking

its current energy level. CAR is considered as a partially context-aware due to the fact
that collecting informations about the network does not require an explicit exchange of
messages.

Full context-aware Full context-aware protocols exploit informations about the user’s
environment like location, interest, social interaction and context, and do not restrain
themselves to only informations about the network as the partially context-aware pro-
tocols do.

In this category, we find a protocol called HiBOp (20) proposed by Boldrini et al..
HiBOp relies on network topology, contact history and user context in order to establish
similarity between nodes and to forward messages between them accordingly. HiBOp
requires users to provide their personal data like addresses, hobbies, phone numbers,
emails, etc. HiBOp makes the assumption that nodes with more similarities with the
destination, have more chances to deliver messages to it.

PROPICMAN (90) is a probabilistic forwarding protocol that exploits nodes’ pro-
files to calculate their delivery probability for a certain destination. A node profile
consists of a set of evidences (attributes). Each evidence is associated with a weight.
These weights are then used to calculate the delivery probability. When a given source
wants to send a message to a certain destination, it starts a two-hop route probabil-
ity selection. This selection process consists of choosing the route formed by the two
consecutive neighbours (1-hop neighbour and 2-hop neighbour) that have the highest
combined delivery probability to the destination. Furthermore, PROPICMAN provides
some security features to protect the content of messages and the users’ informations.

SimBet (34) is another full context-aware forwarding protocol. It uses two metrics
to assess the probability of a node to reach a certain destination: centrality and social
similarity. SimBet assumes that nodes with high centrality can play the role of a broker
in order to relay messages between disconnected node communities (nodes clusters),
that can not communicate directly with each others. Moreover, within the same node
community, Simbet uses the similarity metric to choose which nodes to carry a message
to its destination. Actually, it is supposed that nodes with close similarities are more
likely to find each others.

Hui et al. (56) present a social-based forwarding protocol called BUBBLE Rap. BUB-
BLE Rap relies on a community-based view of the network combined with a node cen-
trality assessment approach to forward messages. BUBBLE Rap, first, assumes that
people have different roles and popularity and that should be reflected by the network.
Therefore, BUBBLE Rap first forwards messages to the most popular nodes until we
reach a node that is in the same community as the destination. This first step is justified
by arguing that popular nodes have more chances to contact other nodes and that these
popular nodes are included in many communities at the sametime. Second, BUBBLE
Rap recognizes that people organize themselves in communities which also should be
reflected by the network they form. Thus, the second step consists of identifying the
nodes that are in the same community as the destination and use them to forward the
messages.

Chapter 2. Opportunistic networking and computing 26

Service composition in opportunistic networks Fadhlallah Baklouti 2019

2.2. Opportunistic networking

Topology

Infrastructure

Infrastructure-less

Fixed

Mobile

Dissemination-based

Context-based

Figure 2.1 – Topology based classification

In (96), the authors propose another classification based on the topology assumed
by the protocols, as shown in Figure 2.1:

• With infrastructure: The presence of an infrastructure can be exploited by for-
warding protocols in order to forward the messages between nodes. Usually, the
infrastructure, in this context, consists of a set of special nodes with more pow-
erful resources than the normal ones. Generally, these special nodes collect the
messages and try to deliver them. Furthermore, this class of protocol can be di-
vided in two other subclasses:

– Fixed infrastructure: Fixed infrastructure consists of a set of fixed base sta-
tions that collect messages and deliver them to more reliable networks (Inter-
net, 3G,..). One example of protocols, that exploits this kind of infrastructure,
is SWAM (112).

– Mobile infrastructure: Mobile infrastructure consists of mobile data mules
or ferries. Forwarding protocols use these data mules when they pass next
to normal nodes to collect data. Data mules will then send this data to other
networks via access points and gateways. One example of this kind of pro-
tocols is the data-Mule system (58).

• Without infrastructure: Protocols without infrastructure do not suppose the ex-
istence of any kind of special nodes in particular. This class of protocols can be
further divided into two subclasses:

– Dissemination-based: Dissemination-based protocols rely generally on floo-
ding-based techniques. The most important thing is choosing the right heuri-

Chapter 2. Opportunistic networking and computing 27

Service composition in opportunistic networks Fadhlallah Baklouti 2019

2.3. Opportunistic computing

stics to decrease the considerable overhead due to flooding. It is important
to mention that the overhead has a negative effect on the protocol perfor-
mance since it consumes a lot of bandwidth, power and processing which are
very scarce resources in opportunistic networks. Examples of protocols from
this subclass: probabilistic routing (76), Spray and Wait (114), Spray and Fo-
cus (113) and epidemic routing (119).

– Context-based: Context-based protocols exploit informations about the nod-
e’s environment such as location, user interest, history of pair-wise contact,
etc. As examples, we can mention HiBOp (20) and MobiSpace (72).

2.3 Opportunistic computing

In (30), Conti et al. argue that two nodes, that come in contact within an opportunistic
network, have the opportunity to exchange messages, and also to exploit each other
resources and applications. This paradigm is called opportunistic computing by Conti
et al..

Opportunistic computing is a relatively recent distributed computing para-digm
that exploits unplanned and opportunistic interaction between mobile devices. Op-
portunistic computing is build upon opportunistic networks and tries to expand it by
making it possible to leverage remote resources such as software applications, hetero-
geneous hardware, multimedia content and sensing capabilities. Likewise, a given de-
vice, that does not have enough resources to perform a certain task, can rely on remote
resources provided by other devices to collaboratively perform this task using oppor-
tunistic computing techniques.

Several platforms have been developed specially for opportunistic computing. DoD-
WAN (52) (Document Dissemination in mobile Wireless Ad hoc Networks) is a Java-
based middleware for opportunistic networks that adopts a content-based communi-
cation approach. Content-based communication focuses on delivering informations to
any node interested in it rather than to a particular destination. DoDWAN is suitable to
use with applications that require information exchange using a publish/subscribe pro-
gramming model. Carzaniga et al. (24) and Costa et al. (33) provide similar protocols
based on content-based communication.

Benchi et al. (15) present a middleware called JOMS which is a JMS implementation
designed for opportunistic environments and based on DoDWAN. JOMS is formed
by two layers: a lower layer that handles opportunistic communications based on a
content-based communication approach, and an upper layer that implements a JMS
provider and a local service directory compatible with JNDI API.

JION (14) is an implementation of JavaSpaces for opportunistic networks. JION is
formed by two systems: a communication system and a JavaSpaces system. The com-
munication system is based on DoDWAN. The JavaSpaces system, not only complies
with the conventional JavaSpaces, but also adds to it asynchronous operations (work
better in an opportunistic environments) like readf() and takef() that rely on the concept
of future objects.

Chapter 2. Opportunistic networking and computing 28

Service composition in opportunistic networks Fadhlallah Baklouti 2019

2.3. Opportunistic computing

C3PO (67) is a framework that implements opportunistic networking techniques
(store-carry-forward, forwarding algorithms). C3PO is intended to facilitate the devel-
opment of spontaneous and ephemeral social networks used to cover events that are
limited in space and time like sport events (marathons, rallies) or festivals. C3PO pro-
vides log messages that facilitate the evaluation procedure. C3PO also supports differ-
ent communication technologies, that are adopted in the majority of smart-phones and
wireless devices, such as Wi-Fi Direct and Bluetooth, without the need of rooting these
devices. C3PO provides two communication modes: topics for content-based com-
munication, and channels for destination-based communication. C3PO implements an
optimized version of Epidemic routing to minimize the number of messages exchanged
in the network. We provide more details on this framework in Chapter 6.

Haggle (108) is a network architecture for opportunistic networks that enables cross-
layering communication. Unlike TCP/IP stack, Haggle is unlayered and it has 4 main
modules: delivery, user data, network protocols and resource management. User data
is not isolated from the network, which makes it shareable without the application
level involvement. The application level also is free from protocol functionalities which
simplify considerably its code. Haggle uses a user-level naming which provides com-
patibility with many network protocols. Finally, Haggle uses the resource management
component to mediate between the three other components.

Boldrini et al. (19) present a middleware based on context and social awareness for
opportunistic networks. This middleware exploits the Haggle architecture and adds to
it a context manager for integration purposes. The authors focus on defining a context
that suits opportunistic communication. They define three types of context: the user
context, which describes the user’s personal informations and his social interactions,
the service context, which describes a given service provided by the middleware and the
device context, which specifies the physical characteristics and limitations of the device.
This middleware performs content sharing using an utility function. This utility func-
tion assesses the overall utility of the data carried by a given node based on how much
this data is relevant to this node and to its entourage.

CAMEO (8) is also a context-aware middleware for opportunistic networks designed
as a part of the project SCAMPI (29). CAMEO is intended to help develop applications
for Mobile Social Networks (MSN). It provides them with a common application pro-
gramming interface that enables them to exploit social-aware and context-aware func-
tionalities. CAMEO uses a multidimensional context space that is based on data from
the local device, from the local user, and from the interaction with the rest of the net-
work.

Auzias et al. (10) propose a middleware for Internet of Things, that relies on delay-
tolerant communication, called BOAP. BOAP consists of an integration layer between
two protocols: COAP (111) and Bundle (109) protocol. COAP is a protocol that al-
lows resource-limited machines to communicate asynchronously according to a REST-
ful style and using UDP protocol. Bundle protocol defines a format of messaging called
Bundle dedicated to DTN networks.

Chapter 2. Opportunistic networking and computing 29

Service composition in opportunistic networks Fadhlallah Baklouti 2019

2.4. Discussion and Conclusion

destination-based content-based
forwarding algorithms (PROPHET,

HiBOp, CAR, etc.)
x

DoDWAN (52) x
Haggle (108) x
CAMEO (8) x

Boldrini et al. (19) x
C3PO (67) x x

Table 2.1 – Comparison between opportunistic solutions

2.4 Discussion and Conclusion

Based on the objectives of this thesis, forwarding protocols can provide some advan-
tages but can also exhibit some drawbacks. Indeed, infrastructure-based forwarding
protocols are not compatible with our objectives, since we make the assumption that
each node can both provide and consume services. Infrastructure-based protocols are
rather more adapted to a scenario where infostations provide services and the rest of
the smaller nodes discover these services and invoke them.

Moreover, most of the forwarding protocols, especially the context-free and the par-
tial context-aware, are destination-based, where the sender of the message explicitly
specifies the address of the destination. The destination-based communication makes
most of the forwarding protocols adequate for the process of service invocation (de-
tailed in Chapter 3), where we send our invocation request to one or to a limited num-
ber of destinations. These forwarding protocols could prove to be inefficient in a ser-
vice discovery or advertisement process (also detailed in Chapter 3), where the goal is
to reach multiple nodes at the same time. Epidemic protocol constitutes an exception to
this observation since it relies on disseminating messages to every node that does not
have a copy of them. This protocol can be suitable for the discovery process, however
it comes with a high cost of significant overload and resource consumption.

Full context algorithms, such as HiBOp, could be adapted for service advertisement
and discovery purposes, since the context can be used to express the interest profile that
indicates what kind of services a given node is interested in. Still, the best approach, to
discover or advertise services, is the content-based. Solutions like DoDWAN, CAMEO
and the one proposed by Boldrini et al. (19) do not target a single destination by using
an address. Instead, they disseminate data to whichever node interested in it. Con-
sequently, by using the content-based approach, services can be discovered by many
interested nodes. Nonetheless, content-based communication can be inefficient with
resource consumption when performing an invocation since we only target one or a
limited number of destinations.

To summarize, we have come to the conclusion that destination-based communica-
tion are more suitable for invocations and that content-based communication are more
suitable for discovery and advertisement. Both these types of communications are sup-

Chapter 2. Opportunistic networking and computing 30

Service composition in opportunistic networks Fadhlallah Baklouti 2019

2.4. Discussion and Conclusion

ported by the framework C3PO. Indeed, its communication mode using channel allows
to send messages to a precise destination, and its communication mode using topics al-
lows to disseminate messages to every node subscribed to the topics associated to these
messages.

In this chapter, we presented the paradigm of opportunistic networking. We dis-
cussed several examples of forwarding protocols for opportunistic networks as well as
some of the classifications from the literature. We, then, extended the discussion by
presenting the concept of opportunistic computing as well as some of the works that
adopt this concept. In the next chapter, we continue the discussion about opportunistic
computing by presenting the service-oriented computing approach in details.

Chapter 2. Opportunistic networking and computing 31

Service composition in opportunistic networks Fadhlallah Baklouti 2019

2.4. Discussion and Conclusion

Chapter 2. Opportunistic networking and computing 32

Service composition in opportunistic networks Fadhlallah Baklouti 2019

Chapter 3

Service-oriented computing

Contents
3.1 Introduction . 33

3.2 Service discovery . 34

3.3 Service selection and invocation . 41

3.4 Service composition . 42

3.5 Discussion and Conclusion . 49

3.1 Introduction

Service-oriented computing (SOC) is a distributed computing paradigm that enables
the design of distributed system with the objective of providing loose coupling be-
tween components and achieving a low-cost development process. In SOC, resources
and functionalities are abstracted and exposed as services to be discovered and invoked
remotely. Services are autonomous, platform-independent and also provide late bind-
ing. These characteristics make SOC suitable for dynamic and rapid changing environ-
ments characterized by volatility and heterogeneity. Thus, SOC could be considered as
a reasonable approach for implementing opportunistic computing.

In this chapter, we explore different notions related to SOC, mainly discovery, invo-
cation and composition. We present some of the research works and industry solutions
that implement the concept of SOC for different types of environments, mainly Mo-
bile ad hoc Networks (MANETs), and most importantly opportunistic networks that
constitute our focus in this dissertation.

The rest of the chapter in organized as follows. In Section 3.2, we introduce the no-
tion of service discovery and we discuss the solutions related to it. In Section 3.3, we
discuss some of the works related to service selection and invocation in opportunis-
tic networks. In Section 3.4, we present the notion of service composition. Finally, in
Section 3.5, we provide a discussion and we draw several conclusions.

33

Service composition in opportunistic networks Fadhlallah Baklouti 2019

3.2. Service discovery

ProviderServiceClient

Figure 3.1 – Client and provider interaction.

3.2 Service discovery

In SOC, the elementary component is called “service”. A Service is a software compo-
nent that implements a set of functions. Services are hosted by devices called service
providers and called upon by devices called service clients as shown in Figure 3.1. A
service can be invoked to provide one of its functions using a public interface avail-
able to all potential clients. This interface is described using a document, called service
description, written usually using a specific description language like WSDL (28). The
service description details the functional properties of the service (functions, input and
output parameters, datatypes, etc.) and also the non-functional properties (QoS, secu-
rity, etc.).

So that the client can invoke one of the services hosted by the provider, the service
description of that service should be made accessible to the client, in the first place. This
is done by a process called service discovery. The goal of this process is to establish a
loosely coupled relationship between the provider and the client. This will guarantee a
small dependency, it will offer more flexibility, and it will allow both the client and the
provider to evolve separately and asynchronously from each other.

Service discovery has been the topic for a lot of research works and several indus-
try products that were developed in order to support applications relying on service-
oriented computing (100). In these works, different types of networks have been con-
sidered so far, ranging from stable wired networks, where the network does not suffer
from connection disruptions and user mobility, to wireless mobile networks, where
nodes communicate directly with one another in an ad hoc mode without the need of
a particular infrastructure. There are a lot of approaches, found through out the litera-
ture, describing how to implement a discovery process. Hereafter, we present some of
them.

Directory-based vs directory-less architecture There are two types of architectures
for service discovery: the directory-based architecture and the directory-less architecture.

The directory-based architecture relies on the existence of a directory that aggre-
gates service descriptions. In this architecture as shown in Figure 3.2, service providers
register the descriptions of services they host to the directory and service clients send
requests to the directory in order to discover them. The directory will, then, provides
the clients with the informations that are required to invoke service providers. This
architecture can be implemented using a centralized approach, where the directory is
hosted by a few fixed nodes in the network. A well-known example, that is centralized,

Chapter 3. Service-oriented computing 34

Service composition in opportunistic networks Fadhlallah Baklouti 2019

3.2. Service discovery

Directory

Client Provider

Service
description

Publication

Invocation

Discovery

Figure 3.2 – Directory-based service discovery.

Client Provider

Service
description

Discovery request

Advertisment message

Figure 3.3 – Directory-less service discovery.

is UDDI (123). While this approach can be acceptable in a wired stable environment, it
still can suffer from a single point of failure when only one node is used to host the di-
rectory. Besides, this approach is not scalable. To address these issues, a decentralized
directory-based architecture can be implemented. The main challenge for this approach
is to achieve a global discovery process, where any service client can discover any ser-
vice provider. A well known example of a decentralized directory system is Jini (82),
which is a service discovery architecture for Java-enabled devices. In Jini, some nodes
play the role of lookup servers that act like directories. The downside of Jini is that there
is no communication between lookup servers, which prevent global service discov-
ery. Instead, it is the responsibility of the service provider to publish its services on all
lookup servers in order to make these services discoverable in the entire network. The
directory-based approach is, in general, not suitable for opportunistic environments,
since there is no node, that can be considered stable and at all time reachable, to play
the role of a directory due to mobility and to limited network and local resources.

As opposed to the directory-based architecture, in the directory-less architecture, there
is no directory structure that plays the role of an intermediate between the service
providers and service clients, as shown in Figure 3.3. Instead, service providers directly
broadcast advertisement messages in the network to publish their services, and service
clients listen to them. Clients can as well send a discovery request in order to find the
services that answer their needs. One of the major challenges of such an approach is not

Chapter 3. Service-oriented computing 35

Service composition in opportunistic networks Fadhlallah Baklouti 2019

3.2. Service discovery

to overload the network by sending an excessive number of advertisement messages.
Therefore, a service provider should determine the optimal periodicity of service ad-
vertisement to not overload the network, while maintaining an efficient advertisement
process at the same time. DEAPspace (91) is a directory-less service discovery protocol
based on a one-hop service advertisement broadcast to direct neighbours in a peri-
odical manner. The advertisement contains a description of the local hosted services
and the services that were discovered. DEAPspace relies on an exponential back-off
mechanism that determines the periodicity of advertisement broadcasts based on the
service provider priority and the changes that generally occur in the network. Campo
et al. (22) propose another directory-less service discovery middleware for pervasive
environments. Upon receiving a broadcasted discovery request, a given device checks
in its local services and its cache. If it has a suitable response, this device proceeds by
triggering an exponential back-off mechanism that favors availability time (the more
available is the device, the shorter time it has to wait to respond to the discovery re-
quest). If the device detects a response for the same service discovery request while it is
waiting for the back-off time to finish, it broadcasts the detected response rather than its
own if the detected response comes from a provider with more availability time. Like-
wise, the middleware reduces the load on the network in term of exchanged messages,
and favors providers that can be invoked for a long period of time thanks to their long
availability time.

We can also combine both discussed architectures to create a hybrid one. In a hybrid
architecture, providers and clients send their advertisement messages and discovery re-
quests to a directory, if there is one available. Otherwise, they switch to a directory-less
mode of operating. UPnP (31) is an example of a hybrid architecture. This protocol is
intended toward discovering devices and the services they provide in small environ-
ments such as houses or offices. The basic entities in this protocol are control points that
act like directories, and devices that provide services. When a device first appears in the
network, it must multicast an advertisement of its services to the rest of the network.
Similarly, when a control point joins the network, it must multicast a service discovery
request to collect the descriptions of the available devices and services. In UPnP, the
use of a control point is optional. Instead devices can multicast their advertisements
directly to their clients. This protocol also faces important scalability issues due to the
excessive use of multicasting.

Proactive vs reactive discovery We identify two principle modes of service discovery:
Proactive discovery mode and Reactive discovery mode.

Proactive discovery mode consists of service providers or directories that advertise
their services periodically while service client listening to these advertisements. This
discovery mode should take into consideration not to overload the network by frequent
advertisements and it has to limit the range of the propagation of the advertisement in
order to maintain a decent quality of service provision. In this context, Li et al. (74)
present an algorithm for proactive service discovery in pervasive environments based
on context-awareness. In this paper, the context is represented using a multidimen-

Chapter 3. Service-oriented computing 36

Service composition in opportunistic networks Fadhlallah Baklouti 2019

3.2. Service discovery

sional space called hyperspace analogue to context (HAC), where each context property
(location, temperature, pressure, etc..) is represented with a dimension and limited by
a scope. The authors associate to each service an input context and an output context
and to each user a “user context” and a “user preference”. Upon an advertisement
reception, the algorithm tries to match the user context with the service input context
and the user preference with the service output context in order to determine the best
services that suit the user’s needs. The algorithm re-evaluates the services, if the user
context or preferences change, or if some services update their context.

Reactive discovery mode consists of the service client soliciting either the directory or
the service provider, by sending it a discovery request, in order to find a certain service.
Similar to the proactive mode, issues related to propagation range should be taken into
consideration in order to not to overload the network and to guarantee that only the
most efficient services are discovered. Service Discovery Protocol (39) is a reactive pro-
tocol for Bluetooth-enabled devices. It is part of the Bluetooth official specification. The
basic elements of the SDP architecture are SDP clients and SDP servers. A SDP client al-
lows high level application to discover remote services by sending SDP requests to SDP
servers. On the other hand, a SDP server allows high level applications to expose their
services by storing descriptions in a form of a list of service records. SDP server then
answers SDP requests by sending SDP responses based on its list of service records.
It is important to mention that the SDP protocol does not provide any mechanism for
service invocation. Moreover, a SDP client can not know if a SDP server has become
available or if it has disappeared, which may affect negatively service invocations.

The Service Location Protocol (SLP) (99) is both proactive and reactive, and imple-
ments both the directory-based and the directory-less architecture. This protocol repre-
sents an IETF standard which was adopted in a lot of commercial solutions by several
companies (IBM, Hewlett Packard etc.). SLP divides the networks into three categories:
Service Agent (SA), which is responsible for advertising services to the rest of the net-
work, User agent (UA), which carries out service discovery and Directory Agent (DA),
which has the task of aggregating services descriptions. SLP has two modes of opera-
tion: (i) In the absence of a DA, UAs multicast their requests to the network, while SAs
listen and answer with advertisements when they receive an UA request. Whereas (ii)
in the presence of a DA, SAs send advertisements and UAs send requests to it. SLP pro-
vides also two methods of discovery: active and passive. With the active mode, UAs
multicast their SLP requests to the network, and with the passive mode, DAs adver-
tise their services periodically. In SLP, services are advertised using service URL and
service Template (51), which can be described as a set of key-value pairs.

3.2.1 Service discovery in MANET

Kozat et al. (66) propose a distributed directory-based solution for service discovery.
This solution is based on the creation of a backbone in a form of a mesh structure of the
most dominant nodes in the network. This solution operates in two phases: first, the
backbone management phase, that consists of forming the backbone by selecting the most

Chapter 3. Service-oriented computing 37

Service composition in opportunistic networks Fadhlallah Baklouti 2019

3.2. Service discovery

dominant nodes, using a threshold on a parameter called NLFF (Normalized Link Failure
Frequency). NLFF represents the number of link loss in a fixed time window. If a given
node has an NLFF that does not exceed the fixed threshold, this node will be selected to
be part of the backbone. The second phase is called Distributed Service Discovery, where
the nodes forming the backbone start to manage the service discovery process in the
network.

Sailhan et al. (105) propose a similar approach for service discovery in MANETs
using backbones. However unlike in (66), the construction of backbone relies on a di-
rectory election process to select nodes, that have the most resources and the most suit-
able context (number of nodes reachable at 1 hop, reachable other directories, stability
level etc.), to play the role of directories. Directories then frequently exchange profiles
constructed using bloom filters (18). This helps reduce the size of messages and the
generated traffic, unlike in (66), where multicasting is heavily used when a discovery
request is received in order for the backbone nodes to communicate with each other
and be able to deliver a response.

Rendezvous Regions, presented in (110), proposes a distributed directory-based ser-
vice discovery solution that relies on distributed hash tables based on location. In fact,
Rendezvous Regions divides the network into several geographical regions. Each region
is responsible for holding a set of keys. A key can represent either data, resource or
service, and it is mapped to a region using a hash-table-like mapping function known
to the entire network. This mapping function is used by nodes to either insert or look
up for a key. Then, a packet, that contains the region identifier, will be generated in or-
der to send the request (insertion/lookup) to the targeted region, where the packet will
be processed by the servers managing this region. Rendezvous Regions also provides a
simple election mechanism in order to elect a fixed number of servers per region.

Klein et al. (64) propose a service discovery framework based on clusters called ser-
vice rings. Indeed, devices, initially, organize themselves in a form of closed rings called
level 0 rings. Each ring has a service access point (SAP) that plays the role of a directory
for the rest of the nodes in that ring. SAPs from level 0 also form rings called level 1
rings. The nodes from a level 1 ring choose a level 1 SAP that act as a directory for them.
This process can be repeated until we reach level n rings, and thus, this framework es-
tablishes an architecture based on hierarchy. A given node has 4 main operations: join
or leave a ring, advertise its services or search for a service.

SANDMAN, described in (107), is also a distributed directory-based service discov-
ery frameworks that relies on clusters. The main goal of SANDMAN is to be energy
efficient and to reduce latency in the discovery process. In SANDMAN, clusters are
formed by clustered nodes (CN), that play the role of service providers, and by cluster-
heads (CH), that play the role of service directories to which CNs advertise their services,
and from which clients retrieve descriptions of services they want to exploit. CNs peri-
odically enter into a sleeping phase in order to save energy. Whereas, CHs stay always
awake in order to avoid latency in discovery time. SANDMAN discovery approach un-
avoidably introduces latency in the service invocation process, especially, when at the
time of invocation, the targeted provider is in sleep mode. SANDMAN also does not

Chapter 3. Service-oriented computing 38

Service composition in opportunistic networks Fadhlallah Baklouti 2019

3.2. Service discovery

provide any mechanism for cluster formation and leave the problem open for multiple
approaches.

Forming structures, such as backbones, clusters or regions as the aforementioned
works suggest, would be very difficult or even impossible to achieve in an opportunis-
tic network. These kind of structures need the existence of a set of nodes that are stable
and have low mobility, so they (the structures) can stay functional for a long enough
time and also recover when needed. These requirements are obviously not available in
opportunistic networks. Consequently, if these structures succeed to form in an oppor-
tunistic environment, they will have a very short life. Moreover, their recovery process
will not be fast enough to react to the rapidly changing topology of the network.

Konark (53) is a directory-less service discovery protocol. Konark offers both proac-
tive and reactive service discovery mode. In Konark, each node in the network, that
runs a SDP (Service Discovery and Delivery Protocol) manager, plays the role of both
the service client and the service provider. Each node in the network also implements
a local service registry that is structured in a form of a tree to help classify services.
Konark also proposes a service description language based on XML and considered
by the authors as a simplification of the WSDL language, which is acceptable, in this
context, due to the simplicity of the services.

The authors of (27) present a protocol for service discovery in MANETs called GSD
(Group-based Service Discovery). GSD is also a directory-less discovery protocol that
implements both the proactive and the reactive discovery mode. GSD aims to reduce
the network load by classifying services in a hierarchy of service groups. Each service
provider periodically emits an advertisement that contains a description of its local ser-
vices and the groups they belong to, as well as the list of groups of remote services that
the service provider knows about. Likewise, when a service client needs to discover a
certain service, it will only send the discovery request to nodes that either heard about
the group of the targeted service or actually host services that belong to that group.
Likewise, this protocol avoids broadcasting and flooding the network. In GSD, service
descriptions as well as service groups are implemented using DAML (1).

Nevertheless, these directory-less solutions still assume the existence of a end-to-
end path between each pair of nodes. Therefore in order for them to function properly
in opportunistic environments, a work of adaptation should be made.

In (86), Mrissa et al. introduce an approach for service discovery, using semantics,
dedicated to the Web of Things (50). Each connected thing is extended by an avatar
to expose its functionalities (services). In this paper, the authors define an ontology in
order to be able to discover, compose and represent low-level capabilities in a form of
functionalities available and exploitable on the Web.

3.2.2 Service discovery in opportunistic networks

Service discovery, in opportunistic environments, has been addressed in several pre-
vious works. In (79), the authors propose a set of protocols called TAO that operate
over an intermittently connected hybrid network which is composed by simple nodes

Chapter 3. Service-oriented computing 39

Service composition in opportunistic networks Fadhlallah Baklouti 2019

3.2. Service discovery

and infostations. Infostations usually form clusters and are the main service providers.
The service discovery is organized by TAO-DIS protocol. TAO-DIS piggybacks service
guides(SG), which are the sets of service descriptors, in the beacon messages to reduce
and optimize network traffic.

OLFServ presented in (69; 70) is a protocol for service discovery based on location-
awareness and dedicated to opportunistic networking. Infostations advertise their ser-
vices using a geographically controlled propagation. They include in every advertise-
ment their location and the geographical area where they prefer to be discovered or
invoked. OLFServ is equipped with self-pruning heuristics that determine if nodes
should participate in the service delivery or not. These heuristics are the ones that pre-
vent messages from being propagated outside their geographical areas.

Nevertheless, both OLFServ and TAO make the assumption that only fixed infos-
tations provide and advertise services, and that mobile devices can only discover and
consume them.

Other protocols adopt a social-aware strategy like (21; 81; 92). In (81), the authors
model each node interests using a vector, in an m-dimensional space, noted IP (interest
profile). Each generated message has its own relevance vector (R) in the same space.
Every time a pair-wise contact takes place, both nodes exchange their IP vectors, and
search in their buffers for the messages that represent a similarity with the received IP.
The similarity is calculated using the cosine similarity metric.

Groba et al. (48) present a discovery and composition algorithm for opportunistic
environments. The discovery process is based on a directory-less reactive approach.
The downside of reactive discovery is that it introduces delays in the execution of in-
vocation and composition requests. Indeed, everytime there is a service to invoke, the
service client does not start the invocation process immediately. Instead, a discovery re-
quest is emitted to search for providers. Once the providers respond to this request, the
client can then start the invocation process. Consequently, the reactive approach could
undermine the performance of services that should provide a quick response time such
as a service for finding parking places.

The authors of (65) define two location-based service discovery (LADS) and selec-
tion (LASS) protocols for wireless networks. Both these protocols rely on the maxi-
mum speed of the provider vmax and the maximum response time tmax. The discovery
process is done reactively using a discovery message mechanism. In (121) , Wang et
al. present a service discovery protocol for delay tolerant networks. Its approach is
diretory-less and proactive. Every period of time an advertisement message is emitted.
The protocol uses a Bloom filter in order to fix the size of service description, and the
service query is done by emitting a limited number L of invocation messages.

Pitkanen et al. (101) introduce a service platform called SCAMPI (Service platform
for social-aware mobile and pervasive computing). SCAMPI architecture provides dis-
tributed task executions for opportunistic environments by abstracting resources, scat-
tered across the network, as services. SCAMPI implements its service-oriented model
based on social and context awareness of the behaviour of users, present in the network,
to achieve an efficient opportunistic interaction between sensors, resources stationed in

Chapter 3. Service-oriented computing 40

Service composition in opportunistic networks Fadhlallah Baklouti 2019

3.3. Service selection and invocation

reactive proactive directory-based directory-less
TAO (79) x x

OLFServ (69; 70) x x
Groba et al. (48) x x

LADS (65) x x
Mahéo et al. (77) x x
Kozat et al. (66) x x

Sailhan et al. (105) x x
Rendezvous Regions (110) x x

Klein et al. (64) x x
SANDMAN (107) x x

Konark (53) x x x
GSD (27) x x x

Figure 3.4 – Comparison between discovery algorithms

the network, and devices carried by individuals.
The middleware, proposed by Mahéo et al. (77), uses a content-based communica-

tion approach to perform the service discovery process. This middleware adopts the
publish/subscribe paradigm in order to disseminate advertisement messages across
the network. Each node maintains an interest profile and periodically advertises a cat-
alog of the message headers it stores in its cache. If a node finds message headers in
the received catalogs that match its profile, it will request a copy of the correspond-
ing messages. This approach allows to avoid flooding the network by only forwarding
messages to nodes interested by those ones. The authors use this approach to carry out
service discovery and advertisement in a proactive and directory-less fashion. Indeed,
each node creates service patterns in a form of a profile interest, and every time it re-
ceives a catalog that contains service descriptions, a matching process is executed in
order to identify the most relevant remote services.

3.3 Service selection and invocation

Service selection is the process in which a service client has to choose a single or a group
of providers that are considered the most suitable to invoke. Selection is then followed
by the invocation process. In the invocation phase, the service client starts actually to
communicate with the service provider by sending an invocation request to it. Upon
reception, the provider uses the informations from the request to perform the service
execution. Finally, the provider returns the result to the service client. In the invocation
phase, a service client invokes one or even a group of providers by explicitly indicating
their addresses following a destination-based communication. Likewise, the client can
send its request using a unicast, a multicast, or an anycast mode. Therefore, we can
rely on the forwarding protocols for opportunistic networks, presented in Chapter 2, to

Chapter 3. Service-oriented computing 41

Service composition in opportunistic networks Fadhlallah Baklouti 2019

3.4. Service composition

deliver data between the service client and the service providers. Several works studied
specifically the topic of service selection and invocation in opportunistic networks.

Apart from its discovery approach presented above, OLFServ (69; 70) also provides
an invocation algorithm. After discovering infostations, that provide services, a given
client can thus invoke a needed service by embedding its own location, speed and di-
rection in the service request message so the infostation, providing this service, can
predict where to send the reply based on these informations. Both the invocation re-
quest and the invocation reply are forwarded by the same self-pruning heuristics used
in the discovery process.

TAO-INV protocol (79), proposed by Makke et al. (part of TAO protocols), assesses
the ability of intermediate nodes to deliver messages from the client to the provider. It
evaluates the immediate neighbours of each node and classifies them as good or bad
intermediate nodes based on the contact date with the infostation to invoke. The recent
is the date, the better intermediate node is the neighbour.

Le Sommer et al. (71) introduce a proxy style algorithm for invocation. It enables
nodes to invoke services without the need of reaching the provider itself. This is made
possible by accessing another node that previously requested the same service from
the original provider. This very node is called proxy for its role of caching the results
and redistributing them on demand. The proxy approach is useful when the result of a
service invocation does not change for a certain amount of time, such as with weather
forecasting services. It is important to mention that not all services are proxible. That is
why the article authors classify services into categories.

In addition to its discovery approach, the middleware, proposed by Mahéo et al. (77)
also proposes a service invocation mechanism based on content-based communication.
When a node wants to invoke a given service, it does not send the invocation request
to a particular provider. Instead, it formalizes a reduced version of the service descrip-
tion and publishes it to the network. Providers, that have subscribed to this reduced
description, will execute the service and return the results in messages that contain de-
scription attributes. Clients, that have subscribed to these attributes, will accept the re-
sults. While this approach can improve the invocation success ratio by soliciting many
providers, it is nevertheless expensive in terms of resource consumption.

3.4 Service composition

One of the most important principles of service-oriented computing, is to encourage
the reuse of services. Consequently, each and every service should be designed as an
easy to reuse software component. This makes the service-oriented approach suitable
for pervasive environments.

One aspect of service reuse can be found in the concept of service composition.
It consists of aggregating services in order to automate some tasks or business pro-
cesses, or to create new composite services, to provide new functionalities, that other-
wise atomic simple services can not provide by themselves. A composition consists of
chaining services one after another by matching service interfaces either syntactically

Chapter 3. Service-oriented computing 42

Service composition in opportunistic networks Fadhlallah Baklouti 2019

3.4. Service composition

Service 1 Service 2

Service 3

Service 4

Service 5

Figure 3.5 – Service composition.

or semantically using service graphs or specific languages like BPEL4WS (6) or OWL-
S (80). Likewise, the outputs of one service are piped into the inputs of the next service
in the composition, after eventually filtering content and changing formats, as shown
in Figure 3.5.

Throughout the literature, we find many approaches to carry out a service compo-
sition. For example, a composition can be sequential or it may contain several parallel
sub-processes. It can be dynamic or static, or it can be automated or manual. Further-
more, it can be orchestrated by a device responsible for supervising the execution of this
composition, or it can be executed in a collaborative manner based on a choreographic
approach. Hereafter, we discuss these approaches, as well as several works that adopt
them.

Manual vs automatic composition Manual composition consists of putting the bur-
den of generating the composition description on the user. This can be done using
graphic tools or by literally coding the description using a specific language suitable
for this kind of composition like BPEL4WS. The drawback of manual composition is
that it requires knowledge and expertise from users in building, coding and maintain-
ing a composition description. Whereas, the automatic composition intends to relieve
users from the effort of taking care of the relatively complicated details of describing
a composition. Automatic composition is mainly based on the usage of semantics and
ontologies. In this context, we can mention the work done by Fileto et al. (45). The
authors propose a framework called POESIA that helps developing applications on the
basis of ontologies. POESIA is focused on domain-specific ontolgies and workflows, in
order to carry out service compositions. Other efforts have been done in this direction.
The authors of (85) present a framework called IRS-II that provides an infrastructure for
semantic Web services. On the other hand, Tosic et al. (118) discuss the requirements
that an ontology should answer to, especially in term of QoS, in order to optimize a
dynamic and automated service composition.

Chapter 3. Service-oriented computing 43

Service composition in opportunistic networks Fadhlallah Baklouti 2019

3.4. Service composition

A composition description, whether generated manually or automatically, can be
either static or subject to changes dynamically throughout the invocation of the com-
posite service.

Static vs dynamic composition Static composition consists of defining a composi-
tion description that stays unchangeable throughout the invocation of the composite
service. The description is often defined off-line at design time before it is deployed
and ready to be executed. Basically services are chosen, interfaces are chained and ser-
vice providers are selected before the composite service is ready to be deployed on-line
for execution. Several composition engines provides static composition like Microsoft
Biztalk (41) and BEA WebLogic. While this static approach seems to be reliable, espe-
cially when dealing with a long composition that requires a complicated workflow, it
can not cope with an environment where services could disappear due to issues like
connection disruption or unpredicted technical problems affecting service providers.
On the other hand, dynamic composition allows the composition description to be up-
date at runtime. Thus, it provides more flexibility and it has more ability to adapt to
services disappearing and other new services appearing. As examples of dynamic com-
position engines on the market, we can cite eFlow (25) and StarWSCoP (115). Moreover,
the authors of (13) detail a solution to make service composition self-adaptive. Indeed,
each composition is associated with a set of requirements called adaptive goals. The
authors defines two types of goals: fuzzy goals where the satisfaction value is within
the interval [0..1], and binary goals that have a satisfaction value of either 0 or 1. Each
goal has a set of membership functions that determine the satisfaction value. In the
case of a satisfaction value not being met, adaptation actions can be triggered. Adap-
tation actions act on the set of goals of the composition, either by adding or removing
them, by modifying them, by changing service providers or even by replacing several
services in the composition.

Orchestration vs Choreography According to Peltz et al. (95), orchestration consists
of the business process, that describes the interaction between services and the order
in which these services should be invoked, from the perspective of an orchestrator that
is responsible for executing the business process. In orchestration, services have no
knowledge of whether or not they are being involved in a composition. Whereas, the
choreography describes the messages exchanged between the services involved in the
composition. It represents a more collaborative approach where services are aware of
their involvement in the composition. Multiple works have addressed this topic. For
example, we can mention BPEL4WS that provides both executable processes that model
orchestration, and abstract processes that model choreography. Moreover, the WSCI (7)
(Web Service Choreography Interface) specification provides message exchange and
choreography mechanisms based on WSDL (28) (Web Services Description Language).
In addition to that, the BPMI (Business Process Management Initiative) proposes an
XML-based language called BPML (Business Process Management Languages) that
models business process for orchestration.

Chapter 3. Service-oriented computing 44

Service composition in opportunistic networks Fadhlallah Baklouti 2019

3.4. Service composition

3.4.1 Infrastructure-based and conventional composition

Conventional service composition solutions require stable and efficient means of com-
munication that do not suffer from connection disruption or mobility. Almost all of
them are based on the client/server architecture and therefore require the existence of
a single or a group of nodes that have relatively large resources, and that are always
accessible and available to be solicited by the network to play the role of servers. This
renders these solutions inadequate for MANETs and opportunistic networks and need
at least to be adapted to these environments by taking mobility and disconnection into
consideration.

There have been a lot of efforts and solutions (4; 46; 73; 102) proposed to tackle the
topic of service composition in an infrastructure-based and stable environments. In this
part, we mainly focus on RESTful (44) services. RESTful services are lightweight, state-
less and cacheable. They provide a uniform interface, and usually exploit HTTP (43)
built-in methods (GET, POST, PUT, DELETE).

Several efforts focused on adapting legacy SOAP-based composition solutions to
integrate RESTful services. Pautasso et al. (94) propose an extension to BPEL in order
to integrate both SOAP and RESTful services in the same composition.

De Giorgio et al. (35) present a solution to re-describe both SOAP and RESTful ser-
vices uniformly, in a composition, using a semantic annotation language called Mi-
croWSMO. The authors then use LPML (Lightweight Process Modeling Language) to
describe service compositions.

REST2SOAP framework (97) offers to wrap RESTful services in the form of SOAP
services to be able to integrate them in a BPEL-based process. Other research works fo-
cus on devising solutions uniquely for RESTful service composition. Pautasso et al. (93)
propose a composition language called JOpera. This language provides features like
dynamic binding and dynamic typing, and respects the principle of a uniform inter-
face. Li et al (75) present a lightweight solution for chaining services in a Unix pipeline
fashion called “Hyperlink pipeline”.

The authors of (68) define a semantic description language called SEREDASj. This
language permits to semantically describe RESTful services using JSON objects, as well
as to automatically generate a human-readable documentation. SEREDASj allows also
data integration through semantically describing them, which makes it possible to au-
tomatically generate composition descriptions.

Mrissa et al. (16) propose a RESTful service composition approach based on linked
data principle. Each service contains a link to its descriptor in the headers. A descriptor
has three main parts: an interaction model that describes operations provided by the
service, links to other services related to the described service, and a link to an universal
descriptor that contains meta-data that describes how to interpret a service descriptor.
The paper does not detail any sort of semantics that can be used to implement this
approach and leaves the problem open to be addressed in other future works.

Silva et al. (47) present a framework for automatic service composition at runtime
called DynamiCoS. This framework is independent from description languages, and
requires a specific language interpreter for each supported language. Likewise, Dy-

Chapter 3. Service-oriented computing 45

Service composition in opportunistic networks Fadhlallah Baklouti 2019

3.4. Service composition

namiCoS can be more generic, and supports service publications in multiple languages.
DynamiCoS organizes services in a matrix according to their inputs and outputs. For
DynamiCoS, a composition request is expressed in the form of the set of initial inputs
and final outputs required by the user. Upon receiving a composition request, Dynam-
iCoS performs a backward graph building based on the matrix of published services,
in order to determine all possible compositions that answer the user requirements.

3.4.2 Composition in pervasive and wireless environments

Service composition in dynamic pervasive environments, like mobile ad hoc networks,
has also been considered (57) in the past years. However, the proposed solutions rarely
tolerate the disruptions that can unpredictably occur between devices, and that can
introduce additional delays and failures in the execution of invocation and composition
requests.

Nevertheless, several research works attempt to address unpredictability, long de-
lays and failures. For example, Deng et al. (37) propose a composition approach based
on geographical proximity. The approach defines location-based communities called
Mobile Service Sharing Communities (MSSCs), where users can join, leave, or move
within a given community. The article also proposes a mobility model, that illustrates
human behaviour within those communities, called CRWP. Based on these elements,
the service composition is modeled as an optimization problem, and solved using the
Krill-Herd algorithm.

In the same context, Capra et al. (36) present a composition framework for mobile
environments that intends to increase composition reliability by considering mobility
patterns of users and their colocation duration. The authors consider that the proba-
bility of accessing a service is related to the colocation duration. Wang et al. (120) also
present a solution based on mobility prediction in order to improve dependability of
service composition in wireless mobile ad hoc networks.

Other works address the problem by defining and maintaining a distributed graph
of services, listing the providers that are likely to be found and called successively when
a composite service is requested. The authors of (3) follow this idea in their solution
for service composition in mobile ad hoc networks. This solution builds its service
graph using a neighbour discovery mechanism based on a periodic emission of bea-
cons. Service discovery is carried out by propagating service parameters using update
messages, that are exchanged upon neighbour detection, service appearance or disap-
pearance. Services are also described semantically, and the descriptions are contained
within local service directories.

Zhou et al. (125) use a service graph for their energy-efficient composition frame-
work dedicated to wireless sensor networks. This framework forms and maintains
the service graph that connects services to each other on the basis of the similarities
between their parameters and operations. Upon receiving a composition request that
specifies the desired inputs and outputs, the framework will identify the potential se-
quential compositions that can fulfill the request based on the service graph. Then, it

Chapter 3. Service-oriented computing 46

Service composition in opportunistic networks Fadhlallah Baklouti 2019

3.4. Service composition

tries to recommend the most optimal composition by solving an optimization problem,
which has constraints such as energy efficiency, and spacial and temporal constraints,
by using the particle swarm algorithm (PSO).

Relying on such a graph does not however guarantee that an invocation of a com-
posite service will be completed successfully. Indeed, in a dynamic environment, ser-
vices, providers and intermediate devices can appear and disappear at any time. Thus,
it makes it difficult to perform an end-to-end invocation of a composite service. Fur-
thermore, if a service provider is not available, the partially executed composition re-
mains in an inconsistent state. Recovery strategies are therefore indispensable in such
dynamic networks. SeSCo (63) attempts to find a new provider for the current service
to invoke in a composition request every time a previously selected service provider
become unreachable due to users’ mobility. Likewise, SeSCo can perform partial com-
positions and then complete them whenever new service providers become available.
SeSco is also based on a hierarchical architecture. It provides a composition mechanism
capable of supporting locality, quality of services, semantics and mobility. Hierarchy in
SeSCo is based on the processing power, memory and bandwidth capacities of nodes.

Chakraborty et al. (26) present a decentralized broker-based system for service com-
position in ad hoc environments. This system implements a fault tolerant checkpoint
mechanism to allow resuming partial compositions interrupted due to users’ mobility.
The basic underlying idea is that the requesting node selects a broker and then delegates
to it the orchestration of the service composition. The requester (RS) starts by looking
in its vicinity for a suitable broker. It broadcasts a solicitation message that contains a
list of the atomic services that form the composite service. Each candidate computes a
potential value. This potential value is calculated based on the local resources and the
number of cached service advertisements. The local resources consists of: the number
of matching local atomic services, the battery life and the current number of requests
that the candidate has to execute. The potential values will be sent back to the RS. It
will then choose the broker that has the maximum value.

Jiang et al. (60) present a framework for service composition dedicated mobile ad
hoc networks. Its goal is to guarantee a minimum disruption in the execution of the
composition, as well as providing a recovery mechanism in case it is needed. Accord-
ing to the authors, the framework consists of two main tiers: service routing, which is
responsible for selecting services involved in the composite service, and network rout-
ing, which is responsible for choosing the best path that connects these services. The
authors also formalize the composition problem in a form of a dynamic programming
problem, and analyze it to find a heuristic algorithm capable of approximating the best
composition solution.

Nevertheless, these composition protocols suppose the existence of an end-to-end
path between each and every pairs of nodes, and that ad hoc networks are dynami-
cally routed using protocols like AODV (98), DSR (61) or DSDV (89). These protocols
have been proven inefficient especially when the network suffers frequent and unpre-
dictable connection interruptions, and when the network is fragmented into different
communication islands. In reality most of the wireless networks supporting pervasive

Chapter 3. Service-oriented computing 47

Service composition in opportunistic networks Fadhlallah Baklouti 2019

3.4. Service composition

environments are usually intermittently connected, which makes opportunistic and de-
lay tolerant techniques the most suitable to improve communication in these types of
networks. Even though, these techniques remedy to frequent and unpredictable con-
nection disruptions, they can introduce considerable delays. Thus, composition and
discovery techniques built upon opportunistic networks should take that into consid-
eration and try to reduce communication time as much as possible.

Groba et al. (48) try to reduce the execution time of a service composition in oppor-
tunistic networks by integrating the execution phase into the composition phase, and
allowing to perform a composition partially. The advantage of this solution is that it ad-
dresses each selected service provider only once and requires less data exchanges than
a traditional consecutive approach that runs in two phases: a binding phase to select
the providers, then a phase to invoke them. The downside is that the authors rely on
a reactive discovery process, as discussed in Subsection 3.2.2, which introduces delays
and consequently slows down the composition execution.

In (49), the authors propose an extension of the solution described in (48). This
extension makes it possible to invoke several providers that offer the same service in
parallel, thus creating several branches in the service composition graph. The branches
can be split and merged, and the results of the composition can be combined using
semantic features. Although leveraging the redundancy of service providers can be a
solution to improve the success ratio and the execution time of a composition, it must
be used with moderation. Indeed, this solution multiplies the number of copies of
the service requests roaming in the network, requires several providers to perform a
same computation in an undifferentiated and non optimal way, and implies more data
exchanges between devices, thus abusively consuming the power budget of the devices
and risks to overload the network.

In this same context, the solution proposed by Sadiq et al. (104) tries to reduce com-
position delays by making use of two metrics: shortest temporal distance, which is the
minimum time needed to send data from one node to another one, and service load,
which reflects the workload of a given service. The composition algorithm presented
in the article uses these metrics in order to select and invoke service. This algorithm is
designed to use a choreography-based strategy, where the current service provider is
in charge of executing the current service in the composition and choosing the next ser-
vice provider to invoke in order to execute the next service. These steps will be repeated
until all services in the composition request are executed, and then the final result will
be returned back to the composition initiator. The authors of this paper do not investi-
gate the orchestration-based strategy, and do not compare it to the choreography-based
strategy in the context of opportunistic networks. Moreover, the authors do not spec-
ify how informations about remote services are collected, and what service discovery
approach they are using.

Chapter 3. Service-oriented computing 48

Service composition in opportunistic networks Fadhlallah Baklouti 2019

3.5. Discussion and Conclusion

3.5 Discussion and Conclusion

In this chapter, we have introduced the service-oriented computing paradigm which
represent our chosen approach to implement opportunistic computing. We have pre-
sented the general notions related to SOC, mainly service discovery, service selection,
service invocation and service composition. We also surveyed some of the research
works and industrial solutions that implement service computing or several aspect of
it. This chapter allowed us to identify the techniques that can be adopted in our con-
tributions as well as those that should be avoided. We summarize our analysis in the
form of requirements that our solutions should meet.

Service discovery requirements Most of the service discovery systems rely on a direc-
tory-based approach where the directory can be either centralized or distributed. Ser-
vice can be advertised proactively, by sending advertisement messages every period of
time or they can be discovered on-demand reactively by querying registries or service
providers directly using a discovery request. Reactive discovery, as in (48), guarantees
an access to up-to-date informations about remote services. However, it introduces
a relatively important delay when it comes to the execution of invocation or compo-
sition requests. The proactive discovery, nonetheless, does not have this limitation
which reduce the invocation or the composition time drastically. Nevertheless, this
approach introduces more failure in the composition or the invocation process, in case
service informations are not regularly updated enough. Besides, from an opportunistic
networking point of view, accessing and maintaining a directory, as in (66; 110), is a
substantially difficult task due to frequent connection disruptions and mobility as un-
derlined in many discovery protocols (55). Therefore most solution dedicated to such
networks relies on a directory-less approach coupled with a proactive advertisement
process. This will introduce a tremendous overhead because service providers should
advertise their services regularly and periodically so the service client can have a rel-
atively reliable and up-to-date information about the available remote services. One
way to reduce this important overhead, is to piggypack service advertisement in bea-
con messages used by devices to announce presence to other surrounding nodes. An-
other solution is to find the optimal period of advertisement that allows the service
informations to be up-to-date and avoid overloading the network.

Service selection requirements Service selection is an important step in the invoca-
tion of simple or composite services. Indeed, it aims at selecting, among the discovered
service providers, the most reliable and efficient one to answer the request. In the type
of networks we consider, carefully selecting intermediate nodes is an important phase
for the execution of an invocation or a composition request. In fact, many solutions (84)
have been devised to tackle the topic of routing. Usually, service selection is based on
non-functional properties and informations (location, transmission delay, inter-contact,
history, social informations, etc.), provided by service providers, that give an insight
about the accessibility of these devices, as shown in (69; 70; 78). To be able to provide

Chapter 3. Service-oriented computing 49

Service composition in opportunistic networks Fadhlallah Baklouti 2019

3.5. Discussion and Conclusion

these informations, cross-layering techniques must be implemented in the system in
order to have a tight collaboration between the networking and the application levels.

Service composition requirements A service composition can be performed using
either orchestration or choreography. It would be interesting to compare these two
strategies in an opportunistic environment, given the fact that the orchestration was not
taken into consideration by the closest works (49; 104) to this thesis. It would be also
interesting to combine them (the two strategies) in a complementary manner in order to
execute a composition request. In fact, depending on the network topology and how the
services are distributed across the network, it would be better to choose orchestration
over choreography or vice-versa. To achieve that, service providers enrolled in the
invocation of the composite service should be able to dynamically switch between these
two strategies in order to increase the likelihood of composition success in the shortest
time possible. For that, the i−th provider in the composition should be able to compare
its capacity to invoke the i+2-th service provider with that of the i+1-th so as to decide
which strategy to adopt.

In the next chapter, we present our approach for service discovery and composition
based on the observations we made in this chapter.

Chapter 3. Service-oriented computing 50

Service composition in opportunistic networks Fadhlallah Baklouti 2019

Part II

Contributions

51

Service composition in opportunistic networks Fadhlallah Baklouti 2019

Service composition in opportunistic networks Fadhlallah Baklouti 2019

Chapter 4

Service discovery and composition
system

Contents
4.1 Introduction . 53
4.2 Service discovery and utility functions 54
4.3 Orchestration vs choreography . 57
4.4 Conclusion . 61

4.1 Introduction

In this chapter, we present our service discovery and composition system, that complies
with the requirements we determined in the end of the Chapter 3. We begin by detail-
ing our service discovery approach, as well as two implementations of a utility function
used in the selection process and also in rating discovered service providers. One im-
plementation is location-based that relies on location and on average distance. The
other one is time-based that relies on transmission delay and on inter-advertisement
reception time (the difference between the reception times of two successive advertise-
ments from a given provider). The discovery approach, we propose, is directory-less
where each node holds its own local service registry rather than having special nodes
that explicitly play the role of directories. This approach is also proactive where nodes
periodically advertise there local services to the rest of the network. We also present
our service composition approach that supports both the orchestration-based strategy
and the choreography-based strategy. We only consider sequential compositions in this
thesis.

The reminder of this chapter in organized as follows. In Section 4.2, we present our
discovery approach and both implementations of our utility function. In Section 4.3,
we explain both our composition strategies. We then finish the chapter by drawing
conclusions (Section 4.4).

53

Service composition in opportunistic networks Fadhlallah Baklouti 2019

4.2. Service discovery and utility functions

4.2 Service discovery and utility functions

4.2.1 Discovery

As previously mentioned in the introduction, our approach is directory-less (relies on
local service registries rather than a dedicated directory) and proactive. Unlike in (48),
we choose a proactive approach to eliminate the waiting delay between sending a dis-
covery request to find service providers, and sending the invocation or the composition
request to one or to some of the providers that answered the discovery request. More-
over, and unlike these works (70; 78) do, our discovery approach does not suppose that
services are exclusively provided by infostations, that have relatively significant re-
sources, and consumed by mobile nodes, that have limited resources. In our approach,
each node can be both a client and a provider.

Every period of time Tadv, each service provider emits an advertisement message
Madv. Madv is formally defined by the quadruplet {D,H,P, T}, where D is the descrip-
tion of the local services of the provider P , H is the number of hops Madv is allowed
to make. H decreases by −1 every time Madv is received by a node. Initially H is ini-
tialized to Hmax, the maximum number of hops that Madvcan make before it is deleted.
Hmax aims at limiting the propagation of advertisement messages. Doing so, we pre-
vent advertisement messages from reaching far away service clients. Consequently, we
shorten the traveling distances of invocation and composition requests, which help in-
crease the chances of completing invocation and composition requests successfully and
in a reasonable amount of time. Finally T is the emission time of the message Madv.

Each node implements and maintains a local service registry that contains infor-
mation about both local (provided by the node itself) and remote service instances re-
cently discovered. We formally define the local service registry SR by the set {L,R},
where L is the set of the descriptions of local service instances and R is the set of the
descriptions of remote service instances. L and R are formed by 6-uplets defined by
{P, S,D,H ′, U, µ(P)}, where P is the service provider, S is the service name, D is the
description of the service, H ′ is number of hops to the provider P . H ′ can be calculated
by the formula H ′ = Hmax −H , U is the latest update time for the 6-uplet which cor-
responds to the reception time of the last Madvfrom the provider P . µ(P) is the result
returned by the utility function.

The subset of service instances in the service registry that belongs to the provider P
is noted SR[P]. Every time an Madv from P is received the subset SR[P] gets updated.
If SR[P] stays with no update for a period of time greater than Tinactive (remote service
entry inactivity time threshold), service instances provided by P will be considered out
of reach and will be excluded from any composition or invocation process.

Chapter 4. Service discovery and composition system 54

Service composition in opportunistic networks Fadhlallah Baklouti 2019

4.2. Service discovery and utility functions

4.2.2 Utility function

In this dissertation, a utility function has the role of rating remote services and select-
ing them for invocations of simple and composite services. To achieve its goal, a utility
function should be able to collect and exploit the informations coming from the net-
work. This requires the usage of cross-layering techniques. Our utility function follows
two criteria of quality of service: the invocation success ratio and the invocation time.
Consequently, service providers are selected based on an estimation of the time needed
to reach them and on an estimation of the ratio of a successful transmission. While
close works rely on estimations of time delay (temporal distance in the case of Sadiq
et al. (104)), they do not take into consideration the success ratio of a composition or
an invocation request. Hereafter, we present our provider selection method using two
implementations of our utility function.

Service provider selection

Service providers are selected by the selection function ϕ, which is defined as follows:

{
ϕ(Si) = Pj , µ(pj) = max(µ(Pl)), Pl ∈ SR[Si]

µ(x) = α
t(x) + (1− α)× s(x)

In this formula, Pj is the provider having the highest value calculated by the func-
tion µ among the providers that offer service Si (identified by SR[Si] in the above for-
mula, where SR stands for the service registry). Function µ computes a value based on
the estimation of the time needed to reach a provider and on the estimation to invoke
that provider successfully. These estimations are respectively noted t(x) and s(x) for a
provider x. Parameter α makes it possible to promote one quality of service parameter
to the detriment of the other. t(x) and s(x) are computed either based on temporal or
geographical information. Hereafter, we show how these values are calculated. More-
over, the selection function ϕ only chooses a unique provider to invoke, unlike in (77)
where selection and invocation rely on a content-based scheme that invoke multiple
providers. Likewise, we avoid overloading the network and we reduce resource con-
sumption.

The function µ is used by our system to decide if a provider P and his remote
services noted SR[P] should be put in the service registry or removed from it. In-
deed, in the service registry, we only take into consideration service instances that their
providers are deemed relevant. Thus, if the computed value of µ is greater than a cer-
tain threshold µmin, the entry is added into the registry (or only updated if it already
exists). Whereas, if this value is less than the threshold, the entry is removed from the
list.

Chapter 4. Service discovery and composition system 55

Service composition in opportunistic networks Fadhlallah Baklouti 2019

4.2. Service discovery and utility functions

Time-based implementation of the utility function

We estimate the time needed to send an invocation or composition request to a provider
on the basis of the average of the transmission delays of the service advertisements that
the provider periodically broadcast. Whereas, the success ratio is estimated by the num-
ber of the advertisements received by a local host among those emitted by the service
provider. To calculate this ratio, we assume that all devices send service advertisements
with the same period of time (noted δ in the formulas hereafter). Likewise, to estimate
the number of advertisements, emitted by the provider, between two successive ad-
vertisement receptions from this one, we divide the corresponding inter-advertisement
reception time (the time elapsed between these two receptions) by the period δ. The
time-based utility function we have defined uses a sliding window of k values (i.e., we
only consider the last k advertisements that are received by the local host). Therefore,
we define the estimated time t and the success ratio s for provider P as follows:

t(P) =

∑k
i=1(βP

i − αP
i)

k

s(P) =
k

1 + b
∑k

i=2((βP
i − βP

i−1)/δ)c
=

k

1 + b((βP
k − βP

1)/δ)c

where αpi and βpi are respectively the emission time and the reception time of i-th
advertisement received from provider P . By adopting an average of the transmission
delays instead of considering only the last one, we promote the most frequently reached
providers with a minimum of delay, either directly or via intermediate devices, instead
of providers that are met in fleeting way.

Location-based implementation of the utility function

In each advertisement message emitted, our service discovery and composition sys-
tem includes the location coordinates of the local host. Based on these pieces of infor-
mations, receiving devices can compare their own location with that of the providers.
Similarly to the time-based utility function implementation, the location based util-
ity function operates on a sliding window that only takes into consideration the last
k advertisements received from a given provider. This utility function calculates the
estimation of the transmission delay on the basis of the average distance between the
local host and a given provider. By relying on the average distance between the local
host and a given provider instead of considering only the last advertisement, we favor
providers that are the closest to the local host during a given period of time instead of
providers that are only available for a brief moment. Therefore, we increase the prob-
ability of invoking a service provider either directly or via intermediate nodes. The
estimation of the time needed to reach a service provider P is equal to the reception
delay of the advertisement i, such that the distance dPi between the local host and the

Chapter 4. Service discovery and composition system 56

Service composition in opportunistic networks Fadhlallah Baklouti 2019

4.3. Orchestration vs choreography

provider is the closest to the average of the distances traveled by the k advertisements
received by the local host:

t(P) = (βP
i − αP

i), dPi ≈
∑k

l=1 dl
k

, i ∈ [1, k]

To estimate the success ratio of a transmission between a client and a provider, we
consider the k last advertisements received by a (local) client from a provider P , and
we compute the average of the distances between them dP based on their respective
location at the emission time and at the reception time. The probability of reaching a
provider usually decreases when the distance between the local device and the provider
increases. Indeed in this situation, the number of connection disruptions grows, and we
must rely on the mobility of the client, of the intermediate devices and of the provider,
and on their opportunities of contact, to forward a message successfully. That is why
we have defined the success estimation function as a multiplicative inverse function,
shifted to the left by -1, which takes dP as a parameter. This function returns a value
close to 1 when dP is small and a value close to 0 when dP is big. It is defined as follow:

s(p) =
1

1 + dp
, dP =

∑k
j=1 d

p
j

k

4.3 Orchestration vs choreography

A service composition requestCR is defined by the 5-uplet {Id, SL,Rter,R,M}, where
Id is the composition request identifier, SL is the list of services to compose, Rter is the
requester identifier, R is either the partial result in case the request is not finished yet or
the final result in case the request is completed. M is the list of mapping rules between
previous services outputs and the next services inputs.

Before explaining the differences between the two strategies, we should point out
their common similarities. Both composition strategies can be used with both utility
functions presented in the previous section, and both strategies support partial com-
positions which helps reduce failure and allow to resume unfinished composition re-
quests, that have been aborted due to the disappearance of a provider, if new service
instances are discovered.

4.3.1 Choreography-based strategy

The choreography-based service composition strategy consists of transmitting to the
first selected service provider the composition request, and in delegating to it both the
execution of the first service and the selection of the next provider as specified in the
composition request. This first provider will then send the rest of the composition re-
quest and the result of its execution to the next provider which will carry out the same

Chapter 4. Service discovery and composition system 57

Service composition in opportunistic networks Fadhlallah Baklouti 2019

4.3. Orchestration vs choreography

{Na, s1}

{Nb, s2}

{Nc, s3}

{Nd, s4}

Int2

Int1
Int3

Int4

Int5

Int6

(s1, s2, s3, s4)

CR(s1, s2, s3, s4)

CR(s1, s2, s3, s4)

CR(s2, s3, s4)

CR(s2, s3, s4)
CR(s2, s3, s4)

CR(s3, s4)

CR(s4)

result

result

Figure 4.1 – Choreography example.

exact procedure as did the first one. This process will be repeated until the composi-
tion is completed. At this point, the result can be returned back to the requester Rter.
Figure 4.1 depicts a scenario of a service composition using the choreography-based
composition strategy. The requester (in blue) issues a CR composed of four services
(s1, s2, s3, s4). The requester begins by choosing the nearest service provider for the
first service s1. The requester selects Na in our scenario. Na is two hops away from
the requester so the CR has to be sent to Int1. After that, Int1will relay CR to Na. Na
executes s1, updates CR and selects the nearest provider for s2 which happens to be
Nb in this case. The CR will have to travel through int2 and int3 to reach Nb since Nb
and Na are three hops away from each others. Nb will then pass CR to Nc. Finally CR
reaches Nd which executes the last service s4 in CR and forwards the final results to
the requester

4.3.2 Orchestration-based strategy

Unlike the choreography-based service composition, with the orchestration-based ser-
vice composition, the composition request never leaves the requester. Furthermore, the
tasks of selection and invocation is not delegated to service providers involved in the
composite service invocation. Instead, it is the requester that takes in charge the tasks
of selection and invocation of providers that should be involved in the composite ser-
vice invocation. As opposed to the choreogra-phy-based strategy where CR is sent to
service providers, the requester invokes services by sending an invocation request IV R
to service providers. IV R is formally defined by the 4-uplet {Id, S,Rter, I} where Id
is the invocation identifier, S is the name of the service to invoke, Rter is the requester
identifier and I is the set of inputs required by S. The reply to IV R provided by the
service provider is defined as Rp = {Id,R}, where Id is the same identifier of IV R and

Chapter 4. Service discovery and composition system 58

Service composition in opportunistic networks Fadhlallah Baklouti 2019

4.3. Orchestration vs choreography

{Na, s1}

{Nb, s2}

{Nc, s3}

{Nd, s4}

Int2

Int1

Int3

Int4

Int5

Int6

(s1, s2, s3, s4)

IVR(s1)

IVR(s1)

IVR(s2)

IVR(s2)

IVR(s2)

IVR(s3)

IVR(s4)

IVR(s4)

Figure 4.2 – Orchestration example.

R is the result of the service execution. Figure 4.2 provides an example of a compos-
ite service executed using the orchestration-based strategy. The requester initiates the
same request CR in the choreography example. The requester selects Na to execute s1
and sends an IV R to it through Int1. After receiving the result from Na, the requester
locally updates the CR, selects Nb to execute s2 and then send an IV R to it through
int3 and int5. After the requester receives the result from Nb, it will repeat the same
process to invoke s3 and s4 provided respectively by Nc and Nb.

We make sure in our contribution to implement both strategies to be able to compare
their performances, and identify their advantages and drawbacks, especially with the
orchestration strategy not being considered before in opportunistic networks. Besides,
we look forward to be able to combine these two strategies and switch between them
throughout the execution of a composition request in way that leverages the advantages
of both of them and at same time, avoids their drawbacks.

4.3.3 Mathematical models for composition time estimation and success ra-
tio estimation

Hereafter, we propose both an estimation of the execution time and an estimation of the
success ratio of a composition for the two strategies implemented in our service discov-
ery and composition system. Let us consider a composition request C that contains n
services identified respectively by Si, i ∈ [1, n], and a set of m providers that offer one
or several services. Let us also consider that composition C is emitted by a requester Λ.

Success ratio estimation In the orchestration-based strategy, the response of each ser-
vice invocation is returned to the requester Λ. Thus, the estimation of the success of an

Chapter 4. Service discovery and composition system 59

Service composition in opportunistic networks Fadhlallah Baklouti 2019

4.3. Orchestration vs choreography

orchestration-based composition is defined as the product of the square of the trans-
mission success estimation of a request from the requester Λ to the different providers
enrolled in the invocation of the composite service. This estimation is defined by:

γ(C) =
n∏

i=1

sΛ(Pl)
2, Pl = ϕΛ(Si)

In the case of the choreography-based strategy, the estimation of the success of a
composition is defined as the product of the transmission success estimation of a re-
quest from the requester Λ to the first provider (P1) with the transmission success es-
timation of the composition result from the last provider (Pn) to the requester Λ, and
with the intermediate transmission success estimations.


γ(C) = sΛ(P1)× sPn

(Λ)×
∏n−1

i=1 sPi
(Pi+1)

P1 = ϕΛ(S1)

Pn = ϕPn−1(Sn)

Pi+1 = ϕPi(Si+1)

Composition time estimation The composition time of C is defined for the orchestra-
tion-based strategy by:

τ(C) =

n∑
i=1

2 ∗ tΛ(Pl), Pl = ϕΛ(Si)

where Pl is the provider of the service Si that has been selected by the utility func-
tion ϕ. As mentioned above when presenting the estimation of success ratio, in the
orchestration-based strategy, the response must be returned to the device Λ that has
initiated the composition request. Thus, the time tΛ(Pl) is multiplied by 2 to consider
this round trip.

Concerning the choreography-based strategy, the estimation of the composition
time is defined by: 

τ(C) = tΛ(P1) +
∑n−1

i=1 tPi(Pi+1) + tPn(Λ)

P1 = ϕΛ(S1)

Pi+1 = ϕPi
(Si+1)

where tΛ(P1) is the estimation of the time needed to send the composition request
from the requester Λ to the provider of the first service, tPn(Λ) is the estimation of
the time needed to send the result of the composition from the provider Pn of the last
service Sn to the composition requester Λ. The rest of the formula τ(C) is the sum of
the estimations of intermediate composition times, where tPi(Pi+1) is the estimation of
the time needed to send both the composition request and the intermediate result from
the provider Pi to the next provider Pi+1.

Chapter 4. Service discovery and composition system 60

Service composition in opportunistic networks Fadhlallah Baklouti 2019

4.4. Conclusion

4.4 Conclusion

In this chapter, we presented our service discovery and composition system. Its main
goal is to carry out both the discovery and the composition processes while maximiz-
ing the composition success ratio and minimizing the composition time. We detailed
our discovery approach that operates proactively to avoid time delays in the invoca-
tion of simple and composite services. Our discovery approach also makes use of local
registries since deploying a dedicated directory in opportunistic environments is not
reliable. We also presented two implementations of the utility function: one is based
on location and distance, and the other is based on time. We then presented our ser-
vice composition approach that supports both orchestration and choreography. We
are interested in the orchestration strategy since it has not been considered yet in op-
portunistic networks. We also consider that switching between these two strategies,
throughout the invocation of the composite service, could help optimizing this process.
This switching could be based on which of the two strategies provides a better success
ratio and a better composition time.

Chapter 4. Service discovery and composition system 61

Service composition in opportunistic networks Fadhlallah Baklouti 2019

4.4. Conclusion

Chapter 4. Service discovery and composition system 62

Service composition in opportunistic networks Fadhlallah Baklouti 2019

Chapter 5

Composition caching and
precomputing

Contents
5.1 Introduction . 63

5.2 Proactive service computing . 64

5.3 Distributed cache . 68

5.4 Conclusion . 70

5.1 Introduction

In this chapter, we present a solution to optimize the invocation of composite services
by using a distributed cache, and by triggering compositions based on the user inter-
est profile. Indeed, a composite service can take a certain time to terminate and can
be subject to failures due to the hard conditions of opportunistic networks. Since the
same compositions are likely to be executed by different nodes, and their results to
be stored in their caches, it could be interesting to retrieve the already existing results
rather than starting new composition requests to obtain them, thus saving time and re-
sources. Moreover, to avoid composition delays, it could be interesting to proactively
trigger composition requests in advance to populate the cache with composition results
before the user decide to execute these composition requests. Nonetheless, it would be
unreasonable to execute all the possible composition requests based on the discovered
services, due to the problem of limited resources such as battery lifetime, processing
power and memory. Therefore, we propose to only compose services that match the
user preferences.

The reminder of this chapter in organized as follows. In Section 5.2, we present
our proactive composition precomputing manager, and we give a formal description of
this one. In Section 5.3, we present our distributed cache manager, and how it is used to

63

Service composition in opportunistic networks Fadhlallah Baklouti 2019

5.2. Proactive service computing

CG:

LCR:

CGG:

CRG:

S2S1

S3

S4

S5

S1 S2 S3 S5

S1 S2 S4 S5

Service registry (SR)

Interest
profile (IP)

Figure 5.1 – Proactive service composition.

match composition requests to composition results. Finally, in Section 5.4, we present
our conclusions.

5.2 Proactive service computing

5.2.1 General overview

To execute service compositions proactively based on the user interest profile, we pro-
pose a proactive service precomputing manager (PSP) that represents an extension
module for our service discovery and composition system. Our PSP exploits the service
descriptions from the service registry (SR) in order to generate compositions automat-
ically. PSP identifies services that match the user interest profile (IP), and defines a
composition graph (the graph CG in Figure 5.1), modeling the compositions that can be
performed on the basis of the outputs and inputs of services, while respecting pre/post-
conditions that should be met.

Chapter 5. Composition caching and precomputing 64

Service composition in opportunistic networks Fadhlallah Baklouti 2019

5.2. Proactive service computing

Afterward, PSP will proceed by identifying the compositions that can be found in
the composition graph. PSP will actually perform a depth-first graph traversal in order
to find these compositions. PSP will then return them in a form of a list of compositions
(the list of composition requests LCR in Figure 5.1).

PSP can be useful for instance for a spectator during a marathon to follow a runner
(or a group of runners). A composite service combining a photo delivering service, a
bib number detection service and a photo tagging service, can be executed in advance
by the PSP to provide the spectator with the photos of the runner(s) he follows with
little delay.

5.2.2 Formal description

Service description and service composition graph Each node in the network com-
putes a service composition graph CG that details the compositions possible to carry
out according to the user interest profile. This graph is formally defined asCG = (V,A),
where V is the set of vertices that contain service descriptions andA is the set of arrows
that indicate that two services can be composed in a certain order. Furthermore, a ser-
vice description, at this level, represents the content of the element D of each service
entry in the service registry SR, that we presented in details in Chapter 4. A service
description is formally defined by the 7-uplet D = {S, I,O, PRE,POST, txtD, kw},
where S is the service name, I is the set of inputs, O is the set of outputs, PRE is the set
of pre-conditions on the input set I , POST is the set of post-conditions on the output
set O, txtD is a textual description and kw is a set of key words that help select services
to be included in the composition graph CG based on the user interest profile as it will
be explained later on.

I and O represent two sets formed by elements called IOentrys. An IOentry (in-
put/output entry) is defined by the couple {n, dt} where n is the entry name, dt is
the entry data type. A given service a is chained to a service b in the service graph
CG, if and only if the outputs of a can be mapped to the inputs of b. An output o
of service a is mapped to an input i of service b if only if o and i have compatible data
types and the post-conditions on o are included in the pre-conditions on i, which means
that the pre-conditions on i are less strict than or as strict as the post-conditions on o.
Consequently any variable or parameter, that fulfills the post-conditions on o, auto-
matically fulfills the pre-conditions on i. These conditions are formally expressed by:
Comp(i, o) ∧ (POST [o] ⊂ PRE[i]), where PRE[i] are the preconditions on i, POST [o]
are the post-conditions on o, and Comp is a function that returns true, if i and o are of
compatible data types.

Therefore, an arrow a → b is drawn from service a to b if and only if (Ib ⊂ Oa) ∧
(POSTa ⊂ PREb). (Ib ⊂ Oa) means that for each i ∈ Ib there is an output o ∈ Oa, that
is not mapped yet to any other input, and that to gather with i, it verifies the condition
Comp(i, o) = true. (POSTa ⊂ PREb) means that the outputs of a, that can be mapped
to the inputs of b based on datatype compatibility, also fulfill the pre-conditions of the
service b.

Chapter 5. Composition caching and precomputing 65

Service composition in opportunistic networks Fadhlallah Baklouti 2019

5.2. Proactive service computing

Service a Service b

name=o1, type=String, post_condition=null

name=o3, type=Float, post_condition=null

name=o2, type=Int, post_condition=o2<10

name=i1, type=Int, pre_condition=i1<15

Figure 5.2 – Arrow between service a and b.

Figure 5.2 shows an example of how we establish an arrow between service a and
b. Service a has three outputs of type String, integer and float, while service b has
one input i1 compatible with o2 since both are integers. Consequently the condition
Comp(i1, o2) = true, and since service b has only one input, we conclude that the inputs
(Ib) of b are included in the outputs (Oa) of a, which means that the general condition
on all inputs and outputs (Ib ⊂ Oa) = true. Moreover o2 < i1 < 15, which means that
i1 can take the value of o2. Thus POST [o2] ⊂ PRE[i1] = true and therefore the second
general condition POSTa ⊂ PREb = true. Consequently, service a can be composed
with b and an arrow a→ b can be drawn between them.

Proactive composition manager PSP is initialized with a set of keywords
K = {key1..keyn} from the user that represent his/her interest profile, where keyi

is the i-th keyword. K will be fed to a composition graph generator CGG which is a
function defined by: CGG : K × SR × LXD 7−→ CG. CGG takes as parameters the
keywords K provided by the user, the service registry SR, and the local lightweight
lexical database LXD similar to the Princeton’s WordNet (83). CGG tries then to find
the composition graphCG that is compatible with the user interest profile. The function
CGG compares K to kw provided by each service description D in the registry SR
using the lexical equivalences provided by LXD in order to find the most compatible
list of services that should be included in the composition graph CG.

Afterward, another function called composition requests generator, defined by
CRG : CG 7−→ LCR, takes as an input the composition graph CG generated by

CGG and finds the list of composition requests LCR that meets the preferences of the
user. To do so, CRG will perform a graph traversal using the depth first search algo-
rithm (DFS) on the graph CG. CRG chooses a random node from CG as a root and
starts the graph traversal from it. When the traversal is over, CRG selects another node
as root and performs another graph traversal. This procedure will be repeated until all
nodes were selected as root. The Algorithm 5.1 illustrates how CRG works.

After the LCR is determined, another function Pr : CR × Cache 7−→ I is used to
prepare the inputs I for eachCR in LCR. Indeed, Pr explores the cache memoryCache

Chapter 5. Composition caching and precomputing 66

Service composition in opportunistic networks Fadhlallah Baklouti 2019

5.2. Proactive service computing

Algorithm 5.1 Composition request generator algorithm.
1: CRG(CG) :
2: all_nodes=CG.get_nodes()
3: previous_roots=[]
4: LCR=[]
5: DFS(node,CR) :
6: visited_nodes.add(node)
7: for succ in CG.successors(node) :
8: if succ not in visited_nodes :
9: CR=CR + succ

10: DFS(succ,CR)
11: CR=CR - succ
12: end if
13: end for
14: visited_nodes.remove(node)
15: if {R ∈ LCR|CR ⊂ R} = ∅ :
16: LCR.add(CR)
17: end if
18: end DFS
19: while all_nodes.size() > previous_roots.size() :
20: remaining_nodes=all_nodes - previous_roots
21: root=remaining_nodes.pop()
22: visited_nodes=[]
23: previous_roots.add(root)
24: DFS(root,[root])
25: end while
26: return LCR
27: end CRG

Chapter 5. Composition caching and precomputing 67

Service composition in opportunistic networks Fadhlallah Baklouti 2019

5.3. Distributed cache

Proactive
service
pre-compting
manager

Discovery
and
composition
system

Index table

Cache memory

data

data

data

Distributed cache manager (DCM)

Figure 5.3 – Distributed cache system.

where the data is stored in order to find elements that are suitable to constitute the set
of inputs I . Pr will then pass each CR with its inputs I to our service discovery and
composition system in order to execute the composition request.

5.3 Distributed cache

5.3.1 General overview

To improve the invocation of composite services in terms of response time and success
ratio, we define a distributed cache manager (DCM) that allows to share composition
results between nodes in order to avoid repeating compositions, and instead directly
retrieve these results from other nodes in the networks. To do so, we consider the set
of caches available in the network as a distributed storage space, where composition
results (complete or partial) can be shared and replicated between nodes that have in-
terest in them. Therefore, we propose to extend the local cache of each node using an
index table to identify composition results, produced both locally and by other nodes,
based on a checksum of their inputs and the list of the services involved in the compo-
sition. DCM has been integrated in our service discovery and composition system.

Therefore, as shown in the example provided by Figure 5.3, when the PSP starts
a composition request CR from LCR, our service discovery and composition system
checks in the index table if there are partial or complete results that match CR by com-

Chapter 5. Composition caching and precomputing 68

Service composition in opportunistic networks Fadhlallah Baklouti 2019

5.3. Distributed cache

paring the checksum of the CR inputs and the list of services to compose in CR, to
those of the results listed by the index table. In case there are matches, the service dis-
covery and composition system will return these results, and thus we avoid starting
composition requests that are resource-hungry and time consuming.

5.3.2 Formal description

Our index table T is organized in a form of an AVL tree to optimize search operations.
The table T = {itentry1..itentryn} is formed by a set of itentry elements. An itentry
(index table entry) is defined by the 5-uplets
{inputCS, sq, right, left, pointers}, where inputCS is the checksum of the request

inputs, and sq is the sequence of the service names {S1, .., Sn} according to the order
of execution (if the composition is partial, sq corresponds to the services already exe-
cuted). pointers is the set of the references {p1..pn} to the composition results {R1..Rn}
in the local node cache that correspond to inputCS and to sq. right and left are re-
spectively the right child and the left child of the current itentry in the tree. The table
T is sorted first based on inputCS and then on sq. To compare two service sequences
sqa = {S1..Sn} and sqb = {S1..Sm}, we concatenate the service names of both of them
to obtain two strings sa = Sa1 |..|San and sb = Sb1|..|Sbm. Then, we use the alphabetical
order to compare these two strings. A given composition result R (partial or complete)
is defined by the 6-uplet {id, inputCS, sq, ouputCS, expDate, P}, where id corresponds
to the identifier of the composition request CR associated to R, P is the payload of the
result, expDate is the expiration date of the composition result after which this result
will be removed from the cache, and outputCS is the checksum of the payload P .

We use the function search to look for existing results when we want to execute a
certain composition CR. This function is defined by:

search(root, CRinputCS,CRsq) = {itentry ∈ T |CRinputCS =
itentry.inputCS and itentry.sq ⊆ CRsq and CRsq[0] = itentry.sq[0]}

where root is the root of the index table T , CRinputCS is the checksum of the inputs
of the request CR and CRsq is the sequence of the names of the services to compose in
CR. The function search takes these two parameters and returns the list of itentry that
have an inputCS equal to CRinputCS and a service sequence sq included in CRsq (for
partial results) or equal to CRsq (for complete results). The search function performs
a typical AVL tree search as detailed in Algorithm 5.2. This function starts by finding
entries that have a root.inputCS = CRinputCS. The function searchwill then compare
the service sequences CRsq and root.sq (the service sequence of the current root), using
the function concat() to concatenate service names of both sequences, and compare
them based on the alphabetical order.

If concat(CRsq) < concat(root.sq), we obtain two cases:

1. CRsq = {Sa, Sb, Sc} ⊂ root.sq = {Sa, Sb, Sc, Sd} ∧ CRsq[0] = root.sq[0] = Sa.
This shows that CRsq is a partial sequence of root.sq and that root offers a longer
composed sequence of services than our sequence.

Chapter 5. Composition caching and precomputing 69

Service composition in opportunistic networks Fadhlallah Baklouti 2019

5.4. Conclusion

2. CRsq = {Sa, Sb, Sc} 6⊂ root.sq = {Sh, Sj , Sc, Sw} ∨ CRsq[0] 6= root.sq[0]. In this
case, we consider that CRsq and root.sq are completely different.

In both cases, we just continue the search without adding the current root to the list of
results.

If concat(CRsq) > concat(root.sq),we also obtain two cases:

1. root.sq = {Sa, Sb, Sc} ⊂ CRsq = {Sa, Sb, Sc, Sd} ∧ CRsq[0] = root.sq[0] = Sa.
This means that root.sq is a partial sequence of CRsq and that root points to par-
tial composition results for our composition request CR. Consequently root is
added to the list of results. We then subtract root.sq from CRsq to obtain the rest
of the sequence to compose rest−sq. We call the function search() recursively
using rest−sq to look if there are results for the rest of the composition request.

2. CRsq = {Sa, Sb, Sc} 6⊂ root.sq = {Sh, Sj , Sc, Sw} ∨ CRsq[0] 6= root.sq[0]. CRsq
and root.sq are considered, in this case, completely different. Therefore, we just
continue the search without adding root to the list of results.

Finally, if concat(CRsq) = concat(root.sq), this means that root offers a complete ser-
vice sequence, and that it points to a set of complete composition results in the cache
for our composition request CR. Thus we add root to the list of results.

Moreover, to enable nodes to share and replicate composition results among each
other, we can adopt a content-based approach based on a publish/subscribe commu-
nication mode, where a given node associates to each composition request CR, that
it considers interesting, a topic TCR. This will allow this node to provide and receive
results related to CR everytime it comes in contact with another node.

5.4 Conclusion

In this chapter, we presented our proactive service precomputing manager (PSP) used
to automate services compositions. It relies on a composition graph that provides the
available and potential compositions to initiate based on the user preferences. PSP pre-
emptively triggers composition requests, in order to populate the cache with results,
before the user decide to launch these requests, in order to reduce composition de-
lays. We also presented our distributed cache manager (DCM) that allows to share and
replicate composition results between nodes to avoid starting unnecessary invocations
of composite services. DCM searches for existing composition results, previously per-
formed locally or by remote nodes, that match the composition request that we want
to perform. By using DCM, we try to save time and resources that are already scarce in
opportunistic networks.

Chapter 5. Composition caching and precomputing 70

Service composition in opportunistic networks Fadhlallah Baklouti 2019

5.4. Conclusion

Algorithm 5.2 The search function algorithm.
1: search(root, CRinputCS, CRsq) :
2: original_root=root
3: results=[] //the list of results to return
4: while root != null :
5: if CRinputCS > root.inputCS :
6: root=root.right
7: else if CRinputCS < root.inputCS :
8: root=root.left
9: else :

10: //concat(sq) concatenates service names from sq
11: if concat(CRsq) < concat(root.sq) :
12: //CRsq is either included in root.sq or
13: //completely different from root.sq. Both cases are uninteresting
14: root=root.left
15: else if concat(CRsq) > concat(root.sq) :
16: //In this case, root.seq is either included in CRseq,
17: //or completely different
18: if root.sq ⊂ CRsq and root.sq[0]==CRsq[0] :
19: results.add(root)
20: rest_sq=CRsq-root.sq
21: for pt in root.pointers :
22: comp_results=search(original_root, pt→outputCS, rest_sq)
23: results.add(comp_results)
24: end for
25: end if
26: root=root.right
27: else :
28: results.add(root)
29: root=root.right
30: end if
31: end if
32: end while
33: return results

Chapter 5. Composition caching and precomputing 71

Service composition in opportunistic networks Fadhlallah Baklouti 2019

5.4. Conclusion

Chapter 5. Composition caching and precomputing 72

Service composition in opportunistic networks Fadhlallah Baklouti 2019

Part III

Implementation, Evaluations and
Conclusion

73

Service composition in opportunistic networks Fadhlallah Baklouti 2019

Service composition in opportunistic networks Fadhlallah Baklouti 2019

Chapter 6

Implementation

Contents
6.1 Introduction . 75

6.2 C3PO . 75

6.3 Service discovery and composition system 77

6.4 Proactive service precomputing manager 82

6.5 Conclusion . 83

6.1 Introduction

In this chapter, we start by introducing, in Section 6.2, the opportunistic communication
framework C3PO (67) used in the development process. We then present, in Section 6.3,
the implementation of our service discovery and composition system, as well as the im-
plementation of our distributed cache manager (DCM) that constitutes an extension to
our system. In Section 6.4, we present the design of our proactive service precomput-
ing manager (PSP) that automates service compositions based on the user preferences.
Each implementation, in this chapter, is presented using a general overview and a de-
tailed conception using UML class diagrams. Finally, we draw our conclusions in Sec-
tion 6.5.

6.2 C3PO

C3PO is a framework dedicated to opportunistic networking and developed under the
project ANR-C3PO 1. In this project, the C3PO framework is used to create and manage
social networks that are limited in space and time. These networks are called SESN
(Spontaneous and Ephemeral Social Networks) (67). C3PO provides two communication

1http://www.agence-nationale-recherche.fr/Projet-ANR-13-CORD-0005

75

Service composition in opportunistic networks Fadhlallah Baklouti 2019

6.2. C3PO

Application #1 Application #n

Strategy
#1

Strategy
#2

Topic-based Publish/Subscribe Channel-based Send/Receive

...

Logging
3

Topology Manager

Network
Manager

Neighbor
 Discovery
Manager

Message
Socket

Connection
Handler

Connectivity and Network 1

Events

4

Config
5

Message Forwarder

Cache

Message Forwarding
Strategy

Cache Policy

Opportunistic Networking2

Figure 6.1 – C3PO framework.

modes: a point-to-point communication mode using channels, and a publish/subscribe
communication mode using topics.

C3PO has a modular architecture. It is organized in five main modules as shown
in Figure 6.1. The connectivity and network module (i.e. module 1) is responsible for
managing wireless interfaces and organizing the topology of the network. This module
implements a neighbour discovery manager, that is responsible for discovering other
nodes and maintaining the topology. The discovery manager implements a beaconing
process and uses the discovery mechanisms integrated in certain network communica-
tion technologies (e.g. Wi-Fi Direct, Bluetooth, etc.). The discovery manager also allows
to perform a 2-hops discovery of nodes. Module 1 also implements a network manager,
that creates and manages connections between the nodes that have been discovered. In
addition, this module has a topology manager that manages the topology of network
according to the constraints imposed by both the operating systems and the network
technologies. The topology manager prevents the creation of redundant links between
nodes, and also creates and manages micronets and macronets. A micronet is a subset
of nodes connected using the same communication technology. Nodes in the same mi-
cronet are able to communicate directly with each other. A micronet serves essentially
as an abstraction for a Bluetooth piconet, a Wi-Fi BSS or a Wi-Fi direct group. On the
other hand, a macronet is a group of micronets interconnected through nodes that are
at least members of two micronets.

The opportunistic networking module (module 2) implements a cache to store mes-
sages that are exchanged opportunistically by nodes. It also provides message for-
warding strategies and a message forwarder in order to organize data dissemination

Chapter 6. Implementation 76

Service composition in opportunistic networks Fadhlallah Baklouti 2019

6.3. Service discovery and composition system

Service invokerService container

Provider
selectors

Service
registry

Service
Discovery

Service compositor

Service strategies

Service discovery and composition system

C3PO framework

Distributed cache manager

Figure 6.2 – General architecture of the service discovery and composition system.

within the network based on the store-carry-and-forward principle (detailed in Chap-
ter 2). C3PO uses an optimized version of the Epidemic routing protocol to limit the
number of messages exchanged in the network. The three other modules implement
functionalities that include the management of events produced by the framework, a
logging system for the traces generated by the framework and a configuration module.

6.3 Service discovery and composition system

6.3.1 Overview of the architecture

Our service discovery and composition system is formed by several components as
shown in Figure 6.2. The service container hosts services that are provided locally. The
provider selectors is the set of the implementations available for the utility-function used
by the system to rate and to select providers. The service registry is the directory where
advertisements from other providers as well as the descriptions of local services are
stored. This directory is populated by the service discovery component that implements
our discovery approach. The service compositor is the component responsible for execut-
ing a composition request. This component chooses the service providers that should
be enrolled in the invocation of the composite service. It also updates the composition
request by mapping the outputs of current service to the inputs of the next one, and de-
livers the final results at the end of the invocation of the composite service. To choose

Chapter 6. Implementation 77

Service composition in opportunistic networks Fadhlallah Baklouti 2019

6.3. Service discovery and composition system

Service Compositor

Composition Strategy

Provider Selector

Service Registry

Service Invoker

Distributed cache manager

16: selected next provider from remote perspective

15: retrieve description

14: compare providers

13: select next provider from remote perspective

Actor

8: selected provider

1: initComposition

4: update

5: select provider
9: select next provider from local perspective

12: selected next provider from local perspective

17: select strategy

7: retrieve desciption

6: compare providers
10: compare providers

11: retrieve description3: return existing results

18: compose

19: pass invocation/composition request 20: return result

2: check for existing results

Figure 6.3 – Communication diagram for the service discovery and composition system.

which provider to invoke, the service compositor uses one of the available provider selec-
tors. After the chosen provider (i+ 1− th provider) is determined, the service compositor
should be able to compare the best next service provider (i + 2 − th provider) from
the perspective of the local node (i− th provider or the request initiator), with the best
next provider from the perspective of the chosen provider (i+ 1− th provider). Based
on this comparison, the service compositor should be able to choose dynamically, in the
middle of the invocation of the composite service, one of the Service strategies that dic-
tates how the composition request should be executed. In the current implementation,
the composition strategy is fixed from the beginning, and does not change throughout
the execution of the composite service. The service invoker is then used to send invoca-
tion and composition request messages to service providers. The service compositor will
also try to avoid this resource-consuming process by checking with the Distributed cache
manager, if there are already existing composition results that answer the composition
request. These interactions between the different system components are illustrated by
the communication diagram in Figure 6.3.

6.3.2 Details

Class diagram of the service discovery and composition system and the DCM Fig-
ure 6.4 shows the class diagram of the service system and the distributed cache man-
ager. In this figure, the Compositor has the responsibility of managing the invocations of
composite services. The start() method of the class Compositor allows to configure and to
start the activity of this class, whereas the stop() method implements the necessary steps
to stop the Compositor. The method startComposition() allows the higher software layer
to start a service composition. This method takes as parameters an instance of the class
CompositionRequest and an instance of the class CallBack. The Callback instance processes
the final result when this one is received by the requester. The attribute compositionList
holds the list of the ongoing compositions. The update() method updates the composi-
tion request and maps service outputs to service inputs throughout the invocation of

Chapter 6. Implementation 78

Service composition in opportunistic networks Fadhlallah Baklouti 2019

6.3. Service discovery and composition system

Compositor
-compositionList: List
+compose(request:Request): void
+startComposition(request:CompositionRequest,
callBack:CallBack): void
+start(): void
+stop(): void
+update(request:Request): CompositionRequest

Strategy

+processComposition(request:Request): void
0..1 1..*

Ochestration Choreography

ProviderSelector

+rateProvider(advertisment:Advertisment,
serviceRegistry:ServiceRegistry): Rating
+selectProvider(ServiceName:String,
serviceRegistry:ServiceRegistry,
nodeId:String): ServiceDiscription

LocationSelectorTimeSelector

0..1

1

ServiceRegistry
-serviceDiscriptions: List
+addEntry(): void
+removeEntry(Id:String): void
+updateEntry(Id:String): void
+getEntry(Id:String): RegistryEntry
+getServiceInstances(serviceName:String): List

ServiceDiscription
+serviceName: String
+inputs: List
+outputs: List
+provider: String
+discription
+rating: Rating
+discription: String
+lastUpdateTime: Long

1

0..*

Discovery
#advertisePeriod: Long
#inactivityThreshold: Long
#nodeID: String
+update(advertisment:Advertisement,
serviceRegistry:ServiceRegistry): void
+advertise(): void
+start(): void
+stop(): void

1

1

0..1

1

ServiceInvoker

+invoke(message:Message,replyBack:CallBack): void
+receive(): void

1

0..*

IndexTable
-avlTree: IndexTableEntry
+insert(entry:IndexTableEntry): void
+delete(inputCheckSum:String,
services:Sequence): void
+search(inputCheckSum:String,
services:Sequence): IndexTableEntry
+delete(entry:IndexTableEntry): void

1

1

IndexTableEntry
+inputCS: String
+services: sequence
+pointers: List
+next: IndexTableEntry
+previous: IndexTableEntry

CompositionResult
+inputCS: String
+services: Sequence
+outputCS: String
+expDate: Date
+id: String
+payload: Object

1 0..*

Distributed cache manager

Figure 6.4 – Class diagram of the service discovery and composition system.

Chapter 6. Implementation 79

Service composition in opportunistic networks Fadhlallah Baklouti 2019

6.3. Service discovery and composition system

the composite service.
The IndexTable represents the main class of our DCM. The IndexTable class defines

an attribute called avlTree which is an instance of the class IndexTableEntry and the root
of an AVL Tree. The IndexTable class provides 4 methods: search() to look for an entry,
insert() to add an entry, and two delete() methods to remove entries from the tree.

The class IndexTableEntry defines the attribute pointers that points to a set of compo-
sition results that have an equal checksum of inputs inputCS and the same sequence of
services.

Composition results are represented by the class CompositionResult, where payload is
the content of the result, the attribute outputCS is the checksum of the payload, expDate is
the expiration date of the composition result, and id is the identifier of the composition
request associated to the result.

The abstract class Strategy dictates how the composite service should be executed.
The Strategy class defines the processComposition() method that invokes service providers.
Currently, we implement two strategies: the Orchestration and the Choreography.

The abstract class ProviderSelector is used to select service providers using the method
selectProvider() that returns a ServiceDiscription instance of the selected service. Provider-
Selector has also the role of rating service providers using the method rateProvider(). A
class, that extends the ProviderSelector class, should provide an implementation of our
utility function. We currently propose two implementations of the class ProviderSelec-
tor: LocationSelector that relies on location and distance and TimeSelector that relies on
time.

The class ServiceInvoker is used to invoke remote services. This class defines the
method invoke() that takes as parameter an instance of the class Message that carries the
request and an instance of the class Callback that processes the result upon receiving it.

The Discovery class is responsible for managing the service discovery process. It
has two main methods: the update() method which updates the ServiceRegistry when an
advertisement message is received, and the method advertise() that periodically sends
an advertisement message of the local services based on the class Advertisement. The
Discovery class also has a start() and stop() methods that have the same purpose as those
of the Compositor class.

The local service directory of our service system is implemented by the class Ser-
viceRegistry. This class has an attribute called serviceDiscriptions which is a list of in-
stances of the class ServiceDiscription that describe both local and remote services. Ser-
viceRegistry also provides several methods to manipulate this list. For instance, addEn-
try() and removeEntry() respectively allow to add and remove an instance of the class
ServiceDiscription from the description list. The method updateEntry() is used to update
an already existing instance of the class ServiceDiscription and finally both getEntry() and
getServiceInstances() return instances of the class ServiceDiscription respectively based on
identifiers and names.

Class diagram of the messages Figure 6.5 shows the UML class diagram of the dif-
ferent messages exchanged by nodes running our service system. In this figure, all

Chapter 6. Implementation 80

Service composition in opportunistic networks Fadhlallah Baklouti 2019

6.3. Service discovery and composition system

Message

+Id: String
+source: String
+destination: String
+emissionTime: Long
+hops: Integer
+messageType: String
+lifeTime: Long

Advertisment

+serviceDiscriptions: List

CompositionRequest

+services: List
+mappingRules: List
+result: Result
+currentInputs: List

Request

InvocationRequest

+serviceName: String
+inputs: List

RequestReply

+outputs: List
+requestId: String

Figure 6.5 – Class diagram for messages exchanged by the service discovery and com-
position system.

classes extend the class Message. This class defines several attributes: id is the message
identifier, source is the address of the sender, the attribute destination specifies the desti-
nation address. This attribute can be assigned a node address in case of a point-to-point
communication or a wild-card expression if the message is meant to be broadcast. The
emissionTime is the time on which the sender emitted the message. hops is the number
of hops the message can still do. hops starts at the maximum number of hops a message
is allowed to do and is decreased by -1 everytime the message is received by a node.
The lifetime is the time after which the message is considered to be obsolete.

The class CompositionRequest specifies the attributes of a composition request. In-
deed, the attribute services enlists the sequence of services to compose. The mappin-
gRules are the set of rules that dictate how one service outputs should be mapped to
another service inputs. The result attribute is assigned either the final composition re-
sult or the partial composition result. The currentInputs parameter holds the inputs for
the next service to execute. currentInputs gets its value from the results of mapping
performed using the mappingRules.

The InvocationRequest class is used to form the invocation request message for a
single service invocation. This class specifies the service name serviceName and the
inputs that the service requires.

The reply to an invocation request is modeled by the class RequestReply. This class
specifies the outputs that the service returns after the execution, and the identifier re-
questId of the invocation request associated to the reply. The InvocationRequest, the Re-
questReply and the CompositionRequest extend the abstract class Request .

The Advertisment class is used in the discovery process by service providers to ad-

Chapter 6. Implementation 81

Service composition in opportunistic networks Fadhlallah Baklouti 2019

6.4. Proactive service precomputing manager

Service discovery and composition system

Composition graph generator

Composition manager

Proactive service precomputing manager

Local
lexical
database

Interest
Profile

Figure 6.6 – Data sharing space general architecture.

vertise their services across the network. Like other classes, Advertisment extends the
class Message and adds a list of service descriptors called serviceDiscriptions.

6.4 Proactive service precomputing manager

6.4.1 Overview of the architecture

Figure 6.6 shows the general architecture of our proactive service precomputing man-
ager (PSP). Our PSP is formed by two major components: the composition graph generator
(CGG) and the composition manager (CM).

The CGG main purpose is to generate the composition graph from the service de-
scriptions stored in the service registry according to the user preferences. CGG tries
to find services that match the user/developer Interest profile by using the Local lexical
database. The Local lexical database matches the keywords from the user interest profile
to those in the service descriptions to determine the most suitable services. Afterward,
CGG proceeds by mapping the outputs of one service to the inputs of another. The map-
ping is based on the input/output datatype compatibility and the coherence between
the inputs preconditions and the outputs post-conditions.

CM uses the graph provided by CGG to identify the compositions that suit the de-
veloper/user interest. As explained in Chapter 5, CM performs a depth first search
(DFS) graph traversal on the composition graph and builds a composition request list.
CM then prepares the inputs for every composition request in the list using the local
node cache and passes these requests to our service discovery and composition system.
CM will repeat this operation every time there are new inputs available in the cache.

Chapter 6. Implementation 82

Service composition in opportunistic networks Fadhlallah Baklouti 2019

6.5. Conclusion

CompositionGraph
#vertices: List<Vertex>
+generateGraph(serviceRegistry:ServiceRegistry): void
+getVertices(): List<Vertex>
+getVertex(serviceName:String): Vertex

CompositionManager
-compositionList: List<CompositionRequest>
+generateCompositionList(graph:Graph): void
+startCompositions(): void

Vertex
-serviceName: String
-discription: ServiceDescription
-previous: List<Vortex>
-next: List<Vortex>
+getServiceName(): String
+setServiceName(name:String): void
+getDescription(): ServiceDescription
+setDiscription(description:ServiceDescription): void
+getPrevious(): List<Vortex>
+setPrevious(vortices:List<Vortex>): void
+getNext(): List<Vortex>
+setNext(vortices:List<Vortex>): void

Figure 6.7 – Data sharing space class diagram.

6.4.2 Details

Figure 6.7 shows the class diagram for our PSP. In this figure, the class CompositionGraph
represents the Composition graph generator component, and provides an implementation
of a directed composition graph. The graph, provided by the CompositionGraph class, is
formed by a list of instances from the class Vertex. The Vertex class contains the service
name serviceName and its description. The Vertex class also specifies a list of vertices,
called previous, that describes the services that can precede the service, described by the
current instance of Vertex, in a service composition. The Vertex class also provides a list
of vertices, called next, that describes the services that can follow the service, described
by the current instance of Vertex, in a service composition. The CompositionGraph class
builds the composition graph using the method generateGraph() that takes as a parame-
ter the service registry serviceRegistry.

The class CompositionManager has an attribute called compositionList that contains
the compositions that match the user interest profile. This class uses the method gen-
erateCompositionList() to generate the content of the attribute compositionList using the
graph provided by the CompositionGraph class. The CompositionManager class also uses
the method startComposition() to start these compositions every time there are new in-
puts in the cache.

6.5 Conclusion

In this chapter, we introduced the framework C3PO used in the development process.
We presented the implementation of our service discovery and composition system and
the implementation of the DCM that extends it. We explained the general architecture
of this system and we presented its main components. We also illustrated the dynamic

Chapter 6. Implementation 83

Service composition in opportunistic networks Fadhlallah Baklouti 2019

6.5. Conclusion

behaviour of the system using an UML communication diagram. Then, we detailed
its conception using an UML class diagram for the different messages exchanged by
our system, as well as an UML class diagram that elaborates how we implemented the
main components of the system. Finally, we discussed the implementation of our PSP.

Chapter 6. Implementation 84

Service composition in opportunistic networks Fadhlallah Baklouti 2019

Chapter 7

Comparison of orchestration-based
and choreography-based strategies

Contents
7.1 Introduction . 85
7.2 LEPTON . 85
7.3 Evaluation setup . 87
7.4 Results and analysis . 88
7.5 Conclusion . 96

7.1 Introduction

In this chapter, we compare the orchestration-based strategy and the choreography-
based strategy. We identify the advantages and disadvantages of each strategy. We
study the performances of these strategies, essentially, in terms of success ratio and
composition time, by varying the maximum number of hops between the service provi-
der and the service client, and by using the time-based implementation of our utility
function presented in the Chapter 4.

The reminder of this chapter is organized as follows. In section 7.2, we present the
lightweight emulator LEPTON. In Section 7.3, we detail the setup for our experiments.
In Section 7.4, we present our results and we analyze them, and in Section 7.5, we draw
our conclusions.

7.2 LEPTON

LEPTON (Lightweight Emulation PlaTform for Opportunistic Networking)1 is an emulation
platform dedicated to opportunistic communication support. The main objective of

1http://casa-irisa.univ-ubs.fr/lepton/

85

Service composition in opportunistic networks Fadhlallah Baklouti 2019

7.2. LEPTON

C3PO
instance

HubClient

C3PO
instance

HubClient

Node 1

Node k

Hub LEPTON

Messages

Messages

Figure 7.1 – C3PO/LEPTON integration.

LEPTON is to enable researchers and developers to carry out experiments using their
own opportunistic systems while providing simulated mobility models for them.

Being a lightweight emulator, as it claims to be, LEPTON does not require any
special or high performance equipment to be deployed. In fact, for experiments that
include only a couple of hundred nodes, a typical workstation configuration can be
enough to guarantee a proper execution of the emulation. LEPTON can also be de-
ployed on a cluster of machines in order to carry out an emulation that is high de-
manding in resources.

Moreover, as an emulator, one of its principle task is to drive the communications
between the different instances of an opportunistic system. This is done by taking into
account the mobility, the distance between nodes, the radio communication technolo-
gies involved, and several other factors (battery lifetime, load, etc.) to determine if
a given pair of nodes can or can not exchange messages. Therefore, any opportunistic
system, that is willing to use LEPTON, should implement a integration layer. Currently
LEPTON support several opportunistic systems such as DoDWAN (52), IBRDTN (38)
and aDTN2.

Figure 7.1 shows how we integrated C3PO with LEPTON. This integration is based
on a client/server model. In fact, we add a software layer, that we call Hub. This
layer plays the role of the server for the emulator LEPTON. The Hub is responsible for
relaying messages between nodes. It notifies them when they are in radio range of each
other, and instructs them to end the connection when they are out of range, all based

2https://github.com/SeNDA-UAB/aDTN-platform

Chapter 7. Comparison of composition strategies 86

Service composition in opportunistic networks Fadhlallah Baklouti 2019

7.3. Evaluation setup

GO1

GO2

cl1

cl2

cl3

cl4

cl5

cl6

cl7

GO1

GO2

cl1

cl2

cl3

cl4

cl5

cl6

cl7

Figure 7.2 – Wi-Fi Direct scenario.

on the simulated mobility provided by LEPTON. On the other hand, C3PO instances
are provided with another software layer called HubClient. The HubClients allow the
C3PO instances to send and receive messages to and from other nodes through the
Hub, that plays the role of an intermediate.

7.3 Evaluation setup

In order to compare the orchestration-based strategy and the choreography-based strat-
egy, we perform a series of experiments in which we emulate our system using our
emulator LEPTON. For our evaluations, we consider two scenarios: the first scenario is
an open area of 500× 500m² where people can roam around freely following the Levy
walk mobility model (103). The second one is a sport event that took place in the city
of Vannes in France (Figure 7.3) where attendees move along a predetermined running
path. Coupled with the two strategies presented in Chapter 4, we obtain 4 configura-
tions that are identified respectively as: open area/orchestration, open area/choreogra-
phy, Vannes city/orchestration, and Vannes city/choreography. Pedestrians walk at a
speed between 0.5 m/s and 2 m/s, while using their smart-phones to start composi-
tions. The number of pedestrians varies between 50 and 250. The communication
technology considered in the experiments is Wi-Fi Direct (23), using the Android im-
plementation, with a maximum radio range of 80 m. Figure 7.2 illustrates how Wi-Fi
Direct works. Wi-Fi Direct divides the network into communication groups. Each com-

Chapter 7. Comparison of composition strategies 87

Service composition in opportunistic networks Fadhlallah Baklouti 2019

7.4. Results and analysis

Parameter Value
Open area size 500 m x 500 m

Composition request generation between 2 and 5 min.
Evaluation Duration 1 hour

Advertisement period 10 seconds
Service registry entry inactivity threshold 20 seconds

Number of service per composition between 3 and 6
Number of local services per node 5

Number of hops in advertisement messages between 1 and 3
Number of node per experience 50, 100, 150, 200, 250

Speed range between 0.5 and 2m/s

Table 7.1 – Evaluation parameters.

munication group is managed by a group owner GO that acts as a soft access point.
The GO is chosen at the beginning, when the first two nodes of the group establish a
connection. A given node can join possibly any group. In the Android implementation,
the number of clients is limited to 7 per GO. A client can only be connected to one GO,
and twoGO can not establish a connection between themselves. As Figure 7.2 shows, if
cl4 wants to connect to GO2, it must first end its connection with GO1. Likewise, Wi-Fi
Direct causes the network to be highly fragmented and formed by isolated connected
islands.

In our evaluation, each emulation lasts 1 hour and each node in the network pro-
vides 5 services that can be invoked. Moreover, we suppose that each node generates
a composition request formed by 3 to 6 remote services (we do not include local ser-
vices in composition requests) every x time, with x between 2 and 5 minutes. All the
evaluation parameters are summarized in Table 7.1.

7.4 Results and analysis

The results presented hereafter, show the effect of the maximum number of hops be-
tween the service client and the service provider on the success ratio, on the composi-
tion time, on the number of nodes involved in a service composition and on the number
of compositions executed by a node.

Composition time Figure 7.4a depicts the median of composition time against the
maximum number of hops between the service provider and the service client. We
notice that the median of composition time increases when the maximum number of

Chapter 7. Comparison of composition strategies 88

Service composition in opportunistic networks Fadhlallah Baklouti 2019

7.4. Results and analysis

Figure 7.3 – Vannes city map.

hops increases in the four configurations. Clearly, the choreography-based composi-
tion strategy provides a shorter composition time than the orchestration-based strat-
egy. Thus, it provides a better response time to the composition requester. For exam-
ple, in the open area scenario, the median time for the choreography-based composi-
tion strategy to finish a service composition is between 11 ms and 101 ms, whereas the
orchestration-based composition strategy takes between 242 ms and 379 ms in order to
complete a composition. In the Vannes city scenario, the choreography-based strategy
has a median of composition time between 8 ms and 158 ms while the orchestration-
based composition strategy scores between 239 ms and 469 ms.

Figure 7.5 shows the composition time distribution for a maximum number of hops
between the service client and the service provider equals to 2. We can observe on
this figure that the orchestration-based composition strategy has almost all its compo-
sition times between 200 ms and 600 ms, with a maximum pick between 15 % and 25 %
in the open area scenario, and between 10 % and 14 % in the Vannes city scenario. The
orchestration strategy has, nonetheless, nearly 0% of compositions that have a composi-
tion time between 0 ms and 200 ms. However, for the choreography-based composition
strategy, almost all composition times are between 10 ms and 200 ms with a maximum
pick between 20 % and 25 % in the open area scenario, and between 10 % and 14 % in
the Vannes city scenario both of them happens around 10 ms. This can be explained by
the fact that with the orchestration-based composition strategy, the requester plays also

Chapter 7. Comparison of composition strategies 89

Service composition in opportunistic networks Fadhlallah Baklouti 2019

7.4. Results and analysis

0

50

100

150

200

250

300

350

400

450

500

1 2 3

m
ed

ia
n

va
lu

e
of

 c
om

po
si

ti
on

 ti
m

e
(m

s)

maximum number of hops to a remote service

open area orchestration

open area choreography

Vannes city orchestration

Vannes city choreography

(a) Median composition time.

50

55

60

65

70

75

80

85

90

1 2 3

su
cc

es
s

ra
ti

o

maximum number of hops to a remote service

open area orchestration
open area choreography

Vannes city orchestration
Vannes city choreography

(b) Composition success ratio.

2

3

4

5

6

7

8

9

10

11

1 2 3

nu
m

be
r

of
 c

om
po

si
ti

on
s

maximum number of hops to a remote service

open area orchestration

open area choreography
Vannes city orchestration

Vannes city choreography

(c) Average number of compositions executed by
a device.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

1 2 3

nu
m

be
r

of
 n

od
es

maximum number of hops to a remote service

open area orchestration

open area choreography

Vannes city orchestration

Vannes city choreography

(d) Average number of nodes involved in an in-
vocation of a composite service.

Figure 7.4 – Impact of the number of hops on service compositions.

Chapter 7. Comparison of composition strategies 90

Service composition in opportunistic networks Fadhlallah Baklouti 2019

7.4. Results and analysis

0

5

10

15

20

25

0 50 100 150 200 250 300 350 400
time in milliseconds

Open area choreography

50 nodes
100 nodes
150 nodes
200 nodes
250 nodes

0

5

10

15

20

25

0 200 400 600 800 1000 1200
time in milliseconds

Open area orchestration

50 nodes
100 nodes
150 nodes
200 nodes
250 nodes

0

2

4

6

8

10

12

14

0 50 100 150 200 250 300 350 400 450 500
time in milliseconds

Vannes city choreography

50 nodes
100 nodes
150 nodes
200 nodes
250 nodes

0

2

4

6

8

10

12

14

0 200 400 600 800 1000 1200
time in milliseconds

Vannes city orchestration

50 nodes
100 nodes
150 nodes
200 nodes
250 nodes

Figure 7.5 – Composition time distribution for 2 hops.

Chapter 7. Comparison of composition strategies 91

Service composition in opportunistic networks Fadhlallah Baklouti 2019

7.4. Results and analysis

the role of the orchestrator. Thus, all service execution results should be returned to it in
order to continue the invocation of the composite service. In addition, service requests
and service results are likely to travel through intermediate nodes. Consequently, the
orchestration-based composition strategy takes a long time to finish. Whereas, with the
choreography-based composition strategy, it is only the final result that is returned to
the requester. Intermediate results are indeed only sent by the current service providers
to the next one and are never returned to the requester. Likewise, the choreography-
based composition strategy generates less messages than the orchestration-based com-
position strategy, and thus reduces considerably the composition time.

Moreover this important time gap between the two strategies is due to the process
of formation of groups in Wi-Fi Direct and of micronets in the C3PO communication
middleware. As previously mentioned, with the orchestration strategy, the composi-
tion request stays with the requester. This one is in charge of selecting providers and
invoking them throughout the execution of the composition request. This creates a dif-
ference in composition time between the two strategies especially when the maximum
number of hops of messages is limited to one hop, because the requester has only ac-
cess to its local services and the services of its group owner. Thus, a requester, using the
orchestration strategy, should leave its group and move to another one in order to com-
plete the composition, which slows down the execution of composition request. This is
not the case of the choreography strategy that is not affected by this limitation. Indeed,
the composition request and the intermediate results are transmitted from a provider
to another provider until the composition is completed and the final result is then re-
turned to the requester. For example, in a scenario where the maximum number of hops
is equal one, a requester who is client of a group owner, can delegate the composition
request to that group owner in case it provides the next service in the composition, then
the group owner will delegate the request to one of its clients.

Success ratio

Figure 7.4b presents the success ratio against the maximum number of hops between
the service provider and the service client. We notice that the success ratio is greater
in the Vannes city scenario than in the open area scenario. This can be explained by
the fact that the mobility of users, in the Vannes city scenario, is restricted by buildings
and other obstacles and also by the fact that the sport event follows a predetermined
running path. In open area scenario, we do not have such a limitation. People can roam
freely in the whole area. The orchestration-based composition strategy provides a bet-
ter success ratio than the choreography-based composition regardless of the scenarios.
In the Vannes city scenario, the orchestration-based strategy achieves a success ratio be-
tween 75 % and 87.5 % while the choreography-based strategy only provides between
60.6 % to 74.4 %. In the open area scenario, the orchestration-based strategy has a suc-
cess ratio between 60.6 % and 74.4 %, whereas, the choreography-based strategy scores
between 54 % and 62.6 % of success ratio.

These results are explained by the fact that partial results always return to the re-

Chapter 7. Comparison of composition strategies 92

Service composition in opportunistic networks Fadhlallah Baklouti 2019

7.4. Results and analysis

quester when orchestration-based strategy is adopted. This is not the case in choreogra-
phy-based composition strategy, where the partial results are passed between service
providers. If we suppose that each node can call a service provider k hops away from it
(k ∈ {1, 2, 3} in our evaluation), then in the choreography-based strategy, the composi-
tion request could travel up to k ∗ |CR| hops away from the requester for all services in
the composition request to get executed, where |CR| is the number of services in the re-
quest CR. Whereas in the case of the orchestration-based strategy, invocation requests
and intermediate results do not get further than k hops from the requester. This proves
that the success ratio decreases when the number of hops increases.

Number of compositions executed by a node

Figure 7.4c shows the number of compositions executed by a single node against the
maximum number of hops between the service provider and the service client. The
four curves represent the same form of a nearly horizontal line. This shows the number
of hops between the provider and the client has no effect on the number of compositions
executed by a single node. The orchestration-based composition strategy has slightly
more compositions per node than the choreography-based composition strategy. For
example, in the Vannes city scenario, the orchestration-based composition strategy has
9.5 compositions per node and the choreography-based strategy has around 8.5. In the
open area scenario, the orchestration-based strategy scores between 3.52 to 4.46 com-
positions per node, whereas the choreography-based strategy has only between 2.63
and 2.9 compositions. These results have the same explanation provided in the previ-
ous paragraph about the success ratio results. Moreover, we notice that the number of
compositions per node, in the Vannes city scenario, is better than the number of compo-
sitions per node in the open area scenario. This is due to the fact that in the Vannes city
scenario, there are buildings and obstacles that restrain the mobility of users and make
them get closer to each other geographically which increases contact between them.
Likewise, more service providers can be included in the invocation of the composite
service, and more compositions can be completed successfully.

Number of nodes involved in a composition

Figure 7.4d shows the average of the number of nodes involved in an invocation of a
composite service against the maximum number of hops between the service provider
and the service client. The average number of nodes increases as the number of hops
between the client and the provider increases. This can be explained by the fact that
more service providers can be reached by increasing the maximum number of hops be-
tween the client and the provider, and thus more service providers can be enrolled in
the invocation of the composite service. This can be observed by comparing Figure 7.7
and Figure 7.6. The former shows the distribution of the number of nodes per com-
position when the maximum number of hops between clients and providers is equal
to 1 and the latter shows the same distribution when the maximum number of hops
between clients and providers is equal to 2. In fact, almost all compositions enroll one

Chapter 7. Comparison of composition strategies 93

Service composition in opportunistic networks Fadhlallah Baklouti 2019

7.4. Results and analysis

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6
number of nodes involved in a composition process

Open area choreography

50 nodes
100 nodes
150 nodes
200 nodes
250 nodes

0

10

20

30

40

50

60

70

1 2 3 4 5 6
number of nodes involved in a composition process

Open area orchestration

50 nodes
100 nodes
150 nodes
200 nodes
250 nodes

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6
number of nodes involved in a composition process

Vannes city choreography

50 nodes
100 nodes
150 nodes
200 nodes
250 nodes

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6
number of nodes involved in a composition process

Vannes city orchestration

50 nodes
100 nodes
150 nodes
200 nodes
250 nodes

Figure 7.6 – Distribution of node number per composition
with two hops away remote services.

Chapter 7. Comparison of composition strategies 94

Service composition in opportunistic networks Fadhlallah Baklouti 2019

7.4. Results and analysis

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6
number of nodes involved in a composition process

Open area choreography

50 nodes
100 nodes
150 nodes
200 nodes
250 nodes

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6
number of nodes involved in a composition process

Open area orchestration

50 nodes
100 nodes
150 nodes
200 nodes
250 nodes

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6
number of nodes involved in a composition process

Vannes city choreography

50 nodes
100 nodes
150 nodes
200 nodes
250 nodes

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6
number of nodes involved in a composition process

Vannes city orchestration

50 nodes
100 nodes
150 nodes
200 nodes
250 nodes

Figure 7.7 – Distribution of node number per composition
with one hop away remote services.

Chapter 7. Comparison of composition strategies 95

Service composition in opportunistic networks Fadhlallah Baklouti 2019

7.5. Conclusion

single node when the maximum number of hops is equal to 1 due to the scarcity of ser-
vice providers. Whereas, a considerable percentage of compositions enroll 2 or even 3
nodes when the maximum number of hops is equal to 2, because more service providers
become accessible. On the other hand, the number of nodes involved increases less be-
tween 2-hops and 3-hops than between 1-hop and 2-hops. This is due to the important
service redundancy in our scenarios. This is also confirmed by Figure 7.6. Indeed ac-
cording to Figure 7.6, a large number of compositions are performed using 2 nodes or
less. Consequently, when we have a significant redundancy of service providers, it is
not necessary to increase the communication scopes of devices (i.e., a number of hops
equal to 2 is enough).

7.5 Conclusion

In this chapter, we compared the two strategies (orchestration and choreography) by
analyzing the results from a series of emulations. For these emulations, we used the
C3PO framework and the LEPTON emulator with both strategies while relying on a
service discovery process that uses the time-based implementation of the utility func-
tion, presented in details in the Chapter 4. The results show that the orchestration
strategy out-performs the choreography strategy especially when it comes to the suc-
cess ratio. However, the choreography strategy is better in term of composition time,
mainly because the choreography reduces significantly the number of messages needed
to complete successfully a composition request. This difference in composition time is
also due to the communication technology used in our evaluations, as we explained
previously.

These results motivate future works that will try to investigate the possibility of
switching from one strategy to another during the execution of the composition re-
quest. Indeed switching strategies can be interesting, when the estimated composition
time for both strategies is very close. In this case, we can choose the orchestration over
the choreography to maximize the success ratio. Moreover, when the estimated success
ratio is relatively similar, it would be interesting to favor choreography over orchestra-
tion to shorten the composition time.

Chapter 7. Comparison of composition strategies 96

Service composition in opportunistic networks Fadhlallah Baklouti 2019

Chapter 8

Evaluation of the utility function

Contents
8.1 Introduction . 97

8.2 Evaluation setup . 97

8.3 Results and analysis . 99

8.4 Comparison . 107

8.5 Conclusion . 109

8.1 Introduction

In this chapter, we study the impact of both implementations of our utility function on
the invocations of composite services in terms of success ratio and composition time by
running several sets of emulations in which we vary some parameters, like the number
of services per composition and the maximum number of hops between clients and
providers, to determine which implementation provides the best performance for the
service composition.

The reminder of the chapter is organized as follows. In Section 8.2, we detail the
setup of our experiments. In Section 8.3, we present our results and we analyze them.
In Section 8.4, we compare our results with those of the close works to this thesis, and
finally in Section 8.5, we draw some conclusions.

8.2 Evaluation setup

8.2.1 General setup

Hereafter, we compare and evaluate the two implementations of our utility function.
Similarly to the previous Chapter 7, we run a series of experiments using our service
discovery and composition system and the lightweight emulator LEPTON. We use,

97

Service composition in opportunistic networks Fadhlallah Baklouti 2019

8.2. Evaluation setup

Parameter Value
Open area size 500 m x 500 m

Composition request generation between 2 and 5 min.
Evaluation Duration 1 hour

number of nodes 200
Advertisement period 10 seconds

Speed range between 0.5 and 2m/s

Table 8.1 – Evaluation parameters.

Parameter
Value(s)

E1 E2 E3 E4

Number of hops 1, 2, 3 2 2 2
Number of local
services

5 5 5 5

number of services
per request

4 4 3,4,5,6 4

number of services
per experience

20 10, 15, 20, 25, 30 20 20

remote service entry
inactivity time
threshold (seconds)

20 20 20 20, 40, 60, 80, 100

Table 8.2 – Parameters varying according to the evaluations.

also, the same two scenarios (500× 500 open area, Vannes city) presented in the evalu-
ation discussed in Chapter 7. We evaluate the two implementations of our utility func-
tion using both the orchestration-based strategy and the choreography-based strategy.
Nodes involved in our emulations use the Wi-Fi Direct radio communication technol-
ogy (23) based on the Android implementation with a radio range of 80 m. The speed of
pedestrians is between 0.5 and 2 m/s and each experiment is repeated 10 times. These
parameters and others are defined in the Table 8.1. Our evaluations focus on comparing
both implementations based on success rate and composition time by varying parame-
ters like the maximum number of hops between the service client and service provider,
the remote service entry inactivity time threshold Tinactive (defined in Chapter 4), the
number of services per experience, and the number of services per composition.

8.2.2 Specific setup

To compare the two implementations of the utility function, we use 4 different evalua-
tions as shown in Table 8.2:

• Evaluation E1 studies the influence of the distance between the service client and
the service provider in terms of the number of hops. In these experiments, we

Chapter 8. Evaluation of the utility function 98

Service composition in opportunistic networks Fadhlallah Baklouti 2019

8.3. Results and analysis

vary the number of hops between 1 and 3. We use composition requests that
contain 4 services that are not provided locally. The number of local services per
node is 5 and number of services in these experiments is 20.

• In the evaluation E2, We focus on studying the influence of number of services
available per experience on the performance of our algorithms. In this set of emu-
lations, we vary the number of services per experience between 10 and 30 services.

• In evaluation E3, we study the effect of the variation of the number of services
per composition request. Based on the results of this set of evaluations, we also
compare how our two implementations of the utility function perform. We vary
the number of services per composition between 3 and 6.

• In evaluation E4, our goal is to study the effect of the remote service entry inac-
tivity time threshold Tinactive on both implementations. Tinactive is used by the
service registry. Indeed, when an entry, in the service registry, does not get up-
dated for more than Tinactive, this entry is discarded and will not be considered for
an execution of an invocation or a composition request. In this set of experiments,
we vary Tinactive between 20 seconds and 100 seconds.

8.3 Results and analysis

8.3.1 Success ratio

Hereafter, we study and compare the performances of both implementations of the
utility function according to the success ratio.

Figure 8.1 shows the success ratio against the maximum number of hops between
the service client and the service provider for both time-based and location-based im-
plementations. The general trend shows that when the maximum number of hops be-
tween the service client and the service provider increases, the success rate decreases.
This is due to the fact that when the number of hops between the client and the provider
increases, the likelihood of connection disruption occurring between intermediate nodes
increases due to mobility. Consequently, the request has lesser chances of reaching the
service provider. Nonetheless, we notice that the success ratio of the location-based im-
plementation decreases significantly less than the success ratio of the time-based imple-
mentation regardless of which composition strategy (orchestration vs choreography) is
adopted. This can be explained by the fact that closer service providers are selected and
enrolled in the invocation of the composite service, which helps decrease the likelihood
of connection disruptions. Moreover, recoveries, in this case, are easier since proximity
increases the probability of devices to meet each other again. In the scenario of Vannes
city, the location-based implementation provides a success ratio between 84.39 % and
87.79 % using the orchestration-based strategy and between 76.70 % and 78.28 % using
the choreography-based strategy. Whereas, the time-based implementation only of-
fers a success ratio between 75.05 % and 87.51 % with the orchestration-based strategy,

Chapter 8. Evaluation of the utility function 99

Service composition in opportunistic networks Fadhlallah Baklouti 2019

8.3. Results and analysis

50

55

60

65

70

75

80

1 2 3

su
cc

e
ss

 r
a
ti

o

maximum number of hops

Open area
time orchestration

location orchestration
time choreography

location choreography

68

70

72

74

76

78

80

82

84

86

88

1 2 3

su
cc

e
ss

 r
a
ti

o
maximum number of hops

Vannes city

Figure 8.1 – Success ratio against the maximum number of hops between service client
and service provider.

and between 69.42 % and 71.28 % with the choreography-based strategy. Our obser-
vation does not change in the open area scenario. The location-based implementation
has a success ratio between 72.06 % and 75.66 % using the orchestration-based strat-
egy and a success ratio between 63.66 % and 71.15 % using the choreography-based
strategy. However, the time-based implementation only scores between 60.6 % and
74.47 % using the orchestration-based strategy and between 54.15 % and 62.64 % using
the choreography-based strategy.

Figure 8.2 shows the success ratio against the number of services per composition.
The success ratio decreases as the number of services per composition increases. We
can explain that by the fact that the connection disruptions tend to increase as the num-
ber of services per composition increases. In our case, these failures are directly related
to device mobility. Moreover, we notice that regardless of the strategy deployed, the
location-based implementation achieves a better performance than the time-based im-
plementation. In the open area scenario, the location-based implementation provides
a success ratio between 35.21 % and 71.35 % against only 24.85 % to 63.95 % for the time-
based implementation, using the orchestration-based strategy. Using the choreography-
based strategy, the location-based implementation scores between 50.58 % and 62.86 %,
whereas the time-based implementation has only a success ratio between 36.88 % and
54 %. In the Vannes city scenario, we notice that the performance gap between the
two implementations becomes smaller, even though the location-based implementa-
tion maintains its advantage. This is due to the people mobility being restrained by a
running path and by physical obstacles such as buildings. Indeed, the location-based

Chapter 8. Evaluation of the utility function 100

Service composition in opportunistic networks Fadhlallah Baklouti 2019

8.3. Results and analysis

20

25

30

35

40

45

50

55

60

65

70

75

3 4 5 6

su
cc

e
ss

 r
a
ti

o

number of services per composition

Open area
time orchestration

location orchestration
time choreography

location choreography

10

20

30

40

50

60

70

80

90

3 4 5 6

su
cc

e
ss

 r
a
ti

o

number of services per composition

Vannes city

Figure 8.2 – Success ratio against the number of services per composition.

implementation scores between 51 % and 84 % using the orchestration strategy and be-
tween 19 % and 77 % using the choreography strategy. On the other hand, the time-
based implementation has only a success ratio between 45 % and 82 % using the or-
chestration strategy, and between 16 % and 74.53 % using the choreography strategy.

Figure 8.3 presents the success ratio against the remote service entry inactivity time
threshold Tinactive. As explained in Chapter 4, when an entry, in the service registry,
does not get updated for more than Tinactive, this entry is discarded. We notice that
the success ratio decreases as the Tiactive increases. We can explain this by the fact
that when Tinactive is big, a given remote service entry can stay in the service registry
even though the provider associated to it is already out of reach and no longer avail-
able probably due to mobility, which consequently affects in a negative way the in-
vocation of the composite service. Moreover, we notice that the location-based imple-
mentation provides a better performance than the time-based implementation. Indeed,
in the open area scenario, the location-based implementation scores between 33.93 %
and 71.5 % in success ratio using the orchestration strategy, and between 12.34 % and
60.38 % using the choreography strategy. On the other hand, with the orchestration
strategy, the time-based implementation has a slight advantage over the location-based
implementation when Tinactive = 20s. However, the performance of the time-based
implementation between 40 seconds and 100 seconds (between 19.25 % and 44.68 % of
success ratio) is still worst than the performance of the location-based implementation.
In the Vannes city scenario, the location-based implementation provides a success ratio
between 49.15 % and 85.8 % using the orchestration strategy and between 22.37 % and
66.33 % using the choreography strategy. Whereas, the time-based function scores only

Chapter 8. Evaluation of the utility function 101

Service composition in opportunistic networks Fadhlallah Baklouti 2019

8.3. Results and analysis

0

10

20

30

40

50

60

70

80

20 40 60 80 100

su
cc

e
ss

 r
a
ti

o

inactivity time threshold (seconds)

Open area
MHISAT orchestration
location orchestration
MHISAT choreography
location choreography

10

20

30

40

50

60

70

80

90

20 40 60 80 100

su
cc

e
ss

 r
a
ti

o
inactivity time threshold (seconds)

Vannes city

Figure 8.3 – Success ratio against remote service entry inactivity time threshold in ser-
vice registries.

between 18 % and 62.14 % using the choreography strategy. When the orchestration
strategy is used, the time-based implementation, again, has a slight advantage over the
location based implementation when Tinactive = 20s. However, it loses that advantage
between 20 seconds and 100 seconds, scoring only between 43 % and 67 %.

Figure 8.4 shows the success ratio against the number of services per experience.
The general trend, regardless of the strategy or the implementation, shows that the
success ratio stays stable until the number of services per experience reaches 25. At this
point, we notice an important deterioration of performances in terms of success ratio.
For example in the open area scenario, the location-based implementation provides
around 70 % in success ratio between 10 and 20 services per experience. However, once
the number of services per experience is over 25, the performances in terms of success
ratio fall under 40 %. Indeed, this can be explained by the fact that when we increase
the number of services per experience and we keep the number of instances deployed
per device constant at the same time, the number of service instances for each service
decreases which reduces the chances of invoking them successfully. Consequently, the
probability for a composition request, to terminate successfully, decreases. On the other
hand, we notice that the location-based implementation still provides a better success
ratio than the time-based implementation especially in the open area scenario. Indeed,
the location-based implementation scores between 34.07 % and 70.88 % when combined
with the orchestration strategy and it, also, scores between between 13.69 % and 58.19 %
when combined the choreography strategy. Whereas, the time-based implementation
only provides a success ratio between 22.8 % and 62.9 % using the orchestration strategy

Chapter 8. Evaluation of the utility function 102

Service composition in opportunistic networks Fadhlallah Baklouti 2019

8.3. Results and analysis

0

10

20

30

40

50

60

70

80

10 15 20 25 30

su
cc

e
ss

 r
a
ti

o

number of services per experience

Open area
time orchestration

location orchestration
time choreography

location choreography

10

20

30

40

50

60

70

80

90

10 15 20 25 30

su
cc

e
ss

 r
a
ti

o

number of services per experience

Vannes city

Figure 8.4 – Success ratio against number of services per experience.

and between 4 % and 48.44 % using the choreography strategy.
The conclusion that we can draw from the previous results, is that the location-

based implementation has generally a better success ratio than the time-based imple-
mentation. This is due to the fact that the location-based implementation is focused
on selecting the most geographically close and nearby providers unlike the time-based
implementation which is focused on minimizing communication delays between the
service client and the service provider.

.

8.3.2 Composition time

Hereafter, we compare both implementations from the perspective of their responsive-
ness in terms of the composition time that they provide for an invocation of a com-
posite service. This comparison is based on the results from our evaluations that we
previously detailed.

Figure 8.5 represents the median of composition time against the maximum number
of hops between a service client and a service provider. We notice, generally, that when
the maximum number of hops increases, the median of composition time increases,
even though this increase is not very important between 2 and 3 hops. This small in-
crease between 2 and 3 hops is explained by the fact that 2-hops-away providers already
offer enough redundancy in service instances which makes service clients ignore the
3-hops-away providers. Figure 8.5 also shows that the time-based implementation pro-
vides a shorter composition time than the location-based implementation especially in

Chapter 8. Evaluation of the utility function 103

Service composition in opportunistic networks Fadhlallah Baklouti 2019

8.3. Results and analysis

0

50

100

150

200

250

300

350

400

450

500

1 2 3

m
e
d

ia
n
 v

a
lu

e
 o

f
co

m
p

o
si

ti
o
n
 t

im
e
 (

m
s)

maximum number of hops

Open area
time orchestration

location orchestration
time choreography

location choreography

0

50

100

150

200

250

300

350

400

450

500

550

1 2 3

m
e
d

ia
n
 v

a
lu

e
 o

f
co

m
p

o
si

ti
o
n
 t

im
e
 (

m
s)

maximum number of hops

Vannes city

Figure 8.5 – Median of composition time against the maximum number of hops be-
tween the service client and service provider.

the open area scenario. In fact in this scenario, the time-based implementation achieves
a median of composition time between 11.04 ms and 101.6 ms using the choreography
strategy and between 242 ms and 379 ms using the orchestration strategy. Whereas,
the location-based implementation provides a slower median of composition time be-
tween 14.56 ms and 145.94 ms using the choreography strategy and between 249.88 ms
and 485 ms using the orchestration strategy. We notice, however, that in the Vannes
city scenario, the time difference between the two implementations shrinks. As ex-
plained previously, this is due to the fact that users are restrained by buildings and by
the running path which reduces the advantage of the time-based implementation over
the location-based implementation, since the users are closer to each other in the Vannes
city scenario than in the open area scenario. Nevertheless, the time-based implementa-
tion still preserves a slight advantage over the location-based implementation.

Figure 7.4a shows the decimal logarithm of the median value of the composition
time against the number of services per composition. Regardless of the implemen-
tation or the strategy adopted, the median value of the composition time increases
when the number of services per composition increases. This observation is expected
since invoking an increasing number of services requires more service execution time
and more messages exchanged during the invocation of the composite service. We
also notice that the time-based implementation provides a slightly shorter composition
time than the location-based implementation. In the Vannes city scenario and using
the orchestration strategy, the time-based implementation has a median time between
395 ms and 150 seconds against a median time between 433 ms and 191 seconds for the

Chapter 8. Evaluation of the utility function 104

Service composition in opportunistic networks Fadhlallah Baklouti 2019

8.3. Results and analysis

0.1

1

10

100

1000

3 4 5 6m
e
d

ia
n
 v

a
lu

e
 o

f
co

m
p

o
si

ti
o
n
 t

im
e
 (

lo
g

1
0

(s
e
co

n
d

s)
)

number of services per composition

Open area
time orchestration

location orchestration
time choreography

location choreography

0.1

1

10

100

1000

3 4 5 6m
e
d

ia
n
 v

a
lu

e
 o

f
co

m
p

o
si

ti
o
n
 t

im
e
 (

lo
g

1
0

(s
e
co

n
d

s)
)

number of services per composition

Vannes city

Figure 8.6 – Median of composition time against the number of services per composi-
tion.

location-based implementation. Moreover when the choreography strategy is adopted
in the Vannes city scenario, the time-based implementation keeps its slight advantage
by achieving a median time between 147 ms and 334 ms against a larger median time
between 151 ms and 360 ms for the location-based implementation. We also notice that
the median grows significantly for 6 services per composition when the orchestration
strategy is used. The explanation is that it becomes more difficult to find the sixth ser-
vice in the composition, knowing that we are choosing 6 services to be enrolled in a
composition out of 20 available services, and that each device hosts 5 services. More-
over, we notice that the choreography always provides the fastest composition time.
This difference in composition time between the two strategies has the same explana-
tion provided in Chapter 7 for the composition time comparison.

Figure 8.7 shows the decimal logarithm of the median of composition time against
the remote service entry inactivity time threshold Tinactive. We notice that the median
value increases as the service entry inactivity time increases. This can be explained
by the fact that a bigger Tinactive allows service providers to go further away from
the service client, while the service entries associated to them still indicate that these
providers are reachable. Consequently, invoking a service provider would take a longer
time. Figure 8.7 also shows that the time-based implementation achieves a shorter
composition time than the location implementation. For the sake of example, in the
open area scenario and using the orchestration strategy, the time-based implementation
achieves a median time between 33 ms and 327 seconds, whereas the location based im-
plementation terminates a composition request in a median time between 331 ms and

Chapter 8. Evaluation of the utility function 105

Service composition in opportunistic networks Fadhlallah Baklouti 2019

8.3. Results and analysis

0.001

0.01

0.1

1

10

100

1000

20 40 60 80 100m
e
d

ia
n
 v

a
lu

e
 o

f
co

m
p

o
si

ti
o
n
 t

im
e
 (

lo
g

1
0

(s
e
co

n
d

s)
)

inactivity time threshold (seconds)

Open area
MHISAT orchestration
location orchestration
MHISAT choreography
location choreography

0.01

0.1

1

10

100

1000

20 40 60 80 100m
e
d

ia
n
 v

a
lu

e
 o

f
co

m
p

o
si

ti
o
n
 t

im
e
 (

lo
g

1
0

(s
e
co

n
d

s)
)

inactivity time threshold (seconds)

Vannes city

Figure 8.7 – Decimal logarithm of median of composition time against remote service
entry inactivity time threshold in service registries.

419 seconds. In the same scenario and using the choreography strategy, the time-based
implementation has by far the shortest composition time, comprised between 1.2 ms
and 275.95 ms, against a slower composition time for the location-based implementa-
tion, comprised between 16.1 ms and 203 seconds .

Figure 8.8 presents the average of composition time against the number of services
per experience. We notice that the general trend shows that the average of composition
time increases as the number of services per experience increases. This can be explained
by the fact that when the number of services increases, consequently, the number of in-
stances per service decreases which reduces service redundancy, and thus the process of
invocation takes more time. Moreover, we notice that when the orchestration strategy
is adopted, there is no significant difference between the two implementations in terms
of average composition time. However when the choreography strategy is adopted,
we observe a clear advantage for the time-based implementation over the location-
based implementation. Indeed, in the open area scenario, the time-based implementa-
tion has an average of composition time between 58 seconds and 110 seconds, whereas
the location-based implementation provides a slower time between 190 seconds and
393 seconds. The same thing happens in the Vannes city scenario, where the time-
based implementation has an average of composition time between 21 seconds and
61 seconds, against a slower average time between 50 seconds and 237 seconds for the
location-based implementation.

We can conclude that the time-based implementation, generally, provides a shorter
composition time than the location-based implementation. This demonstrates that the

Chapter 8. Evaluation of the utility function 106

Service composition in opportunistic networks Fadhlallah Baklouti 2019

8.4. Comparison

0

100

200

300

400

500

600

700

10 15 20 25 30

a
v
e
ra

g
e
 t

im
e

in
 s

e
co

n
d

s

number of services per experience

Open area
time orchestration

location orchestration
time choreography

location choreography

0

50

100

150

200

250

300

350

400

450

500

550

10 15 20 25 30

a
v
e
ra

g
e
 t

im
e

in
 s

e
co

n
d

s

number of services per experience

Vannes city

Figure 8.8 – Average of composition time against number of services per experience.

closest providers do not necessarily provide on average the best service composition
time. Indeed, since it is based on transmission delays and on inter-advertisement re-
ception times, the time-based implementation is more capable of selecting the most
responsive service providers.

8.4 Comparison

We consider the results from the evaluation set E1 for our comparison, since in E1 we
vary the number of hops between the client and the provider from 1 to 3, and we use
20 services per experiment. E1 offers a similar context to the evaluations of Sadiq et
al., since they also use multi-hops and provide the same number of services per exper-
iment. We also consider the open area scenario due to its similarity with the scenarios
used by Sadiq et al. and Groba et al. as Table 8.3 shows.

Sadiq et al. provide a success ratio around 55 %. Even though Sadiq et al. use a
radio range 20 m longer than ours, our approach offers a success ratio between 54.14 %
and 62.64 % using the choreography/time-based configuration which is the closest to
the Sadiq et al. approach. This configuration also offers the quickest median of com-
position time (between 11.04 ms and 101.6 ms) among all the configurations provided
by our approach. The median of composition time of this configuration is significantly
shorter than Sadiq et al. median of composition time (less than 5 minutes). Moreover,
even the slowest configuration in our approach (orchestration/location-based imple-
mentation) provides a shorter composition time (between 249.88 ms and 485 ms) than

Chapter 8. Evaluation of the utility function 107

Service composition in opportunistic networks Fadhlallah Baklouti 2019

8.4. Comparison

success
ratio

composi-
tion
time

speed radio
range

mobility area

Sadiq et
al. (104)

55 % less than
5 min

median

- 100 m Levy 500x500m2

Groba et
al. (48)

55 %-
79 %

3-4 min
average

1-2 m/s 250 m Random
Way-
point

1000x1000m2

choreo-
graphy
/time-
based

54.15 %-
62.64 %

11.04 ms-
101.6 ms
median
(1 min
19 sec

average)

0.5-2m/s 80 m Levy 500x500m2

choreo-
graphy

/location-
based

63.66 %-
71.15 %

14.56 ms-
145.94 ms
median

(3 min 4 sec
average)

0.5-2m/s 80 m Levy 500x500m2

orches-
tration
/time-
based

60.6 %-
74.47 %

242 ms-
379 ms
median

(3 m 24 sec
average)

0.5-2m/s 80 m Levy 500x500m2

orches-
tration

/location-
based

72.06 %-
75.66 %

249.88 ms-
485 ms
median
(3 min
21 sec

average)

0.5-2m/s 80 m Levy 500x500m2

Table 8.3 – Results from other works.

Chapter 8. Evaluation of the utility function 108

Service composition in opportunistic networks Fadhlallah Baklouti 2019

8.5. Conclusion

the composition time of Sadiq et al..
Groba et al. achieve a maximum success ratio of 79 %, which is higher than the

success ratio of any of our configurations. This can be explained by the long radio
range of 250 m used in their simulations. This radio range is more than 3 times longer
than ours which is 80 m. Given our shorter range and the constraints imposed by Wi-Fi
direct especially on the orchestration strategy (discussed in Chapter 7), our composition
approach is in disadvantage compared to the approach of Groba et al., and therefore,
it is difficult for us to reach a maximum of success ratio equal to 79 %. Nonetheless,
Groba et al. approach only provides a minimum of success ratio around 55 %, which is
less than the minimum provided by 3 of our configurations (choreography /location-
based, orchestration/time-based and orchestration/location-based) except for the cho-
reography/time-based configuration. This shows that our approach is more stable than
the Groba et al. one and offers less fluctuations. Moreover, compositions, using Groba
et al. approach, terminate in an average time between 3 and 4 minutes, which is the
same in our case except for the choreography/time-based configuration that provides
a substantially shorter average of composition time equal to 1 minutes and 19 seconds.

8.5 Conclusion

In this chapter, we compared our two implementations of the utility function (location-
based and time-based) by studying their effects on the invocation of a composite (using
the orchestration strategy and the choreography strategy both presented in details in
Chapter 4) based on the results from a series of emulations. The results show that the
location-based implementation has a better impact in terms of success ratio on the in-
vocation of a composite service than the time-based implementation. However, the
time-based implementation has overall a shorter composition time than the location-
based implementation. Regardless of the strategy or the implementation of the utility
function, we always obtain an acceptable success ratio and a relatively short compo-
sition time, given the hard conditions imposed by opportunistic networks. Moreover,
even though, the performances, in terms of success ratio and composition time, deterio-
rate when there are 6 or more services to compose, this case is considered rare. Indeed,
we should first find 6 or more compatible services that can be combined together in a
service composition, which constitutes a complicated task in opportunistic networks,
given the lack of service redundancy and availability. In the next chapter, we study the
impact of our distributed cache manager on service composition and its potential to
improve the composition time and the success ratio.

Chapter 8. Evaluation of the utility function 109

Service composition in opportunistic networks Fadhlallah Baklouti 2019

8.5. Conclusion

Chapter 8. Evaluation of the utility function 110

Service composition in opportunistic networks Fadhlallah Baklouti 2019

Chapter 9

Evaluation of the distributed cache
performance

Contents
9.1 Introduction . 111

9.2 Evaluation setup . 112

9.3 Results . 113

9.4 Conclusion . 114

9.1 Introduction

In this chapter, we study the performances of our distributed cache manager (DCM),
and its potential to improve and optimize service compositions. We evaluate its effi-
ciency of providing composition results in terms of time saving compared to the execu-
tion time of a simple composition request.

Nevertheless, we were not able to test the performances of our proactive service
precomputing manager (PSP). Indeed, the evaluation of the PSP should focus on mea-
suring how much the list of composition requests, generated by the PSP, satisfies the
user preferences. This evaluation should also measure, based on the user feedbacks,
how much the user experience has improved thanks to the role of PSP in populating
the cache with composition results by identifying and executing composition requests
in advance based on the user preferences, expressed in the form of keyword list. This
kind of evaluation requires a user interface that presents the available services to the
user (atomic or composite), and allows him to invoke these services. The same inter-
face should allow the user to rate the list of composition requests, generated by PSP,
based on how much this list reflects his preferences. We did not implement this kind of
interface during this thesis.

We organize the reminder of the chapter as follows. In Section 9.2, we detail our

111

Service composition in opportunistic networks Fadhlallah Baklouti 2019

9.2. Evaluation setup

Parameter Value
Scenario Vannes city

Number of
topics/composition request

4

Evaluation Duration 1 hour
Result message size 1500 byte

Number of nodes per
experience

100

Speed range between 0.5 and 2m/s
Number of messages per node
(number of message per topic

per node)

200 (50)

Table 9.1 – DCM evaluation parameters.

evaluation environment. In Section 9.3, we present and analyze our results and finally
in Section 9.4, we draw conclusions.

9.2 Evaluation setup

Our DCM exploits the cache memories of nodes in the network. DCM considers the
available cache memories as a distributed storage space. Likewise and instead of re-
peating composition requests, a given node performs a look up in its local cache, using
the index table provided by the DCM, to verify if the results are already present. DCM
relies on replicating composition results between nodes using a content-based approach
based on a publish/subscribe communication mode. In our implementation of DCM,
we rely on the C3PO framework “Topic” mechanism for publish/subscribe communi-
cations. Indeed, DCM associates a topic to each composition a given node would like to
perform. Likewise and by subscribing to these topics, this node can collect and replicate
results from other nodes in its own local cache.

To evaluate this idea, we ran a series of experiments to compare common opera-
tions, that allow to manipulate results collected from other nodes, to an invocation of a
composite service in terms of temporal performance. In these series of experiments, we
use 100 nodes per experiment using the Vannes city scenario, we define 4 topics that
represent 4 composition requests, and we initially provide each node with 200 results
(50 for each topic). These parameters are detailed in Table 9.1. Our goal is to compare
the cost of manipulating the cache memory to find composition results and the cost of
executing a composition request on the same inputs that gave us the already existing
results in the cache.

The operations that we take into consideration in these experiments are:

• Access: it consists of reading one single composition result from the cache.

Chapter 9. DCM evaluation 112

Service composition in opportunistic networks Fadhlallah Baklouti 2019

9.3. Results

100

1000

10000

100000

1e+06

1e+07

ac
ce

ss

st
or

e

no
ti

fi
ca

ti
on

ch
or

eo
gr

ap
hy

/V
an

ne
s

fi
lt

er
in

g

T
im

e
(l

og
10

(s
ec

on
ds

))

Figure 9.1 – Median time of different data operations.

• Store: it consists of writing one single composition result into the cache.

• Notification: it is the time elapsed between the reception of a composition result
from a remote node and the notification the application layer receives that an-
nounces that a new result is available.

• Filtering: it consists of filtering all the results that belongs to a certain topic/com-
position request.

9.3 Results

These results, shown in Figure 9.1, allow us to compare the median time of each oper-
ation, detailed previously, against the median of composition time of the fastest con-
figuration (choreography/1 hop between the service client and the service provider)
according to the results from Chapter 7. Figure 9.1 shows that the access operation is
the fastest one with a median time of 950 nanoseconds, the store operation is the sec-
ond fastest with a median time of 121470 nanoseconds to terminate, followed by the
notification operation that finishes in 262706 nanoseconds. All these three operations
are significantly faster than the median of the composition time provided by the fastest
configuration which allows a composition request to terminate in 8.68 milliseconds.

Even though, the filtering operation takes 8.81 milliseconds to finish which is slightly
slower than the composition time, we must take into consideration that in our scenario,

Chapter 9. DCM evaluation 113

Service composition in opportunistic networks Fadhlallah Baklouti 2019

9.4. Conclusion

we filter 50 composition results out of 200 which is quite reasonable considering the fact
that we obtain 50 results rather than 1 single result from the execution of a composition
request in slightly the same time.

These results clearly demonstrate that accessing a result already available in the
cache costs significantly less than producing the same available result through an exe-
cution of a composition request. This highlights the importance of our DCM in making
data access faster, which helps improve the user experience.

9.4 Conclusion

In this chapter, we compared the performances provided by the DCM against those of
a simple execution of a composition request, to see how much improvement we can
provide using this DCM. The comparison was between the time needed for local cache
memory operations, used by DCM, and the minimum time needed to finish a compo-
sition request. We concluded from the results that the distributed cache manager can
provide an important time saving by exploiting results from other nodes stored in the
local cache memory. This evaluation can be extended by studying the effect of the DCM
on the average or the median of composition time, and on the composition success ra-
tio. It would be also interesting to evaluate how much resource saving the DCM can
provide in terms of processing power, battery lifetime and bandwidth consumption.

Chapter 9. DCM evaluation 114

Service composition in opportunistic networks Fadhlallah Baklouti 2019

Chapter 10

Conclusions and future works

Contents
10.1 Summary of the contribution . 115
10.2 Future works . 117

10.1 Summary of the contribution

We start in Chapter 1 by introducing the general context of this thesis, the constraints
we should face, and the objectives we want to achieve. We propose an opportunistic
computing approach based on service-oriented computing (SOC) for opportunistic net-
works. We focus on devising solutions to perform service discovery, service selection
and service composition. Given the challenges and the difficulties imposed by oppor-
tunistic networks such as the absence of end-to-end path, unpredictable node mobility
and the long transmission delays, conventional SOC solutions proof to be inefficient in
this type of environment.

Our work led us to propose a service discovery and composition system, a dis-
tributed cache manager (DCM) and a proactive service precomputing manager (PSP).
The system and the two managers provide five main contributions:

• A discovery approach that allows different nodes running our system to advertise
and to discover services.

• A utility function that rates discovered services based on informations collected
from the network. The utility function is also used to select which provider to
invoke for an invocation or a composition request. We provide two implementa-
tions for this utility function (time-based/location-based).

• Two composition strategies (orchestration/choreography) that dictate how a com-
position request should be executed.

• A distributed storage space for composition results.

115

Service composition in opportunistic networks Fadhlallah Baklouti 2019

10.1. Summary of the contribution

• A mechanism for proactively triggering composition requests in advance based
on the user preferences.

Our service discovery and composition system provides a service discovery ap-
proach that is directory-less where we do not suppose the existence of a set of special
nodes playing the role of a directory that aggregates the descriptions of the services
available in the network. Instead, each node has its own service registry that contains
the description of services discovered by the node itself. Our approach is also proactive,
where service providers periodically announce their local services preferably by piggy-
packing service descriptions in device advertisement messages to avoid overloading
the network.

Service clients listen to these advertisements and upon reception, they rate the ser-
vice providers who sent the advertisements using one of the two implementations of
our utility function. This utility function relies on two criteria in order to rate a service
provider, namely the invocation success ratio and the invocation time. Each implemen-
tation of the utility function provides a formula, that takes into consideration these two
criteria, in order to assess service providers.

Our system also provides two composition strategies: orchestration and choreogra-
phy. By using the orchestration, the composition request stays with the requester that is
in charge of selecting and invoking services. Whereas with choreography, the compo-
sition request is passed from one provider to another until the composition is finished.
We also suggest that it is possible to switch from one strategy to the other depending on
which has access to a better provider: the current node holding the composition request
or another node in its neighbourhood.

PSP automates the execution of composition requests using a composition graph
based on service descriptions, and tries to identify the most suitable compositions based
on an interest profile provided by the user/developer. PSP proactively triggers com-
position requests to populate the cache in advance with composition results in order to
reduce composition delays and improve the user experience.

DCM allows nodes to share and replicate composition results using content-based
communication. DCM relies on an index table to look for existing composition results
in the local cache before starting invocations of composite services in order to save time
and resources.

Our evaluations show that the orchestration has generally a better success ratio than
the choreography. In contrast, the choreography has a shorter composition time than
the orchestration. Consequently, we argue that a hybrid strategy can be relevant in
two different cases. The first case is when both strategies have a very close success
ratio. In this case choosing choreography could reduce composition time. The second
case is when both strategies have a very close composition time. In this case, choosing
orchestration could help increase the probability of composition success. Our evalu-
ations also show that the location-based implementation of the utility function has a
better impact on the success ratio than the time-based implementation, and vice-versa
when it comes to composition time. Regardless of the strategy or the utility function
implementation, we obtain a reasonable composition time and an interesting success

Chapter 10. Conclusions and future works 116

Service composition in opportunistic networks Fadhlallah Baklouti 2019

10.2. Future works

ratio, given the kind of networks we consider. Moreover, we demonstrate the positive
impact of our distributed cache manager on time saving by exploiting local caches to
replicate composition results.

10.2 Future works

We conclude this thesis by identifying and discussing several future works and open
research issues. These identified issues do not represent an exhaustive list related to
the topic of this thesis, but rather the main directions that can be explored in the future.
Indeed, there are many other related issues that can be explored or rather improved in
our contribution such as security and privacy. In the current implementation, message
are exchanged without encryption or checksum. Consequently, they can be corrupted
by malicious nodes. Moreover, node authentication is not taken into consideration in
the invocations of simple and composite services. Hereafter, we present the main per-
spectives for our future works.

Hybrid composition strategy As the evaluation results have shown, the orchestration-
based composition strategy has a better performance than the choreography-based
composition strategy in terms of success ratio, and vice-versa in terms of composition
time. It can be argued that these two strategies can be seen as complementary. Indeed,
according to the network topology and to the distribution of services on the devices
forming the network, sometimes it is better to use the choreography and sometimes it
is better to use the orchestration. Our goal will be to find the best way to combine these
two strategies and switch from one to the other in the middle of an invocation of a com-
posite service, in a way that optimizes both the success ratio and the composition time.
We will also use the same evaluation sets described in Chapters 7 and 8 to compare this
hybrid strategy performances with the performances of the other two strategies.

Using semantic service description The current service description that we use is a
syntactic one. We believe that by adopting semantics in the future, we can obtain a
more detailed and more expressive description for services. Indeed, semantics have
been applied before in the context of mobile ad hoc networks (2; 11). Furthermore, we
think that a semantic description will help the proactive service precomputing manager
build a better and more accurate service graph. Consequently, the PSP will be more
efficient in finding the composition requests that match the user interest profile.

Real world experiments Conducting real world experiments is a difficult task to carry
out mainly because of the high cost of a large number of devices and the difficulties of
gathering volunteers to participate in the experiments. These hurdles led us to rely
on emulation using LEPTON. Even though in our experiments we used real code cou-
pled with both mobility model and real mobility traces, emulation does not take into

Chapter 10. Conclusions and future works 117

Service composition in opportunistic networks Fadhlallah Baklouti 2019

10.2. Future works

account all the details involved in wireless communication. For instance our evalua-
tions ignored almost all the details of the physical and data-link layers and only took in
consideration the radio range. Thus, the idea of real time experiments is still important
even with a limited number of nodes in order to have a more comprehensive idea about
the performance of our service discovery and composition system.

Perceived quality of service The general impression of users is important to deter-
mine whether our contribution is efficient. It would be interesting to evaluate the per-
ceived quality of service based on users feedbacks especially when the PSP is used to
determine the compositions that reflect the user preferences, and to populate the cache
with composition results in advance. For this purpose, we should develop an interface
that display to the user the list of services (simple or composite) that he can invoke
manually. The same interface should allow the user to rate the list of compositions
generated by PSP in order to assess how much PSP is efficient with satisfying the user
preferences.

Chapter 10. Conclusions and future works 118

Service composition in opportunistic networks Fadhlallah Baklouti 2019

Bibliography

Bibliography

[1] Darp agent markup language and ontology inference layer.

[2] G.R. Karpagam A. Bhuvaneswari. Semantic web service discovery for mobile
web services. International Journal of Business Intelligence and Data Mining, 13(1-
3):95–107, January 2018.

[3] Unai Aguilera and Diego Lopez de Ipina. An architecture for automatic service
composition in manet using a distributed service graph. Future Generation Com-
puter Systems, 34:176 – 189, 2014.

[4] Atif Alamri, Mohamad Eid, Saddik, and Abdulmotaleb El. Classification of the
State-of-the-Art Dynamic Web Services Composition Techniques. International
Journal of Web and Grid Services, 2(2):148–166, September 2006.

[5] Géraud Allard, Pascale Minet, Dang-Quan Nguyen, and Nirisha Shrestha. Eval-
uation of the energy consumption in manet. In Thomas Kunz and S. S. Ravi,
editors, Ad-Hoc, Mobile, and Wireless Networks, pages 170–183, Berlin, Heidelberg,
2006. Springer Berlin Heidelberg.

[6] Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Johannes
Klein, Frank Leymann, Kevin Liu, Dieter Roller, Doug Smith, Satish Thatte, Ivana
Trickovic, and Sanjiva Weerawarana. BPEL4WS, Business Process Execution Lan-
guage for Web Services Version 1.1. IBM, 2003.

[7] Assaf Arkin, Sid Askary, Scott Fordin, and W. Wolfgang Jekel et al. Web Service
Choreography Interface (WSCI) 1.0. Standards proposal by BEA Systems, Intalio,
SAP, and Sun Microsystems, 2002.

[8] Valerio Arnaboldi, Marco Conti, and Franca Delmastro. Cameo: A novel context-
aware middleware for opportunistic mobile social networks. Pervasive and Mobile
Computing, 11:148 – 167, 2014.

[9] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of things: A
survey. Computer Networks, 54(15):2787 – 2805, 2010.

[10] Maël Auzias, Y. Mahéo, and Frédéric Raimbault. Coap over bp for a delay-
tolerant internet of things. In 2015 3rd International Conference on Future Internet of
Things and Cloud, pages 118–123, Aug 2015.

[11] Soheyb Ayad, Okba Kazar, Benharkat Aïcha-Nabila, and labib sadek terrissa. An
optimised semantic web services discovery in MANET. International Journal of
Communication Networks and Distributed Systems, 2017.

[12] Nilanjan Banerjee, Mark D. Corner, Don Towsley, and Brian N. Levine. Relays,
base stations, and meshes: Enhancing mobile networks with infrastructure. In In
Proceedings of ACM Mobicom, 2008.

Chapter 10. Conclusions and future works 119

Service composition in opportunistic networks Fadhlallah Baklouti 2019

Bibliography

[13] Luciano Baresi and Liliana Pasquale. Adaptive goals for self-adaptive service
compositions. In 2010 IEEE International Conference on Web Services, pages 353–
360, July 2010.

[14] Abdulkader Benchi, Pascale Launay, and Frédéric Guidec. A P2P Tuple Space
Implementation for Disconnected MANETs. Peer-to-Peer Networking and Applica-
tions, 8(1):87–102, January 2015.

[15] Abdulkader Benchi, Pascale Launay, and Frédéric Guidec. JMS for Opportunistic
Networks. Ad Hoc Networks, 25(part B):359–369, February 2015.

[16] Mahdi Bennara, Michaël Mrissa, and Youssef Amghar. An approach for com-
posing restful linked services on the web. In Proceedings of the 23rd International
Conference on World Wide Web, WWW ’14 Companion, pages 977–982, New York,
NY, USA, 2014. ACM.

[17] Martin Bichler and Kwei Jay Lin. Service-oriented computing. Computer,
39(3):99–101, March 2006.

[18] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Commun. ACM, 13(7):422–426, July 1970.

[19] Chiara Boldrini, Marco Conti, Franca Delmastro, and Andrea Passarella. Context-
and social-aware middleware for opportunistic networks. Journal of Network and
Computer Applications, 33(5):525 – 541, 2010. Middleware Trends for Network
Applications.

[20] Chiara Boldrini, Marco Conti, Jacopo Jacopini, and Andrea Passarella. HiBOP: a
History Based Routing Protocol for Opportunistic Networks. In Marco Conti, ed-
itor, International Symposium on a World of Wireless, Mobile and Multimedia Networks
(WoWMoM 2007), pages 1–12, Helsinky, Finland, 2007. IEEE CS.

[21] Chiara Boldrini, Marco Conti, and Andrea Passarella. Contentplace: Social-aware
data dissemination in opportunistic networks. In Proceedings of the 11th Interna-
tional Symposium on Modeling, Analysis and Simulation of Wireless and Mobile Sys-
tems, MSWiM ’08, pages 203–210, New York, NY, USA, 2008. ACM.

[22] Celeste Campo, Mario Munoz, José Carlos Perea, Andrés Mann, and Carlos
Garcia-Rubio. Pdp and gsdl: a new service discovery middleware to support
spontaneous interactions in pervasive systems. In Third IEEE International Confer-
ence on Pervasive Computing and Communications Workshops, pages 178–182, March
2005.

[23] Daniel Camps-Mur, Andres Garcia-Saavedra, and Pablo Serrano. Device-to-
device communications with wi-fi direct: overview and experimentation. IEEE
Wireless Communications, 20(3):96–104, June 2013.

Chapter 10. Conclusions and future works 120

Service composition in opportunistic networks Fadhlallah Baklouti 2019

Bibliography

[24] Antonio Carzaniga and Alexander L. Wolf. Content-based networking: A new
communication infrastructure. In Revised Papers from the NSF Workshop on De-
veloping an Infrastructure for Mobile and Wireless Systems, IMWS ’01, pages 59–68,
London, UK, UK, 2002. Springer-Verlag.

[25] Fabio Casati, Ski Ilnicki, Li-Jie Jin, Vasudev Krishnamoorthy, and Ming-Chien
Shan. eflow: a platform for developing and managing composite e-services.
In Research Challenges, 2000. Proceedings. Academia/Industry Working Conference on,
pages 341–348, 2000.

[26] Dipanjan Chakraborty, Anupam Joshi, Tim Finin, and Yelena Yesha. Service com-
position for mobile environments. Mobile Networks and Applications, 10(4):435–
451, 2005.

[27] Dipanjan Chakraborty, Anupam Joshi, Yelena Yesha, and Tim Finin. Gsd: a novel
group-based service discovery protocol for manets. In 4th International Workshop
on Mobile and Wireless Communications Network, pages 140–144, 2002.

[28] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana.
Web services description language (WSDL) 1.1. W3c note, World Wide Web Con-
sortium, March 2001.

[29] Marco Conti, Franca Delmastro, and Andrea Passarella. Mobile service platforms
based on opportunistic computing: The scampi project. ERCIM News, 2013, 2013.

[30] Marco Conti, Silvia Giordano, Martin May, and Andrea Passarella. From oppor-
tunistic networks to opportunistic computing. IEEE Communications Magazine,
48(9):126–139, September 2010.

[31] Microsoft Corporation. Upnp device architecture 1.1, 2008.

[32] Scott Corson and Joseph Macker. Mobile Ad hoc Networking (MANET): Routing
Protocol Performance Issues and Evaluation Considerations. RFC 2501 (Informa-
tional), January 1999.

[33] Paolo Costa, Mirco Musolesi, Cecilia Mascolo, and Gian Pietro Picco. Adaptive
content-based routing for delay-tolerant mobile ad hoc networks. 09 2018.

[34] Elizabeth M. Daly and Mads Haahr. Social network analysis for routing in dis-
connected delay-tolerant manets. In Proceedings of the 8th ACM International Sym-
posium on Mobile Ad Hoc Networking and Computing, MobiHoc ’07, pages 32–40,
New York, NY, USA, 2007. ACM.

[35] Teodoro De Giorgio, Gianluca Ripa, and Maurilio Zuccalà. An approach to enable
replacement of soap services and rest services in lightweight processes. In Florian
Daniel and Federico Michele Facca, editors, Current Trends in Web Engineering,
pages 338–346, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

Chapter 10. Conclusions and future works 121

Service composition in opportunistic networks Fadhlallah Baklouti 2019

Bibliography

[36] Lucia Del Prete and Licia Capra. Reliable Discovery and Selection of Composite
Services in Mobile Environments. In 12th Enterprise Distributed Object Computing
Conference (EDOC’08), pages 171–180, Munich, Germany, September 2008. IEEE.

[37] Shuiguang Deng, Longtao Huang, Javid Taheri, Jianwei Yin, MengChu Zhou,
and Albert Y. Zomaya. Mobility-aware service composition in mobile communi-
ties. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47(3):555–568,
March 2017.

[38] Michael Doering, Sven Lahde, Johannes Morgenroth, and Lars Wolf. IBR-DTN:
an efficient implementation for embedded systems. In Proceedings of the 3rd ACM
workshop on Challenged networks, pages 117–120. ACM, September 2008.

[39] Bluetooth Specification Part E. Service discovery protocol (sdp), 1999.

[40] Thomas Erl. Service-Oriented Architecture: Concepts, Technology, and Design. Pren-
tice Hall Professional Technical Reference, Upper Saddle River, NJ, 2005.

[41] Shawna Evans. BizTalk: For Starters. CreateSpace Independent Publishing Plat-
form, USA, 2017.

[42] Kevin Fall. A delay-tolerant network architecture for challenged internets. In
Proceedings of the 2003 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications, SIGCOMM ’03, pages 27–34, New York,
NY, USA, 2003. ACM.

[43] Roy Fielding, James Gettys, Jeffrey Mogul, Henrik Frystyk, Larry Masinter, Paul
Leach, and Tim Berners-Lee. Rfc 2616, hypertext transfer protocol – http/1.1,
1999.

[44] Roy Thomas Fielding. Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, 2000. AAI9980887.

[45] Renato Fileto, Ling Liu, Calton Pu, Eduardo Delgado Assad, and Claudia Bauzer
Medeiros. Poesia: An ontological workflow approach for composing web ser-
vices in agriculture. The VLDB Journal, 12(4):352–367, Nov 2003.

[46] Martin Garriga, Cristian Mateos, Andres Flores, Alejandra Cechich, and Alejan-
dro Zunino. RESTful service composition at a glance: A survey. Journal of Network
and Computer Applications, 60:32–53, jan 2016.

[47] Eduardo Goncalves da Silva, Luis Ferreira Pires, and Marten J. van Sinderen.
Supporting Dynamic Service Composition at Runtime based on End-user Requirements,
pages –. CEUR Workshop Proceedings 540. CEUR Workshop Proceedings, 11
2009.

[48] Christin Groba and Siobhán Clarke. Opportunistic composition of sequentially-
connected services in mobile computing environments. In 2011 IEEE International
Conference on Web Services, pages 17–24, July 2011.

Chapter 10. Conclusions and future works 122

Service composition in opportunistic networks Fadhlallah Baklouti 2019

Bibliography

[49] Christin Groba and Siobhán Clarke. Opportunistic service composition in dy-
namic ad hoc environments. IEEE Transactions on Services Computing, 7(4):642–
653, Oct 2014.

[50] Dominique Guinard, Vlad Trifa, Friedemann Mattern, and Erik Wilde. From the
Internet of Things to the Web of Things: Resource-oriented Architecture and Best Prac-
tices, pages 97–129. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[51] Erik Guttman, Charles E. Perkins, and James Kempf. Service templates and ser-
vice: Schemes. RFC, 2609:1–33, 1999.

[52] Julien Haillot and Frédéric Guidec. A Protocol for Content-Based Communi-
cation in Disconnected Mobile Ad Hoc Networks. Journal of Mobile Information
Systems, 6(2):123–154, 2010.

[53] Sumi Helal, Nitin Desai, Verun Verma, and Choonhwa Lee. Konark - a service
discovery and delivery protocol for ad-hoc networks. In 2003 IEEE Wireless Com-
munications and Networking, 2003. WCNC 2003., volume 3, pages 2107–2113 vol.3,
March 2003.

[54] Tristan Henderson, David Kotz, and Ilya Abyzov. The changing usage of a ma-
ture campus-wide wireless network. In Proceedings of the 10th Annual Interna-
tional Conference on Mobile Computing and Networking, MobiCom ’04, pages 187–
201, New York, NY, USA, 2004. ACM.

[55] Chung-Ming Huang, Kun-chan Lan, and Chang-Zhou Tsai. A survey of oppor-
tunistic networks. In Advanced Information Networking and Applications-Workshops,
2008. AINAW 2008. 22nd International Conference on, pages 1672–1677. IEEE, March
2008.

[56] Pan Hui, Jon Crowcroft, and Eiko Yoneki. Bubble rap: Social-based forwarding
in delay-tolerant networks. IEEE Transactions on Mobile Computing, 10(11):1576–
1589, Nov 2011.

[57] Noha Ibrahim and Frédéric Le Mouël. A Survey on Service Composition Middle-
ware in Pervasive Environments. International Journal of Computer Science Issues,
1:1–12, August 2009.

[58] Sushant Jain, Rahul C. Shah, Waylon Brunette, Gaetano Borriello, and Sumit
Roy. Exploiting mobility for energy efficient data collection in wireless sensor
networks. Mob. Netw. Appl., 11(3):327–339, June 2006.

[59] Wei jen Hsu and Ahmed Helmy. On modeling user associations in wireless lan
traces on university campuses. In 2006 4th International Symposium on Modeling
and Optimization in Mobile, Ad Hoc and Wireless Networks, pages 1–9, April 2006.

Chapter 10. Conclusions and future works 123

Service composition in opportunistic networks Fadhlallah Baklouti 2019

Bibliography

[60] Shanshan Jiang, Yuan Xue, and Douglas C. Schmidt. Minimum disruption
service composition and recovery in mobile ad hoc networks. Comput. Netw.,
53(10):1649–1665, July 2009.

[61] D. Johnson, Y. Hu, and D. Maltz. The Dynamic Source Routing Protocol (DSR)
for Mobile Ad Hoc Networks for IPv4. RFC 4728 (Experimental), February 2007.

[62] Philo Juang, Hidekazu Oki, Yong Wang, Margaret Martonosi, Li Shiuan Peh,
and Daniel Rubenstein. Energy-efficient computing for wildlife tracking: Design
tradeoffs and early experiences with zebranet. SIGARCH Comput. Archit. News,
30(5):96–107, October 2002.

[63] Swaroop Kalasapur, Mohan Kumar, and Behrooz Shirazi. Seamless Service Com-
position (SeSCo) in Pervasive Environments. In 1st ACM International Workshop
on Multimedia Service Composition (MSC’05), pages 11–20, Hilton, Singapore, 2005.
ACM.

[64] Michael Klein, Birgitta Konig-Ries, and Philipp Obreiter. Service rings - a seman-
tic overlay for service discovery in ad hoc networks. In 14th International Workshop
on Database and Expert Systems Applications, 2003. Proceedings., pages 180–185, Sept
2003.

[65] Janine Kniess, Orlando Loques, and Celio V. N. Albuquerque. Location aware
discovery service and selection protocol in cooperative mobile wireless ad hoc
networks. In IEEE INFOCOM Workshops 2009, pages 1–2, April 2009.

[66] Ulas C. Kozat and Leandros Tassiulas. Service discovery in mobile ad hoc net-
works: an overall perspective on architectural choices and network layer support
issues. Ad Hoc Networks, 2(1):23 – 44, 2004.

[67] Frédérique Laforest, Nicolas Le Sommer, Stéphane Frénot, François De Corbière,
Yves Mahéo, Pascale Launay, Christophe Gravier, Julien Subercaze, Damien
Reimert, Étienne Brodu, Idris Daikh, Nicolas Phelippeau, Xavier Adam, Frédéric
Guidec, and Stéphane Grumbach. C3PO: a Spontaneous and Ephemeral Social
Networking Framework for a Collaborative Creation and Publishing of Multi-
media Contents. In International Conference on Selected Topics in Mobile and Wireless
Networking (MoWNet 2014), pages 129–134, Rome, Italy, September 2014. Elsevier.

[68] Markus Lanthaler and Christian Gutl. A semantic description language for restful
data services to combat semaphobia. In 5th IEEE International Conference on Digital
Ecosystems and Technologies (IEEE DEST 2011), pages 47–53, May 2011.

[69] Nicolas Le Sommer and Sihem Ben Sassi. Location-based service discovery and
delivery in opportunistic networks. In Networks (ICN), 2010 Ninth International
Conference on, pages 179–184. IEEE, 2010.

Chapter 10. Conclusions and future works 124

Service composition in opportunistic networks Fadhlallah Baklouti 2019

Bibliography

[70] Nicolas Le Sommer and Yves Mahéo. OLFServ: an Opportunistic and Location-
Aware Forwarding Protocol for Service Delivery in Disconnected MANETs. In
Xpert Publishing Services, editor, Fifth International Conference on Mobile Ubiqui-
tous Computing, Systems, Services and Technologies (Ubicomm 2011), pages 115–122,
Lisbon, Portugal, November 2011.

[71] Nicolas Le Sommer, Romeo Said, and Yves Mahéo. A proxy-based model for
service provision in opportunistic networks. In Proceedings of the 6th international
workshop on Middleware for pervasive and ad-hoc computing, pages 7–12. ACM, 2008.

[72] Jérémie Leguay, Timur Friedman, and Vania Conan. Evaluating mobility pattern
space routing for dtns. In INFOCOM 2006. 25th IEEE International Conference on
Computer Communications. Proceedings, pages 1–10, April 2006.

[73] Angel Lagares Lemos, Florian Daniel, and Boualem Benatallah. Web Service
Composition: A Survey of Techniques and Tools. ACM Computing Surveys,
48(3):1–41, February 2016.

[74] Fei Li, Katharina Rasch, Hong-Linh Truong, Rassul Ayani, and Schahram Dust-
dar. Proactive service discovery in pervasive environments. In Proceedings of the
7th ACM International Conference on Pervasive Services (ICPS), pages 126–133, 2010.
QC 20111207.

[75] Li Li, Wu Chou, Tao Cai, and Zhe Wang. Hyperlink pipeline: Lightweight service
composition for users. In 2013 IEEE/WIC/ACM International Joint Conferences on
Web Intelligence (WI) and Intelligent Agent Technologies (IAT), volume 1, pages 509–
514, Nov 2013.

[76] Anders Lindgren, Avri Doria, and Olov Schelen. Probabilistic Routing in Inter-
mittently Connected Networks. In Proceedings of the 1st International Workshop on
Service Assurance with Partial and Intermittent Resources (SAPIR 2004), Fortaleza,
Brazil, August 2004.

[77] Yves Mahéo and Romeo Said. Service invocation over content-based communi-
cation in disconnected mobile ad hoc networks. In 2010 24th IEEE International
Conference on Advanced Information Networking and Applications, pages 503–510,
April 2010.

[78] Ali Makke, Nicolas Le Sommer, and Yves Mahéo. TAO: A Time-Aware Op-
portunistic Routing Protocol for Service Invocation in Intermittently Connected
Networks. In 8th International Conference on Wireless and Mobile Communications
(ICWMC 2012), pages 118–123, Venice, Italy, June 2012. Xpert Publishing Services.

[79] Ali Makke, Yves Mahéo, and Nicolas Le Sommer. Towards opportunistic service
provisioning in intermittently connected hybrid networks. In Networking and Dis-
tributed Computing (ICNDC), 2013 Fourth International Conference on, pages 28–32,
December 2013.

Chapter 10. Conclusions and future works 125

Service composition in opportunistic networks Fadhlallah Baklouti 2019

Bibliography

[80] David Martin, Mark Burstein, Jerry Hobbs, Ora Lassila, Drew McDermott, Sheila
McIlraith, Srini Narayanan, Massimo Paolucci, Bijan Parsia, Terry Payne, Evren
Sirin, Naveen Srinivasan, and Katia Sycara. Owl-s: Semantic markup for
web services. Internet [http://www.w3.org/Submission/2004/SUBM- OWL-S-
20041122/], 2004.

[81] Alessandro Mei, Giacomo Morabito, Paolo Santi, and Julinda Stefa. Social-aware
stateless forwarding in pocket switched networks. In INFOCOM, 2011 Proceedings
IEEE, pages 251–255, April 2011.

[82] Sun Microsystems. Jini architecture specification. 1999.

[83] George A. Miller. Wordnet: A lexical database for english. Commun. ACM,
38(11):39–41, November 1995.

[84] Vinicius F.S. Mota, Felipe D. Cunha, Daniel F. Macedo, Jose M.S. Nogueira, and
Antonio A.F. Loureiro. Protocols, mobility models and tools in opportunistic
networks: A survey. Computer Communications, 48:5 – 19, 2014. Opportunistic
networks.

[85] Enrico Motta, John Domingue, Liliana Cabral, and Mauro Gaspari. Irs ii: a frame-
work and infrastructure for semantic web services. In 2nd International Semantic
Web Conference (ISWC2003), Sundial Resort, Sanibel Island, Florida, USA, October
2003. 10.1007/b14287 DOI ISBN 0302-9743.

[86] Michael Mrissa, Lionel Médini, and Jean-Paul Jamont. Semantic discovery and
invocation of functionalities for the web of things. In 2014 IEEE 23rd International
WETICE Conference, pages 281–286, June 2014.

[87] Michael Mrissa, Lionel Médini, Jean-Paul Jamont, Nicolas Le Sommer, and
Jérôme Laplace. Towards An Avatar Architecture for the Web of Things. Re-
search report, Université Lyon 1 - Claude Bernard, January 2015.

[88] Mirco Musolesi, Stephen Hailes, and Cecilia Mascolo. Adaptive routing for in-
termittently connected mobile ad hoc networks. In Sixth IEEE International Sym-
posium on a World of Wireless Mobile and Multimedia Networks, pages 183–189, June
2005.

[89] Hemanth Narra, Yufei Cheng, Egemen K. Çetinkaya, Justin P. Rohrer, and James
P. G. Sterbenz. Destination-sequenced distance vector (dsdv) routing protocol
implementation in ns-3. In Proceedings of the 4th International ICST Conference on
Simulation Tools and Techniques, SIMUTools ’11, pages 439–446, ICST, Brussels, Bel-
gium, Belgium, 2011. ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering).

[90] Hoang Anh Nguyen, Silvia Giordano, and Alessandro Puiatti. Probabilistic rout-
ing protocol for intermittently connected mobile ad hoc network (propicman). In

Chapter 10. Conclusions and future works 126

Service composition in opportunistic networks Fadhlallah Baklouti 2019

Bibliography

2007 IEEE International Symposium on a World of Wireless, Mobile and Multimedia
Networks, pages 1–6, June 2007.

[91] Michael Nidd. Service discovery in deapspace. IEEE Personal Communications,
8(4):39–45, Aug 2001.

[92] Panagiotis Pantazopoulos, Ioannis Stavrakakis, Andrea Passarella, and Marco
Conti. Efficient social-aware content placement in opportunistic networks. In
Wireless On-demand Network Systems and Services (WONS), 2010 Seventh Interna-
tional Conference on, pages 17–24, February 2010.

[93] Cesare Pautasso. Composing restful services with jopera. In Alexandre Bergel
and Johan Fabry, editors, Software Composition, pages 142–159, Berlin, Heidelberg,
2009. Springer Berlin Heidelberg.

[94] Cesare Pautasso. Restful web service composition with bpel for rest. Data and
Knowledge Engineering, 68(9):851 – 866, 2009. Sixth International Conference on
Business Process Management (BPM 2008) Five selected and extended papers.

[95] Chris Peltz. Web services orchestration and choreography. Computer, 36(10):46–
52, October 2003.

[96] Luciana Pelusi, Andrea Passarella, and Marco Conti. Opportunistic Networking:
Data Forwarding in Disconnected Mobile Ad Hoc Networks. IEEE Communica-
tions Magazine, 44(11):134–141, November 2006.

[97] Yu Yen Peng, Shang Pin Ma, and Jonathan Lee. Rest2soap: A framework to inte-
grate soap services and restful services. In 2009 IEEE International Conference on
Service-Oriented Computing and Applications (SOCA), pages 1–4, Jan 2009.

[98] Charles Perkins, Elizabeth Royer, and Samir R. Das. RFC 3561 Ad hoc On-
Demand Distance Vector (AODV) Routing. Technical report, 2003.

[99] Charles E. Perkins and John Veizades. Service Location Protocol. RFC 2165, June
1997.

[100] Randall Perrey and Mark Lycett. Service-oriented architecture. In 2003 Sympo-
sium on Applications and the Internet Workshops, 2003. Proceedings., pages 116–119,
Jan 2003.

[101] Mikko Pitkänen, Teemu Kärkkäinen, Jörg Ott, Marco Conti, Andrea Passarella,
Silvia Giordano, Daniele Puccinelli, Franck Legendre, Sacha Trifunovic, Karin
Hummel, Martin May, Nidhi Hegde, and Thrasyvoulos Spyropoulos. Scampi:
Service platform for social aware mobile and pervasive computing. In Proceedings
of the First Edition of the MCC Workshop on Mobile Cloud Computing, MCC ’12, pages
7–12, New York, NY, USA, 2012. ACM.

Chapter 10. Conclusions and future works 127

Service composition in opportunistic networks Fadhlallah Baklouti 2019

Bibliography

[102] Jinghai Rao and Xiaomeng Su. A Survey of Automated Web Service Composition
Method. In Jorge Cardoso and Amit Sheth, editors, Semantic Web Services and Web
Process Composition, pages 43–54, San Diego, CA, USA, July 2004. Springer.

[103] Injong Rhee, Minsu Shin, Seongik Hong, Kyunghan Lee, Seong Joon Kim, and
Song Chong. On the Levy-Walk Nature of Human Mobility. IEEE/ACM Transac-
tions on Networking, 19(3):630–643, June 2011.

[104] Umair Sadiq, Mohan Kumar, Andrea Passarella, and Marco Conti. Service Com-
position in Opportunistic Networks: A Load and Mobility Aware Solution. IEEE
Transactions on Computers, 84(8):2308–2322, August 2015.

[105] Françoise Sailhan and Valérie Issarny. Scalable Service Discovery for MANET. In
International Conference on Pervasive Computing and Communications : PerCom 2005,
pages 235–244, Kawai Island, Hawaii, United States, 2005.

[106] Natasa Sarafijanovic-Djukic, Michal Piórkowski, and Matthias Grossglauser. Is-
land hopping: Efficient mobility-assisted forwarding in partitioned networks. In
Proceedings of the Third Annual IEEE Communications Society Conference on Sensor,
Mesh and Ad Hoc Communications and Networks, SECON 2006, September 25-28,
2006, Reston, VA, USA, pages 226–235, 2006.

[107] Gregor Schiele, Christian Becker, and Kurt Rothermel. Energy-efficient cluster-
based service discovery for ubiquitous computing. In Proceedings of the 11th Work-
shop on ACM SIGOPS European Workshop, EW 11, New York, NY, USA, 2004.
ACM.

[108] James Scott, Jon Crowcroft, Pan Hui, and Christophe Diot. Haggle: a Net-
working Architecture Designed Around Mobile Users. In WONS 2006 : Third
Annual Conference on Wireless On-demand Network Systems and Services, pages
78–86, Les Ménuires (France), January 2006. INRIA, INSA Lyon, Alcatel, IFIP.
http://citi.insa-lyon.fr/wons2006/index.html.

[109] Keith Scott and Scott C. Burleigh. Bundle Protocol Specification. RFC 5050,
November 2007.

[110] K. Seada and A. Helmy. Rendezvous regions: a scalable architecture for service
location and data-centric storage in large-scale wireless networks. In 18th Interna-
tional Parallel and Distributed Processing Symposium, 2004. Proceedings., pages 218–,
April 2004.

[111] Zach Shelby, Klaus Hartke, and Carsten Bormann. The Constrained Application
Protocol (CoAP). RFC 7252, June 2014.

[112] Tara Small and Zygmunt J. Haas. The shared wireless infostation model: A new
ad hoc networking paradigm (or where there is a whale, there is a way). In
Proceedings of the 4th ACM International Symposium on Mobile Ad Hoc Networking
&Amp; Computing, MobiHoc ’03, pages 233–244, New York, NY, USA, 2003. ACM.

Chapter 10. Conclusions and future works 128

Service composition in opportunistic networks Fadhlallah Baklouti 2019

Bibliography

[113] Thrasyvoulos Spyropoulos, K. Psounis, and C.S. Raghavendra. Spray and focus:
Efficient mobility-assisted routing for heterogeneous and correlated mobility. In
Pervasive Computing and Communications Workshops, 2007. PerCom Workshops ’07.
Fifth Annual IEEE International Conference on, pages 79–85, March 2007.

[114] Thrasyvoulos Spyropoulos, Konstantinos Psounis, and Cauligi S. Raghavendra.
Spray and Wait: an Efficient Routing Scheme for Intermittently Connected Mo-
bile Networks. In 2005 ACM SIGCOMM workshop on Delay-tolerant networking
(WDTN’05), pages 252–259, Philadelphia, PA, USA, 2005. ACM.

[115] Haiyan Sun, Xiaodong Wang, Bin Zhou, and Peng Zou. Research and imple-
mentation of dynamic web services composition. In Xingming Zhou, Ming Xu,
Stefan Jähnichen, and Jiannong Cao, editors, Advanced Parallel Processing Technolo-
gies, pages 457–466, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[116] Spyropoulos Thrasyvoulos and Picu Andreea. Opportunistic Routing, chapter 11,
pages 419–452. Wiley-Blackwell, 2013.

[117] Leigh Torgerson, Scott C. Burleigh, Howard Weiss, Adrian J. Hooke, Kevin Fall,
Dr. Vinton G. Cerf, Keith Scott, and Robert C. Durst. Delay-Tolerant Networking
Architecture. RFC 4838, April 2007.

[118] Vladimir Tosic, Babak Esfandiari, Bernard Pagurek, and Kruti Patel. On re-
quirements for ontologies in management of web services. In Christoph Bus-
sler, Richard Hull, Sheila McIlraith, Maria E. Orlowska, Barbara Pernici, and
Jian Yang, editors, Web Services, E-Business, and the Semantic Web, pages 237–247,
Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

[119] Amin Vahdat and David Becker. Epidemic routing for partially-connected ad hoc
networks. Technical report, 2000.

[120] Jianping Wang. Exploiting Mobility Prediction for Dependable Service Composi-
tion in Wireless Mobile Ad Hoc Networks. IEEE Transactions on Services Comput-
ing, 4(1):44–55, January 2011.

[121] Zijian Wang, Eyuphan Bulut, and Boleslaw K. Szymanski. Service discovery for
delay tolerant networks. In 2010 IEEE Globecom Workshops, pages 136–141, Dec
2010.

[122] Mark Weiser. Hot topics-ubiquitous computing. Computer, 26(10):71–72, Oct 1993.

[123] UDDI.org white paper. Uddi technical white paper. September 2000.

[124] Dan Yu and Hui Li. On the definition of ad hoc network connectivity. In In-
ternational Conference on Communication Technology Proceedings, 2003. ICCT 2003.,
volume 2, pages 990–994 vol.2, April 2003.

Chapter 10. Conclusions and future works 129

Service composition in opportunistic networks Fadhlallah Baklouti 2019

Bibliography

[125] Zhangbing Zhou, Jiabei Xu, Zhenjiang Zhang, Fei Lei, and Wei Fang. Energy-
efficient optimization for concurrent compositions of wsn services. IEEE Access,
5:19994–20008, 2017.

Chapter 10. Conclusions and future works 130

Service composition in opportunistic networks Fadhlallah Baklouti 2019

Publications

[1] Fadhlallah Baklouti, Nicolas Le Sommer, and Yves Mahéo, "Opportunistic service
composition in pervasive networks", in 2017 Wireless Days, Porto, Portugal, March 29-
31, 2017 (, 2017), pp. 227--229.
[2] Fadhlallah Baklouti, Nicolas Le Sommer, and Yves Mahéo, "Choreography-based
vs orchestra-tion-based service composition in opportunistic networks", in 2017 IEEE
13th International Conference on Wireless and Mobile Computing, Networking and
Communications (WiMob) (, 2017), pp. 1-8.
[3] Fadhlallah Baklouti, Nicolas Le Sommer, and Yves Mahéo, "Performing Service
Composition in Opportunistic Networks", in 2019 Wireless Days, London, UK, April
24-26 (, 2019) (accepted).

131

Service composition in opportunistic networks Fadhlallah Baklouti 2019

Bibliography

Titre : Composition de services dans les réseaux oppor-

tunistes

Mot clés : réseaux opportunistes, communication opportuniste, découverte de ser-
vices, composition de services.

Resumé : Cette thèse s’inscrit dans le domaine de l’in-
formatique ambiante et de l’Internet des objets, et considère
des réseaux qui peuvent se former spontanément et qui sont
composés d’équipements fixes ou mobiles. Ces équipements
peuvent être connectés à une infrastructure grâce à des in-
terfaces de communication telles que 4G et Wi-Fi, et com-
muniquer à travers celle-ci. Ces équipements peuvent aussi
communiquer de gré-à-gré grâce à des interfaces permettant
des communications ad hoc.
Des ruptures de connectivité peuvent apparaître dans le ré-
seau d’une manière fréquente et imprévisible du fait de la faible
portée des interfaces sans fil fonctionnant en mode ad hoc
et de la mobilité de certains équipements. Ces ruptures de
connectivité peuvent s’avérer problématiques dès lors que ces
équipements souhaitent accéder à des ressources offertes par
d’autres équipements, ou mettre eux mêmes à disposition de
ces derniers des ressources.
L’informatique opportuniste étend le principe des communi-
cations opportunistes en proposant d’exposer les ressources à
travers des services et d’accéder à ces services par des tech-
niques et des protocoles de communication opportunistes qui
mettent en œuvre le principe du “store, carry and forward”.
Dans cette thèse, nous nous intéressons à la composition

de services afin de pouvoir combiner les services élémentaires
offerts par les équipements et ainsi proposer aux utilisateurs
des services de plus haut niveau et plus riches. La composition
de services est une tâche complexe dans l’informatique op-
portuniste car il est nécessaire de sélectionner judicieusement
les fournisseurs de services afin de réduire au maximum les
échecs et les délais de transmission des messages de services
qui sont induits par les ruptures de connectivité, et ainsi pouvoir
offrir une certaine qualité de service aux utilisateurs.
Dans cette thèse, nous proposons une solution pour composer
les services en utilisant deux stratégies, à savoir la chorégra-
phie et l’orchestration. Cette solution repose en outre sur une
fonction d’utilité qui permet de sélectionner les fournisseurs de
services selon deux critères : le taux et le temps de transmis-
sion des messages de découverte et d’invocation de services.
Nous proposons également une version améliorée exploitant
un cache distribué de données et un mécanisme proactif de
composition de services exploitant les profils d’intérêt des utili-
sateurs.
Nous avons évalué ce processus de composition en utilisant 2
scénarios différents. Les résultats obtenus dans ces scénarios
réalistes montrent qu’il est possible de composer des services
dans un temps raisonnable dans le type de réseaux que nous
considérons.

Title : Service composition in opportunistic networks

Keywords : opportunistic network, opportunistic computing, service discovery, service
composition.

Abstract : This thesis is related to the domain of Ubiqui-
tous computing and Internet of Things (IoT), and focuses on
networks that can be formed spontaneously by mobile or fixed
devices. These devices are usually connected to an infrastruc-
ture, using communication interfaces such as 4G and Wi-Fi,
and communicate with each other through this infrastructure.
These devices can also communicate in a peer-to-peer mode
using interfaces that implement ad hoc communication.
Connection disruptions may occur in the network frequently
and unpredictably due to the short radio range of communi-
cation interfaces and to the mobility of certain nodes.These
connection disruptions can be problematic when a given device
tries to access remote resources provided by other devices, or
when it tries to offer its own resources to these ones.
Opportunistic computing extends the paradigm of opportunistic
networking by abstracting local resources as services acces-
sible remotely using the protocols of opportunistic networking
that implement the "store, carry and forward" principle.

In this thesis, we focus on service composition in order to
combine elementary services and offer new, rich and high le-
vel composite services to users. Service composition can be a
very difficult task to perform in opportunistic networks. Indeed,
service composition requires an efficient selection process of
service providers to reduce failures and transmission delays,
caused by connection disruptions, in order to provide users
with a certain quality of service.
In this thesis, we propose a solution to compose services using
two strategies : orchestration and choreography. This solution
also relies on a utility function that selects service providers
based on two criteria : transmission time and transmission suc-
cess of invocation and discovery messages. We also propose
an optimized version of our solution that exploits a distributed
cache of data and a proactive service composition mechanism
based on the user interest profile.
We evaluated our composition solution using two different sce-
narios. The results show that it is possible to compose services
in a reasonable amount of time in opportunistic networks.

Chapter 10. Conclusions and future works 132

Service composition in opportunistic networks Fadhlallah Baklouti 2019

Bibliography

Chapter 10. Conclusions and future works 133

Service composition in opportunistic networks Fadhlallah Baklouti 2019

	I Introduction and Related Works
	Introduction
	Background and motivation
	Challenges
	Opportunistic networking challenges
	Opportunistic computing challenges

	Objectives and Contributions
	Outline of the thesis

	Opportunistic networking and computing
	Introduction
	Opportunistic networking
	Opportunistic computing
	Discussion and Conclusion

	Service-oriented computing
	Introduction
	Service discovery
	Service discovery in MANET
	Service discovery in opportunistic networks

	Service selection and invocation
	Service composition
	Infrastructure-based and conventional composition
	Composition in pervasive and wireless environments

	Discussion and Conclusion

	II Contributions
	Service discovery and composition system
	Introduction
	Service discovery and utility functions
	Discovery
	Utility function

	Orchestration vs choreography
	Choreography-based strategy
	Orchestration-based strategy
	Mathematical models for composition time estimation and success ratio estimation

	Conclusion

	Composition caching and precomputing
	Introduction
	Proactive service computing
	General overview
	Formal description

	Distributed cache
	General overview
	Formal description

	Conclusion

	III Implementation, Evaluations and Conclusion
	Implementation
	Introduction
	C3PO
	Service discovery and composition system
	Overview of the architecture
	Details

	Proactive service precomputing manager
	Overview of the architecture
	Details

	Conclusion

	Comparison of composition strategies
	Introduction
	LEPTON
	Evaluation setup
	Results and analysis
	Conclusion

	Evaluation of the utility function
	Introduction
	Evaluation setup
	General setup
	Specific setup

	Results and analysis
	Success ratio
	Composition time

	Comparison
	Conclusion

	DCM evaluation
	Introduction
	Evaluation setup
	Results
	Conclusion

	Conclusions and future works
	Summary of the contribution
	Future works

	Bibliography
	Publications

