
HAL Id: tel-02462740
https://theses.hal.science/tel-02462740

Submitted on 31 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Schedulability in Mixed-criticality Systems
Rany Kahil

To cite this version:
Rany Kahil. Schedulability in Mixed-criticality Systems. Performance [cs.PF]. Université Grenoble
Alpes, 2019. English. �NNT : 2019GREAM023�. �tel-02462740�

https://theses.hal.science/tel-02462740
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE LA COMMUNAUTE UNIVERSITE
GRENOBLE ALPES
Spécialité : Informatique

Arrêté ministériel : 25 mai 2016

Présentée par

Rany Kahil

Thèse dirigée par Saddek Bensalem

préparée au sein du Laboratoire Verimag
dans l'École Doctorale Mathématique, Sciences et
Technologies de l’information (MSTII)

Schedulability in Mixed-
criticality Systems

Thèse soutenue publiquement le 26/06/2019,
devant le jury composé de :

Prof. Thao Dang
Directeur de Recherche of the CNRS, Présidente
Prof. Sanjoy Baruah
Washington University, Rapporteur
Prof. Yamine Ait Ameur
Universités INPT-ENSEEIHT/IRIT, Rapporteur
Prof. Radu Grosu
Vienna University of Technology, Examinateur
Prof. Samarjit Chakraborty
Technical University of Munich, Examinateur
Prof. Saddek Bensalem
Universite Grenoble Alpes, Directeur de thèse

Acknowledgements

Apart from all my efforts over my years as a PhD student, the completion of this thesis

would not have been possible without the guidance and encouragement of many people.

Most of all, I would like to express my greatest gratitude to my thesis advisors, Saddek

Bensalem and Petro Poplavko.

Saddek has always been there to provide advice and direction. In his special way,

he was able to keep me motivated without making me feel pressured. He was very

understanding and supportive regarding my work, and also on a personal level. He

really is an exceptional advisor.

I was lucky to have Petro as my co-advisor, he always had new ideas and his feedback

was invaluable. I thank him for all the help he gave me, all our late time meetings, and

all our long discussions. My thesis would not have been the same without him.

I am grateful to Marius and Jacques for their help when I needed it, and to all people

from Verimag, who have always been friendly and created a comfortable work environ-

ment.

I would also like to thank my family. My mother, father and sister who encouraged me

to make the decision of pursuing the Doctorate’s degree. And a special thanks to my

wonderful wife who is always beside me despite the distance. Her endless support and

love have kept me harmonious throughout the period of my studies.

iii

Abstract

Real-time safety-critical systems must complete their tasks within a given time limit.

Failure to successfully perform their operations, or missing a deadline, can have se-

vere consequences such as destruction of property and/or loss of life. Examples of such

systems include automotive systems, drones and avionics among others. Safety guar-

antees must be provided before these systems can be deemed usable. This is usually

done through certification performed by a third party, a certification authority. Safety

evaluation and certification are complicated and costly even for smaller systems.

One answer to these difficulties is the isolation of the critical functionality. Execut-

ing tasks of different criticalities on separate platforms prevents non-critical tasks from

interfering with critical ones, provides a higher guaranty of safety and simplifies the

certification process limiting it to only the critical functions. But this separation, in

turn, introduces undesirable results portrayed by an inefficient resource utilization, an

increase in the cost, weight, size and energy consumption which can put a system in a

competitive disadvantage.

To overcome the drawbacks of isolation, Mixed Criticality (MC) systems can be used.

These systems allow functionalities with different criticalities to execute on the same

platform. In 2007, Vestal proposed a model to represent MC-systems where tasks have

multiple Worst Case Execution Times (WCETs), one for each criticality level. In addi-

tion, correctness conditions for scheduling policies were formally defined, allowing lower

criticality jobs to miss deadlines or be even dropped in cases of failure or emergency

situations. The introduction of multiple WCETs and different conditions for correct-

ness increased the difficulty of the scheduling problem for MC-systems. Conventional

scheduling policies and schedulability tests proved inadequate and the need for new

algorithms arose. Since then, a lot of work has been done in this field.

In this thesis, we contribute to the study of schedulability in MC-systems. The workload

of a system is represented as a set of jobs that can describe the execution over the hyper-

period of tasks or over a duration in time. This model allows us to study the viability

of simulation-based correctness tests in MC-systems. We show that simulation tests can

still be used in mixed-criticality systems, but in this case, the schedulability of the worst

case scenario is no longer sufficient to guarantee the schedulability of the system even for

the fixed priority scheduling case. We show that scheduling policies are not predictable

in general, and define the concept of weak-predictability for MC-systems. We prove

that a specific class of fixed priority policies are weakly predictable and propose two

iv

simulation-based correctness tests that work for weakly-predictable policies. We also

demonstrate that contrary to what was believed, testing for correctness can not be done

only through a linear number of preemptions.

The majority of the related work focuses on systems of two criticality levels due to the

difficulty of the problem. But for automotive and airborne systems, industrial standards

define four or five criticality levels, which motivated us to propose a scheduling algorithm

that schedules mixed-criticality systems with theoretically any number of criticality lev-

els. We show experimentally that it has higher success rates compared to the state of

the art.

We illustrate how our scheduling algorithm, or any algorithm that generates a single

time-triggered table for each criticality mode, can be used as a recovery strategy to

ensure the safety of the system in case of certain failures. To do so, we representing

the system as a set of synchronized timed-automata components, where the scheduling

algorithm is modeled as a timed-automaton that acts as a part of the Fault Detection

Isolation and Recovery (FDIR) component in the system.

Finally, we propose a high level concurrency language and a model for designing an

MC-system with coarse grained multi-core interference.

v

Rèsumè

Les systèmes temps-réel critiques doivent exécuter leurs tâches dans les délais impartis.

En cas de défaillance, des événements peuvent avoir des catastrophes économiques. Dans

certain cas une atteinte à des vies humaines. Des classifications des défaillances par rap-

port aux niveaux des risques encourus ont été établies, en particulier dans les domaines

des transports aéronautique et automobile. Des niveaux de criticité sont attribués aux

différentes fonctions des systèmes suivant les risques encourus lors d’une défaillance et

des probabilités d’apparition de celles-ci. Ces différents niveaux de criticité influencent

les choix d’architecture logicielle et matérielle ainsi que le type de composants utilisés

pour sa réalisation. Les systèmes temps-réels modernes ont tendance à intégrer sur

une même plateforme de calcul plusieurs applications avec différents niveaux de crit-

icité. Cette intégration est nécessaire pour des systèmes modernes comme par exemple

les drones (UAV) afin de réduire le coût, le poids et la consommation d’énergie. Mal-

heureusement, elle conduit à des difficultés importantes lors de leurs conceptions. En

plus, ces systèmes doivent être certifiés en prenant en compte ces différents niveaux

de criticités. Il est bien connu que le problème d’ordonnancement des systèmes avec

différents niveaux de criticités représente un des plus grand défi dans le domaine de

systèmes temps-réel. Les techniques traditionnelles proposent comme solution l’isolation

complète entre les niveaux de criticité ou bien une certification globale au plus haut

niveau. Malheureusement, une telle solution conduit à une mauvaise des ressources et

à la perte de l’avantage de cette intégration. Ce problème a suscité une nouvelle di-

rection de recherche dans la communauté temps-réel, et de nombreuses solutions ont

été proposées. En 2007, Vestal a proposé un modèle pour représenter les systèmes

avec différents niveaux de criticité dont les tâches ont plusieurs temps d’exécution,

un pour chaque niveau de criticité. En outre, les conditions de validité des stratégies

d’ordonnancement ont été définies de manière formelle, permettant ainsi aux tâches les

moins critiques d’échapper aux délais, voire d’être abandonnées en cas de défaillance

ou de situation d’urgence. L’introduction de plusieurs WCET et différentes conditions

de validité ont accru la difficulté du problème de planification pour les systèmes avec

differents niveaux de criticité. Les politiques de planification conventionnelles et les tests

d’ordonnoncement se sont révélés inadéquats et le besoin de nouveaux algorithmes est

apparu. Depuis, beaucoup de travaux ont été réalisés dans ce domaine. Dans cette

thèse, nous contribuons à l’étude de l’ordonnancement dans les systèmes avec différents

niveaux de criticité. La surcharge d’un système est représentée sous la forme d’un en-

semble de tâches pouvant décrire l’exécution sur l’hyper-période de tâches ou sur une

durée donnée. Ce modèle nous permet d’étudier la viabilité des tests de correction basés

vi

sur la simulation pour les systèmes avec différents niveaux de criticité. Nous montrons

que les tests de simulation peuvent toujours être utilisés pour ces systèmes, et la pos-

sibilité de l’ordonnancement du pire des scénarios ne suffit plus, même pour le cas de

l’ordonnancement avec priorité fixe. Nous montrons que les politiques d’ordonnancement

ne sont généralement pas prévisibles. Nous définissons le concept de faible prévisibilité

pour les systèmes avec différents niveaux de criticité et nous montrons ensuite qu’une

classe spécifique de stratégies à priorité fixe sont faiblement prévisibles. Nous proposons

deux tests de correction basés sur la simulation qui fonctionnent pour des stratégies

faiblement prévisibles. Nous montrons également que, contrairement à ce que l’on croy-

ait, le contrôle de l’exactitude ne peut se faire que par l’intermédiaire d’un nombre

linéaire de préemptions. La majorité des travaux reliés à notre domaine portent sur des

systèmes à deux niveaux de criticité en raison de la difficulté du problème. Mais pour

les systèmes automobiles et aériens, les normes industrielles définissent quatre ou cinq

niveaux de criticité, ce qui nous a motivés à proposer un algorithme de planification

qui planifie les systèmes à criticité mixte avec théoriquement un nombre quelconque

de niveaux de criticité. Nous montrons expérimentalement que le taux de réussite est

supérieur à celui de l’état de la technique.

vii

Contents

Acknowledgements iii

Abstract iv

Contents viii

List of Figures xi

List of Tables xii

1 Introduction 1
1.1 Motivation . 2
1.2 Mixed Criticality Systems . 3

1.2.1 Challenges . 3
1.3 Contributions and Structure . 4

2 Prior Work 6
2.1 Problem Formulations . 6

2.1.1 The Vestal Model . 6
2.1.2 The Burns and Baruah Model . 6
2.1.3 The Elastic Mixed-criticality Task Model 7
2.1.4 The Ekberg and Yi Model . 7

2.2 Job Scheduling . 8
2.2.1 Fixed Priority Policies . 8
2.2.2 Extended Fixed Priority Policies 9
2.2.3 Time-triggered Policies . 10

2.3 Task scheduling . 11
2.3.1 Uniprocessor Scheduling . 11
2.3.2 Multiprocessor Scheduling . 12

3 Model Formulation 14
3.1 The Workload Model . 14

4 On the Complexity of Testing a Scenario 18
4.1 Consequences for Complexity . 20

5 Correctness in MC-scheduilng 21
5.1 Fundamental Correctness Concepts . 21

5.1.1 Sustainability . 22
5.1.2 Predictability . 23

viii

Contents ix

5.1.3 A Sustainable yet non-predictable Example 24
5.2 Weak Predictability . 25

5.2.1 Weak Predictability in FPM Policies 27
5.3 The Canonical Correctness Test . 32

5.3.1 Basic Scenarios for Correctness Testing 32
5.3.2 The Canonical Correctness Test (CCT) 35
5.3.3 Building the Case for Class NP for FPM 36

5.4 The Economical Correctness Test . 37
5.4.1 A Non-Trivial Problem . 37
5.4.2 Generating the LO table . 38
5.4.3 Generating the HI* Table . 41

5.4.3.1 Transformation Rules . 41
5.4.3.2 An Example . 42
5.4.3.3 The FPM HI* Table . 42

5.4.4 Proof of Correctness . 43
5.4.5 ECT - Correctness and Complexity 43

5.5 Chapter Summary and Contributions . 44

6 Scheduling Systems with Multiple Levels of Criticality 45
6.1 PBEDF for Dual-criticality Systems . 47

6.1.1 Generating the Initial Time-Table 47
6.1.2 Generating the Time-Table for Criticality Level 1 47

6.1.2.1 Swap Conditions . 48
6.1.2.2 The Swap Operation . 49
6.1.2.3 The Push Back Function 51

6.1.3 Generating Time Triggered Tables for Higher Criticalities 52
6.1.4 Example . 54

6.2 PBEDF for Multiple Criticality Systems 56
6.2.1 Generating Deadlines for Time-slots 56
6.2.2 Example . 58

6.3 Experiment Results . 60
6.4 Chapter Summary . 63

7 Mixed Criticality Policies as Fault Recovery Strategies 64
7.1 Overview of the System . 65
7.2 Representation of Mixed-Criticality Jobs 66

7.2.1 Low Criticality Jobs . 67
7.2.2 Jobs of Criticality 2 . 67
7.2.3 Jobs of Higher Criticality Level . 68

7.3 Fault Detection . 69
7.3.1 Diagnoser Synthesis . 69

7.4 The Recovery Strategy . 70
7.4.1 Controller . 70
7.4.2 Scheduler . 70

7.5 Chapter Summary . 73

8 MC-system Design with Coarse-grained Multi-core Interference 74
8.1 Introduction . 74
8.2 Background . 75

8.2.1 Models of Computation . 75
8.2.2 Resource Managers and Concurrency Language 77

Contents x

8.2.3 Concurrency Language based Representation of System Nodes . . 78
8.2.4 System Scheduling Aspects . 79
8.2.5 Multi-core Interference Aspects 80
8.2.6 Mixed-Criticality Aspects . 82
8.2.7 Related Work . 83

8.3 Design Flow . 85
8.3.1 Underlying Paradigm . 85
8.3.2 Flow Structure and Assumptions 86
8.3.3 An Example Illustrating the Flow 88

8.4 Algorithm Description . 92
8.5 Experiments . 95

9 Conclusion 97

A Proof of Time-triggered Transformation Algorithm 100
A.1 Proof of Direct Correctness . 100
A.2 Proof of Reverse Correctness . 104

Bibliography 109

Acronyms 110

List of Symbols 111

List of Figures

4.1 Valid time-triggered tables for the instance in Example 4.1 20

5.1 FPM non-predictable demonstration on multiprocessor case. 31
5.2 A caption . 34
5.3 The job-specific scenario schedules for Example 5.5 obtained with priority

table PT = (J2, J4, J3, J5, J1) . 35
5.4 Canonical basic set and the HI* table . 38

6.1 A swap example . 49
6.2 Schedule for instance in Table 6.1 . 55
6.3 Generating deadlines for time-slots . 59
6.4 Swapping time-slots . 60
6.5 Experimental evaluation of the schedulability of Push-Back Earliest Dead-

line First (PBEDF) . 62

7.1 Overview of the whole system . 65
7.2 Automata for jobs of criticality 1 . 67
7.3 Automata for jobs of criticality 2 . 68
7.4 Automata for jobs of criticality 3 . 69
7.5 The controller automaton . 70
7.6 Gantt chart of the schedule . 71
7.7 Automata for the scheduler . 72

8.1 Application modeled in a MoC: flight management system in FPPN . . . 76
8.2 Concurrency language representation of a timing-critical application . . . 78
8.3 A simple distributed system and its iteration window 79
8.4 Multi-core interference . 80
8.5 Mixed-criticality resource management 82
8.6 Design flow . 87
8.7 Three-task example: MoC (left), ordinary task graph (middle) and mixed-

criticality task graph (right) . 88
8.8 Three-task example: offline-scheduler solutions 90
8.9 Three-task example: platform execution traces 91
8.10 Three-task example: manual modification introducing a mode switch . . . 92
8.11 Engine (‘Delta’) interference and its modeling in the task graph 93
8.11 Schedulability results for random benchmarks 96

xi

List of Tables

6.1 The no FPM job instance . 54
6.2 A four-job instance . 58

7.1 MC-problem instance . 66

xii

Chapter 1

Introduction

In real-time systems, the execution of tasks is constrained by rigid timing restrictions.

Temporal correctness of the system is as important as its logical correctness. Timing

constraints are usually represented by enforcing deadlines on the executions of tasks. In

hard real-time systems, these deadlines are absolute and all tasks must meet them for

the functionality to be considered correct. Soft real-time system can be more flexible

and it may be acceptable for a task to finish after a short period from its deadline.

Systems where failure of one or more components can lead to catastrophic ramifications

on safety are characterized as safety-critical systems. Effects of a failure could include

destruction or heavy damage to property, injury and loss of life. Some examples of safety-

critical systems include automotive systems, nuclear reactors, certain medical devices,

drones and avionics. Safety-critical systems can be real-time as well, in this case a failure

can be caused by a delay in the execution of a task, causing it to violate the system’s

temporal constraints.

In general, not all functionalities in a safety-critical system are of critical nature. For

example, a surveillance drone would constitute of a flight control system and a camera

control/image processing system. The flight control is considered of high criticality, a

failure within this functionality can lead to the destruction of the drone and possibly

cause injury. The camera control functionality is of a lower criticality, effects of its failure

can be a disruption of the video feed or a reset of the camera’s controls. If the two

functionalities of the drone are separated, each executing on its own physical hardware,

the high criticality functionality would be isolated, preventing any interference from

the low criticality component. In an alternative approach, the two different components

can be integrated on the same hardware. Such systems, where functionalities of different

criticalities share the same computational platform are known as Mixed Criticality (MC)

1

Schedulability in MC-systems 2

systems. Our work in this thesis focuses on the scheduling and schedulability tests of

hard real-time MC systems.

1.1 Motivation

The integration of functionalities on the same physical platform has many desirable

benefits. It reduces the cost, weight, size and energy consumption. These advantages

can be crucial for the success of a system and can be the determinant that gives the

advantage over competing devices in the market.

Due to the dangers posed in the case of malfunction, safety-critical systems need to

be certified before they are implemented and deployed. The certification process is

performed by a Certification Authority (CA), and it is the duty of this third party to

verify that the system is safe. Certification is usually guided by documents containing

technical specifications known as certification standards. The ISO 26262 standard [1]

used in the automotive area, distinguishes between four different criticality levels. The

DO-178 B/C standard [2] is used in avionic systems, it defines five Design Assurance

Levels (DAL), from DAL-A to DAL-E, where DAL-A is the most critical level and

failures can have tragic effects while a failure in a DAL-E does not affects the safety of

the system.

In view of the different criticality levels considered in certification standards, conven-

tional scheduling models proved very difficult to certify, as these models are unaware of

the different criticalities of tasks. Consequently, all applications including non-critical

ones, may need to be developed and certified by the same standards used for the highest

criticality tasks in the system. This makes development and certification more expensive

and more time consuming.

Another complication comes from the pessimistic assumptions taken by CAs about the

execution conditions for higher criticality functionalities. Usually, the higher the criti-

cality of a task the more pessimistic its Worst Case Execution Time (WCET) estimate

is. This makes sense from a safety point of view since the task will have more time to

finish successfully in-case of unforeseen complications. Nevertheless, this will result in

an inefficient resource usage as the difference between the WCET and the average case

becomes bigger. In worst cases, this could possibly render a system unschedulable, by

making its estimated workload larger than the capabilities of the platform.

Conventional models and scheduling policies are not adequate to solve these difficulties

that arise in mixed-criticality systems. New models, aware of the different criticalities

of tasks, alongside criticality-aware scheduling policies have the potential to simplify the

certification process and properly answer to the scheduling needs of these systems.

Schedulability in MC-systems 3

1.2 Mixed Criticality Systems

To bridge the gap between the execution time anticipated by the system designer and

the more pessimistic WCET needed for certification, mixed criticality models allow tasks

to have more than one WCET. In 2007, Vestal proposed a model [3] where each task

has its own criticality, in addition to one WCET for each criticality level in the system.

Correctness conditions for schedulability were formally defined, allowing non-critical

tasks to violate their timing constraints in emergency cases, giving higher criticality

tasks more time to finish their execution.

Different modes of execution are identified based on the on-line performance of jobs.

During run-time, the system is assumed to run in nominal mode where all tasks must

meet their deadlines. In the event where a critical task exceeds one of its worst case

estimates without signaling termination, the system is allowed to change its execution

mode from the nominal to a more critical mode. After this mode change, non-critical

tasks, or tasks whose criticality is lower than the one that caused the mode change are

allowed to miss their deadline and can even be dropped.

1.2.1 Challenges

To acquire correct behavior, with the necessary degree of assurance in a mixed-criticality

system, a formal model that represents the system and clearly identifies the correctness

of its scheduling policy must be chosen. After adopting an appropriate model, a suitable

scheduling policy is needed to manage the use of shared resources and ensure that the

timing constraints of the system are met.

The introduction of multiple WCETs, and a different correctness criteria in MC models,

increased the complexity of the scheduling problem. In 2010, it was proven that the

mixed-criticality scheduling problem is NP-hard even for two levels of criticality on a

uniprocessor platform [4]. In recent work, the authors of [5] try to study the reason for

the intractability of the scheduling problem in MC-systems. Two causes are identified,

the first, as is described in their work, is the ‘on-line’ nature of the problem. This

description comes from the fact that some information are only known during execution.

The second reason found, is that we attempt to find efficient polynomial time algorithms

to a computationally intractable problem.

The last necessary step to guarantee correct behavior is to verify the correctness of

the scheduling policy. This is usually done by a schedulability test/correctness test.

Since the model and the correctness criteria differ, conventional schedulability tests are

not applicable for MC-scheduling policies and new tests are needed. Finding an MC-

schedulability test is not an easy task even in simple cases. The challenge comes from

Schedulability in MC-systems 4

the correctness conditions, which in nominal cases, requires that all tasks adhere to the

timing constraints imposed on the system, but in other cases, tasks are permitted to

miss their deadlines while keeping the system in a correct state.

This difficulty becomes easily visible if we look at the case of fixed priority scheduling

of jobs. In the conventional case, the worst case scenario is easily identified as the

scenario where all jobs execute for their WCET and it is enough to test the correctness

of this scenario to verify the correctness of all others. In MC-scheduling, it becomes

more difficult to identify the worst case scenario, as jobs have multiple WCETs and if

one job executes for more than its WCET others can be dropped. In fact, in our study

we show that there is no one worst case scenario, in the sense that no scenario can be

tested that can cover all the rest.

As a result of these challenges, a big portion of the work done in mixed-criticality

scheduling is for dual-criticality system, containing only two levels of criticality. This

assumption simplifies the problem at hand, still bears useful theoretical results, and

can be directly used for some cases in avionics where system functionalities are divided

between mission-critical and safety-critical. However, recent efforts encourage the con-

sideration of more criticality levels as most of the standards in industry identify four or

five criticality levels.

1.3 Contributions and Structure

A big part of this thesis is dedicated to the study of correctness testing and its complexity

in MC-systems. We focus on simulation-based correctness tests and try to identify

the conditions needed for such tests to be usable in the mixed criticality context. We

represent the workload as a set of independent jobs, whereby a correctness test must

give a verdict whether a scheduling policy can correctly schedule all instances for the

given job set. In the mixed criticality case, it is not enough to test only the worst case

scenario and we provide examples why this is not sufficient.

Chapters 2 and 3 give an overview of the prior work done in the field and essential formal

definition for the model used in our work. In Chapter 4, by means of an example, we

show that, contrary to what was believed in the literature, until a short time ago, linear

number of preemptions are not necessarily enough, in general, to correctly schedule a

system. This has important consequences on the complexity of correctness testing.

In Chapter 5, we continue our work oriented towards testing the correctness of MC-

scheduling policies by investigating their predictability property. We find that these

policies tend not to be predictable in general, and we define weak-predictability, which

is a less restrictive characteristic, more suitable for MC-systems. We prove that an

Schedulability in MC-systems 5

important class of priority based policies is weakly predictable for single processor and

some multi-processor cases. After that, we propose two correctness tests that can be

used for weakly-predictable scheduling policies.

Motivated by the need for scheduling algorithms that can handle systems having more

than two criticality levels, in Chapter 6 we present a scheduling policy that generates

a set of time-triggered tables, one for each criticality mode. The presented scheduling

policy is applicable to systems having any number of criticality levels and allows jobs to

have dynamic priorities. Experimental results indicate that it outperforms two state of

the art algorithms.

Using our proposed algorithm, in Chapter 7, we demonstrate how an MC-scheduling

policy can be used as a fault-recovery strategy. In this chapter, we represent the system,

the jobs and the scheduler, as a set of synchronized Timed-Automata (TA) components.

We use the work of Dragomir et al. [6] were the authors define how to systematically

and automatically generate a Fault Detection Isolation and Recovery (FDIR) component

composed of a diagnoser/controller to detect certain types of failures in a system. We

describe how the component generated from the scheduling policy can be used as a

part of the FDIR component to guide the recovery process of the system in the case of

failures.

In Chapter 8, we introduce a model for designing an MC-system with coarse grained

multi-core interference. In our design flow we employ a concurrency language, also based

on synchronized timed-automata, that can be used for designing, at high abstraction

level, custom resource management policies that can handle interference and mixed-

criticality. We compile the application into a representation in this language and combine

the result with a resource manager into a joint software design used to deploy the given

system on the target platform.

Finally in Chapter 9, we conclude our work and discuss problems that we find interesting

as future work.

Chapter 2

Prior Work

The first step in solving any research problem is finding a correct problem formulation. In

the mixed-criticality field, the basic problem formulation was introduced by Vestal, and

became known as Vestal’s model. As research in this topic advanced, newer problem

formulations that extend the original one were proposed. We review some these in

section 2.1. The rest of the sections of this chapter are dedicated to review the prior

work in scheduling and schedulability tests in MC-systems.

2.1 Problem Formulations

2.1.1 The Vestal Model

In Vestal’s model [3], a system’s workload is represented by a set of periodic tasks.

These tasks are considered to have different criticalities, which in general, have to be

designed with different assurance levels. To represent this in the model, Vestal defines

an ordered set of four ‘design assurance levels’ L = {A,B,C,D}, with A being the

highest level. A task τi is defined by its period Ti, deadline Di, its appropriate design

assurance level Li, which can be identified during safety analysis, and four WCET

estimates CiA ≥ CiB ≥ CiC ≥ CiD each providing a different degree of assurance.

Vestal’s paper [3] is considered as the fundamental work that launched the wave of re-

search in the mixed criticality area. Since then, hundreds of results have been developed

in this domain that use Vestal’s model or a variation of it. In the coming subsections

we describe some of these models.

2.1.2 The Burns and Baruah Model

In this model [7], tasks are partitioned over a finite set of components. Each component

is allocated a criticality level. Similar to Vestal’s model, a task is defined by a period,

6

Schedulability in MC-systems 7

a deadline, a set of worst case execution estimates and a criticality level. Instead of

predefining only four assurance levels, Burns and Baruah define the execution estimates

as a vector ~Ci where Ci(l) is the worst case execution estimate for criticality level l. This

removes the limit of only four levels of assurance from Vestal’s model.

In addition to the relation between WCET estimates and the criticality level, this model

assumes a relation between the criticality level and each of the deadline and period

parameters. It is presumed that if a task τi is to be moved from a criticality level L1
i

to a higher one L2
i , then D2

i ≤ D1
i and T 2

i ≤ T 1
i which makes sense since higher levels

of assurance are expected to be more rigorous. During runtime, if a task of criticality

level Li exceeds its Ci(Li), tasks of the same criticality level or lower are prevented to

execute until the next time the processor is idled [8].

2.1.3 The Elastic Mixed-criticality Task Model

In favor of providing high criticality tasks more time to execute, it is acceptable in an

MC-system to prevent lower criticality tasks from execution, run them in degraded mode

or even drop them [8, 9]. In attempts to guarantee some service for low criticality tasks

even under critical conditions, Su et al. proposed an Elastic Mixed-Criticality (E−MC)

task model [10]. The (E −MC) model is designed for dual-criticality systems. High

criticality tasks have two WCETs and are described as in the previous models. The

difference is that low criticality tasks have two periods. The first one, referred to as the

‘desired period’ and is equivalent to the usual period of tasks in other models. The other

is called the ‘maximum period’ which is larger than the ‘desired period’ and is used to

represent the minimum service requirement of low tasks.

The system is considered correctly schedulable if the execution requirement of high

criticality tasks and the minimum service requirement of low criticality tasks are ensured.

Additionally, low criticality tasks have a set of possible early-release points, which allows

them to release early, exploiting the slack time produced from the execution of high

tasks.

2.1.4 The Ekberg and Yi Model

The aim of the model proposed in [11] is to generalize the mixed-criticality task model

as much as possible. The authors believe that the general assumption in MC-systems,

that different criticality levels provide different levels of assurances related to temporal

constraints, should not be enforced. Rather, it should be the system designer that

decides what different criticality modes represent. Transitions between different modes

of the system are defined using a Directed Acyclic Graph (DAG) where the nodes are

the criticality modes and the edges represent legal mode changes. Furthermore, task

Schedulability in MC-systems 8

parameters such as deadlines and periods can be changed between different criticality

modes, and new tasks can be added as well in higher criticality modes.This was motivated

by scenarios where a failure or a malfunction occurs and additional tasks may need to

execute to handle failures or compensate for the missing functionality.

2.2 Job Scheduling

2.2.1 Fixed Priority Policies

A fixed-priority scheduling policy is a work-conserving policy that assigns a priority for

each task/job in the system. The solution provided is usually represented in the form

of a priority table which defines a total ordering relationship between jobs. Priorities of

jobs are fixed and do not change throughout the execution of the system. During run-

time, a fixed-priority scheduling policy always schedules the highest-priority job that

has arrived and has not completed yet.

In [12], it was shown that Earliest Deadline First (EDF) is not optimal for the schedul-

ing of MC-systems The addition of criticality levels, even only two, introduces feasible

systems that can not be scheduled by EDF.

A noteworthy result in fixed priority scheduling for mixed-criticality systems is the work

by Baruah et al. in [13]. Motivated by increasing the utilization of resources for MC-

systems that adhere to demanding certification requirements, the authors propose a new

fixed-priority scheduling algorithm, Own Criticality Based Priority (OCBP), designed

for certifiable mixed criticality systems. The algorithm tries to recursively find the job

with the lowest priority. First, from the set of all jobs who were not allocated priorities,

a candidate job is chosen to be the lowest priority one. Then a simulation is performed

where all jobs execute for the WCET estimated for the criticality level of the job. If

the candidate job is able to terminate before its deadline then it is assigned the lowest

priority and the algorithm start searching for the second lowest priority and so on. If

the candidate job does not meet its deadline, another job is chosen from the set of

jobs.

A system is deemed schedulable if, by following the process described above, all jobs are

successfully assigned priorities. The algorithm fails to schedule the system, if it reaches

an iteration where a lowest priority job can not be found. In [4], OCBP was proven to

be optimal among fixed-priority policies. That is if a system can not be scheduled by

OCBP then no other fixed-priority algorithm can correctly schedule it. In addition, load

based schedulability analysis for the algorithm was presented, defining two load value,

one for each criticality level. OCBP was extended to sporadic task systems by Li et

al. in [14].

Schedulability in MC-systems 9

2.2.2 Extended Fixed Priority Policies

Although all jobs must meet their timing constraints under normal circumstances, most

mixed criticality problem formulations allow non-critical jobs and jobs of lower criticality

to miss their deadlines in case a high criticality job exceeds its lower worst case estimate

without completion. This lead to the distinction between different modes of execution

in an MC-system where correctness conditions can differ from one execution mode to

another. Being mode-unaware, the effectiveness of fixed-priority policies was bounded,

and extension models were proposed to overcome this limitation. The work in [15] allows

tasks of lower criticalities to be abandoned in case a task of higher criticality needs more

time to finish. The priorities of the high criticality tasks are allowed to be changed as

well.

Another extension for uniprocessor platforms was later proposed by Chen et al [16].

In their work, the authors try to generalize fixed-priority scheduling and introduce the

Generalized Fixed-Priority (GFP) scheme. They distinguish between three different

execution phases in a dual-criticality system. A steady low criticality mode, a transition

period and a steady high criticality mode. Tasks are assigned three priority parameters

one for each mode. During normal execution jobs use priorities for the low mode. After

a criticality change occurs, the system moves from low mode to the transition period.

In this period, high criticality tasks, that have been dispatched but did not complete

before a mode change use the priority assigned for this mode, while other high criticality

tasks that are released after the mode change use the priority assignment for the high

mode. Experimental results show that better schedulability could be achieved by this

generalized scheme.

In [17], the authors proposed a Fixed Priority per Mode (FPM) algorithm for dual-

criticality uniprocessor systems, and provided a theoretical proof of its dominance over

OCBP. The proposed algorithm, Mixed Criticality Earliest Deadline First (MCEDF),

supports precedence-constraints for jobs and generates two priority tables, one for each

mode. For the high criticality mode, it uses the EDF policy, since it is optimal for single

criticality scenarios. To generate the priority table for low criticality mode, the workload

is divided into busy intervals, which are maximal time intervals such that processor is

not idle. The algorithm tries to find the lowest priority job in each busy interval favoring

low criticality jobs if possible. Then, priority constraints are generated for different busy

intervals. These are represented by a directed graph, where nodes refer to jobs and the

edges describe the priorities between them. Once a low priority job is found it is removed

from the set of jobs in the system and a new iteration begins to find the next job. Once

done, a total ordering of jobs is achieved by a topological search.

Schedulability in MC-systems 10

To check the correctness of their results, a simulation over a set of scenarios referred to as

‘basic HI scenarios’ is done. This was assumed enough to guarantee the schedulability of

all scenarios as the chosen set covers the most conservative high criticality scenarios and

fixed priority policies are know to be predictable [18]. Later in Chapter 5, we show that

FPM policies are not in general predictable, we also provide theoretical prove that the

method used to test the correctness of MCEDF is indeed valid under the assumptions

presumed.

For multi-core platforms, an FPM algorithm was presented by Dario et al. [9]. Making

use of a base algorithm, which gives a global fixed priority ordering of jobs, the Mixed

Criticality Priority Improvement (MCPI) algorithm attempts to improve the schedulabil-

ity for MC-systems by trying to increase the priority of high criticality jobs. An increase

of schedulability up to 30% was gained in comparison to traditional solutions.

2.2.3 Time-triggered Policies

Time-triggered policies define a static, pre-computed table which determines at every

instant of time which job must be scheduled at each processor provided that it did not

terminate yet and assuming that the job may require up to its worst case execution time.

Similarly to fixed priority policies, one time-triggered table is not enough to efficiently

schedule MC-systems.

The Single Time Table per Mode (STTM) scheme was introduced in [19] as an extension

to time-triggered policies, assigning one time-triggered table for each criticality mode.

By the use of a criticality level indicator during run-time, the system can keep track of

the current execution mode. The system is assumed to start in low criticality mode and

switches to high criticality mode as soon as a job exceeds its WCET without signaling

completion. The appropriate time-triggered table is used to schedule each execution

mode. The authors of [19], also present an algorithm for dual-criticality systems that

uses the priority table generated from OCBP to generate two time-triggered tables, one

for each mode. The time-triggered table for the low mode is generated by simulating

all jobs under the assumption that each will need its low WCET to terminate. The

second time-triggered table is generated in the same manner but high criticality jobs are

assumed to execute for their high worst case estimate.

In [20], the authors show that the STTM scheduling paradigm dominates FPM and they

proposed an algorithm that transforms any FPM scheduling policy to an equivalent

STTM policy. The process of generating the time-triggered tables is again done by

simulation using the fixed priorities obtained from the FPM algorithm. However, to

guarantee correctness after a mode change, in the simulation used to generate the time-

table for high criticality level, some jobs are disabled until the time they are scheduled to

Schedulability in MC-systems 11

execute in the lower criticality table. Other approaches were also proposed for buliding

time-triggered tables. Theis et al. [21] showed how to build time triggered tables using

search tree. Another method using linear programming was demonstrated by Jan et

al. [22].

2.3 Task scheduling

2.3.1 Uniprocessor Scheduling

In [23], a sufficient response time analysis is provided for the scheduling of sporadic

task systems that have monitoring capabilities. The authors introduce the Adaptive

Mixed Criticality (AMC) scheme and show that it dominates the earlier Static Mixed

Criticality (SMC) scheme. The boost of schedulability in the AMC scheme is a result

of stopping the execution of all low criticality tasks in the event that a job executes for

more than its low WCET. Although AMC is dominant in term of schedulability, SMC

still has the benefit of not dropping all low criticality tasks, but instead only drops the

low criticality task that execute for more than its WCET allowing the rest of the low

criticality tasks to complete after their deadline. The work in [23] focused on systems

of two criticality levels, Flamings et. al. developed an extension for the AMC scheme

for criticality systems with more than two levels [24]. Other extensions for AMC where

proposed by Huang et. al. [25], Zhao et. al. [26] and Burns et. al. [27].

An algorithm called EDF-VD for the scheduling of MC-sporadic-task systems was pro-

posed in [28, 29] focusing on dual-criticality systems. For each high criticality task the

algorithm tries to find a modified period that is smaller than the original one. Virtual

deadlines for jobs are then computed using the modified periods of tasks. If a job is of

low criticality then its virtual deadline is set to be the release time of the job incremented

by the tasks period. If the job is of high criticality, its release time is incremented by

the new modified period. During run-time, jobs are scheduled using EDF policy, but

in case a job passes its low WCET without termination then all low criticality jobs are

discarded and high criticality jobs are scheduled using the original deadlines. EDF-VD

was shown to be able to schedule any system schedulable by a clairvoyant algorithm with

a processor that is 4/3 times faster. Later on, an implementation and a schedulability

test for EDF-VD targeting systems of more than two criticality levels was presented

in [30].

In [31], scheduling strategies were proposed and evaluated for preemptive and non-

preemptive systems with varying-speed processors. A processor is defined by two exe-

cution speeds, normal and degraded. Relating this problem to MC-systems, the correct

schedulability of the system demands that all tasks verify their temporal constraints in

Schedulability in MC-systems 12

normal speed and only critical ones must provide correctness guarantees when the pro-

cessor speed degrades. The authors make use of linear programming to construct tables

for scheduling on processors with varying speeds. Scheduling algorithms and sufficient

schedulability tests were proposed in [32] for the case of systems where varying-speed

processors do not have monitoring capabilities.

Zero-slack scheduling was presented in [33] to protect from the criticality inversion prob-

lem. Criticality inversion occurs when a low criticality task interrupts a high criticality

tasks that has already overrun its low WCET estimate. An algorithm is suggested

that reduces the overall needed utilization by lowering the number of preemptions. In

addition a zero-slack rate monotonic scheduler is presented.

2.3.2 Multiprocessor Scheduling

Two common scheduling approaches for multiprocessor platforms are the partitioned

and global scheduling schemes. The partitioned approach does not allow tasks migra-

tion among processors, instead it generally has two phases, task allocation and priority

assignment, whereas global scheduling allows the migration of tasks. For MC-systems,

a number of partitioned scheduling algorithms were proposed [34, 34–38].

In [34], the zero-slack rate monotonic algorithm [33] was extended to the multiprocessor

case. To protect the temporal correctness of high criticality tasks in overload scenar-

ios having execution spikes, a criticality-aware packing algorithm called Compress-on-

Overload Packing (COP) was proposed. The algorithm consists of two phases, the first

allocates tasks to processors using three variants of bin packing algorithms. This process

takes into account that the high criticality tasks can take up till their highest execu-

tion estimate thus making sure that they still meet their deadlines in cases of overload.

Tasks that do not fit during this step are packed using a modified version of worst-fit

decreasing packing. In the second phase, the zero-slack algorithm [33] is used for each

set of allocated jobs.

Kelly et al. proposed another task allocation heuristic, again inspired from variants of

bin-packing schemes. They show that ordering tasks by either decreasing utilization or

decreasing criticality before applying the packing algorithms increases the number of

schedulable tasks using a rate monotonic algorithm or Audsley’s algorithm [39]. Best

experimental results were obtained using criticality decreasing ordering of tasks with

Audsley’s priorities.

In [40], a different approach for partitioned scheduling is considered. Dual-Partitioned

Mixed-Criticality (DPM) algorithm is presented that allows some migration of tasks

while trying to maintain the advantages of partitioned systems. The authors introduce

the dual-partitioning approach, in which high criticality tasks, following the partitioned

Schedulability in MC-systems 13

scheme, are statically allocated to processors, but low criticality tasks are allowed limited

migration. During execution within a single criticality mode tasks are not allowed to

migrate, but during a mode change, instead of dropping low criticality tasks, they are

allowed to migrate to different cores. Experimental results show that dual-partitioning

can enhance the schedulability of fully partitioned algorithms.

Li and Baruah investigated the global scheduling approach for implicit-deadline sporadic

MC systems. In [41], they extended EDF-VD [29] to multi-core systems and provided

sufficient schedulability conditions. The algorithm uses the same procedure to gener-

ate modified periods as in [29]. After which, fpEDF [42], a criticality-unaware global

scheduling algorithm is used to schedule the tasks with modified periods. In the case

a job executes for more than its low WCET without signaling termination, all low jobs

are dropped and high jobs continue their execution using fpEDF.

Finally, before ending this chapter, we mention some related work for managing access

to shared resources. Sharing resources among functions of different criticality levels

is an important factor for reducing cost and improving system efficiency. The priority

ceiling protocol [43] was extended in [44] for mixed criticality systems. Criticality specific

blocking terms were added allowing low criticality applications to turn over resources’

budgets to higher criticality applications. Likewise, the Stack Resource Protocol (SRP)

was extended to MC-systems by Zhao et al. [26].

Chapter 3

Model Formulation

3.1 The Workload Model

The system’s workload is modeled by a set of independent mixed-criticality jobs. Work-

ing with a set of jobs, as opposed to working with tasks, allows us to explore the usability

of exact correctness tests in MC-systems by simulating the execution of jobs over an in-

terval of time. This allows the schedulability of the system to be evaluated up until a

point in time. If the time interval is chosen to coincide with the hyper-period of the

tasks then the selected set of jobs can represent the entire system. The hyper-period is

the least common multiple of all task periods, thus hyper-period intervals contain the

same set of jobs.

Although hyper-periods can get very large in practice there have been efforts towards

minimizing the hyper-period of a task set. In [45, 46], the authors try to reduce the

length of a hyper-period by making use of period variations. In their approach, tasks’

periods are first given in a range of valid periods. Then they propose an algorithm that

employs the ranges of periods for different tasks to find a task model where each task

has one period from its set of valid periods such that the hyper-period of the new system

is as small as possible.

We adopt a model similar to the one proposed by Burns and Baruah [7], but with one

difference, for MC- systems with more than two criticality levels, a job has only two

worst case estimates instead of one for each level.

An MC-job. A job J i in an MC-system is defined by the five parameters J i =

(Ai, Di, Xi, C
N
i , C

E
i) where:

• Ai ∈ N+, the arrival time

• Di ∈ N+ & Di > Ai, the deadline relative to the arrival time

14

Schedulability in MC-systems 15

• Xi ∈ N+, the criticality of the job

• CNi ∈ N+, the WCET estimated for nominal cases

• CEi ∈ N+, the more pessimistic WCET estimate

CN is used to represent the worst case estimate in nominal cases. We assume that

this is provided by the system designer for all the tasks in their system. The second

execution estimate, CE is derived for critical tasks only to ensure their correct behavior

under harsher conditions or emergency cases. We assume that for a non-critical task

CNi = CEi , and for critical tasks CNi < CEi . We also define CUi to be the uncertain

execution time estimated for a job as CUi = CEi − CNi .

An MC-instance. An MC-instance I is a set of n MC-jobs.

A scenario. A scenario c of an instance I is a vector of size n of execution times for

all jobs (c1, c2, ..cn), where ci is the execution time needed for job J i to finish in the

given scenario.

We find it convenient to define a special set that holds jobs which execute for more than

their normal worst case execution time estimate but less than the emergency one.

Definition 3.1. The emergency set JE of a scenario c is defined by:

JE = {J i ∈ I : CNi < ci ≤ CEi }

If the emergency set of a scenario c is empty i.e. JE = {}, then we say that c is of

low criticality. Otherwise, the scenario c is considered of criticality level `, where

` = maxJi∈JE (Xi).

A basic scenario. It is a scenario in which for each job Ji we have , ci = CNi or

ci = CEi .

A LO-scenario. It is the basic scenario where all jobs execute for exactly CNi .

A schedule. A schedule S of a given scenario is the mapping:

Time→ Jε × Jε × ...× Jε = Jmε

Every job should start at time Ai or later and run for no more than ci time units.

A scheduling policy. A scheduling policy for an instance I specifies deterministically

which job to execute at each time instant.

A schedule for a scenario of criticality level ` is feasible if all jobs J i with Xi ≥ ` are

given ci execution time between their arrival and deadline.

Schedulability in MC-systems 16

A scheduling policy is correct if for every valid scenario c it generates a feasible schedule.

As a consequence, a correct scheduling policy will ensure that:

• For a low criticality scenario, all jobs must complete before their deadlines.

• For a scenario of criticality level `, all jobs of criticality level ` or more must

complete before their deadline.

A job is considered ready at time t if that job has arrived but not completed at time t.

The state of the scheduler at every time instance t during run-time is composed of the

set of terminated jobs, the set of ready jobs at t, the progress of ready jobs in case of

preemption, the current executing job and the current criticality mode, referred to by

χmode, initialized as 1 and changed to higher value in case a mode switch occurs.

Mode switch . In mixed criticality scheduling a mode switch or a mode change

occurs when a job, whose criticality is higher than the current criticality mode χmode, ex-

ecutes for more than its normal worst case estimate CN . As a result the criticality mode

is increased to match the critiality level of the job that caused the mode change.

Dual-criticality systems. An MC-system that only considers two levels of criticality

is known as a dual-criticality system. The two criticality level are labeled LO and HI,

representing the low and high criticality levels respectively. Similarly, jobs are labeled as

LO jobs and HI jobs, representing the low and high criticality level jobs. A Fixed Priority

per Mode (FPM) scheduling policy in a dual-criticality system, is a mode-switched policy

with two tables: PTLO and PTHI. The former includes all jobs, and the latter only HI

jobs. As long as the current criticality mode χmode is LO, this policy performs the fixed

priority scheduling according to PTLO. After a switch to the HI mode, this policy drops

all pending LO jobs and applies priority table PTHI. For Single Time Table per Mode

(STTM) policies, the two time-triggered tables are TLO and THI the tables for the LO

and HI mode, respectively. The two STTM tables are correct iff:

1. They schedule all jobs after their arrival and before their deadline, allocating each

job CN time units in LO table and each HI job CE time units in HI table.

2. If at any time we switch from LO to HI, then all not-yet-terminated HI jobs will

have enough time to continue their execution so as to reach CE time units.

In Chapter 6 we will propose an STTM policy for systems with more than two crit-

icality levels. For such systems, an STTM policy defines one time-triggered table Tl

per criticality mode l for 1 ≤ l ≤ L with L being the highest level of criticality in the

system.

Schedulability in MC-systems 17

Definition 3.2 (Reasonable Policies). A single-processor dual-criticality scheduling pol-

icy is ‘reasonable’ if after the mode switch it applies the EDF policy to schedule the HI

jobs and either drops the LO jobs altogether or gives them less priority than that of any

HI job. In particular, in the case of FPM policies, ‘reasonable’ means that PTHI = EDF

table.

Definition 3.3 (FPM equivalent tables). A dual-criticality FPM policy is said to have

FPM equivalent tables if the relative priority order of HI jobs is the same in both PTLO

and PTHI .

Chapter 4

On the Complexity of Testing a

Scenario

It was claimed in [4] that an optimal scheduling policy executes any basic scenario with

only a linear (O(n)) number of preemptions for a fixed number of criticality levels L.

More precisely, they claim what is reproduced below as Lemma 4.1.

Lemma 4.1 (Refuted Lemma [4]). If an instance is MC-schedulable, then there exists

an optimal online scheduling policy that preempts each job j only at time points t such

that at time t either some other job is released, or j has executed for exactly Cj(i) units

of time for some 1 ≤ i ≤ L.

In the lemma Cj(i) is the WCET estimate for job j at criticality level i and L is the

number of criticality levels. In our notations, for dual-criticality systems, level 1 is LO,

level 2 is HI, Cj(1) is CNj , Cj(2) is CEj .

Lemma 4.1 states that if an instance is MC-schedulable then there exists a correct

scheduling policy that only preempts a job Jj either when some other job in the instance

is released or when Jj executes for exactly one of its WCET estimates.

In this work, we present a refutation to Lemma 4.1 in the form of a counter example. In

Example 4.1 we give a dual-criticality instance and show that no correct schedule exists

for that instance where jobs can only be preempted as specified by Lemma 4.1. Thus

according to the lemma this instance should not be MC-schedulable. However, we show

that a correct schedule exists for our example and the instance is indeed schedulable

but one of the executing jobs needs to be preempted at a time different from the ones

allowed by the revisited lemma.

18

Schedulability in MC-systems 19

Example 4.1. Consider the following problem instance:

Job A D χ CN CE

1 0 14 HI 6 7

2 0 11 LO 5 5

3 5 10 HI 2 3

First, we check if it is MC-schedulable by following the preemption rules in Lemma 4.1.

At t = 0 a scheduling policy can execute either job J1 or job J2 since job J3 did not

arrive yet. According to the lemma, whichever job is chosen should not be preempted

before t = 5, since before that time the chosen job will not have executed for its CN and

no other job will have arrived. Thus we have two cases:

• J1 is chosen. It can be the case that it does not signal termination before t = 5.

At that instant J1 can be interrupted because J3 arrives. But now both jobs J2

and J3 have to finish in the interval [5, 11] in order not to miss their deadline. The

interval is 6 time units, but the jobs can have a combined execution of 7=(5 + 2)

units in the LO scenario. Thus no schedule exists that executes J1 in [0, 5] and

abides by the rules of Lemma 4.1.

• J2 is chosen. Then it must also execute uninterrupted until it terminates at t = 5.

What is then left to execute are the two high criticality jobs. We keep in mind

that if an instance is MC-schedulable then a scheduling policy should be able to

schedule all correct scenarios. One possible scenario is that both of the jobs execute

for their CE . In that case a total of 10=(7 + 3) units of execution are needed. For

both of the jobs not to miss their deadline they have to terminate before t = 14

and in the execution window [5, 14], we only have time to execute 9 units which

is not enough. Thus we conclude that no schedule exists that executes J2 in [0, 5]

and abides by the rules of Lemma 4.1.

Hence, according to Lemma 4.1 this instance is not MC-schedulable, but that is not

correct. Figure 4.1 shows a Gantt chart representing an STTM scheduling policy that

correctly schedules the instance, contradicting Lemma 4.1. Recall that this policy starts

execution in static table ‘TLO’ and keeps using this table as long as there is no switch

to the HI criticality mode χ = HI, in which case it switches to static table ‘THI ’. This

example shows that an instance can be MC-schedulable but no optimal online scheduling

policy exists that preempts a job j only at time points where another job is released or

j has executed for exactly Cj(i) units.

Schedulability in MC-systems 20

TLO

THI

 0 2 4 6 8 10 12 14

Ti
m

e
Ta

bl
e

Time

J1 J2 J3 J2 J1

J1 J3 J3 J1 J1

Figure 4.1: Valid time-triggered tables for the instance in Example 4.1

4.1 Consequences for Complexity

Taking into account our counter example, the authors of [4] published [47], an erratum

to [4], where they replace Lemma 4.1 by a proof, from which follows that the upper

bound on the number of preemptions is not O(n) but instead O(n2). Thus by the

refutation presented in this section and the erratum [47], the best known upper bound

on the number of preemption is increased by one order number ‘n’ of jobs.

When testing for correctness, taking into account only the complexity of testing one

scenario, is not enough. In [47], it was established that deciding schedulability of an

MC-system with a constant number of criticality levels L, can be done in O(nL) time.

In addition, the authors show that testing the correctness of a given solution for the LO

scenario can be done in O(n2) for the general case.

In the next chapter, for dual-criticality system, we propose a correctness test for policies

derived from fixed priority scheduling, where Lemma 4.1 remains correct, and only O(n)

preemption are required per scenario. Nevertheless, we show that O(n) basic scenarios

need to be tested to assure correctness thus bringing the lower bound back to O(n2).

We show that, the lower bound can be brought further down with a more efficient test

than enumerating O(n) basic scenarios.

Chapter 5

Correctness in MC-scheduilng

Evaluating the correctness of scheduling policies is a non-trivial task. In this chapter,

we start by showing that testing for correctness in the case of mixed-criticality proves

to be more complicated than for conventional scheduling. Example 5.1 shows one case

where a fixed-priority scheduling policy is deemed schedulable for a given scenario but

fails to schedule an ‘easier’ scenario that differs from the original by decreasing the

execution of one job. Policies possessing such unintuitive behavior are said to be not

predictable.

In the next section, we discuss predictability and sustainability of scheduling poli-

cies/schedulability tests and their adaptation to MC-scheduling. These two charac-

teristics are important in the study of correctness and can be sometimes essential for

the applicability of a correctness test. Section 5.1.1 describes sustainability as defined by

Baruah and Burns in [48], its extension to mixed-criticality by Guo et al. in [49]. After

that, we discuss predictability, and in Section 5.2, we extend predictability to weak-

predictability for mixed-criticality systems. In Sections 5.3 and 5.4, two correctness

tests are proposed for weakly-predictable scheduling policies.

5.1 Fundamental Correctness Concepts

The goal of a correctness test is to give verdict whether a given scheduling policy can

correctly schedule the workload of a system. This can be done by evaluating whether

jobs, over all possible scenarios, will have enough execution time to terminate before

their deadlines. In general, for real-time systems, correctness testing is achieved either

by using analytical upper bounds, or by simulation. The former is necessary for more

general task system, such as sporadic tasks, while the latter can give better results in

systems that can be represented as a set of fixed jobs. In our study of correctness, we

focus on simulation based correctness tests that exploit the possibility to evaluate the

21

Schedulability in MC-systems 22

tight termination time bounds by direct simulation. For such a test to be meaningful, the

scheduling policy has to be predictable. In addition, we will demonstrate that for our

goal of finding tight upper bounds by direct simulation it is essential to look not only

at WCETs, but also at actual execution times that can occur in the system. Otherwise

one will not be able to correctly schedule certain non worst-case scenarios, even in the

case where the policy in question was proved to be sustainable.

In the conventional scheduling theory for fixed job systems, distinction between sustain-

ability and predictability was not needed. In mixed-criticality scheduling, the distinction

between predictability and sustainability becomes more pronounced as sustainability

does not always ensure predictability. To clearly distinguish the difference between the

two concepts, we start by including a formal definition of both, followed by an ex-

ample (Example 5.1), where a fixed priority scheduling policy is sustainable but not

predictable.

5.1.1 Sustainability

A good amount of research has been devoted to the study and analysis of sustainability

in the scheduling of real time systems. In [48] the authors formalize the sustainability

characteristic in real time systems (non mixed-criticality) as follows.

“Sustainability [48]. A schedulability test for a scheduling policy is sustainable if any

system deemed schedulable by the schedulability test remains schedulable when the pa-

rameters of one or more individual jobs are changed in any, some, or all of the following

ways: decreased execution requirements; later arrival times; smaller jitter; and larger

relative deadlines”.

In this thesis, and from the definition above, we consider ‘sustainability’ to be a property

of not only a policy itself, but rather of a pair ‘a policy plus a correctness test’. We find

it convenient to join the two into the notion of a ‘scheduling algorithm’. One example is

the well-known ‘single-processor EDF scheduling algorithm’, which, next to implying the

EDF policy, also implies the correctness test checking whether the total task utilization

does not exceed 100 %.

The correctness criteria for a scheduling policy in an MC-system is different than the

conventional single criticality case, since not all jobs always have to meet their deadlines.

As a consequence, determining the schedulability of a scheduling policy is different and

the sustainability definition needs to be revised. Guo et al. [49] extended the defini-

tion of sustainability to mixed criticality systems. In their work, they represent the

workload of an MC system as a finite collection of sporadic tasks with each task having

a criticality and possibly generating an unbounded number of mixed criticality jobs.

MC-sustainability was defined as follows.

Schedulability in MC-systems 23

“MC sustainability [49]. An MC scheduling algorithm is said to be sustainable if any

MC instance that is MC-schedulable by the algorithm remains so if one or more of the

parameters characterizing the instance is improved. Improvements to be characterizing

parameters:

1. Decreasing WCET parameters

2. Increasing periods for sporadic task systems

3. Postponing relative deadlines

4. Decreasing the criticality level assignment of a task/job.”

The authors of [49] focus their work on the dual-criticality problem. Six mixed-criticality

scheduling policies were evaluated in [49] to demonstrate that they are MC-sustainable

for the different parameters. It was found that the polices are all sustainable with

respect to WCET, periods and deadlines, but some are not sustainable with respect to

the criticality level parameter.

5.1.2 Predictability

The similarity between predictability and sustainability is that both of these proper-

ties preserve schedulability under “decreased execution requirements”. In sustainability

analysis, as we saw in the previous section, execution requirements can be in the form of

WCETs. These are upper bounds that may overestimate the worst case of the execution

due to difficulties in modeling processors with caches, out of order executions, pipelines

etc. Even in the case of a tight upper bound, a job can take numerous execution paths

that are different from its worst-case path resulting in various execution times that are

considerably less that the WCET.

It should be noted that predictability is not exactly the same property as sustainability.

Sustainability is a property of a given correctness test [48], while predictability is a

property of a given policy. Sustainability states that if the correctness test passes when

assuming certain worst case system parameters then the system remains to be correct

when the actual parameters are better than the worst case assumed. For sustainability,

the correctness test can be anything from a simulation of the policy to an analytical

formula that calculates upper bound on response times. By contrast, predictability can

be seen as a special case which assumes that the correctness testing necessarily consists

in simulation. Saying that the policy is ‘predictable’ is the same as saying simulation

based test is ‘sustainable’ for it.

Definition 5.1 (Predictability). A scheduling policy is said to be predictable, if for

any scenario that is MC-schedulable by the policy, any other scenario that is better is

Schedulability in MC-systems 24

also MC-schedulable by the policy.

For predictability, “MC-schedulable” means that simulating the given scenario shows

that the policy correctly schedules all jobs, Scenario c1 is considered to be “better” than

scenario c2, if any job in c1 executes for the same amount or less than it does in c2.

In the next subsection, we show that in MC-systems, sustainability under a certain

correctness test, does not result in predictability and we clarify why the two notions are

fundamentally different in this case.

5.1.3 A Sustainable yet non-predictable Example

The Criticality Monotonic (CM) scheduling algorithm is one of the six algorithms that

were studied in [49]. The policy schedules, at each time instant, a ready job of the

highest criticality. It was proven in [49] that the CM scheduling algorithm using deadline

monotonic scheduler within a criticality level is MC-sustainable. As a consequence, it is

sustainable with regards to the “decreased execution requirement” represented, in this

case, by the WCET parameter.

Although the CM algorithm is MC-sustainable, the example below shows that the un-

derlying policy is not predictable. Indeed, a case can be found where the policy will

correctly schedule a scenario of given instance but will fail to schedule a better one.

Hereby there is no contradiction with the results of [49], as the CM algorithm would

give a verdict that the given system is not schedulable.

Example 5.1. Consider a periodic system that has two tasks with periods T = 20. Since

the tasks have the same period, each task will generate one job in the hyper-period. We

also assume that at the start of the system each task will release a job. The jobs to be

scheduled are shown in the table below:

Job A D Criticality CN CE Priority

1 0 10 HI 6 8 1

2 0 10 LO 5 5 2

We assume the system is being scheduled by the CM policy with deadline monotonic

scheduler within each criticality level. Testing the correctness of this policy for the worst

case scenario, a simulation will be performed where J1 is assumed to execute for 8 units

of time and J2 for 5.

The simulation will execute J1 first, as it is the highest criticality job, until it terminates

at t = 8. Then it will schedule J2 which will terminate at t = 13, missing its deadline.

Although J2 missed its deadline, this scenario is deemed MC-schedulable. This is the

case because J1 executed for more than its CN thus only HI criticality tasks are required

to meet their deadlines.

Schedulability in MC-systems 25

It could be the case that at runtime job J1 executes for only 6 units of time instead

of 8. In this case J2 still misses its deadline, but this scenario is not MC-schedulable

since no job executed for more than its CN , and in this case all jobs are required to

meet their deadlines. This simple example shows the complications that arise in testing

MC-systems. It gives one case of a policy of an MC-sustainable algorithm being able to

correctly schedule a scenario but failing to schedule a better one.

5.2 Weak Predictability

Example 5.1 shows that unlike in single-criticality case, in an MC system, not all policies

of an MC-sustainable algorithm are predictable. Another observation is that correctly

testing the schedulability of a policy by simulating the worst case scenario does not

anymore imply the schedulability of other scenarios. We expect that the CM policy

will not be the only one that is not predictable. This is primarily due to the fact that

decreasing the execution of a high criticality job, might stop the system from switching

to HI-criticality mode, thus all jobs will be required to meet their deadlines, whereas

before the decrease only HI jobs had to meet their deadlines. For this reason, we provide

a weaker definition of predictability that takes the mode change into consideration and

remains sufficient to perform the simulation based correctness tests proposed in the next

sections.

Definition 5.2 (Weak Predictability). An MC-scheduling policy is weakly-predictable

if for any scenario that is MC-schedulable, decreasing the execution time of a job A –

while keeping all other execution times the same – should not delay the termination

time of any other job B under the following two conditions:

• If job A caused a mode switch, then the decrease in the execution of job A does

not cancel the mode switch that was caused by A

• Job B terminates in the same criticality mode, before and after the decrease of

execution of A

In a weakly-predictable policy, if at least one of the two conditions above is not met

a decrease in the execution of one job is allowed to delay the termination of another

job. Thus a weakly-predictable policy does not always have to be predictable. But a

predictable scheduling policy is always weakly-predictable and all the results that follow

from the weakly predictable property can be applicable.

The main intuition behind this weak definition of predictability is that it requires the

system to “behave in a predictable way” only when a mode switch is not involved.

Schedulability in MC-systems 26

Thus MC-policies are more likely to be weakly-predictable and hence eligible to use the

correctness test proposed for such policies.

In the work of Socci et al. [9, 50], a definition of predictability for the mixed criticality

case was proposed and referred to as predictable per mode. In their definition, the

predictability property had to be maintained only for jobs terminating in the same

criticality level in both scenarios, i.e., their definition is similar to the definition of weak-

predictability but without the first condition. Socci’s definition remains too restrictive

for FPM policies, in the sense that not all of these policies are predictable per mode.

Example 5.2 gives one FPM policy that is not predictable per mode.

Example 5.2. Consider a dual-criticality FPM policy P, that uses EDF to schedule the

execution of jobs in the LO mode. Upon a mode switch, all LO jobs are dropped, HI jobs

are scheduled using EDF as well.

Let I be the instance described in the table below:

Job A D χ CN CE

1 0 2 HI 1 2

2 0 3 LO 2 2

3 0 4 HI 1 2

For example 5.2, consider two scenarios of I, c=(2, 2, 2) and c’=(1, 2, 2). The only

difference between the two scenarios is that the execution of J1 has been decreased by

1 for c’. Simulating the execution of c using P, J1 will execute for 1 unit of time, and

since it does not signal termination a mode change will occur, dropping J2. In HI-mode,

J1 will execute one extra unit and then J3 will execute and terminate at t = 4. Knowing

that all HI jobs met their deadlines, c is deemed MC-schedulable by P.

As for the simulation of c’, J1 will execute for one time unit and will terminate. At

t = 1, J2 having the earliest deadline among the ready jobs, will be scheduled and will

execute until t = 3, after which J3 will execute for one time unit, cause a mode switch,

and terminate at t = 5, in the HI mode and missing its deadline.

This gives an example of an FPM policy where a scenario is MC-schedulable, but de-

creasing the execution of a job (J1 in this case), while keeping all other executions the

same, delayed the termination of another job (J3). Moreover, since J3 terminates in the

same criticality mode in both scenarios, this example provides an evidence of an FPM

policy that is not predictable per mode.

Schedulability in MC-systems 27

We will show in the next section, that all dual-criticality FPM policies are weakly-

predictable. Yet, before doing so, we need to formulate an equivalent definition to

weak-predictability, where instead of comparing a scenario with another one that has

decreased execution times, we will swap the two scenarios and give the definition in

terms of increased execution times. We include the second definition here for clarity,

since it will be used when we prove that FPM policies are weakly-predictable.

Weak Predictability (Second Definition). A scheduling policy is weakly-predictable

if for any scenario that is MC schedulable, increasing the execution time of any job A

– while keeping all other execution times the same – should not make any other job B

terminate earlier only when the following two conditions hold:

• If job A did not cause a mode switch then the increase of its execution also does

not lead it to cause the mode switch.

• Job B terminates in the same criticality mode before and after the increase of

execution of A

The first condition can only be violated, if before the increase, A executed for at most

CN , and after the increase it is the first job to exceed the CN thus causing a mode

switch.

5.2.1 Weak Predictability in FPM Policies

The following theorem from [18] states a very useful property, for which we formulate

two corollaries:

Theorem 5.3 (from [18]). The fixed-priority (FP) policy is predictable for single- and

multi-processor scheduling.

Corollary 5.4. For single-processor dual-criticality instances FPM is weakly predictable.

Proof. Consider a dual-criticality FPM policy with given priority tables PTLO and PTHI.

Consider any scenario c. For a given job A, let scenario c′ differ from c only by an increase

in execution time of job A by ∆cA, such that this increase does not lead A to be the job

that causes a mode switch in c′. Let job B be an arbitrary job. We have to prove that

B can only terminate at the same time or later in c′ compared to c, but never earlier,

provided that B terminates in both scenarios in the same criticality mode.

If there is no mode switch in c then predictability in this case follows from the pre-

dictability of FP scheduling. So let us first consider the case where A terminates after

the mode switch in c. This means that the schedules of c and c′ are the same up until the

Schedulability in MC-systems 28

switch time. At switch time the same LO jobs are dropped, if any, and both scenarios

are left to execute the same jobs using same priority table PTHI with only one difference,

the increase in the execution of A. Thus it follows directly from the predictability of FP

that in this case B will never terminate earlier in c′.

Secondly, we consider the case where both A and B terminate before the mode switch

in c. If the increase in execution, leads B to terminate after the mode switch then, the

condition that B terminates in the same criticality mode does not hold and we have

nothing to prove. If after the increase in the execution of A, job B terminates before

the mode switch then by predictability of FP it can not terminate earlier than in c.

Thus, the only non-trivial case that we have to consider is when in scenario c, job A

terminates before the switch, executing entirely in the LO mode, and job B terminates

in both scenarios after the mode switch.

Let tc and tc′ be the switch times of c and c′. Due to the predictability of FP scheduling,

up until the switch time in c, no job other than A can exceed its CN in c′ before it does

in c. And since A does not cause the mode switch, then we have tc ≤ tc′ .

Let tA be the termination time of job A in c. Let tB and t′B be the termination time

of job B in c and c′ respectively. Since both terminate after the switch then we have

tB > tc and tc′ > tc′ . For tB ≤ tc′ we have tB < t′B and this completes the proof for this

case. Thus we still have to prove for tB > tc′ .

The execution of jobs in the interval [0, tA] is the same in both scenarios c and c′. Let

us consider only the HI jobs that do not terminate by time tc in c. In the time interval

[tA, tc], both scenarios are using PTLO as the priority table. A executed for the same

amount or more and FP is predictable thus all other HI jobs executed for the same

amount or less in c′ compared to c. Then in c′ compared to c, every job has to execute

for at least the same amount or more between tc and its termination.

Let us make the following assumption for scenario c. Assume that between tc and tB

there are no idle intervals and the (HI) jobs which execute there have equal or higher

priority than B (w.r.t. PTHI). We refer to this set of jobs as SB. In addition let EB be

the execution time between tc and tB. This is the execution time needed for all jobs in

SB to terminate, as they all have higher priority than B and hence terminate before tB.

Now let us consider scenario c′. Recall that at time tc at least the same set of jobs have

to execute the same amount of work as in c. Let us consider what happens after time

tc. Since t′B > t′c and all jobs in SB have equal or higher priority than B according to

PTHI then all other jobs in SB terminate before B does. We are left with two cases:

Schedulability in MC-systems 29

• Either only jobs from set SB execute between tc and t′c and in this case tB ≤ t′B

follows from the fact that FPM is a work conserving policy and these jobs have at

least the same amount of work to execute in c′.

• Jobs outside of SB execute as well (having higher priority according to PTLO)

between tc and t′c but in this case we also have tB ≤ t′B from the argument on the

amount of work to be executed.

Now we remove our earlier assumption for scenario c, instead we suppose that in the

time interval [tc, tB], there are one or more sub-intervals where the processor is idle or

it executes jobs with lower priority than B according to PTHI. We note that this can

be the case only if during these sub-intervals there are no “ready” jobs in SB to execute

since B has the lowest priority in SB and FPM is work conserving.

Let [ti, tj] be the last subinterval where the processor was either idle or executing a job

with lower priority than B. Thus in [tj , tB], only jobs from SB execute and we will refer

to this set of jobs as S′B. It is easy to see that none of the jobs in S′B arrive before tj .

Noting that in both scenarios, c and c′, jobs in S′B can not execute before tj as they do

not arrive before that time. Also,in both scenarios, all jobs in S′B have to execute for

the same amount, and terminate before B does since B terminates in HI mode in both

scenarios and is scheduled by PTHI when it terminates. In addition in c only jobs in S′B

are being scheduled in [tj , tB] with no idle intervals included while in c′ the same set of

jobs are executed where B terminates last but also some other jobs might execute, thus

B cannot finish earlier in c′.

Corollary 5.5. For single- and multi-processor dual-criticality instances, an FPM pol-

icy that generates only FPM-equivalent tables is weakly-predictable.

Proof. Consider a dual-criticality FPM policy with given priority tables PTLO and PTHI.

Let scenarios c, c′ and jobs A, B be defined as in the proof of Corollary 5.4. We have

to prove that B can only terminate at the same time or later in c′ compared to c, but

never earlier, provided that B terminates in both scenarios in the same criticality mode.

The same reasoning as before can be used to show that the only non-trivial case is that

in scenario c job A terminates before the mode switch and job B terminates in both

scenarios after the mode switch.

Let S be the schedule generated for c and S ′ the schedule generated for c′. Let t and

t′ be the mode switch time in S and S ′ respectively. By the predictability of FP, and

the fact that job A does not cause the mode switch, we have t ≤ t′. Since LO jobs are

Schedulability in MC-systems 30

dropped at switch time, only HI jobs that did not finish before the switch will execute

after time t in S.

Since FP scheduling is sustainable, no job other than A can execute in S ′ more than it

executed in S up until t. Thus, the same set of HI jobs that have to execute after t in S
will execute in S ′ and possibly jobs may require more execution time in S ′. In addition,

some LO jobs may also execute after t in S ′ as they are dropped at t′ with t ≤ t′.

Note that as a consequence of having FPM-equivalent tables, using PTLO instead of PTHI

after dropping the LO jobs at a mode switch, will not change the generated schedule,

because the priority order of the HI jobs is the same in both tables. Thus for FPM

policies having PTLO and PTHI FPM-equivalent, using any table after a mode switch

results in the same schedule. Hence an FP scheduling policy that uses PTLO to schedule

the workload remaining after time t in c will generate the same schedule as S. Also,

using the same FP policy to schedule the workload remaining after time t in c′ will

generate the same schedule as S ′.

Since after time t the workload in S ′ is more than that in S and by the predictability

of FP scheduling, then there is no such job B that terminates in S before S ′ after time

t.

Lemma 5.6. An FPM policy that doesn’t restrict its tables to be FPM-equivalent is not

weakly predictable for multiple processors in general.

Proof. Example 5.3 provides an FPM scheduling policy where PTLO and PTHI are not

FPM-equivalent. We show that it is not weakly predictable.

Example 5.3. Consider the following 3-processor problem with instance Idescribed in

the table below:

Job A D χ CN CE

1 0 6 LO 6 6

2 0 14 HI 4 5

3 6 15 HI 7 8

4 6 8 HI 1 2

5 6 9 HI 1 2

6 6 11 HI 3 4

7 6 13 HI 3 4

8 0 6 LO 6 6

9 0 7 LO 6 6

The Gantt chart in Figure 5.1 shows the execution in two scenarios: c and c′ for an

FPM scheduling policy with the priority tables specified in the figure where the property

PTLO ∼ PTHI is not satisfied. In the time-slots, indexes 1,2,. . . 9 identify J1, J2, . . .J9.

Schedulability in MC-systems 31

1

0 5 10 15

2 3

5

4

1

0 5 10 15



c1

C

C

PTLO = (9, 8, 3, 4, 5, 6, 7, 1, 2)

PTHI = (3, 4, 6, 5, 7, 1, 2)

c
c

c

c

5

6

6

4 5

7

7

3

2

7 terminates earlier

2

Proc. M1

Proc. M2

Proc. M3

Proc. M1

Proc. M2

Proc. M3

8

9

8

9

Time scope of PTHI

Time scope of PTLO

Figure 5.1: FPM non-predictable demonstration on multiprocessor case.

τ and τ ′, are the mode switch times in c and c′ respectively. Scenario c is defined

by (c1 = 2, c2 = 5, c3 = 8, c4 = 2, c5 = 2, c6 = 4, c7 = 4, c8 = c9 = 6). Scenario c′ differs

from c by c′1 = c1 + ∆c1 = 2 + 4.

The priority tables of the two modes in this example differ only by the relative priority

of J5 and J6 and the window between τ and τ ′ is just one time unit. Nevertheless we

see that job J7 (as well as J5) terminates in scenario c′ earlier than in scenario c. This

behavior contradicts the requirements of weak-predictability.

The previous example illustrates not just an exceptional case but well-known common

properties of multiprocessor scheduling, differentiating them from single-processor case.

Changing the order of job execution leads to a change of load distribution of different jobs

between processors, which leads to different interference w.r.t. lower priority jobs. In

our case, in window [τ, τ ′] swapping the priority order between J5 and J6 has perturbed

the load balance between the processors, such that a smaller priority job J7 terminates

Schedulability in MC-systems 32

earlier. Note that in both priority tables the set of jobs that have higher priority than

J7 is the same and all of them arrive no later than J7. Under the same conditions on

single processor these jobs would inevitably have the same total interference on J7 in

the two scenarios, but not on multiple processors.

5.3 The Canonical Correctness Test

In order to adapt with the requirements of mixed criticality systems, fixed-prioirty

scheduling policies have been extended to FPM policies. Unfortunately, because these

policies support a mode switch, they become non-predictable in the usual sense, and

a simple test of simulation in one scenario does not apply. One possible schedulability

test for a fixed set of jobs is the examination of basic scenarios that should represent all

corner cases of execution times. This test can be applied for fixed set of jobs offline, and,

potentially, for task systems online at the moment when the job arrival times are known

until a point when the processors become idle. In this section, we propose an adapted

simulation-based schedulability test, that verifies the correctness of a scheduling policy

and asserts a correct predictable behavior during runtime in case it is successful.

5.3.1 Basic Scenarios for Correctness Testing

Definition 5.7 (Basically Correct Policy [4]). A scheduling policy is basically correct

for instance I, if for any basic scenario of I the policy generates a correct schedule.

Lemma 5.8 (Correctness Test by Checking all Basic Scenarios). If a scheduling policy

is weakly-predictable then the policy correctness follows immediately from its basic cor-

rectness. In other words, if the policy gives a correct schedule in all basic scenarios then

this is also the case for the non-basic scenarios as well.

Proof. For a given scheduling policy, let us call basic scenario dce the ceiling scenario of

scenario c if in dce each Ji executes for time Ci (χTERM(c, i)), where χTERM(c, i) is the

mode in which job Ji terminates in scenario c.

The plan of the proof is as follows. Let ITERM(c, χ) be the set of jobs that terminate in

c in mode χ. We split the set of all jobs into ITERM(c,LO) and ITERM(c,HI). It is easy

to show that by weak predictability all the jobs in the first subset will terminate in the

LO basic scenario no earlier than in scenario c. In the rest of the proof we show that

the other subset will terminate in the ceiling scenario, dce, no earlier than in scenario c.

Thus, the correct termination can be checked in the basic scenarios.

To prove for the second subset of jobs, suppose we could build a sequence of scenarios

c1, . . . cm . . . cM such that c1 = c, cM = dce and we would obtain cm+1 from cm by

Schedulability in MC-systems 33

increasing the execution time of some job “A” in such a way that this increase does

not let “A” cause a mode switch. Suppose also that the jobs from ITERM(c,HI) would

terminate in all scenarios cm in the HI mode. By weak predictability this would lead to

the required conclusion.

The first subsequence of the required sequence is obtained by iteratively taking a job

from ITERM(cm,HI) and increasing its execution time to CEj . In the second subsequence,

we take the jobs from ITERM(cm,LO) and increase their execution times to CNj . It is

easy to show by induction that the resulting sequence satisfies the requirements.

All jobs in dce will also terminate in the same or higher-criticality mode. This statement

is obviously true for jobs that terminate in the LO mode. At the switch to HI mode,

all LO jobs are dropped thus all jobs that terminate in the HI mode are HI jobs. Since

for HI jobs CN < CE , in the ceiling scenario such jobs will exceed their LO execution

time. Therefore they will terminate in the HI mode. We show in example 5.4 that if

we allow a HI criticality job to have CN = CE , a job can terminate in dce in a lower-

criticality level than it did in c. For dual-criticality instances this implies that the jobs

with χTERM(c, i)=HI terminate in the HI mode also in dce. By the definition of weak

predictability, these jobs cannot terminate in scenario dce earlier than in c. It remains

to consider the jobs that terminate in LO mode in c. Obviously in the LO basic scenario

these jobs cannot terminate earlier. Therefore the jobs of scenario c are “covered” by

one of the two basic scenarios: dce and LO, in the sense that meeting the deadlines in

those scenarios implies meeting deadlines in scenario c.

Example 5.4. Fig. 5.2 shows two scenarios for a job instance that allows WCETs of

HI jobs to be equal:

Job A D χ CN CE

1 0 2 LO 2 2

2 0 5 HI 1 2

3 2 3 HI 1 1

Keeping in mind that FPM policy, which we apply here, is weakly-predictable, we have

two important points to observe in this example. First, observe that J3 terminates in

the HI mode in scenario c while it terminates in the LO mode in its ceiling scenario

dce. Thus, if the two WCET estimates of a HI job are allowed to be equal, weak-

predictability is not always sufficient to ensure that the basic scenarios cover all other

scenarios. Second observation is that this instance has only two basic scenarios, one is

dce and the other one is exactly the same but with job J2 terminating at t = 4 instead

of switching to execute up until t=5. In both basic scenarios the instance is schedulable

Schedulability in MC-systems 34

Figure 5.2: A caption

by the given FPM policy. Yet in c job J3 misses its deadline. This shows that in the

case where a high criticality job is allowed to have its CN = CE , even if all possible

basic scenarios are simulated and successfully scheduled, this might not be enough to

ensure the correctness of the scheduling policy with respect to all possible runtime

behaviors. Due to this complication and the fact that we believe that disallowing HI

jobs to have equal WCET does not limit the model as it can be ensured by an arbitrarily

small increase of CE , we decided to include this restriction in our problem formulation.

Lemma 5.9. An instance I is MC-schedulable if it admits a basically correct scheduling

policy.

The above lemma is Lemma 1 from [4]. At first glance, it seems to be contradicting to

the observations we just made in Example 5.4, where the basic scenario coverage is not

sufficient for FPM schedulability, but it should be noted that the lemma only claims

that a correct policy exists, not that this policy is FPM. In the proof given in [4] they

show a simple procedure to transform any basically correct policy into a similar policy

that is, in addition, also predictable, thus, by Lemma 5.8, yielding correct schedules in

non-basic scenarios as well. The above lemma implies that a complete correctness test

can be reduced to testing all basic scenarios. However, this would be inefficient, as there

is an exponential number of basic scenarios. Fortunately, testing in all basic scenarios

is redundant. We show in the next subsection that to test a weakly-predictable policy

for a dual-critical instance it suffices to simulate H + 1 basic scenarios, where H is the

total count of HI jobs in the problem instance.

Schedulability in MC-systems 35

Figure 5.3: The job-specific scenario schedules for Example 5.5 obtained with priority
table PT = (J2, J4, J3, J5, J1)

5.3.2 The Canonical Correctness Test (CCT)

Definition 5.10 (Job-specific Basic Scenario). For a given problem instance, a schedul-

ing policy and a HI job Jh, the job-specific basic scenario for job Jh is denoted by HI-Jh

and defined as follows. Job Jh executes for its CE . For any other HI job, if it terminates

in the LO basic scenario schedule SLO before Jh terminates, then it executes for its CN

else it executes for its CE . The schedule for HI-Jh is denoted by SHI-Jh .

In multiprocessor scheduling, for a given job Jh multiple jobs may also terminate exactly

at the same time in SLO as Jh, and they are conservatively assumed to also execute for

their CE in HI-Jh.

Definition 5.11 (Canonical Basic Set). It is the set that contains the LO basic scenario

and the job-specific basic scenarios for all HI jobs of the given instance.

Note that SHI-Jh coincides with SLO up to the time when job Jh switches, and after

the switching time it starts using HI execution times for the jobs that did not terminate

before the switch.

Example 5.5. Figure 5.3 shows Gantt charts for the job-specific scenarios of the single-

processor problem instance given in the table below:

Job A D χ CN CE

1 0 30 HI 10 12

2 2 10 HI 2 8

3 1 8 LO 2 2

4 8 17 HI 2 7

5 7 11 LO 2 2

If we look at the termination times of HI jobs in SLO (the schedule for the LO basic

scenario) we see that J2 finishes first followed by J4 then J1. Thus in scenario HI-J4,

J2 will execute for its CN since it terminates before J4 in SLO and the rest of the jobs

will execute for their CE resulting in the schedule shown for HI-J4 in Figure 5.3. The

rest of the job-specific schedules are generated in the same manner.

Schedulability in MC-systems 36

Theorem 5.12 (Canonical Correctness Test). To ensure correctness of a scheduling

policy that is weakly-predictable it is enough to test it for the canonical basic set.

Proof. Consider any basic scenario c and simulate the policy until either the mode

switch, if any, or the end of the schedule. Let Jh be the job that switches. After the

switch, increasing the job execution times can lead only to non-decreasing termination

times, therefore we can conservatively replace c by HI-Jh. Hence, the policy is basically

correct, and, by Lemma 5.8, also (completely) correct.

Unfortunately, since by Lemma 5.6, FPM is not weakly-predictable in multiprocessor

case and the canonical correctness test might not be sufficient under such general condi-

tions, in this case by Corollary 5.5, we may need the FPM policy to have FPM-equivalent

tables to obtain weak-predictability and use the correctness test.

5.3.3 Building the Case for Class NP for FPM

The canonical correctness test algorithm was directly derived from the correctness test

procedure described in [4], used in an attempt to prove that MC-scheduling is in class

NP. Note that their algorithm is more complex and more general, as it applies to a

number criticality levels more than two. Though that procedure, for efficiency reasons,

would organize the schedules of basic scenarios in a tree structure and use backtracking,

our less efficient formulation has only polynomially higher complexity, which does not

impact on the reasoning on NP complexity. We now reapply the line of reasoning of [4]

to prove that FPM is in class NP. Although in Chapter 4, Lemma 4.1 [4] was refuted as

it does not hold for all MC polices, it is true by construction in the case of FPM policies.

We use this lemma in the proof of Theorem 5.13.

Theorem 5.13. Dual-criticality single processor FPM policies are in class NP.

Proof. It follows from the weak-predictability of single processor FPM polices and The-

orem 5.12 that we can check for correctness by simulating a polynomial number of

scenarios (the canonical basic set). By Lemma 4.1 the cost of simulating each scenario

is also polynomial. Therefore the canonical correctness test has polynomial complexity

when testing FPM solutions.

Theorem 5.14. Under the restriction of having FPM-equivalent tables, dual-criticality

single- and multi-processor FPM policies are in class NP.

Proof. Follows directly from Corollary 5.5 and Theorem 5.12

Schedulability in MC-systems 37

Note that unlike the case of Theorem 5.13, the case described in Theorem 5.14 is not

known to be NP hard. We have established the upper bound as NP, but the lower bound

in this case is an open problem, it may be either NP-hard or P, and it may differ for

single- and multi-processor cases.

5.4 The Economical Correctness Test

The Canonical Correctness Test (CCT) simulates a linear number of scenarios. In this

chapter we propose the Economical Correctness Test (ECT) that needs to simulate just

two scenarios under certain restrictions. ECT transforms the policy into an ’equivalent’

STTM policy which requires only two tables to be tested instead of H + 1 as is the case

in CCT.

Although ECT is only applicable for reasonable policies, this is not a serious limitation,

because it does not remove optimality in dual criticality scheduling. This is due to the

fact that EDF is an optimal scheduling policy for ordinary (non mixed-criticality) single-

processor problems, and after a mode switch, it is this problem that remains to be solved

online. It is worth mentioning that any non-reasonable policy can be transformed into a

reasonable policy by simply changing its behavior to use EDF after a mode switch. Due

to the optimality of EDF the transformed policy is either ‘equivalent’ or it dominates

the original. Thus we expect that most scheduling policies should be reasonable or

proven equivalent. The aim of this chapter is to prove that ECT test is equivalent to

CCT and to study its algorithmic complexity. We start by a simple example to show

that finding an equivalent STTM policy is not a trivial task. After that, we describe an

approach, taken from the work in [51], to generate the STTM tables used in the proposed

correctness test, prove its correctness in the general case and study its complexity in the

case of FPM policies. All the theorems and proofs in this chapter are for single processor

dual-criticality MC-Systems.

5.4.1 A Non-Trivial Problem

The transformation algorithm, denoted T (P) transforms a reasonable scheduling pol-

icy P to an STTM policy by using simulation augmented with additional rules for

enabling/disabling jobs. Before we describe the algorithm in details, an example is

given [51], to show that transforming a policy into an STTM policy having only two

tables is not trivial. As seen in section 5.3, as many tables as there are HI jobs, might

have to be tested, to ensure the schedulability of all scenarios.

Example 5.6. Let us consider the following instance as an example:

Schedulability in MC-systems 38

Figure 5.4: Canonical basic set and the HI* table

Job A D χ CN CE

1 0 12 HI 3 5

2 6 11 HI 2 4

3 7 8 LO 1 1

4 1 4 HI 1 2

and the following FPM priority assignment for it (which can be computed using MCEDF[50]):

PTLO = J3 � J2 � J4 � J1

PTHI = J2 � J4 � J1

Fig. 5.4 shows the schedule for the LO scenario and the HI job-specific basic scenarios

for the instance in Example 5.6. The top most schedule represents the LO scenario, and

it can be used as TLO for the generated STTM policy.

However, none of the schedules for the HI basic scenarios shown in Figure 5.4 can be used

to schedule the HI-mode for the generated policy. If either of the schedules for HI-J1

and HI-J4 is used, then J2 will not have enough time to complete if a mode switch

occurs at t = 9, since in both schedules it is given one time unit to execute between 9

and 10, but it needs two to complete. If the schedule for HI-J2 is used, then J1 will

miss its deadline if a mode switch occurs at t = 4. The correct HI* table thus can be

different from all the ones generated for HI basic scenarios. The one for this example is

shown in the bottom of the figure.

5.4.2 Generating the LO table

The LO table is generated by simulating the scheduling policy for the LO basic scenario.

Although a scheduling decision can be taken at every time instant, for most policies

Schedulability in MC-systems 39

it can be restricted to just when certain events occur, for example a job arrival or

termination.

To generate the LO table for an FPM policy one can simulate FP policy for criticality

level ‘LO’. The algorithm presented in Fig. 1 generates a time triggered schedule S by

simulating the FP policy for the job instance I under priority table PT for criticality

level χ′. In the case of FP, only two types of events are needed to efficiently simulate

the execution of jobs, the arrival of a job and its termination. In Fig. 1, an event is

represented by a 3-tuple containing the time of the event, a label to identify the type

of the event, and a job. An example of an event can be (t, ‘LBL-ARR′, J) which states

that job J arrives at time t.

In line 2 of the algorithm, jobs whose criticality level is lower than the criticality mode

of the simulation are dropped. After that all arrival events are added to the priority

queue of events QE , where events are sorted in ascending order with respect to the time

of the event.

In addition to QE , the algorithm uses three other local variables. QP a priority queue

that contains ready jobs sorted with respect to priorities in PT . Jexe used to store the

job id that is scheduled to execute. In case the processor is idle Jexe is set to be ∅. prgs
- an array of type ‘time’, used to store the progress of each job. For example, if we

have prgs[i] = b this means that job Ji has executed for b time units. Throughout the

algorithm a call to SchedStart(J, t1, S) marks the beginning of a scheduling interval

for job J at time t1 in S, and the call to SchedStop(J, t2, S) marks the end of the

scheduling interval for the same job at t2.

The main loop iterates over the events stored in QE . If there was a scheduled job, at

line 12, the progress of job Jexe is updated to add the time passed between the last event

and the current one. In the case of a termination event, the schedule S is signaled to

stop the executing job at time instant ‘time′ and it is removed from QP . In the case of

an arrival event, the arriving job is added to QP . Between lines 22 and 30 the job that

has the highest priority in QP is scheduled, if another job was scheduled by a previous

event then it is stopped by a call to SchedStop(). In the last part of the algorithm, it is

checked if no event will preempt the scheduled job, a termination event is added at the

appropriate time.

Observation 1 (Ordering of Schedule Events). We implicitly assume that events with

same time-stamp and different type are popped with the preference to the event types

that are first mentioned in the switch case of the algorithm, in particular that events

labeled as ‘LBL-TERM’ are always popped first if there are any for the current time

stamp.

Schedulability in MC-systems 40

1 Input: job instance I , priority table PT , criticality χ
2 Output: schedule S
3 Local: array [1..n] of “time type” prgs , executing job Jexe ,
4 priority queue QE , QP
5 JEFF ← { J ∈ I | J.X ≥ χ }
6 PQueuePushSet(QE , [JEFF , ‘LBL-ARR’], ArrivalT imes)
7 lastT ime← 0
8 Jexe ← ∅
9 while QE 6= ∅ do

10 ([time,LBL], J) ← PQueuePop(QE)
11 if Jexe 6= ∅ then
12 prgs[Jexe]+ = (time− lastT ime)
13 end
14 switch LBL do
15 case ‘LBL-TERM’ do
16 SchedStop(J, time, S)
17 PQueuePop(QP)
18 Jexe ← ∅
19 case ‘LBL-ARR’ do
20 PQueuePush(QP , J, PT)

21 end
22 if QP 6= ∅ then
23 Ji ← PQueueHead(QP).Job
24 if Jexe 6= ∅ ∧ Jexe 6= Ji then
25 SchedStop(Jexe, time, S)
26 Jexe ← ∅
27 else if Jexe = ∅ then
28 Jexe ← Ji
29 SchedStart(Ji, time, S)

30 end
31 termTime = CNi − prgs[Ji]
32 if Xi = χ then
33 termTime = CEi − prgs[Ji]
34 end
35 if termTime ≤ PQueueHead(QE).EventT ime then
36 PQueuePush(QE , Jexe, ‘LBL-TERM’, termTime)
37 end

38 end
39 lastT ime← time

40 end
Algorithm 1: Simulation Algorithm for FP at Given Criticality Level χ

Schedulability in MC-systems 41

Observation 1 is needed to prevent the case where a job may terminate and get preempted

at the same time.

Lemma 5.15. The complexity of the off-line FP simulation for each mode is O(n(log n)),

with n being the number of jobs.

Proof. The initialization of the priority queue is done in O(n log n) time. The main loop

has O(n) iterations, since there are O(n) events. In every iteration, operations either

have a complexity of O(1), such as schedule operation, or O(log n) such as the priority

queue operations. This results in a total complexity of O(n(log n)).

5.4.3 Generating the HI* Table

Whereas Fig. 1 can be used for generating the LO table for an FPM policy, we use a

similar algorithm to generate HI∗ for any reasonable policy, by simulating for PT =

EDF and χ = HI with some important modifications

• LO table is given as additional input

• we can disable some jobs, based on some ‘rules’

A disabled job is intended to be hidden from the scheduling policy until it is enabled

again. To that purpose we create a new queue QD to store disabled jobs. To disable a

job, it is sufficient to remove it from the queue of ready jobs QP in Fig. 1, and store

it in QD. By doing so, the scheduling policy will not schedule any disabled jobs. To

enable a job again, it is simply moved back from QD to QP .

5.4.3.1 Transformation Rules

The intuition behind these transformation rules is to disallow a job from progressing in

the HI* table for more than it has progressed in the LO table at any time t, unless it

has been allocated its CN on the LO table by that time. We define TLOj (t) to be the

cumulative execution progress of job Jj at time t in the LO table. Similarly, THI∗j (t) is

defined for the HI* table. HI jobs that execute for more than their CN are referred to

as switched jobs. A ready job Jj is considered enabled, and is placed in the ready queue,

at time t, if at least one of the rules below is true:

TLOj (t) = CNj (5.4.1a)

THI∗j (t) < TLOj (t) (5.4.1b)

THI∗j (t) = TLOj (t) ∧ SLO(t) = Jj (5.4.1c)

The first rule enables all jobs that have switched. Rule 5.4.1b allows a job to execute at

time t, if it has executed for more in the LO table up until t. Rule 5.4.1c enables a job

Schedulability in MC-systems 42

to be scheduled at HI* at time t, in case it has been allocated the same time on both

tables, and is scheduled to execute at t in the LO table.

5.4.3.2 An Example

Looking back at Example 5.6, we will describe how HI* was generated. First at t = 0

no job has executed and thus the first two transformation rules can not be satisfied.

However rule 5.4.1c is true for J1 at t = 0, since it is being scheduled on LO at that

time, and its total progress in both tables is zero. Thus J1 is scheduled at t = 0.

Following the same reasoning, J4 is scheduled at t = 1. At t = 2, J4 executes up until

its CN in the LO table and is enabled by the first transformation rule and J1 is enabled

by the third rule. Since J4 has higher priority it is scheduled at t = 2. At t = 3 only J1

is enabled and is scheduled until t = 6 where J2 becomes enabled by rule 5.4.1c. Having

higher priority J2 is scheduled at t = 6 but only until t = 7 as it is no longer enabled

at that time. J1 is scheduled until t = 8 where J2 becomes enabled first by rule 5.4.1c,

and later at t = 9 by rule 5.4.1a.

5.4.3.3 The FPM HI* Table

The simulation in Fig. 1 can be modified to generate the HI* table while keeping its

algorithmic complexity the same. To be able to apply the ‘transformation rules’ in the

simulation the algorithm needs the already constructed LO table and keeps track of the

progress of jobs not only in the HI mode, but also in the LO table.

Three events need to be added to the simulation in Fig. 1. The first two events,‘LO-START’

and ‘LO-STOP’, mark the start and the termination of execution times in SLO for HI

jobs. For Example 5.6, looking at the LO schedule in Fig. 5.4, the events for J1 are

(0, LO-START, J1), (1, LO-STOP, J1), (2, LO-START, J1) and (4, LO-STOP, J1).

These events allow the algorithm to keep track of how much each HI job has executed

in SLO, in order to decide if a job is enabled or not. For generating the HI* table we

no longer need to store arrival events. Instead, all jobs are assumed to be disabled at

the start. Each disabled job is enabled and moved to Qp whenever a LO-START event

occurs. The third event to be added is ‘DISABLE’. This event is generated the same

way as ‘LBL-TERM’ is generated i.e., when a job is executing, but allowing the job to

execute until it reaches either its execution progress in SLO if it is not already executing

in SLO at that time, or until it reaches the next event. If a job’s ‘DISABLE’ event is

triggered, that job is stopped and it is removed from the ready queue QP . The job will

be enabled again when its ‘LO-START ’ event is triggered. At every event we check to

see if a job needs to be disabled before the next event. As we show in the lemma below,

this modification does not increase the algorithmic complexity of the simulation.

Schedulability in MC-systems 43

Lemma 5.16 (Complexity of Transformed FP Scheduling). Given a fixed priority from

the original policy and a time-triggered table for the LO scenario generated by Algo-

rithm 1, the algorithmic complexity of the transformed simulation used to generate HI*

is O(n(log n))

Proof. The schedule generated for the LO mode in Algorithm 1 has a polynomial num-

ber of arrivals, preemptions and terminations of jobs. As a result there are at most O(n)

‘LO-START ’, ‘LO-STOP ’ and ‘DISABLE’ events. Thus the number of main-loop iter-

ations remains unchanged compared to the non-modified simulation, with a maximum

operation cost of O(log n).

5.4.4 Proof of Correctness

In this section, we provide the two theorems from [51, 52], which together show that, a

reasonable weakly-predictable policy can correctly schedule an instance iff the instance

can be scheduled by the transformed policy.

Theorem 5.17 (Transformation Correctness). For a given problem instance, if the

original policy P is correct and reasonable then the transformed policy T (P) is also

correct.

Theorem 5.18 (Reverse Correctness). For a given problem instance on single-processor,

under the assumption that the original policy is reasonable and weakly predictable, we

have that if the policy T (P) is correct then the original policy is correct as well.

For completeness, the proof of correctness of the theorems is provided in Appendix A.

5.4.5 ECT - Correctness and Complexity

Corollary 5.19 (Correctness testing with Economical Correctness Test (ECT)). For

dual-criticality single-processor problem instances, given a reasonable weakly predictable

policy, testing the correctness of the transformed policy constitutes a necessary and suf-

ficient correctness test.

This result follows directly form the theorems in section 5.4.4. Testing the correctness

of the transformed policy can be easily achieved, by testing if jobs in the generated

LO and HI* tables meet their deadlines. This test is more efficient than the canonical

correctness test proposed in the previous section since it needs to test only two tables

instead of a number that is proportional to the HI jobs in the instance.

Corollary 5.20 (ECT Complexity). For dual-criticality single-processor problem in-

stances, testing the correctness of FPM policies using ECT has an algorithmic complexity

of O(n(log n)), where n is the number of jobs in the given instance.

Schedulability in MC-systems 44

The correctness of the corollary follows from Lemmas 5.15 and 5.16.

5.5 Chapter Summary and Contributions

In this chapter, we discussed subjects related to correctness testing for dual-criticality

applications. The work presented, is an extension to the work of Socci et al. [51]. In

the original work, ‘predictability per mode’ was defined for MC-systems. We showed,

by means of an example, that the definition of predictability in [51], similarly to the

definition of predictability in traditional scheduling theory, remains too restrictive for the

case of mixed criticality. Indeed there are FPM policies that are not predictable following

these definitions, which raises the question of the applicability of testing by simulation

for these policies. Our contribution is defining the concept of weak-predictability as a

less conservative property which we find more adequate for MC-systems, and proving

that all members of the FPM class of policies are weakly-predictable.

Two correctness tests were presented in this chapter, the Canonical Correctness Test

(CCT) and the Economical Correctness Test (ECT). These correctness tests were the

results of a collaborative work between myself, Socci, Poplavko and Bensalem [52, 53].

A correctness test similar to CCT was used to test correctness in the MCEDF algo-

rithm [17]. This test was assumed correct without giving any formal proof. In this

thesis, for dual-criticality weakly-predictable policies, a correctness proof for CCT is

provided, guarantying that it is applicable in the case of MCEDF, as well as all other

FPM policies. As for ECT, the transformation algorithm was introduced in [51] and is

not a contribution of this thesis. In this thesis, we contribute by showing that weak-

predictability is necessary for the correctness proof of the test, more specifically to the

proof of Theorem A.10. In addition, we provide simplified algorithms for generating the

LO and HI* tables, since we only use them for the single processor case, whereas the

original version of the transformation algorithm worked for the multi-processor case as

well.

Chapter 6

Scheduling Systems with Multiple

Levels of Criticality

In this chapter, we propose an STTM scheduling algorithm for scheduling systems with

multiple levels of criticality for uniprocessor architectures. One aspect that makes our

algorithm more versatile is that it assigns priorities to jobs’ execution time-slots instead

of assigning priorities to the jobs themselves. As a result, a single job can have different

priorities at different time intervals throughout its execution. We call our algorithm

Push Back Earliest Deadline First PBEDF.

Algorithm Overview. The proposed algorithm takes as input an MC-instance and

tries to find a correct schedule for it. If successful, the algorithm will output a correct

STTM schedule with one static time-table for every criticality level in the system. The

main idea behind PBEDF is to delay the execution of lower criticality jobs, while assuring

that they do not miss their deadline in scenarios of criticality equivalent to theirs or lower.

This allows higher criticality jobs to execute earlier and gives the system more time to

handle a mode switch in case it occurs.

The first step of PBEDF is to generate an initial time-table T0 for criticality level 1. Next,

it delays the execution of the lower criticality time-slots by pushing them backwards in

the time-table. In addition to assuring that a job still meets its deadline on the time-table

it is being pushed in, it should also have enough time to terminate before its deadline

if a mode switch occurs. For dual-criticality systems, this is not a problem as only LO

jobs will be pushed back, and these jobs are not required to meet their deadline after a

switch. To satisfy this criteria for systems with more than two criticalities, a deadline

is generated for every time-slot in T0. This deadline is an indicator that if a time-slot

45

Schedulability in MC-systems 46

is pushed further it might miss its deadline after a mode switch. The generation of

time-slots’ deadlines is described in section 6.2.1.

After determining a safe bound that marks the time to which a job can be safely post-

poned, delaying the execution of a job is simply achieved by swapping one of its time-slots

with another one belonging to a different job executing later in the time-table. In gen-

eral, a swap is only allowed if it results in a higher criticality job executing earlier while

giving time for the less criticality job to terminate before its deadline. More details on

how time slots are swapped are found in section 6.1.2.2.

The modified time-table after the swapping of time-slots will constitute the final table

for criticality level 1. We refer to this time-table as T1. The last step of the algorithm

is to generate time-tables for higher levels. This process is done iteratively, where each

time table Tl is constructed from Tl−1 for 1 < l ≤ L, L being the highest criticality in

the system. Section 6.1.3 details the generation process of higher time-tables.

Motivation. The main motivation for PBEDF is it’s ability to schedule mixed critical-

ity systems of multiple levels of criticality and not just dual-criticality systems. As was

shown in a survey by Burns et al. [54], the majority of work done in mixed-criticality

scheduling limits itself to only two levels of criticality. According to the same survey,

it was shown that for a scheduling policy to be of practical use, it needs to scale up to

possibly four or five levels of criticality. In addition, jobs have dynamic priorities, even

within the same criticality level. By dynamic priorities we mean that a job can have

different priorities at different time intervals. This allows the scheduling of instances

that are not schedulable by the widely used fixed-priority or FPM policies.

If successful, an STTM schedule is generated which is correct by construction and can

be easily integrated into a system as shown in Chapter 7. Finally, experimental results

show that for single processor dual criticality instances, PBEDF dominates a state of

the art algorithm MCPI[9]. For more than two levels it far outperforms OCBP[13] as

shown in section 6.3

Some Needed Definitions. Our schedule is represented by a set of time-tables. Thus,

before we start we need to define the structure of a time-table and to define a time-slot.

A time-table is a sorted set of disjoint time-slots. A time-slot can in general be

represented by a tuple (t1, t2, Ji) which indicates an interval of time [t1, t2) where Ji is

scheduled to execute. For the purposes of our proposed algorithm we represent a time-

slot by the tuple (t1, t2, Ji, type, deadline) where type determines the type of execution,

it can be either certain or uncertain, and the deadline represents the deadline of the

time-slot, which can be the same as the deadline of the job or smaller.

Schedulability in MC-systems 47

Timetables are sorted in ascending order with respect to a slot’s beginning time t1. A

constraint that we enforce in the structure of the time-table is that any two consecutive

time-slots ts1 and ts2 in the table, such that ts1.t1 < ts2.t1 (ts1 executes first) then

we must have ts1.t2 = ts2.t1. We say that a time-slot is of criticality l if its job Ji is

of criticality l. A time-slot is empty if Ji = null, this represents an idle interval in the

processor.

6.1 PBEDF for Dual-criticality Systems

For a given dual-criticality problem instance, if successful, the algorithm generates two

time-triggered tables T1 and T2 for criticality levels 1 and 2 respectively. We distinguish

between three different phases of the algorithm where the output for each phase acts as

the input for the next one. First, an initial time table T0 for level 1 is generated. T0 is

not the final schedule for level 1, its role is to provide a starting point for the second

phase. In the second phase, described in Section 6.1.2.2, T0 is transformed into T1, the

final time-table for criticality level 1. Lastly, using T1, the algorithm generates T2 as

shown in section 6.1.3.

6.1.1 Generating the Initial Time-Table

Before delaying LO criticality jobs in favor of pushing forward higher criticality ones, jobs

must have initial priorities to begin with. Any single criticality fixed-priority algorithm

can be used for this step. We choose EDF because of its optimality for single criticality

instances in the uniprocessor case. An initial time-table T0 is generated by simulating

the execution of jobs following EDF priorities while constraining jobs to execute for

exactly their CN . Priorities in T0 will act as the basis for generating the priorities in

T1, the time-table for criticality level 1.

6.1.2 Generating the Time-Table for Criticality Level 1

In this step, the algorithm tries to give higher criticality jobs higher priority by delaying

the execution of lower criticality jobs. Algorithm 2 iterates over the time-table from its

end to its beginning, starting from the time-slot that is before last. For each time-slot of

criticality less than L, it calls the pushBack() function that tries to delay the time-slot

by swapping it with higher criticality time-slots.

For the dual-criticality case, L is equal to 2 and thus only LO jobs will be pushed back.

But when scheduling systems with multiple criticalities, all jobs that are not of the

Schedulability in MC-systems 48

highest criticality will be delayed.

input : The timetable T0

output: The timetable T1 for level 1

1 if T0.size() < 2 then

2 return

3 end

4 id← T0.size()− 2

5 while id ≥ 0 do

6 if T0[id].job.crit < L then

7 pushBack (id, T0)

8 end

9 id−−
10 end

11 T1 ← T0

Algorithm 2: Generating the time-table for criticality 1

The pushBack() function is shown in Algorithm 3. It is a recursive function that takes

as input a time-slot and a time-table. Each call will loop over the time-table starting

from the input time-slot towards the end of the time-table until it find another slot

that is swappable with the input slot or until it reaches the end. If a swappable slot

is found, i.e canSwap() returns true, then swap() is called. Based on the result of the

swap one or more calls to pushback() are done. In order to understand the details of

the pushBack() function, we start by describing two of its fundamental operations. The

first is how to check if two slots should be swapped or not. The second is how to do a

swap operation.

6.1.2.1 Swap Conditions

The objective of this step is to identify if two time-slots can be swapped without making

any of them miss its deadline. In addition, a swap should only be allowed if it delays a

lower criticality job so that a higher criticality job can execute earlier.

Given two time-slots tsi = (t1, t2, Ji, certain, d) and tsj = (t1, t2, Jj , certain, d) such that

tsi.t2 ≤ tsj .t1, the time-slots are swappable if both conditions 1 and 2 below are satisfied

and either condition 3 or condition 4 is true.

The first condition is necessary to make sure that a job is not scheduled before its arrival

time by simply making sure that tsj has arrived before the end of tsi. Condition 2 is

also necessary to guarantee that a time-slot is not pushed after its generated deadline

by checking that the deadline of tsi does not come before tsj . Condition 3 makes sure

that the criticality of tsi is less than that of tsj . Condition 4 takes care of the care

Schedulability in MC-systems 49

Swap Conditions

1. Jj .arrival < tsi.t2

2. tsj .t1 < tsi.d

3. Ji.crit < Jj .crit

4. Ji.crit = Jj .crit & Ji.deadline > Jj .deadline

where both time-slots are of the same criticality. In that case we can allow the swap

if the deadline of Ji is greater that that of Jj . Conditions 3 and 4 can never be both

true.

6.1.2.2 The Swap Operation

In a swap, lower criticality jobs are swapped with higher criticality ones delaying the

former and pushing forward the high criticality slots. This operation is only done on

the initial T0 to generate the final time-triggered table T1 for criticality level 1.

Swapping time slots does not always swap the entire slots together.This is either because

the slots are not of the same size or because of execution window constraints. A detailed

description of the swap(tsi, tsj) operation is provided in this section, where tsi and

tsj are two time-slots such that tsi.t2 ≤ tsj .t1 i.e. tsi executes before tsj in the time

table.

. . .

. . .

. . .

tsi tsj

t

tsj.A

tsi.D

. . .

. . .

. . .

ts'its'j

t

lenS

sw
a
p

ts1 ts3ts2 = null

returned time-slots

Figure 6.1: A swap example

Schedulability in MC-systems 50

Let tsi.A be the arrival time of the job executing in the timeslot tsi. Similarly we will

use tsi.D to denote the deadline of the timeslot tsi. We say that a swap is a perfect

swap if we have the following three conditions:

1. tsi.t2 − tsi.t1 = tsj .t2 − tsj .t1

2. tsj .A ≤ tsi.t1

3. tsi.D ≥ tsj .t2

In the case of a perfect swap the two timeslots are exchanged entirely. Otherwise the

swap in non-perfect and some parts of one or both timeslots will stay in place.

Let ts
′
i, ts

′
j refer to the modified timeslots after the swap operation as is shown in the

example in figure 6.1. In the case of a non-perfect swap, the operation schedules ts
′
j as

soon as possible. To define ts
′
i and ts

′
j we need to determine the start and end of the

interval of the timeslots.

• ts′j .t1 ← max(tsi.t1, tsj .A)

• ts′i.t2 ← min(tsj .t2, tsi.D)

ts
′
j can start either from the start of tsi or from its arrival time if it is greater than tsi.t1.

ts
′
i will end either at the end of tsj or at its deadline if it is less than tsj .t2.

Let len
′
i,len

′
j be the candidate lengths for ts

′
i and ts

′
j respectively.

• len′i ← min(ts
′
i.t2 − tsj .t1, tsi.t2 − tsi.t1)

• len′j ← min(tsi.t2 − ts
′
j .t1, tsj .t2 − tsj .t1)

len
′
i is the estimated length of ts

′
i. If the distance between the end of ts

′
i and the start

of tsj is greater than the length of tsi then we can move all of tsi to its new position

else the new timeslot will have to start from tsj .t1.

len
′
j is the estimated length of ts

′
j . If the distance between the start of ts

′
i and the end

of tsi is greater than the length of tsj then we can move all of tsj to its new position

else the new timeslot will have to end at tsi.t2.

The actual length of the swap denoted by lenS = min(len
′
i, len

′
j). Using it we compute

the missing boundaries for the new timeslots:

• ts′j .t2 ← ts
′
j .t1 + lenS

• ts′i.t1 ← ts
′
i.t2 − lenS

Schedulability in MC-systems 51

6.1.2.3 The Push Back Function

The pushBack() function in Algorithm 3 takes a time-slot’s id (sid1) and a time-table

(T0) as input arguments and tries to delay the execution of sid1 in the given table. It

looks in the time-slots that are scheduled to execute after sid1 searching for one which

it can swap with. This is done by using the canSwap() function. canSwap() returns

true if its arguments meet the swap condition defined in Section 6.1.2.1. If two time-

slots can be swapped, the swap() function is called. This function works as detailed in

section 6.1.2.2. After a swap is completed the function returns three time-slots which

represent all possible fragments of the time-slot being delayed. We need these because

the pushBack() function will try to delay these as well by recursively calling itself. The

time-slots returned by this function are indicated in Figure 6.1 by ts1, ts2 and ts3.

1 Function pushBack (sid1, T0)

2 for sid2 ← sid1 to T0.size()− 1 do

3 if T0[sid1].job = T0[sid2].job then

4 return

5 end

6 if canSwap(T0[sid1], T0[sid2]) then

7 (ts1, ts2, ts3)← swap(T0[sid1], T0[sid2], T0)

8 if sid1 < T0.size()− 1 then

9 pushBack (ts3, T0)

10 end

11 if ts2 is not null then

12 pushBack (ts2, T0)

13 end

14 if ts1 is not null then

15 pushBack (ts1, T0)

16 end

17 return

18 end

19 end

Algorithm 3: The PushBack() Function

In the figure tsi is the time-slot being delayed and tsj (or a part of it) will be scheduled to

execute earlier after the swap. If tsj ’s job is not ready before or at the start of execution

of tsi, then part of the tsi time-slot that executes before the arrival of the tsj will not be

swapped and will stay in place. This part is returned as ts1. If tsj ’s job is ready before

tsi starts then ts1 will hold null. It could be the case where after a switch, a part in the

end of tsi, the slot to be delayed, did not get pushed back because the swappable part of

Schedulability in MC-systems 52

tsi is bigger than tsj . In such cases the last part of tsi that stayed in place is returned

in ts2. If that is not the case, then ts2 will be null as in Figure 6.1. ts3 returns ts
′
i the

part of tsi that has been delayed. ts3 can never be null otherwise the swap conditions

should have failed.

The pushBack() function will stop its search when it finds a time-slot it can swap with

or when it finds another time-slot belonging to the same job as that of sid1. The function

stops when it finds another time-slot for the same job because this indicates that it can

not be pushed further otherwise the found slot would have been pushed.

6.1.3 Generating Time Triggered Tables for Higher Criticalities

T1 is used to schedule the nominal case where no job executes for more than its normal

WCET , CN . If the system switches mode to a higher criticality level, different time-

tables might be necessary to schedule the system. To generate a time-table Tl for

2 ≤ l ≤ L, the table Tl−1 is used. In Tl, only jobs whose criticality is l or higher

will execute, and jobs of criticality l will be allowed to execute for their CE . Jobs of

criticality higher than l will execute for their CN .

For the scheduling of the normal scenario, the execution of any job can be known by

looking at its reserved slots in T1. This is not in general the case for Tl, l > 1. The

system starts by using T0, after which multiple mode-switches can happen leading to

the use of other time-tables before finally reaching the point where Tl is used for the

scheduling of the system. Thus, unlike the scheduling of the normal scenario, for higher

criticality tables, the execution of a job can not be known by only looking at the table

of the current criticality. Nevertheless, a higher criticality time-table is required to have

sufficient execution time-slots reserved to all non-terminated jobs after a mode switch.

To achieve this requirement, at any given time instant, jobs that did not exceed their CN

are constrained to execute in Tl for no more that the amount they execute in Tl−1.

Algorithm 4 shows how Tl is generated. It takes as input Tl−1, the lower criticality time-

table and l the current level of the table to be generated. It works with the scheduling

of time-slots instead of jobs. It will use two sorted lists whose elements are time-slots.

listAll, which will contain all timeslots that should execute at Tl. Time-slots in this list

are sorted by their start time i.e. ts.t1. Also, not all jobs will be allowed to execute

when they are ready, this is to enforce the property that a jobs in Tl is not allowed to

execute for more than it does in Tl−1. We need another list to store the time-slots that

are ready and allowed to scheduled on Tl. This list will be sorted by the deadline of the

Schedulability in MC-systems 53

time-slots and is referred to as listReady.

1 Function generateTable (T l, T l−1, l)

2 listAll.insert(T l−1, l)

3 while not listAll.isEmpty() do

4 t← listAll.first.t1

5 Jh ← listAll.first.job

6 listReady.insert(listAll.pop())

7 if (not listAll contain execution for Jh) and Jh.crit == l then

8 ts← TimeSlot(0, Jh.C
U , Jh, Jh.deadline, ‘uncertain’)

9 listReady.insert (ts)

10 end

11 if listAll.isEmpty() then

12 tfin ←∞
13 else

14 tfin ← listAll.first.t1

15 end

16 schedule (T l, l listReady, t, tfin)

17 end

18 return T l
Algorithm 4: Generate Higher Criticality Tables

Initially both listReady and listAll are empty. listAll.insert(Tl−1) inserts the time-slots

of Tl that are of criticality l or higher into listAll. The function keeps looping until all

time-slots in listAll are scheduling in Tl. At line 4 in Algorithm 4, t is defined as the start

time for inserting slots in Tl. This is the time the first slot in listAll is scheduled in Tl−1.

At that time, the first time-slot in listAll is considered to be ready, it is removed from

listAll and inserted in listReady. We define Jh to be the job executed by the moved

time-slot. Afterwards, in the ‘if block’ from lines 7 to 10, we check if all time-slots of

job Jh are ready and have been moved out of listAll. If that is the case, and Jh is of

criticality l then we add the uncertain execution time-slot of that job to listReady. In

the last ‘if block’ , we set tfin to be either ∞, if there are no more time-slots in listAll,

or it is set to the time when the next time-slot will become ready. Finally, the algorithm

calls the schedule() function that inserts the time-slot in listReady into Tl between the

time interval [t, tfin). The jobs in listReady are scheduled on Tl between times t and

Schedulability in MC-systems 54

tfin. The schedule() function is described in Algorithm 5.

1 Function schedule (T l, l listReady, t0, tfin)

2 t← t0

3 while not listReady.isEmpty() and t < tfin do

4 Jh ← readySlot.first.job

5 exe← listReady.first.t2 − listReady.first.t1
6 uncert← listReady.first.uncertain

7 if exe > tfin − t then

8 exe← tfin − t
9 listReady.first.t1+ = tfin − t

10 else

11 listReady.pop()

12 end

13 readySlot← TimeSlot(t, t+ exe, Jh, Jh.deadline, uncert)

14 T l.insert (readySlot)

15 t← t+ exe

16 end

17 if t < tfin then

18 T l.insert (TimeSlot(t, tfin, null, 0, certain))

19 end

20 return T l
Algorithm 5: The schedule function

Since time-slots in listReady are sorted by their deadlines, the schedule() function

inserts the time-slots from the list to Tl in the interval [t, tfin) in EDF order. All the

portions of the inserted time-slots are removed from the list. If the interval is larger

than the total amount needed by all the ready jobs, the rest is filled by an empty

time-slot.

6.1.4 Example

Example 6.1. Table 6.1 contains an instance with 3 jobs, two of criticality level 2 and

one job of criticality level 1.

Job A D X CN CE

1 0 5 2 2 3

2 1 3 2 1 2

3 0 3 1 1 1

Table 6.1: The no FPM job instance

Schedulability in MC-systems 55

Figure 6.2 shows the generated time-tables by PBEDF following the steps presented

in this section. The temporary time-table T0 showing at the bottom of the figure was

generated by simulating the LO scenario using an EDF scheduling policy. At time t = 0,

jobs J1 and J3 are ready. Since J3 has an earlier deadline it is scheduled first. At t = 1,

J2 arrives and has the earliest deadline of non-scheduled jobs, thus it is scheduled in the

interval [1, 2) and J1 is scheduled last in [2, 4).

T0

T1

T2

 0 1 2 3 4 5

T
im

e
-t

a
b

le
s

Time

J3 J2 J1

J1 J2 J3 J1

J1 J2 J2 J1 J1

u u

Figure 6.2: Schedule for instance in Table 6.1

It is worth noting that the schedule provided in T0 does not correctly schedule the

instance at level 1. Consider the scenario where J2 and J3 need to execute for their CE

in order to terminate. Following T0 a mode switch is detected at t = 2 while J2 does not

signal its termination before that time. At that point, 4 time units are needed for the

uncertain execution of J2 and the execution of J1. This means that both jobs cannot

terminate before t = 5 and as a result one of them will miss its deadline.

We show how applying the push-back algorithm solves this problem. In this example,

only J3 will be pushed back since it’s the only job who is of lower criticality. J3 checks

if it can swap with J2. This swap is not possible because J2 arrives at t = 1. Then J3

checks if it can swap with J1. The swap condition are valid for this case and J3 can be

pushed up until its deadline at t = 3. The result of the push back is shown in T1 in the

figure.

Last we need to generate T2. At the start of this phase, listAll will contain 3 time-slots,

two for J1 and one from J2 taken from time-table T1. At t = 0, the first time slot for

J1 is added to listReady. Since it is the only one ready, it is scheduled in [0, 1) and

removed from listReady. After that, the time-slot for J2 is scheduled in [1, 2) as it will

Schedulability in MC-systems 56

be the only one available. At t = 2, a time-slot containing the uncertain execution of

J2 is added to listReady, as the condition of the ‘if block’ at line 7 of Algorithm 4 are

satisfied. At t = 2, the newly added time-slot is the only one available and thus it is

scheduled at t = 2. At t = 3 the time-slot for J1 is scheduled at T1 and thus can be

added to listReady to be scheduled followed by its uncertain execution. The constructed

T2 is represented in Figure 6.2.

It is easy to verify that the schedule represented by T1 and T2 is correct. In [20], Socci et

al. proved that the example in Table 6.1 cannot be scheduled by any FPM policy.

PBEDF is able to scheduled this instance because of the dynamic priorities property it

has. In T1, at t = 0, J1 was given priority over J3, while at t = 2, J3 was chosen to be

scheduled although J1 was ready.

6.2 PBEDF for Multiple Criticality Systems

For L > 2, jobs of criticality higher than 1 can also be delayed. Delaying these jobs

until their deadline, as we did before with LO criticality jobs, might not allow them

enough time to execute for their CE in case of a mode-switch. Thus, we need a way to

know how much a job can be safely delayed. Keeping in mind that the execution of jobs

is delayed only when generating T1 where they are allocated CN units of time, jobs of

criticality greater than 1 should be allocated CE units of time on the time table of the

same criticality as their own. Thus for all tables with lower criticality level the actual

deadline of a job Ji is at least Ji.deadline - Ji.C
U . This will allow the job to have the

additional CU execution time to reach its CE before its deadline, in case the system

switched its mode to the job’s criticality level. Sometimes the deadline of a job Ji has

to be strictly less than Ji.deadline - Ji.C
U , one example is the case of J2 in example 6.2

shown later. To generate a more accurate value for a job’s deadline on T1, a deadline is

generated for every slot indicating how much it can be delayed.

6.2.1 Generating Deadlines for Time-slots

The process of generating deadlines for the time-slots of T1 is described in Algorithm 6.

The main loop of Algorithm 6 iterates over the time-slots in T1 from the last slot to the

first one skipping all empty slots. Inside the main loop, the selected time-slot is referred

to as ts representing the execution of job Ji. We also define l to be the criticality of

Schedulability in MC-systems 57

Ji.

input : The timetable T 0

output: The timetable T 0 with deadlines generated for slots

1 for ts← T 0.last to T 0.first do

2 if ts is empty then

3 continue

4 end

5 l← ts.job.crit

6 if l == 1 then

7 ts.deadline← ts.job.deadline

8 continue

9 end

10 d← ts.job.deadline

11 if T l has no slots for job ts.job then

12 insertLate (T l,ts.job,ts.job.C
U ,d, ‘uncertain’)

13 end

14 for l← L to 2 do

15 exec← ts.t2 − ts.t1
16 d = min(d,insertLate (T l, ts.job, exec, d, ‘certain’))

17 end

18 ts.deadline← d

19 end

Algorithm 6: Generate deadlines for slots

The ‘if block’ starting at line 6 checks if l = 1. If that’s the case it sets the deadline of

ts to be equivalent to the deadline of Ji. This is valid because jobs of criticality 1 only

execute for CN on T1.

In the ‘if block’ on line 11, the algorithm checks if Tl, the time-table of criticality l, has

any execution slots for job Ji. If none is found, then CUi of time units are inserted into

Tl as late as possible before the deadline of Ji.

After that, on line 14, the algorithm loops over all timetables from Tl till T2 and inserts ts

units of execution to that timetable as late as possible before the time-slot’s deadline. If

the inserted timeslot finishes at a time that is earlier that its deadline, then the deadline

of the time-slot is updated to be equal to the time the slot finished.

The method insertLate(Ti, job, exec, deadline, TY PE) takes five arguments and

inserts one or more slots for the job given in time table Ti as late as possible starting

from the deadline given. The total amount of execution for the inserted slots is equal

Schedulability in MC-systems 58

to exec. TY PE is the type of execution it can be certain or uncertain. The method

returns the end time for the first slots it enters in Ti.

Notice that although we are trying to insert the execution of one time-slot from T1 into

Ti. This can result in more than one time-slot inserted in Ti in the case that the nearest

empty interval to the deadline given is smaller than exe. As a result we insert only a

portion of exe and the rest is inserted earlier in the time-table. The return deadline for

the insertLate() function is the end time of the latest inserted slot.

Also, the theorem below shows that adding or omitting the deadline generation phase

in the dual-criticality case does not change the outcome of PBEDF.

Theorem 6.1. For dual-criticality systems using deadlines in place of generated dead-

lines results in the same generated LO time-table T1.

Proof. When swapping two time-slots, we only look at the generated deadline of the

slot being delayed to make sure that it will not be passed. In a dual-criticality scenario

HI jobs are never delayed, only LO jobs are pushed back. For LO jobs the generated

deadlines are equal to the deadlines.

6.2.2 Example

Example 6.2. Table 6.2 represents an MC-instance for a system with 3 criticality levels

consisting of 4 jobs.

Job A D X CN CE

1 0 2 1 1 1

2 0 4 2 1 2

3 0 5 2 1 2

4 0 5 3 1 3

Table 6.2: A four-job instance

The time table at criticality level 1 in Figure 6.3 shows the initial table T0 obtained from

simulating the execution of the jobs with an earliest deadline first priority. We illustrate

in this example how the time-slots’ deadlines are generated following Algorithm 6.

The algorithm starts by generating the deadline for the latest time-slot in T0 i.e. J4. As

J4 is of criticality 3. The variable d is initialized to 5, the deadline of J4. Since T3 is

initially empty, it does not contain any execution of J4. Thus the method insertLate()

is called to insert a time-slot to represent the uncertain execution of J4 in T3. This slot

is inserted as late as possible but before d which is 5. Thus the time-slot is inserted in

[3, 5).

Schedulability in MC-systems 59

T0

T2
'

T3
'

 0 1 2 3 4 5

C
ri

ti
ca

lit
y
 L

e
v
e
l

Time

J1 J2 J3 J4

J4

J4 J4

2 1 4 3

3

3 5u

Figure 6.3: Generating deadlines for time-slots

Next the algorithm inserts one unit of execution, as late as possible before d, in time-

tables T3 then T2, the loop at line 14 in the algorithm. In T3 , the time-slot is inserted

at [2, 3] which is the latest empty time interval before 5. As the termination of the new

inserted slot is 3 which is smaller than the value of d. d is set to be 3.

As for T2 the time-slot is inserted at [2, 3], which is the latest possible before d. d

remains the same as the termination of the newly inserted time-slot is also 3. After we

insert the time-slot in T2, we exit the loop and the time-slot for J4 in T0 is updated to

equal d = 3.

Second deadline to compute is for J3. As it is of criticality level 2 and its deadline

is 5, an uncertain time-slot is inserted at [4, 5] in T2, and another one for the certain

execution is inserted at [3, 4] right after J4’s slot. As the last slot inserted terminates

at t = 4, d is updated to be 4 and the time-slot’s deadline in T0 is set to be 4.

In the same manner the deadline for the first two time-slots in T0 is generated. The

generated time-slots’ deadlines are shown in the bottom right corner of the time-slots in

Figure 6.3.

Applying the push back strategy on table T1 in Figure 6.3, we start by looping over the

time-slots in the table from the slot of job J3 till the slot for J1. Let ts1, ts2, ts3 and ts4

be the timeslots for J1, J2, J3 and J4 respectively in T1. We find that the time-slots ts3

and ts4 are swappable as the first three rules are true. Thus we call swap(ts3, ts4). Next

we check if ts2 can be pushed back. Since its deadline is 1 rule 2 will always fail and

thus it cannot be pushed back. The final slot to check is ts1. We check if it is swappable

Schedulability in MC-systems 60

1

2

3

 0 1 2 3 4 5

C
ri

ti
ca

lit
y
 L

e
v
e
l

Time

J2 J1 J4 J3

J2 J2 J4 J3 J3

J4 J4

1 2 3 4

1 2u 3 4 5u

3 5u

Figure 6.4: Swapping time-slots

with ts2 and again the first three rules are true and we call swap(ts1, ts2). After that

rule 2 will always be false as ts1 cannot be pushed behind t = 2. The final version of T1

after the push back strategy is shown in Figure 6.4.

6.3 Experiment Results

To evaluate the performance of PBEDF, we test the percentage of correctly schedulable

instances from a set of randomly generated ones at different load values. The load metric

characterizes the maximum ratio between demand and capacity of the system [55], and

for a given assignment of execution times ci, it is defined by:

`oad(I, c) = max
0≤t1<t2

∑
Ji∈I: t1≤Ai∧Di≤t2

ci

t2 − t1

Baruah et al. extended the definition of the load metric to mixed-criticality. In [56], the

authors proposed the use of two separate load metrics one for the LO mode and the

other for the HI mode as follows:

LoadLO(I) = max
0≤t1<t2

∑
Ji: t1≤Ai∧Di≤t2

CNi

t2 − t1

LoadHI(I) = max
0≤t1<t2

∑
Ji: χi=HI ∧ t1≤Ai∧Di≤t2

CEi

t2 − t1

Schedulability in MC-systems 61

For our experimental tests, since we have more than two levels of criticality, we will use

the load metric below, which in the case of dual-criticality systems is equivalent to the

metric defined by Baruah et al. .

Load`(I) = max
0≤t1<t2

∑
Ji: χi≥` ∧ t1≤Ai∧Di≤t2

Ci

t2 − t1

where Ci = CNi if χi > ` and Ci = CEi if χi = `. This extension makes sense, since for a

given criticality level, the time-triggered table has to schedule CEi for jobs of the same

criticality and CNi for jobs that have higher criticality.

We compare the schedulability of PBEDF, with two scheduling algorithms, MCEDF

and OCBP. Although MCEDF was proven dominant over OCBP, it only works for two

criticality levels. A large number of problem instances were randomly generated for a

given target load and a maximum criticality level L. The load values for all criticality

modes are taken to be equal to the target load and move in the range of [0.6, 1], with

increments of 0.05. Values of L tested are taken from 2 to 5, representing systems with

up to 5 criticality levels. For each L, and load values given, 100,000 random instances

consisting of 20 to 100 jobs are generating.

Each of the three algorithms tries to schedule all the generated instances (for MCEDF

only dual-criticality instances), the results are shown in Figure 6.5. In Figure 6.5(a),

different schedulability values for PBEDF with different criticality levels are evaluated.

As expected, the algorithm’s success rate decreases when increasing the number of crit-

icality levels. We see that it is able to schedule all instances with load less than 75%.

For L = 2, the success rate decreases sharply when the load hits 95% , whereas it starts

its sharp decrease at 85% load for instances with five criticality levels.

Figure 6.5(b), shows the schedulability of all three algorithms for dual-criticality in-

stances. Tests indicate that PBEDF dominates both algorithms, as we were unable to

find any instance that is schedulable by MCEDF but not by PBEDF. Yet this result

remains experimental, and a theoretical proof is needed for confirmation. Figure 6.5(c),

compares PBEDF with OCBP for instances with higher criticality levels. The solid lines

represent PBEDF, and dotted lines for OCBP. The lines in green are for L = 3 and the

ones in red are for L = 5. It is clear from the figure that PBEDF greatly outperforms

OCBP. At 85% load, for three criticality levels, PBEDF is able to schedule 100% of the

instances while OCBP schedules 22.1%. For the same load value with up to 5 criticality

levels, PBEDF has an 81% success rate compared to 3.8% for OCBP.

Schedulability in MC-systems 62

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.7 0.8 0.9 1

S
u
cc

e
ss

 R
a
te

Load

L = 2
L = 3
L = 4
L = 5

(a) Schedulability of PBEDF for different criticality levels

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.7 0.8 0.9 1

S
u
cc

e
ss

 R
a
te

Load

PBEDF
MCEDF

OCBP

(b) Comparison of different algorithms for L = 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.6 0.7 0.8 0.9 1

S
u
cc

e
ss

 R
a
te

Load

PBEDF (L=3)
PBEDF (L=5)
OCBP (L=3)
OCBP (L=5)

(c) Comparison of PBEDF and OCBP performance

Figure 6.5: Experimental evaluation of the schedulability of PBEDF

Schedulability in MC-systems 63

6.4 Chapter Summary

In this chapter, we presented PBEDF, an STTM algorithm for the scheduling of job in-

stances of multiple levels of criticality. We showed that our algorithm can find solutions

to instances that can not be scheduled using FPM policies. In addition, the effectiveness

of the algorithm was evaluated by experimental results, comparing its ability to schedule

randomly generated instances with two other algorithms, OCBP and MCEDF, consid-

ering up until five levels of criticality. In the next chapter, we give a component-based

design for an MC-system that is able to detect faults and uses PBEDF as a recovery

component, enabling it to transition back to a non-faulty state.

Chapter 7

Mixed Criticality Policies as Fault

Recovery Strategies

Autonomous systems are gaining increasing popularity in research, as well as industrial

applications in different domains such as health care, smart farming, drones and trans-

portation (autonomous cars, railways and others). Since such systems are required to

fulfill their tasks without the intervention of a user, autonomous systems should be able

to make choices and even adapt in the case of unforeseen events. Unexpected circum-

stances can jeopardize the mission and/or the safety of the system, putting it in a faulty

state that was not anticipated during the design of the system, its analysis and simu-

lation of its interaction with its environment. A necessary functionality of autonomous

systems in this case is the ability to detect failures and to recover, moving themselves

back to a correct state.

In [6], Dragomir et al. proposed a design of FDIR components for autonomous systems.

These components are generated in a systematic way and are proven correct by construc-

tion. In their work, FDIR components consist of two main subcomponents, diagnosers

and controllers. Diagnosers’ task is to detect a fault as soon as possible. Controllers are

notified by the diagnoser that a fault has occurred and are responsible to take counter

measures and bring the system back to a valid state.

In this chapter, we will show one way an STTM scheduling policy can be used as a

recovery strategy alongside the FDIR components from [6]. Following in the steps of

the work in [6], components of the system are modeled using TA [57]. In section 7.1,

an overview of the whole system is given. In later sections, the generation of different

components of the system is explained in details.

64

Schedulability in MC-systems 65

7.1 Overview of the System

As in previous chapters, the system’s workload will be represented as a set of mixed-

criticality jobs running on a uniprocessor platform. Yet, in this chapter, to be able

to make use of the algorithms that generate the FDIR components, we will design

a component-based system, where each component is defined by a timed-automaton.

Each of the jobs and the scheduler will be transformed into TAs. It is the responsibility

of the scheduler component to organize the execution of the jobs through signaling the

start of execution and preemption. In addition, we assume that an executing job will

notify the system of its termination once it finishes execution. The scheduler and the job

components constitute the core of our system and they model its nominal behavior.

Scheduler

J1 J3J2

Diagnoser 1

Controller 1

alarm1 restart1

Diagnoser 2

Controller 2

alarm2 restart2

 start1 /
preempt1

terminate1

 start2 /
preempt2

terminate2

 start3 /
preempt3

terminate3

sw
itc

h 1

sw
itch

2reset

Figure 7.1: Overview of the whole system

In order to handle faults, two components are added for each job whose criticality is

greater than one, a diagnoser and a controller. These components represent the FDIR

module for that job, which is responsible for detecting a failure and recovering from

it. The diagnoser monitors the termination of a job, and if it detects that a fault has

occurred, it signals an alarm to the controller. The controller in turn, signals to the

scheduler that there is a fault and a mode change should occur to handle the fault.

After the fault has been dealt with, the controller resets the state of the diagnoser

allowing it to monitor for additional faults and signifying that the detected fault has

been resolved.

Schedulability in MC-systems 66

In our model, we consider that a fault has occurred during the execution of a job if it

takes more than anticipated to finish. This is characterized by a job executing for its CN

without signaling termination. It is assumed that all faulty jobs will terminate before

their CE though. For consistency with our assumption, jobs of criticality level 1 where

CN = CE are considered to never fail.

Figure 7.1 shows an overview of the system in Example 7.1. J3, being of criticality level

1, does not have an attached diagnoser/controller components as it is assumed to always

complete without failure. The reset link and the red links coming out of the diagnosers

are discussed in later sections.

Example 7.1. Table 7.1 represents an MC-instance for a system with 3 criticality levels

consisting of 3 jobs.

Job A D X CN CE

1 0 3 2 2 3

2 0 6 3 2 3

3 3 4 1 1 1

Table 7.1: MC-problem instance

7.2 Representation of Mixed-Criticality Jobs

To be able to make use of the diagnoser synthesis in [6], components need to be repre-

sented as timed automata. A timed automaton is an automaton augmented with a set

of timed clocks. A TA is characterized by:

• A set of finite locations, of which one is defined as the initial location

• A set of real-valued clocks

• Guards which are constraints on clocks that are associated to locations

• A set of actions

• A transition relation

A transition moves from one location to another through the execution of an action.

Transitions from a specific location are enabled and can be executed only if the guards

at that location are satisfied. Actions in different automata, having the same name,

indicate synchronized actions in the system. These actions can only occur at the same

time when all of their transitions are enabled. Actions that are eager, i.e., that should

be fired as soon as possible, are identified by the ε symbol. Time passes at the same

rate for all clocks in the system, but a set of clocks can be reset when a transition is

fired up. In our design, all jobs of the same criticality level are represented with the

Schedulability in MC-systems 67

same automaton model, but jobs of different criticality levels need different automata

representations.

7.2.1 Low Criticality Jobs

Jobs of criticality level 1 are the simplest, since they are assumed to never fail. To

simplify the structure of the automata jobs are always assumed ready at t=0. This is

not a problem because a job’s execution is controlled by the scheduler that only calls a

job to execute after its arrival time. Thus as shown in Figure 7.2 the job is initially in

the “ready” state. Two possible interactions from the ready state, either the scheduler

enables the start interaction and the job executes, or the job is reset. In the case a job

starts and is executing, it can either be preempted by the scheduler, or will terminate

no longer than t = f1. f1 marks the latest time this job is allowed to execute in T1.

Looking at Figure 7.6 we can detect that for J3, f1 = 4. Again by the correctness of the

schedule all jobs of level 1 will finish in the end state. The loop from the end location to

idle location and back to end is needed in case a job terminates before its CN but the

scheduler tries to schedule it. In that case the job goes to an idle location and terminates

immediately as this action is eager.

ready

exec end idle

t = 0

resetstarti

t = 0

p
re

e
m

p
t

[t <= f1] /
terminatei

terminatei

starti
reset

Figure 7.2: Automata for jobs of criticality 1

When in the ready state, a higher criticality job may fail causing a mode switch which

in our model signals reset to all jobs. When a job of criticality 1 receives a reset it can

be either in the ready state or the end state. If it is in the end state it stays there. If it

is in the ready state it simply goes to the end state. This transition represents that the

low criticality job has been dropped upon a mode switch.

7.2.2 Jobs of Criticality 2

For jobs of criticality level 2, the automata is shown in Figure 7.3. The core of the

automata is the same constituting of the ready, exec, and end locations which are all

Schedulability in MC-systems 68

that is needed to model a fault-free execution. But in this automata we have two main

differences.

ready

exec end

idlefailure f_ready

re
se

t

starti

p
re

e
m

p
t

preempt

starti
fa

u
lt

[t <= f1] /
terminatei

sta
rt

i

te
rm

in
a
te

i

ready2
reset

exec2

starti

p
re

e
m

p
t

[t <= f2] /
terminatei

t = 0

reset

re
se

t

Figure 7.3: Automata for jobs of criticality 2

The first is that a job can fail at any time during execution. A fault will transition a

system from exec to the failure location. In the case that a scheduler decides to preempt

the job, and since the system did not detect the fault yet, the preempt will take the

job to the f˙ready location putting the job in a faulty-ready state until it is started

again.

The second difference is that in the case of a mode switch from level 1 to 2, the job is not

dropped. Instead it goes to the ready2 location, either by a transition from the failure

location, in case the job has had a fault or from the ready location in case the mode

switch was caused by another job. When we are in the ready2 state, we reach a behavior

similar to job of criticality 1. This is because at criticality level 2 jobs of this level are

assumed to not fail thus they will start execution until preempted or terminated.

7.2.3 Jobs of Higher Criticality Level

Following the same steps used for creating the automaton for jobs of criticality level 2,

automata for higher criticality jobs can be constructed. From each readyi and failurei

locations we must have a reset to the readyi+1 location, for 1 ≤ i ≤ ` with ` being the

criticality level of the job. We will also have ` number of ready and exec locations, and

` − 1 failure and f ready locations with one end location. From each exec location,

there will be a terminate action going to the end state, and from the ready` location

there will be a reset action going to the end state. Although for jobs were ` = L,

Schedulability in MC-systems 69

i.e., jobs who have the highest criticality, this last action will never occur but it can be

kept for generalization. The automaton for jobs of criticality 3 is shown in Figure 7.4.

ready

exec end

idlefailure f_ready

re
se

t

starti

p
re

e
m

p
t

preempt

starti

fa
u
lt

[t <= f1] /
terminatei

sta
rt

i

te
rm

in
a
te

i

ready2
reset

exec2

starti

p
re

e
m

p
t

[t <= f2] /
terminatei

t = 0

reset

re
se

t

ready3
reset

exec3

starti

p
re

e
m

p
t

[t <= f3] /
terminatei

fa
u
lt

failure2 f_ready2

preempt

starti

re
se

t

Figure 7.4: Automata for jobs of criticality 3

7.3 Fault Detection

Fault detection is the responsibility of the diagnoser component that runs in parallel with

the system and decides whether a fault has occurred. One diagnoser is generated for

every job whose criticality is higher than 1. These components are generated automati-

cally following the diagnoser synthesis algorithm described in [6]. A brief description on

the process of synthesis is presented below, for a more detailed explanation the reader

is referred to [6, 58, 59].

7.3.1 Diagnoser Synthesis

The first step in the process is to create the diagnosis model, a modified copy of the

system model. The modified model has the faulty locations marked. In our example,

the failure and f ready locations are marked as faulty. To detect the occurrence and

propagation of faults in the system, a bit is associated with each location. The bit is

set to zero if a fault has not occurred yet and one otherwise. The transition relation is

also changed in the diagnosis model, a transitions from q0 to q1 will set the bit of q1 to

one if it is labeled with fault otherwise, it will set the bit of q1 to the value of the bit of

q0.

Schedulability in MC-systems 70

During monitoring, actions are distinguished as either being control actions or internal

actions. Control actions are the ones that influence the fault detection process. In

Figure 7.1, the control actions are are terminate and reset, identified by a red link going

from a diagnoser component to that action.

In [6], a set of current states of monitoring W is defined in addition to a Boolean variable

indicating whether an alarm has been raised. Initially, W includes all the states that are

reachable by only firing internal actions. If, at any time, the failure bit is set to 1 for

all states in W then an alarm is raised. In all cases, the diagnoser continues monitoring

and updating the set W . If a restart action is fired from the controller, then the failure

bit is set to zero for all states in W and the alarm is turned off.

7.4 The Recovery Strategy

7.4.1 Controller

The second element in the FDIR component is the controller. In general, the controller’s

purpose is to perform the recovery operations once a fault is detected, and return the

system to a correct state. In our design, the scheduler, described in the next section,

will handle the recovery of the system. The controller simply works as an intermediate

channel between the diagnoser and the scheduler. Once a diagnoser raises an alarm, the

controller triggers the switch action that causes the scheduler to be notified that a mode

change must occur. After that, the controller signals the diagnoser to restart and awaits

for the detection of another fault. The TA of the controller is shown in Figure 7.5.

l0

l1

l2

alarm

switchre
st

ar
t

Figure 7.5: The controller automaton

7.4.2 Scheduler

The scheduler component has to orchestrating the execution of all the jobs when the

system is in a correct state and should be able to recover the system in case of a

failure. In this section, we present a method in which an STTM scheduling policy

can be transformed into an automaton that can fulfill the requirements needed for the

Schedulability in MC-systems 71

scheduler component. For the transformation to work, it is assumed that, the scheduling

policy only allocates the processor to jobs after their arrival time.

In the nominal case, the scheduler should provide every job with CN execution time

before its deadline. In case of failure, the controller will begin a mode switch, which

will change the criticality mode of the system to a higher level. The scheduler should be

aware of the change in criticality mode and is expected to change its scheduling policy

accordingly.

In general, for a job Ji of criticality `, and a given criticality mode χmode the schedule

should provide at least the following guarantees for jobs:

• if ` < χmode, no guarantees for execution are given

• if ` = χmode, the job is guaranteed at least CEi execution time

• if ` > χmode, the job is guaranteed at least CNi execution time

The Gantt chart in 7.6 shows the schedule generated by PBEDF, the algorithm proposed

in Chapter 6 for the instance of Example 7.1.

C1

C2

C3

 0 1 2 3 4 5 6

C
ri

ti
ca

lit
y
 L

e
v
e
l

Time

J1 J2 J3 J2

J1 J1 J2 J2

J2 J2 J2

Figure 7.6: Gantt chart of the schedule

The scheduler automaton generated from the set of time-triggered tables is presented

in Figure 7.7. For convenience, let us label T1, T2 and T3, the time-tables for criticality

levels 1, 2 and 3 from Figure 7.6. The first step to generate the scheduler automaton

is to defined an initial location, labeled l0 in Figure 7.7. Since the execution starts in

the nominal case which is scheduled by T1, from the initial location, the only transition

Schedulability in MC-systems 72

possible is start1 from l0 to l1 representing the execution of J1 in T1 at t = 0 . As a

general rule, after every starti action leading to a location li, a terminatei action is

created from l. This is the case because we want to allow an executing job to be able

to signal its termination. Thus from state l1, a terminate1 action is defined that will

move to location l2. In addition a timing constraint of t ≤ 2 is defined on the terminate

action since the job is given only two time units to execute in the time-table.

l0

t = 0

l1

start1 /
t = 0

l2

[t ≤ 2] /
terminate1

l3

[t == 2] /
start2

l4

[t == 3] /
preempt2

l5

[t == 3] /
start3

l6

[t ≤ 4] /
terminate3

l7

[t == 4] /
start2

l8

[t ≤ 5] /
terminate2

l9

l10

start1

switch1 /
t = 0

l11

[t ≤ 1] /
terminate1

l12

[t == 1] /
start2

l13

[t ≤ 3] /
terminate2

l14

l15

start2

l16

[t ≤ 1] /
terminate2

[t ≤ 3] /
terminate2

switch2 /
t = 0

switch2 /
t = 0

l17

l18

reset

l19

reset

reset

Figure 7.7: Automata for the scheduler

Next we need to represent the execution interval [2, 3) for job J2. Unlike the case for

J1, J2 is preempted at time t = 3 if it does not complete before. The preempt action

is added with a time constraint of t = 3 as shown in the figure. In general, if we are

representing an execution interval of a job, which is not the last one for that job, in the

time table, then a preemption action is needed.

Schedulability in MC-systems 73

The previous steps show how to transform start, termination and preemption actions

of a job from a given time-triggered table. The last thing needed is to map the mode

switch. This is done by identifying the time instants where a mode switch can occur.

This is simple in the case of an STTM policy, it can be identified by the end time of

the last execution interval allocated for any job, whose criticality level is greater than

the criticality of the time-table. For our example, in table T1, the execution interval

[0, 2) for job J1 is the last one for that job. Since the criticality of J1 is higher than

that of T1, a mode switch can occur at t = 2. In the automaton, a mode switch is

represented by two action, a switch action that is synchronized with the switch signal

from the controller, and a reset action to change the execution mode of jobs.

7.5 Chapter Summary

In this chapter, we introduced a component-based design that models a system charac-

terized by a set of MC-jobs and an STTM scheduling policy. We proposed a process

to generate timed-automata to represent a time-triggered schedule and jobs of different

criticalities. We used the automatic diagnoser synthesis from [6] to detect errors, and

the scheduling algorithm from Chapter 6 to handle them.

In the next chapter, we will consider again how an STTM policy can be integrated in

the design flow of a system by making use of synchronized timed automata components

similar to the work in this chapter. Yet, instead of assuming a preemptive single pro-

cessor platform, we consider a non-preemptive multi-core MC-system, where we focus

on managing shared resources and interference.

Chapter 8

MC-system Design with

Coarse-grained Multi-core

Interference

To manage the complexity of concurrent-system design, the applications running in the

nodes of distributed systems have to be designed in an appropriate high-level model

of computation (MoC). In addition, for systems that are timing-critical and compute-

intensive, it may be required to introduce the so-called mixed-criticality resource man-

agers (dynamic scheduling policies) that adapt system resource usage to critical run-time

situations (e.g., overheating, overload, hardware errors) by giving the highly critical sub-

set of system functions priority over low criticality ones in emergency situations.

However, especially for modern platforms – multi- and many- cores – it is highly non-

trivial to manage resources not only because of their inherent parallelism but also because

of “parasitic” interference between the cores due to shared hardware resources (buses,

FPU’s, DMA’s, etc.). To close the semantical gap between MoCs on one side and re-

source managers on the other, we compile the MoCs into an expressive automata-based

language, used to validate and implement a given MoC/resource manager combina-

tion.

8.1 Introduction

In this chapter, we present our design flow for scheduling and deployment of software de-

signs for embedded systems. Modern embedded applications constitute so-called nodes

of distributed systems, i.e., they communicate via buses and networks with other applica-

tions (nodes). We consider systems that are not only timing-critical, i.e., subject to hard

74

Schedulability in MC-systems 75

real-time constraints, but also mixed-critical, i.e., able to sustain highly-critical func-

tions even under harsh compute-resource shortage situations. The latter is desirable if

the system has to be autonomic [60], i.e., able to operate in open and non-deterministic

environments. An example of an autonomic mixed timing-critical system is a “fleet

of UAV’s (unmanned air vehicles) [61]” that coordinate with the leader UAV within

strict time bounds to avoid mutual collision. Such systems should not only be correctly

specified but also schedulable in real-time. The point is that control tasks in many appli-

cations are augmented by complex computations that can load the processor significantly

(e.g., computer vision, trajectory/route calculation, image/video coding, graphics ren-

dering). In such cases, to meet the high computational demands inside the nodes while

keeping their energy consumption, cost and weight manageable it is important to con-

sider multi- (2-10) or even many-core (x100’s cores/‘accelerators’) platforms.

A major obstacle for schedulability analysis of multi-core applications is ‘bandwidth

interference’ [62], i.e., blocking due to conflicts in simultaneous accesses to shared hard-

ware resources, such as buses, FPU’s, DMA channels, IO peripherals. Next to interfer-

ence, the other dimensions in the scheduling problem are (i) possible lack of preemption

support in many-core systems, (ii) inter-task precedences (dependencies), commonly im-

plied from the application’s model of computation (MoC) and (iii) switching between

normal and emergency mode in mixed-critical scheduling. To be able to address all

these dimensions at the same time we propose simplifications which make the schedul-

ing problem amenable for known heuristic methods with some adaptations.

We also put the proposed scheduling approach into the context of our design flow, which

offers not only scheduling but also deployment on the platform. The deployment is

ensured by a compilation tool-chain that is by construction customizable to various

MoCs and online scheduling policies by mapping them to an expressive intermediate

‘concurrency’ language.

In Section 8.2, we introduce one-by-one the main pillars of our design flow, such as

MoCs and mixed-criticality. Section 8.3 introduces the structure and assumptions of the

proposed flow and illustrates it via a small synthetic application example. Section 8.4

gives a basic explanation of the scheduling algorithm and discusses the results.

8.2 Background

8.2.1 Models of Computation

To manage concurrency and coordination between tasks in parallel and distributed envi-

ronments Models of Computations (MoCs) have been proposed in the literature. They

permit the application designer to define the structure and organize the tasks and their

Schedulability in MC-systems 76

communication channels in a way that resembles high-level specifications (functional

diagrams). MoCs intend to abstract the application’s behavior from any implementa-

tion detail. Figure 8.1 shows an example: a part of an industrial avionics application

modeled in a MoC called Fixed Priority Process Network (FPPN) [63].

SensorInput

200ms200ms200ms200ms

AnemoConfig

2 per200ms2 per200ms2 per200ms2 per200ms

GPSConfig

2 per200ms2 per200ms2 per200ms2 per200ms

IRSConfig

2 per200ms2 per200ms2 per200ms2 per200ms

DopplerConfig

2 per200ms2 per200ms2 per200ms2 per200ms

HighFreqBCP

200ms200ms200ms200ms
LowFreqBCP

5000ms5000ms5000ms5000ms

MagnDeclin

1600ms1600ms1600ms1600ms

BCPConfig

2 per200ms2 per200ms2 per200ms2 per200ms

Performance

1000ms1000ms1000ms1000ms

MagnDeclinConfig

5 per1600ms5 per1600ms5 per1600ms5 per1600ms

PerformanceConfig

5 per1000ms5 per1000ms5 per1000ms5 per1000ms

AnemoData

GPSData

IRSData

DopplerData

PerformanceData

BCP Data

precedence indicator

Figure 8.1: Application modeled in a MoC: flight management system in FPPN

In the figure we see (1) tasks, e.g., ‘HighFreqBCP’, etc., annotated by periods, (2)

inter-task channels, e.g., between ‘DopplerConfig’ and ‘SensorInput’, and (3) precedence

relation between tasks, e.g., ‘HighFreqBCP’ has higher precedence than ‘BCPConfig’.

The application consumes data from input buffers, e.g., ‘AnemoData’, and produces the

results to output buffers, e.g., ‘BCP Data’. The buffers are supposed to keep the slots

for input and output data available during the whole interval between the task arrival

and the deadline. As a MoC, FPPN should define the partial ordering of execution and

interaction of concurrent activities (tasks), and this is done via the precedence relation,

which ensures predictable inter-task communication.

Next to FPPN, many MoCs have been proposed in the literature for embedded multi-

core systems, to name just a few: MRDF (multi-rate data-flow, often named SDF –

Synchronous Dataflow) [64], Prelude [65], SADF (scenario-aware data-flow) [66] and

DOL-Critical [67].

Schedulability in MC-systems 77

8.2.2 Resource Managers and Concurrency Language

An important property of autonomic embedded systems is their ability to adapt them-

selves to unexpected phenomena [60]. When a system is compute-intensive (which should

be the case when a multi-core implementation is necessary) and time-critical, it has to

be able to adapt itself to exceptional shortage in compute resources. In real-time sys-

tems, ‘resource managers’ are software functions that monitor utilization of compute

resources and ensure such adaptation. For this, they apply different mechanisms, such

as mixed-criticality, QoS management, DVFS (Dynamic Voltage and Frequency Scal-

ing), etc.. Especially the mixed-criticality approaches are gaining more an more interest

and have a high relevance for collective adaptive systems [61]. A resource manager is

an integral part of an online scheduler i.e., a middleware that implements a customized

online scheduling policy.

Unfortunately, there is a considerable semantical gap between the online schedulers and

the middlewares that implement MoCs, even though both define software concurrency

behavior. We aim at a common approach that can ensure consolidation, by representing

both types of middleware in a language that is expressive enough such that it can en-

compass all possible concurrency behaviors for real-time systems, including their timing

constraints. We refer to that common language as concurrency language (or backbone

language) [68].

We believe that for autonomic timing-critical systems a proper choice of concurrency

language is a combination of procedural languages and task automata. The latter are

timed automata extended with tasks [69, 70]. Timed-automata languages in general are

known to be convenient means to specify resource managers, such as QoS [71] and mixed

criticality [72].

In our design flow, the concurrency language is BIP. Under ‘BIP’ we mean in fact

its ‘real-time dialect’ [71], designed to express networks of connected timed automata

components. In [73], BIP was demonstrated relevant for distributed autonomic systems.

In [67], it was extended from timed to task automata, by introducing the concept of

self-timed (or ‘continuous’) automata transitions, i.e., transitions that have non-zero

execution time, to model task execution.

In our approach, the applications are still programmed in their appropriate high-level

MoC because in many cases an automata language, though being appropriate for re-

source managers, may still be too low-level for direct use in application programming.

Instead, we assume automatic compilation of higher-level MoCs into the concurrency

language. Due to well-known high expressive power of automata to model concurrent

systems this must be possible for most MoCs. In an ideal case, the compilation would

Schedulability in MC-systems 78

be configured by a user-defined set of grammar rules for automatic translation of the

user’s preferred MoC into automata.

8.2.3 Concurrency Language based Representation of System Nodes

Figure 8.2 gives a generic structure of a concurrency language model of a distributed-

system node running an application expressed in a certain MoC. We also zoom into the

BIP model of an important component.

TC1

T1

Online Scheduler

TC2

T2

TC3

T3

MoC Controller

In
pu

it
Bu

ffe
r

O
ut
pu

t B
uf
fe
r

Distr. System Node

S0

Start

TaskController(D) periodic implicit-deadline case

S1

S2

S3

Arrive
reset x

Finish

Deadline
when [x ≤ D]

Figure 8.2: Concurrency language representation of a timing-critical application

The basic components of the model are automata, i.e., finite-state machines that can

interact with other components by participating in a set of interactions with other au-

tomata as they make discrete transitions (basic steps of execution). In our model, we

have one automaton per application task and one per inter-task channel, and also an au-

tomaton to control each task – the so-called task controller. There is also an automaton

that ensures proper task execution order according to MoC semantics, we refer to that

component as MoC controller. One can also introduce an automaton that would further

restrict the ordering and the timing of task executions – the online scheduler. This com-

ponent would impose user-programmed scheduling policy. Note that automata can be

hierarchical, i.e., they can represent a composition of more primitive automata.

In Figure 8.2, we zoom into a task controller for periodic tasks whose deadline is equal

to the period. It consists of a cyclic sequence of states, with initial state ‘S0’ and first

transition ‘Arrive’, which models task arrival and is followed by transition ‘Start’, which

corresponds to starting a new iteration of task execution, called a job. The ‘Start’

transition is followed by ‘Finish’ transition when the job finishes. After the finish, the

deadline-check transition ‘Deadline’ is executed. The deadline is checked as follows:

upon task arrival a so-called clock variable x is reset to zero. This variable acts as a

timer indicating the time elapsed since the last clock reset. After the job has finished

we check whether the deadline D was respected, i.e., whether x ≤ D.

Note that in our design flow, the given task controller is both time- and event-driven, as

the tasks arrive periodically (in a time-driven way) but start when the MoC controller

Schedulability in MC-systems 79

would enable the ‘Start’ interaction, thus indicating that the task predecessors have

finished (in an event-driven way).

The respective schedule optimization problem is to find a multi-task schedule where all

tasks fit into their respective scheduling windows while respecting precedence constraints

implied by the MoC and finite-resource constraints (e.g., non-zero time for computation)

with mutually exclusive access to resources by different tasks. The latter requirement

introduces certain peculiarities when the platform is a multi-core. The problem is solved

by an offline scheduling algorithm, which gives the solution in terms of parameters to

be given for online scheduling policy.

8.2.4 System Scheduling Aspects

Figure 8.3 illustrates the schedulability conditions of a timing-critical distributed sys-

tem.

Network

sender

window

Network Latency

Time

(Arrive1, Deadline1)

receiver

window

T1 T3 O
u

tp
u

t
B

u
ff

e
r

T2

Sender Node Receiver Node

T1

T2

In
p

u
t

B
u

ff
e

r

(Arrive2, Deadline2)

Figure 8.3: A simple distributed system and its iteration window

The figure illustrates a simple single-rate two-node system (sender and receiver) and

a timing window of a single system iteration. The iteration window consists of three

different sub-windows. The first one is between the arrival (i.e., the release) time and

the deadline of the sender tasks. In this window the sender should prepare the output

to be sent to the receiver in its buffer. The next sub-window corresponds to the network

delay, and the third one is the window for holding the data at the destination node,

this window represents the arrival time and the deadline of the tasks at the receiver.

Note that subsequent system iteration windows may overlap in time (i.e., pipelined

executions, when iteration period is smaller than the iteration window size), and that

this model can be generalized to multi-rate system (in which case one iteration would

correspond to a hyperperiod) with multiple buffers. Note that in a distributed system

Schedulability in MC-systems 80

different nodes may need to maintain sufficient alignment of their local time models by

running a clock synchronization protocol.

In our current work, we still mostly focus on the design of a single system node, with

common or distinct scheduling windows (non pipelined – for simplicity) for different

tasks of the given application running in the node.

8.2.5 Multi-core Interference Aspects

When dealing with multi-core platform architectures as targets for timing critical ap-

plications a particular serious problem arises. Spontaneous unpredictable or hardly

predictable ‘parasitic’ timing delays – ‘interference’ – manifest themselves when multi-

ple cores run in parallel. Interference appears when cores await response from resources

that are in use by other cores. This is illustrated in Figure 8.4.

Time

Node Platform

Shared Res1

Core 1

Core 2

T 1

T 2

Figure 8.4: Multi-core interference

The concerned resources can be either hardware or protected logical (software) resources.

Shared hardware resources that can cause interference are global buses, bus bridges

and switches, coprocessors, peripherals, and even FPU’s (if they are shared between

cores to save on-chip area). Software shared resources are, for example, mutex-lock

segments in the source code and calls for mutually exclusive services in the system

runtime environments.

Interference can be coarse-grain or fine-grain. In the former case the accesses to the

shared resource occurs in ‘coarse’ blocks, called superblocks [74], which occur just once

or a few times per task execution. Often a task has one superblock to read all the input

Schedulability in MC-systems 81

data from global to local memory at the start and to write the data at the end. Fine-

grain interference is sporadic and can occur a large number of times per task execution,

e.g., bus accesses due to loads/stores in the memory.

In a design flow for mono-core systems the ‘worst-case execution time analysis’ conve-

niently precedes ‘schedulability analysis’, as the task’s WCETs do not depend on the

schedule. On the contrary, in a multi-core system, because of interference task execu-

tion delay may significantly change depending on which tasks are scheduled on the other

cores. Therefore part of task WCET analysis may have to be re-done when schedules

are analysed, which is a major obstacle in the design of timing-critical systems based on

multi-cores [62].

Luckily, coarse-grain interference can be controlled by scheduling the superblocks in a

way that the resource conflicts are eliminated. To achieve this, in a ‘controlled’ sched-

ule, potentially conflicting superblocks are executed sequentially. At the same time,

uncontrollable fine-grained interference can be for as much as possible transformed into

coarse-grained one by ‘concentrating’ the resource-access intensive parts of source code

together into coarse-grained superblocks, which can be controlled. The controlled inter-

ference approach is well-known in the literature. For example, in [75], coarse-grained

blocks of accesses to global bus are considered as special sub-tasks which are scheduled

in an optimal static order.

In our scheduling algorithm, we assume controlled coarse-grained interference, whereas

the remaining fine-grained interference that could not be transformed into coarse-grained

one is assumed to be taken into account either via extra WCET margins or, more con-

servatively, by modeling complete tasks as superblocks. In addition, though different

resources (e.g., different FPU’s and different memory banks) can be accessed indepen-

dently and though different superblocks can have different timing costs, we make a

simplifying assumption that there is only one shared resource and the duration of all

superblocks is the same, we denote it δ. In a way, we consider superblocks as instances

of a special task whose WCET is δ.

A particular form of such interference that manifests itself in our design approach is

called engine interference [67]. In our concurrency model, governed by automata, one

can distinguish task-concurrency control operations which correspond to discrete tran-

sitions of the automata components that constitute the system. All discrete transitions

are coordinated via a single control thread called the engine. Suppose that δ is the

worst-case time to handle one discrete transition. Then the runtime overhead of task

concurrency control operations can be conveniently modeled as interference between

superblocks of size δ. In addition to the necessary accesses to the engine needed to

coordinate task concurrency, each coarse-grained block of accesses to any resource can

Schedulability in MC-systems 82

be, in principle, delegated to the engine as well. For this, the compiler would have to

represent each superblock as a discrete transition or, if it is large, as a sequence of tran-

sitions. Therefore, the engine interference can be generalized to subsume other forms of

coarse-grained interference.

In the present work, engine interference is the only form of interference that is automat-

ically modelled by our tools. Compared to [67], the novelty is that in the present work

we control this form of interference in the scheduling. Our scheduling algorithm assumes

that there is one shared resource, and we model the engine as such. Further, it assumes

that all superblocks are explicitly represented by special tasks with equal WCET δ, and

we model the task-controller transitions as such.

To manage the remaining fine-grained interference we advocate the time-triggered schedul-

ing approach, i.e., letting the tasks start at fixed time instances even if previous tasks

finish earlier. This approach does not make worst-case response-times of tasks worse,

while it significantly reduces the complexity of a fine-grain interference analysis (which

would compute the WCET margins) and improves its accuracy. The point is that when

tasks do not shift their execution earlier upon earlier completion of previous tasks the

number of task pairs that can potentially run in parallel (and hence interfere) is signifi-

cantly reduced, which effectively cuts the number of analysis cases to be covered.

8.2.6 Mixed-Criticality Aspects

In adaptive autonomous systems one has to provide for unexpected situations. In terms

of scheduling this means allocating worst-case amount of resources with a significant

extra margin. To damp the high costs that such margins incur, the allocated extra

resources are given, ‘on an interim basis’, to less-critical and less important functions

in the system which can be stopped at any time to free up the resources in the case

when highly-critical and highly-important functions need them. This reasoning leads to

a generic mixed-criticality resource management approach, see Figure 8.5.

Utilization, %

Normal Mode

Sh.Resources

Proc. Cores HI LO

HI LO mode switch

Utilization, %

Emergency Mode

Sh.Resources

Proc. Cores HI LO

HI

Figure 8.5: Mixed-criticality resource management

We currently consider a common case of having just two levels of criticality. Less-critical

functions are given low criticality level, commonly denoted ‘LO’. Highly-critical functions

Schedulability in MC-systems 83

are given high criticality level, commonly denoted ‘HI’. For example, in a UAV system

LO can correspond to mission critical and HI to flight-critical functions.

As shown in Figure 8.5, in case of emergency the HI tasks get high resource utilization

margins. However in normal mode of operation these margins are never used and are

given to LO tasks. Only when emergency situation occurs where HI tasks need more

resources a ‘mode switch’ from normal to emergency mode is performed by the resource

manager whereby the extra margins are ‘claimed’ by HI tasks. In our approach, the

respective resource management policy is implemented in concurrency language as part

of the ‘online scheduler’ automaton component [72].

There are two distinct approaches to free up the resources from LO tasks in the case of

mode switch. The first approach is dropping the LO tasks (i.e., instantaneous aborting

them with possibility to resume their execution later on). The second approach is putting

the LO tasks in degraded mode, i.e., signalling them to do less computations and accesses

to shared resources at the cost of the lower output quality or missed deadlines. A major

challenge in mixed criticality scheduling is that the mode switch may occur at any time

not known in advance and that it is required to guarantee schedulability no matter

whether and when the switch occurs [76].

From schedule optimization point of view the task dropping makes it easier to find

optimal solutions as decision to start execution a LO task at a certain time has less

consequences for the available possibilities to schedule a HI tasks. On the contrary,

for online scheduler it is much more difficult to implement dropping than degraded

mode.

As explained in the previous section, to better handle interference we use the time-

triggered scheduling, to be more specific, we use STTM online policy [76, 77], which is

a generalization to mixed-criticality scheduling. Recall that, in this policy, the normal

and the emergency modes each have a time-triggered table. A switch from normal to

emergency table can occur at any time instant, while it should be guaranteed that if HI

critical tasks need to claim their extended resource budgets reserved for unpredictable

situations then they will always get them in full amount. Though this appeared to

be by far not trivial, in [77] we have proved theoretically and experimentally that this

approach is as optimal in the worst case as the event-triggered approach.

8.2.7 Related Work

Different previous works address related problems, some of them are discussed in this

subsection. Reference [78] is an extension of [76] which calculates STTM tables for

multi-rate synchronous mixed-critical systems. This work is restricted to uniprocessor

platforms. Task automata verification [70] has unprecedented expressive power, but may

Schedulability in MC-systems 84

be subject to scalability issues for industrial-scale systems unless it is applied with some

approximations and abstractions. The superblock approach [74] is a well-recognized

technique to address even fine-grain interference and it has been further developed in

related work. However a problem remains still open, see [62], concerning calibration of

fine-grain analysis techniques to typical processor and bus architectures that are deeply

pipelined and have other performance optimization features.

The semantics of synchronous systems is relaxed even further compared to [78] in the

direction of functionally equivalent asynchronous pipelined execution with self-timed

synchronization, following the philosophy of Kahn Process Networks (KPN). The goal

was to support embedded signal processing and multimedia stream-processing in general.

Rich liveness, memory boundedness, code generation and real-time throughput/latency

analysis theories have been developed for these models, termed data-flow MoCs. An

interesting survey for expressive real-time analyses is given in [66]. Paper [75] studies

optimal handling of coarse-grained interference in simple variants of such MoCs.

In data-flow MoCs, classical concepts such as release times, periods and deadlines are re-

placed by self-timed iterations, long-run throughput and multi-iteration latency bounds.

The ‘FPPN’ MoC, adopted in our flow, can be seen a data-flow MoC which, in a way,

‘attempts’ to reconcile itself to classical concepts. Also our work extends the data-flow-

related MoCs to mixed criticality.

Only a few scheduling techniques mentioned above are integrated in software engineering

toolchains that have both real-time scheduling and code generation. First of all, ADA

programming language and its Ravenscar profile are de facto standards for mono-core

hard real-time systems. They integrate the most trusted and safe multi-task program-

ming and scheduling techniques for tasks that have no explicit precedence constraints.

For the case of distributed systems that work was extended to multiple mono-core plat-

forms or partitions communicating via bus and network protocols in the context of

TASTE design flow [79]. This work requires extension in order to treat multi-core sys-

tem nodes and precedence-constrained task models such as FPPN.

Prelude design flow [65] represents an ongoing work on scheduling and deployment of

multi-rate synchronous systems defined with more expressive (‘synchronous-language’)

semantics than the ones assumed in our flow and in [78]. It should be noted that the

price to be paid for higher expressive power is that it becomes much less obvious how

to generate a semantics-preserving task-graph or data-flow MoC model in this case that

could provide an input to a precedence-constrained scheduling tool.

A variant of superblock approach was implemented in DOL-BIP-Critical design flow [67].

Schedulability in MC-systems 85

Task-automata verification is integrated into Times and UPPAAL tools [69]. Comp-

SoC design flow [80] deploys applications based on scheduling algorithms for data-flow

MoCs.

8.3 Design Flow

8.3.1 Underlying Paradigm

There is neither a single MoC nor a single online scheduling policy that would be rec-

ognized universal for all timing-critical systems. This is especially the case for multi-

processor and distributed systems and when interference, task-dependency and mixed-

criticality challenges are to be considered. The policies and MoCs will continue intensive

evolution whereas industrial systems need rapidly adjustable implementations, while

the corresponding analysis techniques need a basis to establish formal proofs for them.

Therefore our target design flow is customizable, at least conceptually, to different MoCs

and policies by compiling the MoC and representing the scheduling policy in a common

task-automata based concurrency language, for which, in our design flow, we use BIP.

Therefore, we do not create a custom middleware specialized for FPPN MoC and for

STTM scheduling policy, but instead we express them in BIP [67, 68]. The BIP imple-

mentation of the system on top of BIP runtime environment (RTE) should not leave the

underlying platform any significant real-time scheduling decision freedom but should

map the user-programmed scheduling policies to basic operating system mechanisms,

like threads and dynamic priorities [67, 81].

The main contribution of our work is handling coarse-grained interference in the con-

text of mixed-critical systems with precedence constraints between multi-rate tasks.

We address the complex problem by practically meaningful simplifications. We as-

sume that the task system is synchronous-periodic or can be over-approximated as

such by periodic servers. A synchronous system can be represented by a semantically-

equivalent static task graph, [63, 78], conveniently presentable to a list-scheduling heuris-

tic, which, in turn, has reputation of reasonable performance for comparable instruction-

level scheduling problems [82]. Moreover, we present a design flow where applications

can be both programmed and scheduled. Other design flows that have this prop-

erty, e.g., [61, 65, 67, 69, 79, 80], do not take into consideration all the aspects we do

but in return offer other features, e.g., distributed-system/network support or expressive

power. We compare to [67] in the next section. Related scheduling techniques [66, 70, 74–

78, 83] also have some restrictions, while in return offering important theoretical prop-

erties and features.

Schedulability in MC-systems 86

8.3.2 Flow Structure and Assumptions

Our design flow is shown in Figure 8.6. At the input we take the application specified

as a MoC instance (i.e., a network of task elements connected to channel elements and

annotated by parameters) and functional code for the tasks. From the MoC instance

the tools derive a task-graph for offline scheduling. The task graph describes the ap-

plication hyperperiod in terms of job nodes and precedence edges. The ‘jobs’ are task

executions and the precedences are derived from the semantics of the given MoC. The

application is translated into concurrency language – BIP. The schedule obtained from

the offline scheduler is translated into parameters of the online-scheduler model specified

in BIP.

The joint application-scheduler model (with a basic structure as previously outlined in

Figure 8.2) is translated by the BIP compiler into a C++ executable. The executable is

linked with BIP RTE (the ‘engine’) and executes on a platform on top of the real-time

operating system.

When running on the platform, the binary executable encounters interferences, as dis-

cussed in Section 8.2.5. Handling interference requires a feedback loop from the bi-

nary executable to the offline scheduler tool. Next to the worst-case execution times

(WCET’s) of tasks, the worst-case execution time δ of coarse-grained superblocks should

be obtained and back-annotated at the input of the scheduler tool, and then the flow

should be re-iterated (at most once, as the ‘pure’ WCET should not depend on the

schedule).

We put the following requirements on our target design flow. We assume FPPN as

application MoC. The offline scheduler should support non-preemption, precedence con-

straints implied from the FPPN and take into consideration coarse-grained interference.

The online scheduler should support task migration and task dropping. The online

scheduling should be based on STTM scheduling policy for mixed criticality.

The main reason of assuming non-preemption is lack of support of preemption in the

current version of BIP language and RTE engine. Though preemption can be modeled

and simulated [72], it cannot yet be executed in real-time mode. This is subject of

future work. A justification for considering non-preemption is frequent lack of support

of preemption in multi-core platforms that have a large number (> 8) cores (so-called

many-core platforms and graphical accelerators).

In our design flow, we reuse certain elements from the previous‘DOL-BIP-Critical’ flow

[67] The name of the MoC involved in that flow was DOL-Critical. It is closely related to

FPPN, and the same specification language, named DOL-C, is currently used to specify

instances of both FPPN and DOL-Critical models. FPPN has more general notion of

Schedulability in MC-systems 87

mixed-critical application

multi-core platform

MoC instance
specification

(DOL-C XML)

app2bip compiler offline scheduler

bip2cpp compiler

executable

application controllers + tasks + online scheduler (BIP)

BIP RTE (Engine)

functional
code

(C/C++)

task graph -interference
model

engine runtime
overhead

global bus periferals,
coprocessors,
FPUs, DMAs

the sources of
interference

(shared resources)

Figure 8.6: Design flow

task precedence than DOL-Critical, as it supports precedences between any pair of tasks,

and not only between equal-rate periodic tasks.

There were essential differences in the scheduling assumptions taken in the previous

flow, where the tasks were executed essentially in as-soon-as-possible (ASAP) fashion

i.e., immediately after the previous task mapped to the same partition. Instead we

impose time-triggered start of each task, which should significantly simplify the analysis

of bandwidth interference. The offline scheduler of previous flow had the advantage of

supporting time partitioning, degraded mode and excluding the interference between HI

and LO criticality levels.

Currently in our work, we have a version of the offline scheduler that satisfies the desired

criteria, except that the interference models presented at the input of this tool are

currently restricted to those for BIP engine interference of implicit-deadline periodic

task controllers. Though advanced interference detection methods are known in related

work [84], we still miss them in our flow. If such tools were available we could adapt

or extend the δ-interference model assumed in the offline scheduler. Next to this, the

online scheduler is not yet properly integrated, as it still does not support dropping

and task migration, though such features are within reach, e.g., a restrictive form of

Schedulability in MC-systems 88

BIP-component migration is demonstrated in [67] and thread API’s offer means for

dropping.

In the remainder of this section we discuss the currently available tools and illustrate

their use by concrete examples. For multi-core experiments presented here, we use

a LEON4 platform with four cores implemented on FPGA, using RTEMS OS with

symmetric multiprocessing. For this platform, as measurements show, the worst-case

execution time of one BIP interaction step takes: δ = 1 ms.

8.3.3 An Example Illustrating the Flow

Figure 8.7 gives a synthetic application example with three tasks. The ‘split’ task puts

two small (a few bytes) data items to the two output channels and sleeps for around 1 ms

to imitate some task execution time. Tasks ‘A’ and ‘B’ read the data. Task ‘A’ sleeps

alternately for 6 ms and 12 ms, to model ‘normal’ and ‘emergency’ workload levels. This

task models a high-criticality task. Task ‘B’ supports two modes of execution: normal

and degraded. In normal mode it sleeps for 6 ms, in degraded mode it skips all execution,

even reading the input data. This task models a low-criticality task.

All tasks have the same periodic scheduling window, with period and deadline being

25 ms. In a real application, this would correspond to the time during which the two

imaginary input data buffers should be read, computations should be done and the

output buffers should be written.

split25ms25ms25ms25ms

In
p

u
t

B
u

ff
e

r

A25ms25ms25ms25ms
B25ms25ms25ms25ms O

u
tp

u
t

B
u

ff
e

r1

O
u

tp
u

t
B

u
ff

e
r2

J2

split [1]

(1) ms

J1

A [1]

(12) ms

J3

B [1]

(6) ms

J2 - HI

split [1]

(1,1) ms

J1 - HI

A [1]

(6,12) ms

J3 - LO

B [1]

(6) ms

Jiiii : : : : AAAAiiii = 0= 0= 0= 0, , , , DDDDiiii = = = = 25 25 25 25 msmsmsms , , , , δδδδ = = = = 1 1 1 1 msmsmsms

Figure 8.7: Three-task example: MoC (left), ordinary task graph (middle) and mixed-
criticality task graph (right)

The middle part of the figure gives the ‘ordinary’ (i.e., non mixed-critical) variant of

the task graph. Every task is represented by a job. The jobs are numbered: Ji = J1, J2,

J3 and annotated by their worst-case execution times. Their individual arrival times Ai

and deadlines Di are the same in this example. The right part of the figure corresponds

to the ‘mixed-critical’ variant of the same graph. The execution times of highly-critical

Schedulability in MC-systems 89

tasks are represented by a two-valued vector: normal-mode time and emergency-mode

time.

The engine runtime overhead (as it will become clear later) constitutes 4δ = 4 ms per

task (in total 12 ms). Therefore, when assuming ordinary execution times this example

cannot run on a single core, as the total execution time amounts to 12 + 1 + 12 +

6=31 ms, which is larger than the 25 ms deadline. The offline scheduler evaluates

the load (i.e., maximal demand-to-capacity ratio) of this example to 31/25=124 %.

Therefore it predicts that at least two cores are necessary.

On the other hand, in the mixed-criticality case we consider the two execution modes –

normal and emergency – separately. In the normal mode Task ‘A’ has execution time

6 ms, which is 6 ms less, and we have a load 25/25 = 100 %, for which a single-core may

be sufficient. In the emergency mode the execution time of Task ‘A’ is again 12 ms, but

we drop Task ‘B’, which saves us 6 + 4=10 ms and leads to the load of 21/25=84 %,

which again may be doable on a single core. Thus, mixed criticality can help to use the

cores more economically.

The tool generates the schedules for the ordinary graph and for the mixed-critical one,

as shown in Figure 8.8. Figure 8.9 shows the Gantt charts of executing the two variants

of the schedule on the LEON4 board.

In every Gantt chart, the first line shows the execution of the BIP Engine on ‘Core 0’.

One may wonder why a whole core would have to be reserved to a runtime environment.

This is due to lack of support of preemption in current BIP RTE. Moreover, it should

be noted that in many-core systems (or graphical accelerators), this is justifiable, as in

practice there are plenty of cores available – e.g., 16 per shared-memory cluster in [85]

– and no preemption is allowed. On the contrary, a platform such as LEON4 supports

preemption and does not assume one thread per core. For such platforms in future

work we intend to interleave high-priority engine control thread with a lower-priority

task-execution thread on Core 0. Note that the engine thread executes also the BIP

components responsible for control operations, such as the task controllers, the MoC

controller and the online scheduler.

Recall that the shared resource on which interference-modeling is currently supported

by the tools is the engine. As we see in Figure 8.8, every task execution is prefixed and

suffixed by two δ-accesses to Core 0. In the ordinary schedule, Task ‘split’ and Task ‘A’

are mapped to Core 1 and Task ‘B’ to Core 2.

The platform-measurement charts in Figure 8.9 show two periods, one in normal and

one in emergency mode. The offline scheduler ‘ordinary’ solution assumes the overall

worst-case, whereas the mixed criticality solution distinguishes two modes. Comparing

Schedulability in MC-systems 90

p2

p1

Engine

 0 5000 10000 15000 20000 25000

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12

Re
so

ur
ce

s

Time

LO Timetable with Engine Access

J1J2 J3J4 J5 J6J7 J8J9J1
0

J1
1

J1
2

J1J2J4 J5 J6J7 J8J9J1
0

J3 J1
1

J1
2

(a) Ordinary Schedule

p1

Engine

 0 5000 10000 15000 20000 25000

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12

Re
so

ur
ce

s

Time

LO Timetable with Engine Access

J1J2 J3J4 J5 J6J7 J8J9 J1
0

J1
1

J1
2

J1J2 J3J4 J5 J6J7 J8J9 J1
0

J1
1

J1
2

(b) MC Schedule: Normal Mode

p1

Engine

 5000 10000 15000 20000 25000

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12

Re
so

ur
ce

s

Time

HI Timetable with Engine Access

J1J2 J4 J5 J6J7 J8J9

J1J2 J4 J5 J6J7 J8J9

(c) MC Schedule: Emergency Mode

Figure 8.8: Three-task example: offline-scheduler solutions

Schedulability in MC-systems 91

2

1

0

 0 10000 20000 30000 40000 50000

Pr
oc

es
so

rs

time

Gantt chart

P1
P2
P3

P20

P2
0

P1

P2
0

P3
P2

P2
0

P2
0

P2
0

P1

P2
0

P2

P3

P2
0

P2
0

(a) Ordinary Execution Traces (No mode switch in the second period)

1

0

 0 10000 20000 30000 40000 50000

Pr
oc

es
so

rs

time

Gantt chart

P1
P2
P3

P20

P2
0

P1

P2
0

P2

P2
0

P3

P2
0

P2
0

P1

P2
0

P2

P2
0

P3

P2
0

(b) Mixed-critical Execution Traces (Dropping J3 in the second period)

Figure 8.9: Three-task example: platform execution traces

the corresponding segments of Gantt charts of the solutions and measurements we see

a match, though not a perfect one. This is because the offline scheduler output is not

yet supported as input to the online scheduler. We see that in the emergency mode MC

case the offline scheduler drops task ‘B’ altogether, whereas the online scheduler still

makes a short execution of Task ‘B’ in degraded mode.

Because of current temporary lack of tool integration we had to do manual modifications

in the concurrency model that was automatically generated from FPPN, in order to

ensure that the online behavior matches the offline solution. Note that a possibility

for the user to refine the behavioral model by such modifications is itself an attractive

design-flow property. We made modifications in the mixed-criticality variant of the

design, in order to introduce the switch from normal to emergency mode. We ensure that

if Task ‘A’ executes beyond its normal-mode execution time then Task ‘B’ is executed

in degraded mode. These modifications are shown in Figure 8.10.

Schedulability in MC-systems 92

S1a

S1
…

TC-A (D := 25ms)

S2
FinishA

S3

TC-modified-B (D := 25ms, ThrA := 16 ms)

S1b

StartB(`NORMAL’)

StartB(`DEGRADED’)
……

FinishAFinishA StartB FinishB

Figure 8.10: Three-task example: manual modification introducing a mode switch

We have modified the structure of the TC for Task ‘B’, which originally was as shown

in Figure 8.2, by introducing a new transition between the ‘Arrive’ and ‘Start’ for Task

‘B’. This transition is synchronized with ‘FinishA’ transition in the TC of Task ‘A’.

We check the value of clock ‘x’ which measures the time since the begin of the current

period. If this value is larger than a certain threshold ThrA then ‘B’ is executed in

degraded mode.

8.4 Algorithm Description

In this section, we zoom into a particular tool in our design flow – the offline sched-

uler. We give some basic idea on the scheduling problem, the δ-interference model and

the scheduling algorithm. Finally we show schedulability-evaluation experiments with

random benchmarks.

A scheduling problem instance consists of a DAG task graph obtained automatically from

a MoC; we have seen examples in Figure 8.7. The nodes, Ji are obtained from tasks

and are annotated by parameters (Ai, Di, χi, Ci), where [Ai, Di] give the job scheduling

window (between arrival and deadline relative to the hyperperiod), χi gives the job

criticality level (‘LO’ or ‘HI’) and Ci is a vector that gives the execution time in the

normal and emergency modes. The problem instance also includes the selected number

of cores (not counting the engine core) and some information on interference, currently

we only take the value of δ, whose meaning is interference at the start of each job. The

δ-interference model is shown at the left side of Figure 8.11.

This model can be described by a hypothesis that we have a global system controller

i.e., the automaton obtained from a combination of all concurrency-model automata

present in the system. Lets call it by abuse of terminology the ‘engine’. The engine

controller makes discrete transitions (control steps), each step costing execution time δ

at the control core. At certain steps the engine spawns a job on a compute core taken

from a pool of cores. For this, an idle core is selected and reserved at the beginning

Schedulability in MC-systems 93

Time

BIP Engine
(or Shared Res)

Core k Ji

δδδδ

insert TC transition nodes

Ji

(Ci)
Ji

(Ci)

arri

(0000)

fini

(0000)

ddli
(0000)

insert δδδδ nodes

nodej

(Cj)
engj

(δδδδ)

nodej

(Cj)

Figure 8.11: Engine (‘Delta’) interference and its modeling in the task graph

of the step. The steps that do not spawn any computations are modeled as steps that

spawn a job with zero execution time. The engine does not make execution steps all the

time, for some time intervals it may decide to do idle-waiting.

As we have seen in Figure 8.2, a periodic controller can be modeled as a system compo-

nent that, for a given task, lets the engine make four subsequent steps corresponding to

the following transitions: arrival, start, finish and deadline check. The real computation

job is, in fact, triggered by the ‘start’ step, the other steps do not trigger any com-

putations. Therefore, as shown in Figure 8.11, to model periodic jobs we insert three

corresponding zero-execution time ‘satellite’ jobs. The arrival job becomes an extra pre-

decessor of the original job, the finish job becomes the new successor after which all the

original successors follow, where we also introduce a new successor – the deadline-check

job. Now it should become clear why in our example in the previous section every job

execution is prefixed and suffixed by two δ-steps. To model the part of the job that

is executed on the engine Figure 8.11 shows the second graph transformation, which

inserts a δ-predecessor at every job. Except for the execution time, the newly inserted

‘satellites’ get the same characteristics (i.e., scheduling window and criticality) as the

original job.

The scheduling algorithm is applied in our design flow to a graph obtained from the

original MoC after it has been post-processed by the two graph transformations de-

fined above. The algorithm generates the two schedules for the two execution modes.

These schedules act online as tables for time-triggered execution, see e.g., Figures 8.8(b)

and 8.8(c).

First the normal-mode table is generated. This is done using global fixed-priority simula-

tion that takes precedences into account. This algorithm is also known as list-scheduling.

As mentioned before, we assume non-preemptive scheduling. The algorithm has been

adapted to take into account two types of resources: a single control core and a pool of

compute cores. In order to execute, every job first needs one instance of both resource

Schedulability in MC-systems 94

types for time duration δ to execute its δ-predecessor and then during its own time dura-

tion Ci continues running on the compute core only, whereas the control core is available

to spawn another job. The algorithm maintains a list of ready jobs (and hence its name).

As soon as the control core and a compute core become available to start another job

the algorithm picks the highest-priority ready job and starts its simulated execution.

A job is considered ready to execute if two conditions hold. Firstly, the job scheduling

window [Ai, Di] must be already begun, i.e., for the current simulated time t we have

t ≥ Ai. Secondly, all DAG predecessors of the job (if any) must be finished.

The priorities for selecting the next job to be scheduled are obtained from an earliest-

ALAP-first (ALAP means ‘as late as possible’) fixed priority table. Job’s ALAP time

gives the latest time when it may complete its execution such that neither that job nor

any of its transitive DAG successors will miss the deadlines. ALAP times are computed

recursively, from the sinks to the sources, taking into account the execution times.

Before ALAP times are calculated, the deadlines of the HI jobs are reduced by the value

of their execution time uncertainty, i.e., the difference between their execution times

in the emergency and normal modes. Those are the effective deadlines that should be

met to avoid missing the deadlines if a switch to the emergency mode occurs. These

‘effective’ deadlines give a HI job higher priority with respect to a LO job whose nominal

deadline is the same. It is due to this reason that in our Three-Task example, in its

mixed-criticality variant, (see Fig. 8.7, 8.8(a)), the HI Task ‘A’ is scheduled before the

LO Task ‘B’.

The emergency mode table is calculated such that at any moment of time a switch from

normal to emergency mode may take place such that the HI jobs may continue without

being preempted or migrated in the middle of execution to another core. To this end,

the schedule start times in the normal mode are regarded as job arrival times in the

emergency mode. Further, in this mode, we simulate only the HI jobs (while the LO

jobs are dropped) taking into consideration only HI-to-HI job precedences while keeping

the same job-to-core mapping and the same relative order of HI-job execution as in

the normal mode. When a job deadline miss is detected in any of the two modes the

algorithm fails.

Since our variant of list scheduling algorithm does not use dynamic priority tables and

the static table can be obtained by simple topological sort algorithm, the complexity

of our algorithm is the same as the one of list scheduling. Our implementation of this

algorithm according to [77] has complexity:

O(V (log V +M) + E)

Schedulability in MC-systems 95

where V,E is the number of nodes, edges respectively and M is the number of proces-

sors.

8.5 Experiments

We have performed experiments of measuring the success rate of the algorithm for

random generated ordinary and mixed-critical benchmarks that have different level of

normalized stress, which is a peak resource utilization metric – see [77, 83] – ranging

from 0 to 100 %. For mixed-criticality experiments, the stress for both modes of ex-

ecution was maintained equal. We assumed instances with 10 jobs and no precedence

constraints.

Experiments for three different values of ρ were made: 0.1, 0.5 and 0.8, where ρ is the ra-

tio between the stress due to δ-jobs only and the stress due to all jobs. As expected, the

mixed-criticality instances are much harder to solve than ordinary ones by the same algo-

rithm. In future work it will be interesting to implement an exact algorithm, e.g., using

SMT solvers, to evaluate the optimality of our algorithm experimentally.

We noticed that, counter-intuitively, no significant sensitivity to the value of ρ was

detected. A possible reason is that ρ appears to have only a weak connection to the

ratio between δ and average task execution time. In future work a better load-related

metric for the proportion of interference in the total workload will be investigated.

Schedulability in MC-systems 96

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

S
ch

e
d

u
la

b
ili

ty

Stress

rho = 0.9
rho = 0.5
rho = 0.1

(a) Ordinary Benchmarks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

S
ch

e
d

u
la

b
ili

ty

Stress

rho = 0.8
rho = 0.5
rho = 0.1

(b) Mixed-critical Benchmarks

Figure 8.11: Schedulability results for random benchmarks

Chapter 9

Conclusion

In this thesis, we have studied schedulability and its correctness in mixed-criticality

systems. An MC-system is a real-time system having different applications of differ-

ent levels of criticality integrated on the same computation platform. Although this

integration provides many benefits in terms of reduced cost, power consumption, size

and weight, yet at the same time it adds difficulties in certification and scheduling due

to having applications of different levels of criticality (e.g., safety critical and mission

critical) share resources.

We presented new results concerning the algorithmic complexity of correctness testing

algorithms for scheduling a fixed set of dual-criticality jobs on single processor. The pro-

cedure of testing the correctness of scheduling policies is typically part of the scheduling

algorithm itself. Its complexity has a direct impact on problem solving complexity. Since

the problem has been proven at least NP-hard, a major question is whether it is at most

in the complexity class NP [4]. In Chapter 4 we refuted a lemma that implies that the

cost of a single scenario is, in general, polynomial. This refuted the original argument

of [4] for the problem being in class NP . Nevertheless, in [47] an erratum of [4] a

higher order polynomial cost was established, and hence the problem is indeed in class

NP.

Two characteristics related to correctness testing, are sustainability and predictability.

Sustainability has been studied and well formalized in the literature [48, 49] for both the

single and mixed-critical scheduling policies. Although sustainability implicitly implied

predictability in single criticality systems, we have given an example of an MC-policy

that was proven to be MC-sustainable yet is not predictable. We have shown that testing

for correctness using simulation based tests can be problematic if a scheduling policy is

not predictable.

97

Schedulability in MC-systems 98

Acknowledging the difficulty of proving an MC-scheduling policy predictable and the

difficulty of testing by simulation of worst case execution scenarios in non-predictable

policies, we proposed a weaker form of predictability that covers a larger class of schedul-

ing policies. We have also shown that the well known class of FPM scheduling policies

in dual-criticality, single processor case is not predictable but weakly-predictable.

We proposed a canonical correctness test that is applicable for weakly predictable poli-

cies. The correctness test verifies the correctness of the policy by evaluating it for a

small number of basic scenarios. We proved that the canonical test can be applicable

in such cases and we studied the computational complexity showing that this special

class belongs to NP. We showed that these results can be extended for multiprocessor

platforms in the case of FPM, policies having FPM-equivalent tables.

In Section 5.4 we have introduced a new “economical correctness testing” procedure that

applies to a “reasonable” restriction of FPM. The proposed test consists of transforming

a given scheduling policy to a time-triggered policy. Though FPM is a mode-switched

policy, the economical test for it has a complexity as if it were an ordinary mode-ignorant

FP policy, it is just O(n log(n)), whereas the “canonical testing” of FPM is O(n2 log n).

It is fair to mention, however, that, by contrast, the canonical testing procedure is

applicable to a wider class of policies.

It would be interesting to experimentally evaluate, for those task systems that can be

modeled as fixed job systems, the effectiveness of simulation compared to analytical

response time approaches. One way is to test how often would a system be deemed

schedulable by an exact simulation based test but be found “non-schedulable” by an

analytical response time or an utilization-based formula.

We introduced an STTM scheduling algorithm for mixed criticality systems with multi-

ple levels of criticalities. By means of an example, we showed that our policy is able to

schedule instances that require dynamic priorities and cannot be solved by FPM polices.

Experimental results showed that the presented algorithm outperforms two of the state

of the art algorihtms.

Automatic fault detection and recovery is important for the correctness and stability of

autonomous systems. In an attempt to demonstrate that a mixed-criticality scheduling

policy can be used as a recovery strategy, we integrate our algorithm with a diagnoser

and a controller to form an FDIR component that is used to detect and recover failures

in a component-based system.

Computational demands are increasing and multiprocessor are used more often. The

extension of our algorithm to the multiprocessor case is an interesting future work. One

simple solution is to use one of the algorithms discussed in Chapter 2 to statically allocate

Schedulability in MC-systems 99

jobs to different cores, and use PBEDF to schedule each set separately. Theoretical

analysis and proof of dominance can add value to the experimental results presented.

Yet another interesting extension is to provide the lower criticality jobs some of their

execution demands, instead of discarding them after a mode change.

Finally, we have proposed a scheduling algorithm and a design flow for timing-critical

multi-core applications, taking into account coarse-grained interference, using the inter-

ference from the controlling run-time environment as an example. In our design flow, we

demonstrate the concept of using task automata as a concurrency language, which can

be used to program the custom resource managers, such as mixed-criticality ones.

Different directions for future work can be taken to extend the design workflow presented

in Chapter 8. Missing features, such as run-time environment to support task migration

and dropping of tasks can be studied. The interference model can be extended to other

resources (e.g., buses and peripherals) and to more general task controllers and models

of computation. One can investigate how to improve the non-preemptive scheduler for

better support of mixed criticality. For reference the implementation of exact algorithm

with exhaustive search can be considered. List scheduling can be replaced by topological

permutation scheduling as it is a more powerful offline global fixed-priority heuristic for

the case where there is no preemption and jobs have non-zero arrival times [82].

Appendix A

Proof of Time-triggered

Transformation Algorithm

A.1 Proof of Direct Correctness

The aim of this appendix is to prove that if the original policy P is correct and reasonable

then the transformed policy T (P) is also correct. To do so, we need to give some

definitions and support lemmas. Let TT
HI∗(LO|HI-J ′)
J be the termination time of J in

HI* obtained from T (P) (respectively, LO, HI-J′ obtained from P).

Lemma A.1. If at any time we switch from LO to HI*, then all the non-terminated

jobs will have enough time reserved in HI* to terminate their work.

Before presenting the proof, first, let us comment that, according to our rules to construct

HI*, no HI jobs get disabled forever because eventually Rule (5.4.1a) becomes true,

since all LO jobs eventually terminate. Thus, all HI jobs get a total time CE reserved

in HI*. Consequently, if a job switches at time t, then all HI jobs are guaranteed to get

CE − THI∗j (t) , but need to get at least CE − TLOj (t).

Therefore the lemma can be equivalently stated as follows:

no non-switched HI job makes more progress in HI* than in LO.

Formally:

∀t , TLOj (t) < CNj ⇒ TLOj (t) ≥ THI∗j (t)

Proof of Lemma A.1. At time t = 0 the lemma thesis is obviously true, and with

progress of time it can be invalidated only during the time when a job is scheduled

in HI*. However, as long as TLOj (t) < CNj job Jj can only be scheduled when either

(5.4.1b) or (5.4.1c) is true, but they both imply that we have TLOj (t) ≥ THI∗j (t).

100

Schedulability in MC-systems 101

Definition A.2 (Busy Interval). Consider a work-conserving policy and an instance J.

A busy interval is an open time interval (τ1, τ2) in S that is a maximal time interval

where the set of ready jobs is never empty (assuming jobs that are disabled are not

considered ready).

We denote by BI the set of jobs that run in a given busy interval. In between busy

intervals, there are closed, sometimes single-point, idle intervals. For HI*, we would

like to distinguish between two types of idle intervals. A blocked interval if it is idle and

inside this interval there are HI jobs that have arrived and not yet terminated, but are

disabled because neither of the rules (5.4.1a), (5.4.1b), (5.4.1c) is true. An empty interval

where the the job queue is empty and there are no ready HI jobs to schedule.

For instance in Fig. 5.4 in HI* there are two busy intervals: (0,8) and (8,11), thus

we have a blocked interval of size 0 at time 8. This blocked interval appears under

the following circumstances. Immediately before time 8, J1 is enabled by Rule (5.4.1a)

while J2 is disabled. Then at time 8, J1 gets disabled (because it terminates) while

immediately after that time J2 is enabled by Rule (5.4.1c) to continue its execution

after that time.

The following proposition is well-known for fixed-priority policies, but needs to be re-

established because we added the rules that can disable jobs.

Lemma A.3. If J least is the least priority (i.e., the latest-deadline) HI job, then it

terminates at the end of some busy interval BIHI∗.

Proof. Let us assume by contradiction that J least terminates inside a busy interval at

time t. This means that at time t there is another enabled job (by definition of busy

interval). If that is so, then J least, having the least priority, should not be running at

time t.

Lemma A.4. Let BIHI∗ : (a, b) be a busy interval in HI*. At time a, the set of non-

terminated HI jobs is the same in tables LO and HI*, and for each job in this set, the

job’s cumulative execution progress until time a in LO is the same as in HI*.

Proof. Consider time a. The lemma thesis is obvious for any job that did not arrive yet,

so in the sequel we consider only those jobs that have arrived.

If a HI job J does not terminate before time a in LO then it is non-terminated in HI*

before that time as well by Lemma A.1. In addition, by the same lemma we have:

THI∗J (a) ≤ TLOJ (a) (A.1.1)

Schedulability in MC-systems 102

On the other hand, if job J is non-terminated in HI* by time a, then the fact that it is

not enabled at time a (by lemma condition) implies that Rule (5.4.1a) is false and hence

the job is non-terminated in LO as well. Combined with the earlier observations, we

conclude that the sets of non-terminated jobs at time a in these two tables are equal.

In addition, also Rule (5.4.1b) is false, which means:

THI∗J (a) ≥ TLOJ (a) (A.1.2)

Combining (A.1.1) and (A.1.2) we have the equality of the cumulative progress.

Corollary A.5. Let BIHI∗ : (a, b) be a busy interval in which some job switches i.e.

reaches CNj progress. Let Js be the first such job, and let ts be the time at which the

switch occurs. Then during the interval (a, ts) tables HI*, HI-Js and LO are identical.

Proof. Notice that HI-Js and LO are equal by construction in (0, ts) and hence in (a, ts)

as well. Let us compare LO and HI*. At time a the set of non terminated jobs in these

two tables are equal (Lemma A.4). In interval (a, ts) no job switched yet, therefore all

the jobs that run in HI* should satisfy Rule (5.4.1c), which is due to the fact that the

other two rules imply that some job has already switched. As long as Rule (5.4.1c)

holds, the HI* table replicates the LO table, and because it fills time interval (a, ts)

continuously, as ts ∈ BIHI∗, we have proved our corollary.

Theorem A.6. Let J least be the least priority HI job in the priority table applied in the

HI mode. (Note that in the reasonable policy this is always a latest-deadline HI job).

Then

∃J ′ : TTHI∗J least ≤ TTHI-J
′

J least

Proof. LetBIHI∗ = (a, b) be the busy interval in which J least terminates. By Lemma A.3,

TTHI∗
J least = b. By Lemma A.4, job J least is not yet switched at start of this interval, and

since this job terminates at the end of BIHI∗, we know also that it switches inside this

interval as well, so Corollary A.5 applies for this interval.

Let us assume that BIHI∗ = (a, b) is followed by an empty interval, i.e., an idle interval

which appears due to termination of all HI jobs that have arrived so far. Because in this

case all the jobs that are ready in interval BIHI∗ have terminated by time b, we have:

b = a+
∑

j∈BIHI∗

(CEj − THI∗j (a))

Let Js be the first job to switch in BIHI∗, at time ts. By Lemma A.4 and Corollary A.5,

we have that the same jobs, with the same remaining execution time as in HI* will run

Schedulability in MC-systems 103

from time a in HI-Js before the switch and, by construction after the switch the same

set of jobs as in HI* may arrive and become ready, and in HI-Js, under EDF policy,

the ready jobs will occupy the processor until all of them have terminated – which is the

same behavior as for HI* in this case. Therefore BIHI∗ = BIHI-Js and J least, being

the least-priority job, will terminate at time b in both tables.

Let us now examine the other case, in which BIHI∗ = (a, b), the busy interval where

J least terminates, is followed by a blocked interval , i.e., the idle interval which appears

because at time b the rules for table HI* have disabled all ready jobs. Also in this case

J least by our hypothesis and Lemma A.3 will terminate at time b, but in this case by

construction not all jobs of BIHI∗ terminate by time b:

b < a+
∑

j∈BIHI∗

(CEj − THI∗j (a)) (A.1.3)

Let Js be the first job to switch in BIHI∗, at time ts. Again by Lemma A.4 and

Corollary A.5 we observe the same initial state and subsequent behavior in tables HI*

and HI-Js of all non-terminated HI jobs during the time interval (a, ts]. So we conclude

that all jobs of BIHI∗ run in HI-Js after time a continuously, and at time a their total

remaining work is equal to:

∑
j∈BIHI∗

(CEj − THI∗j (a))

In line with equation (A.1.3), in order to complete this workload, table HI-Js has to

continue execution after time b. New jobs may arrive before the termination of the busy

interval BIHI-Js . This busy interval executes all these jobs, J least being the last one to

terminate. So we have:

BIHI∗ ⊆ BIHI-Js

and

TTHI-Js
J least ≥ a+

∑
j∈BIHI∗

(CEj − THI∗j (a)) (A.1.4)

Combining (A.1.3) and (A.1.4), and observing that TTHI∗
J least = b, we have that also in this

case in HI-Js the least-priority job terminates no earlier than in HI*. This completes

the proof of Theorem A.6.

Theorem A.7 (Transformation Correctness). For a given problem instance, if the orig-

inal policy P is correct and reasonable then the transformed policy T (P) is also correct.

Proof. From Lemma A.1 we know that in any possible scenario all the HI jobs will have

enough time allocated in HI∗ to terminate. The termination time of J least is guaranteed

Schedulability in MC-systems 104

to meet the deadline due to the hypothesis that it meets deadline in the original policy

and Theorem A.6. Now let us prove that also the HI jobs with higher priority in the EDF

table PTHI meet their deadlines. Let J least be the next least priority HI job after J least

in the EDF table. Let J be the currently examined problem instance and let J be the

instance obtained from J by reducing the criticality of J least to LO. Since J least was the

HI job with lowest priority, it only executed when no other job was ready to execute. For

this reason, the HI-mode table HI∗ obtained for this new instance coincides with HI*

except that the intervals where J least was running are idled. So, J least will terminate

in HI* at the same time as in HI∗, where by Theorem A.6 applied to instance J it

will terminate no later than the latest termination under the original policy. Obviously,

also the latest termination of the original policy for job J least is the same for both J

and J. Because by our hypothesis this policy is correct we conclude that J least meets

its deadline. Iterating this reasoning recursively, we argue that all HI jobs meet their

deadline in HI*, and thus we have our thesis.

A.2 Proof of Reverse Correctness

In this section we prove the reverse correctness of the transformation algorithm, i.e., that

for a reasonable original policy we have that T (P) can succeed only if the original policy

succeeds.

Similarly to the previous section, we first give some supplementary definitions and lem-

mas.

The total remaining workload when the original policy executes basic scenario sc at time

t is defined as:

WLsc(t) =
∑
j∈J

(Cj(χ
sc
j)− T scj (t))

where χscj is the criticality behavior shown by Jj in scenario sc and Cj(χ
sc
j) is the

execution time of Jj in sc. Since sc is a basic scenario, Cj(χ
sc
j) can be either CNj or CEj .

Similarly the total remaining HI-job workload is given as:

WLsc
HI

(t) =
∑

j∈J:χj=HI

(Cj(χ
sc
j)− T scj (t))

For table HI* we have:

WLHI∗(t) = WLHI∗
HI

(t) =
∑

j∈J:χj=HI

(CEj − THI∗j (t))

Schedulability in MC-systems 105

Lemma A.8. Given a reasonable original policy, we have that:

∀sc, t WLHI∗(t) ≥WLsc
HI

(t)

Proof. Before the mode switch in sc, for any HI job j that did not terminate by time t in

sc, we have that Cj(χ
sc
j) ≤ CEj by construction and T scj (t) ≥ THI∗j (t) by Lemma A.1. On

the other hand, for a HI job that has already terminated we have that Cj(χ
sc
j)−T scj (t) =

0. By the above remarks we have CEj − THI∗j (t) ≥ Cj(χscj)− T scj (t) for all HI jobs j.

After the switch in sc, a reasonable policy will always execute a HI job when some HI

workload is ready (because the EDF policy is work-conserving and LO jobs have been

dropped). Next to this, observe that some jobs that are ready in sc may be at the same

time disabled in HI*. Thus after the switch, the total HI workload will decrease in sc

at least as fast as in HI∗

Recall that a reasonable policy after the mode switch becomes priority-based and sched-

ules HI jobs using the EDF priority table of HI jobs. Therefore, in this table we can

identify the least priority job Jleast.

Theorem A.9 (Worst Case Scenario). Let us consider a reasonable original policy.

Then, for the least priority job Jleast we have:

∀sc′, TTHI-Jsleast ≥ TT
sc′
least

where Js is the first job to switch in the busy interval of HI* where Jleast terminates

and sc′ is either the LO basic scenario or any job-specific HI scenario (i.e., from the

canonical basic set).

In other words, HI-Js is the worst-case scenario for Jleast.

Proof. In this proof we will use three observations:

1. after the switch we have WLsc
HI

= WLsc.

2. consider two HI-job specific scenarios sc and sc′ and some time instant t at or after

the switching time of both scenarios; if at time t Jleast did not yet terminate in

neither of the two scenarios and WLsc(t) ≥WLsc
′
(t), then TT scleast ≥ TT sc

′
least; (this

is so because after the switch a reasonable policy applies EDF, and for a fixed-

priority policy the remaining workload has a monotonic impact on the termination

time of the least priority job).

Schedulability in MC-systems 106

3. In the theorem statement we can ignore the case where sc′ is the LO scenario

without loss of generality. This is because there always exists a HI scenario where

J least terminates at the same time or later, for example HI-J least.

Let ts be the time when Js switches in HI*. We know by Corollary A.5 thatWLHI∗(ts) =

WLHI-Js
HI

(ts). Then, by Lemma A.8:

∀sc′ WLHI-Js
HI

(ts) ≥WLsc
′
(ts) (A.2.1)

i.e., no scenario has more workload at time ts than the scenario HI-Js.

In the rest of the proof we assume that ts′ is the switch time of another HI-job specific

basic scenario sc′ = HI-Js′ and we compare that scenario to sc = HI-Js.

For the scenarios where ts′ ≤ ts the statement of the theorem is proved by the above

stated Observation 2 and Equation (A.2.1), as we have established the workload inequal-

ity for a time ts that is at or later than the switch in the both scenarios.

Let us prove the theorem statement for the other case, ts′ > ts. Let tleast = TTLOleast,

i.e., the time at which Jleast terminates in the LO scenario. Note that we can ignore

the case tleast < ts′ , as in this case TT sc
′

least = TTLOleast and Observation 3 applies. So, we

can assume ts′ ≤ tleast. Due to this assumption, we also have: ts′ ≤ TTHI∗least and ts′ ≤
TTHI-Jsleast . Adding to this that ts < ts′ we see that ts′ falls inside the busy interval where

Jleast terminates in the end, both for HI* and HI-Js. By construction, ts belongs to

the same busy interval BIHI∗ that ends at TTHI∗least, thus WLHI∗ will constantly decrease

in this interval. At time ts′ , we will have WLHI∗(ts′) = WLHI∗(ts)− | (ts, ts′) |. By a

similar reasoning on the busy interval BIHI-Js , we have WLHI-Js(ts′) = WLHI-Js(ts)− |
(ts, ts′) |.

Thus, using equality WLHI∗(ts) = WLHI-Js
HI

(ts), which we established earlier, we have:

WLHI-Js(ts′) = WLHI-Js(ts)− | (ts, ts′) |

= WLHI∗(ts)− | (ts, ts′) |

= WLHI∗(ts′)

Therefore, for time ts′ we can repeat the same reasoning as we did for time ts in the

case t′s ≤ ts, which concludes the proof.

Schedulability in MC-systems 107

Theorem A.10 (Reverse Correctness). For a given problem instance on single-processor,

under the assumption that the original policy is reasonable and weakly predictable, we

have that if the policy T (P) is correct then the original policy is correct as well.

Proof. Our thesis can be rewritten as:

(∀j TTHI∗j ≤ Dj) ⇒ (∀sc,∀i TT sci ≤ Di)

We prove the theorem for Ji = Jleast and then extend this argument from Jleast to other

jobs Ji by induction, in the same way as we did in the proof of Theorem A.7.

Suppose by contradiction that Jleast misses its deadline in the original policy while all

jobs meet their deadlines in the transformed policy. We have:

TTHI∗least ≤ Dleast < TTHI-Jsleast (A.2.2)

where HI-Js is the worst case scenario for Jleast according to Theorem A.9. We distin-

guish two cases:

1. Jleast terminates before an “empty interval”.

By the reasoning of the proof of Theorem A.6, we have:

TTHI∗least = TTHI-Jsleast

which contradicts (A.2.2).

2. Jleast terminates before a “blocked interval ”. Considering BIHI∗ = (a, b),

as in the proof of Theorem A.6, and observing that, by Lemma A.4, THI-Jsj (a) =

THI∗j (a) we have that:

TTHI-Jsleast = a+
∑

j∈BIHI-Js
(CEj − THI∗j (a)) (A.2.3)

Let Je be the last job to terminate in HI*. For this job, by construction:

TTHI∗e ≥ a+
∑
j∈J

(CEj − THI∗j (a)) (A.2.4)

The right side of Equation (A.2.4) is no less than the right side of Equation (A.2.3).

Therefore, TTHI∗e ≥ TTHI-Js . Also, in EDF: Dleast ≥ De. From these observa-

tions and (A.2.2), we have:

TTHI∗e ≥ TTHI-Jsleast > Dleast ≥ De

Schedulability in MC-systems 108

thus Je will miss its deadline in HI*, which contradicts the theorem assumptions.

Schedulability in MC-systems 109

Acronyms

CA Certification Authority.

CCT Canonical Correctness Test.

DAL Design Assurance Levels.

ECT Economical Correctness Test.

EDF Earliest Deadline First.

FDIR Fault Detection Isolation and Recovery.

FPM Fixed Priority per Mode.

MC Mixed Criticality.

MCEDF Mixed Criticality Earliest Deadline First.

MCPI Mixed Criticality Priority Improvement.

OCBP Own Criticality Based Priority.

PBEDF Push-Back Earliest Deadline First.

STTM Single Time Table per Mode.

TA Timed-Automata.

WCET Worst Case Execution Time.

110

List of Symbols

` A criticality level.

T` Time table for criticality level `.

χmode The criticality mode of the system.

JE The emergency set.

I An instance containing a set of jobs.

J A job in an instance.

A Arrival time of a job.

X Criticality level of a job.

D Deadline of a job.

n Number of jobs in an instance.

L Number of criticality levels in an instance.

c A scenario of an instance.

S A schedule for a given scenario.

` The criticality level of a scenario.

ts A time slot in a time table.

CN Normal WCET estimate of a job.

CE Emergency WCET estimate of a job.

CU Uncertain execution estimate of a job.

111

Bibliography

[1] Seo-Hyun Jeon, Jin-Hee Cho, Yangjae Jung, Sachoun Park, and Tae-Man Han.

Automotive hardware development according to iso 26262. In 13th International

Conference on Advanced Communication Technology (ICACT2011), pages 588–592.

IEEE, 2011.

[2] Leslie A Johnson et al. Do-178b, software considerations in airborne systems and

equipment certification. Crosstalk, October, 199, 1998.

[3] Steve Vestal. Preemptive scheduling of multi-criticality systems with varying de-

grees of execution time assurance. In Real-Time Systems Symposium, RTSS’07,

pages 239–243. IEEE, 2007.

[4] Sanjoy Baruah, Vincenzo Bonifaci, Gianlorenzo D’Angelo, Haohan Li, Alberto

Marchetti-Spaccamela, Nicole Megow, and Leen Stougie. Scheduling real-time

mixed-criticality jobs. IEEE Trans. Comput., 61(8):1140 –1152, aug. 2012.

[5] Kunal Agrawal and Sanjoy Baruah. Intractability issues in mixed-criticality schedul-

ing. In 30th Euromicro Conference on Real-Time Systems (ECRTS 2018). Schloss

Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[6] Iulia Dragomir, Simon Iosti, Marius Bozga, and Saddek Bensalem. Designing sys-

tems with detection and reconfiguration capabilities: a formal approach. In Inter-

national Symposium on Leveraging Applications of Formal Methods, pages 155–171.

Springer, 2018.

[7] Alan Burns and Sanjoy Baruah. Timing faults and mixed criticality systems. In

Dependable and Historic Computing, pages 147–166. Springer, 2011.

[8] Sanjoy Baruah and Alan Burns. Implementing mixed criticality systems in ada.

In International Conference on Reliable Software Technologies, pages 174–188.

Springer, 2011.

[9] Dario Socci, Peter Poplavko, Saddek Bensalem, and Marius Bozga. Multiprocessor

scheduling of precedence-constrained mixed-critical jobs. In Real-Time Distributed

112

Schedulability in MC-systems 113

Computing (ISORC), 2015 IEEE 18th International Symposium on, pages 198–207.

IEEE, 2015.

[10] Hang Su and Dakai Zhu. An elastic mixed-criticality task model and its scheduling

algorithm. In 2013 Design, Automation & Test in Europe Conference & Exhibition

(DATE), pages 147–152. IEEE, 2013.

[11] Pontus Ekberg and Wang Yi. Bounding and shaping the demand of generalized

mixed-criticality sporadic task systems. Real-time systems, 50(1):48–86, 2014.

[12] S. Baruah and S. Vestal. Schedulability analysis of sporadic tasks with multi-

ple criticality specifications. In Real-Time Systems, 2008. ECRTS ’08. Euromicro

Conference on, pages 147–155, July 2008.

[13] Sanjoy K. Baruah, Haohan Li, and Leen Stougie. Towards the design of certifiable

mixed-criticality systems. In Real-Time and Embedded Technology and Applications

Symposium, RTAS’10, pages 13–22. IEEE, 2010.

[14] Haohan Li and S. Baruah. An algorithm for scheduling certifiable mixed-criticality

sporadic task systems. In Real-Time Systems Symposium (RTSS), 2010 IEEE 31st,

pages 183–192, Nov 2010.

[15] Sanjoy Baruah, Alan Burns, and Robert I Davis. An extended fixed priority scheme

for mixed criticality systems. Proc. ReTiMiCS, RTCSA, pages 18–24, 2013.

[16] Yao Chen, Kang G Shin, and Huagang Xiong. Generalizing fixed-priority schedul-

ing for better schedulability in mixed-criticality systems. Information Processing

Letters, 116(8):508–512, 2016.

[17] Dario Socci, Peter Poplavko, Saddek Bensalem, and Marius Bozga. Mixed criti-

cal earliest deadline first. In Real-Time Systems (ECRTS), 2013 25th Euromicro

Conference on, pages 93–102. IEEE, 2013.

[18] Rhan Ha and J. W S Liu. Validating timing constraints in multiprocessor and

distributed real-time systems. In Proc. Int. Conf. Distributed Computing Systems,

pages 162–171, Jun 1994.

[19] Sanjoy Baruah and Gerhard Fohler. Certification-cognizant time-triggered schedul-

ing of mixed-criticality systems. In Real-Time Systems Symposium, RTSS ’11, pages

3–12. IEEE, 2011.

[20] Dario Socci, Peter Poplavko, Saddek Bensalem, and Marius Bozga. Time-triggered

mixed-critical scheduler. Proc. WMC, RTSS, pages 67–72, 2013.

Schedulability in MC-systems 114

[21] Jens Theis, Gerhard Fohler, and Sanjoy Baruah. Schedule table generation for

time-triggered mixed criticality systems. Proc. WMC, RTSS, pages 79–84, 2013.

[22] Mathieu Jan, Lilia Zaourar, Vincent Legout, and Laurent Pautet. Handling crit-

icality mode change in time-triggered systems through linear programming. In

Ada User Journal, Proc of Workshop on Mixed Criticality for Industrial Systems

(WMCIS’2014), volume 35, pages 138–143, 2014.

[23] S.K. Baruah, A. Burns, and R.I. Davis. Response-time analysis for mixed criticality

systems. In Real-Time Systems Symposium (RTSS), 2011 IEEE 32nd, pages 34–43,

Nov 2011.

[24] Thomas Fleming. Extending mixed criticality scheduling. PhD thesis, University of

York, 2013.

[25] Huang-Ming Huang, Christopher Gill, and Chenyang Lu. Implementation and eval-

uation of mixed-criticality scheduling approaches for sporadic tasks. ACM Trans-

actions on Embedded Computing Systems (TECS), 13(4s):126, 2014.

[26] Qingling Zhao, Zonghua Gu, and Haibo Zeng. Integration of resource synchroniza-

tion and preemption-thresholds into edf-based mixed-criticality scheduling algo-

rithm. In Embedded and Real-Time Computing Systems and Applications (RTCSA),

2013 IEEE 19th International Conference on, pages 227–236, Aug 2013.

[27] A Burns, Robert Davis, et al. Adaptive mixed criticality scheduling with deferred

preemption. In Real-Time Systems Symposium (RTSS), 2014 IEEE, pages 21–30.

IEEE, 2014.

[28] Sanjoy K Baruah, Vincenzo Bonifaci, Gianlorenzo D’Angelo, Alberto Marchetti-

Spaccamela, Suzanne Van Der Ster, and Leen Stougie. Mixed-criticality scheduling

of sporadic task systems. In European Symposium on Algorithms, pages 555–566.

Springer, 2011.

[29] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela, S. van der

Ster, and L. Stougie. The preemptive uniprocessor scheduling of mixed-criticality

implicit-deadline sporadic task systems. In Proc. ECRTS’12, pages 145–154. IEEE,

2012.

[30] Sanjoy Baruah, Vincenzo Bonifaci, Gianlorenzo D’angelo, Haohan Li, Alberto

Marchetti-Spaccamela, Suzanne Van Der Ster, and Leen Stougie. Preemptive

uniprocessor scheduling of mixed-criticality sporadic task systems. Journal of the

ACM (JACM), 62(2):14, 2015.

Schedulability in MC-systems 115

[31] Sanjoy Baruah and Zhishan Guo. Mixed-criticality scheduling upon varying-speed

processors. In 2013 IEEE 34th Real-Time Systems Symposium, pages 68–77. IEEE,

2013.

[32] Sanjoy Baruah and Zhishan Guo. Scheduling mixed-criticality implicit-deadline

sporadic task systems upon a varying-speed processor. In 2014 IEEE Real-Time

Systems Symposium, pages 31–40. IEEE, 2014.

[33] Dionisio de Niz, Karthik Lakshmanan, and Ragunathan Rajkumar. On the schedul-

ing of mixed-criticality real-time task sets. In Real-Time Systems Symposium,

RTSS’09, pages 291–300. IEEE, 2009.

[34] Karthik Lakshmanan, Dionisio De Niz, Ragunathan Rajkumar, and Gines Moreno.

Resource allocation in distributed mixed-criticality cyber-physical systems. In Dis-

tributed Computing Systems (ICDCS), 2010 IEEE 30th International Conference

on, pages 169–178. IEEE, 2010.

[35] Owen R Kelly, Hakan Aydin, and Baoxian Zhao. On partitioned scheduling of fixed-

priority mixed-criticality task sets. In Trust, Security and Privacy in Computing

and Communications (TrustCom), 2011 IEEE 10th International Conference on,

pages 1051–1059. IEEE, 2011.

[36] Sanjoy Baruah, Bipasa Chattopadhyay, Haohan Li, and Insik Shin. Mixed-criticality

scheduling on multiprocessors. Real-Time Systems, 50(1):142–177, 2014.

[37] D. de Niz and L.T.X. Phan. Partitioned scheduling of multi-modal mixed-criticality

real-time systems on multiprocessor platforms. In Real-Time and Embedded Tech-

nology and Applications Symposium (RTAS), 2014 IEEE 20th, pages 111–122, April

2014.

[38] Romain GRATIA, Thomas ROBERT, and Laurent PAUTET. Adaptation of run

to mixed-criticality systems. JRWRTC 2014, page 25, 2014.

[39] Neil C Audsley. Optimal priority assignment and feasibility of static priority tasks

with arbitrary start times. Citeseer, 1991.

[40] Zaid Al-bayati, Qingling Zhao, Ahmed Youssef, Haibo Zeng, and Zonghua Gu. En-

hanced partitioned scheduling of mixed-criticality systems on multicore platforms.

In The 20th Asia and South Pacific Design Automation Conference, pages 630–635.

IEEE, 2015.

[41] Haohan Li and Sanjoy K. Baruah. Outstanding paper award: Global mixed-

criticality scheduling on multiprocessors. In 24th Euromicro Conference on Real-

Time Systems, ECRTS 2012, 2012.

Schedulability in MC-systems 116

[42] Sanjoy K Baruah. Optimal utilization bounds for the fixed-priority scheduling of pe-

riodic task systems on identical multiprocessors. IEEE Transactions on Computers,

53(6):781–784, 2004.

[43] Lui Sha, R. Rajkumar, and J.P. Lehoczky. Priority inheritance protocols:

an approach to real-time synchronization. Computers, IEEE Transactions on,

39(9):1175–1185, Sep 1990.

[44] A. Burns. The application of the original priority ceiling protocol to mixed criticality

systems. In L. George and G. Lipari, editors, ReTiMiCS, RTCSA, pages 7–11, 2013.

[45] Vicent Brocal, Patricia Balbastre, Rafael Ballester, and Ismael Ripoll. Task period

selection to minimize hyperperiod. In ETFA2011, pages 1–4. IEEE, 2011.

[46] Ismael Ripoll and Rafael Ballester-Ripoll. Period selection for minimal hyperperiod

in periodic task systems. IEEE Transactions on Computers, 62(9):1813–1822, 2013.

[47] Sanjoy Baruah, Vincenzo Bonifaci, Gianlorenzo D’Angelo, Pontus Ekberg, Haohan

Li, Alberto Marchetti-Spaccamela, Nicole Megow, and Leen Stougie. Erratum for

scheduling real-time mixed-criticality jobs. 2018.

[48] Sanjoy K. Baruah and Alan Burns. Sustainable scheduling analysis. In Real-Time

Systems Symposium (RTSS 2006), pages 159–168, 2006.

[49] Zhishan Guo, Sai Sruti, Bryan C Ward, and Sanjoy K Baruah. Sustainability in

mixed-criticality scheduling. 2017.

[50] Dario Socci, Peter Poplavko, Saddek Bensalem, and Marius Bozga. Mixed critical

earliest deadline first. In Euromicro Conf. on Real-Time Systems, ECRTS’13, pages

93–102. IEEE, 2013.

[51] Dario Socci. Scheduling of Certifiable Mixed-Criticality Systems. PhD thesis, VER-

IMAG Research Center, Université Grenoble Alpes, 2016.

[52] Rany Kahil, Dario Socci, Peter Poplavko, and Saddek Bensalem. Algorithmic com-

plexity of correctness testing in mc-scheduling. In Proceedings of the 26th Inter-

national Conference on Real-Time Networks and Systems, pages 180–190. ACM,

2018.

[53] Rany Kahil, Dario Socci, Peter Poplavko, and Saddek Bensalem. Predictability in

mixed-criticality systems. In to appear at RTCSA2018, 2018.

[54] Alan Burns and Robert I Davis. A survey of research into mixed criticality systems.

ACM Computing Surveys (CSUR), 50(6):82, 2017.

[55] J. W. S. Liu. Real-Time Systems. Prentice-Hall, Inc., 2000.

Schedulability in MC-systems 117

[56] Haohan Li and Sanjoy Baruah. Load-based schedulability analysis of certifiable

mixed-criticality systems. In Intern. Conf. on Embedded Software, EMSOFT ’10,

pages 99–108. ACM, 2010.

[57] Rajeev Alur and David L Dill. A theory of timed automata. Theoretical computer

science, 126(2):183–235, 1994.

[58] Stavros Tripakis. Fault diagnosis for timed automata. In International sympo-

sium on formal techniques in real-time and fault-tolerant systems, pages 205–221.

Springer, 2002.

[59] Franck Cassez and Stavros Tripakis. Fault diagnosis of timed systems, 2009.

[60] Martin Wirsing, Matthias M. Hölzl, Mirco Tribastone, and Franco Zambonelli.

ASCENS: engineering autonomic service-component ensembles. In FMCO’11, pages

1–24, 2011.

[61] Sagar Chaki and David Kyle. DMPL: Programming and verifying distributed

mixed-synchrony and mixed-critical software. Technical report, Carnegie Mellon

University, 2016.

[62] Andreas Abel, Florian Benz, Johannes Doerfert, Barbara Dörr, Sebastian Hahn,

Florian Haupenthal, Michael Jacobs, Amir H. Moin, Jan Reineke, Bernhard Schom-

mer, and Reinhard Wilhelm. Impact of resource sharing on performance and per-

formance prediction: A survey. In CONCUR, volume 8052 of Lecture Notes in

Computer Science, pages 25–43. Springer, 2013.

[63] Peter Poplavko, Dario Socci, Paraskevas Bourgos, Saddek Bensalem, and Marius

Bozga. Models for deterministic execution of real-time multiprocessor applications.

In DATE’15, 2015.

[64] E.A. Lee and D.G. Messerschmitt. Synchronous data flow. Proceedings of the IEEE,

75(9):1235–1245, 1987.

[65] Mikel Cordovilla, Frédéric Boniol, Julien Forget, Eric Noulard, and Claire Pagetti.

Developing critical embedded systems on multicore architectures: the prelude-

schedmcore toolset. In 19th International Conference on Real-Time and Network

Systems, 2011.

[66] Sander Stuijk, Marc Geilen, Bart D. Theelen, and Twan Basten. Scenario-aware

dataflow: Modeling, analysis and implementation of dynamic applications. In

SAMOS’11. IEEE, 2011.

Schedulability in MC-systems 118

[67] Georgia Giannopoulou, Peter Poplavko, Dario Socci, Pengcheng Huang, Nikolay

Stoimenov, Paraskevas Bourgos, Lothar Thiele, Marius Bozga, Saddek Bensalem,

Sylvain Girbal, Madeleine Faugere, Romain Soulat, and Benoit Dupont de Dinechin.

DOL-BIP-critical: A tool chain for rigorous design and implementation of mixed-

criticality multi-core systems. Technical Report 363, ETH Zurich, Laboratory TIK,

Apr 2016.

[68] Dario Socci, Peter Poplavko, Saddek Bensalem, and Marius Bozga. A timed-

automata based middleware for time-critical multicore applications. In Proc.

SEUS’15. IEEE, 2015.

[69] Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul Pettersson, and Wang Yi.

Times — a tool for modelling and implementation of embedded systems. In Proc.

Tools and Algorithms for the Construction and Analysis of Systems, pages 460–464.

Springer, 2002.

[70] Elena Fersman, Pavel Krcál, Paul Pettersson, and Wang Yi 0001. Task automata:

Schedulability, decidability and undecidability. Inf. Comput., 205(8):1149–1172,

2007.

[71] Tesnim Abdellatif, Jacques Combaz, and Joseph Sifakis. Model-based implemen-

tation of real-time applications. In Proceedings of the tenth ACM international

conference on Embedded software, EMSOFT ’10. ACM, 2010.

[72] D. Socci, P. Poplavko, S. Bensalem, and M. Bozga. Modeling mixed-critical systems

in real-time BIP. In ReTiMiCs’2013, 2013.

[73] Saddek Bensalem, Marius Bozga, Jacques Combaz, and Ahlem Triki. Rigorous

system design flow for autonomous systems. In ISoLA’14, pages 184–198, 2014.

[74] Rodolfo Pellizzoni, Bach Duy Bui, Marco Caccamo, and Lui Sha. Coscheduling of

CPU and I/O transactions in cots-based embedded systems. In RTSS’08, pages

221–231, 2008.

[75] Sundararajan Sriram and Edward A. Lee. Determining the order of processor trans-

actions in statically scheduled multiprocessors. VLSI Signal Processing, 15(3):207–

220, 1997.

[76] Sanjoy Baruah and Gerhard Fohler. Certification-cognizant time-triggered schedul-

ing of mixed-criticality systems. In RTSS ’11, pages 3–12. IEEE, 2011.

[77] Dario Socci, Peter Poplavko, Saddek Bensalem, and Marius Bozga. Time-triggered

mixed-critical scheduler on single- and multi-processor platforms (revised version).

Technical Report TR-2015-8, Verimag, 2015.

Schedulability in MC-systems 119

[78] Sanjoy Baruah. Semantics-preserving implementation of multirate mixed-criticality

synchronous programs. In RTNS’12, pages 11–19. ACM, 2012.

[79] M Perrotin, E. Conquet, P Dissaux, T. Tsiodras, and J Hugues. The TASTE toolset:

turning human designed heterogeneous systems into computer built homogeneous

software. In ERTSS’10, 2010.

[80] Andreas Hansson, Kees Goossens, Marco Bekooij, and Jos Huisken. Compsoc: A

template for composable and predictable multi-processor system on chips. ACM

Transactions on Design Automation of Electronic Systems (TODAES), 14(1):2,

2009.

[81] Alexandros Zerzelidis and Andy J. Wellings. A framework for flexible scheduling in

the RTSJ. ACM Trans. Embedded Comput. Syst., 10(1), 2010.

[82] M.J.M. Heijligers. The Application of Genetic Algorithms to High-Level Synthesis.

PhD thesis, Univ. of Eindhoven, 1996.

[83] Dario Socci, Peter Poplavko, Saddek Bensalem, and Marius Bozga. Multiprocessor

scheduling of precedence-constrained mixed-critical jobs. In ISORC’15, pages 198–

207. IEEE, 2015.

[84] Hardik Shah, Andrew Coombes, Andreas Raabe, Kai Huang, and Alois Knoll.

Measurement based wcet analysis for multi-core architectures. In RTNS ’14. ACM,

2014.

[85] Benôıt Dupont de Dinechin, Duco van Amstel, Marc Poulhiès, and Guillaume Lager.

Time-critical computing on a single-chip massively parallel processor. In DATE’14.

EDAA, 2014.

	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Mixed Criticality Systems
	1.2.1 Challenges

	1.3 Contributions and Structure

	2 Prior Work
	2.1 Problem Formulations
	2.1.1 The Vestal Model
	2.1.2 The Burns and Baruah Model
	2.1.3 The Elastic Mixed-criticality Task Model
	2.1.4 The Ekberg and Yi Model

	2.2 Job Scheduling
	2.2.1 Fixed Priority Policies
	2.2.2 Extended Fixed Priority Policies
	2.2.3 Time-triggered Policies

	2.3 Task scheduling
	2.3.1 Uniprocessor Scheduling
	2.3.2 Multiprocessor Scheduling

	3 Model Formulation
	3.1 The Workload Model

	4 On the Complexity of Testing a Scenario
	4.1 Consequences for Complexity

	5 Correctness in MC-scheduilng
	5.1 Fundamental Correctness Concepts
	5.1.1 Sustainability
	5.1.2 Predictability
	5.1.3 A Sustainable yet non-predictable Example

	5.2 Weak Predictability
	5.2.1 Weak Predictability in FPM Policies

	5.3 The Canonical Correctness Test
	5.3.1 Basic Scenarios for Correctness Testing
	5.3.2 The Canonical Correctness Test (CCT)
	5.3.3 Building the Case for Class NP for FPM

	5.4 The Economical Correctness Test
	5.4.1 A Non-Trivial Problem
	5.4.2 Generating the LO table
	5.4.3 Generating the HI* Table
	5.4.3.1 Transformation Rules
	5.4.3.2 An Example
	5.4.3.3 The FPM HI* Table

	5.4.4 Proof of Correctness
	5.4.5 ECT - Correctness and Complexity

	5.5 Chapter Summary and Contributions

	6 Scheduling Systems with Multiple Levels of Criticality
	6.1 PBEDF for Dual-criticality Systems
	6.1.1 Generating the Initial Time-Table
	6.1.2 Generating the Time-Table for Criticality Level 1
	6.1.2.1 Swap Conditions
	6.1.2.2 The Swap Operation
	6.1.2.3 The Push Back Function

	6.1.3 Generating Time Triggered Tables for Higher Criticalities
	6.1.4 Example

	6.2 PBEDF for Multiple Criticality Systems
	6.2.1 Generating Deadlines for Time-slots
	6.2.2 Example

	6.3 Experiment Results
	6.4 Chapter Summary

	7 Mixed Criticality Policies as Fault Recovery Strategies
	7.1 Overview of the System
	7.2 Representation of Mixed-Criticality Jobs
	7.2.1 Low Criticality Jobs
	7.2.2 Jobs of Criticality 2
	7.2.3 Jobs of Higher Criticality Level

	7.3 Fault Detection
	7.3.1 Diagnoser Synthesis

	7.4 The Recovery Strategy
	7.4.1 Controller
	7.4.2 Scheduler

	7.5 Chapter Summary

	8 MC-system Design with Coarse-grained Multi-core Interference
	8.1 Introduction
	8.2 Background
	8.2.1 Models of Computation
	8.2.2 Resource Managers and Concurrency Language
	8.2.3 Concurrency Language based Representation of System Nodes
	8.2.4 System Scheduling Aspects
	8.2.5 Multi-core Interference Aspects
	8.2.6 Mixed-Criticality Aspects
	8.2.7 Related Work

	8.3 Design Flow
	8.3.1 Underlying Paradigm
	8.3.2 Flow Structure and Assumptions
	8.3.3 An Example Illustrating the Flow

	8.4 Algorithm Description
	8.5 Experiments

	9 Conclusion
	A Proof of Time-triggered Transformation Algorithm
	A.1 Proof of Direct Correctness
	A.2 Proof of Reverse Correctness

	Bibliography
	Acronyms
	List of Symbols

