K. Aden, A. Rehman, M. Falk-paulsen, T. Secher, J. Kuiper et al., Intestinal Inflammation, vol.16, pp.2208-2218, 2017.

K. Atarashi, T. Tanoue, M. Ando, N. Kamada, Y. Nagano et al., Th17 Cell Induction by Adhesion of Microbes to Intestinal Epithelial Cells, Cell, vol.163, issue.2, pp.367-380, 2015.

K. Atarashi, T. Tanoue, M. Ando, N. Kamada, Y. Nagano et al., Th17 Cell Induction by Adhesion of Microbes to Intestinal Epithelial Cells, Cell, vol.163, issue.2, pp.367-80, 2015.

J. Behnsen, S. Jellbauer, C. P. Wong, R. A. Edwards, M. D. George et al., The Cytokine IL-22 Promotes Pathogen Colonization by Suppressing Related Commensal Bacteria, Immunity, vol.40, issue.2, pp.262-273, 2014.

Y. Belkaid and O. J. Harrison, Homeostatic Immunity and the Microbiota, Immunity, vol.46, issue.4, pp.562-576, 2017.

J. J. Bunker, T. M. Flynn, J. C. Koval, D. G. Shaw, B. D. Mcdonald et al., , vol.43, pp.541-553, 2016.

S. Caballero and E. G. Pamer, the Intestine, pp.227-256, 2015.

H. L. Cash, C. V. Whitham, C. L. Behrendt, and L. V. Hooper, Symbiotic bacteria direct expression of an intestinal bactericial Lectin, vol.313, pp.1126-1130, 2006.

N. Cerf-bensussan and V. Gaboriau-routhiau, The immune system and the gut microbiota: friends or foes?, Nature Reviews. Immunology, vol.10, issue.10, pp.735-779, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01204303

H. Chung, S. J. Pamp, J. A. Hill, N. K. Surana, M. Sanna et al., , vol.149, pp.1578-1593, 2013.

K. L. Flannigan, V. L. Ngo, D. Geem, A. Harusato, S. A. Hirota et al., IL-17A-mediated neutrophil recruitment limits expansion of segmented filamentous bacteria, Mucosal Immunology, vol.10, pp.1-12, 2016.

T. C. Fung, D. Artis, and G. F. Sonnenberg, Anatomical localization of commensal bacteria in immune cell homeostasis and disease, Immunological Reviews, vol.260, issue.1, pp.35-49, 2014.

V. Gaboriau-routhiau, S. Rakotobe, E. L??cuyer, I. Mulder, A. Lan et al., The Key Role of Segmented Filamentous Bacteria in the Coordinated Maturation of Gut Helper T Cell Responses, Immunity, vol.31, issue.4, pp.677-689, 2009.

S. Gauguet, S. D'ortona, K. Ahnger-pier, B. Duan, N. K. Surana et al., Intestinal microbiota of mice influences resistance to Staphylococcus aureus pneumonia, Infection and Immunity, vol.83, issue.10, pp.4003-4014, 2015.

M. Gomez-de-agüero, S. C. Ganal-vonarburg, T. Fuhrer, S. Rupp, Y. Uchimura et al., The maternal microbiota drives early postnatal innate immune development, Science, issue.6279, pp.1296-302, 2016.

Y. Goto, C. Panea, G. Nakato, A. Cebula, C. Lee et al., Segmented Filamentous Bacteria Antigens Presented by Intestinal Dendritic Cells Drive Mucosal Th17 Cell Differentiation, Immunity, vol.40, issue.4, pp.594-607, 2014.

H. Grasberger, J. Gao, H. Nagao-kitamoto, S. Kitamoto, M. Zhang et al., Increased Expression of DUOX2 Is an Epithelial Response to Mucosal Dysbiosis Required for Immune Homeostasis in Mouse Intestine, Gastroenterology, vol.149, issue.7, pp.1849-59, 2015.

X. Guo, Y. Liang, Y. Zhang, A. Lasorella, B. L. Kee et al., Innate Lymphoid Cells Control Early Colonization Resistance against Intestinal Pathogens through ID2-Dependent Regulation of the Microbiota, Immunity, vol.42, issue.4, pp.731-774, 2015.

L. V. Hooper, D. R. Littman, A. J. Macpherson, and M. P. Program, Interactions between the microbiota and the immune system, Science, issue.6086, pp.1268-1273, 2015.

W. Hueber, B. E. Sands, S. Lewitzky, M. Vandemeulebroecke, W. Reinisch et al., Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn's disease: unexpected results of a randomised, double-blind placebo-controlled trial, Gut, issue.12, pp.1693-1700, 2012.

S. Ibiza, B. García-cassani, H. Ribeiro, T. Carvalho, and L. Almeida, Europe PMC Funders Group Glial cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence, vol.535, pp.440-443, 2017.

I. Ivanov, R. Frutos, L. De, N. Manel, and K. Yoshinaga, Specific microbiota directs the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine, Cell Host &, vol.4, issue.4, pp.337-349, 2008.

I. I. Ivanov, K. Atarashi, N. Manel, E. L. Brodie, T. Shima et al., Induction of Intestinal Th17 Cells by Segmented Filamentous Bacteria, Cell, vol.139, issue.3, pp.485-498, 2009.

H. Q. Jiang, N. A. Bos, and J. J. Cebra, Timing, localization, and persistence of colonization by segmented filamentous bacteria in the neonatal mouse gut depend on immune status of mothers and pups, Infection and Immunity, vol.69, issue.6, pp.3611-3617, 2001.

R. M. Jones and A. S. Neish, Redox signaling mediated by the gut microbiota, Free Radical Biology and Medicine, vol.105, pp.41-47, 2016.

H. L. Klaasen, J. P. Koopman, M. E. Vandenbrink, M. H. Bakker, F. G. Poelma et al., Intestinal, Segmented, Filamentous Bacteria in a Wide-Range of Vertebrate Species, Laboratory Animals, vol.27, issue.2, pp.141-150, 1993.

H. L. Klaasen, P. J. Van-der-heijden, W. Stok, F. G. Poelma, J. P. Koopman et al., Apathogenic, intestinal, segmented, filamentous bacteria stimulate the mucosal immune system of mice, Infection and Immunity, vol.61, issue.1, pp.303-306, 1993.

H. L. Klaasen, J. P. Koopman, . Van-den, M. E. Brink, H. P. Van-wezel et al., Colonisation of Germ-free Mice by Segmented Filamentous Bacteria after Oral Administration of Various Murine Intestinal Wall Preparations, vol.3, 1990.

J. L. Kubinak, C. Petersen, W. Z. Stephens, R. Soto, E. Bake et al., MyD88 signaling in T cells directs IgA-mediated control of the microbiota to promote health, Cell Host & Microbe, vol.17, issue.2, pp.153-63, 2015.

P. Kumar, L. Monin, P. Castillo, W. Elsegeiny, W. Horne et al., Intestinal Interleukin-17 Receptor Signaling Mediates Reciprocal Control of the Gut Microbiota and Autoimmune Inflammation, Immunity, vol.44, issue.3, pp.659-671, 2016.

E. Larsson, V. Tremaroli, Y. S. Lee, O. Koren, I. Nookaew et al., Analysis of gut microbial regulation of host gene expression along the length of the gut and regulation of gut microbial ecology through MyD88, Gut, issue.8, pp.1124-1155, 2012.

E. Lécuyer, S. Rakotobe, H. Lengliné-garnier, C. Lebreton, M. Picard et al., Segmented filamentous bacterium uses secondary and tertiary lymphoid tissues to induce gut IgA and specific T helper 17 cell responses, Immunity, vol.40, issue.4, pp.608-620, 2014.

Y. K. Lee, J. S. Menezes, Y. Umesaki, and S. K. Mazmanian, Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis, Proceedings of the National Academy of Sciences, vol.108, issue.Supplement_1, pp.4615-4622, 2011.

L. M. Loonen, E. H. Stolte, M. T. Jaklofsky, M. Meijerink, J. Dekker et al., REG3?-deficient mice have altered mucus distribution and increased mucosal inflammatory responses to the microbiota and enteric pathogens in the ileum, Mucosal Immunology, vol.7, issue.4, pp.939-986, 2014.

I. A. Murray, R. G. Nichols, L. Zhang, A. D. Patterson, and G. H. Perdew, Expression of the aryl hydrocarbon receptor contributes to the establishment of intestinal microbial community structure in mice, Scientific Reports, vol.6, p.33969, 2016.

W. Ouyang, R. D. Hatton, and C. T. Weaver, , vol.37, pp.1061-1075, 2013.

O. Pabst, V. Cerovic, and M. Hornef, Secretory IgA in the Coordination of Establishment and Maintenance of the Microbiota, Trends in Immunology, vol.37, issue.5, pp.287-296, 2016.

A. R. Pacheco, M. M. Curtis, J. M. Ritchie, D. Munera, K. Matthew et al., , vol.492, pp.113-117, 2013.

N. W. Palm, M. R. De-zoete, T. W. Cullen, N. A. Barry, J. Stefanowski et al., Immunoglobulin A Coating Identifies Colitogenic Bacteria in Inflammatory Bowel Disease, Cell, vol.158, issue.5, pp.1000-1010, 2014.

O. B. Parks, D. A. Pociask, Z. Hodzic, J. K. Kolls, and M. Good, Interleukin-22 Signaling in the Regulation of Intestinal Health and Disease, Frontiers in Cell and Developmental Biology, vol.3, p.85, 2015.

J. M. Pickard, C. F. Maurice, M. A. Kinnebrew, M. C. Abt, D. Schenten et al., Rapid fucosylation of intestinal epithelium sustains hostcommensal symbiosis in sickness, Nature, vol.514, issue.7524, pp.638-679, 2014.

J. Qiu,

J. J. Heller, . Guo, ;. Xiaohuan, K. F. Chen, . Yang-xin et al., The Aryl Hydrocarbon Receptor Regulates Gut Immunity through Modulation of Innate Lymphoid Cells, Immunity, vol.36, issue.1, pp.92-104, 2013.

K. Sakamoto, Y. Kim, H. Hara, N. Kamada, G. Caballero-flores et al., IL-22 controls iron-dependent nutritional immunity against systemic bacterial infections, Science Immunology, vol.2, issue.8, 2017.

T. Sano, W. Huang, J. A. Hall, Y. Yang, A. Chen et al., An IL-23R/IL-22 Circuit Regulates Epithelial Serum Amyloid A to Promote Local Effector Th17 Responses, Cell, vol.163, issue.2, pp.381-393, 2015.

P. Schnupf, V. Gaboriau-routhiau, M. Gros, R. Friedman, M. Moya-nilges et al., Growth and host interaction of mouse segmented filamentous bacteria in vitro, Nature, vol.520, issue.7545, pp.99-103, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01535236

P. Schnupf, V. Gaboriau-routhiau, P. J. Sansonetti, and N. Cerf-bensussan, Segmented filamentous bacteria, Th17 inducers and helpers in a hostile world, Current Opinion in Microbiology, vol.35, pp.100-109, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01516893

V. F. Shih, .. Cox, J. Kljavin, N. M. Dengler, H. S. Reichelt et al., Homeostatic IL-23 receptor signaling limits Th17 response through IL-22-mediated containment of commensal microbiota, Proceedings of the National Academy of Sciences of the United States of America, vol.111, pp.13942-13949, 2014.

J. Snel, C. C. Hermsen, H. J. Smits, N. A. Bos, W. M. Eling et al., Interactions between gut-associated lymphoid tissue and colonization levels of indigenous, segmented, filamentous bacteria in the small intestine of mice, Canadian Journal of Microbiology, vol.44, issue.12, pp.1177-1182, 1998.

F. Sommer and F. Bäckhed, The gut microbiota engages different signaling pathways to induce Duox2 expression in the ileum and colon epithelium, Mucosal Immunology, vol.8, issue.2, pp.372-381, 2015.

G. F. Sonnenberg, L. A. Monticelli, T. Alenghat, T. C. Fung, N. A. Hutnick et al., Innate Lymphoid Cells Promote Anatomical Containment of Lymphoid-Resident Commensal Bacteria, Science, vol.336, issue.6086, pp.1321-1325, 2012.

G. F. Sonnenberg and D. Artis, Innate lymphoid cells in the initiation, regulation and resolution of inflammation, Nature Medicine, vol.21, issue.7, pp.698-708, 2015.

S. Stockinger, C. U. Duerr, M. Fulde, T. Dolowschiak, J. Pott et al., TRIF signaling drives homeostatic intestinal epithelial antimicrobial peptide expression, Journal of Immunology, vol.193, issue.8, pp.4223-4257, 1950.

K. Suzuki, B. Meek, Y. Doi, M. Muramatsu, T. Chiba et al., Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut, Proceedings of the National Academy of Sciences of the United States of America, vol.101, issue.7, pp.1981-1986, 2004.

C. Tropini, K. A. Earle, K. C. Huang, and J. L. Sonnenburg, The Gut Microbiome: Connecting Spatial Organization to Function, Cell Host and Microbe, vol.21, issue.4, pp.433-442, 2017.

C. Ubeda, L. Lipuma, A. Gobourne, A. Viale, I. Leiner et al., Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice, The Journal of Experimental Medicine, vol.209, issue.8, pp.1445-56, 2012.

C. Ubeda, L. Lipuma, A. Gobourne, A. Viale, I. Leiner et al., Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice, The Journal of Experimental Medicine, vol.209, issue.8, pp.1445-56, 2012.

V. Upadhyay, V. Poroyko, T. Kim, S. Devkota, S. Fu et al., Lymphotoxin regulates commensal responses to enable diet-induced obesity, Nature Immunology, vol.13, issue.10, pp.947-53, 2012.

S. Vaishnava, M. Yamamoto, K. M. Severson, K. A. Ruhn, X. Yu et al., , vol.334, pp.255-258, 2012.

K. Vlantis, . Polykratis, P. Welz, G. Van-loo, M. Pasparakis et al., TLRindependent anti-inflammatory function of intestinal epithelial TRAF6 signalling prevents DSS-induced colitis in mice, pp.1-9, 2015.

S. Wang, L. Charbonnier, M. Rivas, P. Georgiev, N. Li et al., MyD88 Adaptor-Dependent Microbial Sensing by Regulatory T Cells Promotes Mucosal Tolerance and Enforces Commensalism, Immunity, vol.43, issue.2, pp.289-303, 2015.

H. Wu, I. I. Ivanov, J. Darce, K. Hattori, and T. Shima, , vol.32, pp.815-827, 2011.

Y. Yang, M. B. Torchinsky, M. Gobert, H. Xiong, M. Xu et al., , vol.510, pp.152-156, 2014.

M. T. Abreu, P. Vora, E. Faure, L. S. Thomas, E. T. Arnold et al., Decreased Expression of Toll-Like Receptor-4 and MD-2 Correlates with Intestinal Epithelial Cell Protection Against Dysregulated Proinflammatory Gene Expression in Response to Bacterial Lipopolysaccharide, The Journal of Immunology, vol.167, issue.3, pp.1609-1616, 2001.

K. Aden, A. Rehman, M. Falk-paulsen, T. Secher, J. Kuiper et al., Intestinal Inflammation, vol.16, pp.2208-2218, 2017.

M. Aguilera, M. Cerdà-cuéllar, and V. Martínez, Antibiotic-induced dysbiosis alters host-bacterial interactions and leads to colonic sensory and motor changes in mice, Gut Microbes, vol.6, issue.1, pp.10-23, 2015.

M. Aguilera, P. Vergara, and V. Martínez, Environment-Related Adaptive Changes of Gut Commensal Microbiota Do not Alter Colonic Toll-Like Receptors but Modulate the Local Expression of Sensory-Related Systems in Rats, Microbial Ecology, vol.66, issue.1, pp.232-243, 2013.

P. C. Allen, Comparative study of long, segmented, filamentous organisms in chickens and mice, Laboratory Animal Science, vol.42, issue.6, pp.542-547, 1992.

F. Aloisi and R. Borrell, Lymphoid neogenesis in chronic inflammatory diseases, Nature Reviews. Immunology, vol.6, issue.3, pp.205-217, 2006.

E. R. Angert, Alternatives to binary fission in bacteria, Nature Reviews. Microbiology, vol.3, issue.3, pp.214-238, 2005.

H. Arase, Direct Recognition of Cytomegalovirus by Activating and Inhibitory NK Cell Receptors, Science, vol.296, issue.5571, pp.1323-1326, 2002.

K. Atarashi, J. Nishimura, T. Shima, Y. Umesaki, M. Yamamoto et al., , 2008.

, ATP drives lamina propria T(H)17 cell differentiation, Nature, vol.455, issue.7214, pp.808-812

A. Shean, J. Dublin, P. J. , and K. J. , , vol.76, pp.211-220, 2009.

D. T. Avery, V. L. Bryant, C. S. Ma, R. De-waal-malefyt, and S. G. Tangye, IL-21-induced isotype switching to IgG and IgA by human naive B cells is differentially regulated by IL-4, Journal of Immunology, vol.181, issue.3, pp.1767-79, 1950.

T. Ayabe, D. P. Satchell, P. Pesendorfer, H. Tanabe, C. L. Wilson et al., Activation of Paneth cell ??-defensins in mouse small intestine, Journal of Biological Chemistry, vol.277, issue.7, pp.5219-5228, 2002.

T. Ayabe, D. P. Satchell, C. L. Wilson, W. C. Parks, M. E. Selsted et al., Secretion of microbicidal alpha-defensins by intestinal Paneth cells in response to bacteria, Nature Immunology, vol.1, issue.2, pp.113-121, 2000.

F. Backhed, H. Ding, T. Wang, L. V. Hooper, G. Y. Koh et al., The gut microbiota as an environmental factor that regulates fat storage, J. I, vol.101, issue.44, pp.15718-15723, 2004.

N. Barker, Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration, Nature Reviews. Molecular Cell Biology, vol.15, issue.1, pp.19-33, 2014.

A. Barketi-klai, S. Hoys, S. Lambert-bordes, A. Collignon, and I. Kansau, Role of fibronectinbinding protein A in Clostridium difficile intestinal colonization, Journal of Medical Microbiology, vol.60, issue.8, pp.1155-1161, 2011.

A. Barketi-klai, S. Hoys, S. Lambert-bordes, A. Collignon, and I. Kansau, Role of fibronectinbinding protein A in Clostridium difficile intestinal colonization, Journal of Medical Microbiology, vol.60, issue.8, pp.1155-1161, 2011.

F. Barone, P. Patel, J. D. Sanderson, and J. Spencer, Gut-associated lymphoid tissue contains the molecular machinery to support T-cell-dependent and T-cell-independent class switch recombination, Mucosal Immunology, vol.2, issue.6, pp.495-503, 2009.

F. Barone, A. Vossenkamper, L. Boursier, W. Su, A. Watson et al., IgAproducing plasma cells originate from germinal centers that are induced by B-cell receptor engagement in humans, Gastroenterology, vol.140, issue.3, pp.947-956, 2011.

R. Basu, D. B. O'quinn, D. J. Silberger, T. R. Schoeb, L. Fouser et al., Th22 cells are an important source of IL-22 for host protection against enteropathogenic bacteria, Immunity, vol.37, issue.6, pp.1061-1075, 2012.

J. Behnsen, S. Jellbauer, C. P. Wong, R. A. Edwards, M. D. George et al., The Cytokine IL-22 Promotes Pathogen Colonization by Suppressing Related Commensal Bacteria, Immunity, vol.40, issue.2, pp.262-273, 2014.

Y. Belkaid and O. J. Harrison, Homeostatic Immunity and the Microbiota, Immunity, vol.46, issue.4, pp.562-576, 2017.

M. Bemark, P. Boysen, and N. Y. Lycke, Induction of gut IgA production through T celldependent and T cell-independent pathways, Annals of the New York Academy of Sciences, vol.1247, pp.97-116, 2012.

J. Benckert, N. Schmolka, C. Kreschel, M. J. Zoller, A. Sturm et al., The majority of intestinal IgA+ and IgG+ plasmablasts in the human gut are antigen-specific, Journal of Clinical Investigation, vol.121, issue.5, pp.1946-1955, 2011.

A. Benson, R. Pifer, C. L. Behrendt, and L. V. Hooper, Gut commensal bacteria direct a protective immune response against the human pathogen Toxoplasma gondii, Cell Host Microbe, vol.6, issue.2, pp.187-196, 2009.

J. Benveniste, G. Lespinats, C. Adam, and J. Salomon, Immunoglobulins in Intact , Immunized , and Contaminated Axenic Mice : Study of Serum IgA Information about subscribing to The Journal of, Journal of Immunology, vol.107, issue.6, pp.1647-55, 1971.

E. N. Bergman, Energy contributions of volatile fatty acids from the gastrointestinal tract in various species, Physiological Reviews, vol.70, issue.2, pp.567-590, 1990.

P. Bergqvist, E. Gardby, A. Stensson, M. Bemark, and N. Y. Lycke, Gut IgA class switch recombination in the absence of CD40 does not occur in the lamina propria and is independent of germinal centers, J Immunol, vol.177, issue.11, pp.7772-7783, 2006.

E. Bettelli, M. Oukka, and V. K. Kuchroo, T(H)-17 cells in the circle of immunity and autoimmunity, Nature Immunology, vol.8, issue.4, pp.345-50, 2007.

G. Bhinder, M. Stahl, H. P. Sham, S. M. Crowley, V. Morampudi et al., Intestinal epithelium-specific MyD88 signaling impacts host susceptibility to infectious colitis by promoting protective goblet cell and antimicrobial responses, Infection and Immunity, vol.82, issue.9, pp.3753-3763, 2014.

R. Biassoni, A. Pessino, C. Bottino, D. Pende, L. Moretta et al., The murine homologue of the human NKp46, a triggering receptor involved in the induction of natural cytotoxicity, European Journal of Immunology, vol.29, issue.3, pp.1014-62, 1999.

A. Biragyn, P. A. Ruffini, C. A. Leifer, E. Klyushnenkova, A. Shakhov et al., Toll-Like Receptor 4-Dependent Activation of Dendritic Cells by -Defensin 2, Science, vol.298, issue.5595, pp.1025-1029, 2002.

G. M. Birchenough, E. E. Nystrom, M. E. Johansson, and G. C. Hansson, A sentinel goblet cell guards the colonic crypt by triggering Nlrp6-dependent Muc2 secretion, Science, vol.352, issue.6293, pp.1535-1542, 2016.

K. E. Block, Z. Zheng, A. L. Dent, B. L. Kee, and H. Huang, Gut Microbiota Regulates K/BxN Autoimmune Arthritis through Follicular Helper T but Not Th17 Cells, Journal of Immunology, vol.196, issue.4, pp.1550-1557, 1950.

D. Bouskra, C. Brézillon, M. Bérard, C. Werts, R. Varona et al., , 2008.

, Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis, Nature, vol.456, issue.7221, pp.507-510

I. Brandão, N. Hörmann, S. Jäckel, and C. Reinhardt, TLR5 expression in the small intestine depends on the adaptors MyD88 and TRIF, but is independent of the enteric microbiota, Gut Microbes, vol.6, issue.3, pp.202-206, 2015.

K. Brandl, G. Plitas, C. N. Mihu, C. Ubeda, T. Jia et al., Innate Immune Deficits, vol.455, pp.804-807, 2009.

P. Brandtzaeg, H. Kiyono, R. Pabst, and M. W. Russell, Terminology: nomenclature of mucosaassociated lymphoid tissue, Mucosal Immunology, vol.1, issue.1, pp.31-37, 2008.

J. J. Bunker, T. M. Flynn, J. C. Koval, D. G. Shaw, B. D. Mcdonald et al., , vol.43, pp.541-553, 2016.

S. Buonocore, P. P. Ahern, H. H. Uhlig, I. I. Ivanov, D. R. Littman et al., , 2010.

, Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology, Nature, vol.464, issue.7293, pp.1371-1375

R. Caesar, C. S. Reigstad, H. K. Bäckhed, C. Reinhardt, M. Ketonen et al., Gut-derived lipopolysaccharide augments adipose macrophage accumulation but is not essential for impaired glucose or insulin tolerance in mice, Gut, issue.12, pp.1701-1708, 2012.

A. T. Cao, S. Yao, B. Gong, R. I. Nurieva, C. O. Elson et al., Interleukin (IL)-21 promotes intestinal IgA response to microbiota, Mucosal Immunology, vol.8, issue.5, pp.1072-1082, 2015.

H. L. Cash, C. V. Whitham, C. L. Behrendt, and L. V. Hooper, Symbiotic bacteria direct expression of an intestinal bactericial Lectin, vol.313, pp.1126-1130, 2006.

B. B. Cazac and J. Roes, TGF-beta receptor controls B cell responsiveness and induction of IgA in vivo, Immunity, vol.13, issue.4, pp.443-451, 2000.

M. Cella, A. Fuchs, W. Vermi, F. Facchetti, K. Otero et al., , vol.457, pp.722-725, 2013.

M. Cella, H. Miller, and C. Song, Beyond NK cells: The expanding universe of innate lymphoid cells, Frontiers in Immunology, vol.5, pp.1-11, 2014.

N. Cerf-bensussan and V. Gaboriau-routhiau, The immune system and the gut microbiota: friends or foes?, Nature Reviews. Immunology, vol.10, issue.10, pp.735-779, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01204303

A. Cerutti, The regulation of IgA class switching, Nature Reviews. Immunology, vol.8, issue.6, pp.421-455, 2008.

S. H. Chang, H. Park, and C. Dong, Act1 Adaptor Protein Is an Immediate and Essential Signaling Component of Interleukin-17 Receptor, Journal of Biological Chemistry, vol.281, issue.47, pp.35603-35607, 2006.

D. G. Chase and S. L. Erlandsen, Evidence for a complex life cycle and endospore formation in the attached, filamentous, segmented bacterium from murine ileum, Journal of Bacteriology, vol.127, issue.1, pp.572-583, 1976.

C. Chassin, M. Kocur, J. Pott, C. U. Duerr, D. Gütle et al., MiR-146a mediates protective innate immune tolerance in the neonate intestine, Cell Host and Microbe, 2010.

H. Cheng, Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. IV. Paneth cells, The American Journal of Anatomy, vol.141, issue.4, pp.521-535, 1974.

M. Cherrier, C. Ohnmacht, S. Cording, and G. Eberl, Development and function of intestinal innate lymphoid cells, Current Opinion in Immunology, vol.24, issue.3, pp.277-283, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01402726

O. Chertov, D. F. Michiel, L. Xu, J. M. Wang, K. Tani et al., Identification of defensin-1, defensin-2, and CAP37/azurocidin as T-cell chemoattractant proteins released from interleukin-8-stimulated neutrophils, Journal of Biological Chemistry, vol.271, issue.6, pp.2935-2940, 1996.

M. Chieppa, M. Rescigno, A. Y. Huang, and R. N. Germain, Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement, The Journal of Experimental Medicine, vol.203, issue.13, pp.2841-52, 2006.

Y. J. Choi, E. Im, H. K. Chung, C. Pothoulakis, and S. H. Rhee, TRIF mediates toll-like receptor 5-induced signaling in intestinal epithelial cells, Journal of Biological Chemistry, vol.285, issue.48, pp.37570-37578, 2010.

J. Chow and S. K. Mazmanian, A pathobiont of the microbiota balances host colonization and intestinal inflammation, Cell Host and Microbe, vol.7, issue.4, pp.265-276, 2010.

H. Chu, M. Pazgier, G. Jung, S. Nuccio, P. A. Castillo et al., , 2015.

, Human ?-defensin 6 promotes mucosal innate immunity through self-assembled peptide nanonets, Science, vol.337, issue.6093, pp.477-481

S. R. Coats, A. B. Berezow, T. T. To, S. Jain, B. W. Bainbridge et al., The lipid a phosphate position determines differential host toll-like receptor 4 responses to phylogenetically related symbiotic and pathogenic bacteria, Infection and Immunity, vol.79, issue.1, pp.203-210, 2011.

R. L. Coffman, D. A. Lebman, and B. Shrader, Transforming growth factor beta specifically enhances IgA production by lipopolysaccharide-stimulated murine B lymphocytes, The Journal of Experimental Medicine, vol.170, issue.3, pp.1039-1083, 1989.

M. Colonna, Interleukin-22-Producing Natural Killer Cells and Lymphoid Tissue Inducer-like Cells in Mucosal Immunity, Immunity, vol.31, issue.1, pp.15-23, 2009.

Y. Cong, T. Feng, K. Fujihashi, T. R. Schoeb, and C. O. Elson, A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota, Proceedings of the National Academy of Sciences of the United States of America, vol.106, pp.19256-19261, 2009.

A. P. Corfield, Mucins: a biologically relevant glycan barrier in mucosal protection, Biochimica et Biophysica Acta, vol.1850, issue.1, pp.236-252, 2015.

S. W. Craig and J. J. Cebra, The Journal of Experimpeyer's patches: an enriched source of precursors for IgA-producing immunocytes in the rabbit, pp.10021-10021, 2004.

S. W. Craig and J. J. Cebra, Peyer's patches: an enriched source of precursors for IgA-producing immunocytes in the rabbit, pp.10021-10021, 2004.

A. Croswell, E. Amir, P. Teggatz, M. Barman, and N. H. Salzman, Prolonged impact of antibiotics on intestinal microbial ecology and susceptibility to enteric Salmonella infection, Infection and Immunity, vol.77, issue.7, pp.2741-2753, 2009.

E. E. Crouch, Z. Li, M. Takizawa, S. Fichtner-feigl, P. Gourzi et al., Regulation of AID expression in the immune response, The Journal of Experimental Medicine, vol.204, issue.5, pp.1145-56, 2007.

L. F. Da-rocha, A. L. Duarte, A. T. Dantas, H. A. Mariz, . Pitta et al., Increased serum interleukin 22 in patients with rheumatoid arthritis and correlation with disease activity, The Journal of Rheumatology, vol.39, issue.7, pp.1320-1325, 2012.

C. P. Davis and D. C. Savage, Filamentous Microbes Gastrointestinal Tract Habitat , Succession , Attachment , and Morphology of Segmented , Filamentous Microbes Indigenous to the Murine Gastrointestinal Tract, vol.10, pp.948-956, 1974.

T. L. Denning, Y. Wang, S. R. Patel, I. R. Williams, and B. Pulendran, Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses, Nature Immunology, vol.8, issue.10, pp.1086-94, 2007.

R. Dessein, M. Gironella, C. Vignal, L. Peyrin-biroulet, H. Sokol et al., Toll-like receptor 2 is critical for induction of Reg3 beta expression and intestinal clearance of Yersinia pseudotuberculosis, Gut, vol.58, issue.6, pp.771-776, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00404858

L. Dianda, A. Gulbranson-judge, W. Pao, A. C. Hayday, I. C. Maclennan et al., , 1996.

, Germinal center formation in mice lacking alpha beta T cells, European Journal of Immunology, vol.26, issue.7, pp.1603-1607

G. E. Diehl, R. S. Longman, J. Zhang, B. Breart, C. Galan et al., , 2013.

, Microbiota restrict trafficking of bacteria to mesenteric lymph nodes by CX3CR1hi cells, Nature, vol.494, issue.7435, pp.116-120

G. P. Donaldson, S. M. Lee, and S. K. Mazmanian, Gut biogeography of the bacterial microbiota, Nature Reviews Microbiology, vol.14, issue.1, pp.20-32, 2015.

M. Dullaers, D. Li, Y. Xue, L. Ni, I. Gayet et al., Immunology, vol.30, issue.1, pp.120-129, 2010.

L. Dumoutier, J. Louahed, and J. C. Renauld, Cloning and characterization of IL-10-related T cellderived inducible factor (IL-TIF), a novel cytokine structurally related to IL-10 and inducible by IL-9, Journal of Immunology, vol.164, issue.4, pp.1814-1819, 2000.

G. Eberl and M. Lochner, The development of intestinal lymphoid tissues at the interface of self and microbiota, Mucosal Immunology, vol.2, issue.6, pp.478-485, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-00509629

G. Eberl and D. R. Littman, The role of the nuclear hormone receptor RORgammat in the development of lymph nodes and Peyer's patches, Immunological Reviews, vol.195, pp.81-90, 2003.

P. B. Eckburg, E. M. Bik, C. N. Bernstein, E. Purdom, L. Dethlefsen et al., Diversity of the human intestinal microbial flora, Science, issue.5728, pp.1635-1638, 2005.

B. Ericksen, Z. Wu, W. Lu, and R. I. Lehrer, Antibacterial Activity and Specificity of the Antibacterial Activity and Specificity of the Six, Antimicrobial Agents and Chemotherapy, vol.49, issue.1, pp.8-15, 2005.

B. Ericksen, Z. Wu, W. Lu, and R. I. Lehrer, Antibacterial Activity and Specificity of the Antibacterial Activity and Specificity of the Six, Antimicrobial Agents and Chemotherapy, vol.49, issue.1, pp.8-15, 2005.

S. Fagarasan, M. Muramatsu, K. Suzuki, H. Nagaoka, H. Hiai et al., Critical roles of activation-induced cytidine deaminase in the homeostasis of gut flora, Science, vol.298, issue.5597, pp.1424-1427, 2002.

A. Fahlgren, S. Hammarström, Å. Danielsson, and M. L. Hammarström, Defensin-3 and -4 in intestinal epithelial cells display increased mRNA expression in ulcerative colitis, Clinical and Experimental Immunology, vol.137, issue.2, pp.379-385, 2004.

P. G. Fallon, S. J. Ballantyne, N. E. Mangan, J. L. Barlow, A. Dasvarma et al., Identification of an interleukin (IL)-25-dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion, The Journal of Experimental Medicine, vol.203, issue.4, pp.1105-1121, 2006.

P. G. Fallon, S. J. Ballantyne, N. E. Mangan, J. L. Barlow, A. Dasvarma et al., Identification of an interleukin (IL)-25-dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion, The Journal of Experimental Medicine, vol.203, issue.4, pp.1105-1121, 2006.

K. A. Fitzgerald, E. M. Palsson-mcdermott, A. G. Bowie, C. A. Jefferies, A. S. Mansell et al., Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction, Nature, issue.6851, pp.78-83, 2001.

K. L. Flannigan, V. L. Ngo, D. Geem, A. Harusato, S. A. Hirota et al.,

, IL-17A-mediated neutrophil recruitment limits expansion of segmented filamentous bacteria, Mucosal Immunology, vol.10, pp.1-12

K. L. Flannigan, V. L. Ngo, D. Geem, A. Harusato, S. A. Hirota et al.,

, IL-17A-mediated neutrophil recruitment limits expansion of segmented filamentous bacteria, Mucosal Immunology, vol.10, pp.1-12

B. A. Fox, P. O. Sheppard, and P. J. Hara, The role of genomic data in the discovery, annotation and evolutionary interpretation of the interferon-lambda family, PLoS ONE, issue.3, p.4, 2009.

,

A. L. Frantz, E. W. Rogier, C. R. Weber, L. Shen, D. A. Cohen et al., Targeted deletion of MyD88 in intestinal epithelial cells results in compromised antibacterial immunity associated with downregulation of polymeric immunoglobulin receptor, mucin-2, and antibacterial peptides, Mucosal Immunology, vol.5, issue.5, pp.501-513, 2012.

J. Fu, B. Wei, T. Wen, M. E. Johansson, X. Liu et al., Loss of intestinal core 1 -derived O -glycans causes spontaneous colitis in mice, The Journal of Clinical Investigation, vol.121, issue.4, pp.1657-66, 2011.

S. Fujino, A. Andoh, S. Bamba, A. Ogawa, K. Hata et al., Increased expression of interleukin 17 in inflammatory bowel disease, Gut, vol.52, issue.1, pp.65-70, 2003.

R. Fuller and A. Turvey, Bacteria associated with the intestinal wall of the fowl (Gallus domesticus), The Journal of Applied Bacteriology, vol.34, issue.3, pp.617-639, 1971.

N. Funderburg, M. M. Lederman, Z. Feng, M. G. Drage, J. Jadlowsky et al., Human beta-defensin-3 activates professional antigen-presenting cells via Toll-like receptors 1 and 2, Proceedings of the National Academy of Sciences of the United States of America, vol.104, pp.18631-18635, 2007.

T. C. Fung, D. Artis, and G. F. Sonnenberg, Anatomical localization of commensal bacteria in immune cell homeostasis and disease, Immunological Reviews, vol.260, issue.1, pp.35-49, 2014.

V. Gaboriau-routhiau, S. Rakotobe, E. L??cuyer, I. Mulder, A. Lan et al., The Key Role of Segmented Filamentous Bacteria in the Coordinated Maturation of Gut Helper, 2009.

S. L. Gaffen, R. Jain, A. V. Garg, and D. J. Cua, The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing, Nature Reviews. Immunology, vol.14, issue.9, pp.585-600, 2014.

S. C. Ganal, S. L. Sanos, C. Kallfass, K. Oberle, C. Johner et al., Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota, Immunity, vol.37, issue.1, pp.171-186, 2012.

T. Ganz, Defensins: antimicrobial peptides of innate immunity, Nature Reviews. Immunology, vol.3, issue.9, pp.710-730, 2003.

C. D. Garland, A. Lee, and M. R. Dickson, Segmented filamentous bacteria in the rodent small intestine: Their colonization of growing animals and possible role in host resistance toSalmonella, Microbial Ecology, vol.8, issue.2, pp.181-190, 1982.

E. Gaudier, L. Forestier, V. Gouyer, G. Huet, R. Julien et al., Butyrate regulation of glycosylation-related gene expression: evidence for galectin-1 upregulation in human intestinal epithelial goblet cells, Biochemical and Biophysical Research Communications, vol.325, issue.3, pp.1044-1051, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01211891

R. Gazit, R. Gruda, M. Elboim, T. I. Arnon, G. Katz et al., Lethal influenza infection in the absence of the natural killer cell receptor gene Ncr1, Nat Immunol, vol.7, issue.5, pp.517-523, 2006.

D. Geem, O. Medina-contreras, M. Mcbride, R. D. Newberry, P. A. Koni et al., , 2014.

, Specific Microbiota-Induced Intestinal Th17 Differentiation Requires MHC Class II but Not GALT and Mesenteric Lymph Nodes, vol.193, pp.431-438

J. Gong, J. Xu, W. Zhu, X. Gao, N. Li et al., Epithelial-specific blockade of MyD88-dependent pathway causes spontaneous small intestinal inflammation, Clinical Immunology, vol.136, issue.2, pp.245-256, 2010.

E. Gorelik, R. H. Wiltrout, K. Okumura, S. Habu, and R. B. Herberman, Role of NK cells in the control of metastatic spread and growth of tumor cells in mice, International Journal of Cancer, vol.30, issue.1, pp.107-112, 1982.

Y. Goto, C. Panea, G. Nakato, A. Cebula, C. Lee et al., Segmented Filamentous Bacteria Antigens Presented by Intestinal Dendritic Cells Drive Mucosal Th17 Cell Differentiation, Immunity, vol.40, issue.4, pp.594-607, 2014.

Y. Goto, C. Panea, G. Nakato, A. Cebula, C. Lee et al., Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation, Immunity, vol.40, issue.4, pp.594-607, 2014.

H. Grasberger, J. Gao, H. Nagao-kitamoto, S. Kitamoto, M. Zhang et al., Increased Expression of DUOX2 Is an Epithelial Response to Mucosal Dysbiosis Required for Immune Homeostasis in Mouse Intestine, Gastroenterology, vol.149, issue.7, pp.1849-59, 2015.

P. Guerry, Campylobacter flagella: not just for motility, Trends in Microbiology, vol.15, issue.10, pp.456-461, 2007.

H. Guo and D. J. Topham, Interleukin-22 (IL-22) Production by Pulmonary Natural Killer Cells and the Potential Role of IL-22 during Primary Influenza Virus Infection, Journal of Virology, vol.84, issue.15, pp.7750-7759, 2010.

X. Guo, Y. Liang, Y. Zhang, A. Lasorella, B. L. Kee et al., Innate Lymphoid Cells Control Early Colonization Resistance against Intestinal Pathogens through ID2-Dependent Regulation of the Microbiota, Immunity, vol.42, issue.4, pp.731-774, 2015.

B. H. Häcker, R. M. Vabulas, O. Takeuchi, K. Hoshino, S. Akira et al., Immune cell activation by bacterial CpG-DNA through myeloid differentiation marker 88 and tumor necrosis factor receptor -associated factor (TRAF) 6, Journal of Experimental Medicine, vol.192, issue.4, pp.595-600, 2000.

H. Hamada, T. Hiroi, Y. Nishiyama, H. Takahashi, Y. Masunaga et al., Identification of Multiple Isolated Lymphoid Follicles on the Antimesenteric Wall of the Mouse Small Intestine, The Journal of Immunology, vol.168, issue.1, pp.57-64, 2002.

K. J. Han, X. Su, L. G. Xu, L. H. Bin, J. Zhang et al., Mechanisms of the TRIFinduced Interferon-stimulated Response Element and NF-?B Activation and Apoptosis Pathways, Journal of Biological Chemistry, vol.279, issue.15, pp.15652-15661, 2004.

S. Hapfelmeier, E. Lawson, E. Slack, J. K. Kirundi, M. Stoel et al., dynamics of IgA immune responses, vol.328, pp.1705-1709, 2014.

L. E. Harrington, R. D. Hatton, P. R. Mangan, H. Turner, T. L. Murphy et al., Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages, Nature Immunology, vol.6, issue.11, pp.1123-1155, 2005.

K. Hase, K. Kawano, T. Nochi, G. S. Pontes, S. Fukuda et al., Uptake through glycoprotein 2 of FimH(+) bacteria by M cells initiates mucosal immune response, Nature, vol.462, issue.7270, pp.226-256, 2009.

M. Hasegawa, S. Yada, M. Z. Liu, N. Kamada, R. Muñoz-planillo et al., , 2014.

, Interleukin-22 Regulates the Complement System to Promote Resistance against Pathobionts after Pathogen-Induced Intestinal Damage

C. Hattrup and S. Gendler, Structure and function of the cell surface (tethered) mucins, Annual Review of Physiology, vol.70, pp.431-457, 2008.

T. Hayashi, M. F. Hirshman, N. Fujii, S. A. Habinowski, L. A. Witters et al., , 2000.

, Metabolic stress and altered glucose transport: activation of AMP-activated protein kinase as a unifying coupling mechanism, Diabetes, vol.49, issue.4, pp.527-558

U. Heczko, . Abe, and B. B. Finlay, Segmented filamentous bacteria prevent colonization of enteropathogenic Escherichia coli O103 in rabbits, The Journal of Infectious Diseases, vol.181, issue.3, pp.1027-1033, 2000.

H. Hemmi, T. Kaisho, O. Takeuchi, S. Sato, H. Sanjo et al., Small antiviral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway, Nature Immunology, vol.3, issue.2, pp.196-200, 2002.

R. B. Herberman, Cell-mediated cytotoxic reactions to tumor associated antigens, Journal of the Reticuloendothelial Society, vol.17, issue.4, pp.236-240, 1975.

K. Honda, TFH-IgA responses keep microbiota in check, Cell Host and Microbe, vol.17, issue.2, pp.144-146, 2015.

L. V. Hooper, D. R. Littman, A. J. Macpherson, and M. P. Program, Interactions between the microbiota and the immune system, Science, issue.6086, pp.1268-1273, 2015.

L. V. Hooper and A. J. Macpherson, Immune adaptations that maintain homeostasis with the intestinal microbiota, Nature Reviews. Immunology, vol.10, issue.3, pp.159-69, 2010.

T. Hoverstad, B. Carlstedt-duke, E. Lingaas, E. Norin, H. Saxerholt et al., Influence of oral intake of seven different antibiotics on faecal short-chain fatty acid excretion in healthy subjects, Scandinavian Journal of Gastroenterology, vol.21, issue.8, pp.997-1003, 1986.

W. Hu, A. Jain, Y. Gao, I. M. Dozmorov, R. Mandraju et al., Differential outcome of TRIF-mediated signaling in TLR4 and TLR3 induced DC maturation, Proceedings of the National Academy of Sciences, vol.112, issue.45, pp.13994-13999, 2015.

Y. Hu, N. Ota, I. Peng, C. J. Refino, D. M. Danilenko et al., IL-17RC is required for IL-17A-and IL-17F-dependent signaling and the pathogenesis of experimental autoimmune encephalomyelitis, Journal of Immunology, vol.184, issue.8, pp.4307-4323, 1950.

A. J. Husband and J. L. Gowans, The origin and antigen-dependent distribution of IgA-containing cells in the intestine, The Journal of Experimental Medicine, vol.148, issue.5, pp.1146-1160, 1978.

I. Ivanov, R. Frutos, L. De, N. Manel, and K. Yoshinaga, Specific microbiota directs the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine, Cell Host &<, 2008.

I. I. Ivanov, K. Atarashi, N. Manel, E. L. Brodie, T. Shima et al., Induction of Intestinal Th17 Cells by Segmented Filamentous Bacteria, Cell, vol.139, issue.3, pp.485-534, 2009.

I. I. Ivanov, L. Zhou, and D. R. Littman, Transcriptional regulation of Th17 cell differentiation, Seminars in Immunology, vol.19, issue.6, pp.409-417, 2007.

I. I. Ivanov, B. S. Mckenzie, L. Zhou, C. E. Tadokoro, A. Lepelley et al., The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells, Cell, vol.126, issue.6, pp.1121-1133, 2006.

M. Iwata, A. Hirakiyama, Y. Eshima, H. Kagechika, C. Kato et al., Retinoic acid imprints gut-homing specificity on T cells, Immunity, vol.21, issue.4, pp.527-538, 2004.

H. E. Jakobsson, A. M. Rodríguez-piñeiro, A. Schütte, A. Ermund, P. Boysen et al., The composition of the gut microbiota shapes the colon mucus barrier, EMBO Reports, vol.16, issue.2, pp.164-177, 2015.

M. A. Jepson, M. A. Clark, N. L. Simmons, and B. H. Hirst, Actin accumulation at sites of attachment of indigenous apathogenic segmented filamentous bacteria to mouse ileal epithelial cells, Infection and Immunity, 1993.

H. Q. Jiang, N. A. Bos, and J. J. Cebra, Timing, localization, and persistence of colonization by segmented filamentous bacteria in the neonatal mouse gut depend on immune status of mothers and pups, Infection and Immunity, vol.69, issue.6, pp.3611-3617, 2001.

W. Jiang, X. Wang, B. Zeng, L. Liu, A. Tardivel et al., Recognition of gut microbiota by NOD2 is essential for the homeostasis of intestinal intraepithelial lymphocytes, J Exp Med, vol.210, issue.11, pp.2465-2476, 2013.

M. E. Johansson and G. C. Hansson, Mucus and the goblet cell, Digestive Diseases, vol.31, issue.3-4, pp.305-309, 2013.

M. E. Johansson, M. Phillipson, J. Petersson, A. Velcich, L. Holm et al., The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria, pp.15064-15069, 2008.

M. E. Johansson and G. C. Hansson, Immunological aspects of intestinal mucus and mucins, Nature Reviews Immunology, vol.16, issue.10, pp.639-649, 2016.

M. E. Johansson, H. E. Jakobsson, J. Holmén-larsson, A. Schütte, A. Ermund et al., Normalization of host intestinal mucus layers requires long-term microbial colonization, Cell Host and Microbe, 2015.

R. M. Jones and A. S. Neish, Redox signaling mediated by the gut microbiota, Free Radical Biology and Medicine, issue.105, pp.41-47, 2016.

H. Jonsson, Segmented filamentous bacteria in human ileostomy samples after high-fiber intake, FEMS Microbiology Letters, vol.342, issue.1, pp.24-29, 2013.

M. F. Kagnoff and P. H. Kim, Effects of transforming growth factor beta-1 and interleukin-5 on IgA isotype switching at the clonal level, Immunologic Research, vol.10, issue.3-4, pp.396-399, 1991.

D. Kaiserlian, K. Vidal, and J. P. Revillard, Murine enterocytes can present soluble antigen to specific class 11-restricted CD4 + T cells, Eur. J. Immunol, vol.19, pp.1513-1529, 1989.

T. Kaisho and S. Akira, Dendritic-cell function in Toll-like receptor-and MyD88-knockout mice, Trends in Immunology, vol.22, issue.2, pp.78-83, 2001.

T. Kaisho, O. Takeuchi, T. Kawai, K. Hoshino, and S. Akira, Endotoxin-induced maturation of MyD88-deficient dendritic cells, Journal of Immunology, vol.166, issue.9, pp.5688-94, 1950.

S. Kanagavelu, C. Flores, J. M. Termini, R. Riveron, L. Romero et al., , 2014.

, TIR-domain-containing adapter-inducing interferon-? (TRIF) regulates Th17-mediated intestinal immunopathology in colitis, Mucosal Immunology, vol.8, pp.1-11

Y. Kanamori, K. Ishimaru, M. Nanno, K. Maki, K. Ikuta et al., Identification of novel lymphoid tissues in murine intestinal mucosa where clusters of c-kit+ IL-7R+ Thy1+ lympho-hemopoietic progenitors develop, The Journal of Experimental Medicine, vol.184, issue.4, pp.1449-59, 1996.

T. Kawai, O. Adachi, T. Ogawa, K. Takeda, and S. Akira, Unresponsiveness of MyD88-deficient mice to endotoxin, Immunity, vol.11, issue.1, pp.115-122, 1999.

D. E. Kebir, of Inflammation, vol.1046, pp.1039-1046, 2009.

J. H. Kehrl, A. B. Roberts, L. M. Wakefield, S. Jakowlew, M. B. Sporn et al., Transforming growth factor beta is an important immunomodulatory protein for human B lymphocytes . Sporn and A S Fauci Information about subscribing to The Journal of Immunology is online at : TRANSFORMING GROWTH FACTOR / 3 IS AN IMPORTANT IMMUNOMODULATOR, The Journal of Immunology, vol.137, pp.3855-3860, 1986.

D. Kelly, J. I. Campbell, T. P. King, G. Grant, E. Jansson et al., , 2004.

, Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-gamma and RelA, Nature Immunology, vol.5, issue.1, pp.104-116

K. A. Kelly and R. Scollay, Seeding of neonatal lymph nodes by T cells and identification of a novel population of CD3-CD4+ cells, European Journal of Immunology, vol.22, issue.2, pp.329-334, 1992.

R. Kiessling, E. Klein, H. Pross, and H. Wigzell, Natural" killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell, European Journal of Immunology, vol.5, issue.2, pp.117-121, 1975.

Y. S. Kim and S. B. Ho, Intestinal goblet cells and mucins in health and disease: Recent insights and progress, Current Gastroenterology Reports, vol.12, issue.5, pp.319-330, 2010.

M. A. Kinnebrew, C. Ubeda, L. A. Zenewicz, N. Smith, A. Richard et al., , vol.201, pp.534-543, 2011.

H. L. Klaasen, J. P. Koopman, M. E. Vandenbrink, M. H. Bakker, F. G. Poelma et al., Intestinal, Segmented, Filamentous Bacteria in a Wide-Range of Vertebrate Species, Laboratory Animals, vol.27, issue.2, pp.141-150, 1993.

H. L. Klaasen, J. P. Koopman, M. E. Vandenbrink, M. H. Bakker, F. G. Poelma et al., Intestinal, Segmented, Filamentous Bacteria in a Wide-Range of Vertebrate Species, Laboratory Animals, vol.27, issue.2, pp.141-150, 1993.

H. L. Klaasen, P. J. Van-der-heijden, W. Stok, F. G. Poelma, J. P. Koopman et al., Apathogenic, intestinal, segmented, filamentous bacteria stimulate the mucosal immune system of mice, Infection and Immunity, vol.61, issue.1, pp.303-306, 1993.

H. L. Klaasen, J. P. Koopman, P. M. Scholten, . Van-den, M. E. Brink et al., Effect of Preventing Coprophagy on Colonisation by Segmented Filamentous Bacteria in the Small Bowel of Mice, Microbial Ecology in Health and Disease, vol.3, issue.2, pp.99-103, 1990.

H. L. Klaasen, J. P. Koopman, P. M. Scholten, . Van-den, M. E. Brink et al., Effect of Preventing Coprophagy on Colonisation by Segmented Filamentous Bacteria in the Small Bowel of Mice, Microbial Ecology in Health and Disease, vol.3, issue.2, pp.99-103, 1990.

H. L. Klaasen, J. P. Koopman, . Van-den, M. E. Brink, H. P. Van-wezel et al., Colonisation of Germ-free Mice by Segmented Filamentous Bacteria after Oral Administration of Various Murine Intestinal Wall Preparations, vol.3, 1990.

H. Klaasen, J. P. Koopman, . Van-den, M. E. Brink, P. M. Scholten et al., Influence of macronutrients on segmented filamentous bacteria in the small intestine of mice, Microbial Ecology in Health and Disease, vol.4, pp.47-51, 1991.

H. Klaasen, J. P. Koopman, . Van-den, M. E. Brink, P. M. Scholten et al., Influence of macronutrients on segmented filamentous bacteria in the small intestine of mice, Microbial Ecology in Health and Disease, vol.4, pp.47-51, 1991.

M. E. Klotman and T. L. Chang, Defensins in innate antiviral immunity, Nature Reviews. Immunology, vol.6, issue.6, pp.447-456, 2006.

K. S. Kobayashi, M. Chamaillard, Y. Ogura, O. Henegariu, N. Inohara et al., Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract, Science, issue.5710, pp.731-735, 2005.

C. Koga, K. Kabashima, N. Shiraishi, M. Kobayashi, and Y. Tokura, Possible pathogenic role of Th17 cells for atopic dermatitis, The Journal of Investigative Dermatology, vol.128, issue.11, pp.2625-2630, 2008.

H. W. Koon, D. Q. Shih, J. Chen, K. Bakirtzi, T. C. Hing et al., , vol.141, pp.1852-1863, 2012.

N. M. Koropatkin, E. Cameron, and E. C. Martens, , vol.10, pp.323-335, 2014.

M. J. Koslowski, J. Beisner, E. F. Stange, and J. Wehkamp, Innate antimicrobial host defense in small intestinal Crohn's disease, International Journal of Medical Microbiology : IJMM, vol.300, issue.1, pp.34-40, 2010.

P. Krebs, M. J. Barnes, K. Lampe, K. Whitley, K. S. Bahjat et al., NK-cellmediated killing of target cells triggers robust antigen-specific T-cell-mediated and humoral responses, Blood, vol.113, issue.26, pp.6593-6602, 2009.

M. A. Kriegel, E. Sefik, J. A. Hill, H. Wu, C. Benoist et al., Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice, Proceedings of the National Academy of Sciences of the United States of America, vol.108, pp.11548-53, 2011.

J. L. Kubinak, C. Petersen, W. Z. Stephens, R. Soto, E. Bake et al., , 2015.

, MyD88 signaling in T cells directs IgA-mediated control of the microbiota to promote health, Cell Host & Microbe, vol.17, issue.2, pp.153-63

P. Kumar, L. Monin, P. Castillo, W. Elsegeiny, W. Horne et al., Intestinal Interleukin-17 Receptor Signaling Mediates Reciprocal Control of the Gut Microbiota and Autoimmune Inflammation, Immunity, vol.44, issue.3, pp.659-671, 2016.

P. Kundu, T. W. Ling, A. Korecka, Y. Li, R. D&apos;arienzo et al., Absence of Intestinal PPAR? Aggravates Acute Infectious Colitis in Mice through a Lipocalin-2-Dependent Pathway, PLoS Pathogens, issue.1, p.10, 2014.

T. Kuwahara, Y. Ogura, K. Oshima, K. Kurokawa, T. Ooka et al., The lifestyle of the segmented filamentous bacterium: A non-culturable gut-associated immunostimulating microbe inferred by whole-genome sequencing, DNA Research, vol.18, issue.4, pp.291-303, 2011.

T. Lang, G. C. Hansson, and T. Samuelsson, Gel-forming mucins appeared early in metazoan evolution, Proceedings of the National Academy of Sciences of the United States of America, vol.104, pp.16209-16223, 2007.

E. Larsson, V. Tremaroli, Y. S. Lee, O. Koren, I. Nookaew et al., , 2012.

, Analysis of gut microbial regulation of host gene expression along the length of the gut and regulation of gut microbial ecology through MyD88, Gut, issue.8, pp.1124-1155

E. Lécuyer, S. Rakotobe, H. Lengliné-garnier, C. Lebreton, M. Picard et al., Segmented filamentous bacterium uses secondary and tertiary lymphoid tissues to induce gut IgA and specific T helper 17 cell responses, Immunity, vol.40, issue.4, pp.608-620, 2014.

J. S. Lee, M. Cella, K. G. Mcdonald, C. Garlanda, G. D. Kennedy et al., AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch, Nature Immunology, vol.13, issue.2, pp.144-151, 2011.

J. Lee, J. Mo, K. Katakura, I. Alkalay, A. N. Rucker et al., Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells, Nature Cell Biology, vol.8, issue.12, pp.1327-1336, 2006.

Y. K. Lee, J. S. Menezes, Y. Umesaki, and S. K. Mazmanian, Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis, Proceedings of the National Academy of Sciences, vol.108, issue.Supplement_1, pp.4615-4622, 2011.

Y. K. Lee, J. S. Menezes, Y. Umesaki, and S. K. Mazmanian, Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis, Proceedings of the National Academy of Sciences, vol.108, issue.Supplement_1, pp.4615-4622, 2011.

H. Lelouard, S. Henri, B. De-bovis, B. Mugnier, A. Chollat-namy et al., Pathogenic bacteria and dead cells are internalized by a unique subset of Peyer's patch dendritic cells that express lysozyme, Gastroenterology, vol.138, issue.1, p.173, 2010.

H. Lelouard, M. Fallet, B. De-bovis, S. Méresse, and J. P. Gorvel, Peyer's patch dendritic cells sample antigens by extending dendrites through M cell-specific transcellular pores, Gastroenterology, vol.142, issue.3, pp.592-601, 2012.

B. Lemaitre, J. M. Reichhart, and J. A. Hoffmann, Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms, Proceedings of the National Academy of Sciences of the United States of America, vol.94, pp.14614-14623, 1997.

R. E. Ley, F. Backhed, P. Turnbaugh, C. A. Lozupone, R. D. Knight et al., Obesity alters gut microbial ecology, Proceedings of the National Academy of Sciences of the United States of America, vol.102, pp.11070-11075, 2005.

R. E. Ley, M. Hamady, C. Lozupone, P. J. Turnbaugh, R. R. Ramey et al., Evolution of mammals and their gut microbes, Science, issue.5883, pp.1647-1651, 2008.

M. C. Li and S. H. He, IL-10 and its related cytokines for treatment of inflammatory bowel disease, World Journal of Gastroenterology, vol.10, issue.5, pp.620-625, 2004.

S. K. Lindén, T. H. Florin, and M. A. Mcguckin, Mucin dynamics in intestinal bacterial infection, PLoS ONE, issue.12, p.3, 2008.

Q. L. Liu, L. Huang, Q. J. Zhao, Q. Li, and Z. He, Relationship between serum interleukin-17 level and inflammatory bowel disease, Journal of Biological Regulators and Homeostatic Agents, vol.30, issue.1, pp.181-188, 2016.

M. Lochner, M. Bérard, S. Sawa, S. Hauer, V. Gaboriau-routhiau et al., Restricted microbiota and absence of cognate TCR antigen leads to an unbalanced generation of Th17 cells, Journal of Immunology, vol.186, issue.3, pp.1531-1537, 1950.
URL : https://hal.archives-ouvertes.fr/pasteur-00564664

M. Lochner, C. Ohnmacht, L. Presley, P. Bruhns, M. Si-tahar et al., , 2011.

, Microbiota-induced tertiary lymphoid tissues aggravate inflammatory disease in the absence of RORgamma t and LTi cells, The Journal of Experimental Medicine, vol.208, issue.1, pp.125-159

M. J. Lodes, Y. Cong, C. O. Elson, R. Mohamath, C. J. Landers et al., Bacterial flagellin is a dominant antigen in Crohn disease, Journal of Clinical Investigation, vol.113, issue.9, pp.1296-1306, 2004.

R. S. Longman, G. E. Diehl, D. Victorio, J. R. Huh, C. Galan et al., CX3CR1+ mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22, Journal of Experimental Medicine, vol.211, issue.8, pp.1571-83, 2014.

L. M. Loonen, E. H. Stolte, M. T. Jaklofsky, M. Meijerink, J. Dekker et al., REG3?-deficient mice have altered mucus distribution and increased mucosal inflammatory responses to the microbiota and enteric pathogens in the ileum, Mucosal Immunology, vol.7, issue.4, pp.939-986, 2014.

R. G. Lorenz, D. D. Chaplin, K. G. Mcdonald, J. S. Mcdonough, and R. D. Newberry, Isolated lymphoid follicle formation is inducible and dependent upon lymphotoxin-sufficient B lymphocytes, lymphotoxin beta receptor, and TNF receptor I function, Journal of Immunology, vol.170, issue.11, pp.5475-5482, 1950.

Z. Lu, R. Liu, E. Huang, and Y. Chu, MicroRNAs: New regulators of IL-22, Cellular Immunology, issue.1-8, pp.304-305, 2016.

A. J. Macpherson, D. Gatto, E. Sainsbury, G. R. Harriman, H. Hengartner et al., A Primitive T Cell-Independent Mechanism of Intestinal Mucosal IgA Responses to Commensal Bacteria, Science, vol.288, issue.5474, pp.2222-2226, 2000.

A. J. Macpherson, M. B. Geuking, and K. D. Mccoy, Homeland security: IgA immunity at the frontiers of the body, Trends in Immunology, vol.33, issue.4, pp.160-167, 2012.

A. J. Macpherson, M. B. Geuking, and K. D. Mccoy, Innate and adaptive immunity in hostmicrobiota mutualism, Frontiers in Bioscience, vol.4, pp.685-698, 2012.

A. J. Macpherson, M. B. Geuking, E. Slack, S. Hapfelmeier, and K. D. Mccoy, The habitat, double life, citizenship, and forgetfulness of IgA, Immunological Reviews, vol.245, issue.1, pp.132-146, 2012.

A. J. Macpherson and K. D. Mccoy, Independence Day for IgA, Immunity, vol.43, issue.3, pp.416-418, 2015.

A. J. Macpherson and T. Uhr, Gut flora--mechanisms of regulation, The European Journal of Surgery. Supplement. : = Acta Chirurgica. Supplement, issue.587, pp.53-57, 2002.

A. Maemoto, X. Qu, K. J. Rosengren, H. Tanabe, A. Henschen-edman et al., Functional analysis of the ?-defensin disulfide array in mouse cryptdin-4, Journal of Biological Chemistry, vol.279, issue.42, pp.44188-44196, 2004.

O. Mandelboim and A. Porgador, NKp46, The International Journal of Biochemistry & Cell Biology, vol.33, issue.12, pp.1147-1150, 2001.
URL : https://hal.archives-ouvertes.fr/pasteur-01402754

P. R. Mangan, L. E. Harrington, D. B. O&apos;quinn, W. S. Helms, D. C. Bullard et al., Transforming growth factor-beta induces development of the T(H)17 lineage, Nature, issue.7090, pp.231-234, 2006.

C. Manta, E. Heupel, K. Radulovic, V. Rossini, N. Garbi et al., CX3CR1&plus; macrophages support IL-22 production by innate lymphoid cells during infection with Citrobacter rodentium, MucosalImmunology, vol.6, issue.1, 2013.

L. Margulis, J. Z. Jorgensen, S. Dolan, R. Kolchinsky, F. Rainey et al., The Arthromitus stage of Bacillus cereus: intestinal symbionts of animals, Proceedings of the National Academy of Sciences of the United States of America, vol.95, issue.3, pp.1236-1241, 1998.

K. Masuda, K. Nakamura, S. Yoshioka, R. Fukaya, N. Sakai et al., Regulation of microbiota by antimicrobial peptides in the gut, Advances in Oto-Rhino-Laryngology, vol.72, pp.97-99, 2011.

K. Masuda, N. Sakai, K. Nakamura, S. Yoshioka, and T. Ayabe, Bactericidal activity of mouse alpha-defensin cryptdin-4 predominantly affects noncommensal bacteria, Journal of Innate Immunity, vol.3, issue.3, pp.315-326, 2011.

A. N. Mathure, H. Chang, D. G. Zisoulis, G. L. Stritesky, Q. Yu et al., Stat3 and Stat4 direct development of IL-17 secreting Th cells, The Journal of Immunology, vol.178, issue.8, pp.4901-4907, 2007.

J. P. Mcaleer, N. L. Nguyen, K. Chen, P. Kumar, D. M. Ricks et al., J. K, 2016.

, Pulmonary Th17 Antifungal Immunity Is Regulated by the Gut Microbiome, Journal of Immunology, vol.197, issue.1, pp.97-107

E. N. Mcnamee, J. C. Masterson, P. Jedlicka, C. B. Collins, I. R. Williams et al., Ectopic lymphoid tissue alters the chemokine gradient, increases lymphocyte retention and exacerbates murine ileitis, Gut, vol.62, issue.1, pp.53-62, 2013.

R. E. Mebius, P. Rennert, and I. L. Weissman, Developing Lymph Nodes Collect CD4+CD3? LT?+ Cells That Can Differentiate to APC, NK Cells, and Follicular Cells but Not T or B Cells, Immunity, vol.7, issue.4, pp.493-504, 1997.

R. Medzhitov and C. A. Janeway, On the semantics of immune recognition, Research in Immunology, vol.147, issue.4, pp.208-214, 1996.

S. Ménard, V. Förster, M. Lotz, D. Gütle, C. U. Duerr et al., Developmental switch of intestinal antimicrobial peptide expression, The Journal of Experimental Medicine, vol.205, issue.1, pp.183-93, 2008.

U. Meyer-hoffert, M. Hornef, B. Henriques-normark, S. Normark, M. Andersson et al., Identification of heparin/heparan sulfate interacting protein as a major broad-spectrum antimicrobial protein in lung and small intestine, FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, vol.22, issue.7, pp.2427-2461, 2008.

J. Mirpuri, M. Raetz, C. R. Sturge, C. L. Wilhelm, A. Benson et al., , 2014.

. Proteobacteria-specific, IgA regulates maturation of the intestinal microbiota © 2014 Landes Bioscience . Do not distribute ©, Landes Bioscience . Do not distribute, vol.5, issue.1, pp.28-39, 2014.

J. R. Mora and U. H. Von-andrian, Role of retinoic acid in the imprinting of gut-homing IgAsecreting cells, Seminars in Immunology, vol.21, issue.1, pp.28-35, 2009.

K. Moro, T. Yamada, M. Tanabe, T. Takeuchi, T. Ikawa et al., Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells, Nature, vol.463, issue.7280, pp.540-544, 2010.

G. M. Morrison, D. J. Davidson, F. M. Kilanowski, D. W. Borthwick, K. Crook et al., Mouse beta defensin-1 is a functional homolog of human beta defensin-1, Mammalian Genome : Official Journal of the International Mammalian Genome Society, vol.9, issue.6, pp.453-457, 1998.

S. Mukherjee and L. V. Hooper, Antimicrobial defense of the intestine, Immunity, vol.42, issue.1, pp.28-39, 2015.

S. Mukherjee and T. Biswas, Activation of TOLLIP by porin prevents TLR2-associated IFNgamma and TNF-alpha-induced apoptosis of intestinal epithelial cells, Cellular Signalling, vol.26, issue.12, pp.2674-2682, 2014.

M. Muñoz, C. Eidenschenk, N. Ota, K. Wong, U. Lohmann et al., , 2015.

, Interleukin-22 Induces Interleukin-18 Expression from Epithelial Cells during Intestinal Infection

M. Muñoz, M. M. Heimesaat, K. Danker, D. Struck, U. Lohmann et al., Interleukin (IL)-23 mediates Toxoplasma gondii-induced immunopathology in the gut via matrixmetalloproteinase-2 and IL-22 but independent of IL-17, The Journal of Experimental Medicine, vol.206, issue.13, pp.3047-59, 2009.

I. A. Murray, R. G. Nichols, L. Zhang, A. D. Patterson, and G. H. Perdew, Expression of the aryl hydrocarbon receptor contributes to the establishment of intestinal microbial community structure in mice, Scientific Reports, vol.6, p.33969, 2016.

I. Nagaoka, S. Hirota, M. Hirata, and Y. Adachi, Augmentation of the Lipopolysaccharide-Neutralizing Activities of Human Cathelicidin CAP18 / LL-37-Derived Antimicrobial Peptides by Replacement with Hydrophobic and Cationic Amino Acid Residues, vol.9, pp.972-982, 2002.

D. R. Neill, S. H. Wong, A. Bellosi, R. J. Flynn, M. Daly et al., UKPMC Funders Group type-2 immunity, vol.464, pp.1367-1370, 2010.

A. S. Neish, The gut microflora and intestinal epithelial cells: a continuing dialogue, Microbes and Infection, vol.4, issue.3, pp.309-317, 2002.

A. Nenci, C. Becker, A. Wullaert, R. Gareus, G. Van-loo et al.,

, Epithelial NEMO links innate immunity to chronic intestinal inflammation

M. R. Neutra and P. A. Kozlowski, Mucosal vaccines: the promise and the challenge, Nature Reviews. Immunology, vol.6, issue.2, pp.148-58, 2006.

K. Neyt, F. Perros, C. H. Geurtsvankessel, H. Hammad, and B. N. Lambrecht, Tertiary lymphoid organs in infection and autoimmunity, Trends in Immunology, vol.33, issue.6, pp.297-305, 2012.

J. H. Niess, CX3CR1-Mediated Dendritic Cell Access to the Intestinal Lumen and Bacterial Clearance, Science, vol.307, issue.5707, pp.254-258, 2005.

J. H. Niess and H. Reinecker, Dendritic cells: the commanders-in-chief of mucosal immune defenses, Current Opinion in Gastroenterology, vol.22, issue.4, pp.354-360, 2006.

J. H. Niess and G. Adler, Enteric flora expands gut lamina propria CX3CR1+ dendritic cells supporting inflammatory immune responses under normal and inflammatory conditions, Journal of Immunology, vol.184, issue.4, pp.2026-2063, 1950.

J. H. Niess, F. Leithäuser, G. Adler, and J. Reimann, Commensal gut flora drives the expansion of proinflammatory CD4 T cells in the colonic lamina propria under normal and inflammatory conditions, Journal of Immunology, vol.180, issue.1, pp.559-68, 1950.

M. F. Nilsson, B. Sandstedt, O. Sørensen, G. Weber, N. Borregaard et al., The Human Cationic Antimicrobial Protein ( hCAP18 ), a Peptide Antibiotic , Is Widely Expressed in Human Squamous Epithelia and Colocalizes with Interleukin-6 The Human Cationic Antimicrobial Protein ( hCAP18 ), a Peptide Antibiotic, Is Widely Expressed, vol.67, issue.5, pp.2561-2566, 1999.

F. Niyonsaba, K. Iwabuchi, H. Matsuda, H. Ogawa, and I. Nagaoka, Epithelial cell-derived human beta-defensin-2 acts as a chemotaxin for mast cells through a pertussis toxin-sensitive and phospholipase C-dependent pathway, International Immunology, vol.14, issue.4, pp.421-426, 2002.

F. Niyonsaba, K. Iwabuchi, A. Someya, M. Hirata, H. Matsuda et al., A cathelicidin family of human antibacterial peptide LL-37 induces mast cell chemotaxis, Immunology, vol.106, issue.1, pp.20-26, 2002.

O. I. Niyonsaba, H. Ogawa, I. Nagaoka, and H. Defense, Human b -defensin-2 functions as a chemotactic agent for tumour necrosis factor-a -treated human neutrophils, 2004.

R. Nurieva, X. O. Yang, G. Martinez, Y. Zhang, A. D. Panopoulos et al., , 2007.

, Essential autocrine regulation by IL-21 in the generation of inflammatory T cells, Nature, vol.448, issue.7152, pp.480-483

A. Ogawa, A. Andoh, Y. Araki, T. Bamba, and Y. Fujiyama, Neutralization of interleukin-17 aggravates dextran sulfate sodium-induced colitis in mice, Clinical Immunology, vol.110, issue.1, pp.55-62, 2004.

Y. Ohashi, M. Hiraguchi, C. Sunaba, C. Tanaka, T. Fujisawa et al., Colonization of segmented filamentous bacteria and its interaction with the luminal IgA level in conventional mice, 2010.

, Anaerobe, vol.16, issue.5, pp.543-546

H. Okamura, H. Tsutsi, T. Komatsu, M. Yutsudo, A. Hakura et al., Cloning of a new cytokine that induces IFN-gamma production by T cells, Nature, vol.378, issue.6552, pp.88-91, 1995.

D. O&apos;neil, E. M. Porter, D. Elewaut, G. M. Anderson, L. Eckmann et al., Expression and regulation of the human beta-defensins hBD-1 and hBD-2 in intestinal epithelium, Journal of Immunology, vol.163, pp.6718-6724, 1950.

C. F. Ortega-cava, S. Ishihara, K. Rumi, K. Kawashima, N. Ishimura et al., Strategic compartmentalization of Toll-like receptor 4 in the mouse gut, Journal of Immunology, vol.170, issue.8, pp.3977-3985, 1950.

H. Oshiumi, M. Matsumoto, K. Funami, T. Akazawa, and T. Seya, TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction, Nature Immunology, vol.4, issue.2, pp.161-167, 2003.

A. J. Ouellette and M. E. Selsted, Paneth cell defensins: endogenous peptide components of intestinal host defense, Faseb J, vol.10, issue.11, pp.1280-1289, 1996.

A. J. Ouellette and M. E. Selsted, Paneth cell defensins: endogenous peptide components of intestinal host defense, Faseb J, vol.10, issue.11, pp.1280-1289, 1996.

A. J. Ouellette, M. M. Hsieh, M. T. Nosek, D. F. Cano-gauci, K. M. Huttner et al., Mouse Paneth cell defensins: Primary structures and antibacterial activities of numerous cryptdin isoforms, Infection and Immunity, vol.62, issue.11, pp.5040-5047, 1994.

W. Ouyang, J. Kolls, and Y. Zheng, The biological functions of Th17 cell effector cytokines in inflammation, Immunity, vol.28, issue.4, pp.454-467, 2012.

W. Ouyang, R. D. Hatton, and C. T. Weaver, , vol.37, pp.1061-1075, 2013.

O. Pabst, V. Cerovic, and M. Hornef, Secretory IgA in the Coordination of Establishment and Maintenance of the Microbiota, Trends in Immunology, vol.37, issue.5, pp.287-296, 2016.

O. Pabst, H. Herbrand, M. Friedrichsen, S. Velaga, M. Dorsch et al., Adaptation of solitary intestinal lymphoid tissue in response to microbiota and chemokine receptor CCR7 signaling, Journal of Immunology, vol.177, issue.10, pp.6824-6856, 1950.

A. R. Pacheco, M. M. Curtis, J. M. Ritchie, D. Munera, K. Matthew et al., Immunoglobulin A Coating Identifies Colitogenic Bacteria in Inflammatory Bowel Disease, vol.492, pp.1000-1010, 2013.

C. Palmer, E. M. Bik, D. B. Digiulio, D. A. Relman, and P. O. Brown, Development of the human infant intestinal microbiota, PLoS Biology, vol.5, issue.7, 2007.

S. J. Pamp, E. D. Harrington, S. R. Quake, D. A. Relman, and P. C. Blainey, Single-cell sequencing provides clues about the host interactions of segmented filamentous bacteria (SFB), Genome Research, vol.22, issue.6, pp.1107-1119, 2012.

C. Panea, A. M. Farkas, Y. Goto, S. Abdollahi-roodsaz, C. Lee et al., Intestinal Monocyte-Derived Macrophages Control Commensal-Specific Th17 Responses, Cell Reports, 2015.

O. B. Parks, D. A. Pociask, Z. Hodzic, J. K. Kolls, and M. Good, Interleukin-22 Signaling in the Regulation of Intestinal Health and Disease, Frontiers in Cell and Developmental Biology, vol.3, p.85, 2015.

O. B. Parks, D. A. Pociask, Z. Hodzic, J. K. Kolls, and M. Good, Interleukin-22 Signaling in the Regulation of Intestinal Health and Disease, Frontiers in Cell and Developmental Biology, vol.3, p.85, 2015.

T. Pelaseyed, J. H. Bergström, J. K. Gustafsson, A. Ermund, G. M. Birchenough et al., The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system, Immunological Reviews, vol.260, issue.1, pp.8-20, 2014.

J. Pène, S. Chevalier, L. Preisser, E. Vénéreau, M. Guilleux et al.,

, Chronically Inflamed Human Tissues Are Infiltrated by Highly Differentiated Th17 Lymphocytes, vol.180, pp.7423-7453

D. A. Peterson, N. P. Mcnulty, J. L. Guruge, and J. I. Gordon, IgA response to symbiotic bacteria as a mediator of gut homeostasis, Cell Host & Microbe, vol.2, issue.5, pp.328-339, 2007.

T. A. Pham, S. Clare, D. Goulding, J. M. Arasteh, M. D. Stares et al.,

, Epithelial IL-22RA1-mediated fucosylation promotes intestinal colonization resistance to an opportunistic pathogen, Cell Host and Microbe, vol.16, issue.4, pp.504-516

J. M. Pickard, C. F. Maurice, M. A. Kinnebrew, M. C. Abt, D. Schenten et al., Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness, Nature, vol.514, issue.7524, pp.638-679, 2014.

E. J. Pone, Z. Xu, C. A. White, H. Zan, and P. Casali, B cell TLRs and induction of immunoglobulin class-switch DNA recombination, Frontiers in Bioscience, vol.17, pp.2594-2615, 2012.

P. Pongpech, D. J. Hentges, W. W. Marsh, and M. E. Eberle, Effect of streptomycin administration on association of enteric pathogens with cecal tissue of mice, Infection and Immunity, vol.57, issue.7, pp.2092-2097, 1989.

E. .. Porter, L. Liu, A. Oren, P. Anton, and T. Ganz, Localization of human intestinal defensin in paneth cell granules, Infect Immun, vol.65, issue.6, pp.2389-2395, 1997.

T. Prakash, K. Oshima, H. Morita, S. Fukuda, A. Imaoka et al., Complete genome sequences of rat and mouse segmented filamentous bacteria, a potent inducer of Th17 cell differentiation, Cell Host and Microbe, vol.10, issue.3, pp.273-284, 2011.

K. Pütsep, L. G. Axelsson, A. Boman, T. Midtvedt, S. Normark et al., Germ-free and colonized mice generate the same products from enteric prodefensins, Journal of Biological Chemistry, vol.275, issue.51, pp.40478-40482, 2000.

H. Qi, T follicular helper cells in space-time, Nature Reviews Immunology, vol.16, issue.10, pp.612-625, 2016.

J. Qiu,

J. J. Heller,

X. Guo, K. F. Chen, . Yang-xin, and L. Z. Fu, , 2013.

, The Aryl Hydrocarbon Receptor Regulates Gut Immunity through Modulation of Innate Lymphoid Cells, Immunity, vol.36, issue.1, pp.92-104

J. Qiu,

J. J. Heller,

X. Guo, K. F. Chen, . Yang-xin, and L. Z. Fu, , 2013.

, The Aryl Hydrocarbon Receptor Regulates Gut Immunity through Modulation of Innate Lymphoid Cells, Immunity, vol.36, issue.1, pp.92-104

A. Rahman, A. Fahlgren, C. Sundstedt, S. Hammarström, Å. Danielsson et al., Chronic colitis induces expression of ??-defensins in murine intestinal epithelial cells, Clinical and Experimental Immunology, vol.163, issue.1, pp.123-130, 2011.

S. Rakoff-nahoum and R. Medzhitov, Innate immune recognition of the indigenous microbial flora, vol.1, pp.1-14, 2008.

M. Rescigno, M. Urbano, B. Valzasina, M. Francolini, G. Rotta et al., Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria, Nature Immunology, vol.2, issue.4, pp.361-367, 2001.

M. Ricote, A. Li, T. Willson, C. Kelly, and C. Glass, The peroxisome proliferator-activated receptor-? is a negative regulator of macrophage activation, Nature, vol.471, pp.468-471, 1989.

S. H. Robbins, G. Bessou, A. Cornillon, N. Zucchini, B. Rupp et al., , 2007.

, Natural killer cells promote early CD8 T cell responses against cytomegalovirus, PLoS Pathogens, vol.3, issue.8, pp.1152-1164

N. Rochereau, D. Drocourt, E. Perouzel, V. Pavot, P. Redelinghuys et al., , 2013.

, Dectin-1 Is Essential for Reverse Transcytosis of Glycosylated SIgA-Antigen Complexes by Intestinal M Cells, PLoS Biology, issue.9, p.11

K. Roth and J. I. Gordon, Spatial differentiation of the intestinal epithelium: analysis of enteroendocrine cells containing immunoreactive serotonin, secretin, and substance P in normal and transgenic mice, Proceedings of the National Academy of Sciences of the United States of America, vol.87, pp.6408-6412, 1990.

J. L. Round, S. K. Mazmanian, C. Eidenschenk, and W. Ouyang, The gut microbiome shapes intestinal immune responses during health and disease, Nature Reviews. Immunology, vol.9, issue.5, pp.116-132, 2009.

R. Sabat, W. Ouyang, and K. Wolk, Therapeutic opportunities of the IL-22-IL-22R1 system, Nature Reviews. Drug Discovery, vol.13, issue.1, pp.21-38, 2014.

K. Sakamoto, Y. Kim, H. Hara, N. Kamada, G. Caballero-flores et al., IL-22 controls iron-dependent nutritional immunity against systemic bacterial infections, Science Immunology, vol.2, issue.8, 2017.

R. Salazar-gonzalez, A. Srinivasan, A. Griffin, G. Muralimohan, J. M. Ertelt et al., Salmonella Flagellin Induces Bystander Activation of Splenic Dendritic Cells and Hinders Bacterial Replication In Vivo, The Journal of Immunology, vol.179, issue.9, pp.6169-6175, 2007.

N. H. Salzman, D. Ghosh, K. M. Huttner, Y. Paterson, and C. L. Bevins, Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin, Nature, vol.422, pp.3-7, 2003.

N. H. Salzman, K. Hung, D. Haribhai, H. Chu, J. Karlsson-sjoberg et al., , 2010.

, Enteric defensins are essential regulators of intestinal microbial ecology, Nature Immunology, vol.11, issue.1, pp.76-83

N. H. Salzman, M. A. Underwood, and C. L. Bevins, Paneth cells, defensins, and the commensal microbiota: a hypothesis on intimate interplay at the intestinal mucosa, Seminars in Immunology, vol.19, issue.2, pp.70-83, 2007.

S. E. Sanford, Light and Electron Microscopic Observations of a Segmented Filamentous Bacterium Attached to the Mucosa of the Terminal Ileum of Pigs, Journal of Veterinary Diagnostic Investigation, vol.3, issue.4, pp.328-333, 1991.

T. Sano, W. Huang, J. A. Hall, Y. Yang, A. Chen et al., An IL-23R/IL-22 Circuit Regulates Epithelial Serum Amyloid A to Promote Local Effector Th17 Responses, Cell, vol.163, issue.2, pp.381-393, 2015.

S. L. Sanos, C. Vonarbourg, A. Mortha, and A. Diefenbach, Control of epithelial cell function by interleukin-22-producing ROR?t + innate lymphoid cells, Immunology, vol.132, issue.4, pp.453-465, 2011.

,

S. L. Sanos, V. L. Bui, A. Mortha, K. Oberle, C. Heners et al., ROR?t and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells, Nature Immunology, vol.10, issue.1, pp.83-91, 2009.

R. B. Sartor, Microbial influences in inflammatory bowel diseases, Gastroenterology, vol.134, issue.2, pp.577-594, 2008.

N. Satoh-takayama, C. A. Vosshenrich, S. Lesjean-pottier, S. Sawa, M. Lochner et al., Microbial Flora Drives Interleukin 22 Production in Intestinal NKp46+ Cells that Provide Innate Mucosal Immune Defense, 2008.
URL : https://hal.archives-ouvertes.fr/pasteur-01402754

D. C. Savage, The microbial flora in the gastrointestinal tract, Progress in Clinical and Biological Research, vol.77, pp.893-908, 1981.

S. Sawa, M. Lochner, N. Satoh-takayama, S. Dulauroy, M. Berard et al., RORgammat+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota, Nat Immunol, vol.12, issue.4, pp.320-326, 2011.

M. Schaubeck, T. Clavel, J. Calasan, I. Lagkouvardos, S. B. Haange et al., Dysbiotic gut microbiota causes transmissible Crohn's disease-like ileitis independent of failure in antimicrobial defence, Gut, vol.65, issue.2, pp.225-237, 2016.

J. Schauber, C. Svanholm, S. Termén, K. Iffland, T. Menzel et al., Expression of the cathelicidin LL-37 is modulated by short chain fatty acids in colonocytes: relevance of signalling pathways, Gut, vol.52, issue.5, pp.735-741, 2003.

M. Schnare, M. Rollinghoff, and S. Qureshi, Toll-like receptors: sentinels of host defence against bacterial infection, International Archives of Allergy and Immunology, vol.139, issue.1, pp.75-85, 2006.

P. Schnupf, V. Gaboriau-routhiau, and N. Cerf-bensussan, Host interactions with Segmented Filamentous Bacteria: an unusual trade-off that drives the post-natal maturation of the gut immune system, Seminars in Immunology, vol.25, issue.5, pp.342-351, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01204287

P. Schnupf, V. Gaboriau-routhiau, M. Gros, R. Friedman, M. Moya-nilges et al., Growth and host interaction of mouse segmented filamentous bacteria in vitro, Nature, vol.520, issue.7545, pp.99-103, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01535236

P. Schnupf, V. Gaboriau-routhiau, P. J. Sansonetti, and N. Cerf-bensussan, Segmented filamentous bacteria, Th17 inducers and helpers in a hostile world, Current Opinion in Microbiology, vol.35, pp.100-109, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01516893

B. U. Schraml, K. Hildner, W. Ise, W. Lee, W. A. Smith et al., , vol.460, pp.405-409, 2010.

B. O. Schroeder, D. Ehmann, J. C. Precht, P. A. Castillo, R. Küchler et al., Paneth cell ?-defensin 6 (HD-6) is an antimicrobial peptide, Mucosal Immunology, vol.6, pp.1-11, 2014.

O. Schulz, E. Jaensson, E. K. Persson, X. Liu, T. Worbs et al., Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions, The Journal of Experimental Medicine, vol.206, issue.13, pp.3101-3115, 2009.

M. Science, M. Science, M. Research, M. Research, D. G. Research et al., From the *Department of Microbiology, Tokyo, vol.160, 1996.

, Tokyo 186; and IIDepar, p.184

L. Scripts, , vol.20, pp.1878-1891, 2015.

A. Sczesnak, N. Segata, X. Qin, D. Gevers, J. F. Petrosino et al., The genome of Th17 cell-inducing segmented filamentous bacteria reveals extensive auxotrophy and adaptations to the intestinal environment, Cell Host and Microbe, vol.10, issue.3, pp.260-272, 2011.

M. H. Shaw, N. Kamada, Y. G. Kim, and G. Nunez, Microbiota-induced IL-1beta, but not IL-6, is critical for the development of steady-state TH17 cells in the intestine, J Exp Med, vol.209, issue.2, pp.251-258, 2012.

M. H. Shaw, N. Kamada, Y. G. Kim, and G. Nunez, Microbiota-induced IL-1beta, but not IL-6, is critical for the development of steady-state TH17 cells in the intestine, J Exp Med, vol.209, issue.2, pp.251-258, 2012.

H. Shibahara, M. Higashi, C. Koriyama, S. Yokoyama, I. Kitazono et al., Pathobiological implications of mucin (MUC) expression in the outcome of small bowel cancer, PLoS ONE, vol.9, issue.4, pp.1-8, 2014.

V. F. Shih, .. Cox, J. Kljavin, N. M. Dengler, H. S. Reichelt et al., , 2014.

, Homeostatic IL-23 receptor signaling limits Th17 response through IL-22-mediated containment of commensal microbiota, Proceedings of the National Academy of Sciences of the United States of America, vol.111, pp.13942-13949

S. Sivori, D. Pende, C. Bottino, E. Marcenaro, A. Pessino et al., NKp46 is the major triggering receptor involved in the natural cytotoxicity of fresh or cultured human NK cells. Correlation between surface density of NKp46 and natural cytotoxicity against autologous, allogeneic or xenogeneic target cells, European Journal of Immunology, vol.29, issue.5, pp.1656-1666, 1999.

, , vol.1656, 199905.

P. D. Smith, L. E. Smythies, M. Mosteller-barnum, D. A. Sibley, M. W. Russell et al., Intestinal macrophages lack CD14 and CD89 and consequently are down-regulated for LPS-and IgA-mediated activities, Journal of Immunology, vol.167, issue.5, pp.2651-2656, 1950.

J. Snel, P. P. Heinen, H. J. Blok, R. J. Carman, J. Duncan et al., Sfb sfb sfb, International Journal of Systematic Bacteriology, vol.45, issue.4, pp.780-782, 1995.
URL : https://hal.archives-ouvertes.fr/hal-01204391

J. Snel, P. P. Heinen, H. J. Blok, R. J. Carman, J. Duncan et al., Comparison of 16S rRNA sequences of segmented filamentous bacteria isolated from mice, rats, and chickens and proposal of "Candidatus Arthromitus, International Journal of Systematic Bacteriology, vol.45, issue.4, pp.780-782, 1995.

J. Snel, C. C. Hermsen, H. J. Smits, N. A. Bos, W. M. Eling et al., Interactions between gut-associated lymphoid tissue and colonization levels of indigenous, segmented, filamentous bacteria in the small intestine of mice, Canadian Journal of Microbiology, vol.44, issue.12, pp.1177-1182, 1998.

J. Snel, M. E. Vandenbrink, M. H. Bakker, F. G. Poelma, and P. J. Heidt, The influence of indigenous segmented filamentous bacteria on small intestinal transit in mice, Microbial Ecology in Health and Disease, vol.9, issue.5, pp.207-214, 1996.

V. Snoeck, B. Goddeeris, and E. Cox, The role of enterocytes in the intestinal barrier function and antigen uptake, Microbes and Infection, vol.7, issue.7-8, pp.997-1004, 2005.

F. Sommer and F. Bäckhed, The gut microbiota engages different signaling pathways to induce Duox2 expression in the ileum and colon epithelium, Mucosal Immunology, vol.8, issue.2, pp.372-381, 2015.

G. F. Sonnenberg, L. A. Monticelli, T. Alenghat, T. C. Fung, N. A. Hutnick et al.,

, Innate Lymphoid Cells Promote Anatomical Containment of Lymphoid-Resident Commensal Bacteria, Science, vol.336, issue.6086, pp.1321-1325

G. F. Sonnenberg and D. Artis, Innate lymphoid cells in the initiation, regulation and resolution of inflammation, Nature Medicine, vol.21, issue.7, pp.698-708, 2015.

G. F. Sonnenberg, L. A. Fouser, and D. Artis, Functional biology of the IL-22-IL-22R pathway in regulating immunity and inflammation at barrier surfaces, Advances in Immunology, p.107, 2010.

G. F. Sonnenberg, L. A. Monticelli, M. M. Elloso, L. A. Fouser, and D. Artis, CD4(+) lymphoid tissue-inducer cells promote innate immunity in the gut, Immunity, vol.34, issue.1, pp.122-134, 2011.

O. E. Sørensen, P. Follin, A. H. Johnsen, J. Calafat, G. Sandra-tjabringa et al., Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3, Blood, issue.12, pp.3951-3959, 2001.

A. Soruri, J. Grigat, U. Forssmann, J. Riggert, and J. Zwirner, beta-Defensins chemoattract macrophages and mast cells but not lymphocytes and dendritic cells: CCR6 is not involved, European Journal of Immunology, vol.37, issue.9, pp.2474-2486, 2007.

J. Sotolongo, C. España, A. Echeverry, D. Siefker, N. Altman et al., Host innate recognition of an intestinal bacterial pathogen induces TRIF-dependent protective immunity, The Journal of Experimental Medicine, vol.208, issue.13, pp.2705-2721, 2011.

S. P. Spencer, C. Wilhelm, Q. Yang, J. A. Hall, N. Bouladoux et al., , vol.343, pp.432-437, 2015.

H. Spits, D. Artis, M. Colonna, A. Diefenbach, J. P. Di-santo et al., Innate lymphoid cells--a proposal for uniform nomenclature, Nature Reviews. Immunology, vol.13, issue.2, pp.145-154, 2013.

H. Spits and T. Cupedo, Innate Lymphoid Cells: Emerging Insights in Development, Lineage Relationships, and Function. Annual Review of Immunology, vol.30, pp.647-675, 2012.

H. Spits and J. P. Di-santo, The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling, Nature Immunology, vol.12, issue.1, pp.21-27, 2011.

R. Stepankova, F. Powrie, O. Kofronova, H. Kozakova, T. Hudcovic et al., Segmented filamentous bacteria in a defined bacterial cocktail induce intestinal inflammation in SCID mice reconstituted with CD45RBhigh CD4+ T cells, Inflammatory Bowel Diseases, vol.13, issue.10, pp.1202-1211, 2007.

S. Stockinger, C. U. Duerr, M. Fulde, T. Dolowschiak, J. Pott et al., , 2014.

, TRIF signaling drives homeostatic intestinal epithelial antimicrobial peptide expression, Journal of Immunology, vol.193, issue.8, pp.4223-4257, 1950.

S. Stockinger, C. U. Duerr, M. Fulde, T. Dolowschiak, J. Pott et al., , 2014.

, TRIF signaling drives homeostatic intestinal epithelial antimicrobial peptide expression, Journal of Immunology, vol.193, issue.8, pp.4223-4257, 1950.

G. L. Stritesky, N. Yeh, and M. H. Kaplan, IL-23 promotes maintenance but not commitment to the Th17 lineage, Journal of Immunology, vol.181, issue.9, pp.5948-55, 1950.

S. Strobel and A. M. Mowat, Immune responses to dietary antigens: oral tolerance, Immunology Today, vol.19, issue.4, pp.173-181, 1998.

C. E. Sutton, S. J. Lalor, C. M. Sweeney, C. F. Brereton, E. C. Lavelle et al., , 2009.

, Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity, Immunity, vol.31, issue.2, pp.331-341

C. Sutton, C. Brereton, B. Keogh, K. H. Mills, and E. C. Lavelle, A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis, The Journal of Experimental Medicine, vol.203, issue.7, pp.1685-91, 2006.

K. Suzuki, B. Meek, Y. Doi, M. Muramatsu, T. Chiba et al., Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut, Proceedings of the National Academy of Sciences of the United States of America, vol.101, issue.7, pp.1981-1986, 2004.

L. E. Tailford, E. H. Crost, D. Kavanaugh, and N. Juge, Mucin glycan foraging in the human gut microbiome, Frontiers in Genetics, vol.5, 2015.

H. Takatori, Y. Kanno, Z. Chen, and J. J. Shea, New complexities in helper T Cell fate determination and the implications for autoimmune diseases, Modern Rheumatology, vol.18, issue.6, pp.533-541, 2008.

H. Takatori, Y. Kanno, W. T. Watford, C. M. Tato, G. Weiss et al., , 2009.

, Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22, The Journal of Experimental Medicine, vol.206, issue.1, pp.35-41

O. Takeuchi, K. Takeda, K. Hoshino, O. Adachi, T. Ogawa et al., Cellular responses to bacterial cell wall components are mediated through MyD88-dependent signaling cascades, International Immunology, vol.12, issue.1, pp.113-117, 2000.

O. Takeuchi, K. Hoshino, and S. Akira, Cutting Edge: TLR2-Deficient and MyD88-Deficient Mice Are Highly Susceptible to Staphylococcus aureus Infection, The Journal of Immunology, vol.165, issue.10, pp.5392-5396, 2000.

G. L. Talham, H. Jiang, N. Bos, and J. Cebra, Segmented Filamentous Bacteria Are Potent Stimuli of a Physiologically Normal State of the Murine Gut Mucosal Immune System Segmented Filamentous Bacteria Are Potent Stimuli of a Physiologically Normal State of the Murine Gut Mucosal Immune System, Infection and Immunity, vol.67, issue.4, 1992.

J. E. Talmadge, K. M. Meyers, D. J. Prieur, and J. R. Starkey, Role of natural killer cells in tumor growth and metastasis: C57BL/6 normal and beige mice, Journal of the National Cancer Institute, vol.65, issue.5, pp.929-935, 1980.

G. W. Tannock, C. M. Crichton, and D. C. Savage, A method for harvesting non-cultivable filamentous segmented microbes inhabiting the ileum of mice, FEMS Microbiology Letters, vol.45, issue.6, pp.329-332, 1987.

G. W. Tannock, J. R. Miller, and D. C. Savage, Host specificity of filamentous, segmental microorganisms adherent to the small bowel epithelium in mice and rats, Applied and Environmental Microbiology, vol.47, issue.2, pp.441-442, 1984.

A. Tasteyre, M. C. Barc, A. Collignon, H. Boureau, and T. Karjalainen, Role of FliC and FliD flagellar proteins of Clostridium difficile in adherence and gut colonization, Infection and Immunity, vol.69, issue.12, pp.7937-7940, 2001.

F. Teng, C. N. Klinger, K. M. Felix, N. L. Tran, Y. Umesaki et al., Gut Microbiota Drive Autoimmune Arthritis by Promoting Differentiation and Migration of Peyer ' s Article Gut Microbiota Drive Autoimmune Arthritis by Promoting Differentiation and Migration of Peyer ' s Patch T Follicular Helper Cells, Immunity, vol.44, issue.4, pp.875-888, 2016.

K. Terazono, H. Yamamoto, S. Takasawa, K. Shiga, Y. Yonemura et al., A novel gene activated in regenerating islets, The Journal of Biological Chemistry, vol.263, issue.5, pp.2111-2114, 1988.

M. C. Territo, T. Ganz, M. E. Selsted, and R. Lehrer, Monocyte-chemotactic activity of defensins from human neutrophils, The Journal of Clinical Investigation, vol.84, issue.6, pp.2017-2037, 1989.

H. Tezuka, Y. Abe, M. Iwata, H. Takeuchi, H. Ishikawa et al., Regulation of IgA production by naturally occurring TNF/iNOS-producing dendritic cells, Nature, vol.448, issue.7156, pp.929-933, 2007.

C. L. Thompson, R. Vier, A. Mikaelyan, T. Wienemann, and A. Brune, Candidatus Arthromitus" revised: Segmented filamentous bacteria in arthropod guts are members of Lachnospiraceae, Environmental Microbiology, vol.14, issue.6, pp.1454-1465, 2012.

M. Tollin, P. Bergman, T. Svenberg, H. Jornvall, G. H. Gudmundsson et al., , 2003.

, Antimicrobial peptides in the first line defence of human colon mucosa, Peptides, vol.24, issue.4, pp.523-530

J. Tomalka, E. Azodi, H. P. Narra, K. Patel, S. O&apos;neill et al., ?-Defensin 1 Plays a Role in Acute Mucosal Defense against Candida albicans, The Journal of Immunology, vol.194, issue.4, pp.1788-1795, 2015.

D. Toy, D. Kugler, M. Wolfson, T. V. Bos, J. Gurgel et al., Cutting Edge: Interleukin 17 Signals through a Heteromeric Receptor Complex, The Journal of Immunology, vol.177, issue.1, pp.36-39, 2006.

V. Tremaroli and F. Bäckhed, Functional interactions between the gut microbiota and host metabolism, Nature, vol.489, issue.7415, pp.242-249, 2012.

V. Tremaroli and F. Bäckhed, Functional interactions between the gut microbiota and host metabolism, Nature, vol.489, issue.7415, pp.242-249, 2012.

C. Tropini, K. A. Earle, K. C. Huang, and J. L. Sonnenburg, The Gut Microbiome: Connecting Spatial Organization to Function, Cell Host and Microbe, vol.21, issue.4, pp.433-442, 2017.

M. Tsuji, K. Suzuki, H. Kitamura, M. Maruya, K. Kinoshita et al., Requirement for lymphoid tissue-inducer cells in isolated follicle formation and T cell-independent immunoglobulin A generation in the gut, Immunity, vol.29, issue.2, pp.261-271, 2008.

P. J. Turnbaugh and J. I. Gordon, The core gut microbiome, energy balance and obesity, The Journal of Physiology, vol.587, pp.4153-4161, 2009.

P. J. Turnbaugh, M. Hamady, T. Yatsunenko, B. L. Cantarel, A. Duncan et al., A core gut microbiome in obese and lean twins, Nature, vol.457, issue.7228, pp.480-484, 2009.

C. Ubeda, L. Lipuma, A. Gobourne, A. Viale, I. Leiner et al., Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLRdeficient mice, The Journal of Experimental Medicine, vol.209, issue.8, pp.1445-56, 2012.

S. Uematsu, K. Fujimoto, M. H. Jang, B. Yang, Y. Jung et al., Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5, Nature Immunology, vol.9, issue.7, pp.769-776, 2008.

Y. Umesaki, Y. Okada, S. Matsumoto, A. Imaoka, and H. Setoyama, Segmented filamentous bacteria are indigenous intestinal bacteria that activate intraepithelial lymphocytes and induce MHC class II molecules and fucosyl asialo GM1 glycolipids on the small intestinal epithelial cells in the ex-germ-free mouse, Microbiology and Immunology, vol.39, issue.8, pp.555-562, 1995.

V. Upadhyay, V. Poroyko, T. Kim, S. Devkota, S. Fu et al., Lymphotoxin regulates commensal responses to enable diet-induced obesity, Nature Immunology, vol.13, issue.10, pp.947-53, 2012.

G. Uze and D. Monneron, IL-28 and IL-29: newcomers to the interferon family, Biochimie, issue.6, p.89, 2007.

, , pp.729-734

S. Vaishnava, C. L. Behrendt, A. S. Ismail, L. Eckmann, and L. V. Hooper, Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface, Proceedings of the National Academy of Sciences, vol.105, issue.52, pp.20858-20863, 2008.

S. Vaishnava, M. Yamamoto, K. M. Severson, K. A. Ruhn, X. Yu et al., Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cells, Immunity, vol.334, issue.6053, pp.660-669, 2007.

M. Van-der-sluis, B. A. De-koning, A. C. De-bruijn, A. Velcich, J. P. Meijerink et al., Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection, Gastroenterology, vol.131, issue.1, pp.117-129, 2006.

L. Van-der-waaij, P. C. Limburg, G. Mesander, and D. Van-der-waaij, In vivo IgA coating of anaerobic bacteria in human faeces, Gut, vol.38, issue.3, pp.348-354, 1996.

L. Van-der-waaij, P. C. Limburg, G. Mesander, and D. Van-der-waaij, In vivo IgA coating of anaerobic bacteria in human faeces, Gut, vol.38, issue.3, pp.348-354, 1996.

L. A. Van-der-waaij, F. G. Kroese, A. Visser, G. F. Nelis, B. D. Westerveld et al., Immunoglobulin coating of faecal bacteria in inflammatory bowel disease, European Journal of Gastroenterology & Hepatology, vol.16, issue.7, pp.669-674, 2004.

L. Van-maele, C. Carnoy, D. Cayet, P. Songhet, L. Dumoutier et al., , 2010.

, TLR5 signaling stimulates the innate production of IL-17 and IL-22 by CD3(neg)CD127+ immune cells in spleen and mucosa, Journal of Immunology, vol.185, issue.2, pp.1177-85, 1950.

M. Vijay-kumar, C. J. Sanders, R. T. Taylor, A. Kumar, J. D. Aitken et al., Deletion of TLR5 results in spontaneous colitis in mice, vol.117, pp.3909-3921, 2007.

K. Vlantis, . Polykratis, P. Welz, G. Van-loo, M. Pasparakis et al., TLRindependent anti-inflammatory function of intestinal epithelial TRAF6 signalling prevents DSS-induced colitis in mice, pp.1-9, 2015.

C. Vonarbourg, A. Mortha, V. L. Bui, P. Hernandez, A. Elina et al., , 2011.

, , vol.33, pp.736-751

S. Wagage, G. H. Pritchard, L. Dawson, E. L. Buza, G. F. Sonnenberg et al., The group 3 innate lymphoid cell defect in aryl hydrocarbon receptor deficient mice is associated with T, 2015.

S. Wang, L. Charbonnier, M. Rivas, P. Georgiev, N. Li et al., , 2015.

, MyD88 Adaptor-Dependent Microbial Sensing by Regulatory T Cells Promotes Mucosal Tolerance and Enforces Commensalism, vol.43, pp.289-303

C. T. Weaver, L. E. Harrington, P. R. Mangan, M. Gavrieli, and K. M. Murphy, Th17: An Effector CD4 T Cell Lineage with Regulatory T Cell Ties, Immunity, vol.24, issue.6, pp.677-688, 2006.

C. T. Weaver, R. D. Hatton, P. R. Mangan, and L. E. Harrington, IL-17 Family Cytokines and the Expanding Diversity of Effector T Cell Lineages Key Words, Annu. Rev. Immunol, vol.25, pp.821-52, 2007.

N. Weder, H. Zhang, K. Jensen, B. Z. Yang, A. Simen et al., HHS. Journal of the American Academy of Child and Adolescent Psychiatry, vol.53, issue.4, pp.417-441, 2014.

J. Wehkamp, J. Schauber, and E. F. Stange, Defensins and cathelicidins in gastrointestinal infections, Current Opinion in Gastroenterology, vol.23, issue.1, pp.32-38, 2007.

C. L. Wilson, Regulation of Intestinal -Defensin Activation by the Metalloproteinase Matrilysin in Innate Host Defense, Science, vol.286, issue.5437, pp.113-117, 1999.

M. Wlodarska, B. Willing, K. M. Keeney, A. Menendez, K. S. Bergstrom et al., Antibiotic treatment alters the colonic mucus layer and predisposes the host to exacerbated Citrobacter rodentium-induced colitis, Infection and Immunity, vol.79, issue.4, pp.1536-1545, 2011.

M. Wlodarska, C. A. Thaiss, R. Nowarski, J. Henao-mejia, J. P. Zhang et al., NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion, Cell, vol.156, issue.5, pp.1045-1059, 2014.

K. Wolk, S. Kunz, E. Witte, M. Friedrich, K. Asadullah et al., IL-22 increases the innate immunity of tissues, Immunity, vol.21, issue.2, pp.241-254, 2004.

H. Wu, I. I. Ivanov, J. Darce, K. Hattori, and T. Shima, , vol.32, pp.815-827, 2011.

Z. Wu, B. Ericksen, K. Tucker, J. Lubkowski, and W. Lu, Synthesis and characterization of human alpha-defensins 4-6, The Journal of Peptide Research : Official Journal of the American Peptide Society, vol.64, issue.3, pp.118-125, 2004.

H. Xiao, M. F. Gulen, J. Qin, J. Yao, K. Bulek et al., The Toll-interleukin-1 receptor member SIGIRR regulates colonic epithelial homeostasis, inflammation, and tumorigenesis, Immunity, vol.26, issue.4, pp.461-475, 2007.

M. H. Xie, S. Aggarwal, W. H. Ho, J. Foster, Z. Zhang et al., , 2000.

. Interleukin, 22, a novel human cytokine that signals through the interferon receptor-related proteins CRF2-4 and IL-22R, Journal of Biological Chemistry, vol.275, issue.40, pp.31335-31339

M. Yamamoto, P. Rennert, J. R. Mcghee, M. Kweon, S. Yamamoto et al.,

, Alternate Mucosal Immune System: Organized Peyer's Patches Are Not Required for IgA Responses in the Gastrointestinal Tract, The Journal of Immunology, vol.164, issue.10, pp.5184-5191

D. Yang, O. Chertov, S. N. Bykovskaia, Q. Chen, M. J. Buffo et al., J. J, 1999.

, Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science, pp.525-528

D. Yang, Q. Chen, A. P. Schmidt, G. M. Anderson, J. M. Wang et al., , 2000.

, Brief Definitive Report LL-37, the Neutrophil Granule-and Epithelial cell-derived Cathelicidin, Utilizes Formyl Peptide Receptor-like 1 (FPRL1) as a Receptor to Chemoattract Human Peripheral Blood Neutrophils, Monocytes, and T Cells, The Journal of Experimental Medicine @BULLET, vol.192, issue.7, pp.1069-1074

X. O. Yang, S. H. Chang, H. Park, R. Nurieva, B. Shah et al., Regulation of inflammatory responses by IL-17F, The Journal of Experimental Medicine, vol.205, issue.5, pp.1063-75, 2008.

Y. Yang, M. B. Torchinsky, M. Gobert, H. Xiong, M. Xu et al., , vol.510, pp.152-156, 2014.

Z. Yao, S. L. Painter, W. C. Fanslow, D. Ulrich, B. M. Macduff et al.,

, Human IL-17: A Novel Cytokine Derived from T Cells, Journal of Immunology, vol.155, pp.5483-5486

P. Ye, F. H. Rodriguez, S. Kanaly, K. L. Stocking, J. Schurr et al., Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense, The Journal of Experimental Medicine, vol.194, issue.4, pp.519-546, 2001.

Y. Yin, Y. Wang, L. Zhu, W. Liu, N. Liao et al., Comparative analysis of the distribution of segmented filamentous bacteria in humans, mice and chickens, The ISME Journal, vol.7, issue.3, pp.615-636, 2013.

H. Yoshida, K. Honda, R. Shinkura, S. Adachi, S. Nishikawa et al., IL-7 receptor alpha+ CD3(-) cells in the embryonic intestine induces the organizing center of Peyer's patches, International Immunology, vol.11, issue.5, pp.643-655, 1999.

J. Yother and J. M. White, Novel surface attachment mechanism of the Streptococcus pneumoniae protein PspA, Journal of Bacteriology, vol.176, issue.10, pp.2976-2985, 1994.

M. Zasloff, , pp.389-395, 2002.

T. Zelante, R. G. Iannitti, C. Cunha, A. De-luca, G. Giovannini et al., , 2013.

, Tryptophan Catabolites from Microbiota Engage Aryl Hydrocarbon Receptor and Balance Mucosal Reactivity via Interleukin-22, Immunity, vol.39, issue.2, pp.372-385

Y. Zheng, P. A. Valdez, D. M. Danilenko, Y. Hu, S. M. Sa et al., , 2008.

, Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens, Nature Medicine, vol.14, issue.3, pp.282-291

L. Zhou, J. E. Lopes, M. M. Chong, I. I. Ivanov, R. Min et al., , 2008.

, TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function, Nature, vol.453, issue.7192, pp.236-276

J. Zilberman-rudenko, L. M. Shawver, A. W. Wessel, Y. Luo, M. Pelletier et al., Recruitment of A20 by the C-terminal domain of NEMO suppresses NF-?B activation and autoinflammatory disease, Proceedings of the National Academy of Sciences of the United States of America, vol.113, 2016.

C. L. Zindl, J. Lai, Y. K. Lee, C. L. Maynard, S. N. Harbour et al.,

, IL-22-producing neutrophils contribute to antimicrobial defense and restitution of colonic epithelial integrity during colitis