, particular

, We now turn to the case of R n . For any 1 i n, we define the 1-form R n \ {0} by : G i (y) j = ?

P. T. Allen, A. Clausen, and J. Isenberg, Near-constant mean curvature solutions of the Einstein constraint equations with non-negative Yamabe metrics, Classical Quantum Gravity, vol.25, issue.7, p.15, 2008.

T. Aubin, Nonlinear analysis on manifolds. Monge-Ampère equations, Grundlehren der Mathematischen Wissenschaften, vol.252

. Springer-verlag, , 1982.

R. Beig, P. T. Chru?ciel, and R. Schoen, KIDs are non-generic

A. and H. Poincaré, , vol.6, pp.155-194, 2005.

R. Bartnik and J. Isenberg, The constraint equations, The Einstein equations and the large scale behavior of gravitational fields, pp.1-38, 2004.

Y. Choquet-bruhat, General relativity and the Einstein equations. Oxford Mathematical Monographs, 2009.

Y. Choquet-bruhat, Introduction to general relativity, black holes, and cosmology, 2015.

Y. Choquet, -. Bruhat, and R. Geroch, Global aspects of the Cauchy problem in general relativity, Comm. Math. Phys, vol.14, pp.329-335, 1969.

Y. Choquet-bruhat, J. Isenberg, and D. Pollack, The Einsteinscalar field constraints on asymptotically Euclidean manifolds, Chinese Ann. Math. Ser. B, vol.27, issue.1, pp.31-52, 2006.

Y. Choquet-bruhat, J. Isenberg, and D. Pollack, The constraint equations for the Einstein-scalar field system on compact manifolds, Classical Quantum Gravity, vol.24, issue.4, pp.809-828, 2007.

Y. Choquet, -. Bruhat, J. W. York, and J. , The Cauchy problem, General relativity and gravitation, vol.1, pp.99-172, 1980.

P. T. Chru?ciel, J. Corvino, and J. Isenberg, Construction of Nbody initial data sets in general relativity, Comm. Math. Phys, vol.304, issue.3, pp.637-647, 2011.

P. T. Chru?ciel and E. Delay, On mapping properties of the general relativistic constraints operator in weighted function spaces, with applications, p.103, 2003.

L. A. Caffarelli, B. Gidas, and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math, vol.42, issue.3, pp.271-297, 1989.

P. T. Chru?ciel, J. Isenberg, and D. Pollack, Initial data engineering, Comm. Math. Phys, vol.257, issue.1, pp.29-42, 2005.

J. Corvino and R. M. Schoen, On the asymptotics for the vacuum Einstein constraint equations, J. Differential Geom, vol.73, issue.2, pp.185-217, 2006.

A. Carlotto and R. Schoen, Localizing solutions of the einstein constraint equations, 2014.

M. Dahl, R. Gicquaud, and E. Humbert, A limit equation associated to the solvability of the vacuum Einstein constraint equations by using the conformal method, Duke Math. J, vol.161, issue.14, pp.2669-2697, 2012.

O. Druet and E. Hebey, Stability and instability for Einsteinscalar field Lichnerowicz equations on compact Riemannian manifolds, Math. Z, vol.263, issue.1, pp.33-67, 2009.

J. Dilts, M. Holst, T. Kozareva, and D. Maxwell, Numerical Bifurcation Analysis of the Conformal Method, 2017.

O. Druet, E. Hebey, and F. Robert, Blow-up theory for elliptic PDEs in Riemannian geometry, Mathematical Notes, vol.45, 2004.

O. Druet and B. Premoselli, Stability of the Einstein-Lichnerowicz constraint system, Math. Ann, vol.362, issue.3-4, pp.839-886, 2015.

O. Druet, La notion de stabilité pour des équations aux dérivées partielles elliptiques, Ensaios Matemáticos, vol.19, 2010.

L. C. Evans, Partial differential equations, Graduate Studies in Mathematics, vol.19, 2010.

Y. Fourès-bruhat, Théorème d'existence pour certains systèmes d'équations aux dérivées partielles non linéaires, Acta Math, vol.88, pp.141-225, 1952.

S. Gallot, D. Hulin, and J. Lafontaine, Riemannian geometry, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00002870

E. Hebey, Compactness and stability for nonlinear elliptic equations, Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), 2014.

M. Holst, D. Maxwell, and R. Mazzeo, Conformal fields and the structure of the space of solutions of the einstein constraint equations, 2018.

M. Holst, G. Nagy, and G. Tsogtgerel, Rough solutions of the Einstein constraints on closed manifolds without near-CMC conditions, Comm. Math. Phys, vol.288, issue.2, pp.547-613, 2009.

E. Hebey, F. Pacard, and D. Pollack, A variational analysis of Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds, Comm. Math. Phys, vol.278, issue.1, pp.117-132, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00166002

L. Huang, On the center of mass of isolated systems with general asymptotics, Classical Quantum Gravity, vol.26, issue.1, p.25, 2009.

L. Huang, Solutions of special asymptotics to the Einstein constraint equations, Classical Quantum Gravity, vol.27, issue.24, p.10, 2010.

J. Isenberg and V. Moncrief, A set of nonconstant mean curvature solutions of the Einstein constraint equations on closed manifolds, Classical Quantum Gravity, vol.13, issue.7, pp.1819-1847, 1996.

J. Isenberg and . Murchadha, Non-CMC conformal data sets which do not produce solutions of the Einstein constraint equations, Classical Quantum Gravity, vol.21, issue.3, pp.233-241, 2004.

J. Isenberg, Constant mean curvature solutions of the Einstein constraint equations on closed manifolds, Classical Quantum Gravity, vol.12, issue.9, pp.2249-2274, 1995.

A. Lichnerowicz, L'intégration des équations de la gravitation relativiste et le problème des n corps, J. Math. Pures Appl, vol.23, issue.9, pp.37-63, 1944.

D. Maxwell, A class of solutions of the vacuum Einstein constraint equations with freely specified mean curvature, Math. Res. Lett, vol.16, issue.4, pp.627-645, 2009.

D. Maxwell, A model problem for conformal parameterizations of the Einstein constraint equations, Comm. Math. Phys, vol.302, issue.3, pp.697-736, 2011.

D. Maxwell, The conformal method and the conformal thin-sandwich method are the same, Classical Quantum Gravity, vol.31, issue.14, p.145006, 2014.

D. Maxwell, Initial data in general relativity described by expansion, conformal deformation and drift, 2014.

D. Maxwell, Conformal parameterizations of slices of flat Kasner spacetimes, Ann. Henri Poincaré, vol.16, issue.12, pp.2919-2954, 2015.

L. Ma and J. Wei, Stability and multiple solutions to Einstein-scalar field Lichnerowicz equation on manifolds, J. Math. Pures Appl, vol.99, issue.9, pp.174-186, 2013.

A. Quoc, X. Ngô, and . Xu, Existence results for the Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds, Adv. Math, vol.230, pp.2378-2415, 2012.

A. Quoc, X. Ngô, and . Xu, Existence results for the Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds in the positive case, Bull. Inst. Math. Acad. Sin. (N.S.), vol.9, issue.3, pp.451-485, 2014.

Ó. Niall, J. W. Murchadha, and J. York, Initial-value problem of general relativity. I. General formulation and physical interpretation, Phys. Rev. D, vol.10, issue.3, pp.428-436, 1974.

F. Paulin, Groupes et géométrie, 2013.

P. Petersen, Riemannian geometry, volume 171 of Graduate Texts in Mathematics, 2016.

S. I. Poho?aev, On the eigenfunctions of the equation ?u + ?f (u) = 0, Dokl. Akad. Nauk SSSR, vol.165, pp.36-39, 1965.

B. Premoselli, The Einstein-scalar field constraint system in the positive case, Comm. Math. Phys, vol.326, issue.2, pp.543-557, 2014.

B. Premoselli, Effective multiplicity for the Einstein-scalar field Lichnerowicz equation, Calc. Var. Partial Differential Equations, vol.53, pp.29-64, 2015.

B. Premoselli, Stability and instability of the Einstein-Lichnerowicz constraint system, Int. Math. Res. Not. IMRN, issue.7, pp.1951-2025, 2016.

B. Premoselli and J. Wei, Non-compactness and infinite number of conformal initial data sets in high dimensions, J. Funct. Anal, vol.270, issue.2, pp.718-747, 2016.

H. P. Pfeiffer, J. W. York, and J. , Extrinsic curvature and the Einstein constraints, Phys. Rev. D, vol.67, issue.3, p.44022, 2003.

J. Ratzkin, Pohozaev-type identities, 2009.

R. M. Schoen, Variational theory for the total scalar curvature functional for Riemannian metrics and related topics, Topics in calculus of variations, vol.1365, pp.120-154, 1987.

M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z, vol.187, issue.4, pp.511-517, 1984.

C. Vâlcu, The Constraint Equations in the Presence of a Scalar Field: The Case of the Conformal Method with Volumetric Drift, Comm. Math. Phys, 2019.

R. M. Wald, General relativity, 1984.
URL : https://hal.archives-ouvertes.fr/hal-02116509

J. W. York and J. , Conformally invariant orthogonal decomposition of symmetric tensors on Riemannian manifolds and the initial-value problem of general relativity, J. Mathematical Phys, vol.14, pp.456-464, 1973.

J. W. York and J. , Conformal "thin-sandwich" data for the initial-value problem of general relativity, Phys. Rev. Lett, vol.82, issue.7, pp.1350-1353, 1999.