M. R. Clcland, . O'neill, T. Mclanic, and C. C. Thompson, Sterilization with Accelerated Electrons "in Sterilization Tecnology, A Practical Guide for Manufactures and Users of Health Care Products Van Nostrand Reinhold, 1993.

X. Artru, R. Chehab, B. Johnson, P. Keppler, L. Rinolfi et al., NIMBI, vol.19, p.246, 1996.

C. Atkins, P. Et-de-paula, and J. , , 2004.

L. W. Hobbs, Radiation effects in analysis by TEM, 1987.

R. F. Egerton, M. Li, and M. Micron, , vol.35, p.399, 2004.

D. B. Williams and C. B. Carter, The Instrument, Transmission Electron. Microscopy: A Textbook for Materials Science, pp.26-27, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02346771

E. Cosslett, Radiation damage in the high resolution electron microscopy of biological materials, 1978.

M. J. Makin, Atom displacement radiation damage in electron microscopes, Electron Microscopy, vol.Ill, pp.330-372, 1978.

F. Banhart, Rep. Prog. Phys, vol.62, p.1181, 1999.

D. L. Medlin and . G. Howittd, The roles of sputtering and atomic displacement in electron irradiation induced mass loss, Microbeam Analysis, p.271, 1991.

L. W. Hobbs, Introduction to Analytical Electron Microscopy, p.399, 1987.

R. M. Glaeser, C. J. Swann, M. J. Humphreys, and . Goringe, High Voltage Electron Microscopy, pp.370-378, 1974.

R. M. Glaeser, Physical Aspects of Electron Microscopy and Microbeam Analysis, pp.205-234, 1975.

L. Reimer, Physical Aspects of Electron Microscopy and Microbeam Analysis, pp.231-276, 1975.

M. J. Makin, Electron Microscopy in Material Science, pp.388-461, 1971.

M. Isaacson, Proc. Specialist Workshop on Analytical Electron Microscopy, pp.73-87, 1978.

J. R. Fryer and F. Holland, The reduction of radiation damage in the electron microscope, Ultramicroscopy, vol.11, p.67, 1983.

R. Henderson and R. M. Glaeser, Quantitative analysis of image contrast in electron micrographs of beam-sensitive crystals, Ultramicroscopy, vol.16, pp.139-150, 1985.

R. Premiere and . Chapitre,

S. Iijima and T. Ichhashi, Single-shell carbon nanotubes of 1-nm diameter, Nature, vol.363, pp.603-605, 1993.

N. ;. Karousis and . Tagmatarchis, Current progress on the chemical modification of carbon nanotubes, Chem. Rev, vol.110, pp.5366-5397, 2010.

J. John, E. Gravel, A. Hagège, H. Li, T. Gacoin et al., Formation of Efficient Catalytic Silver Nanoparticles on Carbon Nanotubes by Adenine Functionalization, Angew. Chem. Int. Ed, vol.50, pp.9893-9897, 2011.

M. Bottini, N. Rosato, N. Bottini, K. Kostarelas, A. Bianco et al., PEG-Modified Carbon Nanotubes in Biomedicine: Current Status and Challenges Ahead, Nature Nanotechnol, vol.12, pp.627-633, 2009.

B. S. Shim, Z. Tang, M. P. Morabito, A. Agarwal, H. Hong et al., Integration of conductivity transparency, and mechanical strength into highly homogeneous layer-by-layer composites of single-walled carbon nanotubes for optoelectronics, Chem. Mater, vol.19, pp.5467-5474, 2007.

K. Matsumoto, T. Fujigaya, K. Sasaki, N. Nakashima, Y. Lin et al., Bottom-up design of carbon nanotube-based electrocatalysts and their application in high temperature operating polymer electrolyte fuel cells, J. Mater. Chem, vol.21, pp.871-884, 2009.

D. Tasis, N. Tagmatarchis, A. Bianco, and M. Prato, Chemistry of carbon nanotube, Chem. Rev, vol.106, pp.1105-1136, 2006.

G. R. Dieckmann, A. B. Dalton, P. A. Johnson, J. Razal, J. Chen et al., Controlled Assembly of Carbon Nanotubes by Designed Amphiphilic Peptide Helices, J. Am. Chem. Soc, vol.125, issue.4, pp.1392-1395, 2003.

R. J. Chen, Y. Zhang, D. Wang, H. Dai, J. Zhang et al., Single-walled carbon nanotubes for protein immobilization, Photoluminescence and Electronic Interaction of Anthracene Derivatives Adsorbed on Sidewalls of Single-Walled Carbon Nanotubes, vol.123, pp.3838-3839, 2001.

M. Assali, M. P. Leal, I. Fernadez, P. Romero-gomez, R. Baati et al., Improved non-covalent biofunctionalization of multiwalled carbon nanotubes using carbohydrate amphiphiles with a butterfly-like polyaromatic tail, Nano. Lett, vol.3, pp.764-778, 2003.

M. S. Arnold, M. O. Guler, M. C. Hersam, and S. I. Stupp, Encapsulation of Carbon Nanotubes by Self-Assembling Peptide Amphiphiles, Langmuir, vol.21, pp.4705-4709, 2005.

M. R. Ghadiri, J. R. Granja, R. A. Milligan, D. E. Mcree, N. Khazanovich et al., Self-assembling organic nanotubes based on a cyclic peptide architecture, Chem. Soc. Rev, vol.366, pp.1877-1890, 1993.

E. Hochuli, H. Dobeli, A. Schacher, E. K. Ueda, P. W. Gout et al., New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues, J. Chromatogr. A, vol.411, p.1, 1987.

C. Hart, B. Schulenberg, Z. Diwu, W. Y. Leung, W. F. Patton et al., Fluorescence detection and quantitation of recombinant proteins containing oligohistidine tag sequences directly in sodium dodecyl sulfate-polyacrylamide gels, Electrophoresis, vol.24, pp.1910-1912, 2003.

R. J. Chen, Y. Zhang, D. Wang, and H. Dai, Single-walled carbon nanotubes for protein immobilization, J. Am. Chem. Soc, vol.123, pp.3838-3839, 2001.

W. Shen, H. Zong, . Neff, M. Norton, M. Brellier et al., Insight into the Complexation Mode of Bis(nitrilotriacetic acid) (NTA) Ligands with Ni 2+ Involved in the Labeling of Histidine-Tagged Proteins, J. Am. Chem. Soc, vol.131, pp.12689-12701, 2009.

S. Li, P. He, J. Dong, Z. Guo, and L. Dai, DNA-Directed Self-Assembling of Carbon Nanotubes, J. Am. Chem. Soc, vol.127, pp.14-15, 2005.

M. Foldvari and M. Bagonluri, Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompatibility issues, Nanomedicine, vol.4, pp.183-200, 2008.

X. Zhao and R. Liu, Recent progress and perspectives on the toxicity of carbon nanotubes at organism, organ, cell, and biomacromolecule levels, Environ Int, vol.40, pp.244-55, 2012.

S. Sharifi, S. Behzadi, S. Laurent, M. L. Forrest, P. Stroeve et al., Toxicity of nanomaterials, Chem Soc Rev, vol.41, pp.2323-2366, 2012.

S. Y. Madani and A. Mandel, Seifalian AM A concise review of carbon nanotube's toxicology. Nano Rev, vol.4, 2013.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang et al., Science, vol.306, p.666, 2004.

C. Lee, X. Wei, and J. W. Kysar, J. Hone Science, vol.321, pp.385-388, 2008.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan et al., Nano Lett, vol.8, pp.902-907, 2008.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg et al., Stormer Solid State Commun, vol.146, pp.351-355, 2008.

M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, , vol.8, pp.3498-3502, 2008.

Y. Zhang, Y. Tan, H. L. Stormer, and P. Kim, Nature, vol.448, pp.457-460, 2007.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim et al., Nature, vol.457, pp.30-35, 2009.

Y. Yang, R. Pang, X. Zhou, Y. Zhang, H. Wu et al., , vol.22, pp.23194-23200, 2012.

V. Georgakilas, M. Otyepka, A. B. Bourlinos, V. Chandra, N. Kim et al., Chem. Rev, vol.112, pp.6156-6214, 2012.

D. Wei, L. Grande, V. Chundi, R. White, C. Bower et al., Ryhänen Chem. Commun, vol.48, pp.1239-1241, 2012.

A. N. Obraztsov, Nature Nanotech, vol.4, pp.212-213, 2009.

S. Park and R. S. Ruoff, Nature Nanotech, vol.4, pp.217-224, 2009.

R. Simmons, C. Shah, K. M. Wolfe, M. Lewis, S. K. Washington et al., , vol.10, pp.1295-4301, 2010.

M. Eizenberg and J. L. Blackely, Surf. Sci, vol.82, pp.2017-2021, 1970.

R. Aizawa, R. Souda, Y. Otani, C. Ishizawa, and . Oshima, Phys. Rev. Lett, vol.64, pp.768-771, 1990.

C. Berger, Z. Song, X. Li, X. Wu, N. Brown et al., P. N. First, W. A. de Heer Science, vol.312, pp.1191-1196, 2006.

C. Su, A. Lu, Y. Xu, F. Chen, A. N. Khlobystov et al., J. Am. Chem. Soc, vol.5, pp.8888-8891, 2011.

A. Ambrosi, S. Y. Chee, B. Khezri, and R. D. Webster, Z. Sofer, M. Pumera Angew. Chem. Int. Ed, vol.50, pp.1-5, 2011.

R. Baati, D. Ihiawakrim, R. R. Mafouana, O. Ersen, C. Dietlin et al., Adv. Funct. Mat, vol.22, pp.4009-4015, 2012.

A. V. Titov, P. Král, R. Pearson, A. A. Nano-;-a, M. C. Green et al., J. Phys. Chem. Lett, vol.1, pp.5944-5950, 2009.

M. Assali, M. P. Leal, I. Fernadez, P. Romero-gomez, R. Baati et al., Nano. Res, vol.3, pp.764-778, 2010.

N. Khiar, M. Pernia-leal, R. Baati, C. Ruhlmann, C. Mioskowski et al., Soft Matter, vol.5, pp.948-950, 2009.

R. J. Chen, Y. Zhang, D. Wang, and H. Dai, J. Am. Chem. Soc, vol.123, p.3838, 2001.

J. Zhang, J. Lee, Y. Wu, R. W. Murray, ;. Xu et al., J. Am. Chem. Soc, vol.3, pp.5856-5857, 2003.

J. H. Bang and K. S. , Suslick Adv. Mat, vol.22, pp.1039-1059, 2010.

M. I. Katsnelson, A. Fasolino Acc. Chem. Res, 2012.

H. S. Maty, K. S. Subrahmanyam, and C. N. , Raon Nanomater. Nanotechnol, vol.1, pp.3-13, 2011.

R. Saito, M. Hofmann, G. Dresselhaus, A. Jorio, and M. S. , Dresselhaus Adv. Phys, vol.60, pp.413-550, 2011.

Y. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam et al., Phys. Rev. Lett, p.246803, 2007.

I. Janowska, F. Vigneron, D. Bégin, O. Ersen, P. Bernhardt et al., , vol.50, pp.3106-3110, 2012.

T. Schwamb, B. R. Burg, N. Schirmer, and D. Poulikakos, , p.405704, 1920.

D. Wu, F. Zhang, P. Liu, and X. F. Chem, Eur. J, vol.17, pp.10804-10812, 2011.

F. He, J. Fan, D. Ma, L. Zhang, C. Leung et al., Z. Deng, Z. Zhang ACS App. Mat. Int, vol.48, pp.4085-4091, 2010.

R. Premiere and . Chapitre,

C. Sanchez and F. Ribot, « Chemical Design of Hybrid Organic-Inorganic Materials Synthesized Via Sol-Gel Chemistry », New J. Chemistry, vol.10, p.1037, 1994.

C. Sanchez, G. Soler-illia, F. Ribot, and D. Grosso, « Design of Functional Nanostructured Materials Through the Use of Controlled Hybrid Organic-Inorganic Interfaces », Comptes rendus de l'Académie des sciences, Chimie, vol.8, p.109, 2003.

C. Sanchez, A. A. De, C. G. Soler-illia, F. Ribot, T. Lalot et al., « Designed Hybrid Organic-Inorganic Nanocomposites From Functional Nanobuilding Blocks, Chemistry of Materials, vol.13, p.3061, 2001.

S. Mann, S. L. Burkett, S. A. Davis, C. E. Fowler, N. H. Mendelson et al., « Sol-Gel Synthesis of Organized Matter, vol.20, issue.24, p.2300, 1997.

C. Sanchez, H. Arribart, and M. Giraud-guille, Biomimetism and Bioinspiration as Tools for the Design of Innovative Materials and Systems, p.277, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00077362

Y. Wang, E. Delahaye, C. Leuvrey, F. Leroux, P. Rabu et al., Synthesis Modification of the Aurivillius Phase Bi2SrTa2O9 via InSitu Microwave-Assisted "Click Reaction" », pp.9790-9797, 2016.

G. Soler-illia, C. Sanchez, B. Lebeau, and J. Patarin, « Chemical Strategies to Design Textured Silica and Metal Oxide-Based Organised Networks: From Nanostructured Networks to Hierarchical Structures, Chemical Reviews, vol.102, p.4093, 2002.

Y. Wang, C. Wang, L. Wang, Q. Hao, X. Zhu et al., « Preparation of interlayer surface tailored protonated doublelayered perovskite H2CaTa2O7 with n-alcohols, and their photocatalytic activity

Y. Sugahara, «Chemical processes employing inorganic layered compounds for inorganic and inorganic & organic hybrid materials, J. Ceram. Soc. Jpn, vol.122, pp.523-529, 2014.

R. Nedjar, M. M. Borel, and B. Raveau, « Intercalation of Primary Monoamines in the Lamellar Protonic Oxide HNb3O8 H2O, Z. Anorg. Allg. Chem, vol.540, 1986.

P. Clément and R. Marchand, « Intercalation d'amines dans la structure en feuillets de H2Ti4O9, C. R. Acad. Sc, vol.296, pp.1161-1164, 1983.

C. Delmas, Y. Borthomieu, and C. Faure, « Nickel hydroxide and derived phases obtained by chimie douce, Solid State Ionics, vol.26, p.152, 1988.

C. Sanchez, A. A. De, C. G. Soler-illia, F. Ribot, T. Lalot et al., « Designed Hybrid Organic-Inorganic Nanocomposites From Functional Nanobuilding Blocks, Chemistry of Materials, vol.13, p.3061, 2001.

K. Toda, M. Sato-;-a-=-rb, and L. , Synthesis and structure determination of new layered perovskite compounds, ALaTa2O7 and ACa2Ta3O10, vol.6, pp.1067-1071, 1996.

J. Gopalakrishnan, S. Uma, V. Bhat, and «. , Synthesis of Layered Perovskite Oxides, ACa2-xLaxNb3-xTix010 (A = K, Rb, Cs), and Characterization of New Solid Acids, HCa2-xLaxNb3-xTixOlo (0 < x d 2), Exhibiting Variable Bronsted Acidity, Chem. Mater, vol.5, pp.132-136, 1993.

R. E. Schaak, D. Afzal, J. A. Schottenfeld, and T. E. Mallouk, , pp.2-2

. Sm, G. Eu, and D. , A New Series of Ion-Exchangeable Layered Perovskites Containing B-Site Manganese, vol.14, pp.442-448, 2002.

C. H. Mahler, B. L. Cushing, J. N. Lalena, and J. B. Wiley, Mater. Res. Bull, vol.33, pp.1581-1586, 1998.

J. Gopalakrishnan, T. Sivakumar, K. Ramesha, V. Thangadurai, and G. N. Subbanna, J. Am. Chem. Soc, vol.122, pp.6237-6241, 2000.

S. Akbarian-tefaghi and J. B. Wiley, Microwave-assisted routes for rapid and efficient modification of layered perovskites, » Dalton Transactions, vol.47, issue.9, pp.2917-2924, 2018.

H. F. Helander, « Surface topography of ultramicrotome sections, Journal of Ultrastructure Research, vol.29, issue.5-6, pp.373-382, 1969.

J. Ayache, L. Beaunier, J. Pottu-boumendil, G. Ehret, and D. , Laub : «Guide de préparation des échantillons pour la Microscopie électronique en transmission, 2007.

Y. Tsunoda, M. Shirata, W. Sugimoto, Z. Liu, O. Terasaki et al., Inorg. Chem, vol.40, pp.5768-5771, 2001.

Y. Wang, E. Delahaye, C. Leuvrey, F. Leroux, P. Rabu et al., « Efficient Microwave-Assisted Functionalization of the Aurivillius-Phase Bi2SrTa2O9, Inorg. Chem, vol.55, pp.4039-4046, 2016.

B. Schneiderová, J. Demel, J. Ple?til, P. Janda, J. Bohuslav et al., Nickel Hydroxide Ultrathin Nanosheets as Building Blocks for Electrochemically Active Layers, J. Mater. Chem. A, vol.2013, issue.37, p.11429

J. Dubochet, A. M. Chang, J. J. Homo, J. C. Lepault, J. Mcdowall et al.,

, « Cryo-electron microscopy of vitrified specimens, » Q Rev Biophys, vol.21, issue.2, pp.129-228, 1988.

. References and . Chapitre, , vol.3

J. Lehn, Supramolecular Chemistry: Concepts and Perspectives, 1995.
URL : https://hal.archives-ouvertes.fr/hal-00019531

M. W. Hosseini-;-m and . Hosseini, Chem. Commun, vol.6, p.5825, 2004.

E. F. Bres, S. Ferlay, P. Dechambenoit, H. Leroux, M. W. Hosseini et al., J. Mater. Chem, vol.17, pp.1559-1562, 2007.

B. F. Abrahams, B. Hoskins, R. Robson, and J. , Am. Chem. Soc, vol.113, p.3606, 1991.

C. Bosshard, K. Sutter, P. Pretre, J. Hulliger, M. Flo¨rsheimer et al.,

. Günter, Advances in Nonlinear Optics, vol.1, 1995.

C. B. Aakero¨y and A. M. Beatty, CrystEngComm, 1998.

J. Fraxedas, Adv. Mater, p.1603, 2002.

C. Trans, , 2003.

C. Janiak and J. L. Vieth, New J. Chem, p.34, 2010.

W. L. Leong and J. J. Vittal, Chem. Rev, vol.111, p.688, 2011.

C. W. Dirk, E. A. Mintz, K. F. Schoch, and T. J. Marks, J. Macromol. Sci., Chem, p.275, 1981.

S. Ferlay, V. Bulach, O. Felix, M. W. Hosseini, J. Planeix et al., CrystEngComm, 2002.

S. Ferlay, M. W. Hosseini, ;. Dechambenoit, S. Ferlay, and M. W. Hosseini, Cryst. Growth Des, vol.5, p.788, 2004.

, Tomographie électronique analytique : développement de la cartographie chimique 3D à l'échelle du nanomètre et applications aux catalyseurs hétérogènes. Lucian Roiban, thése soutenue, 2010.

, Tomographie électronique de nano-objets. Ileana Florea, thése soutenue, 2011.

L. ;. Gan and G. J. Jensen, Electron tomography of cells, Quarterly Reviews of Biophysics, vol.45, issue.1, pp.27-56, 2012.

J. Dubochet, M. Adrian, J. J. Chang, J. C. Homo, J. Lepault et al., Cryo-electron microscopy of vitrified specimens, Quarterly Reviews of Biophysics, vol.21, issue.2, pp.129-228, 1988.

. -oikonomou, G. Cm;-jensen, and Y. W. Chang, A new view into prokaryotic cell biology from electron cryotomography, Nature Reviews. Microbiology, vol.14, issue.4, pp.205-225, 2016.

. Al-amoudi, ;. Ashraf, and J. Chang,

A. ;. Leforestier and A. Mcdowall,

L. Salamin, L. P. Michel;-norlén, K. ;. Richter, N. Blanc, and . Sartori,

D. Studer, , 2004.

A. Abbott, The society of proteins, Nature, vol.417, pp.894-896, 2002.

D. Alloyeau, W. Dachraoui, Y. Javed, H. Belkahla, G. Wang et al., , 2015.

, Unravelling Kinetic and Thermodynamic Effects on the Growth of Gold Nanoplates by Liquid Transmission Electron Microscopy, Nano Letters, vol.15, issue.4, pp.2574-2581

R. Mcintosh, D. Nicastro, and D. Mastronarde, New views of cells in 3D: an introduction to electron tomography, Trends in Cell Biology, vol.15, issue.1, pp.43-51, 2005.

J. R. Kremer, D. N. Mastronarde, and J. R. Mcintosh, Computer Visualization of Three-Dimensional Image Data Using IMOD, Journal of Structural Biology, vol.116, issue.1, pp.71-76, 1996.

J. Bernard-heymann, G. Cardone, D. C. Winkler, and A. C. Steven, Computational resources for cryo-electron tomography in Bsoft, Journal of Structural Biology, vol.161, issue.3, pp.232-242, 2008.

-. L. , Zeng -Image reconstruction a tutorial, Computerized Medical Imaging and Graphics, vol.25, pp.97-103, 2001.

-. , Gilbert-Iterative methods for the three-dimensional reconstruction of an object from projections, Journal of Theoretical Biology, vol.36, pp.105-117, 1972.

-. R. Gordon, R. Bender, and G. , Herman -Algebraic Reconstruction Techniques (ART) for Three-dimensional Electron Microscopy and X-ray Photography, J. theor. BioI, vol.29, pp.471-481, 1970.

D. A. Hanaor, L. Hu, W. H. Kan, G. Proust, M. Foley et al., Compressive performance and crack propagation in Al alloy/Ti 2 AlC composites, Materials Science and Engineering: A, vol.672, pp.247-256, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02308363

K. Roth, R. C. Ferreira, and E. R. Wright, Cryo-electron tomography of bacterial viruses, NMR-Tomography and -Spectroscopy in Medicine, vol.435, pp.179-186, 1984.

C. A. -diebolder, A. J. Koster, and R. I. Koning, Pushing the resolution limits in cryo electron tomography of biological structures, Journal of Microscopy, vol.248, issue.1, pp.1-5, 2012.

J. -radon, Ueber die Bestimmung von Funktionnen durch ihre Integralwerte langs gewisser Mannigfaltigkeiten, Académie Royale des Sciences de Saxe, pp.262-77, 1917.

-. Horcajada, R. Gref, T. Baati, P. K. Allan, G. Maurin et al., Chem. Rev, vol.112, p.1232, 2012.

-. Imaz, M. Rubio-martinez, J. An, I. Sole-font, N. L. Rosi et al., Chem. Commun, pp.47-7287, 2011.

-. Rabone, Y. Yue, S. Y. Chong, K. C. Stylianou, J. Bacsa et al., Science, p.1053, 2010.

P. Horcajada, S. Surblé, C. Serre, D. Y. Hong, Y. K. Seo et al., Synthesis and catalytic properties of MIL-100(Fe), an iron(iii) carboxylate with large pores, Chem. Commun, issue.27, pp.2820-2822, 2007.

F. M. Ross, Opportunities and Challenges in Liquid Cell Electron Microscopy. Science (80), p.9886, 2015.

N. De-jonge and F. M. Ross, Electron microscopy of specimens in liquid, Nature Nanotechnology, vol.6, issue.11, pp.695-704, 2011.

-. M. Ross, Growth processes and phase transformations studied by in situ transmission electron microscopy, IBM J. Res. Develop, vol.44, pp.489-501, 2000.

-. Radisic, F. M. Ross, and P. C. Searson, In situ study of the growth kinetics of individual island electrodeposition of copper, J. Phys. Chem. B, vol.110, issue.15, pp.7862-7868, 2006.

-. M. Schneider, M. M. Norton, B. J. Mendel, J. M. Grogan, F. M. Ross et al., Electron-water interactions and implications for liquid cell electron microscopy, J. Phys. Chem. C, vol.118, pp.22373-22382, 2014.

M. J. Williamson, R. M. Tromp, P. M. Vereecken, R. Hull, and F. M. Ross, Dynamic Microscopy of Nanoscale Cluster Growth at the Solid-Liquid Interface, Nat Mater, vol.2, issue.8, pp.532-568, 2003.

R. Møller-nielsen, S. Canepa, M. N. Yesibolati, C. P. Nielsen, H. Bruus et al., Situ Liquid SEM Studies of Electrochemical and Radiolytic Processes. Microscopy and Microanalysis, vol.24, pp.338-339, 2018.

Y. S. Jun, D. Kim, and C. W. Neil, Heterogeneous Nucleation and Growth of Nanoparticles at Environmental Interfaces, Acc. Chem. Res, vol.49, issue.9, p.1681, 2016.

G. Ramesh,

B. Sreedhar and T. P. Radhakrishnan, Real Time Monitoring of the in Situ Growth of Silver Nanoparticles in a Polymer Film under Ambient Conditions, Phys. Chem. Chem. Phys, issue.43, p.10059, 2009.

J. F. Creemer, S. Helveg, P. J. Kooyman, A. M. Molenbroek, H. W. Zandbergen et al., A MEMS Reactor for Atomic-Scale Microscopy of Nanomaterials Under Industrially Relevant Conditions, Journal of Microelectromechanical Systems, vol.19, issue.2, pp.254-264, 2010.

B. C. Garrett, D. A. Dixon, D. M. Camaioni, D. M. Chipman, M. A. Johnson et al., Role of Water in Electron-Initiated Processes and Radical Chemistry: Issues and Scientific Advances, Chemical Reviews, vol.105, issue.1, pp.355-390, 2005.

H. -zheng, R. K. Smith, Y. Jun, C. Kisielowski, U. Dahmen et al., Observation of Single Colloidal Platinum Nanocrystal Growth Trajectories, Science, vol.324, issue.5932, pp.1309-1312, 2009.

N. M. Schneider, Electron Beam Effects in Liquid Cell TEM and STEM. Liquid Cell Electron Microscopy, pp.140-163

-. E. Holtz, Y. Yu, J. Rivera, H. D. Abruña, and D. A. Muller, Situ TEM for Quantitative Electrochemistry of Energy Systems" Microscopy and Microanalysis, vol.21, pp.1509-1510, 2015.

P. Fenter, S. S. Lee, Z. Zhang, and N. C. Sturchio, In situ imaging of orthoclase-aqueous solution interfaces with x-ray reflection interface microscopy, Journal of Applied Physics, vol.110, issue.10, p.102211, 2011.

M. Lacroix, Numerical simulation of a shell-and-tube latent heat thermal energy storage unit, Solar Energy, vol.50, issue.4, pp.357-367, 1993.

T. Schuh and N. De-jonge, Liquid scanning transmission electron microscopy: Nanoscale imaging in micrometers-thick liquids, Comptes Rendus Physique, vol.15, issue.2-3, pp.214-223, 2014.

-. Dupouy, Electron microscopy at very high voltages, Advances in optical and electron microscopy, vol.2, p.167, 1968.

N. De-jonge, N. D. Browning, J. E. Evans, S. W. Chee, and F. M. Ross, Resolution in Liquid Cell Experiments. Liquid Cell Electron Microscopy, pp.164-188

L. Lartigue, P. Hugounenq, D. Alloyeau, S. P. Clarke, M. Lévy et al., Cooperative Organization in Iron Oxide Multi-Core Nanoparticles Potentiates Their Efficiency as Heating Mediators and MRI Contrast Agents, ACS Nano, vol.6, issue.12, p.10935, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00820693

A. -boni, A. M. Basini, L. Capolupo, C. Innocenti, M. Corti et al., Optimized PAMAM Coated Magnetic Nanoparticles for Simultaneous Hyperthermic Treatment and Contrast Enhanced MRI Diagnosis, vol.7, p.44104, 2017.

A. Espinosa, R. Di-corato, J. Kolosnjaj-tabi, P. Flaud, T. Pellegrino et al., Duality of Iron Oxide Nanoparticles in Cancer Therapy: Amplification of Heating Efficiency by Magnetic Hyperthermia and Photothermal Bimodal Treatment, ACS Nano, vol.10, issue.2, p.2436, 2016.

C. Martinez-boubeta, K. Simeonidis, A. Makridis, M. Angelakeris, O. Iglesias et al., Learning from Nature to Improve the Heat Generation of Iron-Oxide Nanoparticles for Magnetic Hyperthermia Applications

W. -baaziz, B. P. Pichon, S. Fleutot, Y. Liu, C. Lefevre et al., Begin-Colin, S. Magnetic Iron Oxide Nanoparticles: Reproducible Tuning of the Size and Nanosized-Dependent Composition, Defects, and Spin Canting, J. Phys. Chem. C, issue.7, p.3795, 2014.

J. E. Evans, K. L. Jungjohann, N. D. Browning, and I. Arslan, Controlled Growth of Nanoparticles from Solution with in Situ Liquid Transmission Electron Microscopy, Nano Lett, issue.7, p.2809, 2011.

R. Hufschmid, H. Arami, R. M. Ferguson, M. Gonzales, E. Teeman et al., Synthesis of Phase-Pure and Monodisperse Iron Oxide Nanoparticles by Thermal Decomposition, Hyeon, T. Ultra-Large-Scale Syntheses of Monodisperse Nanocrystals, vol.7, p.891, 2004.

R. Hufschmid, H. Arami, R. M. Ferguson, M. Gonzales, E. Teeman et al., Synthesis of Phase-Pure and Monodisperse Iron Oxide Nanoparticles by Thermal Decomposition, Nanoscale, vol.7, issue.25, p.8599, 2012.

S. G. Kwon and T. Hyeon, Formation Mechanisms of Uniform Nanocrystals via Hot-Injection and Heat-Up Methods, Small, vol.7, issue.19, p.2685, 2011.

V. K. -lamer, R. H. Dinegar, and . Theory, Production and Mechanism of Formation of Monodispersed Hydosols, J. Am. Chem. Soc, vol.72, issue.8, p.4847, 1950.

P. G. Vekilov, Nucleation. Cryst. Growth Des, issue.12, p.5007, 2010.

A. Sauter, F. Roosen-runge, F. Zhang, G. Lotze, R. M. Jacobs et al., Real-Time Observation of Nonclassical Protein Crystallization Kinetics, J. Am. Chem. Soc, vol.137, issue.4, p.1485, 2015.

D. Vivarès, E. W. Kaler, A. M. Lenhoff, Y. Mikhlin, A. Karacharov et al., Monodisperse Iron Oxide Nanoparticles by Thermal Decomposition: Elucidating Particle Formation by Second-Resolved in Situ Small-Angle X-Ray Scattering, Quantitative Imaging by Confocal Scanning Fluorescence Microscopy of Protein Crystallization via Liquid-Liquid Phase Separation, vol.362, p.12571, 2005.

J. Baumgartner, A. Dey, P. H. Bomans, C. Coadou, and . Le,

P. Fratzl, N. A. Sommerdijk, and D. Faivre, Nucleation and Growth of Magnetite from Solution, Nat. Mater, vol.12, issue.4, p.310, 2013.

D. Alloyeau, W. Dachraoui, Y. Javed, H. Belkahla, G. Wang et al., Unravelling Kinetic and Thermodynamic Effects on the Growth of Gold Nanoplates by Liquid Transmission Electron Microscopy, Nano Lett, vol.15, issue.4, p.2574, 2015.

C. T. -dinh, T. D. Nguyen, F. Kleitz, and T. O. Do, Shape-Controlled Synthesis of Metal Oxide Nanocrystals

P. Stanford, . Ed, and . Singapore, , vol.3, 2012.

H. Mehranpour, M. Askari, M. S. Ghamsari, and H. Farzalibeik, Study on the Phase Transformation Kinetics of Sol-Gel DrivedTiO Nanoparticles, J. Nanomater, vol.1, 2010.