, Glossaire AES spectroscopie desélectrons Auger -ou Auger Electron Spectroscopy

, AFM microscopieà force atomique -ou Atomic Force Microscope

, BCC cubiquesà corps centré -ou Body Centered Cubic

, BOP Bond-Order Potentials

, DFT théorie de la fonctionnelle de la densité -ou Density Functional Theory

, FCC Cubiquesà Faces Centrées -ou Face Centered Cubic

, GPA Geometric Phase Analysis

, LEED diffraction d'électrons lents -ou Low Electron Energy Diffraction

E. Meb-microscope and . Balayage,

, MRSSP plan de contrainte résolue maximale -ou Maximum Resolved Shear Stress Plane

, STM microscopieà effet tunnel -ou Scanning Tunneling Microscope

. Uhv-ultra-haut and . Vide,

, VASP Vienna Ab initio Simulation Package

C. R. Weinberger, B. L. Boyce, and C. C. Battaile, Slip planes in bcc transition metals, Int. Mater. Rev, vol.58, issue.5, pp.296-314, 2013.

G. I. Taylor and C. F. Elam, The distortion of iron crystals, Proc. Roy. Soc. Lond. A, p.112, 1926.

A. Lawley and H. L. Gaigher, Deformation structures in zone-melted molybdenum, Philos. Mag, vol.10, issue.103, pp.15-33, 1964.

A. Navitski, S. Lagotzky, D. Reschke, X. Singer, and G. Müller, Field emitter activation on cleaned crystalline niobium surfaces relevant for superconducting rf technology, Phys. Rev. ST Accel. Beams, vol.16, p.112001, 2013.

T. Gu, J. R. Medy, V. Fabien, O. Castelnau, S. Forest et al., Multiscale modeling of the anisotropic electrical conductivity of architectured and nanostructured cu-nb composite wires and experimental comparison, Acta Materialia, vol.141, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01633968

Y. Nahas, F. Berneau, J. Bonneville, C. Coupeau, M. Drouet et al., An experimental uhv afm-stm device for characterizing surface nanostructures under stress strain at variable temperature, Rev. Sci. Instrum, vol.84, issue.10, p.105117, 2013.

J. Dickey, H. Farrell, O. Kammerer, and M. Strongin, Surface studies on niobium and some implications for superconductivity, Phys. Lett. A, vol.32, issue.7, pp.483-484, 1970.

E. A. Tholén, A. Ergül, E. M. Doherty, F. M. Weber, F. Grégis et al., Nonlinearities and parametric amplification in superconducting coplanar waveguide resonators, Appl. Phys. Lett, vol.90, issue.25, p.253509, 2007.

P. Dhakal, G. Ciovati, G. R. Myneni, K. E. Gray, N. Groll et al., Effect of high temperature heat treatments on the quality factor of a large-grain superconducting radio-frequency niobium cavity, Phys. Rev. Spec. Top-AC, vol.16, p.42001, 2013.

R. Pantel, M. Bujor, and J. Bardolle, Continuous measurement of surface potential variations during oxygen adsorption on the (100),(110) and (111) faces of niobium using mirror electron microscope, Surf. Sci, vol.62, issue.2, pp.589-609, 1977.

R. Franchy, T. U. Bartke, and P. Gassmann, The interaction of oxygen with Nb (110) at 300, 80 and 20 K, Surf. Sci, vol.366, issue.1, pp.60-70, 1996.

C. Sürgers, M. Schöck, and H. Löhneysen, Oxygen-induced surface structure of Nb (110), Surf. Sci, vol.471, issue.1, pp.209-218, 2001.

Y. Uehara, T. Fujita, M. Iwami, and S. Ushioda, Single NbO nano-crystal formation on low temperature annealed Nb (001) surface, Surf. Sci, vol.472, issue.1, pp.59-62, 2001.

B. An, S. Fukuyama, K. Yokogawa, and M. Yoshimura, Surface structures of clean and oxidized nb (100) by leed, aes, and stm, Phys. Rev. B, vol.68, issue.11, p.115423, 2003.

K. I. Shein, I. R. Shein, N. I. Medvedeva, E. V. Shalaeva, M. V. Kuznetsov et al., Effects of atomic relaxation and the electronic structure of niobium (100) and (110) surfaces, Phys. Met. Metallograph, vol.102, issue.6, pp.604-610, 2006.

A. S. Razinkin and M. V. Kuznetsov, Scanning tunneling microscopy (STM) of low-dimensional NbO structures on the Nb (110) surface, Phys. Met. Metallograph, vol.110, issue.6, pp.531-541, 2010.

I. Arfaoui, J. Cousty, and H. Safa, Tiling of a Nb (110) surface with NbO crystals nanosized by the NbO/Nb misfit, Phys. Rev. B, vol.65, issue.11, p.115413, 2002.

A. Rolland, G. Vacquier, and A. Casalot, Preparation and characterization by aes of niobium diselenide single crystals, Journal of Solid State Chemistry, vol.106, issue.2, pp.339-348, 1993.

G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, vol.54, issue.16, p.19, 1996.

M. R. Fellinger, H. Park, and J. W. Wilkins, Force-matched embeddedatom method potential for niobium, Phys. Rev. B, vol.81, issue.14, p.144119, 2010.

C. Coupeau, J. Durinck, M. Drouet, B. Douat, J. Bonneville et al., Atomic reconstruction of niobium (111) surfaces, Surf. Sci, vol.632, p.23, 2015.

V. Volterra, Sulle distorsioni dei corpi elastici simmetrici, Rend. Accad. Lincei, vol.14, p.26, 1905.

A. E. Love, A Treatise on the Mathematical Theory of Elasticity. CAM-BRIDGE : AT THE UNIVERSITY PRESS Cambridge : at the University press, p.26, 1920.
URL : https://hal.archives-ouvertes.fr/hal-01307751

E. Orowan, Über den mechanismus des gleitvorganges (to crystal plasticity iii. about the mechanism of glide), Z. Physik, vol.89, p.26, 1934.

M. Polanyi, Über eine art gitterstörung, die einen kristall plastisch machen könnte (about a kind of lattice distortion that could render a crystal "plastic, Z. Physik, vol.89, p.26, 1934.

G. I. Taylor, The mechanisms of plastic deformation of crystals. part i-theoretical ; part ii-comparison with observation, CXLV (=145), p.26, 1934.

W. K. Burton, N. Cabera, and F. C. Frank, Role of dislocations in crystal growth, Nature, vol.163, p.26, 1949.

L. Griffin, Observation of unimolecular growth steps on crystal surfaces, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol.41, issue.313, p.26, 1950.

S. Amelinckx, Dislocation patterns in potassium chloride, Acta Metallurgica, vol.6, issue.1, p.26, 1958.

P. Jacquet, Recherches expérimentales sur la microstructure de la solution solide cuivre-zinc 6535 polycristalline très faiblement déformée par traction et sur sonévolution au recuit entre 200 et 600°c, Acta Metallurgica, vol.2, issue.6, p.26, 1954.

W. Bollmann, Interference effects in the electron microscopy of thin crystal foils, Phys. Rev, vol.103, p.26, 1956.

P. Hirsch, A. Howie, R. Nicholson, D. Pashley, and M. Whelan, Electron Microscopy of Thin Crystals, p.26, 1965.

E. Schmid, Neuere untersuchungen an metallkristallen, Proceedings of the First International Congress in Applied Mechanics, p.26, 1924.

Y. Adda, J. Dupouy, J. Philibert, and Y. Quéré, Éléments de métallurgie physique Tome 5 Déformation plastique. Collection Enseignement -INSTN CEA, Commissariatà l'Energie Atomique, Institut National Des Sciences Et Techniques Nucléaires, 1991.

F. Louchet, L. P. Kubin, and D. Vesely, In situ deformation of b.c.c. crystals at low temperatures in a high-voltage electron microscope dislocation mechanisms and strain-rate equation, Philos. Mag. A, vol.39, issue.4, p.26, 1979.

G. Sargent, Stress relaxation and thermal activation in niobium, Acta Metall, vol.13, issue.6, p.28, 1965.

J. D. Meakin, Microstrain behavior of body-centered cubic metals, Can. J. Phys, vol.45, issue.2, p.28, 1967.

P. Groh and R. Conte, Stress relaxation and creep in ?-iron filamentary single crystals at low temperature, Acta Metall, vol.19, issue.9, p.28, 1971.

P. L. Kubin and B. Jouffrey, Etude de la déformation plastique de monocristaux de niobium de haute puretè a basse température, Philos. Mag, vol.27, issue.6, p.28, 1973.

F. , D. Lima, and W. Benoit, Internal friction study of dislocation mobility in deformed niobium, Physica status solidi (a), vol.67, p.28, 1981.

G. and W. Benoit, Dynamic recovery of the microstructure of screw dislocations in high purity b.c.c. metals, European Research Conference on Plasticity of Materials-Fundamental Aspects of Dislocation Interactions : Low-energy Dislocation Structures {III}, vol.164, pp.191-195, 1993.

A. Seeger and U. Holzwarth, Slip planes and kink properties of screw dislocations in high-purity niobium, Philos. Mag, vol.86, p.28, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00513655

J. Philibert, A. Vignes, Y. Bréchet, P. Combrade, and M. , , p.28, 1997.

R. A. Foxall, M. S. Duesbery, and P. B. Hirsch, The deformation of niobium single crystals, Revue canadienne de physique, vol.45, issue.2, pp.607-629, 1967.

M. Duesbery and V. Vitek, Plastic anisotropy in b.c.c. transition metals, Acta Mater, vol.46, issue.5, p.29, 1998.

R. Gröger and V. Vitek, Directional versus central-force bonding in studies of the structure and glide of 1/2<111> screw dislocations in bcc transition metals, Philosophical Magazine, vol.89, issue.34-36, pp.3163-3178, 2009.

F. L. Soren and W. J. Karsten, Density functional theory studies of screw dislocation core structures in bcc metals, Philos. Mag, vol.83, issue.3, pp.365-375, 2003.

D. Rodney, L. Ventelon, E. Clouet, L. Pizzagalli, and F. Willaime, Ab initio modeling of dislocation core properties in metals and semiconductors, Acta Mater, vol.124, pp.633-659, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02317567

K. Ito and V. Vitek, Atomistic study of non-schmid effects in the plastic yielding of bcc metals, Philos. Mag. A, vol.81, issue.5, p.31, 2001.

. Bibliographie,

J. Chaussidon, M. Fivel, and D. Rodney, The glide of screw dislocations in bcc fe : Atomistic static and dynamic simulations, Acta Mater, vol.54, issue.13, p.31, 2006.

R. Gröger, A. Bailey, and V. Vitek, Multiscale modeling of plastic deformation of molybdenum and tungsten : I. atomistic studies of the core structure and glide of 1/2[1 1 1] screw dislocations at 0 k, Acta Mater, vol.56, issue.19, pp.5401-5411, 2008.

R. Gröger, Which stresses affect the glide of screw dislocations in bcc metals ?, Philosophical Magazine, vol.94, issue.18, p.31, 2014.

P. Franciosi, L. Le, G. Monnet, C. Kahloun, and M. Chavanne, Investigation of slip system activity in iron at room temperature by {SEM} and {AFM} in-situ tensile and compression tests of iron single crystals, Int. J. Plast, vol.65, p.32, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01830620

D. Charrier, J. Bonneville, C. Coupeau, and Y. Nahas, Atypical boomerangan slip traces in, Scr. Mater, vol.66, issue.7, pp.475-478, 2012.

B. ?esták and J. Blahovec, The temperature dependence of slip planes in fe-3.4% si single crystals, physica status solidi (b), vol.40, pp.599-607, 1970.

L. Dezerald, D. Rodney, E. Clouet, L. Ventelon, and F. Willaime, Plastic anisotropy and dislocation trajectory in bcc metals, Nat. Commun, vol.7, p.11695, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02303907

R. Gröger, V. Racherla, J. Bassani, and V. Vitek, Multiscale modeling of plastic deformation of molybdenum and tungsten : Ii. yield criterion for single crystals based on atomistic studies of glide of 1/2 [111] screw dislocations, Acta Materialia, vol.56, issue.19, p.35, 2008.

R. Gröger and V. Vitek, Multiscale modeling of plastic deformation of molybdenum and tungsten. iii. effects of temperature and plastic strain rate, Acta Materialia, vol.56, issue.19, pp.5426-5439, 2008.

J. Michel, Caractérisation par UHV AFM/STM des nanostructures de déformation de l'intermétallique Ni3Al, 2014.

J. Hirth and J. Lothe, Theory of Dislocations, 1982.

D. Cherns and A. R. Preston, Convergent beam diffraction studies of interfaces, defects, and multilayers, Journal of Electron Microscopy Technique, vol.13, issue.2, pp.111-122, 1989.

B. Viguier, K. J. Hemker, and G. Vanderschaeve, Factors affecting stacking fault contrast in transmission electron microscopy comparisons with image simulations, Philosophical Magazine A, vol.69, issue.1, pp.19-32, 1994.

C. Coupeau, O. Camara, M. Drouet, J. Durinck, J. Bonneville et al., Slip-trace-induced vicinal step destabilization, Phys. Rev. B, vol.93, p.41405, 2016.

J. Veselý, J. Bonneville, C. Coupeau, Y. Nahas, J. Kope?ek et al., Bow-tie slip traces in fe80al20 single crystals deformed at room temperature, Materials Science and Engineering : A, vol.565, p.53, 2013.

D. Caillard, Kinetics of dislocations in pure fe. part i. in situ straining experiments at room temperature, Acta Materialia, vol.58, issue.9, pp.3493-3503, 2010.

E. H. Yoffe, A dislocation at a free surface, The Philosophical Magazine : A Journal of Theoretical Experimental and Applied Physics, vol.6, issue.69, p.62, 1961.

M. Cak, T. Hammerschmidt, J. Rogal, V. Vitek, and R. Drautz, Analytic bond-order potentials for the bcc refractory metals nb, ta, mo and w, Journal of Physics : Condensed Matter, vol.26, issue.19, p.195501, 2014.

J. Eshelby, W. Read, and W. Shockley, Anisotropic elasticity with applications to dislocation theory, Acta Metallurgica, vol.1, issue.3, pp.251-259, 1953.

J. D. Honeycutt and H. C. Andersen, Molecular dynamics study of melting and freezing of small lennard-jones clusters, The Journal of Physical Chemistry, vol.91, issue.19, p.64, 1987.

A. Stukowski, Visualization and analysis of atomistic simulation data with ovito the open visualization tool, Science and Engineering, vol.18, issue.1, p.15012, 2010.

R. Gröger and V. Vitek, Determination of positions and curved transition pathways of screw dislocations in bcc crystals from atomic displacements, Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, vol.643, pp.203-210, 2015.

Z. Basinski, M. Duesbery, and G. Murty, The orientation and temperature dependence of plastic flow in potassium, Acta Metallurgica, vol.29, issue.5, p.71, 1981.

M. Wen and A. Ngan, Atomistic simulation of kink-pairs of screw dislocations in body-centred cubic iron, Acta Materialia, vol.48, issue.17, p.71, 2000.

K. J. Carroll, Elastic constants of niobium from 4.2°to 300°k, Journal of Applied Physics, vol.36, issue.11, p.72, 1965.

G. Wang, A. Strachan, T. Çagin, and W. A. Goddardiii, Calculating the peierls energy and peierls stress from atomistic simulations of screw dislocation dynamics : application to bcc tantalum, Modelling and Simulation in Materials Science and Engineering, vol.12, issue.4, p.73, 2004.

D. Caillard, On the stress discrepancy at low-temperatures in pure iron, Acta Materialia, vol.62, pp.267-275, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01726241

C. Marichal, H. Van-swygenhoven, S. Van-petegem, and C. Borca, 110 slip with 112 slip traces in bcc tungsten, Sci. Rep, vol.3, p.77, 2013.

H. Li, S. Wurster, C. Motz, L. Romaner, C. Ambrosch-draxl et al., Dislocation-core symmetry and slip planes in tungsten alloys : Ab initio calculations and microcantilever bending experiments, Acta Materialia, vol.60, issue.2, p.78, 2012.

B. Lüthi, Ab initio modeling of dislocation-solute interactions in bodycentered cubic transition metals. Theses, p.78, 2017.

A. Maradudin and R. Wallis, Elastic interactions of point defects in a semi-infinite medium, Surface Science, vol.91, issue.2, pp.423-439, 1980.

R. D. Mindlin, Force at a point in the interior of a semi-infinite solid, Physics, vol.7, issue.5, pp.195-202, 1936.

J. Tersoff, Surface stress and self-organization of steps, Phys. Rev. Lett, vol.80, pp.2018-2018, 1998.

V. I. Marchenko and A. Y. Parshin, Elastic properties of crystal surfaces, Soviet Journal of Experimental and Theoretical Physics, vol.52, p.86, 1980.

L. L. and L. E. , Theory of elasticity, 1970.

F. Liu, Modeling and Simulation of Strain-mediated Nanostructure Formation on Surface. Handbook of Theoretical and Computational Nanotechnology, p.89, 2006.

K. Kern, H. Niehus, A. Schatz, P. Zeppenfeld, J. Goerge et al., Long-range spatial self-organization in the adsorbate-induced restructuring of surfaces : Cu100-(2×1)o, Phys. Rev. Lett, vol.67, p.97, 1991.

S. Rousset, V. Repain, G. Baudot, H. Ellmer, Y. Garreau et al., Self-ordering on crystal surfaces : fundamentals and applications, Materials Science and Engineering : B, vol.96, issue.2, p.97, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01987600

V. Repain, G. Baudot, H. Ellmer, and S. Rousset, Ordered growth of cobalt nanostructures on a au(111) vicinal surface : nucleation mechanisms and temperature behavior, Materials Science and Engineering : B, vol.96, issue.2, p.97, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01987601

H. Ellmer, V. Repain, M. Sotto, and S. Rousset, Pre-structured metallic template for the growth of ordered, square-based nanodots, Surface Science, vol.511, issue.1, p.97, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01987602

X. Yang, W. Hu, and X. Yuan, Melting mechanisms of Nb (111) plane with molecular dynamics simulations, Phys. Lett. A, vol.365, issue.1, p.97, 2007.

W. R. Inc, Mathematica, Version 11.2, p.111, 2017.

P. Müller and S. Andrieu, Elastic effects on surface physics, Surface Science Reports, vol.54, issue.5, pp.157-258, 2004.

J. D. Eshelby and A. N. Stroh, Dislocations in thin plates, The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, vol.42, issue.335, p.119, 1951.