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Abstract: Annually, millions of people die and many more sustain
non-fatal injuries because of road traffic accidents. Despite
multitude of countermeasures, the number of the causalities and
disabilities are increasing each year causing grinding social,
economic, and health problems. Due to their high volume and lack
of protective-shells, more than half of road traffic deaths are imputed
to vulnerable road users (VRUs) that include pedestrians, cyclists
and motorcyclists. Mobile devices combined with fog computing
can provide short-term feasible solutions to protect VRUs by
predicting collusions and warning users of an imminent traffic
accident. Mobile devices’ ubiquity and high computational
capabilities make the devices an important components of traffic
safety solutions. Fog computing has features that suits to traffic
safety applications as it is an extension of cloud computing that
brings down computing, storage, and network services to the
proximity of the end users. Therefore, in this thesis, we propose an
infrastructure-less traffic safety architecture (PV-Alert) that depends
only on VRUs’ and drivers’ mobile devices besides the fog
computing concept. The mobile devices are responsible to extract
their position and other related data and to send cooperative
awareness messages to a nearby fog server. The fog server estimates
collision using a collision prediction algorithm and sends an alert
message, if an about-to-occur collision is predicted. Evaluation
results shows that the proposed architecture is able to render alerts in
real-time and outperforms other related road safety architectures in
terms of reliability, scalability and latency.

However, before deploying this architecture, the challenges pertaining to
weaknesses of its important ingredients should be treated prudently. The
first challenge is related to the positions read by mobile devices, which are
not accurate and do not meet the maximum position sampling rate of traffic
safety applications. Moreover, continuous and high rate position sampling
drains mobile devices battery quickly. From fog computing’s point of view,
it confronts a new challenge related to privacy and security in addition to
those assumed from cloud computing. For the aforementioned challenges,
we have proposed new solutions: (i) To improve GPS accuracy, we have
proposed an efficient and effective two-stage map matching algorithm. In
the first stage, GPS readings obtained from smartphones are passed through
Kalman filter to smooth outlier readings. In the second stage, the smoothed
positions are mapped to road segments using online time warping algorithm.
(i) position sampling frequency requirement is fulfilled by an energy-
efficient location prediction system that fuses GPS and inertial sensors’
data. (iii) For energy efficiency, we proposed an energy efficient fuzzy
logic-based adaptive beaconing rate management that ensures safety of
VRUs. (iv) finally, privacy and security issues are addressed indirectly
using a trust management system. The two-way subjective logic-based trust
management system enables fog clients to evaluate the trust level of fog
servers before awarding the service and allows the servers to check out the
trustworthiness of the service demanders. We have therefore been able to
show in this thesis that the use of ubiquitous mobile devices combined with
the Fog Computing concept has great potential to improve road safety and
more specifically to reduce the excessive number of road accidents
involving vulnerable road users.

Titre : Assurer la sécurité des usagers vulnérables de la route connectés grace a leur Smartphones et au concept de Fog Computing
Mots clés : sécurité routiere, usagers vulnérables de la route, fog computing, précision de position géographique et taux
d'échantillonnage, efficacité énergétique, gestion de confiance et sécurité

Résumé : Chaque année, des millions de personnes meurent et beaucoup
d'autres subissent des séquelles graves a la suite d'accidents de la route.
Malgré une multitude d’initiatives, le nombre de cas mortels et d'accidents
graves augmente chaque année en engendrant des problémes préoccupants a
la fois sociaux, économiques et sanitaires. En raison de leur nombre élevé et
de l'absence de protection personnelle, plus de la moitié de ces déces
concerne les usagers vulnérables (en anglais, vulnerable road users - VRU)
regroupant les piétons, cyclistes et motocyclistes. Les appareils mobiles,
combinés a la technologie de Fog Computing (ou informatique géodistribuée,
ou méme informatique en brouillard), représentent une solution réaliste a
court terme pour les protéger en les avertissant de I’imminence d'un accident
de circulation. L’omniprésence des appareils mobiles et leurs capacités de
calcul élevées font de ces appareils un élément important a considérer dans
les solutions de sécurité routiére. Le Fog Computing offre des fonctionnalités
adaptées aux applications de sécurité routiere, puisqu’il s’agit d’une extension
du Cloud Computing permettant de rapprocher les services informatiques, le
stockage et le réseau au plus prés des utilisateurs finaux. Par conséquent, dans
cette thése, nous proposons une architecture réseau sans infrastructure
supplémentaire (PV-Alert) pour des fins de sécurité routiére et reposant
uniquement sur les appareils mobiles des VRU et des conducteurs sur la route
avec I’aide du concept de Fog Computing. Les données géographiques et
cinématiques de ces appareils sont collectées et envoyées périodiquement au
serveur fog situé a proximité. Le serveur fog traite ces données en exécutant
un algorithme de calcul de risque d’accident de circulation et renvoie des
notifications en cas d'accident imminent. L’évaluation de cette architecture
montre qu’elle est capable de générer des alertes en temps réel et qu’elle est
plus performante que d’autres architectures en termes de fiabilité,

d’évolutivité et delatence.
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Chaque année, des millions de personnes meurent et beaucoup d'autres
subissent des séquelles graves a la suite d'accidents de la route. Malgré une
multitude d’initiatives, le nombre de cas mortels et d'accidents graves
augmente chaque année en engendrant des probléemes préoccupants a la fois
sociaux, économiques et sanitaires. En raison de leur nombre élevé et de
I'absence de protection personnelle, plus de la moitié de ces déces concerne les
usagers vulnérables (en anglais, vulnerable road users - VRU) regroupant les
piétons, cyclistes et motocyclistes. Les appareils mobiles, combinés a la
technologie de Fog Computing (ou informatique géodistribuée, ou méme
informatique en brouillard), représentent une solution réaliste a court terme
pour les protéger en les avertissant de I’imminence d'un accident de
circulation. L’omniprésence des appareils mobiles et leurs capacités de calcul
élevées font de ces appareils un élément important a considérer dans les
solutions de sécurité routiére. Le Fog Computing offre des fonctionnalités
adaptées aux applications de sécurité routiére, puisqu’il s’agit d’une extension
du Cloud Computing permettant de rapprocher les services informatiques, le
stockage et le réseau au plus pres des utilisateurs finaux. Par conséquent, dans
cette these, nous proposons une architecture réseau sans infrastructure
supplémentaire (PV-Alert) pour des fins de sécurité routiére et reposant
uniquement sur les appareils mobiles des VRU et des conducteurs sur la route
avec ’aide du concept de Fog Computing. Les données géographiques et
cinématiques de ces appareils sont collectées et envoyées périodiquement au
serveur fog situé a proximité. Le serveur fog traite ces données en exécutant
un algorithme de calcul de risque d’accident de circulation et renvoie des
notifications en cas d'accident imminent. L’évaluation de cette architecture
montre qu’elle est capable de générer des alertes en temps réel et qu’elle est
plus performante que d’autres architectures en termes de fiabilité,
d’évolutivité et de latence.
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INTRODUCTION

1.1/ CONTEXT AND MOTIVATION

Road traffic injuries are reasons for many deaths globally. According to World Health
Organization’s 2015 Global status report on road safety, 1.2 million people die because of road traffic
injuries each year [1]. As it is shown in the subsequent reports of the organization, this number has kept
increasing each year. For example, the 2018’s report of the organization shows that the number of traffic
injury deaths has elevated to 1.35 million [2]. Based on the global road safety status reports, traffic
injury is the leading cause of death in children and adults under 30 years causing grinding social,
economic and health problems. Due to their high volumes and negligence of road traffic designs,
vulnerable road users (VRUSs) which could be pedestrians, cyclists and Powered Two-Wheelers (PTWs)
accounts for more than half of the fatalities. Over the past few decades, the rate of traffic accidents and
fatalities has gone down considerably, but the decrease in traffic accident injuries for VRUs is low [1],
[2], [3]. Due to the lack of protective “shells” or safety features, pedestrians are more vulnerable to
traffic accidents than other groups of VRUSs. These accidents often result in severe injuries if not deaths.
For instance, it has been estimated that pedestrians are 284 times more likely to be killed or injured in a
traffic collision than motorists [4].

Root causes of high traffic accidents include poor safety standards, lack of law enforcement, rapid
urbanization, driving under the influence of alcohol and drugs, failure to wear seat-belts and helmets as
well as people driving fatigued [2]. Moreover, the increasing use of mobile phones and other portable
devices globally has become a new cause of traffic accidents nowadays because of many types of
distractions they brought [5], [6], [7]. Drivers and VRUs use their phones for talking, texting, and
listening to music while driving and walking. This results in an inattention which eventually becomes
the reason for many traffic accidents [8], [9]. Traffic accident injuries and fatalities have an immense
impact on the physical, mental, and health issues of individuals as well as financial and social
consequences for individuals and their families [10]. At the national level, economic developments of
low- and middle-income countries is being hampered by traffic accidents. It cost governments
approximately 3% of their Gross Domestic Product (GDP) [1].



Various accident protection mechanisms have been applied to minimize traffic accidents. Increasing
visibility of roads and planning bumpers to reduce their speed are among passive measures for VRUS
traffic accident reduction. Automatic braking is no more limited to luxury cars. Many contemporary
vehicles are fitted with this feature for mitigation of forward-collisions. Moreover, passive measures like
educating traffic safety and setting strict law enforcement are also among the most crucial VRU traffic
accident prevention mechanisms. In recent days, active traffic accident protection steps that involve road
user detection, collision prediction, alerting and collision avoidance have got a lot of attention. However,
the problem is still apparent, and traffic accidents have continued to be reasons for deaths of many
people. Those who didn’t die of traffic accidents suffer permanent physical and mental consequences,
among others.

1.2/ OPPORTUNITIES AND CHALLENGES

Omnipresent mobile devices can help to avoid traffic accidents on VRUs instead of becoming
sources of road traffic injuries. The number of smartphones is increasing at a very high rate. It is
predicted that the number of the handheld device users will clinch to 2.87 billion in 2020 [11], [12].
Because of affordable prices, versatile services, and high computation, storage, and communication
capacity smartphones are owned by many road users including drivers. The staggering increase in their
capability is further enhanced by their sensing potential, which is another feature that makes the devices
more intelligent and essential part of everyday life. Though the number of sensors may vary from one
smartphone to the other, typical smartphone contains accelerometer, a digital compass, a gyroscope, a
GPS, quad microphones, dual cameras, near-field communication, a barometer, light, proximity, and
temperature sensors [13]. Therefore, mobile devices combined with fog computing, which is a
computing paradigm suitable for latency-sensitive applications, can provide feasible solutions to protect
VRUs by predicting collusions and warning them of an imminent traffic accident in real-time.

Fog computing is an extension of cloud computing that brings down computing, storage, and
network services to the proximity of users’ arena with the objective of reduction of latency. It is a
decentralized computing infrastructure with the following defining characteristics: low latency, location
awareness, wide-spread geographical distribution, mobility support, existence of very large number of
nodes, heterogeneity and predominance role of wireless access [14]. The attractive properties of fog
computing make it an ideal technology for Intelligent Transportation Systems (ITS) and other
applications that require real-time responses.

Pulling characteristics of fog computing and an increase in number as well as in the capacity of
mobile devices pave a way to create novel active road safety applications. The main roles of mobile
devices in active traffic safety measures that conglomerate mobile devices and fog computing are: (i)



extracting position including the direction of movement and speed of drivers and VRUSs, (ii) sending
Cooperative Awareness Message (CAM) to a nearby fog server, and (iii) receiving a warning message
sent from the fog server. VRUs are connected to fog servers using a wireless communication that could
be either Wi-Fi or Long-Term Evolution (LTE) connection. When a fog server receives the data, it
estimates collisions using collision prediction algorithm. If an about-to-occur collision is predicted, the
fog server sends a Decentralized Environmental Notification Message (DENM) to both VRUs and
drivers. Cloud servers may also be involved in the solution to store the data which is no more important
for the real-time traffic accident prediction. The data is helpful for farther traffic analysis.

The interplay between fog nodes and smartphones will prevent traffic accidents that might happen
otherwise. However, before actualizing such remedies, challenges that are associated with smartphones
and fog computing need immediate attentions. The most important ones are briefed below:

e GPS Position Inaccuracy — GPS positions sent to fog servers to predict collisions must be as
accurate as possible. Minor GPS inaccuracy may result in an inaccurate or incorrect prediction.
Incorrect predictions in their turn will most probably become reasons for traffic injuries. According
to [15] longitudinal and latitudinal inaccuracy of GPS positions read by mobile devices is more than
4m. Because of their small size, smartphones contain miniature GPS chipsets which have limited
capability to get accurate GPS fixes. The problem is worsened by subjection of the devices to non-
ideal environments that compromise sensor accuracy and reliability. Noise, interferences, weather
conditions, obstructions of satellite signals by big buildings and trees are among factors that
contribute to the degradation of the accuracy of positions read by smartphones. Thus, it is mandatory
to smooth GPS readings obtained from smartphones and improve the accuracy of locations to
precisely predict and eventually avoid traffic accidents.

e Insufficient Position Sampling Frequency — European Telecommunication Standard Institute (ETSI)
standardized time intervals of CAM generations for collision risk notifications systems. If a VRU is
in the less risky region, the CAM can be sent every 1s but if the VRU is in high-risk region, 10
beacons need to be sent to a fog server every second. This implies GPS fixes have to be read in the
interval of 0.1s to 1s. However, investigations made by [16] depict that smartphones can’t support
such high rate location sampling demand of traffic safety applications. In addition to the factors that
affect GPS accuracy, the position sampling frequency of smartphones is affected by factors ranging
from location method used to the hardware make of the mobile phone and operating system
installed. The promises of using mobile device for traffic safety applications can only be

materialized if they are able to meet the application’s position sampling rate requirement.

e High Energy Consumption - not only smartphones have limited battery capacity due to their size and



weight constraints but also, they are among the most energy-hungry devices due to the number of
services they support. High GPS sampling demands of traffic safety applications intensify the energy
desire of mobile devices. Based on the experiment conducted in [17], a smartphone battery that
could last for 95 hours with normal use is depleted in only 11 hours when the device is used to run
traffic safety application. Mobile devices of drivers can get continuous power supply from the
vehicles, but this is not true for handheld devices owned by VRUSs. Therefore, the high energy
consumption of smartphones is one of the hinderance to use the mobile devices for traffic safety
applications.

e Privacy and Security in Fog Computing - fog computing comes with plenty of striking features.
However, it is not a panacea. It faces new privacy and security challenges besides those inherited
from cloud computing. The challenges are attributed to its distributed architecture and flexibility of
deployment [18], [19]. Fog servers can be accessed easily by adversaries due to their geo-
distributiveness and proximity to end users. Fog nodes can join or leave fog environment at any
time, and they are usually from different manufacturers. Fog nodes are usually donated or rented by
individuals, and fog networks are operated and maintained by different providers or individuals
independently. These all leave security and privacy holes in the system. Imposing security
mechanisms in fog computing is challenging, just like other distributed environments. Traditional
security mechanisms like authentication and access control can’t be applied readily due to the
absence of universally unifying entity. Privacy and security issues in fog computing are one of the
issues that need measures to increase the acceptability of the computing paradigm for traffic safety
applications.

e Offloading Trajectory Data among Fog Nodes — road users and vehicles are mobile over many fog
servers’ coverage areas. Therefore, as the VRUs move from one fog node coverage area to another,
their historical trajectories have to be passed for better accuracy of traffic accident estimations.
Moreover, there may be a need to move some road users’ position data to nearby fog nodes to
distribute loads among fog nodes.

Unless the challenges pointed out above are addressed, it is less likely to get the full advantages of
fog computing-based traffic safety applications that rely on mobile devices.

1.3/  THESIS OUTLINE AND CONTRIBUTIONS

As indicated in Figure 1.1, this thesis is structured into six main chapters, excluding introduction and
conclusion chapters. The chapters can be organized into two groups. The first group, which comprises of
chapter 2 and chapter 3, involves reviews of up-to-dated related works to traffic safety measures for



VRUs and proposition of an infrastructure-less collision prediction solution that employs smartphones
and the emerging fog computing paradigm. Before deploying the architecture in real environments,
challenges that affect the service provided by the architecture have to be addressed: mobile devices GPS
fixes accuracy, high energy consumption, insufficient application sampling period, as well as privacy
and security issues in relation to fog computing. The second group, which contains the remaining
chapters from chapter 4 to chapter 7, deals with the solutions proposed to the challenges pertaining to
mobile devices and fog computing. The summaries of contributions of the chapters are discussed below.

Chapter 2 - Background and State of the Art - this chapter presents the survey made on the
context of this thesis’s topics. Traffic accident problems and the most prominent solutions are discussed.
Three main topics are included in the chapter. Contemporary passive and active road traffic safety
solutions are discussed, in the second part, next to a section that introduces the chapter. Opportunities
and challenges of connecting vulnerable road users to vehicles using their mobile devices to safeguard
them from traffic accidents are explained in the third part. The last section is dedicated to fog
computing, and its challenges and potential applications for road traffic safety solutions.
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related to

Chapter 5
Meaobile Devices e

State of the
Arts Sl Energy Efficiency
(Chapter 2) Jol i (Chapter 6)

Challenges Trust Management
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Figure 1.1: Organization of the Thesis

Chapter 3 - PV-Alert: A Fog Computing based Architecture for Safeguarding Connected
Vulnerable Road Users - the first contribution of this thesis is traffic safety architecture to protect
VRUSs. The architecture is presented in this chapter. The two main components of the architecture that
we have named PV-Alert are fog computing environment and mobile devices owned by VRUs and
drivers. The devices are connected to fog servers with wireless connection media like Wi-Fi or LTE.



Fog servers are in charge of running VRU collision detection algorithms from the geolocation and other
related information sent from mobile devices of connected VRUs and drivers. The servers also send alert
messages to both drivers and VRUs if there is any anticipated accident. The analytical and empirical
performance comparisons of the architecture to other mobile device-based traffic safety architectures are
presented along with the criteria we have defined. Finally, experimental evaluation of the architecture is
discussed.

Chapter 4 - PV-Alert: Meeting Position Accuracy Requirement — before deploying PV-Alert in a
real environment, challenges related to the main components of the architecture have to be addressed.
This chapter deals with one of the challenges pertaining to mobile devices. GPS positions accuracy of
mobile devices remains insufficient for a lot of location-based applications, especially traffic safety
ones. After reviewing related works, an experiment made to check the GPS accuracy of the current
smartphones is given. Next, a new algorithm which is able to improve smartphones GPS accuracy for
vulnerable road users’ traffic safety to alleviate the problem is conferred. The solution is a two-stage
algorithm in which GPS readings obtained from smartphones are passed through Kalman filter to
smooth deviated reading, in the first stage. In the second stage, an adaptive online time warping based
map matching algorithm is applied to map the improved new locations to corresponding road segments.
The incremental alignment is made in a real time based on two similarity metrics: distance and direction
difference. Then, the comparison made to different online time warping variants with the naive dynamic
time warping algorithm in terms of accuracy and response time is discussed. GPS trajectories collected
from smartphones and reference points extracted from road network data are used for the evaluation.

Chapter 5 - PV-Alert: Meeting High Position Sampling Requirement — the solution proposed to
meet high position sampling demand of mobile devices is discussed here. Traffic safety applications
demand very high position sampling to safeguard VRUs - that is CAM has to be sent to fog server every
0.1s if the VRU is in high traffic risk regions. The investigation conducted to verify if different location
methods of current mobile devices meet the maximum sampling rate of requirement is presented. Next,
an energy efficient position prediction method that fuses GPS and Inertial Navigation Systems (INS)
sensors data to estimate pedestrians’ positions at a high rate is provided. INS based dead reckoning is
performed to extrapolate positions from last known location when GPS reading is unavailable. When
GPS fix is realized, the reading is used to correct dead reckoning parameters in addition to serving as the
location fix. Finally, discussions are made on the evaluation results of the proposed algorithm and
energy efficiency of different GPS and INS data sampling rates and conclusions are drawn.

Chapter 6 - PV-Alert: Achieving Energy-Efficiency by Adapting Beaconing Rate — discusses a
measure taken to tackle high energy demand of mobile devices while using them for traffic safety
applications. High beaconing rate of location and other associated data from mobile devices to fog
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servers drain mobile devices’ energy rapidly. A fuzzy logic-based adaptive beaconing rate management
that ensures the safety of pedestrians from traffic accidents while minimizing the energy consumption of
the mobile devices is discussed in this chapter. It also explains evaluations made on risk prediction
accuracy of the fuzzy logic-based system, which is conducted by comparing its output with the risk level
prediction algorithm that relies on minimum distance for information exchange to predict the likelihood
of accidents. Then, the energy efficiency evaluation of the adaptive beaconing rate management is
presented.

Chapter 7 - PV-Alert: Trust Management — in this chapter, a challenge on PV-Alert which is
inherited from fog computing is discoursed. Some of its features and flexibility of deployments make
fog computing susceptible to security and privacy attacks. The two-way subjective logic-based trust
management system that solves information security and user privacy is covered. Topics related to trust
management like trust metrics, and trust-based attacks and their proposed solutions are also discussed.
Finally, the performance evaluation of the solution proposed and comparative analysis made are
presented, and conclusions are given.

Chapter 8 - Conclusions and Perspectives - this chapter presents the conclusion, discusses the
research and practical implications of the thesis and outlines the potential future research directions
related to the use of mobile devices and fog computing to improve traffic safety.



BACKGROUND AND STATES OF THE ART

2.1/ INTRODUCTION

A road traffic accident is defined as an event, such as a car crash or collision, which occurs on the
road and results in death or personal injury or property damage in direct relation to the operation of a
vehicle in motion [10]. Every day more than 3,700 people or one person every 25 seconds die because of
road traffic accidents [2]. Road traffic injuries recently have become the eighth cause of death
worldwide. The injuries and disabilities induced by traffic accidents annually are tallied by tens of
millions, and this number is increasing year by year. Even though low and middle-income countries
have a low ratio of vehicles per inhabitants, they suffer most of the traffic accidents due to lack of
infrastructures, poor enforcement of traffic safety regulations, poor access to health services, etc. Even
in the European Union which has some of the safest roads in the world, traffic accidents claim over
25,000 lives every year, and many more are seriously injured [20]. VRUs account most of the traffic
accidents figures mentioned. According to European Commission’s ITS directive, VRU represents non-
motorized road users, such as pedestrians, cyclists, motor-cyclists and persons with disabilities or
reduced mobility and orientation (ability to know where one is and where he wants to go). Generally,
road users who have a high fatality percentage and are supposed to be given special consideration in
road safety policies are stated as VRUS.

Road traffic accidents induce health, economical and societal impacts to direct participants of the
accidents as well as their families and the country at large. Road users who survive traffic accidents
sustain long-lasting mental and physical health problems. Moreover, after road traffic accident injuries,
overall quality of life of individuals is significantly reduced in comparison with the general population
norm [21]. Quality of life is the standard of health, comfort, and happiness experienced by an individual
or a group in relation to their goals, expectations, standards and concerns. A recent report released by
World Bank [22], has shown that many countries can achieve substantial long-term income gains by
reducing road traffic deaths and injuries. The finding states that national income growth can be boosted
by plummeting road traffic injuries. This is an acceptable conclusion since road traffic injuries cost

about 3% of most countries’ GDP.



Speeding, drinking and driving, taking psychoactive substances and driving, nonuse or incorrect use
of helmets, seat-belts, and child restraints, and distraction are the main cause for road traffic injuries.
High speed of vehicles is the reason for the majority of traffic accident deaths. Based on [2], a 1%
increase in average speed increases fatal crash risk by 4%. That is why France has introduced a reform
on a speed limit that reduced from 90km/h to 80km/h on all two-lane highways [23]. An increased blood
alcohol concentration increases traffic accident rates. Hence, drinking and driving is banned by many
countries in the world. Though wearing helmets have proved advantages to reduce the risk of death and
severe injuries, only a few countries have drafted motorcycle helmet laws. According to [24], distracted
driving is the most common cause of road accidents in the United States. While distraction of drives
may be caused by various reasons, talking on a cell phone and texting messages are the most common
ones. Besides drivers, mobile devices-based distraction profoundly reduces VRUs safety, especially
pedestrians [8]. Mismanaged over-usage of mobile devices puts pedestrians in the risk of road traffic
accidents.

To address the problems mentioned above, many active and passive safety systems are proposed.
Mobile devices are becoming important components of many active safety solutions. In fact, mobile
devices bring both opportunities and challenges with them. As stated earlier, one of the challenges
associated with the devices is the distraction of both drivers, pedestrians and other road users, making
them the cause of many road traffic accidents. However, this challenge could be avoided by integrating
the devices in traffic safety systems. Therefore, we argue that the wide existence of mobile devices
coalesced with their increased computing, storage, network, and sensing capabilities make them good
candidates to many applications including traffic safety ones. Stringent latency requirements of traffic
safety applications can be dealt with using a new computing paradigm that brings cloud capabilities
down to the ground close to end users. This paradigm is called fog computing and it has advantages like
low latency, location awareness, and improved quality of services for real-time applications [14]. Traffic
safety applications can use mobile devices to perceive VRUs’ and drivers’ environment using their
onboard sensors, to report these data (e.g. position for road safety applications) to a fog server, and to
receive feedbacks (e.g. alert message) when the fog server predicts an imminent collision.

The rest of this chapter is organized as follows. In section 2.2, we review state-of-the-art passive and
active road safety measures that are proposed to minimize traffic accidents. Requirements of VRU
devices that connect VRUSs, either directly or indirectly, to vehicles are discussed in section 2.3. The
emerging computing paradigm, fog computing, whose characteristics make it suitable for traffic safety
applications is presented in section 2.4. In the last two sections summary and conclusion are provided.



2.2 ROAD SAFETY MEASURES

Albeit road traffic accidents are both predictable and preventable, they are daily events [25], [26].
People make mistakes that result in crashes, and human beings’ body has a limited physical capability to
endure the crash forces. Hence, millions of lives are lost yearly. Many countermeasures have been taken
to reduce road traffic accidents. The importance of inclusion of road safety and viable transport targets
in the sustainable development goals are well understood by many countries [26]. Furthermore, seeing
the current impact of road accidents on public health, organizations like United Nations has taken
several initiatives. The Decade of Action for Road Safety 2011-2020 [27] is one of such efforts that
have created extensive activities around all over the world. Some of the intervention as stated in [27]
are: effective speed management by police and through the use of traffic-calming measures, improving
the safety features of vehicles, promoting public transport, setting and enforcing laws requiring the use
of seat-belts, helmets and child restraints, setting and enforcing blood alcohol concentration limits for
drivers, and improving post-crash care for victims of road crashes.

Aid Technologies

Figure 2.1: Traffic safety measures
Despite the various attempts to improve road safety, traffic accidents remain one of the main causes

of premature deaths and injuries, especially for VRUs. In fact, many reports have shown that on average,
73% of people killed on city streets are unprotected road users like pedestrians, cyclists and
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motorcyclists [2], [28]. This figure is not surprising since VRUs account for most of the traffic in high-
density cities. Therefore, taking measures to reduce road traffic deaths is imperative.

As depicted in Figure 2.1, road safety measures are often categorized broadly into two as passive,
and active. Details of the road safety measures focusing on VRUs are discussed in the upcoming
subsections.

2.2.1. PASSIVE SAFETY SYSTEMS

Passive safety systems are used to minimize the impact caused on occupants at the time of the
accident. They are not put into action before the occurrence of the accident. However, during the
accident or time of impact, they become active to minimize or avoid the risk of injury on road users.
Many crucial factors affect the severity of VRU’s crash in traffic accidents. Vehicle design, its frontal
aggressiveness, road and pavement layout, legislation like speed limitations, bicyclist’s helmet are some
of the examples [29]. Passive safety measures include wearing seat belts, the inclusion of air-bags in a
vehicle, improving the design of vehicles to reduce impact, etc. Moreover, passive safety measures also
include pre-crash preventive actions and post-crash aids to rescue road users [30]. As illustrated in
Figure 2.1, passive safety systems can be further categorized into four classes: engineering, education,
law enforcement, and post-crash aid [30], [31]. In the following paragraphs, we describe these four
classes of passive safety measures.

The vast majority of passive safety systems are part of engineering, which involves vehicles design,
roads design, and design of protector devices that shield road users from accidents. The objective of
vehicle design is to minimize road traffic injuries to the lowest possible state. For example, to protect
VRUs, vehicles’ front- end geometry needs to be designed by taking the parameters that reduce the
crash effect [32], [33]. Automotive crash boxes should be developed from lightweight materials such as
aluminum and composites to reduce the effect of a crash [34]. Automotive crash box is a component
installed at the front end of a car to enhance safety features by absorbing crash energy. A serious brain
injury that could have resulted from a hit by a vehicle’s front bumper can be minimized by designing
flexible car body [35].

Accident protector devices include, among others, airbags and seat belts to protect passengers, and
helmets to protect cyclists and motor-cyclists [36]. Recently, vehicles with pedestrian airbags have been
designed by Volvo [37] to take traffic safety to the next level. The external airbag which is mounted on
the front end of a vehicle is designed to guard pedestrians in case of a forward impact with a car. Road
design involves providing a separate path for VRUs, managing vehicle’s speed using bumps and
increasing visibility and conspicuity of VRUs [25]. On-road and road-side signs, as well as qwick kurb
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(traffic channelization device), are other examples that should be included in road design to maximize
road safety.

Education on safety awareness for all ages is another passive safety measure that reduces accidents
by brings behavioral changes. It enables road users and drivers to know all traffic rules and to be
disciplined while walking and driving. Law enforcement refers to penalize drivers and VRUs that
violate traffic rules. It ensures the compliance of road users to laws, regulations, standards, and policies.
Education and enforcement are closely linked measures. We have to first create awareness and
understand the traffic rules to enforce traffic rules and regulations [38].

Even though all the above measures are engaged to avoid accidents, the accidents happen
unfortunately. Once the accident encounters, what can be done is striving to save the lives of the crash
victims. This passive safety is called post-crash aid. Post-crash aid is very time-sensitive: an injured
person whose life could have been saved may die due to a short delay. The reason for dramatically
higher fatality rates in low- and middle-income countries is a lack of well-developed and organized
emergency care systems to treat severe injuries. According to [39], 500,000 road traffic fatalities could
have been averted every year, if fatality rates of high-income countries from severe injury were the same
as in low- and middle-income countries. To reduce deaths due to severe traffic injuries, organized and
integrated pre-hospital and facility-based emergency care system have to be developed, training has to
be provided to all frontline basic emergency care personnel, and promotion of community first
responder training has to be made [26].

Passive safety systems have confirmed significant benefits to reduce VRUs injuries. However,
passive safety methods are constrained by human intelligence (to thoroughly understand and apply
trainings provided) and the laws of physics (strength of accident shields) in terms of their capability to
reduce collision energy and thus injury level [40]. Moreover, most passive safety countermeasures are
mostly irreversible (can’t be used again) and hence are more costly. The reasons mentioned above and
the advancement made in passive safety systems over the years have shifted ITS researcher’s attention
to active safety. The next subsection reviews state of the art works on active safety measures.

2.2.2. ACTIVE SAFETY SYSTEMS

The objective of active safety solutions is to prevent an accident from occurrence [30]. The solution
stays active the entire mobility periods of road users. Active safety systems use sensors to detect and
monitor the movement of the road users to trigger countermeasures that are able to avoid or mitigate
collisions in case of a foreseen danger [41]. As illustrated in Figure 2.2, there are three stages in accident
prevention process using active safety mechanisms: road users’ detection, collision prediction, and road

users’ notification or intervening on behalf of drivers.

12



Prediction and
follow up

Figure 2.2: Stages of active safety process
Active safety measures can be generally classified into two classes: in-vehicle only technologies and

Cooperative ITS (C-ITS) systems. In-vehicle technologies are installed only in the vehicle to
automatically control the vehicle ahead of an accident. So, systems in the vehicle are in charge of
predicting collisions and taking counter actions. Autonomous Emergency Braking (AEB) systems,
evasive steering, intelligent speed adaptation and other automatic driver assistant systems are some
examples of in-vehicle technologies. In [40] an active safety system that has the capability to decide,
whether to perform automatic braking or evasive steering at relatively high vehicle speeds (up to 50
km/h) is proposed. The decision is taken in split of seconds. The evaluation made on the potential
effectiveness of AEB in pedestrian protection in [41] has shown that such systems have high places in
accidents detection and avoidance. Intelligent Speed Adaptation (ISA) is a viable measure since the
speeding of vehicles is the leading cause of road accidents. ISA is defined in [42] as “the generic name
for advanced systems in which the vehicle knows the speed limit and is capable of using that information
to give feedback to the driver or limit maximum speed”. ISA has a large probability to reduce accidents
and the severity of collisions drastically. The problem with active safety systems that rely on
technologies deployed in vehicles is that as most of the cars currently are not equipped with the
solutions, it is not practical for application in the present day. In fact, most vehicles are not designed for
such remedy. Furthermore, road user detection mechanisms rely on cameras, infrared, radar, and tags
which are highly affected by Line of Sight (LOS) and environmental conditions.

C-ITS is an active safety measure that brings vehicles and other road users together to make
interactions to eliminate or reduce road traffic accidents [43]. This paves a way to create brand-new
approaches for ensuring road safety. The intention of C-ITS is to apply a technological revolution in
traffic management systems. Communication in C-ITS could be made among vehicles, infrastructures
and VRUs. Vehicle-to-Vehicle (V2V), Vehicles-to-Infrastructure (V2I), Vehicle-to-VRUs (V2VRU)
which contains Vehicle-to-Pedestrian (V2P), and Infrastructure-to-VRU (12VRU) communications are
some examples of the interactions. C-ITS minimizes human role (human beings naturally make
mistakes) in the process of traffic management and, accordingly, strengthens the level of road safety and
transport efficiency of the road network [43]. Therefore, vehicles or road side infrastructures like Road
Side Units (RSU) and central servers are responsible to detect, anticipate collisions, and warn road users.
For instance, in an active safety system called Intersection Safety, RSU has the role to detect VRUs
crossing or coming to an intersection via radar or camera, assessing the risk of an accident, and sending
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an alert message of an imminent collision to nearby drivers and VRUSs via wireless communication [44].
In this system, on-board unit of the vehicle informs a driver about an accident whereas VRUs are
informed by the RSU via blinking lights. Suchlike safety mechanisms are not scalable since
infrastructure-based safety techniques are very costly.

VRUs are incorporated into C-ITS relatively recently. In [45], the authors propose an architecture to
integrate VRUs with C-ITS systems and discuss the requirements of VRU devices that connect them to
the infrastructures. Moreover, they discussed challenges to meet technical requirements of VRU devices.
The challenges explained includes sensor accuracy, power consumption, context sensitivity, channel
congestion, privacy, and security of messages. The vitality of standardizing message exchanges between
VRUs and other road users and infrastructures are also pointed out. More details on requirements VRU
devices should possess are discussed in section 2.3.

Based on the type of VRU device, V2VRU active safety mechanism can be categorized into three
classes: tag-based, special dedicated device based, and mobile device based. In tag-based systems,
VRUs carry tags that communicate with vehicles (or possibly with road side infrastructures) through
RFIDs, infrareds, harmonic radars, passive transponders, etc. Pedestrian detection and warning system
called i-tag is introduced in [46] to reduce risk of collision between vehicle operators and pedestrian
staff in workplaces. Some of the reasons for the collision are fatigue, non-compliance with safe
operating procedures and poor visibility. The maximum detection capability of this device is 9m. In Ko-
TAG system [47], VRUs carry a transponder which is a small wearable device, and cars transmit a
coded radio signal. Based on radio signal propagation between the two, vehicle to VRU distance is
estimated and a warning is sent accordingly. An RFID-based device with a standalone radio unit that
interacts with intelligent bus stops is developed for children, in a research project named
SafeWay2School [48]. Drivers of the buses are notified of VRUs in the proximity with flashing lights.
Tag-based safety systems require VRUSs to carry additional electronic devices though they already have
mobile devices such as smartphones with various capabilities. Moreover, short coverage ranges of tag-
based systems are not suitable for fast-moving traffic.

Dedicated VRU devices are suggested for cyclists [49] and motorcyclists [50], [51]. The two
wheelers can be equipped with dedicated C-ITS devices which are activated only when motion is
detected to transmit personal safety messages. The messages should contain position and context
information, and it should be compliant with standardized in-vehicle and roadside C-ITS equipment.

Handheld devices owned by VRUs are the third group of apparatus to enable vehicles to VRUs
interaction for traffic safety and other ITS applications. Due to their high computation capability and
pervasiveness, mobile devices are the most acceptable and widely used VRU device. Smartphone based
V2VRU C-ITS communication can be formed in two different ways [45]: (i) by transmitting signals
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from handheld devices to a receiver in a vehicle periodically over Bluetooth Low Energy (BLE), Wi-Fi
or cellular radio (ii) by transmitting location data to a car as CAM or as standard messages over Wi-Fi or
cellular connections. Usually, in the first case, direct V2VRU communication is made without the
involvement of any intermediate infrastructure. The receiver (a communication device) in the vehicle is
in charge of localizing the VRUs. Direct mode of communication is suitable for traffic safety systems
since it has very low communication latency. However, it has the following drawbacks [52]. Firstly, its
range of communication is constrained by the type of the technology used. Secondly, it has deployment
challenges as it requires the devices that participate in the communication be furnished with the same
type of communication technology. Thirdly, resource constrained devices are responsible to process
messages received from VRUSs to spot the VRUs and to predict collisions.

To overcome the drawbacks of direct communication, many solutions that involve intermediate
infrastructures to establish communication between vehicles and VRUs are proposed [53], [54], [55],
[56]. In this scenario, a central processing unit takes information from VRUs and vehicles to monitor the
movement of road users, and to predict an imminent accident. The advantages of indirect mode of
communication over the direct mode are: (i) communicating devices can have different communication
technologies, (ii) a central infrastructure usually have high processing power and can be a non-dedicated
unit like cloud or fog server, and (iii) safety applications cover large geographical area using a multi-hop
communication. However, transmitting messages to infrastructure nodes may introduce high
communication latency. Traffic safety applications are highly latency-sensitive applications. Therefore,
infrastructure systems that suit for low-latency applications need to be chosen. For instance, edge servers
of a deployed edge computing environment can be used for traffic safety systems as the computing
paradigm is avowed for delay-sensitive applications. In addition to infrastructures, mobile devices used
as VRU devices need to be inspected. Accuracy of positions obtained from mobile devices as well as
low-frequency position sampling and high energy consumption of the devices are among the challenges
that need immediate attention. The following section goes in details with mobile devices as VRU
devices for safety applications.

2.3/  CONNECTED VULNERABLE ROAD USERS’ SAFETY

To avoid traffic accidents and possibly for other ITS applications, VRUs need to get connected to
the infrastructure and/or vehicles. Here, the infrastructure which usually runs safety application can be a
central server like cloud server or other edge servers, RSU, Traffic Management Center (TMC), etc. The
well-studied concept of connected vehicles refers to connecting vehicles to other vehicles, networks,
applications, and services. Vehicles are connected using the available/embedded devices in the vehicle
and different communication technologies to improve vehicle safety and to improve vehicle efficiency
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and commute times [57]. Analogically, connected VRUs are VRUs that are connected to vehicles
directly or using an intermediate infrastructure to send position and other information that is used to
predict and avert collisions. To create the connections, the VRUs use wireless communication
technologies which are supported by their carried devices and infrastructure. Various communication
technologies can be used in V2VRUs systems: cellular, Wi-Fi, and Bluetooth are some examples. VRU-
carried devices such as dedicated devices, tags or mobile devices can be used as VRU devices.
However, in recent traffic safety proposals, mobile devices are widely opted as VRU devices due to their
omnipresence, and high computation, storage, communication and sensing capabilities. For instance,
among 28 V2VRU systems investigated in a survey conducted in [52], 23 of them have used
smartphones as a VRU device. An example of connected VRU is shown in Figure 2.3.

Infrastructure
S (e N
;. m E 3 \
4 \
P | o
\ ) / Communication
\ ¥ <

Technology

Communication
Technology

VRU Device

"""""" o

Figure 2.3: A connected VRU through an infrastructure
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Creating a connection between vehicles and VRUs doesn’t suffice to protect VRUs from traffic
accidents. Safety critical systems demand strict requirements that can be attributed to VRU devices and
the other components involved in the connection. In addition to computation, storage, and
communication competencies, VRU devices need to extract accurate position at a very high sampling
frequency. Their battery should also last long enough to provide the service continuously for the entire
mobility period of the VRU. If collision prediction algorithms run on an infrastructure, the infrastructure
should own a high computational capacity to execute VRU collision risk algorithm and send warning
messages with the lower delay. This delay is also impacted by the used communication technology and
the capacities of the VRU device. Communication technology also influences the range of
communication. Other relevant requirements for traffic safety applications embrace reliability and
scalability.
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Mobile devices are recommended as VRU devices by many scholars for their wide existence and
increased computing capacities. However, to keep the devices’ involvement in traffic safety
applications, their limitations that hinder meeting the requirements of such applications need to be
addressed. Some important V2VRU requirements are summarized in Figure 2.4. Components of
V2VRU communication that influence the requirements are also shown in the figure. In subsequent
subsections of this section, we deliberate up-to-date efforts made to address each of the requirements.

Figure 2.4: Some requirements of V2VRU communication for safety applications

2.3.1. POSITION ACCURACY REQUIREMENT

According to ETSI’s technical specification which identified by ETSI TS 1015391, vehicle traffic
safety applications necessitate a position accuracy of 1m [58]. VRU safety applications should have at
least 0.5m position accuracy to distinguish VRUs on roads and walkways [59]. Since small imprecision
of the position may lead to wrong position prediction, which eventually results in a collision, various
researches were conducted to improve the accuracy of the position read from VRU devices, especially
smartphones. However, experiments have revealed that GPS accuracy of mobile devices is 10m for [60],
5m for [61], and 3m for [62]. In urban environments, the error may go as far as 40m [63]. The size of the
devices, weather conditions, obstructions, noise, and interference are the main factors that contribute to
the inaccuracy of GPS readings of mobile devices.

Various efforts from attaching external receivers like Global Navigation Satellite System (GNSS) on
mobile devices [64] to the application of optimal estimators like Kalman filter [65] are suggested to
improve the accuracy of smartphones. Although attaching external hardware to mobile devices may
enable to achieve centimeter-level position accuracy, it hinders the mobility of the devices and makes
the device inconvenient for handling. Software-based improvement techniques are unable to achieve
position accuracies of even 3m in the handheld devices. According to [66], 1meter position accuracy can
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be achieved by using data from the GLONASS and BeiDou satellites in addition to GPS. But still, this
value does not meet safety applications position accuracy requirement.

2.3.2. POSITION SAMPLING REQUIREMENT

VRU collision prediction algorithms require VRUs’ and vehicles’ geographical data at a very high
refresh rate to thwart VRU to vehicle conflicts. For instance, according to ETSI, the time interval
between CAMs for collision risk warning systems must be between 100ms to 1s. This shows that the
position sampled frequency needs to be 10Hz for VRU in high traffic risk area. However, experiments
have shown that the maximum sample rate of modern mobile devices’ GPS sensors is 1Hz whatever
location methods of the mobile device are used [17], [67].

Position sampling frequency requirement can be achieved by integrating a GPS sensor and inertial
sensor data. In [65], the authors demonstrate that the position sampling rate of a smartphone is able to be
increased with the pedestrian dead reckoning algorithm that uses inertial and GPS sensor data. However,
due to accumulated inertial sensor errors, the prediction accuracy decreases over a long prediction
period making the system effective only for short-term predictions. Moreover, high-energy consumption
of high-rate inertial sensor data sampling of mobile devices [67], [68] is not addressed.

2.3.3. ENERGY EFFICIENCY REQUIREMENT

Continuous position sampling and communication with a central infrastructure drain the battery of
energy-constrained mobile devices quickly. To whatever degree smartphones position are accurate or
the sampling rate is increased, unless the devices serve for long time periods, they will not be reliable
means to protect VRUs from accidents. Many solutions proposed to save energy of smartphones involve
adjusting sampling periods of the device, integrating auxiliary location methods, and performing
adaptive communication to the vehicle through an infrastructure.

In [69], by using auxiliary location methods together with a GPS sensor, the authors show that up to
27% energy saving is achieved. According to [70], adaptive GPS sampling is able to reduce power
consumption by 45%. A relaxed sampling of inertial sensors is able to reduce energy consumption by
22% in [68] and by 25% in [71]. According to [72], applying adaptive beaconing schemes based on the
traffic risk level of pedestrian, introduced only 13% additional energy consumption in two simulation
hours. In [73], an energy efficient communication scheme that relies on the grouping of VRUs based on
their geographical locations to exchange safety messages between vehicles and mobile device owners is
presented. The method involves establishing a Wi-Fi Direct communication among group members. An
elected Peer-to-Peer (P2P) group owner acts on behalf of many P2P clients. It sends position and other
information to a central server and propagates messages sent from the server to clients. Energy saving of
smartphones can also be achieved by offloading computation to other devices. In [74], offloading
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context information collected by smartphones to an edge server rather than executing in the devices is
also used to increase the energy efficiency of the devices. A robust mobile device energy saving solution
that works across all the processes from extracting positions to communication is vital.

2.3.4. COMMUNICATION TECHNOLOGIES

Many types of communication technologies can be used to connect VRUSs to infrastructures and
vehicles: 802.11p, Cellular, and Wi-Fi, being the most common ones. The type of technology used
affects the range of communication and other characteristics like latency.

802.11p is a modification of the well-known IEEE 802.11 standard to include Wireless Access in
Vehicular Environments (WAVE) for vehicular communication. It is the foundation for Dedicated
Short-Range Communications (DSRC) protocol. DSRC is primarily designed for communication of
vehicles in ITS with other vehicles or with infrastructures. Hence, its application in V2V communication
is studied intensively. 802.11p is also root standard of ITS-5G. ITS-5G is a wireless short-range
communication technology designed by ETSI to transport small data volumes at extremely high speed in
V2V communications [75]. Even though 802.11p allows reliable, long-range (1km) and real-time
exchange of safety information even at a very high vehicular mobility conditions, it doesn’t come with
VRU devices. [76] and [62] have shown that the technology can be integrated with smartphones, but
mobile devices are yet to come with 802.11p. In [76], DSRC is conjugated with Wi-Fi Direct for vehicle
to VRU communications. However, since DSRC is designed for vehicles and VRUs’ movement
dynamics, and crash situations are dissimilar from VRUSs, the protocol needs modification. Even though
current smartphones do not come with 802.11p, its features make the technology a promising contender
for V2VRU communication in the future.

Bagheri et al. [53], suggested cellular networks for VRU safety applications since they have high
mobility support, high bit-rate, long communication range as well as reduced user adoption costs and
high market penetration time. [54], [72], and [77] have also proposed cellular technology for vehicles to
road users’ communications. LTE is undertaking standardization to support V2P functionalities as one
part of the general Vehicle-to-Everything (V2X) schema [78]. Even though its attractive features make
cellular technology convenient for V2VRU communication, the latency of the cellular networks
humpers its suitability for VRU safety systems. However, the evolution of cellular technology to LTE
and LTE Direct and further to 5G makes the technology a promising candidate for traffic safety
applications [79].

Wi-Fi is the most experimented communication technology for V2VRU communications. In [65],
smartphones are used to integrate VRUs into Car-to-Everything (Car2X) communication via WLAN
802.11 b/g. The applicability of Wi-Fi to create V2P communications for a pedestrian safety system is
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studied by Anaya et al., [60]. Other works also have recommended Wi-Fi for VRU safety [79], [80],
[81], [82], and [83]. Wi-Fi Direct has been proposed to exchange safety messages between vehicles and
mobile devices of VRUs [73]. Wi-Fi Direct is a standard Wi-Fi which enables direct connection of
devices with each other without requiring a wireless access point. Wi-Fi is a good candidate for VRU
safety applications in urban environments due to its wide existence and its support for slow moving
traffic. Some traffic safety proposals use both Wi-Fi and cellular technologies [55] for VRU traffic
safety.

Other communication technologies for V2VRU interactions contain Bluetooth, 700 MHz ITS Band,
and 802.15.4. A Bluetooth-based traffic safety system that can spot cyclists and PTWs in the range of
5m is proposed in [84]. However, the limited range of communication makes it useful only in restricted
crash scenarios. In [85], 700MHz ITS Band is developed for V2V, 12V and V2P communications.
However, the solution is mere experimental. IEEE802.15.4 based low power pedestrian safety system
which can cover up to 80m of communication range is presented in [86]. IEEE802.15.4 based
technology may be suitable in cases where notification of only vehicles (as it is installed only vehicles)
is proved to avoid a collision.

In this section, we have discussed VRU device requirements and available communication
technologies for the vehicle to VRU communication. Another component in V2VRU communication is
an infrastructure that facilitates indirect communication between the two parties. The next section
discusses fog computing which is a good enabler of the stated communications.

2.4/ FOG COMPUTING

An immense number of physical devices all over the world are connected to the Internet, creating the
Internet of Things (1oT) paradigm. According to McKinsey [87], one trillion 10T devices are expected to
be deployed by 2025. They also estimated the potential economic impact of 10T to dash to 11 trillion
USD per year, accounting 11% of the world economy by the same year. The 10T devices generate an
enormous volume and variety of data at high velocity resulting in big data. For instance, an electronic
health track record system of a patient contains various wearable devices and sensors that produce an
ocean of distinct types of data. Cloud computing’s high-performance and storage capacity leverage
processing and reposition of these data. However, transporting the data to far-situated cloud servers
takes up a large amount of bandwidth. Hence, cloud computing is not suitable for real-time analytics and
decision making. The problems mentioned above are alleviated by bringing data processing and storage
down to the proximity of data production sites. The viability of the solution is founded on the fact that
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processing, storage, and networking capabilities of the current edge devices are improved from time to
time. One of such solutions is fog computing, aka fogging.

Fog computing stretches computing, storage, communication, and networking services down to the
fringes of the network to reduce latency, decrease bandwidth, and increase reliability [14]. The
technology has attracted considerable attention in academics and industry in short period of time.
Establishment of consortiums like OpenFog [88] by hi-tech giant companies and renowned academic
institutions to define an architecture for fog computing and to build operational models and testbeds is
one of the indications of the wide acceptance of the computing paradigm. The upcoming subsections
discuss fog computing’s architecture, features, applications, and challenges in relation to its usage in
traffic safety applications.

24.1. FOG COMPUTING ARCHITECTURE

As depicted in Figure 2.5, a fog computing architecture is composed of three main components: loT
or end devices, fog servers, and cloud servers. Fog servers are fog nodes which provide services to fog
clients, which are service requests [19], [89]. Fog servers can be set-top-boxes, access points, road-side
units, cellular base stations, gateways, routers, etc., while end devices like smartphones, sensors, smart
watches, vehicles, cameras, etc., represent the fog clients [89], [90]. Fog servers may be arranged in
layers (usually in 2 or 3 layers) and a fog server can be a single device, or it may comprise of multiple
devices integrated as one fog node [90]. Fog servers can make horizontal communication with each
other [91], making the computing paradigm scalable. The paradigm shift of distributed computing from
cloud computing to fog computing doesn’t mean fog computing is a replacement for cloud computing.
Rather, the two computing paradigms work together by performing important interplays between them
to provide services to end users with desired quality. End devices and fog layer communicate through
Local Area Network (LAN) while communication between the 10T devices and cloud layer can be done
either through the fog or without fog over the Wide Area Network (WAN) [92].

Fogging contains a very large number of geo-distributed fog clients which are responsible for real-
time computation, storage, and sensing the environment. These resources-constrained devices send data
to fog servers for analysis [93]. The fog servers process the data and give responses quickly. Their
proximity to end users enables fast response. If the processing of the data requires either a large
processing capacity or a non-delay sensitive response, the fog servers offload the computation to the
cloud. Not only fog clients but also fog servers have limited storage capacity to store all the data.
Therefore, the processed data which is not supposed to stay at the edge is sent to the cloud periodically.
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Figure 2.5: Architecture of Fog Computing

24.2. FOG COMPUTING FEATURES

Fog computing has multitude of advantages that make the technology attractive [94], [95] for traffic
safety and other latency-sensitive applications. Important characteristics of fog computing are:

Reduction of Network Traffic and Low Latency: massive amount of unprocessed data produced by
low-level devices is not supposed to be transported far-situated servers. Fog servers process and
filter the data drastically reducing the amount of data that is sent to cloud servers. Applications like
safety, e-health, gaming, augmented reality, antilock brakes on a vehicle, etc. require real-time data
processing. The proximity of fog servers to end users is vital to meet latency requirements of such
applications.

Geo-distribution and Location Awareness: fog computing is not centralized, like cloud computing.
Instead, it can be deployed anywhere and can provide distributed services and applications. Hence,
fog computing supports location awareness, i.e. fog nodes can be deployed in diverse locations.
Support for Mobility: mobile devices can move from place to place without interruption from fog
enabled services.

Scalability: fog computing is a multilayered distributed environment which can work with an
increasing number of end devices. Intercommunication among fog servers increases the scalability
of the service they provide.
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e Heterogeneity: fog servers and clients are from different manufacturers and they come with
different forms. But fogging is made to work on different platforms.

e Interoperability: heterogeneous devices need the cooperation of different providers. Fog nodes can
interoperate and work with various domains and across different service providers.

e Reliability: as a failure of a single node doesn’t affect the operation of the entire fog environment,
fog computing is more reliable than centralized computing paradigms.

e Real-time Interactions, a Predominance of Wireless Access, Support for Online Analytics and
Interplay with the Cloud, are other advantages of fog computing

2.4.3. FOG COMPUTING APPLICATIONS

Since its introduction in 2012 by CISCO, fog computing has been proposed for many applications.
As it keeps data and computation at the edge near to end users, it has become a source of a new breed of
applications and services [96]. Therefore, by exploiting the characteristics of fog computing, many novel
loT applications and services have been suggested. Traffic safety application [56], e-Health [97], web
content delivery [98], augmented reality [99], and big data analysis [100] are some of the applications
that suit fog computing. Below, we discuss applications of fog computing in the domain of ITS.

[14] and [96] have discussed some fog computing application for connected/smart vehicles.
Congestion mitigation, parking facility management, traffic light scheduling, precaution sharing, traffic
information sharing, etc. are some examples of such applications. Mobility support, location awareness,
geo-distribution all over the city and road-sides, the predominance of wireless access and support of
real-time interaction are among the number of features that makes fogging the idyllic environment to
provide various smart connected vehicle services in safety, traffic optimization, infotainment and other
ITS applications. TABLE 2.1 summarizes some recent fog computing based ITS applications.

TABLE 2.1. SELECTED APPLICATIONS OF FOG COMPUTING IN ITS

Application Architecture Fog Fog Among fog nodes  Reference,
Servers Clients Communication year
Finding a parking Three-tier RSU and Vehicles  Wireless and wired [101], 2015
space fogging other (to connect to cloud)

architecture with servers
two fog layers

Moving and Vehicle to Vehicles RSU and wireless [102], 2016
Parking vehicles infrastructure and and other
analysis vehicular ad hoc = mobile Sensors
network devices
Vehicular  data Conventional RSU, Vehicles  Wireless and wired [103], 2017
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scheduling three-tier fogging Base (to connect to cloud)

architecture Stations
Offloading  for Conventional Cloudlets  Vehicles = Wireless and Wired | [104], 2018
real-time traffic three-tier fogging and RSUs
management architecture
Mobility-based Conventional Vehicles, Vehicles  Wireless and wired [105], 2019
geographical three-tier fogging base (to connect to cloud)
migration model architecture stations,
for  computing and other
resources servers

Fog computing’s suitability for road traffic safety applications is stated in [14], [94]. A smart traffic
light can gather information from VRUs and vehicles, estimate collisions from the distance and speed of
VRUSs, and dispatch warning messages [14]. But this solution is limited to regions where traffic lights
are available. An increasing number of traffic accidents and a need to provide computational services to
road users have motivated authors of [94] to propose a new cloud computing model which includes fog
servers. The model can also be used for detection and resolution of undesirable traffic situations like
congestions. Traffic safety applications should provide fast, scalable and reliable services. Moreover,
they need to work in a heterogenous environment, making interoperability also one of the crucial
attributes. Fog computing needs to be exploited intensively for traffic safety applications as it comes
with the characteristics that fit the requirements of traffic safety applications.

2.4.4. PRIVACY AND SECURITY IN FOG COMPUTING

Fogging extends the cloud adjacent to 10T devices (fog nodes) which generate the data. The fog
nodes can be deployed anywhere in a network edge where network connection can be made with other
nodes and up to the cloud. They may be placed in remote locations where rigorous surveillance and
protection is not possible. In addition to sensing and processing the collected data, fog nodes are
responsible for storing the data at the edge of the network. Despite proven advantages, fog computing
has challenges that arise from its way of deployment and distributed nature. Fog computing has the
following issues: network management, placement of servers, delay of computation due to data
aggregation, energy consumption, privacy, and security. The devices heterogeneity, combined with
distributiveness of fog nodes brings new challenges for the network management [96]. Finding the right
place for fog servers such that they can provide maximum services to end users is another problem
[106]. Aggregation of data from multiple fog nodes (especially on multilayered fog layers) may
introduce long delays [107]. Energy consumption of mobile devices increases since fog computing
allows usage of the devices for many applications [108]. Privacy and security are fogging’s apparent and
most discussed challenges [18], [19], [108], [109], [110], [111]. Majority of the publications explain
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challenges and imperativeness of ensuring privacy and security issues on fog computing rather than
giving particular solutions.

The physical location of fog nodes in the vicinity of end users make the technology prone to
traditional attacks like eavesdropping, data hijack, etc. [109], [110], [111]. Moreover, fog nodes are
manufactured by various distinct companies, are maintained and managed by different individuals and
may be built by adversaries. They may also join or leave the fog layer any time posing service
interruption problems. Devices in fog computing may also be resource-constrained to perform
complicated procedures that confirm security [18]. Besides, the distributed architecture introduces new
security and privacy risk in addition to those inherited from cloud computing. Because of the reasons
pointed above, guaranteeing security and privacy in a fog computing environment is challenging. Yet,
there are some research works that have proposed solutions to tackle the challenges. TABLE 2.2
summarizes challenges to apply security and privacy techniques and the solutions proposed for fog
computing environments.

TABLE 2.2. CHALLENGES AND PROPOSED SOLUTION FOR SECURITY AND PRIVACY TECHNIQUES IN FOG

COMPUTING
Security and Challenges and Solutions
Privacy Technique
Authentication Challenges: 10T devices have limited computation resources to execute

cryptographic operations.
Solutions: According to [112], fog servers can be used for authentication. A
public key infrastructure-based authentication protocol is suggested in [110].
However, [19] questions usage of public key infrastructure-based
authentication in fogging due to the resource limitation.

Access Control Challenges: Secure collaboration and interoperability between the
heterogeneous resources are mandatory to fulfill the security and privacy
technique [109].
Solutions: a policy-based resource access control is proposed in [113]. A
comprehensive review of access control in fog computing is provided in [114].

Trust Challenges: Lack of central entity to manage trust, malfunctioning or change
of behavior of fog nodes and trust’s requirement of ensuring service reliability
are some challenges for trust management [109], [110].
Solutions: Many works are proposed for trust management in the loT
environment [115] and cloud computing [116]. A broker-based trust evaluation
framework for fog service allocation is proposed in [117]. However,
malfunctioning of the broker results in a complete cessation of the trust
management system.

Network Security Challenges: The predominance of wireless networks in fog computing implies
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Rogue Node
Detection

Intrusion Detection

Secure Data storage
and processing

End User Privacy

that it is highly susceptible to jamming attacks, sniffer attacks, etc. [19], [109].
Solutions: In general schema, [118] recommended separation of normal data
traffic from the network management traffic. However, it incurs a heavy
burden to network management since the number of fog nodes is usually huge.
In relation to fog networking, to avoid heavy roadside sensors and single point
of failure as well as to detect malicious vehicles, a secure intelligent traffic
light control system for Vehicular ad hoc Network (VANET) is proposed in
[119]. [120] proposed fog computing-based face identification and resolution
framework to ensure the identity consistency of humans in physical space and
cyber space.

Challenges: A rogue node may be injected or built up in fog networks. This
makes the environment vulnerable to attacks like man-in-the-middle attacks.
Dynamic environment and change of behavior of fog nodes make it hard to
maintain a blacklist of rogue nodes. The complexity of trust management in
various scenarios makes rogue node detection in IoT systems difficult [112].
Solutions: a framework that detects a rogue access points in Wi-Fi networks is
suggested in [121].

Challenges: In fog computing, intrusion can be detected by monitoring and
analyzing log file, access control policies and user login information [19].
However, the low latency requirement of fog-applications creates many
challenges in intrusion detection [109].

Solutions: Bearing in mind the resource limitations of loT devices, a
lightweight intrusion detection system is proposed in [122].

Challenges: the data stored in fog nodes is easily physically accessible.
Offloading sensitive data from one node to another may put data privacy at
risk. That is ensuring data integrity and unauthorized access is challenging.
Low-latency demands, supporting dynamic operation, dealing with the
interplay between fog and cloud, and resources limitation of fog devices are
reasons for challenges to ensure data storage and processing security [19].
Solutions: A privacy-preserving data transmission protocol that meets data
confidentiality and integrity, mutual authentication, anonymity, and key
escrow resilience is proposed in [123]. A data security storage model to realize
the integration of storage and security management in large-scale loT
application for fog model is presented in [124].

Challenges: Fog nodes being in the vicinity of end users puts identity, usage
and location privacy in danger [110]. Geo-distribution, location awareness and
increased communication make imposing privacy a difficult process.
Solutions: A secure positioning protocol with location privacy is presented in
[125]. However, the solution has limitations for applications that demand high
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position accuracy and high rate location sampling. Lack of trusted party in
fogging complicates the implementation of private usage. For identity privacy,
privacy-preserving methods mentioned in [126] can be used. However,
anonymization of user information for each task request may incur
computational burden [127].

Fog computing has a wide acceptance in academia and industry due to its characteristics that suit
many application requirements. However, some challenges have become obstacles to rejoice the
benefits. Security and privacy are among those challenges that require immediate attention. Because of
this, solutions are being proposed at a rapid pace. However, the problem is far from being solved in its
entirety. In fact, some literature has explicitly stated the difficulty of ensuring security and especially
privacy in fog environments. For instance, Mithun et al [110] stated that “how to provide the location
and identity privacy for fog computing is a challenging issue”. Jianbing et al [18] asserted that
“unfortunately, it is of difficulty to protect users’ locations in fog computing”. According to [128], fog
node faces new challenges in addition to those inherited from cloud computing due to its architecture
and unattended and remotely operated fogs.

However, we believe that trust management is one of the ways to tackle the problems of security and
privacy in fog computing. Trust management ensures user privacy and information security. It is also
related to reliability, integrity, dependability, and ability to perform a service. Trust management allows
autonomous connections establishment between fog servers and resource-constrained 0T devices.
Moreover, trust management is known to be effective in the detection of misbehaving nodes in a
network.

2.5/  SUMMARY AND DISCUSSIONS

Road accidents are causing unacceptably high death toll all over the world even though the
geographic spread of the losses is not uniform. A very high proportion of traffic deaths is among
pedestrians, cyclists, and PTWs due to their high volume and lack of protections. Even though road
safety doesn’t get attention it deserves, many passive and active road safety measures have been
proposed. Road safety solutions that use both passive and active safety solutions have high chance of
reducing road accidents. Active safety measures have capabilities to thwart an about-to-occur accident
by predicting the accidents, and warning road users. To detect potentially dangerous conditions of
VRUEs, active safety systems should understand the road scene using VRU devices. VRUs should share
their position and context information obtained using their devices to avoid traffic accidents, and
possibly for other ITS applications. VRU devices can be tags, dedicated devices or mobile devices like

27



smartphones. However, since many users own mobile devices with high computation, storage,
communication, and sensing capacities, they are ideal candidates to function as VRU devices.

VRU devices enable to create a connection between road users and vehicles using various
communication technologies. However, the devices must fulfill position accuracy and sampling rate
requirements of traffic safety applications. The applications require centimeter level position accuracy to
save road users from accidents. However, current mobile devices GPS readings are far from that figure.
Hence, various hardware and software-based accuracy improvement methods are proposed. Because
their small size and hardware limitations, hardware-based solutions of improving GPS accuracy of
mobile devices are not promising. Instead, the position accuracy of mobile devices can be improved
using algorithms like map matching algorithms. Regarding the position sampling frequency, a VRU in
high traffic safety regions needs to beacon his position data 10 times in a second, which is not satisfied
by current mobile devices. The fusion of data obtained from inertial sensors with GPS data is a feasible
solution to cope with high sampling demand of road safety applications. Nevertheless, high rate position
sampling and communication with vehicles results in high energy consumption of the handheld devices.
To solve this problem situation adaptive position sampling and communication based on road accident
risk-level of road users is helpful.

V2VRUs connection between vehicles and VRUs can be realized either directly or indirectly
through infrastructures. Infrastructure can be RSU, TMC, central server, etc. Indirect connection using
infrastructures have advantages over direct communication. Some of the advantages are heterogeneity
(devices that support different communication technology can communicate with each other), the burden
of running the VRU collision prediction algorithm and message management can be handled by the
infrastructure. It also enables the safety mechanism to cover large geographical area using multi-hop
communications. However, the involvement of infrastructures has an effect on response time, reliability,
and scalability of the application. Hence, the infrastructure must satisfy these and other characteristics of
road safety solutions.

Fog computing, which is a newly introduced distributed computing paradigm is an excellent
contender to serve as infrastructure in active safety systems. Fog computing extends cloud computing
closer to user arena so that end users can benefit from computation, storage, and communication
services provided at the edge of networking. It has advantages like low latency, geo-distribution,
location awareness, mobility support, predominant wireless communication, heterogeneity,
interoperability, and scalability, all of which are vital for safety critical systems. Therefore, in addition
to traffic safety systems, it is being proposed for emergency warning systems, e-Health systems, and so
on. However, its proximity to the end users access area makes the fogging vulnerable to security and
privacy attacks, among others. Moreover, fog nodes come from different vendors, are contributed and
managed by different individuals, and they can join or leave the network anytime. Some solutions are
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proposed to solve different security and privacy aspects, but the problem is still apparent and requires a
lot of effort to be safe from such attacks. Trust management-based solution is promising to address
privacy and security challenges in fog computing. In this type of remedies, fog nodes establish the
connection to only trustworthy nodes i.e. they avoid connection to untrusted nodes.

2.6/ CONCLUSIONS

Throughout this chapter, we gave an overview on road traffic injuries, road safety measures,
connected VRUs, and on fog computing. We have also discussed recent works in relation to the
aforementioned topics and the challenges which yet require attention. We began the chapter by
presenting the extent of road accident damages in human life. Next, the proposed passive and active
safety measures to alleviate the problem were discussed. Connecting VRUs with vehicles to exchange
personal safety messages is elaborated. VRU needs to have portable VRU devices to create a connection
through several options of wireless communication technologies. Furthermore, the requirements of VRU
devices used in active road safety systems and the efforts made to meet the demands as well as open
issues are explained. An emerging fog computing paradigm which has enormous potential for road
safety architectures is presented. Emphasis is given to architecture, features, and application of the
technology. Moreover, the privacy and security challenges of fog computing are discussed. Before we
provide the conclusion of the chapter, a summarized discussion is given.

The subsequent chapters present the main contributions of this thesis. To reduce high fatalities of
VRUs, we have proposed a fog computing-based road safety architecture that exploits omnipresent
mobile devices as VRU devices. The next chapter discusses this architecture. Following chapters deal
with challenges pertaining to mobile devices and fog computing to meet requirements of road safety
applications.
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PV-ALERT: A FOG COMPUTING BASED
ARCHITECTURE FOR SAFEGUARDING
VULNERABLE ROAD USERS

3.1/ INTRODUCTION AND PROBLEM STATEMENT

As it has been stated in previous chapters, road traffic injuries are globally one of the leading causes
of death [1]. The number of road traffic deaths because of traffic injuries exceeds deaths caused by HIV/
AIDS, tuberculosis, and diarrhea combined. More than half of those deaths are attributed to VRUs. Even
though traffic accidents and fatalities have decreased greatly over the past few decades, the decrease of
fatalities among VRUSs is much less than all other road users [3], [20]. Because of the lack of protective
“shells” or safety features, pedestrians are more vulnerable to traffic accidents than other groups of road
users. Pedestrian accidents occur in roads where LOS are affected, road intersections, straight roads, and
even in pedestrian crossings in both urban and rural areas. As distracted driving is the main contributor
to traffic accidents, many countries banned drivers from using mobile phones during driving. In recent
days, inattention and distracted walking like talking and walking, listening to music or texting have
become an emerging problem to pedestrians due to an exponential growth of the use of mobile phones
and other smartphones worldwide [5], [6], [7]. This chapter aims to take advantage of the pervasive
existence of mobile devices to propose traffic safety architecture that helps to protect VRUs instead of
becoming a reason for their death.

To assuage road traffic accidents, many passive and active protection mechanisms have been
proposed. Passive safety systems include measures that could be categorized into 'three Es': engineering,
education, and enforcement [31]. Providing a wide flat area for slower moving traffic, designing
bumpers, increasing visibility of roads, educating traffic safety, and setting strict law enforcement are
some examples of passive traffic accident protections. Active VRU protection measure involves VRU
detection, collision prediction, warning, automatic braking, and collision avoidance [129]. There are
situations where traffic accidents cannot be avoided. However, the application of both passive and active
protection mechanisms is crucial to minimize the number of traffic accidents. Many studies on active
traffic accident protection mechanisms are conducted to precaution pedestrians and other VRUs. Most of

30



these works are infrastructure-based, which depends on sensors, cameras, radio tags, road-side units, etc.
Contemporary researches on VRU safety rely on handheld devices of road users’ together with state-of-
the-art technologies to warn them about traffic accidents [53], [54], [55], [60], [77], [130]. However, still
most of these works rely on infrastructures RSU, TMC and Human-Machine Interfaces (HMI) for
vehicle to VRU communication and some of them are not reliable, others are not scalable or have high
latency.

In this chapter we present a fog computing-based architecture proposed to protect VRUs from traffic
accidents using ubiquitous mobile devices. Many VRUs have their own handheld devices like
smartphones, and the devices nowadays are outfitted with advanced onboard GPS sensors that can detect
their position. The devices support broadband Internet connections to connect to servers that predict
accidents. Since fog computing extends cloud computing down to users’ arena to proximate computing,
storage, and network services to end users, it is suitable for latency sensitive applications. The
decentralized computing infrastructure has essential characteristics like low latency, location awareness,
wide-spread geographical distribution, mobility support, the existence of a very large number of nodes
and predominancy of wireless access [14], making it ideal for traffic safety applications. The potential of
fog computing for ITS is advocated in the literature including [14], [102] and [131]. Currently, the
majority of researches in fog computing involves defining the computing paradigm, lucubrating its
characteristics and its relation with other related technologies, proposing networking and reference
architectures, as well as suggesting application scenarios where it is the best fit.

The proposed architecture is an infrastructure-less’ solution which uses VRUs’ and drivers’ mobile
devices crowd sensed data to detect their geographical locations and fog nodes to predict a collision risk,
and send warning, if there is imminent accident. VRUs’ and vehicles” GPS readings that includes speed
and direction are periodically sent to the fog node through wireless connections from the devices. Fog
node (or fog server) intakes the readings and executes VRU traffic collision prediction algorithm. If
there is any imminent collision, it sends warning messages to both VRUs and drivers. The three-tier fog-
node based architecture exploits the enabling characteristics of fog computing and has the capability to
detect traffic accidents accurately and send warnings in real time. The comparison of the architecture
with other smartphone-based solutions using evaluation criteria we have defined, shows that the new
architecture surpasses others in terms of scalability, reliability, and performance. Moreover, extensive
performance evaluations of the architectures in a simulated environment indicate that the architecture
fulfills latency and packet delivery ratio requirements of safety applications.

! The architecture does not need any additional and newly installed infrastructures (e.g. road side units) than those
already available for other purposes
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The remainder of this chapter is organized as follows. Section 3.2 elucidates summary of related
works. In section 3.4, we detail the proposed architecture and the algorithm defined for traffic collision
prediction. Section 3.5 presents performance evaluation results and comparison of the new architecture
with other related architectures. Finally, conclusions are drawn in section 3.6.

3.2/ RELATED WORKS

Even though traffic accidents and fatalities have decreased in the past few decades, the problem still
needs attention, especially for VRUs. To reduce traffic fatalities and accidents, various researches are
conducted, and many solutions are proposed, ranging from design enhancements in infrastructure and
vehicles to application of cutting-edge technologies for VRUs collision detection and prevention. As
stated earlier, traffic safety measures can be passive or active. Passive safety encompasses safety
countermeasures to mitigate the consequences of an accident as much as possible once it happens, such
as seat belts, air-bags, and strong body structures. However, active safety measures includes systems that
use an understanding of the state of the vehicle to avoid or minimize the effects of a crash, such as a
brake assist, electronic stability control system, advanced driver assistance systems [55], [132]. Safety
measures may be related to vehicles, VRUSs, or road infrastructures. Some examples of passive and
active safety measures and literature that deals with the measures are recapped in TABLE 3.1.

TABLE 3.1. EXAMPLES OF PASSIVE AND ACTIVE VRU SAFETY MEASURES

Passive safety measures Active Safety measures
Pedestrian Airbag System [133] Special pedestrian traffic lights [134]
Proper usage of Seat Belts [135] Intelligent Vehicle Speed Controller [136]
Automatic in-vehicle emergency call service Navigation Systems [138]
(e.g. eCall) [137]
Padding to reduce injuries in automobile Automatic Emergency braking [40]
accidents [139]
Intelligent restraint Systems [140] Adaptive light control [141]
Using Helmets [142] Motorbikes and cyclist’s detection and warning

system using V2X Communications [84]

Studies in traffic safety solution may be grouped in both active and passive types. For instance, [143]
proposed a new approach using state-of-the-art numerical technologies for VRUs’ safety enhancement.
The solution can detect VRUs and provide data to active safety systems to protect accidents, and in case
of an unavoidable accident it puts passive safety structures and systems into operation to mitigate the
collision effect. Other studies consider all types of VRUs: an urban VRU classification framework using
local feature descriptors and hidden Markov model has been proposed by [144] to detect and classify
pedestrians, bicyclists and PTWSs. Though the focus is on pedestrian safety, our architecture can also
entertain all types of VRUs as long as the VRUs are equipped with mobile devices.
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Literature on passive pedestrian protection systems and the earlier works on active pedestrian
protection systems that require cameras, infrared, radar, tags, and image processing are discussed in
detail in [129]. To protect distracted users, recently, many solutions have also been proposed, including
designing special traffic lights [134]. The solution, which is named the +Lichtlijn is linked to existing
traffic lights and emits lighting strip in the pavement. Pedestrian detection mechanisms mentioned above
require infrastructures, are profoundly affected by weather and do not work if the pedestrian is not in
LOS or in situations where visibility is limited. Therefore, researches that depend on V2P
communication technologies to overcome these problems have got attention. Smartphones which are
becoming causes of many traffic accidents are being used for safeguarding VRUs instead. Because of
their sensing and communication capabilities, they become feasible for VRUs active safety [15].
Smartphone based systems are important to protect VRUs whose line of vision is affected by buildings,
trees, parked cars, and other hindrances.

V2P communication prototype has been developed using the 3G cellular network and WLAN to
deter possible collisions by giving an alarm to both pedestrians and vehicles [77]. The authors have
developed an algorithm that estimates the collision risk between pedestrians and vehicles and tested the
prototype at T intersection. However, due to the absence of dedicated central servers, the system is not
scalable to be applied in different road scenarios and to accommodate increased number of road users. In
another similar work [60], vehicles directly alert pedestrians their existence in close distance using Wi-
Fi technology. This work has revealed minimum information exchange distance based on the
communication technologies used and claimed that Wi-Fi could satisfy the application requirements.
Minimum information exchange distance is the minimum distance vehicles, and pedestrians have to
exchange information to avoid accidents. Nevertheless, as there is no central server that manages
messages sent to pedestrians, there is a possibility of message overloading. In another research [55], a
pedestrian safety concept based on pedestrian detection, filtering supported by personal profiles and
context awareness, prediction calculation, communication, and warning has been demonstrated.
However, the solution looks impractical as most of the pedestrians may be strangers. In this work, an
assessment has been made on different architectures comprising different combinations of cellular and
ad hoc networks.

Albeit the main focus of [53] is on energy management of smartphones while using them for
pedestrian road safety, the authors have proposed a method which assists the development of V2P road
safety applications without requiring any infrastructure unless existing ones like a central cloud server,
mobile devices and cellular connectivity of vehicles. They also argued that cellular networks are best fits
for pedestrian safety applications due to high mobility support, high bit-rate, large communication range,
and high capacity as well as reduced user adoption costs and market penetration time. However, cloud
computing-based applications are not suitable for low latency applications. In an architecture proposed
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in [54], the information generated by vehicles’ and cyclist’s mobile devices is sent over heterogeneous
communication architecture and processed in a central cloud server which generates messages that are
shown on the drivers’ and cyclists® HMI. The proposed C-ITS allows the use of vehicles as mobile
sensors that share their positions, speed, and direction in the form of floating car data with the VRUs
warning each other about their locations so that they can take appropriate maneuver to avoid collisions.
The system is primarily designed for cyclists, and it relies on infrastructures like RSUs, TMCs and
HMIs.

The summary smartphones based VRU traffic safety proposals in terms of communication mode,
communication technology, VRU type addressed, and whether the alerts are sent to VRU only, or to
driver too are shown in TABLE 3.2. Communication mode, could be direct, indirect with the assistance
of infrastructure (shown in bracket) or hybrid.

TABLE 3.2. SUMMARY OF TRAFFIC SAFETY WORKS FOR VRU

Reference Communication Communication VRU Type Alert sent
Mode Technology to
Hernandez-Jayo et al. [54]  Indirect (Central Server) Cellular, 802.11P  Cyclist Cyclist
Anaya et al. [60] Direct Wi-Fi pedestrian Pedestrian
Bagheri et al. [53] Indirect (cloud server) Cellular Pedestrian -
David and Flach [55] Hybrid (Central Server)  Cellular, Wi-Fi Pedestrian -
Sugimoto et al. [77] Hybrid (Central Server)  Cellular, Wi-Fi Pedestrian, VRUs and
Cyclist drivers

Our work differs from works mentioned above in the fact that it is based on a fog computing
architecture to take advantage of geographically distributed fog servers to collect crowd sensed data
from VRUs and vehicles, predict collision risk and dispatch warning messages to road users and drivers.
As mobiles have limited capacity, scalable architecture with low latency is mandatory. The proposed
architecture which is named PV-Alert (Pedestrian-Vehicle Alert, as the architecture is tested mainly for
pedestrians) meets these characteristics and doesn’t require special infrastructures except existing ones (
users’ smartphones, wireless connections, and fog computing environment).

3.3/ PROPOSED ARCHITECTURE AND ALGORITHM DESCRIPTION

In this section we first present the proposed architecture and its components. Next, a description of
the VRU collision prediction algorithm including its flow chart is outlined.

3.3.1. PV-ALERT ARCHITECTURE

PV-Alert is the architecture that relies on only existing infrastructures, mainly fog computing
environment and smartphones, Figure 3.1. The architecture has three layers: perception layer (or user
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layer), fog layer, and cloud layer. The detail description of the layers is presented in the following
paragraphs.

Core Network
- _==="=7_ cloud " Cloud Layer

Figure.3.1: PV-Alert — the VRU safety architecture

User layer or perception layer refers to road users and their associated mobile devices. This
layer is responsible to perceive and send positions of VRUs and vehicles in terms of latitude,
longitude, velocity, bearing, and other associated data. It also receives alert messages sent from
fog nodes. At this stage, just like [55] and [130], we assume that the position information read
by smartphones of VRUs and drivers has enough precision for traffic safety applications. Of
course, chapter 4 deals with an improvement of GPS accuracy since positions read by
smartphones are inaccurate [145] and VRU safety systems require very accurate GPS readings.
After appending time stamp, the CAM is sent to the nearby fog node periodically. If there are
more than one fog nodes in proximity, the load situation, quality of service or other parameters
can be taken into consideration for node selection. Note that the minimum CAM frequency for
traffic safety applications is set to be 1Hz by ETSI [59]. If the traffic risk level of VRU is
higher, the frequency of sending CAM must increase accordingly. On the other hand, if VRUs
are in less traffic risk regions, smaller frequency of messaging can be applied to save energy
consumption of smartphones and bandwidth of the network. For instance, even though the
owners of the mobile devices are near roads, their mobiles send data to the fog node only when
there is any potential risk of collision and when they are in motion. Furthermore, VRUs who are
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moving away from vehicle roads and which are not in the proximity of roads are excluded from
sending the CAM. It is the duty of collision prediction algorithm which runs in fog server to
recognize such situations and instruct the smartphones to switch frequency of beaconing CAM.
See chapter 6 for more on collision risk level based adaptive beaconing rate management.

e Fog Layer is another important layer of PV-Alert which mainly contains Fog nodes. The fog
node may be either a single device like a gateway, switch, router, access point, or group of
devices working together. The responsibility of this layer is receiving CAM messages sent from
connected VRUs and executing collision prediction algorithm. If any risk of collision is
anticipated, the node sends DENM in real time to both VRU and driver as accidents are usually
due to driver’s error and/or VRUSs’ inattention or destruction. Moreover, fog nodes perform
perturbation and aggregation of the collected data before sending it to the cloud for user privacy
and data security. Fog nodes can communicate with each other. This makes the computing
paradigm scalable and reliable. Moreover, a fog layer is usually arranged in two or three layers.

e The third layer comprises a cloud server. Its responsibility is performing aggregated analysis on
data received from fog nodes for further use in traffic analysis and decision making.

Edge location of fog nodes in bus stations, supermarkets, and road side buildings make fog
computing an ideal solution for latency-sensitive applications like traffic safety [14]. Fog nodes may be
connected to smartphones using WLAN, which could be Wi-Fi, cellular networks including LTE,
WIMAX, etc. The nodes are extended to the cloud server using core networks. The length of the road
segment covered by a single fog node varies from hundreds of meters to kilometers depending on the
communication technology used. The next section details the collision detection algorithm for VRUs.

3.3.2. COLLISION PREDICTION ALGORITHM DESCRIPTION

In PV-Alert, CAM messages sent from drivers’ and VRUs mobile devices are processed by fog
servers to predict collisions. Road user collision prediction algorithm is helpful to predict collisions and
send alerts to VRUs and drivers. The algorithm is deployed in fog nodes and can be applied to any road
scenario. Its flowchart is shown in Figure 3.2.

In the initialization step, VRUs’ and drivers’ mobile devices are subscribed or connected to the
server. Smartphones send their sensed CAM data to the server periodically. For optimization purpose,
VRUs moving away from road segments, far away from road segments and those at rest send their
position data at long intervals. Those who are in no danger of traffic accidents are inactivated.

The succeeding step identifies intersecting VRUs and vehicles using the sensed data, road
information and the source, destination as well as path of each vehicle. Intersecting VRUs and vehicles
are those which cross each other with possible collision risks. If we consider a traffic scenario shown in
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Figure 3.3, Vehicle V1 is expected to intersect only road user VRU1 since VRU2 is moving away from
the vehicle and VRUS3 is too far from the Vehicle. In this way, intersecting road users can be obtained
for each vehicle to VRU combination.

"

Figure 3.2: Flowchart of VRU collision prediction algorithm
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Figure 3.3: Identifying intersecting VRUs and vehicles

The most essential module is a collision risk prediction module. This module estimates potential
dangers of the collisions between road users, and vehicles at a particular instant of time. For this
purpose, minimum information exchange distance (D,,;,) is computed using the equation obtained from
[60]:

Dmin = Vveh * (tp + tr + ttx + tc) + GPSerr—veh + GPSerr—VRU (31)



Where V,j, is the velocity of a vehicle; t,, is the perception time, and it is 0.83s [60]; t, is the
reaction time, and it is 0.17s for audio alerts [146]; t;, is the transmission delay; t. is the computation
time of algorithm, and GPS,,,—,en, aNd GPS,,_yry are GPS errors of vehicles and VRU locations.

Next, the actual distance from the vehicle to VRU crossing in the road is calculated. The actual
distance is simply calculated using distance formula as locations of the two parties are known and as we
have a database storing road information. Based on D,,;, and actual distance, it can be determined
whether there is an imminent collision or not. If the actual distance is less than D,,;,, then the VRU is in
a collision risk region, and a warning message is sent to both driver and the road user. If a VRU is in
more than one collision risk regions of vehicles, then a warning message management module takes care
of multiple messages to avoid messages overload. The algorithm runs indefinitely in iteration within the
fog node. To evaluate the architecture, the algorithm is implemented and installed in a fog server.
Details of performance evaluation of the PV-Alert are described in the following subsection.

3.4/ PERFORMANCE EVALUATION AND DISCUSSION

In this section, we first give an analytical comparison of PV-Alert with other similar smartphone
based VRU safety architectures. Simulation setup and the considered road scenario are then discussed.
Performance evaluation results are presented at the end of this section.

3.4.1. ANALYTICAL COMPARISON

Various smartphone-based architectures have been proposed since today’s mobile devices have
many capabilities in addition to their primary purpose. Comparison of different architectural approaches
utilizing ad hoc and/or cellular technologies and different processing setups (i.e., location of filtering
process) has been made by Klaus David et al. in [55] using criteria like energy consumption, time
agility, reliability, cost and ease of management. In this subsection we present a similar analytical study
that compares PV-Alert with other smartphone-based traffic safety architectures using our new
comparison criteria.

Generally, smartphone-based traffic safety architecture can be categorized into two classes:
architectures that use only the handheld devices with no central server and architectures that use the
smartphones and some kind of central server or infrastructure. In the former case, vehicles and
pedestrians directly communicate with each other [60]. This implies that the collision prediction
algorithm runs on the mobile devices. In the latter case, the mobile devices are primarily responsible to
send CAM to the central server and to receive DENM or warning message dispatched from the server.
So, the prediction algorithm runs on the central server. Further classification can be made on the second
group based on whether a central server is a cloud server [53], [54] an ordinary server [55], [77], [130],
or a fog server (PV-Alert). Hence, we propose to classify smartphone-based architectures into four
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categories: mobile-to-mobile (M2M), mobile-to-cloud (M2C), mobile-to-ordinary server (M20S), and
mobile-to-fog node (M2FN). M20S differs from M2FN in that the former has a standalone server that
has no capability to communicate with neighboring servers. The architectures are compared in terms of
energy saving, latency, reliability, scalability, computational capability, and message management. The
comparison metrics are briefly defined below.

Energy saving - is the ability of an architecture to assist mobile devices to save their energy.
Latency - as defined in [55], is concerned with how much time the system has between sensing
and reaction. Round trip time, connection establishment time, and VRU collision prediction
algorithm processing time have important contributions for the latency.

Reliability - An architecture is said to be reliable if the failure of some of its component does not
lead to the cessation of the entire system.

Scalability of an architecture is its ability to cope and perform as an application of the system
expands to city wide scale beyond road segments.

Computational capability refers to the capability of the server to run collision prediction
algorithm efficiently.

Message management is about handling multiple warning messages for a VRU or a driver. That
is, if a VRU is in collision risk area of multiple vehicles, he may receive multiple warning
messages causing a message overloading. But for optimum safety of the road user and proper use
of resources, VRUs should receive one message that indicates multiple collision risks.

TABLE 3.3. COMPARISON OF DIFFERENT TRAFFIC SAFETY ARCHITECTURES

Architecture M2M M2C M20S  M2FN
Energy Saving - + + 2
Latency + - + n
Reliability + - - +
Scalability - + - +
Computational Capability - + + +
Message Management - + + +

As shown in TABLE 3.3, architectures are ranked as + (for high) if the architecture meets the

criteria or — (for low) otherwise for each criterion. Architectures involving only mobile devices (M2M)
have the shortest latency and the failure of one or more mobile devices will not affect the entire system.
However, it has high energy consumption, low computational capability, limited scalability, and is
subject to message overloading. Architectures with a central server (M2C, M20S, and M2FN) enable
mobile devices to save their energy (since collision detection algorithm runs on the servers with
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continuous power supply), have a high computational capacity, and can centrally manage warning
messages. Reliability of M2C and M20S are low since the failure of a centralized server leads to total
stoppage of the system. Fog node and cloud server-based systems have high scalability due to geo-
distribution and high computational capacity, respectively. Therefore, from this comparison, we can
conclude that a fog-based architecture is the best fit for VRU safety applications as it is more reliable,
scalable, and has low latency.

To reinforce analytical comparison results, we have made an empirical performance comparison on
selected architectures from each of the four categories. As shown in Figure 3.4, mobile to mobile
architecture proposed in [77] has a delay of 20ms for V2P communication when wireless LAN is used.
Average round trip time of bike and vehicle reception delays of mobile to cloud architecture is about
281ms [54]. In mobile to ordinary server architecture proposed by [55], the latency of 100ms is
registered when, by then latest cellular network, high speed packet access network is used. Mobile to fog
node (i.e. PV-Alert) architecture has a maximum round trip delay of 60ms, see section 3.4.3, making it
the second-best time. However, with other attractive characteristics of fog-based architecture, it is the
best choice for VRU safety applications. In addendum, we can infer that fog computing is a promising
computing paradigm for other ITS applications.
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Figure 3.4: Latency of different smartphone-based VRU safety architectures

3.4.2. SIMULATION SETUP AND SCENARIOS

Before deploying the proposed architecture in a real environment, testing the system in a simulated
environment is vital. The purpose of simulations in this research is to check if PV-Alert is feasible and
fulfills the constraints enacted by ETSI for traffic collision warning VRU applications. The main
objective of our research is to enable drivers & VRUs avoid collisions by notifying each of them
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through their mobile devices. Mobile devices could communicate with the fog node using Wi-Fi,
WIMAX or cellular connections like LTE. Different works already show that both Wi-Fi [60] and
cellular [53], [147] connections can be used for traffic safety applications. Hence, our simulations are
done for Wi-Fi and LTE. The fog node is placed in the proximity of an access point and an eNodeB for
Wi-Fi and LTE, respectively. Our simulation is different from evaluations of other similar works in that
our tests include a large number of VRUs (i.e., pedestrians) and vehicles. Such simulations are very
important, since it is very difficult to run on a real environment. The two-performance metrics
considered to evaluate the architecture are:

e Round Trip Delay Time (RTD) — the time period from sending CAM beacon to the fog node to
receiving a warning message in case of an anticipated accident. It is computed using the
following formula:

RTD = Tsp—fn + TC + Tfn—sp (32)

Where,

Tsp—n is end-to-end delay from smartphones to fog node,
- Tpp_spis end-to-end delay from fog node to smartphones,
- T, is computation time of the algorithm.

e Packet Delivery Ratio (PDR) — the average ratio of packets received by fog node and
smartphones to the total packets sent to fog node (from smartphones) and to smartphones (from
the fog node).

We used the following equation to calculate PDR:
Prec—sp N PRec—fn>) (3.3)

PGen—fn PGen—sp

1
PDR = 100*(§*<

Where,

- Pgen—sp IS total number of packets generated by smartphones,
- Prec—sp is total number of packets received by smartphones,
- Pgen—yr is total number of packets generated by fog node,

- Prec-sp is total number of packets received by fog node.

PV-Alert is evaluated using discrete-event open network simulation environment ns-3 [148] and
microscopic, multi-modal traffic simulation tool SUMO [149]. Both tools are most widely used since
they are open source and are being actively supported. As depicted in TABLE 3.4, the simulation
parameters are grouped into four: general parameters, parameters related to SUMO, and communication
technology parameters for LTE and Wi-Fi. The size of the packet (i.e., CAM message) which is sent
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every second for two minutes to the server is assumed to be 1KB. The speed of vehicles is taken to be
between 10km/h to 80km/h while pedestrian speed is 5km/h. Furthermore, important parameters and
respective values are displayed in TABLE 3.4.

TABLE 3.4. SIMULATION PARAMETERS
Parameter Value

General Parameters

Packet Size 1KB
Simulation Time 120s
CAM Frequency 1Hz

SUMO Parameters
Vehicle Speed 10-80km/h
Pedestrian Speed 5km/h
Simulation Area 120mx60m(Wi-Fi) & 3000mx60m(LTE)
Scenario Refer Figure 3.5

LTE Parameters

Propagation Loss model Nakagami with Free Space path loss
Fading Model Trace Fading Loss Model
Scheduler Proportional Fair MAC Scheduler
TxPower(eNB) 25dB
TxPower (UE) 15dB
Downlink bandwidth 30MB
Uplink bandwidth 25MB

Wi-Fi Parameters
Propagation Loss model Nakagami chained with Log Distance
Bandwidth 20MHz
Frequency Band 5GHz
Client TxPower 16dB
Server TxPower 25dB

The road scenario considered is a two-lane straight road with many pedestrian roads crossing it, see
Figure 3.5. The reason for why we have chosen this scenario is vehicles speed is high in a straight road
and pedestrians coming out of smaller intersecting roads are highly susceptible to traffic accidents due to
an affected line of vision, distraction, or inattention. Moreover, the severity of a straight road crash is 0.9
to 3.2 times more severe or fatal outcome than on non-straight roads [150]. Even though many studies
focus on crossing roads [60] and T roads [77], the literature reveals that a high percentage of road
accidents occur in straight roads; 89.8% [151], and 93% [152]. Pedestrian accidents are even common in
pedestrian crossings [153], [154].
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Figure 3.5: Simulation scenario
3.4.3. RESULTS AND DISCUSSIONS

As mentioned before, the system is evaluated for both Wi-Fi (results shown in figures Figure 3.6 and
Figure 3.7) and LTE (results shown in figures Figure 3.8 and Figure 3.9).

Figure3.6. a) shows how the delay is impacted by the distance between fog server and pedestrians or
vehicles. We can notice that the RTD of both pedestrians and vehicles is under the maximum latency
time (100ms) set by ETSI [59]. The difference between the two is due to their speed since slow-moving
objects will have more chance to access the channel than faster ones.

Packet delivery ratio is also affected by the distance between the fog server and road users as well as
speed, as shown in Figure 3.6. b). More than 80% of the packets sent are received as long as the distance
of mobile devices is not more than 100m. Signal attenuation is the main reason for the dropping of PDR
when the distance exceeds 100m.
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Figure 3.6: RTD and PDR vs. Distance (Wi-Fi connection with the Fog node)
Figure 3.7 depicts the evaluation results of delay and PDR when the number of road users increase

(of which approximately 50% pedestrians and 50% vehicles) and by varying the vehicles’ speed to
30km/h, 50km/h, and 80km/h. As shown in Figure 3.7 a), the RTD increases as the number of road users
and their speed increase, but the delay is still below the maximum expected latency time. The increase is
due to the interference and congestion as multiple nodes contend to access the same medium. In Figure
3.7. b), we varied the vehicles’ speed and raised the number of pedestrians and vehicles. For slow
moving vehicles (30km/h), and pedestrians (5km/h) more than 80% PDR is well achieved till the
number of nodes reach 70. However, PDR for fast-moving vehicles is low if the number of nodes
exceeds 25. This is because fast-moving vehicles have less access to the medium and due to packet
losses owing to interference. The results confirm that Wi-Fi has better performance in sparse networks,
and it has limited mobility support [155].
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Figure 3.7: RTD and PDR vs. Number of Vehicles and Pedestrians (Wi-Fi connection with the Fog node)
Experimental results of RTD and PDR when an LTE connection is used by smartphones to

communicate with the fog node is given in Figure 3.8 and Figure 3.9. Round trip time delay increases
from 20ms to 60ms as the nodes move away from the fog node, as shown in Figure 3.8 a). The delay
fulfills the application requirement and we can notice that the difference between fast-moving vehicles
and slow-moving vehicles is not significant due to high mobility support of LTE [155], [156]. The same
is true for the PDR as shown in Figure 3.8 b); PDR exceeds 80% for all distances and the difference
among vehicles moving at different speeds is insignificant. However, there is a minor decrease in PDR
as speed and distance increase.
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Figure 3.8: RTD and PDR vs. Distance (LTE connection with the Fog node)
Figure 3.9 shows the impact of the number of vehicles and pedestrians on delay and packet delivery

ratio at different distances. Due to the high mobility support of LTE, we have observed that the speed
does not significantly impact on the delay and PDR. Therefore, the experiments are realized for different
average distances and velocity of vehicles that does not exceed 80km/h in urban scenarios. At average
distance of 1km, all delays of nodes are below the threshold value. However, as vehicles’ and
pedestrians’ an average distance increase (2km and then 3km), the delay increases due to signal
attenuation combined with network congestion. In Figure 3.9 a), if the number of vehicles is 55 or
below, the system satisfies delay requirement at any distance. PDR is more affected by the number of
nodes than distance, as depicted in Figure 3.9 b). The average PDR of uplink and downlink is above
80% for all the distances, though it gradually decreases as the number of nodes increases. Moreover, we
have noticed that downlink PDR is higher than uplink due to downlink’s higher bandwidth.
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Figure 3.9: RTD and PDR vs. Number of Vehicles and Pedestrians (LTE connection with the Fog node)
From the simulation results, we conclude that the proposed fog-based architecture, PV-Alert, meets

the constraints fixed by ETSI for safety applications regardless of the wireless communication
technology (Wi-Fi or LTE) used between fog server and smartphones.

3.5/ CONCLUSIONS

High volumes of pedestrians, cyclists, and other VRUs have much higher casualty rates per mile;
this is not surprising given their lack of protection from an accident. To alleviate the problem, we have
proposed an architecture that exploits enabling features of the new computing paradigm named fog
computing and the sensing capabilities of mobile devices to detect, warn, and safeguard the road users.
Fog computing is a promising solution for problems that require low latency, high geographical
distribution, high mobility support, location awareness, etc. In the proposed architecture (i.e. PV-Alert)
VRUs are connected to fog servers using wireless transmission media through their smartphones to send
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geographical awareness information to the servers and to receive warning messages in case of an
imminent traffic accident. Collision risks are estimated using VRU collision prediction algorithm
installed in fog servers. Analytical and performance comparisons of the architecture to other
smartphone-based VRU safety architectures based on the criteria we defined shows that it has high
scalability, reliability, and low latency. Moreover, the simulation results show that the proposed
architecture is able to render alerts in real time whichever the wireless communication technology (Wi-
Fi or LTE) used to connect the smartphones with fog nodes. That is, it can meet the maximum latency
requirement enacted by ETSI for collision warning systems and the packet delivery ratio requirement of
safety critical systems. The solution can be deployed quickly since it depends only on users’
smartphones and doesn’t require special infrastructure except for existing fog computing environment.
Therefore, we conclude that fog computing is a feasible solution to safeguard connected VRUs from
traffic accidents.

However, smartphones GPS fixes accuracy, high energy consumption, high position sampling
period, as well as privacy and security issues in relation to fog computing, need to be addressed before
deploying the application in the real environment. Chapter 4 discusses the solution proposed to improve
the accuracy of GPS position fixes of smartphones. Insufficiency of the sampling frequency of the
mobile device is dealt with in chapter 5. Chapter 6 explains the solutions proposed to tackle high energy
consumption of mobile devices while using them for traffic safety. Data security and user privacy issues
introduced due to fog computing are addressed using a two-way subjective logic-based trust
management system, which is explained in chapter 7.
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a4

PV-ALERT: MEETING POSITION ACCURACY
REQUIREMENT

4.1/ INTRODUCTION AND PROBLEM STATEMENT

The number of mobile device users is increasing from year to year due to their reduced price [11],
[12]. The high penetration rate of the handheld devices and their increased capabilities to sense,
compute, store, and communicate have made the devices important components of many applications.
The mobile devices are equipped with GPS chipsets, multiple sensors, high storage capacities, fast
processors, and multiple wireless communication interfaces. In light of this, mobile devices have
become vital for location-based services to offer directions, targeted recommendations, or other
location-specific information. Location data obtained from smartphones’ GPS and motion sensors could
also be used for ITS applications. In chapter 3, a fog-based active safety architecture to safeguard
pedestrians and two-wheelers from traffic accidents is proposed. PV-Alert depends on GPS locations
obtained from the mobile devices of drivers and VRUs [56].

Various other works in literature has investigated the potential of using smartphones as mobile
sensors for active safety systems to protect VRUs [15], [61], [157], [158]. However, according to [15],
GPS locations obtained from smartphones have 4.68m longitudinal and 6.83m latitudinal accuracy on
average, and according to [61] the median horizontal error locations are found to be between 5.0m and
8.5m on average. These values are not sufficient for traffic safety applications. The experiments we
conducted in urban and rural areas in different environment conditions also confirm this. In fact, there
are several factors like weather conditions, obstructions, noise, and interferences that result in an
inaccuracy of GPS readings by delaying GPS radio signals [159].

Attaching external GPS receivers like GNSS antenna to mobile devices enables to obtain centimeter
accuracy [64]. But this will limit portability and create the devices usage inconvenience. Map matching
is the most widely used techniques to correct the locations by matching to the road network. It is the
process of correcting a sequence of real-world locations obtained from GPS readers by estimating the
right road segments. Correlating the GPS points to road segments can be done either in post-processing
mode or real-time mode [160]. Post-processing technique has complete knowledge of the user’s
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trajectory since actual mapping is performed after the user has completed his journey. It fits with non-
time sensitive applications like mining historical trajectories of a large number of experienced taxi
drivers to find the shortest routes between different origin-destination pairs at different times of day
[160]. Real-time map matching, also named incremental or online map matching, involves assigning
currently obtained user location immediately to the correct segment (hence its name). Real-time map
matching is employed for applications that demand prompt alignment of user positions. Incremental
map-matching algorithms have fast computation time, which usually trades with accuracy. The
inaccuracy comes from the lack of global knowledge of the matching sequences [161]. However, the
precision in online map matching can be soothed by adding constraints that lift the matching accuracy.

Map matching process employs various types of methods like Kalman filter, multiple hypothesis
technique, chain code method, hidden Markova model, and fuzzy logic [160]. Dynamic Time Warping
(DTW) algorithm, which involves measuring similarities between two time series sampled at equidistant
points in time can also be used for map matching. The algorithm has been extensively applied in various
disciplines including speech recognition, handwriting, and online signature matching, sign language and
gestures recognition, etc. [162]. DTW is applicable only with the conditions that the complete sets of
two time series are available. For applications which have incomplete time series, DTW needs to be
adapted. Online Time Warping (OTW) is a modified version of DTW which is found by making several
changes to align known time series with partially known ones in real-time [163].

In this chapter, we present a two-stage algorithm which performs incremental map matching to relate
GPS points obtained from mobile devices of VRUs to a reference road segment. In the first stage, to
improve the accuracy of matching by polishing outlier GPS points, Kalman filter is employed. In the
second stage, OTW based map matching is applied to map GPS readings to reference data obtained from
road networks using distance and direction difference similarity measures. Extensive evaluations have
been made to assess the proposed algorithms in terms of accuracy and response time for three route
trajectories of medium pedestrian walking distances.

The rest of the chapter is laid out as follows. Section 4.2 explains preliminary experiments made to
check the accuracy of current smartphones, summarizes the literature on real-time map matching, and
deals with the theoretical foundation of DTW and OTW. Section 4.3 discusses the proposed OTW based
map matching algorithms. Evaluation setup and results are explained in section 4.4 and conclusions are
given in section 4.5.

4.2/ BACKGROUND AND RELATED WORKS

An experiment conducted to evaluate accuracy of smartphones is presented, in this section. The
purpose of the evaluation is to check if current smartphones are indeed inaccurate for traffic safety
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applications. Then related works on map matching are discussed. Lastly, DTW and OTW are briefly
introduced.

4.2.1. ACCURACY OF SMARTPHONES GPS READINGS

Results from early researches [15], [61] have shown that GPS readings have insufficient accuracy
for location-based safety critical applications. We also have conducted an experiment to assess the
accuracy of GPS read by present-day smartphones according to known geographical areas and under
various reception conditions. We used an Android smartphone equipped with GPS on-board sensor, PC
for recording exact positions from high precision real-time kinematics (RTK) receiver and a tape
measure for measuring ground distances. The GPS readings are taken from an urban area which is
surrounded by buildings and trees and relatively plain rural area in Nevers, France in two different
weather conditions (sunny and cloudy days).
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Figure 4.2: GPS readings for sunny day on urban area with a) Smartphone and b) RTK
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During the measurement process, the RTK receiver’s antenna was kept two meters above the ground
to get accurate measurements. The mobile device used to get GPS readings is a Samsung, Model M-
A520F. For each weather condition and area pair, we have taken 72 measurements starting from a center
in eight different directions, each differing in 45°, at a 1-meter distance and then adding 3m to each of
the previous measurements. The RTK and other equipment used, and the measurement results are shown
in Figure 4.1. Smartphone and RTK readings for an urban area on a sunny day are displayed in Figure
4.2 a) and b), respectively.

TABLE 4.1 summarizes results of the measurements. The measurements taken on a sunny day in a
rural area are most accurate and those taken on a cloudy day in an urban area are the least accurate.
From the experiment, we can conclude that GPS readings obtained from the mobile devices have
insufficient accuracy for traffic safety systems. Moreover, we have found that the readings are scattered,
see Figure 4.2 a). So, smoothing the readings and improving the accuracy of locations to precisely
predict and avoid traffic accidents is mandatory.

TABLE 4.1. GPS ACCURACY OF A SMARTPHONE AT DIFFERENT CONDITIONS

Rural Urban
Sunny Day 2 to 3 meters 2 to 6 meters
Cloudy Day 2 to 7 meters 3 to 9 meters

4.2.2. RELATED WORKS ON MAP MATCHING

Many ITS applications depend on location information obtained from mobile devices. Fleet
management, route optimization, accident warning, and reporting are some of such applications [164].
Depending on the application, location accuracy and sampling frequency requirements, and even the
type of location method may be different. Traffic safety applications require high accuracy and sampling
rate. Though GPS readings of smartphones necessitate improvements, they can be used for safety
applications. One way to improve GPS accuracy of the mobile devices is by using map matching.

Map matching algorithms take location readings from GPS or inertial sensors as input and identify
the right road segment where the readings should belong. Various researches on map matching have
been reported, and a detailed review can be obtained from [160] and [165]. Most of the researches
reported on map matching are conducted for vehicular navigation systems. However, there are still some
studies on VRU navigation systems, especially for pedestrians. These studies used various techniques
starting from integrating GPS with other auxiliary techniques to advanced map matching to correct
pedestrian locations. As per [166], correction of Dead Reckoning (DR) parameters, heading and step
size, have improved DR-only based location accuracy. Their method is able to further increase the
positioning accuracy when GPS signals are available. Different filters to GPS locations obtained from
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inexpensive consumer-grade GPS receiver connected to a personal digital assistant is applied in [167].
Among the filters considered, map matching filter can significantly reduce GPS errors.

Ren et al. [168], in their successive studies, utilized various techniques for wheelchair and pedestrian
navigation. They presented an efficient chain-code based map matching that looks at the trajectory of the
data in addition to the current position [169]. A hidden-Markov model-based map matching algorithm
proposed in [170] was able to outperform the chain-code based method in terms of correct segment
identification. Fuzzy logic-based map matching is presented again by Ren et al., [171] to yield
numerically accurate output from readings gathered in an urban environment. The algorithms just
mentioned were tested in the sidewalk network on a university campus. In other recent researches, 3D
map matching algorithms are proposed for urban canyon area [172], [173].

Most map matching algorithms presented in literature work in post-processing mode. However, there
are still some real-time processing map matching algorithms [166], [174]. Bang et al. [174] reiterated
how complex and detailed pedestrian network data are in comparison to vehicular datasets and presented
a real-time pedestrian navigation system based on the Fréchet distance approach. The method was able
to perform better than known vehicle map matching algorithms for the test data probed.

OTW is another approach that can be used for the map matching process. The approach is originated
from DTW. DTW is an algorithm which is used to measure similarities between two time series. DTW
is applied for pedestrian positioning using network map [175], but it performs in post-processing mode.
The implementation of OTW algorithms in the area of live tracking of musical performance [163] and in
streaming time series setting [176] have shown its efficiency and flexibility. To the best of our
knowledge, this is the first work to propose OTW for location-based real-time map matching.

Dynamic Time Warping (DTW)

DTW is a time series matching technique that takes two time series and finds an optimal alignment
between the two sequences under some restrictions [177], [178]. That is, given two time series R =
(r, 1, ...,ry) Of length NEN and G = ( g4, 92, ---, gu) Of length MeN, DTW compares the two series
and gives optimal mapping among the values of R and G. Figure 4.3 illustrates the warping or

R\/\/“//
M 1] ot

Figure 4.3: Warping between of two sequences

Time
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Suppose, the two sequences are taking values from feature space denoted by . To compare the
values of the two sequences, local cost measured has to be computed using equation 4.1:

d:yXy - R=0 (4.1)

Basically, d (r, g) measures the similarity between re R and g€ G, and it is small if the two values
are similar and high otherwise. Computation of these measures using equation 4.2 for all pairs of values
of the two sequences results in the local cost matrix.

d(rygj) =llri—gjll; 1€[1: NJ;j €[1: M] (4.2)

The actual mapping is done using optimal global cost matrix D, which is calculated recursively
using equation 4.3.

D (ri,gj) =d (ri,gj) + min{D (ri,gj_l) ,D (ri_l,gj),D (ri_l,g]._l)} (4.3)

After the optimal global cost matrix is populated, then, the next step is to find an alignment between

R and G with minimal overall cost. This alignment path which is formally called warping path contains

the sequence of points p = (p1,p2, ..., px) Withp; =d(p,p;) € [1: N] x [1: M]forl € [1: K].
The warping path must satisfy the following three restrictions:

e Boundary Condition: It must map the first two and the last two values of the sequences. That is
p1 = (1,1) and p, = (N, M).

« Monotonicity condition: The points must be time ordered. Thatisn; <my; <...<n . &m;<my <..
. <myp.

e Step size condition: The warping path cannot jump while aligning sequences. For any two
consecutive points on warping path their positive difference must be (1, 1), (1, 0), or (0, 1).

Keeping the restrictions mentioned above, to find an optimal warping path, the sum of costs of all
paths from p; = (1,1) to p; = (N, M) is computed and the one with minimum value is selected.
However, this is computationally very costly, especially when the length of the two series is very large.
Nevertheless, by applying dynamic programming, it can be figured out with the complexity of O (N.M).
The algorithm runs recursively in reverse order starting from p, = (N, M) and stops in case (n, m) = (1,
1). There are plenty of modifications of DTW for various objectives. Improving response time and the
accuracy of maping are examples of the objectives. Some are step size condition modification, biasing to
a direction, applying global constraints and approximation [179], [180], [181], [182].

Online Time Warping (OTW)
OTW was introduced by Simon Dixon in [163] to align audio signals because of the inconvenience

of DTW for real-time alignment. OTW acts on an incomplete time series (boundary condition doesn’t
hold), and the alignment is built incrementally starting from p;,; = (1, 1) in the forward direction as a
value is read for incomplete time series, see Figure 4.4.
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| Time

Figure 4.4: Online time warping of two sequences at time t. As the value of R is read at the next time, the
warping is made accordingly

Pi+1 = min{D(THl» gj—l)' D(Ti+1: gj)' D(Tu gj)} (4.4)
Optimal warping path is computed using equation 4.4:

The algorithm is a greedy algorithm which has no global knowledge about the future. Just like DTW,
OTW can be modified in different ways for better efficiency. The next section details the proposed two-
stages algorithm composed of a smoothing GPS reading using Kalman filter and a map matching using
the OTW algorithm.

4.3/ ONLINE TIME WARPING BASED MAP MATCHING ALGORITHM

The overall process of the algorithm is shown in Figure 4.5. The process starts with smoothing
outlier GPS position readings by passing the readings to the Kalman filter. Then the improved points
from pedestrian trajectory are mapped to points on ground truth trajectory using the OTW algorithm.
The details of the processes are delineated underneath.

GPS obtained
from Smartphones

l Pedestrian
Trajectory Ground
Kalman Filter Truth Locations
! !
Smoothed GPS OTW based
Locations Map Matching
\ 4

GPS Locations Mapped
to Road Segment

Figure 4.5: High level description of OTW based map matching algorithm.
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4.3.1. 1°T STAGE: KALMAN FILTER

Kalman filter is a technique which takes a sequence of measures over time and previous estimations
to find the most optimum averaging factor for each following state [183]. A simplified form of Kalman
filter is expressed using equation 4.5.

Yo =Yg + Ko x (M, — Yye_y) (4.5)

Where Y, is the current estimation; K, is Kalman gain; M, is the measured value, and Yj_; is the
previous estimation. Kalman gain is an important parameter which determines whether to rely more on
current measured value or previous estimation. At each step, Kalman gain is calculated by dividing error
in estimate to the sum of errors in estimate and measurement. The technique has widespread applications
in various areas, including GPS accuracy improvements [183], [184].

In this research, Kalman filter comes into action to smooth GPS read by smartphones by removing
outliers to enhance matching accuracy of our algorithm. Android location providers give latitude,
longitude as well as accuracy, among others. Even though a location can be represented by two numbers
(latitude and longitude), instead of a covariance matrix, the accuracy in the Kalman filter can be
measured by a single number. Hence, the new estimated latitude and longitude can be calculated using
the set of Kalman filter-based formulas which are specified in a set of equations below.

Latt = Latt_l + K * (Latm - Latt_l)

Lon; = Lon;_; + K * (Lon,, — Lon;_,) (4.6)
var

var + acc?
var = (1 — K) *var
Where Lat; and Lon, are latitude and longitude estimate at time t respectively, while Lat;_, and
Lon,_, are estimated at time t-1. Current measurements of latitude and longitude are represented by
Lat,, and Lon,,. K is Kalman gain and var is variance, which evaluates the rate of accuracy degradation
in the absence of any new location estimates and acc is the accuracy of GPS reading.

'Unlversn

2 g

Figure 4.6: Smoothing of GPS reading by applying Kalman filter
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The application of the above formulation of Kalman filter on a test data provided the output shown
in Figure 4.6. The red line at the back are formed from the row outlier GPS readings and the blue line is
made up of smoothed points. The matching accuracy of the algorithm improved by 12.59%.

4.3.2. 2P STAGE: OTW ALGORITHM

A position obtained from GPS readers, and corrected using Kalman filter must be immediately
mapped to correct road segment for reliable location service. OTW algorithm matches an incomplete set
of location time series streamed from smartphones to the ground truth points extracted from the digital
map. The feature spaces for OTW algorithm are the set of GPS readings expressed in terms of latitude
and longitude. Local cost measure is great-circle distance calculated using the Haversine formula. The
pseudo code of the main OTW algorithm is displayed in Algorithm 4.1, while TABLE 4.2 shows
notations used in the algorithms.

OTW has two main steps - calculating the optimal global cost matrix for newly read GPS (steps 4 to
8 of Algorithm 4.1) and conducting the matching process (steps 10 to 30 of Algorithm 4.1). Optimal
global cost is calculated in the same way as DTW using equation 4.3 except in OTW it is filled
immediately after each point is read and smoothed by Kalman filter. The incremental matching process
is quite different from naive DTW. First of all, the matching is done in forward fashion in real-time.
Secondly, the algorithm has limited knowledge about the future global cost matrix.

TABLE 4.2. LIST OF NOTATIONS

Notation Description
R={r...r..r.} A time series of length n
G={0:...g...} An incomplete time series with unknown length except the first g,
CM[n][m] An n x m cumulative cost matrix used in OTW
r Index of R and row index of cumulative cost matrix
g Index of G and column index of cumulative cost matrix
W[2][n+m] A warping path Matrix
k Index of warping path Matrix
o() Cost between points of time series
getMinimum (r, g) A function that returns the best match based on distance and direction
difference
> Represent a comment line
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Algorithm 4.1: OTW Algorithm (free or unconstrained)

Inputs: R={ri...rr...rn}, G={0:...gg...,}
Output: W[2][n+m] populated with the mappings
Steps:

1. Function Compute_Unconstrained_OTW(R, G)

2. While there are more GPS readings

3 [>calculates local cost matrix for newly read GPS

4. for i=0ton

5. gps = read_GPS

6 gps = apply Kalman on gps

7 CMIr1[g] = &( gps, R[r1) + min{CM[j-1][g-1], CM[j-1][g], CM[i][9-11}
8. end for

9. [>Conduct the matching

10. If r=0

11. WI[O][K] =1and W[1][K] =1

12. else

13. min = getMinimum(r, g)

14, If min = CM[r+1][g]

15. WI[O][K] = r+1 and W[1][K] =g

16. else If min = CM[r+1][g-1]

17. WIO][K] =r+ 1, W[1][kK] =g—-1,r=r+1land k =k+1
18. While true

19. min = getMinimum(r, g)

20. If min = CM[r+1][g]

21. WIO][K] = r + 1, W[1][K] = g and exit inner while
22. else If min =CM[r][d]

23 W[O0][K]=r, W[1][K]=g, r=r-1 and exit inner while
24, else If min =CM[r+1/[g-1]

25. WI[O][K] = r + 1land W[1][Kk] =g -1

26. end IF

27. end While

28. else

29. WI[O0][Kk] = rand W[1][] = ¢;

30. End IF

31. r=r+1,k=k+1landg=g+1;

32. end While

33. end function

Optimal path selection formula depicted in equation 4.4 is used to find the minimum among the
three candidate points; vertical (CM[r+1][g-1]), diagonal (CM[r+1][g]) and horizontal (CM[r][g])
points, see Figure 4.7. To decide the final mapping, the direction of GPS trajectory of VRU is compared
with direction of the reference points. If getMinimum(r, g) function, which integrates the two metrics
returns either right or diagonal cell, current matching is made and the next GPS is awaited to repeat the
whole process. If the vertical cell is returned, the matching process is done again, steps 16-27 of
Algorithm 4.1.
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Figure 4.7: A snapshot of cost matrix of unconstrained/free OTW based mapping process. Suppose the
algorithm has read gs, and recently selected cell on warping path is (2, 2), then the next cell could be vertical (3,
2), horizontal (2, 3) or diagonal (3, 3).
If the reference point and a point on trajectory are in the same direction, then the direction difference
will be between -90° and 90°. In this case, the mapping is done based on the result of distance.

Otherwise, the next closest point is taken into attention, see Algorithm 4.2.

Algorithm 4.2: Get the best match (getMinimum(r, g) function)

Inputs
r, index value of reference datasets
g, index value of current GPS trajectory
Output:
Minimum of CM[r][g], CM[r+1][g], CM[r+1][g-1]
Steps:
1. function getMinimum(r, g)
2. Ifangle_Difference(R[r+1], G[g-1]) ==[ -90, 90]
and CM[r+1][g-1] == min{CM[r+1][g-1],
CM[r+1][g], CM[r][g]}

3. min = CM[r+1][g-1]

4. Else If angle_Differnce (R[r], G[g])==[-90, 90] and
CM[I[g] == min{ CM[r+1][g], CM[r][g]}

5 min = CM[r][g]

6. Else

7. min = CM[r+1][g]

8. endlIF

9. end function

Figure 4.8 shows the effect of direction on the choice of a non-closest point. Though point g4 is
closer in terms of distance to point rs, the algorithm maps it to r3 due to direction difference. This
scenario happens when there are sharp turns, which are commonly observed in slow-moving VRUs.
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Figure 4.8: Effect of direction difference on selecting mapping points.

The blue shaded dotes are GPS readings from smartphones, while dots connected by lines are the
reference points. The dotted lines indicate the mapping between GPS points and reference points.

4.3.3. VARIANTS OF OTW ALGORITHM

To reduce pathological matches and for a quick matching, free OTW can be modified in different
ways. We have made three adjustments described which are: windowing, smoothing, and weighting.

1- OTW with Windowing: In this variant, the cost matrix is calculated only for the cells near the most
recent cell on the warping path. in Figure 4.9, which shows cost matrix in the process of application of
this algorithm, only shaded regions are considered in both cost matrix calculation and warping path
computation.

GPS reading
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Felerence Poinls
M

Figure 4.9: Cost matrix for OTW that has window size of 4 cells. Green colored cells are those included in
warping path
2- OTW with Smoothing: Two approaches that can be taken to address greedy nature of OTW
algorithms are making the alignment based on a limited view into the future if the application allows a

certain amount of latency, and smoothing the sequence of alignment of points [163]. The first option is

60



not suitable for time sensitive applications. Smoothing applies normal DTW warping path computation
in reverse order on the known section of the time series to correct the warping path periodically. It
allows periodic correction of the warping path.

3- OTW with Weighting: Weighting refers to multiplying vertical, horizontal, or diagonal cell by
some constants. Therefore, amending costing function stated in equation 4.3 gives the next one.

D (ri, gj) =d (ri, gj) + min{w, * D (ri,gj_l) ,Wy* D (ri_l,gj),wh * D (ri_l,gj_l)} (4.7)

Where, (w,, w,,, wy,) refers to constants for diagonal, vertical, and horizontal biases. For non-biased
DTW/OTW the biases are each equal to 1. These values can be changed whenever there is a need to
penalize or favor movement in a particular direction. For instance, if the constants are changed to (1, 1.2,
1.2) the horizontal and vertical directions are penalized favoring diagonal movement.

4.4/ PERFORMANCE EVALUATION AND DISCUSSIONS

In this section we elaborate the data used to evaluate the algorithm, the metrics for evaluation and
evaluation results.

44.1. DATA COLLECTION AND EVALUATION METRICS

The OTW algorithm proposed was tested using datasets taken from the suburban area of Bahir Dar
city, Ethiopia. The 0.51km? area is usually crowded by mostly pedestrians due to the presence of bus
stations and a university in a nearby. Ground truth datasets are obtained from OpenStreetMap [185]. The
wiki world media is chosen because it is free and most popular web map source with acceptable
positional accuracy [186], [187]. Three “short-range” routes with different level of complexity are
chosen from the test site, and data collector with a Samsung mobile device (Model M-A520F) which
reads GPS periodically walked along the center of the routes. The first route has only three turns while
the second and third (is longer than route two) routes each have nine turns. TABLE 4.3 shows the details
of the routes. Figure 4.10 displays the reference datasets together with the collected GPS datasets.

TABLE 4.3. DETAILS OF THE THREE ROUTES

Route 1 274 476.93 369.71 1.29 5.37
Route 2 453 780.52 696.89 1.12 7.89
Route 3 670 1194.22 884.61 1.35 6.01
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‘ (c) Route 3

Figure 4.10: The three trajectories (blue) and cofresponding ground truth datasets (green). The background

lines are of the base map.

Two metrics are used to compare the performance of the algorithms using the datasets of the three

trajectories.

Ratio of Correct Matches (RCM) — is calculated by dividing the number of correct matches to
total number of matched points. Wrong matches can be identified since we have ground truth
map matching results which are computed based on Euclidian distance and heading of the GPS
points manually taking into consideration the average error of each route once the complete
dataset is obtained. The RCM is used to evaluate the accuracy of the map matching proposed.
Time Complexity is the running time of the algorithms. It is evaluated in two different ways;
running time in terms of Big O notation and empirical evaluation
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4.4.2. PERFORMANCE RESULTS AND DISCUSSIONS

Free OTW is tested for Kalman filtered datasets (used by all other algorithms) and on raw datasets.
For OTW with windowing, the window size is set to be 8% of the number of reference datasets and this
size is proved to contain all points that could be read in the range of average error. OTW with weighting
is used to slightly bias the warping path to diagonal by multiplying vertical and horizontal cells by 1.2
since the number of GPS points on the trajectory, and reference datasets are equal. For OTW with
smoothing, we have configured our algorithm so that smoothing is performed after every fifteenth
mappings. The values for windowing, weighting and smoothing can be varied based on the computation
of the server that runs the algorithm and application requirements. As this algorithm is intended for
VRU safety applications, we have applied point-to-point level map matching since position errors are
first corrected by Kalman filter, and OTW algorithm is known to be fast.

As it can be seen in Figure 4.11, classical DTW has comparatively higher average accuracy for the
selected routes though it is exceeded by OTW with weighting. OTW with windowing and the one with
no constraints performed equally, as expected. Free OTW calculates cost matrix for all cells
corresponding to the given GPS reading with no effect on accuracy. The application of free OTW on
datasets which are not Kalman filtered depicts that Kalman filtering is indeed important since the worst
RCM is recorded in this case. OTW algorithms that are amended by weighting and smoothing have
better performance from other OTW variations.

100
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g 50 - B OTW with Smoothing
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E 30 A B OTW without Kalman Filter
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0 A

Route 1 Route 2 Route 3

Figure4.11: Ratio of correct matches

Figure 4.12 shows the alignment for a section of Route 3 using DTW and OTW with weighting.
DTW is susceptible to singularities [177]. Singularity is unreasonable alignments of a single point of one
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time series to multiple points on the other time series, see encircled region in Figure 4.12 a). As it is
shown in Figure 4.12 b), the application of OTW with weighting has reduced the problem.
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Figure 4.12: Comparison of alignment results found from (a) DTW and (b) OTW with weighting for
portion of Route 3.

Running times of various algorithms where n and m are the number of trajectory and ground truth
points are displayed in TABLE 4.4. OTW with windowing and weighting have constant complexity
while free OTW and OTW that involves smoothing have linear running time. OTW with smoothing has

the worst execution time if the smoothing is done every iteration. Classical DTW has quadratic
execution time.

TABLE 4.4. BIG O NOTATIONS OF ALGORITHMS

Window  Weights
O(1) O(1)

Smoothing  free

O(n+m) O(m)  O(n.m)

The proposed algorithms are implemented in Java and executed in a PC machine with an “Intel
Core™ {7-6500U 2.50GHz” CPU. Empirical evaluation results are displayed in TABLE 4.5. To get a
running time of the algorithms proposed, we ran each algorithm 1000 times for each dataset and
recorded the average. All OTW algorithms except free OTW have very short average execution times,

making them good candidates for real-time map matching. DTW is the slowest algorithm since the
matching is done on complete datasets.

TABLE 4.5. ALGORITHMS EXECUTION TIME (MS)

Window  Weights  Smoothing

free DTW
Routel 2.43 2.75 3.09 61.50 16574.72
Route2 2.73 2.87 3.85 111.20 47225.87
Route3  2.93 3.04 5.27

158.25 98065.04



4.5/ CONCLUSION

Nowadays, ITS rely on mobile devices due to their omnipresence, their high storage, and
computational capacity, and their capability to sense users’ positions. When smartphones are used for
traffic safety applications, the positions sensed should be as accurate as possible to prevent traffic
accidents. However, an experiment conducted by us, and the literature prove that GPS accuracy read by
smartphones is limited. In this chapter, we have presented a new map matching algorithm that is based
on online time warping to better map GPS read by smartphones of VRU to correct road networks.
Online time warping, which is a special type of dynamic warping algorithm is used to align the two time
series data in a real time.

Location data is first set to pass through Kalman filter to polish outlier readings. Then the online
time warping based algorithm performs the matching process. Distance and direction differences are
used to opt the matching point with reference points. That is a point nearest to reference point may not
be selected as a match if the direction of the reference point and this point is not the same. Online time
warping is presented in different forms by adding constraints like windowing, weighting, and
smoothing. The algorithms are evaluated using a reference dataset obtained from a road network and a
GPS reading collected using a smartphone. The ratio of correct matches and time complexity are the two
metrics used for evaluation of the algorithms. The algorithms have better time complexity and
comparable accuracy with standard dynamic warping algorithm. Therefore, we conclude that online time
warping algorithm is a good candidate for applications that demand real-time map matching. PV-Alert is
one of such applications.

The next chapter deals with position sampling frequency requirement of mobile devices to fulfill the
promises of PV-Alert. Current mobile devices GPS position sampling rate is too sparse to meet the
requirements of traffic safety applications. However, the problem is addressed by integrating inertial and
GPS position data.
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5

PV-ALERT: MEETING HIGH POSITION SAMPLING
REQUIREMENT

5.1/ INTRODUCTION AND PROBLEM STATEMENT

Smartphones have become part of everyday life of human beings. They are used for gaming,
navigation, monitoring environmental and traffic conditions, supervising the health of the owner, acting
on our behalf, social networking, etc. [13], [188], [189]. In recent days, they have become important
ingredients of ITS applications like traffic safety, infotainment, and traffic efficiency due to their wide
existence and increased capability. An overwhelming increase in their computation, storage, and
networking capabilities are further enhanced by their sensing potential, which is another feature that
makes the devices more intelligent, and essential part of our life.

Though the number of sensors may vary from one smartphone to the other, typical smartphone
contains an accelerometer, a digital compass, a gyroscope, a GPS, quad microphones, dual cameras,
near-field communication, a barometer, light, proximity, and temperature sensors [13]. However,
handheld devices are far from becoming apotheosis sensing devices. Producers of the devices
purposefully make them compact and small so that they can fulfill user preferences more cheaply. Size
reduction and subjection of the devices to non-ideal environments compromise the sensor accuracy and
reliability highly, and this has become a hindrance to fulfill requirements of many applications. For
instance, ETSI has enacted the maximum and the minimum time interval between beacon generations to
be 1s and 0.1s, respectively for collision risk warning systems [59]. This implies that position sampling
frequency should be 10Hz since location information is an integral part of CAM. Even though
smartphone-based solutions are proposed for traffic safety by warning the about-to-occur collisions
based on positions of vehicles and VRUs [54], [56], present mobiles devices’ position sampling rate
does not meet the maximum positions sampling frequency.

The maximum GPS sampling rate of mobile devices depend on factors like the location method,
hardware implementation of the GPS module, the embedded GPS chipset, as well as the version and
type of the operating system. A research conducted by Zhizhong et al., in 2013 [16] has indicated that
maximum GPS sampling rate of smartphones is 1Hz [16]. We also conducted an experiment to verify
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that the modern smartphones could meet high GPS sampling requirements of traffic safety applications.
The experiment is discussed in the next couple of paragraphs.

The location methods supported by current android smartphones are: (i) Assisted-GPS (A-GPS), (ii)
GPS only, and (iii) network (Wi-Fi and Mobile Internet). A-GPS, which is also termed high accuracy
location method, uses GPS chip, and Wi-Fi, or cellular networks to accelerate the first fix acquisition.
GPS only location method uses solely GPS chips and network location methods may depend on Wi-Fi,
or cellular Internet connection. During the experiment, all applications, except the application for the
experiment, were denied location access, and the mobile device was set to run only the default
manufacturer processes. A Samsung smartphone (Model-SM-A520F) was used exclusively for this
controlled experiment. An Android application was developed, which can read smartphone location at
the highest possible frequency. By enabling each location methods turn by turn, the experiments were
conducted in indoor and outdoor environments. Keeping the smartphone with the application running on
front jacket pocket, one of the researchers walked for about an hour for each experiment. The
application saves the following location data in a log file: system timestamp, latitude, longitude,
accuracy, bearing, and speed. The average sampling period and the standard deviation of the values are
presented in TABLE 5.1.

TABLE 5.1. AVERAGE LOCATION SAMPLING PERIOD OF DIFFERENT LOCATION METHODS

Location Method  Sampling Period Standard Deviation

(ms)
GPS-only 1003.84 108.97
A-GPS 1281.28 526.72
Mobile Internet 20521.42 975.30
Wi-Fi 20178 .13 1007.98

Even though the minimum GPS fix time is not meet by any of the location methods, the highest
average GPS fix time interval is achieved by GPS only location system. Using this location method
location updates can be obtained approximately every second. This value confirms the result obtained in
[16]. Location obtained from mobile internet and Wi-Fi-based location methods’ is too sparse for traffic
safety applications. This is attributed to the low accuracy of network location method and slow
movement of pedestrians since Android reports a new location if the new location fix is different from
the last known location. A-GPS sampling rate is lower than GPS-only based location method as it uses
network location methods when GPS fixes are not possible. The experiment reveals that GPS sampling
rates of current smartphones do not satisfy the application requirement of traffic collision risk warning
systems. Thus, location methods that can provide positions at higher rates should work together with
GPS based location to meet high rate location demand of traffic safety applications.
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Losses in connections and imperfect behavior of the data collection application further increase the
sparseness of location data obtained from smartphones [189]. From these facts, it can be deduced that
location updates of smartphones do not meet applications requirements of traffic safety systems. This is
because pedestrians with maximum walking speed of 1.83m/s and running speed of 4.2m/s [41] could
face traffic accidents in the time interval between two consecutive locations updates. Since vehicles’
impact velocity could reach up to 80 km/h [190], the assertion is acceptable. Therefore, to keep mobile
devices’ involvement for traffic safety, a solution that uses inertial sensors to predict positions in case of
unavailability of GPS location fixes is proposed. The method integrates GPS and low-cost inertial
sensors to meet applications that require high position sampling.

Inertial sensors can be used to pinpoint the position of mobile device holders without the assistance
of any external measurements like radios [191]. It is possible to extrapolate locations from reference
points by calculating the travelled distance and direction of movement from inertial sensors data. INS
sensors data can be sampled at a much higher frequency than a GPS sensor. However, high sampling
rates of INS and GPS sensors are known to drain smartphone batteries rapidly. Therefore, applications
that demand fast position sampling must address the issue of energy consumption in order not to
exacerbate energy hungriness of mobile devices. This can be done by a slacked sampling of GPS and
INS sensors data instead of sampling them at their fastest possible time. However, caution has to be
taken not to harm the accuracy of position prediction by reducing the number of data points for
estimation.

This chapter presents an energy efficient DR method proposed to estimate locations of VRUs, and
particularly pedestrians. The novel INS and GPS sensors data fusion method enables to cope with high
location sampling rate demands of traffic safety applications. Data are obtained from mobile devices of
road users. The method doesn’t depend on map information or movement history of pedestrians. It
involves the estimation of displacement by using conventional kinematic equations from the distance
and velocity of the pedestrian. GPS readings are used to correct dead reckoning parameters periodically
in addition to serving as correct positions of pedestrian trajectory. Accelerometer and magnetometer are
used to estimate the attitude of movement of the pedestrian. Intermediate positions estimated from
displacement and heading are set to pass through Kalman filter for further improvement of the positions.
The proposed position prediction method is applied to sampling rates which contributes to smartphones
energy efficiency. The results show that with a small compromise of accuracy, a large amount of energy
can be gained by relaxing sampling period of only INS sensors. This is because sparsening GPS
positions is found to profoundly damage the position accuracy with very small energy gain.

The rest of the chapter is organized as follows. Section 5.2 summarizes related works in INS based
dead reckoning and energy efficiency. Section 5.3 presents the details the implementation of the position
prediction method. Section 5.4 is dedicated to discussions of the evaluation results made on the
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proposed algorithm and energy efficiency of different GPS and INS data sampling rates. Finally, the
conclusion is presented in section 5.5.

5.2/ RELATED WORKS

Traffic safety applications necessitate high rate position sampling to safeguard pedestrians and other
VRUs from traffic accidents. Though mobile devices have been recommended for traffic safety
applications as sources of geolocation of VRUs [54], [55], [56], [77], their position sampling rate is
limited. Therefore, in situations when GPS reading is unavailable, or its accuracy is highly degraded,
VRUs position must be dead reckoned using supplementary positioning systems. DR can be applied
either in an offline mode [192], or in an online mode [193] based on the type of applications. Offline DR
is used for post-processing of locations after collecting known locations. Online DR is suitable for real-
time systems since estimation should be made immediately after a known location is captured. Most
position estimation solutions proposed are either for vehicular navigation [193], [194], or for indoor
pedestrian navigation [192], [195], [196]. To extrapolate the next positions from known GPS locations
for VRU traffic safety, an online DR that can be applied in indoor or outdoor environments is required.

Some reasons for applying position prediction methods in navigation are related to energy saving by
lowering sensor data sampling, absence of GPS location signals, and the need to improve location
accuracy. Outdoor navigation systems that are used in open sky scenarios can use GPS based locations.
However, to reduce smartphone energy consumption by lowering GPS sampling rate, GPS based
localization can be supplemented by dead reckoning that involves low energy cost sensors [192], [193],
[197]. INS sensors help to improve positioning reliability in situations where GPS location is not
available due to obstruction of GPS satellites by high buildings, trees, etc. INS can also be integrated
with GPS for best location accuracy [194] as both methods suffer from their own drawbacks. According
to Zengshan Tian et al. in [198], navigation information obtained from the INS sensors is boasted with
continuity, high data-updating rate, good short-term accuracy, and stability. INS sensors, in their
research, are used to supplement GPS based positioning to fulfill higher location sampling rate
requirements than the current mobile devices can support. The experiment they conducted has proved
that the maximum GPS sampling rate is 1Hz, which is below the maximum sampling frequency enacted
by ETSI. As mentioned earlier the same result is obtained by another group of researchers [16] and by
the experiment we have conducted. The results of the test made on DR [198] shows that the accurate,
reliable, and continuous localization and tracking can be provided. However, the DR relies on step
detection and stride length estimation.

To predict position, the distance travelled, and the direction of movement needs to be known. Most
dead reckoning solutions use an accelerometer to predict displacement by first detecting step events and
estimating stride length [65], [195], [199]. A direction of movement is usually estimated from
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magnetometer and gyroscope data, and position prediction is made after one or more strides. For
applications that require very fast position predictions, multiple estimations must be made in a period of
one stride. Therefore, step detection and stride length estimation-based position prediction do not fit for
such applications.

Gathering GPS and INS sensor data at high data-updating rates is an energy-hungry process [16],
[68], [69], [70], [71]. In [69] and [70], the authors have shown that sampling GPS at different sampling
periods impact energy consumption. According to [16] and [68] normal INS data sampling consumes
lesser battery power than fastest sampling. The energy hungriness of the different GPS and INS data
samplings are at a very small sampling period is studied. The application of the position prediction
method proposed on sensor data obtained by energy-efficient sampling periods demonstrates that a
significant amount of energy can be saved with small effect on the accuracy of prediction. TABLE 5.2
summarizes some INS-based position prediction methods proposed in literature.

TABLE 5.2. EXAMPLE INS SENSOR BASED POSITION PREDICTION METHODS

Reference Sensors Prediction  Proposed Indoor or Reason for Energy
Used Basis for Outdoor? Prediction Efficient?
[192] Accelerometer, Distance Pedestrian Indoor Absence of GPS No
Gyroscopes and Signals
direction
[193] Accelerometer, Distance Vehicles  Outdoor  Energy Saving  Yes
Magnetometer, GPS  and
direction
[194] GPS, Wheel Distance Vehicles  Outdoor Location No
Odometer, Compass, and Accuracy (no
Gyroscopes, direction Improvement mobile)
Accelerometer
[200] Magnetometer, step events Pedestrian Outdoor  Location No
Proximity  sensor, & stride Accuracy
Gyroscopes,  Light ' length Improvement
Sensor,

Accelerometer,
Wireless connection

[195] Accelerometer, step events Pedestrian Indoor Absence of GPS No
Magnetometer, & direction Signals
Gyroscopes
[196] Accelerometer, step events Pedestrian Indoor Location No
& stride Accuracy
length Improvement
[198] Accelerometer, step events Pedestrian Outdoor Location No
Magnetometer, & stride Accuracy
Gyroscopes length Improvement
[199] Accelerometer, step events Pedestrian Indoor Location No
Magnetometer, & stride Accuracy
Gyroscopes length Improvement
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[65] GPS, Compass, step events Pedestrian Outdoor Location No

Accelerometer, & stride Accuracy
Gyroscopes length Improvement &
meet app

requirements

Our position prediction method differs from the works listed above in that the main objective is to
meet the position sampling requirement of mobile devices while using them for traffic safety
applications. Moreover, the position prediction method is energy efficient.

5.3/ POSITION PREDICTION SYSTEM

The position prediction system proposed in this chapter is an online processing system implemented
as an Android application. The system is aimed to extrapolate locations in a very short time interval
(100ms) to meet application requirements of traffic safety applications as GPS based localization has a
limited sampling frequency. A GPS fix gained every second is used as the correct location and to correct
dead reckoning parameters for future predictions. If no new location is received from the satellite at a
particular sampling period, dead reckoning based estimation is made using INS sensors data mainly
accelerometer and magnetometer sensors. Major components of the system and flow among its
constituents are shown in Figure 5.1.

The system has four groups of components. The sensors component contains the three main sensors
used: GPS, accelerometer, and magnetometer sensors. The next components are sensor data filtering and
processing components, and their roles are making the data ready for displacement and heading
estimations. The third components calculate the distance travelled as well as direction of the travel. The
last category is responsible for position prediction. The intermediate position is estimated from the
distance travelled and the direction of movement. This position is passed through the Kalman filter to
smooth outlier predictions. These components are detailed in subsequent sections.
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Figure 5.1: Component of the System for high position sampling system

Accelerometer and Magnetometer are the two inertial sensors explicitly used for position predictions
in addition to the GPS sensor. The speed, which is one of the outputs of GPS readings, is used in
displacement estimation by correcting velocity of the pedestrians obtained from the accelerometer as
discussed in Displacement Calculation subsection below. Raw acceleration data is split into two by
filtering out gravity and motion. This process results in linear acceleration and gravity virtual sensors.
The two software-based sensors are synthesized through a combination of accelerometer input and
gyroscope input. Since Android performs optimized filtering and sensor fusion processes by applying an
Extended Kalman filter [201], the sensors’ values from the Android are used directly. A magnetometer
is employed to predict movement direction of smartphone holder. It is susceptible to working machines
and metals in the vicinity as they result in high magnetic field strength. To remove the high-frequency
noise from the output of the magnetometer, low-pass filtering has been applied. This process is intended
to produce accurate and stable estimations by discarding unnecessary noise. After a repeated experiment
in the test environment, it was found that at cutoff frequency f = 0.01Hz the heading result is more
durable and accurate.

5.3.1. INTERMEDIATE AND FINAL POSITION PREDICTIONS

After pre-processing of the sensors data, the position is estimated by figuring out displacement and
heading of the pedestrian. Linear acceleration obtained from the accelerometer is used together with the
speed obtained from GPS to estimate displacement. The heading is computed from accelerometer
without motion component and corrected magnetometer values. Once the two values are available,
intermediate location result can be calculated using the following set of equations [195], [199].

X =Xy, + D *sin(B) (5.1)

Y =Y,+ D *cos(B)
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Where (Xo, Yo) and (X, Y) are initial and the intermediate positions, respectively, D is displacement,
and B is heading, see Figure 5.2. The final position is obtained by passing intermediate position throw
Kalman filter to improve the accuracy of prediction. Kalman filter equations presented in [202] are used
since they have improved GPS accuracy by 12.59%. The detail of calculation of displacement and
heading are presented beneath.

(X.Y)

¢ D

(Xo. Yo) E

O

Figure 5.2: Calculating intermediate position (X, Y) from current position (X, Y,) given distance traveled D
and heading 8

Displacement Calculation

Calculating displacement using inertial based pedestrian dead reckoning usually involves step
detection and step length estimation [65], [195], [196], [198], [199], [200]. This method is not applicable
if position estimation has to be made in a very short time interval since many predictions may be needed
in a period of one stride which is 0.4m to 1.0m in length [195]. This is true for the application in
consideration as position prediction has to be made every 0.1s. The conventional kinematics equations
shown on equation 5.2 are used to calculate displacement.

Vt - VO +At x t (52)
Dy =Vyxt+ 0.5 A, * t?

Where Dy, Vi, and A, are displacement, velocity, and acceleration at time t, respectively; t is change
in time; Vy is the initial velocity. Vo is set to 0 at the beginning. Velocity is calculated by integration of
acceleration found from accelerometer without gravity. Since acceleration and velocity take vector
values, integration is made for each axis. Due to accumulated error velocity extracted from linear
acceleration tends to increase exponentially over a short period of time, see Figure 5.3. Therefore,
velocity from GPS fixes is fused and used as initial velocity at each ground truth GPS fix. Let V9P5 be
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speed obtained from GPS, and B be heading, then X and Y components of initial velocities at ground
truth point are computed using equation 5.3 [195].

Vox = VOPS x sin(p) (5.3)
Voy = VP* % cos(p)

Only the velocity extracted from GPS fixes can’t be used as it wouldn’t capture frequent velocity
changes of VRU as GPS are sampled every one second, and displacement is calculated every 0.1s.
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Figure 5.3: Velocities from Accelerometer and GPS readings and fusion of the two. Integrated velocity is

more stable in comparison with velocity from the accelerometer. By taking this velocity the distance between
two GPS fixes is found to be approximately the same as the sum of distances between GPS points

Heading Calculation

Heading is the deviation of the smartphone’s Y-axis from magnetic north, measured clockwise in the
East-North plane. Corrected values from the magnetometer and the gravity portion of the accelerometer
are integrated to estimate the attitude angle of the smartphone [196]. From the two sets of values, a
rotation matrix is produced to map points from the Local Coordinate System (LCS) to the Global
Coordinate System (GCS) to resolve the random placement of smartphones. GCS is a real-world North-
East-Gravity direction coordinate system. If R; is the rotation matrix and vy is an azimuth which is the
degrees east of magnetic north in LCS, then the orientation is converted to GCS using equation 5.4,

Y6CS = R, yLCS (5.4)

The actual heading of a user is forecasted by accounting declination angle. [192] and [196] can be
referred for detail on heading estimation. Figure 5.4 displays a comparison of heading calculated using
INS sensors and GPS bearing during a short trip in the test site. The test data is collected from a
rectangular trajectory that takes 75 seconds to walk around. The result depicts that the two values are
similar with only minor differences.
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Figure 5.4: Comparison of heading estimation with ground truth GPS bearing

5.4/ PERFORMANCE EVALUATION AND DISCUSSIONS

In this section, the performance results of the proposed position prediction method are presented.
Then, the energy consumption of various GPS and INS sampling rates are assessed. Finally, prediction
exactitude of the proposed prediction method using various sampling methods that are found to enable
obtrusive energy saving are evaluated.

5.4.1. PERFORMANCE OF THE POSITION PREDICTION MODEL

The position prediction system is tested with the data collected by a Samsung smartphone (Model-
SM-A520F) with Android application that reads GPS points at the maximum possible sampling
frequency in a plain area on a sunny day. The algorithm running on the smartphone calculates the
displacement and heading angle and estimates locations at a 0.1s time interval. The accelerometer and
the magnetometer were set to sample at a maximum rate, and average values are taken for the estimation
period. Ground truth data is collected using the RTK position device (AsteRx4 OEM), which has
centimeter-level accuracy. Two trajectories are conceived to test the proposed system. The first
trajectory is a straight path with only one turn, while the second is a rectangular path with four turns.
The proposed GPS and INS Sensor based Prediction (GISP) is compared in terms of the error in the
distance of predicted points and deviation of heading from ground truth points of walking path of the
pedestrian trajectories with Simple Linear Prediction (SLP). SLP is an extrapolation-based prediction
mechanism which uses only GPS data. The method utilizes speed and bearing of the most recent GPS
fix to estimate the intermediate positions between two GPS readings.

Figure 5.5 depicts the average and maximum distance errors of predicted points from ground truth
trajectory points for the two prediction methods on the two trajectories. Maximum prediction distance
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error is included to show the worst-case inaccuracies of the prediction algorithms. For both trajectories,
the method that fuses GPS and inertial sensors data has few errors than the one that uses only GPS data.
In fact, integrating inertial sensors with GPS improves position prediction accuracy by about 30% since
the direction of movement is updated frequently from inertial sensors. The prediction is more accurate
for Trajectory 1 due to its simplicity pertaining to its straightness.
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Figure 5. 5: Average and maximum error in distance of predicted points
Correct estimation of the heading of pedestrians is crucial for accurate position prediction. Figure 5.6

portrays average error in the heading of the two methods for the two conceived trajectories. The error for
the second trajectory is higher than the first due to more turns in the pedestrian’s path. In GISP heading
of the pedestrian at each prediction point is feed from inertial sensors. Because of this, the method
improves the accuracy of heading estimation by about 61.4% from the one which relies only on GPS

readings.
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Figure 5.6: Error in heading of the two prediction methods
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Figure5.7: A section on one of the turnings of Trajectory 2 showing predicted positions
A section of a prediction made on Trajectory 2 at one of the pedestrian’s turning corners is

illustrated in Figure 5.7. The accuracy of prediction decreases at the turning points due to the inaccuracy
of heading estimations from inertial sensors. If GPS point numbered 20 is taken, as it is moved farther
from the point, the inaccuracy of prediction increases. If it hadn’t been for GPS’s occasional fixes that
periodically corrects the predictions, the forecasted position could have been deviated largely from
actual positions of pedestrian trajectory. This is more visible for the points predicted using only GPS
since it uses the bearing angle of the last known GPS point. GISP uses the inertial sensors in the absence
of GPS fixes to predict positions. That is why it leans towards walking path as it can be seen on many
GPS points. In both cases, when the next GPS fix is attained, it is used as initial and ground truth point
for the next position prediction. The prediction tends to be more correct on straight-line walk as it can be
seen at GPS fix numbered 21 and onwards.

To visualize the entire prediction trajectory graphically, refer to Figure 5.8. It shows paths
constructed from ground truth points, walking path of a pedestrian and the paths constructed from
predicted points for Trajectory 2. Paths constructed from predicted points are relatively curvier and non-
stable than ground truth and walking path due to prediction inaccuracies. This is especially true for SLP
path. From one GPS point to the next GPS point, it keeps deviation. However, as it gets the next GPS
point, it returns to the actual walking path until it does the same for next position estimation points.

77



46.99660 46.99665

LATITUDE

—— Ground Truth Path Walking Path GISP Path

Figure 5.8: Paths constructed from predicted and ground truth points of trajectory 2 (rectangular trajectory)

5.4.2. POSITION PREDICTION MODEL: IMPACT OF THE SAMPLING RATES
ON ENERGY CONSUMPTION

The position prediction method explained in previous sections is able to predict navigation path of
pedestrian accurately. This method involves sampling GPS and INS sensor data at the highest possible
frequency. The sampling frequency of GPS and INS affects energy consumption of smartphones, and of
course, the position predictions accuracy [16], [68], [70], [71]. In other words, the higher the sensor data
sampling rate the higher the energy consumption, and the more accurate the position estimation. The
objective of any traffic safety application that involves energy-constrained devices like smartphones is
estimating positions accurately with less energy consumption. In this section, the energy consumption of
various GPS and INS sampling rates are assessed. Next, prediction exactitude of the proposed prediction
methods, using various sampling methods that are found to enable noticeable energy saving, are
evaluated.

The minimum GPS sampling period of smartphones are found to be one second. Higher sampling
frequencies, however, could be used for energy saving as long as noticeable energy saving can be
obtained and accurate prediction can be made. Energy consumption of GPS samplings at one, two, three,
and four seconds are evaluated. Relaxed sampling period of inertial sensor data can also help in saving
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energy. Two default Android (FASTEST and GAME) and one user defined inertial sensor sampling
rates are assessed. The details of inertial sensor sampling types considered, and approximate number of
samples taken for each prediction are displayed in TABLE 5.3.

TABLE 5.3. ANDROID INS SAMPLING TYPES

Average Sampling Period (ms) 5 20 50
Average Number of Samples 20 5 2

A. Experimental Setup and Procedures
Three Android applications are developed to collect energy consumption information of the

smartphone used for testing, TABLE 5.4. The first application is used to get battery consumption of an
idle smartphone which doesn’t sample GPS or INS sensor data. The other two applications encompass
the position prediction algorithm, and they are used to know battery consumption of GPS sampling and
INS data sampling.

TABLE 5.4. ANDROID APPLICATIONS FOR HARVESTING BATTERY INFORMATION

System Time Stamp and Battery

Applicationl No GPS data No INS data Information (Battery Level, Voltage,
Sampling sampling Average current discharge, and
Temperature)
1s, 2s, 3s and No INS data System Time Stamp, Battery Information
Application2  4s GPS data sampling and GPS reading detail (Latitude,
Sampling Longitude, bearing, accuracy)

Fastest, GAME System Time Stamp, Battery Information
Application3 1s GPS data and User Defined and GPS reading detail and Inertial Sensor
Sampling INS Sampling data (Calculated heading and distance
calculated)

The following configurations are made before conducting the experiment:

e The smartphone is reset to factory setting before the experiments. During testing, no application
runs except Applicationl, Application2 or Application3 and the smartphone is used strictly for this
experiment.

e All types of connections are turned off and screen brightness is set to the lowest possible value so
that the base energy consumption is minimized.

e Root access of the android smartphone is obtained so as to read the current discharge of the
smartphone.



e The smartphone is charged to 100% before each experiment. For each experiment, the smartphone
holder walked for 50 minutes in outdoor and indoor walking paths. For an additional 10 minutes,
the smartphone is placed motionless on a flat desk.

The goal of the experiments is to cognize the energy consumption of various GPS and INS sampling

rates to apply the proposed prediction method for those proved to save energy. A smartphone with a
battery capacity of 3000mAh is used for the experiment.

B. Energy consumption result and discussions
The result of the energy consumption of smartphones at different GPS sampling period is indicated

in Figure 5.9. As it can be obviously seen in the diagram, GPS reading at GPS sampling periods
considered has no significant energy consumption difference. As stated in [68] and [70], location
updates at lower intervals have very subtle differences in the battery decay over time. In the one-hour
test, the battery level of the smartphone has decreased from 100% to 97.17% in 1s GPS sampling period
and from100% to 97.84% in 4s GPS sampling period. The drop of battery level due to GPS sampling in
the experiment, in general, is modest since the smartphone is used solely for this purpose and the mobile
device used has a high battery capacity.
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Figure 5.9: Energy consumption of different GPS sampling periods
The sampling rate of INS sensors affects the smartphones energy consumption [16], [71]. Figure

5.10 depicts the energy consumptions with the considered inertial sampling rates (fastest, game, and
user-defined). Fastest sampling consumes energy quicker than the other two others. A smartphone
battery that uses the FASTEST sampling will run out in just 11 hours. However, it could have been
served for 23 hours and 26 hours if GAME and USER DEFINED INS sampling types, respectively, had
been used. Note that, together with the inertial sensor, GPS is being read at the fastest rate (i.e., each
second).
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Figure 5.10: Energy consumption of different INS Sampling types

5.4.3. POSITION PREDICTION MODEL: IMPACT OF SAMPLING RATES ON
THE PREDICTION ACCURACY

Small-scale energy overhead on different GPS data sampling period doesn’t convince us to
compromise accuracy by choosing higher sampling periods instead of the fastest GPS data sampling.
However, in the case of INS sensor data sampling, an obtrusive energy saving can be achieved by
selecting energy-efficient INS data sampling type as far as the sampling type has sufficient accuracy. In
subsequent section, the evaluation of position prediction accuracy of INS data sampling types using
inertial sensor and GPS based prediction methods are presented.

As illustrated in Figure 5.7, accuracy of position prediction depends on whether the prediction is
made on straight or on curvy trajectories. Hence, the evaluation is made for straight and curved sections
of Trajectory 2. From the rectangular trajectory, three curves and four straight lines are considered. In
addition to GISP and SLP, the other two position predictions methods are compared. Position prediction
method that involves GAME inertial sensor sampling, which we named GISP_GAME and the one that
involves USER DEFINED inertial sensor sampling, which we named GISP_USER are the other two
considered position prediction methods.

The average error in distance and attitude angle of predicted positions from ground truth pedestrian
trajectory for both relatively straight trajectory and curved trajectories are displayed in Figure 5.11 and
Figure 5.12, respectively. GISP, which depends on the highest INS sensor sampling frequency, is the
most accurate prediction method on both straight and curved trajectories since it takes many INS data
points to make the prediction. On a straight-line, there is no abrupt change of direction and this is the
reason why SLP performs well with this scenario. In a curved trajectory, however, SLP performs worst
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because of lack of updated movement direction until the next GPS fix is attained. GISP_USER works
well neither on straight nor curved roads. In this prediction type, to make the prediction, the number of
inertial sensor data taken on average are two and sometimes the prediction may be made using only one
or no data points. Unless a considerable amount of sensor data is taken, due to the noisy nature of
inertial sensors prediction is expected to be worst. The location prediction accuracy of GISP_GAME
puts it second on the podium. Sampling period of this prediction is lower than GISP but higher than
GISP_USER.
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Figure 5.11: Average Error in distance of different position prediction types
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Figure 5.12: Average error in movement direction of pedestrian in different position prediction types
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Though GISP has the most accurate position prediction result, it is the most energy-hungry method
owing to its fastest INS data sampling rate. Pedestrian navigations are unpredictable and complex which
means it is full of curves and twists. Therefore, SLP which is the most energy-efficient prediction
method is not accurate enough for pedestrian navigation. GISP_GAME is recommended position
prediction method since it doubles the life of smartphone battery with 11.5% compromise of accuracy.

5.5/ CONCLUSION

Smartphones owned by VRUs and drivers are integral components of PV-Alert and other mobile
device based ITS applications. However, the handheld devices’ GPS sensors do not support high
position sampling requirement of those applications. Therefore, an inertial navigation system-assisted
positioning system that works together with GPS sensors to predict locations of pedestrians at a very
high rate is proposed. The method uses GPS fixes to correct dead reckoning parameters and as ground
truth points for the next position estimations. A method that uses only GPS readings to extrapolate
positions is compared with the new method using a data from two trajectories. The evaluation result of
the solution using the two trajectories conceived shows that it can improve the accuracy of position
prediction that solely depends on GPS. This is because the proposed system integrates inertial sensors
that have very high short-term accuracy and GPS, which has very good long-term accuracy.
Furthermore, to make the position prediction energy conserving, energy efficiency of various sensor
sampling rates of GPS and INS data sampling were investigated. Results show that by sparsening GPS
samples, the energy that could be saved is minimal while accuracy could be significantly affected.
However, by reducing the sampling frequency of INS data sampling, obtrusive energy can be saved with
minor accuracy compromise. Therefore, inertial sensors can be integrated with GPS sensor in an energy
efficient way to satisfy high position sampling rate demand for traffic safety applications.

High position sampling and VRU to vehicle communication frequencies are the reasons for high
energy consumption smartphones used for traffic safety. In this chapter, we have seen how energy can
be saved by relaxing inertial sensors sampling. In the next chapter, energy saving by managing
beaconing rates between VRUs and central server is addressed.
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6

PV-ALERT: ACHIEVING ENERGY-EFFICIENCY BY
ADAPTING THE BEACONING RATE

6.1/ INTRODUCTION AND PROBLEM STATEMENT

In chapter 5, we have discussed an energy-efficient position prediction method to meet the high
position sampling frequency requirements of traffic safety applications. This chapter also contributes to
the energy-efficiency of VRU devices by managing communication between VRUs mobile devices and
a central server.

The high accident rate of VRUs [2] has attracted the attention of researchers in academia and
industry all over the world. Thus, many passive and active traffic safety measures are proposed. Mobile
devices are included as important ingredients of most contemporary active traffic safety solutions. For
instance, in chapter 3, a fog-based architecture (PV-Alert) which is proposed to safeguard VRUs uses
mobile devices to generate and send CAMs to fog servers as well as to receive DENMs sent from the
fog servers. Though such solutions ensure the safety of VRUSs, due to high CAM beaconing rate and
high GPS sampling frequency requirements of the applications, mobile devices would deplete their
already limited energy very quickly. Beaconing, in this context, refers to sending position and other
traffic safety data to a central server that runs a traffic safety application.

In wireless communication, energy is consumed at a wireless network interface to send and receive
data, and in a host device in processing each packet while it crosses the protocol implementation stack
[203]. On the one hand, the energy-efficiency of drivers’ mobile devices is not an issue since either the
devices can be powered from the vehicle’s power supply or the drivers can be connected with the
vehicles’ onboard computers instead of the handheld devices. Pedestrians’ mobile devices, on the other
hand, have limited and easily exhaustible power supplies that need to be optimized. The pedestrian and
other VRUSs can be in different collision risk situations during their mobility periods. Therefore, the rate
of communication between mobile devices and servers should be managed based on the collision risk
level of the VRUs rather than communicating at high rate all the time. In this schema, the high collision
risk level implies high beaconing frequency. In fact, to protect a pedestrian who is in a high collision
risk area, the fog server requires, among others, fresh position and kinematics data of the pedestrian and
surrounding vehicles. If the pedestrian is in low-risk region, the data can be sent at lower frequencies.
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This adaptive beaconing rate management is intended to decrease the energy consumption of mobile
devices while keeping road users safe from collision risks.

Since the collision risk is not a binary concept, it can be defined to have multiple values or levels. To
address multiple risk levels, the idea of multi-stage collision warning system is perceived [204], [205],
[206]. For example, if three collision risk levels (high, medium and low) are defined, drivers and
pedestrians can receive first alert messages when the pedestrians are in medium risk region and the final
acute warning when they are in high-risk regions. The reason behind this is a single notification may be
overlooked due to, for example, inattention or loud voices from surrounding. Furthermore, the type of
the notification may be varied based on the risk level; if the risk level is low, only SMS may be sent, and
if risk level is high a call/vibration-based notification can be sent. Reaction time differences of drivers
and time to brake variation of vehicles based on weather and road conditions are other reasons for the
need to have multiple notifications. In addition to notifying an imminent accident, the alerts may also
contain information that instructs the mobile devices to increase the beaconing rate.

Considering all factors that increase collision risks is crucial for correct identification of the adequate
collision risk level. There is a direct relationship between collision risk levels and energy consumption
as high collision risk level induces high beaconing rate to safeguard pedestrians. High beaconing rate is
an energy-hungry process [207]. Traffic collision risks are affected by many factors. Some of them are
(1) pedestrian’s behaviors, (i1) drivers’ profiles, (ii1) vehicles kinematics, (iv) road conditions, (V)
environmental and weather conditions, and (vi) other communication network factors like
communication and computation delays. Impaired or distracted pedestrians are more prone to traffic
accidents. Old, distracted or speeding drivers or driving under the influence of alcohol accounts for
many traffic injury fatalities. An increase in the speed of cars increases both the risk of accidents and the
crash severity. The slipperiness of roads and higher slope grades increase the distance required for safely
braking, which results in even higher accident risks. Bad weather conditions and time of the day may
also affect traffic accident rates. Driver level of experience, drug usage, poor or inappropriate safety
precautions, and even inadequate post-crash safety measures are among the most important reasons for
high traffic deaths. Moreover, when active safety mobile applications are deployed, road safety is
affected by both communication and computation delays.

To save mobile devices energy consumption due to communication with a central server, firstly, we
have to identify the risk levels of road users. Next, risk levels are converted to appropriate beaconing
rates. Thus, this chapter discusses a Fuzzy Inference System (FIS) proposed to forecast collision risk
levels from the factors that affect traffic safety. The system predicts collision risk levels of pedestrians
and adjusts beaconing rates accordingly. The fuzzy logic-based adaptive beaconing rate management
system protects pedestrians from traffic accidents and at the same time minimizes the energy
consumption of mobile devices. Fuzzy logic-based systems have a resemblance to the way our brain
works, and they have the capability to give results in the presence of imprecise and vague information.

85



The fuzzy logic approach is an appropriate method for risk level prediction since the risk is a subjective
concept, and fuzzy logic is tolerant to imprecise data [208]. Additionally, most factors that influence risk
level are fuzzy and imprecise. Generally, the risk prediction accuracy of fuzzy logic systems depends on
the involvement of domain experts in defining rule basis. Hence, to test the risk level estimation
accuracy of the fuzzy logic-based solution, another risk level identification method is defined using the
same parameters as the FIS. In the second method, the risk level is identified using actual vehicle-to-
pedestrian distance and minimum distance for information exchange. The result of risk level prediction
of the two methods is found to be the same for most of the traffic accident records used. This assurance
us that FIS can, indeed estimate risk levels accurately. Accurate risk level identification implies energy
efficiency model of the mobile devices used in traffic safety applications is reliable. The energy
consumption of the proposed fuzzy logic-based adaptive beaconing rate management system is
evaluated. Results depict that mobile devices that use adaptive beaconing rate consume only half of the
energy consumed if a high rate beaconing is used. Additional evaluations portray that energy
consumption of adaptive beaconing rate is affected by the factors that affect traffic safety.

The rest of this chapter is organized as follows. Related works are discussed in section 6.2. Section
6.3 presents the proposed fuzzy logic-based adaptive beaconing rate management system. The
evaluation made to test the accuracy of the FIS is presented, and the energy-efficiency evaluation of the
adaptive beaconing rate are discussed in section 6.4. The conclusion is drawn in section 6.5.

6.2/ RELATED WORKS

Beaconing in telecommunication refers to the continuous transmission of small packets (aka
beacons) to signal error conditions or availability of network devices. In this chapter, beaconing denotes
continuous transmission of geographical and other related information from mobile devices of road
users to servers to protect road users from risk of traffic collision. Beaconing rate management is
important for the reduction of network congestion and energy consumption. High rate beaconing
threatens the capacity of a network and depletes the transmitter’s energy rapidly. Beaconing rate can be
managed by message frequency control, transmission power control, or by a combination of the
preceding two approaches [209], [210]. Message frequency control involves varying beaconing rate
based on situations while transmission power control decides how far information has to be broadcasted.
The beaconing rate management is widely dealt in the area of mobile ad-hoc networks like VANET.
This is because the number of beacons sent among the nodes is enormous to maintain the network
structure and to fulfill the requirements of the applications. In [211], a rate-power control algorithm that
adjusts communication power and rate based on the dynamics of vehicles in a VANET and safety-driven
tracking process is proposed. Their evaluation indicates that the controlled state information
broadcasting to neighboring vehicles can track vehicles accurately and is robust in comparison with
solutions that involve static beaconing. Situation adaptive beaconing that relies on the movement of a
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vehicle and other surrounding vehicles is presented in [212]. Beaconing rates per vehicle per second are
suggested by taking tradeoff between offered load and accuracy into consideration.

For traffic safety applications, beaconing rate can be varied based on collision risk level. Hence, risk
level prediction is the most important process to define adaptive beaconing rate management systems.
So far, traffic accident prediction models have been proposed in the literature. In [213] an accident
prediction model that can accurately predict the expected number of accidents at urban junctions and
road links is proposed. However, it doesn’t involve traffic risk level prediction, which is very important
to thwart accidents. An image processing and computer vision-based traffic accident detection
mechanism is presented in [214]. However, image processing-based accident detection is highly affected
by the time of the day, weather condition, and the used camera. Hu et al. [215] proposed a probabilistic
model for predicting traffic accidents using 3D model-based vehicle tracking. However, all of the above
methods focus on accident detections by identifying vehicles without giving attention to other road
users. [206] and [216] have used fuzzy logic-based collision risk level inference system for warning
system design and for avoiding pedestrian accidents, respectively. In addition to its proven applications
in the domain of artificial intelligence, control, and traffic safety systems, fuzzy logic has been applied
in many ITS applications. Traffic congestion [217], auto-driving [218], and ride comfort [219] are some
of the examples.

Though the following works are not particularly for traffic safety applications, they are proposed for
smartphone energy efficiency. In [69], the usage of auxiliary location methods with GPS sensor for
Location Based Services (LBS) that require continuous location updates is able to achieve 27% energy
saving. An energy-efficient location-based system for a pedestrian touring system used adaptive GPS
sampling and saved 45% energy of the smartphone [70]. An adaptive inertial sensors’ data sampling
method for wheelchair users, which is proposed in [68], is able to save 22% of smartphone energy. A
reduction of inertial sensors sampling to 20Hz for a pedestrian navigation system has enabled 25%
energy saving [71]. One of the differences between traffic safety and other applications is that traffic
safety applications require high rate position sampling and communication. According to ETSI, the
beaconing frequency of CAMs for pre-crash sensing warning system should be between 1Hz and 10Hz.
This implies that CAM has to be sent from 1s to 100ms based on risk level. Obviously, this will keep the
pedestrians, who are the most road accident susceptible road users among VRUs, safe from the
accidents. However, when pedestrians’ mobile devices are used for such applications, their energy will
be depleted in a very short period of time. This is because high beaconing rate implies high energy
consumption and the pedestrian’s mobile devices, in contrast to mobile devices of drivers, are less likely
to be connected to power supply source during the mobility period. That is why adaptive beaconing rate
management system that sends beacons at a high rate when a pedestrian is in a high-risk region and at a
lower rate otherwise is required. This helps to save a great deal of energy while keeping pedestrians safe
from traffic accidents. To the best of our knowledge, only [72] has applied beaconing rate management-
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based energy efficiency of mobile devices while using them for VRU safety. The cloud-based pedestrian
safety system employs situation adaptive beaconing depending on only two risk levels for energy
efficiency. Moreover, [72] uses kinematics of vehicles to determine collision risk level while we have
considered many types of factors that affect collision risks and molded them using fuzzy logic model to
determine collision risk level.

Other than GPS sampling and communication management-based methods to save energy efficiency
of mobile devices, methods that involve grouping pedestrians and computation offloading are also
proposed. An energy-efficient V2P communication schemes to exchange safety messages using mobile
devices is proposed in [73]. The method involves grouping pedestrians in proximity, electing group
leader and making the communication with the vehicle through group leader while P2P communication
is made among group members using Wi-Fi direct. Calculating context information on already resource-
restricted smartphones of VRU could result in reduced battery lifetime. Hence, an adaptive context
information calculation approach which offloads computation to a server at the edge of network is
proposed [74]. However, due to the latency the offloading introduces the method can be applied only in
situation where sensor data has to be sampled at low frequencies. Otherwise, it is recommended to
perform calculations locally and that implies it is not energy efficient. None of the solutions mentioned
above has considered collision risk level determinant factors like distraction and driving under the
influence of alcohol in risk level determination for energy efficiency. TABLE 6.1 provides a summary
of the smartphone energy saving solution proposed in the literature.

TABLE 6.1. SUMMARY OF WORKS ON ENERGY EFFICIENCY OF MOBILE DEVICES

Reference Application Energy Saving Collision Risk Result
Method Considered?
[69] LBS with continuous Using auxiliary No 27% Energy saving
Location updates Location Method
[70] pedestrian touring  Adaptive GPS No 45% energy Saving
system Sampling
[68] wheelchair user’s Adaptive inertial  No 22% energy Saving
navigation system sensor data sampling
[71] pedestrian navigation Adaptive inertial 25% energy Saving
system sensor data sampling
[72] Pedestrian Safety Beaconing Yes (2 risk 13% energy overhead in 2
Management levels) hours simulation
[73] Pedestrian Safety Grouping Pedestrians | No 36.8 % as compared to the
WAVE standard
[74] VRU Safety Offloading  Context No In low sampling rate offload
information Schema has better energy
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6.3/ FUZZY LOGIC-BASED ADAPTIVE BEACONING RATE MANAGEMENT

In this section, we first present the formulation of the problem. Next, the three important parts of
fuzzy logic systems in relation to the problem in question are discussed. Finally, the risk level to
beaconing rate conversion is explained.

6.3.1. PROBLEM FORMULATION

Since risk is fuzzy in concept and most factors that affect traffic safety are also fuzzy, a fuzzy logic-
based collision risk level prediction system is proposed to protect pedestrians from traffic accidents by
introducing an energy-efficient beaconing rate management. The multi-stage notification system
identifies the risk levels by considering many factors that affect traffic accident risks.

The adaptive beaconing rate management system has three main components: (i) preprocessor
component, (ii) fuzzy logic component, (iii) beaconing rate decider. Figure 6.1 shows the three
components, while Figure 6.2 indicates the distribution of roles of adaptive beaconing rate management
of the components in PV-Alert.

Preprocessor component is responsible for compiling factors that affect traffic safety into inputs of
the fuzzy logic model. The fuzzy engine takes factors compiled as input variables and determines the
risk level for a pedestrian. The risk levels are converted into beaconing rates that ensure an energy-
efficient traffic safety of pedestrians using Beaconing rate decider. The preprocessor component is
discussed in this section while the other two components are detailed in subsequent sections.

Road traffic accidents are affected by many factors [220]. In the proposed system, preprocessing
stage involves grouping key road safety risk factors into four categories, namely: (i) reaction time, (ii)
Time to Collision (TTC), (iii) processing time, and (iv) road type.

Input
Variables

Factors that affet::t Preprocessor
traffic safety

Fuzzy Engine

Beaconing Beaconing
Rate Rate Decider JITE

Figure 6.1: Overall process of adaptive beaconing rate management
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Figure 6.2: The distribution of roles of adaptive beaconing rate management on the components of PV-Aler

Reaction time refers to the perception-reaction time of a driver, and it is affected by age, distraction
level, and alcohol intake of the driver plus weather and time of day. The fastest reaction time of a person
is 0.83s [55]. Weather condition extremely affects the driver’s reaction time [221]. In rainy days, the
reaction time of a driver is delayed by 2s. Driving at night, induces 0.4s slower reaction time than
driving at daylight [222]. OId drivers are 0.5s slower than young drivers, according to [223]. There are
many reasons for a driver to be distracted. Distraction due to cellular phone conversation is considered.
A driver in a phone conversation is 0.85s slower than a driver with no phone conversation to react [224].
Drinking and driving is prohibited in many countries. Yet, it is the reason for many traffic accidents.
According to [225], a 10% increase in blood alcohol concentration levels results in a 2% increase in
reaction time. Influenced reaction time is obtained by summing reaction delays due to the elements
mentioned above. The age of a driver can be easily found from his profile. Alcohol intake status can be
obtained from the future Driver Alcohol Detection System for Safety [226]. Time of day, weather, and
phone conversation distraction can be read from a pedestrian’s smartphone or from the central server.

TTC is the time required by a vehicle to collide with a pedestrian if it moves at the current speed,
towards the direction of the pedestrian. Assuming constant speed, TTC can be computed from a distance
between a vehicle and a pedestrian (D) and velocity (V) of the vehicle using simple motion equation
6.1 [227].

(6.1)

TTC =

veh

The value of the two variables can be obtained from GPS reading of the mobile devices of the
drivers and pedestrians.
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Processing time refers to the time a server takes to compute collision prediction algorithm and the
round-trip delay of messages from the mobile device of a pedestrian or a driver to the server. The
computation time of a server running the traffic safety algorithm depends on its specification and
workload. However, it can be taken to be 0.5s [72]. Communication time when LTE is used to connect
mobile devices and servers is 0.05 s [72].

The type of road has an effect on whether a vehicle could brake in a short distance and prevent an
about-to-occur accident. Braking distance (dg,qke) Of @ car depends on friction coefficient (1) and grade
of a road (G) in addition to the velocity of the vehicle and gravitational acceleration 6.2 [206].

VZn (6.2)
Aprake = 55—~
2g(n+G)
The value of coefficient of friction ranges from 0.1 (for ice-covered road) to 0.9 (for dry asphalt and
concrete roads) [228]. Gravity acceleration g is equal to 9.8m/s?. Road grade, which represents slope or
inclination of roads, is taken to be O(flat) to 10%(inclined).

Fuzzy logic-based systems help to make decisions in the presence of vague or unclear inputs. It
differs from classic logic in that elements can belong to a set partially. Here, the system is utilized to
estimate road accident risk level of pedestrians from various vague input factors. The value of most of
these factors can only be described with some uncertainties. FISs have three important components; (i)
fuzzification, (ii) fuzzy inference system and its rule base, and (iii) defuzzification. The three
components are shown in Figure 6.3.
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Figure 6.3: Fuzzy inference system for risk level determination

6.3.2. FUZZIFICATION

Fuzzification, which is the first step in the fuzzy inference process, converts crisp values of different
inputs into fuzzy sets. It transforms accurate numerical values into linguistic variables based on
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predefined membership functions. Membership functions determine the fuzziness of an input.
Trapezoidal membership functions are used for all fuzzy engine inputs and outputs as they are among
membership functions that work so well in fuzzy systems [229].

In the fuzzy system, the four groups of road risk factors discussed in the preceding section are used
as inputs of the FIS. Reaction time, TTC, and processing time have two fuzzy set values (linguistic
terms): high and low. The higher the reaction time of a driver, the most probable traffic accident is. The
smaller the TTC value, the higher the collision risk is. TTC value less than 1s is more likely to cause
accidents [227], and the proposed TTC value to avoid accidents is 3s [230]. The larger the processing
time, the riskier it is for a pedestrian. Membership function for reaction time, TTC, and processing time
are shown in Figure 6.4 a), b) and c), respectively. The road type is fuzzified to fuzzy set values bad,
medium, and good. The larger the sum of the coefficient of friction and road grade, the smaller the
distance to brake and hence the safer it is from provoking an accident, see equation 6.3. Hence, fuzzy
value bad of road type implies a high risk of accident, medium refers moderate level of accident risk and
good implies a low chance of inducing an accident. The member function of the input is shown in Figure
6.4 d).
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Figure 6.4: Membership function for the four inputs

6.3.3. INFERENCE SYSTEM

The FIS is the most crucial component of the fuzzy logic system for decision making. It contains
rule bases and databases to convert fuzzified inputs into fuzzy output sets. Rule bases, which should be
defined by experts, contain a set of Fuzzy IF-THEN statement that blends different inputs using AND or

92



OR fuzzy logic operators. The database refers to membership functions of fuzzy sets used in fuzzy rules.
Among the two well-known fuzzy inference methods, Mamdani type of inference system is opted to
conjecture fuzzy output sets from fuzzy input sets and 24 rules are defined. Some examples of
conventional IF-THEN decrees of the rule base are displayed below:

o IF Reaction time is low AND TTC is high AND processing time is low and road type is good THEN
Risk Level is low.

¢ IF reaction time is low AND TTC is high AND processing time is high AND road type is medium
THEN Risk Level is medium.

¢ IF Reaction-time is high AND TTC is low AND processing time is high and road type is bad THEN
Risk Level is high.

The effect of individual inputs on collision risk level, as it is derived from the rule base, is shown in
Figure 6.5 (1% and 2™ rows). The last row of the figure depicts the effect of a selected combination of
inputs on the risk level.
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6.3.4. DEFUZZIFICATION

Defuzzification, which is the inverse process of fuzzification, is the process of changing fuzzy values
of an output to quantifiable result using defuzzification techniques. Defuzzification determines the type
of action that has to be assumed by the system. Crisp values enable us to select more appropriate actions
than fuzzy results generated by an inference system. The output of the fuzzy engine, in the proposed
solution, is the risk level. The FIS infers risk level as fuzzy sets with the following values low, medium,
and high. These values are converted to specific values using the membership function shown in Figure

6.6. In the overall system, the specific values will be used by beaconing rate decider to decide about the
frequency of information exchange between a mobile device and a server.
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Figure 6.6: Membership function for defuzzification

6.3.5. RISK LEVEL TO BEACONING RATE CONVERSION

Beaconing rate decider, which is shown in Figure 6.1, converts risk levels produced by fuzzy logic
to beaconing rates that save mobile device’s energy while keeping the pedestrian safe from traffic
accidents. As it has been pointed out above, the type of risk level determines the beaconing rate of the
traffic safety system. High, medium, and low risk level linguistic terms of the output variable correspond
to high, medium, and low beaconing rates. The beaconing rates are decided from crisp risk level values
based on the mapping shown in Figure 6.7. The mobile device of a pedestrian in a high-risk region (risk
level value 0.7 to 1.0) needs to send position, kinematics, and other related information at a high rate,
i.e. 10Hz. If the pedestrian is in medium risk level, beacons will be sent at the rates between 10Hz and

1Hz, non-inclusive. It is named half or medium rate beaconing rate. If a pedestrian is in low risk region,
his mobile will send beacons at la ow rate, i.e. once in a second or even at lower rates.
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Figure 6.7: Relationship between collision risk level and beaconing rate

6.4/ PERFORMANCE EVALUATIONS AND DISCUSSIONS

In this section two sets of evaluations are made. Section 6.4.1 presents the evaluation of the traffic
risk level prediction accuracy of the fuzzy logic-based model in comparison with traffic risk level
estimation that depends on minimum distance for information exchange. Subsequently, in sections 6.4.2
to 6.4.4, we discuss the evaluations made on the energy-efficiency of the FIS.

6.4.1. EVALUATION OF THE FUZZY LOGIC MODEL

The fuzzy logic system presented in section 6.3 had been tested with synthetic data to check if it
works correctly according to its definition. The system works correctly for all data that cover all possible
combinations of the inputs of the fuzzy model. The fuzzy logic system is highly dependent on expert
knowledge. To build more faith in the proposed prediction system’s ability to predict collision risk level
accurately, a collision risk prediction system that depends on minimum information exchange distance
(Dpnin)®, is defined and comparison is made on estimated risk levels of the methods. D, is the
minimum distance between a vehicle and a pedestrian which is sufficient for the pedestrian and driver to
perceive a collision and react soon enough to avoid an imminent accident [60]. The collision risk level
of a pedestrian can be identified from D,,;, and its actual distance from the vehicle. The D,,;,, based
Collision Risk Level (DCRL) prediction system uses the same input parameters as that of the fuzzy logic
system. Both have three traffic risk levels where drivers and pedestrians are notified twice to avert a
foreseen accident.

D,in 1S Obtained by calculating the distance the vehicle travels during reaction time, processing time,
braking time, and while a pedestrian is crossing a road, as shown in formula 6.3.

Dmin dreaction + dprocessing + dbrake + dpedcross (63)

® Dmin is formulated in different way in chapter 3 for traffic accident prediction. Here it is reformulated by integrating
more factors that affect traffic safety.
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Where,

dreaction = VVeh * treaction (6-3-1)

dprocessing = VVeh * tprocessing (632)

(6.3.3)

dpedcross = Vyen * v
ped

Note that: t,eqction IS the time of reaction; t,,ocessing IS Processing time; w is the width of road; V.4
is the speed of pedestrian, and dg,4. IS calculated based on equation 6.2.

By taking values that maximize the risk of a collision for the parameters mentioned (for best safety),
D,.i, Of equation 6.3 can be formulated in terms of vehicle velocity in equation 6.4.

Dmin: 7*Vveh + 0-26*V1;2eh (6'4)
The risk levels of the pedestrian can be identified by comparing the current Vehicle’s Actual
Distance (VAD) with D,y;,, as shown in TABLE 6.2.

TABLE 6.2. RISK LEVELS, RISK WINDOWS AND ASSOCIATED WARNING OF DCRL PREDICTION SYSTEM

Risk Level Risk Window Warning
High Risk VAD < 2min Acute Warning
2
Medium Risk D... < VVAD< 2min First Warning
min 2
Low Risk VAD > D,,in No Warning

The three risk windows of the DCRL prediction system for vehicles moving at various speeds is
shown in Figure 6.8. Vehicles moving at higher speeds pose higher traffic accident risk (have longer risk
window for high and medium risk levels) to a pedestrian than slow moving vehicles. Therefore, to avoid
accidents, fast moving vehicles must receive a notification when the vehicles are far away from the
pedestrian. For instance, a vehicle moving at speed of 30m/s (108km/h) will receive first and acute
warnings when the vehicle’s distance from the pedestrian is at 444m and 222m, respectively. The
distance for sending notification decreases as the velocity of the vehicle decreases. For a vehicle that is
moving at a speed of 5m/s (18km/h) the warnings are sent when their distance from the pedestrian is
42m and 21m, respectively.
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Figure 6.8: Risk windows posed by vehicles moving at different speed

The fuzzy logic and D,,;, based accident prediction systems are compared using a randomly
generated traffic accident data for non-intersecting road scenario. Road accidents at non-intersecting
roads account most of the pedestrian accidents, and they are the most severe ones that result mostly in
fatalities [41], [190], [207], [231]. On the contrary, most studies ignore non-interacting road crash
scenarios. Among pedestrian crash scenarios presented in [232], nine of them are non-intersection road
scenarios, and they account about 40% of all pedestrian crashes. The testing data have considered those
non-intersection scenarios. TABEL 6.3 shows the parameters and corresponding values of the generated
data.
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Figure 6. 9: Comparison of FIS based and DCRL prediction systems

The simulation is conducted for two hours, and the risk level vehicles engender to pedestrian is
calculated using both fuzzy inferences based and DCRL prediction systems. The comparison of the
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results shows that 90.4% of the risk identification of the two methods matches exactly, as shown in
Figure 6.9. The remaining ones are identified as low by one system while the other predicts medium
(low-medium) or categorized as medium while the other predicts high (medium-high). However, no
accident scenario is categorized as low while the other estimates high or vice versa. This ensures that the
fuzzy logic-based collision risk level system indeed can predict risk levels correctly. This makes the
energy saving model correct too. However, the fuzzy logic-based model is more appropriate than the
DCRL prediction system since most of the input parameters for risk level prediction are fuzzy in nature
and the risk by itself is a fuzzy concept.

The following subsections describe experiments made to know how much energy can be saved using
the proposed adaptive beaconing rate management system.

6.4.2. SIMULATION SETUP

The following subsections describe experiments made to know how much energy can be saved by
using the proposed adaptive beaconing rate management system. The vehicle arrival rate is assumed to
follow Poisson distribution [233], [234]. As the vehicles move towards the pedestrian, the risk they pose
to the pedestrian is continuously monitored. Based on their simulation lifetime, input parameters to the
fuzzy logic model are categorized into three: (i) area-specific, (ii) vehicle-driver specific, and (iii)
simulation time specific. Area-specific or constant parameters are those that remain unchanged all over a
road segment. Factors related to environmental condition, friction and width of the road as well as
pedestrian speed are included in this category. Vehicles speed and drivers related attributes like age and
distraction level are generated as each vehicle-driver are introduced in the simulation. For each
simulation interval, the server’s computation time and communication time of the wireless channel are
estimated. The summary of road accident risk factors and corresponding values are displayed in TABLE
6.3. MATLAB is used to conduct the simulation.

TABLE 6.3. RISK FACTORS AND CORRESPONDING VALUES OF THE DATA GENERATED

No Risk Factor Values Pertaining to

1 Age Young =0s, Old=0.5s [223] Driver

2 Alcohol level Clean = 0s, Alcoholic = 0.034s [224]

3 Distraction Status No phone = 0s, simple conversation =
0.5s, complex conversation = 0.85s [224]

4 Velocity 5to 30 m/s Vehicle

5 Initial Distance (to 1 to 1000 meters

Pedestrian)

6 Speed Walking = 1.28 m/s to 1.83m/s, Running Pedestrian
=2.47 to 4.2m/s [41]

7 Distance (from a On road = 0, (2). Out-of-road = 1 to 5
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road) meters

8 Friction Coefficient = 1(ice) to 8 (dry asphalt and concrete) Road
with values 0.1 to 0.9 [228]

9 Inclination 0 (flat) to 10%(sloppy)

10 Width 2.5t0 4.6 meters

11 Weather Clear =0, foggy = 1, Cloudy=1.4, rainy =  Environmental
2 [221] Conditions

12 Time of day Daylight = 0s, night-time=0.4s [222]

13 Computation time 0.31st0 0.91s [72] Computation

14 Communication time = 0.04s to 0.09s [72] Environment

15 Scenario 1to 9 [232] Scenario

Simulation traces are analyzed to calculate the risk level of the pedestrian at each simulation time.
Then the risk levels are converted into beaconing rates, and beaconing rates are finally converted to
energy consumption.

LTE is the wireless communication channel that connects servers with mobile devices of pedestrians
and drivers. According to [235], LTE is 23 times less power efficient in comparison to Wi-Fi due to tail
energy. It is also less power efficient than 3G. Their experiments show that energy per bit of LTE is
10pJ/bit. However, due to its large coverage area, high bandwidth, and fast response time, LTE is
recommended for active traffic safety applications [72], [236].

Simulation Parameters

Simulation is conducted for two hours while running a fuzzy logic-based risk level prediction system
every 0.1s. Vehicle arrival rates considered are 5, 10, 30, and 60 Vehicles Per Minute (VPM). A two-
lane road is considered, and vehicles within a 1km radius from a pedestrian are monitored. The length of
the packet is 1KB [237], and the smartphone battery capacity for analysis is 3000mAh. The important
simulation parameters are summarized in TABLE 6.4.

TABLE 6.4. SIMULATION PARAMETERS AND VALUES

Parameter Value
Simulation Period 2hrs
Simulation Interval 0.1s
Vehicle arrival rate 5, 10, 30, 60 VPM
Number of lanes 2
Maximum Vehicle 1000 meters

Monitoring Radius
Smartphone Battery capacity = 3000mAh
Packet/beacon size 1KB
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6.4.3. SIMULATION RESULTS AND DISCUSSIONS

A fuzzy logic-based adaptive beaconing rate is compared with static full rate, half rate, and low rate
beaconing types in terms of energy consumption over the simulation period, Figure 6.10. The simulation
result is grouped into chunks of five minutes, and the energy consumption is summated. In adaptive
beaconing rate, the frequency of beaconing is guided by the risk level of the pedestrian while high, half
and low rates beaconing are constant over the complete simulation period. Since the pedestrian cannot
be in the same risk level over the whole simulation time energy consumption of adaptive beaconing rate
varies from time to time. Adaptive beaconing rate is more energy-efficient than high and half rate
beaconing rates. This can be clearly seen from accumulated energy over time graph, Figure 6.11.
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Figure 6.10: Energy consumed over simulation period
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Figure 6.11: Accumulated energy over simulation period

A traffic safety system that involves high rate beaconing makes sure that the pedestrian is safe from
accidents. However, beaconing at a constant high rate even in situations the pedestrian is in low or in no
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collision risk area makes it the most energy-hungry process. A system that involves beaconing at a low
rate, indeed, saves a lot of energy but it puts the road user in danger of traffic collision as an accident
prediction algorithm lacks fresh data to estimate an imminent accident. Adaptive beaconing rate both
saves energy and keeps the pedestrian safe from car accidents.

Figure 6.12 shows how the battery level of the mobile device used for simulation decreases over the
simulation period. Low rate beaconing is the least energy-hungry while high rate beaconing is the most

energy-hungry beaconing rate. The life time of a smartphone that uses adaptive beaconing rate is twice
greater than the one that uses high rate beaconing.
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Figure 6.12: Battery level over pedestrian mobility period

The effect of the number of cars approaching a pedestrian on energy consumption of his mobile
device, which is running traffic safety application that employs adaptive beaconing rates is assessed.
TABLE 6.5 shows the vehicle arrival rate in a minute and estimated the speed of the vehicles. The
energy evaluation of different arrival rates is displayed in Figure 6.13.

TABLE 6.5. VEHICLE ARRIVAL RATES AND ESTIMATED CORRESPONDING SPEEDS
Type Car arrival rate (VPM)  Speed (m/s)

Crowded 60 2-13.89
Urban 30 5-20
Sub-Urban 10 5-30
Rural 5 10-40
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Figure 6.13: Energy consumed over simulation period for different vehicle arrival rates

A pedestrian in a road segment with an increased number of vehicles will be in the high-risk region
most of his mobility period. This leads to more energy consumption as a high-risk level implies high
beaconing rate. Because of the large number of vehicles, smartphones of pedestrians in urban area are
more energy-hungry than rural if adaptive beaconing management is used. If the vehicle arrival rate is
60 VPM, almost the same energy as high rate beaconing is consumed. This means that most of his
mobility period, the pedestrian is in high traffic risk region. Hence, to assure pedestrian safety, high rate
beaconing is employed.

The last set of evaluations made is checking the effect of factors that aggravate traffic accidents on
smartphones energy consumption that use adaptive beaconing rate management for traffic safety.
Factors are categorized into two as bad and good environmental conditions. In bad environmental
conditions, roads are slippery and down inclined. The driver’s reaction time is influenced by distraction,
alcohol, and age, the weather is rainy, and time of day is night. Good cases take values that reduce
accidents for the stated factors. The results of energy consumption are displayed in Figure 6.14.

Factors that increase traffic accidents also increase energy consumption of mobile devices that run
traffic safety applications relying on the adaptive beaconing rate. This is because, to be safe from
accidents, beaconing rate needs to increase, and this ultimately increases energy consumption. However,
with factors that increase traffic accidents, applications relying on adaptive beaconing rate spend much
less energy than the ones relying on a high beaconing rate. The energy consumed due to worst
environments conditions is approximately equal to safety application that involves constant half-rate
beaconing. The proposed adaptive beaconing rate management enables to save a large amount of energy
even in the presence of factors that escalate traffic accidents.
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Figure 6.14: Energy consumed over simulation period for different environmental conditions

6.5/ CONCLUSION

PV-Alert is an active traffic safety solution that employs mobile devices of VRUs and drivers for
collecting their position and other related data. However, the excessive energy consumption of mobile
devices is a bottleneck to keep using the devices as part of the application. High beaconing rate
requirement of traffic safety applications is the main reason for high energy consumption. The problem
can be addressed by adjusting communication of the mobile devices according to the pedestrian’s traffic
risk level. For risk level identification, a fuzzy logic-based method is proposed. This is because the risk
is a fuzzy concept, and most of the factors that affect risk level are imprecise and essentially subjective.
According to the risk level, the beaconing rates values are adjusted. That is if the identified risk level is
high, a higher beaconing rate is performed, and if the risk level is low, a lower beaconing rate is opted.
The solution is feasible to husband energy since a pedestrian won’t be in high collision risk level his
entire mobility period.

The accuracy and ability to save mobile device energy of the system is evaluated. Comparison of the
fuzzy logic-based model with a prediction system that relies on minimum distance for information
exchange shows that more than 90% of risk levels predicted by the two methods are matched. This
proves that the fuzzy logic-based collision risk level prediction system can predict the risk level of
pedestrian accurately. The evaluation of energy efficiency of the system shows that the adaptive
beaconing rate management can double the battery life of smartphone in comparison with the one that
uses full-rate beaconing rate. Moreover, the energy-efficiency of the system is evaluated in urban and
rural environments. The environments are distinguished with vehicle arrival rates. Mobile devices
running the system are more energy-hungry when they are used in urban areas. Finally, the effect of

103



factors that influence traffic accidents on energy consumption is tested. Results indicate that factors that
increase traffic accidents increase the energy consumption of smartphones. Based on all
abovementioned results, it can be concluded that adaptive beaconing rate managements enables to save a
huge amount of energy of mobile devices used in active traffic safety applications while ensuring traffic
safety of road users.

The next chapter presents a subjective logic-based two-way trust management system proposed to
ensure data security and user privacy in PV-Alert.
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PV-ALERT: TRUST MANAGEMENT

7.1/  INTRODUCTION AND PROBLEM STATEMENT

Fog computing, which is an extension of cloud computing, is used to process a huge amount of
information produced by numerous 10T devices. Hence, it is proposed for many applications [97], [98],
[99], [100]. In PV-Alert fog computing is a central infrastructure that is responsible for taking CAM
messages from VRUs and drivers and predicts accidents. In case of an imminent accident, fog servers
forward DENM to both drivers and VRUs. However, due to its features and flexibility of deployment,
fog computing is highly susceptible to information security and user privacy violations [18], [19], [110],
[111]. Fog computing confronts new privacy and security challenges in addition to those assumed from
cloud computing [19]. High mobility support, dynamic environment, geographical distribution, location
awareness, proximity to end users, and lack of redundancy are among characteristics of fog computing
which have a negative impact on its security and privacy despite their proven merits. Existing privacy
and security remedies for cloud computing cannot be applied directly to fog computing as the
architectures of the two computing paradigms are quite dissimilar [110]. Imposing security and privacy
in cloud computing is relatively simpler because of the centralized component in comparison with
distributed fog computing architectures. Apt measures need to be taken on security and privacy issues of
fog computing to maintain its pace of acceptance and development in academia and industry.

Another challenge for a fog computing environment, which is much related to security and privacy,
is trust management. Trust is defined as the level of assurance that an object will behave satisfactorily
[238]. The behavior pertains to the Quality of Service (QoS) or the security policies that the object has
to possess. Thus, a trustworthy object conforms to QoS requirements without violating any security
policy. The level of assurance depends on the deployment environment, the type of network application,
and the required level of security. For distributed environments like fog computing and for safety and
security critical network application like traffic safety or health applications, a high degree of trust is
needed. On the contrary, a low level of trust is demanded for centralized architectures for which other
security mechanisms can be easily imposed and for applications whose reliability is not a priority [239].
In fog environment, devices may encounter other “strange” or new devices in the network, and the
interaction with them should be carried out in caution since there is uncertainty on their behavior. To
predict the future trustiness of an entity and avoid any uncertainty or risk about an entity, trust
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management systems gather information about the entity from direct observations and recommendations
of other entities. That is why Jin-Hee Cho et al., formulated trust management as one way of risk
mitigation techniques which involves trust establishment and trust update tasks, among others [240].

There are two entities in trust management: trustor and trustee. The trustor is an entity that puts faith
in the other entity, i.e. trustee. Trust can be delineated as trustor’s belief in trustee’s capabilities,
honesty, reliability, etc. [241]. Trust is directional in that trustfulness of trustee does not depict whether
the trustor itself is trusty or not. Moreover, trust is subjective meaning that what is trustworthy for one
entity may not be trustworthy for the other.

Trust management enables objects in a network to determine the level of trustworthiness of another
object. In other words, it provides a mechanism to decide whether to put faith in an entity to which a
connection is going to be established. It allows detection of damaged or misbehaving nodes and enables
autonomous communication among entities in a network [115], [239]. Trust is crucial for creating
interaction in an uncertain environment [242]. It ensures information security and user privacy, and it is
also related to reliability, integrity, dependability, and ability to perform a service [115].

Trust computation enables to calculate trust value of a target entity dynamically. An effective trust
computation method has five design dimensions: trust composition, trust propagation, trust aggregation,
trust update, and trust formation [243]. Trust composition determines the information required for trust
computation. This information can be QoS and/or social relationship information. QoS trust refers to the
belief of trustor that the trustee can provide a service with the desired quality [244]. Since, social
relationships among human beings are also reflected by devices they own [245], [246], it can be used for
trust computation. Trust propagation determines how trust values are stored and calculated. It can be
either centralized or distributed. Trust update decides how often will trust of entities be updated. Trusts
can be updated in an event driven and/or time driven fashion. Trust formation describes how to combine
the trust properties determined by trust composition. Trust can be formed from either a single trust
property or multiple trust properties. Trust aggregation decides how to integrate trust evidence from
different recommenders and from own experience. Weighted sum, Bayesian inference, fuzzy logic,
subjective logic, and regression analysis are some examples of trust aggregation techniques.

Even though trust management is a crucial and hot topic, it is a challenging problem to enforce in
fog environment due to its flexibility of deployment. Fog nodes can be from different providers, they
may be owned, operated, and maintained by different individuals or providers independently, and new
nodes can join or leave the network anytime [19]. Geo-distribution and proximity of fog nodes to end
users imply that the nodes are easily accessible, making them susceptible to corruption and rogue node
built up by adversaries. Lack of redundancy, dynamicity, high mobility support, and low processing
power of nodes [18] are among other properties of fog computing that adds complication to trust
management in fog computing. Due to these reasons, fog servers are potential threats to not only fog

clients but also to other fog servers. The same is true from fog clients’ perspective.
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In the traffic safety architecture presented in chapter 3 (PV-Alert), connected VRUs send their
location and other associated data to fog servers periodically. This means that VRUs expose their
location continuously. This poses privacy concern. Fog-based traffic safety applications in general are
most susceptible to privacy violation. Due to the following reasons, maintaining privacy in such type of
applications is challenging.

e Since the traffic safety application is a hard-real-time application, it is hard to apply location
accuracy preservation methods as most of them involve computations that introduce a delay in
response time.

e In PV-Alert, privacy and security can be violated at multiple places: mobile devices, in the
communication channel, fog node, and cloud server. It is challenging to find privacy preservation
method that works across all the components.

e Positions of VRU and drivers should be sent continuously to the fog server at very a high rate for
the whole mobility period of the VRU. Protecting the privacy of continuous user position
updates in real-time as used for online tracking remains a challenging problem [247].

e Even though trajectories of VRUs are unpredictable, they are on known walkways. This makes
the application susceptible to map matching attacks.

e The application runs in a distributed environment where relatively simple and matured
centralized privacy mechanism is not possible.

Because of the reasons pointed above, we believe that user privacy and data security issues should
be solved indirectly using trust management. Trust management ensures privacy and security. Therefore,
the problem of privacy can be addressed by enabling VRUSs to connect to only trusted fog servers. Fog
servers in their turn allow connection request of only trustworthy VRU devices. In fog networks trust
should work in two-ways so that fog clients can verify fog servers that they can provide the right,
reliable, and secure services. On the reverse, fog servers must be able to check the legitimacy and
roguery of fog clients based on their trust values.

Hence, this chapter presents a subjective logic-based system which aggregates trusts using a specific
version of belief theory called subjective logic [248]. In the novel two-way, scalable, and efficient trust
management solution trustor and trustee evaluate each other by exchanging their trust computation role
to create trusted data communication. The distributed and event-driven trust management system
considers both QoS and social trust metrics to determine the trust of a fog node. The trust values are
calculated using the information obtained from self-observation and recommendations of neighboring
nodes. The accuracy, convergence, and resilience of the solution are demonstrated by conducting
extensive evaluations using a simulation tool developed for this purpose. Evaluations made include the
effect of the weight of direct and indirect trust values and the effect of the number of malicious or bad
nodes in the network. Additionally, different derivatives of the trust management system are produced,
and a comparative analysis is made on the effectiveness of selecting the right service providers among a
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set of good and dishonest servers. Experimental evaluation demonstrates that the two-directional trust
management surpasses one-way trust management system in opting more trusted service providers.

The remainder of this chapter is organized as follows. Section 7.2 discusses related works in trust
management in fog computing and other related computing environments. The system model of Two-
way Trust Management (TTM) and the trust metrics comprised in the system are discussed in section
7.3. This section also explains the proposed subjective logic-based trust management system.
Performance evaluations made are detailed in section 7.4. Finally, section 7.5 concludes the chapter.

7.2/ RELATED WORKS

Because of limited works on trust management in fog computing and similarities of the computing
paradigm to loT systems and cloud computing, selected related researches in these domains are
reviewed. Many trust management mechanisms are introduced for loT systems [115], [243], [249],
[250], [251], [252], [253],[254], [255], and cloud computing [116], [256], [257], [258], [259], [260],
[261], [262]. These mechanisms allow to select trusted nodes for reliable and secure communications
and take single or multiple QoS and social trust metrics [249], [250]; the QoS trust metrics being more
studied than social trust metrics [243].

In [253], a fuzzy reputation-based trust management system that considers only QoS trust metrics is
presented. The final trust is computed from trust information obtained from direct observation and from
recommended indirect trusts. The main drawback of this work is ignorance of social relationships
among devices on the Internet. A series of works by Fenye Bao et al [249], [250], [251], [252]
emphasized on social relationships among 10T devices to define trust management systems for 10T
applications. Trusts are calculated from information obtained from both direct observation and opinions
of other nodes based on trust metrics like honesty, cooperativeness, Community of Interest (COI),
friendship, etc. and their solutions are evaluated mainly for trust assessment accuracy and convergence.
[252] focuses on addressing the problem of misbehaving nodes whose characters may change over time.
A scalable, adaptive, and survivable trust management system is presented in [251]. Scalability of the
trust management system is achieved by keeping trust information of the subset of nodes encountered
using a defined storage strategy. The main contribution of [249] is the introduction of a novel adaptive
filtering technique to determine the best way to combine direct and indirect trusts so that convergence
time and trust estimation bias are minimized. More recent works on trust management on Social Internet
of Things (S10T) include [254], [255]. A recommendation and reputation-based trust computation model
for distributed SloT networks, which is able to converge in few iterations is discussed in [254].
However, the method depends solely on social trust metrics and final trust scores do not include
knowledge from direct observation in the trust computation. A context-aware trust management system
for S1oT is proposed in [255] to prevent attacks of malicious nodes which acts dishonestly based on a
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context. Three trust contexts are identified using context-aware QoS and social similarity-based trust
metrics are used to identify honest and dishonest devices effectively.

Trust in cloud computing enables service consumers to select a cloud service provider with desired
reliability, quality, and performance. If the service consumer has no prior experience with a cloud
service provider, it is challenging to put faith in the service offered [116]. Trust is vital for fast adaption
and growth of cloud computing [256], [257]. However, non-transparent nature of cloud services has
made trust management in a cloud environment challenging [257]. Yet, there are many published works
on recommendation, prediction, reputation, and policy-based trust management in cloud computing
[258]. Most of these works rely on verification of Service Level Agreement (SLA) [259] and QoS
attribute information [260]. Some works consider identity and interaction history in trust computation. A
behavior graph and service grouping based trust evaluation method that encompasses relationship
parameters such as identity, interaction evolution, and service quality attributes such as availability and
reliability are proposed in [261]. Other trust metrics that depict social relationships like honesty and
sincerity can also be used in trust computation for a cloud computing environment. Ing-Ray Chen et al.,
proposed a scalable trust protocol which depends on social trust metrics for mobile cloud IoT systems
[262]. The protocol named IoT-HiTrust allows 10T devices to report their experiences and query the
service trustworthiness of other loT device through cloudlets.

Trust management in fog environment is different from trust management in a cloud environment in
varies ways from their architecture to ways of deployment. The distributed nature of fog architecture
complicates trust computation because of lack of a global centralized entity that enables to impose
traditional security mechanisms like authentication and access control to allow secure and trusted
communication [110], [263], [264]. Secondly, mobility support, location awareness, a huge number of
nodes, the low processing power of nodes are among the features of fog computing that pushes to strive
for dynamic, scalable, and computationally efficient trust management system. Thirdly, the flexibility of
deployment of fog computing makes fog environments more vulnerable to trust-based attacks [19]. Trust
in cloud environments is more-or-less unidirectional. In contrary, the two-way requirement of trust is
another issue that makes trust issue a formidable challenge in fog computing [110]. Fog nodes that
provide services must be able to evaluate the trust level of nodes that request services and service
requestors must also be able to check whether they depend on trusty service providers.

Hence, trust is one of the issues that have to be addressed to boost the acceptance of fog computing
in industries [112]. However, little work is done on trust management in fog computing. Most of the
works that deal with trust in fog computing merely affirm imperativeness of trust management in the
environment. Only a handful of works that suggest particular methods for trust computation in fog
computing till the end of 2018 are found. Rahman et al., in [263] identified a fuzzy logic configuration
that affects trust values of a fog node. Distance, latency, and reliability are trust metrics considered in
the configuration. The work provides some insights to the definitions of trust and advantage of fuzzy
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logic for trust evaluation for fog computing. The same authors as in [263] extended their work to
propose a broker-based trust evaluation framework for fog service allocation [117]. However, the
proposed work conceives only QoS trust metrics, and it is unidirectional. In addendum, usage of broker
implies malfunctioning of the broker results in a complete cessation of the trust evaluation framework. A
summary of some related trust management works in 10T, cloud computing, and fog computing research
domains from the five trust dimensions of trust computation perspective are presented in TABLE 7.1.

TABLE 7.1. SUMMARY OF WORKS ON RELATED TRUST MANAGEMENT SYSTEM FROM FIVE
DIMENSIONS OF TRUST COMPUTATION

Research Domain 10T Cloud Computing Fog Computing
Trust Social Trust [249], [250], QoS Trust [260], QoS including
Composition [251], [254], QoS Trust [253]  [261], QoS from SLA  mobility and

and both [252], [255] [259] distance [117]
Trust Propagation Distributed [249], [250], Centralized [259], Distributed [117]
[251], [252], [253], [254], [260], [261]
[255]
Trust Update Time-driven [249], [252], Event-driven [259], Event-driven [117]
[253] & Event-driven [250], [260], [261]
[251]
Trust Formation Multi-trust [249], [250], [251], Multi-trust [259], Multi-trust [117]

[252], [255] & Single-trust [260], [261]
[253], [254]
Trust Aggregation Bayesian Systems [249], Weighted Sum [259],  Fuzzy-logic [117]
[251], Weighted sum [250], [260], [261]
[252], [254], [255], Fuzzy-
logic [253]

Our work is different from the aforementioned ones. Firstly, the work involves two-way trust
computation where fog server checks trustworthiness of fog clients and fog clients checks back if the
server is fit to provide a service. Secondly, we have considered QoS trust information besides
considering social relationship information among nodes. The trust management system relies on both
self-observations and recommendations from neighboring nodes, which are combined adaptively. Our
bidirectional trust management solution does not depend on any third-party component. Multiple
recommendation trusts are assembled using a trust aggregation technique called subjective logic. It is a
kind of a belief theory and suggested to be most appropriate for fog computing [239], [243].

7.3/ SUBJECTIVE LOGIC-BASED TRUST MANAGEMENT SYSTEM

In this section we cover three important topics in relation to the trust management system proposed.
First, the system model conceived, and trust metrics used in TTM are explained. Next, subjective logic
and trust computation are discussed. Finally, the two-way trust management algorithm is presented.
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7.3.1. SYSTEM MODEL

The two-way trust management system is based on a simplified fog computing environment whose
system model is shown in Figure 7.1.

Trust Management System

—

Server-to-server-connection

Server to
client

Connection

Device.
Owner ‘

relationship '

Fog Server

Figure 7.1: System model of the two-way trust management system

The architecture of fog computing may contain more than one layer [90]. However, without losing
generality, we have conceived a single-layered fog computing environment. Fog servers can be mobile,
and multiple devices may be combined to form a fog node [89]. We assumed that single static devices as
fog nodes. We also assume that fog servers are evenly arranged on both sides of a road as shown in the
diagram above. The reason for this arrangement is to test the robustness of TTM algorithm in selecting
trusted servers among many neighboring servers. Fog server can communicate with neighboring 1-hop
fog nodes, i.e. fog servers and fog clients. Fog client in fog computing can be user carried devices like
mobile devices, laptops, or non-user accompanied devices like smart lighting, smart washing machine,
Closed Circuit TV (CCTV) or video surveillance, etc. [265]. This research is about the first group of
devices which are carried by pedestrians. Fog clients are mobile on a predefined trajectory. Fog clients
can communicate with other neighboring fog servers. Each fog node has an owner, and a person may
own more than one node or device. The high-level description of how the proposed system works and
trust-related information considered to compute trust levels of fog nodes are presented below.

How it works?
A mobile device of VRU (i.e. fog client) intending to get a traffic safety application service, requests

a fog server for a connection. The fog server then wants to ensure that its connection is with a trusted
(non-rogue) fog client. Therefore, to capture a malicious or bad fog client, the server calculates the trust

value of the client by dynamically combining indirect trust obtained from neighboring servers and from
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its direct observation. Detected fraudulent clients will then be refused for the service, and its trust value
will be stored to monitor the client further. The value will also be sent to servers that request for trust
level of the client as recommendations. A fog client which is allowed to connect to the server, in its turn
wants to make sure that the fog server is trustable, and can give the right service. A malicious fog server
may provide wrong or incorrect service posing the VRU for accidents. The fog client consults
neighboring fog servers besides its direct observation to determine the trust status of the server. Just like
fog servers, fog clients also propagate their experience about the server to other nearby servers. Trust
management systems do not require disseminating trust information over the entire network [266].
Therefore, nodes only keep and exchange trust information about neighboring nodes within the radio
ranges for computational efficiency.

[while Trus

tedServerFound = false]
—getServer|}——=

sendConnectionRequest()

-+ calculateTrust()
e e ——— sendResponseToRequest()-=—————==—="-
loop i
|
o [
pt ) |
[respponse = ConnectionGranted] I
calculateTrust() >
opt ) |
[
[trust==thresholdvalue] i
connectToServer() >
setTrustedServerFoundTrue() >
T T T T T T T P T T T T T T T T T
[else] I L
break J : :
1 1
[ [
[else] ' '
break ) | [
— | |
" i i

Figure 7.2: Dialog between fog clients and fog servers

The sequence of communication between fog client and fog server to create a trusted connection is
depicted in Figure 7.2. The conversation is summarized as follows. A fog client sends a connection
request to a fog server. The server evaluates the trust value of the client and allows the connection if the
client is trustworthy; otherwise, it refuses the connection. If the client is granted a connection, it
evaluates the trust value of the server and establishes connection if the server is trustworthy. If the server
refuses the connection, or the server is found to be untrustworthy, the client sends a connection request
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to another server. This conversation continues until a trusted service provider is found among
neighboring fog servers.

Trust Metrics
A trust metric or trust property is the information needed to calculate the trust level of a node. In the

TTM system, more than one trust properties are used to evaluate the trust of fog servers and clients.
Choice of trust property depends on the issue the trustor is interested in [116], [240], [244]. QoS trust
evaluates the capability of a fog server to complete a requested mission successfully. Since fog client’s
interest is to select a server that can provide the services properly, more QoS are used, and selection of
clients by servers largely relies on social relationships. Metrics used by fog servers to evaluate trustiness
of fog clients are friendship, honesty, and ownership, while fog clients use latency, PDR and ownership
to evaluate the trust value of a server. The definitions of the metrics and how they are calculated are
explained underneath:

e Latency: the time required by a fog server to provide a service to a fog client. High latency and
irregularities in response time predict possible intrusions in the system [267]. The value is returned
from the latency response-time model produced using log-normal distribution [268] with the mean
and standard deviation taken from latency evaluation of PV-Alert [56].

e PDR: is the ratio of packets successfully received to the total sent. It is the ratio between the number
of packets received by the application layer of destination nodes to the number of packets sent by the
application layer of the source node. In the solution proposed, PDR is modeled using a well-known
packet loss model called the Gilbert-Elliott model [259]. The parameters of the model are obtained
from packet loss observation of links of a good and bad node [270]. Hence, the probability of
transferring from good state to the bad state, and the probability of transferring from the bad state to
the good state are generated based on the PDR result PV-Alert [56].

e Ownership: each fog node has an owner. This metric is included with the assumption that devices
owned by the same person are trustable each other [245]. Therefore, if the same person owns a fog
server and a client, the value of ownership metrics is one; otherwise, it is zero.

e Friendship: refers degree of closeness of a node in comparison with other nodes. Instead of defining
it initially in friendship matrix [249], [271], calculation of friendship in the solution presented in this
chapter relies on interaction history. It follows the maturity model proposed in [266], in that, the
more positive interaction experiences between two nodes implies more trust and confidence between
them. Friendship is calculated as the ratio of the number of successful connection requests of a client
to the maximum connection of all requests. A connection request is said to be successful if the
request is accepted by the server. A server accepts clients connection request if the client’s trust is
above the required threshold value.

e Honesty: evaluates the belief that a node is dependable based on another node’s direct observation
over a given period of time [250], [252], [271]. It is calculated by keeping a count of suspicious

113



dishonest experiences of a trustee node as observed by trustor node during a time period. The
detection involves a set of anomaly detection rules such as a high discrepancy experienced in the
recommendation, as well as interval, retransmission, repetition, and delay rules. Hence, honesty is
figured out as the ratio of valid trust propagations and realized connection requests. Realized
connection requests are those resulted in a trusted connection between trustor and trustee.
Exaggerated fog clients’ recommendations are conceived as invalid propagations, and connection
requests from nodes of low trust values are rejected.

7.3.2. SUBJECTIVE LOGIC AND TRUST COMPUTATION

Trust computation enables to calculate trust value of a target entity dynamically. If the trust value is
acceptable, then trusted data communication follows; otherwise, entities abstain from untrusted
connection to other entities. To establish trust values, an effective trust computation method has five
design dimensions [243]. As stated earlier, the TTM system uses QoS and social trust metrics and it is
distributed, event-driven, and multi-trust system. This section discusses subjective logic and its
application for trust aggregation, how final trust values of fog nodes are calculated from direct and
indirect trusts, the details of TTM algorithm and the justification for the resilience of the proposed
system to thwart trust-based attacks.

The TTM system staged in this chapter uses subjective logic to aggregate recommendations from
neighboring fog servers. Though subjective logic has the ability to defend trust-based attacks because of
its discounting step, it is less explored [243]. This section briefly introduces subjective logic and shows
how it is used in the trust management system.

Subijective logic

Standard logic is designed for an idealized world where propositions can be either evidently true or
false [272]. However, in the real world, nobody can be absolutely certain whether a proposition is true
or false, and the assessment of the proposition is individual, i.e. not general and objective [273].
Therefore, many calculi and logic-based methods which consider uncertainty and ignorance have been
proposed. These methods allow concluding a proposition with insufficient evidence. Trust is one of
such propositions since it is a statement or assertion that expresses a judgment or opinion about an
object. Subjective logic, which is a special form of belief theory, builds on the belief that trust is
subjective, and it is differently experienced by everyone [274]. It is not practical for recommenders to
consider all pertinent trust metrics to evaluate the trust value of a node. This implies that trust is
computed with insufficient evidence and each node in a fog computing environment computes its own
trust value subjectively for each node it encounters.

In subjective logic, uncertain probabilities are represented with belief model as opinion. Opinion or
degree of trust of a node X, w,, is defined with 4-tuples [248] as:
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wy=N(biduraz) (7.1)

where b, is the belief that the node is trustable, disbelief d, denotes the doubt that the node is
trustable, u, is uncertainty to conclude that a node is trustable or not, and atomicity ayx is the prior
probability of x without any evidence. If the value of atomicity is 0.5, an opinion has an equal
probability of giving true or false output. Note that the sum of belief, disbelief, and uncertainty must be
equal to 1. The degree of trust represented as a 4-tuple opinion can be converted into a single-valued
trust value using the equation:

p(x) = b, +a, *xu, (7.2)

To illustrate this using an example, suppose the probability of rain falling in Paris on 25 October
2019 is 0.4, the chance of no rain is 0.3, and the uncertainty of raining is 0.3. Assuming equal chance of
giving a true or false output, this can be represented as opinion in the form w, = (0.4, 0.3, 0.3, 0.5) and
uncertain probability is 0.4 + 0.5*0.3 = 0.55.

Now the challenge is how to get the values of the tuples of subjective trust from the interaction
among fog nodes. To calculate the degree of trust of nodes in fog networking, the values of belief (b,),
disbelief (b,), and uncertainty (u,) of a node x can be obtained from its positive and negative experience
[272]. If positive and negative experiences are denoted by p and n respectively, then the three variables
can be calculated using the following set of equations:

__P (7.3.1)

* n+p+1
" (7.3.2)

* n+p+1
1 (7.3.3)

Uy = ———

n+p+1

Fog node count good and bad experiences of another node it came across and forward this value as a
subjective trust when they are asked to recommend. Recommended trusts have to be weighted and
combined to get the final trust value. There are two ways of combining trust recommendations in
subjective logic; discounting and consensus. They are described hereafter.

e Discounting: A node computing trust value of another node scales the recommendations it received
using discounting (denoted by the operator &) with the trust values the node has about the
recommenders. Hence, trust values from trusted recommenders will have more weight than less
trusted ones. This is essential to defend trust-based attacks. Testimonial requester has trust values of
the recommenders from previous communications. Suppose a trustor node, i, has a subjective trust
value of a recommender node k as T; , = (b;r, dix, Uik, Q;x) and the recommender has trust value
of trustee node j as subjective trust Ty j = (byj, dij, Uk j» ak;). See the visual representation of

the statement in Figure 7.3 a). Then the indirect trust of node j as evaluated by i based on k’s
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recommendation is calculated as:
Tij = (bikby,j) birdr,jy dix + Upr + by, j, Ak, j) (7.4)

e Consensus: Recommendations from several recommenders are combined using consensus (denoted
by operator €b). Suppose node i and k have recommendations about node j as T; ; = (b j, d;j, u;;,
a;;) and Ty ;= (b, di;j, Uk ag;), respectively, see Figure 7.3 b). The combined
recommendation for j is given by 7.5.1:

byjug; + byjuy; dijug; + digjug; wgj*ugg (7.5.1)
Tik,j = ( I ) I ) k ﬁaik,j)
where,
k= ui_j + uk,j - ui,juk,j (752)
_ ai,juk,j + ak,jui,j - (ai,j + ak,j) U; jUg j (753)

Ug,j + Upj = 2U;5Upj

Figure 7.3: a) Discounting and b) Consensus operators

Overall indirect trust is calculated by applying discounting and consensus together on the
recommendations obtained from all neighboring 1-hop nodes as subjective trust. So, as to get more
reliable recommendations and to be more resistant to trust-based attacks, recommendations can be taken
only from trusted recommenders by applying threshold-based filtering [244]. However, in the case of the
proposed solution, as the number of neighboring nodes might be limited, all recommendations are taken,
and trust-based attacks are taken care of by the trust aggregation method. Suppose a node, i, has trust
value of recommenders 1,1y, ...,1% at time t as T;,q(t), T;,2(t), ..., T; x(t) respectively, and the
recommenders have trust towards node j at time t as Ty j(t), Tz ; (1), ..., Tr i (1), S€€ Figure 7.4., then
by applying discounting and consensus operations, the final cumulative indirect trust of node j as
evaluated by i, is calculated using equation 7.6.

T (t) = Ty () ® Tr1j(6)) © (Tyra(t) ® Ty j(6)) @ e ® (T (£) @ Trg (1)) (7.6)
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Figure 7. 4: Computation of overall indirect trust
The trust management system relies on the trust value of a node calculated from direct observation in

addition to recommendations. Trust metrics defined above are used to calculate direct trust. Direct trust
value of a node j as it is evaluated by node i at time t is calculated using the following formula:
THT () = ox T + B* T(0) + w* T75 () (7.7)
Where X, y, and z are trust metrics and o, B, and p are weighting factors of individual trust metrics.
For fog servers, X, y, and z are latency, PDR, and ownership, respectively while for fog clients they are
friendship, honesty, and ownership, respectively. The weighting factors of the QoS and social trust
metrics are adjusted adaptively based on belongingness of trustor and trustee to an owner and reputation
of the trustee. Reputation, in this case, refers to overall trust value of a node in previous encounters. If
the trustor and trustee are owned by the same person or reputation of a trustee is above a threshold trust
value that splits complete trust and distrust, average values of the existing trust metrics are taken.
Otherwise, half the weight provided for the other trust metrics is assigned to ownership metrics. This
formulation is clarified in the following pseudocode.

if (trustor & trustee are owned by same person OR reputation of trustee > threshold trust value)

o=p=u=0233
else
a=p=04
p=0.2

This simple weighting procedure encourages nodes with good reputations and penalizes bad ones.
Furthermore, the procedure is suitable for resource-constrained fog clients.

Calculating direct and indirect trust values paves a way to compute the overall final trust level of a node. It is
calculated using the following formula:

T, j(6) = ¥ * THT (1) + (1 — y) » T/Mrect (p) (7.8)
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y is the factor that specifies the contribution of direct and indirect trusts on the overall trust value.
The contribution of indirect trust value (¥ npairec: = 1 — ) to overall trust is adaptively decided based
on the trust value of trustee in preceding trust computation (T; ;(t — At)), number of recommenders
(n(rec)), and maximum possible recommenders the configuration allows (max(rec)), see formula 7.9.

n(rec) = T; j(t — At) (7.9)
max(rec) + n(rec) * T; ;(t — At)
The indirect trust weighting factor is normalized to the past experience and the current number of
recommenders relative to the maximum possible number of recommenders a fog node can have in the
setup. The formula ensures that the contributions of indirect trust do not exceed more than half of the

Yindirect =

overall trust and an increase of the contribution proportionally with a number of recommenders.
Providing more weight to direct trust and using more recommendations leads to accurate and fast
converging trust values [252].

7.3.3. TWO-WAY TRUST COMPUTATION ALGORITHM

The detailed steps of the two-way trust computation algorithm are described in Algorithm 7.1. The
final trust value is in the range of [0, 1], where 0 implies complete distrust and 1 is complete trust. The
ignorance or threshold point at which trust and distrust are dissected depends on the type of application.
For most applications, it is 0.5, but for safety-critical and health applications the value is usually higher.
TABLE 7.2 displays important notations used in the algorithm.

TABLE 7.2. LIST OF IMPORTANT NOTATIONS FOR THE ALGORITHM
Notation Description
Clients ={C,, C,, ..., C;}  List of Fog Clients
Servers ={S;, S,, ..., Sn} List of Fog Servers

Tij Trust of node j as evaluated by node i

Tﬁfl- Trust of node j as evaluated by node i w.r.t trust metrics or trust type X

I[2][Ci] Interactions between a server and client C;

R[2][Ci] Interactions realized by client C;

P[2][Ci] Propagations made by client C;

STrust; Subjective trust of a node defined as belief, disbelief, uncertainty and
atomicity

al, Bl, ul, vyl Adaptively calculated weighting factors for trust computation of clients

a2, B2, u2, y2 Adaptively calculated weighting factors for trust computation of Servers

Fog clients initiate trust computation by sending a connection request to a nearby fog server. The fog
server checks the trustworthiness of the client (i) by computing direct trust from friendship, honest and
ownership trust metrics, steps 4-13, and (ii) by consulting and aggregating recommendations from
neighboring servers using subjective logic, steps 14-20. At step 21, direct and indirect trusts are
combined based on their respective weights to determine the final trust value of the client.
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Algorithm 7.1: Two-way trust computation Algorithm

©o~Nogk~whE

Inputs:{Cy, Cy, ..., Co}, {S1, Sz, ..., Sm} o, B1, Ky Y1, 02, B2, Ko, Y2(2daptively
calculated)
Output: Trusted connection established
Steps:
fori=1ton /> Iterate over clients
ns = neighboring servers of client C;
for j=1tons. size

/> Calculate direct trust of Ci

e = CrI[A] (] / Max(Ci 21 LKD | 4= 1,2, ...n)

THoY =(C.P[A1[] + CLRIAI[D) / (Ci.PLO][]] +
Ci.P[1][i1+ Ci.RIOIL] + Ci.R[LI0D)
if Ci and S; are owned by same person and Trust of C; > threshold,
| TOWnershipi'j =0.33

|else _

TOWnershlpiyj =0.2
end if - |
TDlrecti'j — al*TFrlendshlpi’j +ﬂ1*THon85tyi,j + “l* -I-Ownershlpi'j

/> Calculate indirect trust of C;
STrust; = Initial Subjective Trust Value of C;
for a = 1to ns.size
discounting = T; . & T,
STrust; = STrust; @ discounting
end for
Treet . = STrust;.Belief + STrust;.Uncertainty * STrust; Atomicity
Ti,j — 'YlTDireCti,j + (1_ 'Yl)TIndireCti,j
if Ti,j > threshold,
2> If the client is trusted, calculate trust of S;
TLa‘e”CVA,i = logNormalResponse(mean, SD)
TR 1 = gilbertElliott_Model (p, r)
if Ci and S; are owned by same person Trust of Si > threshold,
| -I-Ownershipjyi =0.33

|else _

-I-Ownershlpjyi =0.2
end if _
TDIreCtj,i — az-I—Latencyj'i +ﬂ2TPDRj,i + ul* -I—Ownershlpj'i

/> Calculate indirect trust of S;
STrust; = Initial Subjective Trust Value of S;
or a = 1to ns.size
discounting = T; . & T,
STrust; = STrust; & discounting
end for
Tidireet | = STrust;.Belief + STrust;. Uncertainity * STrust;. Atomicity
Tj,i — 'YZTDireCtj,i + (1_ YZ) -I-Indirect-’i
if Tj,i > thrUShOIdg
/> make trusted connection
end if
end if
end for
end for
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If the final trust is greater than or equal to the minimum threshold trust value the server expects, it
allows the connection. In this case, it is fog client’s turn to assure if the fog server is a trusted service
provider. Hence, it executes steps 23 - 39 to find out the trust value of the server. Two QoS trust
information, latency and PDR, and a social relationship trust information, ownership, are used to
calculate the direct trust value of the server. Recommendations are collected from neighboring servers
and aggregated to form the indirect trust. Next, the last trust value of the server is decided from weighted
sum of direct and indirect trusts. If the server has acceptable trust value, a trusted connection is
established between the fog server and fog client. If either fog server or fog client is untrustworthy, then
the client sends a connection request to another server, and the steps described above are repeated. The
name two-way trust management is given because of trust computation involved from the fog server to
the fog client and from the fog client to the fog server.

Resistance of the model to Trust-based Attacks
Service requesters must have the desired level of trust value since service providers entertain only

trusted requesters. Service providers want to be profitable by serving as many service requesters as
possible. Hence, nodes related in trust computation and sharing may be involved in trust-based attacks.
A malicious node may transmit wrong information about another entity or itself, collude with others to
control service, or may also act incorrectly to mischief those in trust relation. A list of trust-based attack
models [243] with definitions and how effective is the TTM algorithm to thwart those attacks is
presented in this section.

e Self-Promotion Attack (SPA): if a malicious object is requested about its trust value, it provides good
recommendation, and once it is selected, it may provide poor service or abuse the network. The trust
management system presented is fully resilient to SPA because in the algorithm a node can’t
recommend itself.

e Ballot-Stuffing Attack (BSA): a type of collusion attack where malicious recommender gives
exaggerated trust value about a bad object to trust information requester with an intention of
increasing reputation of the object. In the proposed trust management system, a bad fog server may
send incorrect recommendations about a fog node, and a bad fog client may also propagate false
trust information to neighboring servers. The problem is addressed by the selected trust aggregation
method. In the method, recommendations are weighted based on the trust level of recommenders.
Consequently, a recommendation of a bad node will have a very small contribution to the overall
indirect trust. The second solution applied to fight back BSA is ignoring exaggerated values of
recommendations.

e Bad-Mouthing Attack (BMA): even though an object is trustable, colluding recommenders provide
false trust values to vituperate false information about the object. When malicious nodes are selected
because of false information, they get access to resources posing security threats to the entire system.
This kind of attacks is viable to happen, but solutions applied for BSA address this attack too.
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e Opportunistic-Service Attack (OSA): trust management systems decrease the reputation of malicious
nodes from time to time. When the node notices that its reputation is dropping, it performs good
service, and when its reputation is high, it starts giving bad service. OSA is dealt with monitoring the
behavior of a node and removing it from the network if its behavior is fluctuating over a certain
period of time.

e On-Off Attack (OOA): with this attack, a malicious object performs good and bad services randomly
to level itself as a normal or good object. To foil this attack, the same solution proposed for OSA is
used.

7.4/ PERFORMANCE EVALUATION AND DISCUSSIONS

The trust management system discussed is evaluated in a simulated environment. Evaluation setup
and the results of the evaluations are presented in this section. There are some simulation tools for fog
computing; iFogSim [275] for measuring the impact of resource management techniques, Discrete Event
System Specification (DEVS) based tool [276] for evaluating impact of deploying fogging, EmuFog
[277] is extensible emulation framework for fog computing environments without mobility feature, and
FogTorch[278] for QoS-aware deployment of multi-component IoT applications to fog infrastructures.
However, there is no full-fledged simulation tool for the new computing paradigm. Therefore, a Java-
based simulation tool for the scenario explained in the system model section has been developed. The
tool contains classes like fog node, topology manager, mobility manager, and trust computer as the most
important components and other many miscellaneous components.

The list of parameters used, and their default values are indicated in TABLE 7.3. We considered a
fog environment with 200 fog clients and 40 fog servers randomly distributed over 20 owners. The
maximum number of 1-hop neighboring nodes that could send recommendation is six. At the beginning
of the simulation, fog clients which are placed on a walkway are connected to fog server. While fog
servers are assumed to be static, the clients are mobile. The clients travel in the direction they are
originally set with a pedestrian speed randomly assigned based on the values obtained from [41]. The
clients walk from left to right, and right to left continuously on a defined trajectory throughout the
simulation period. The proposed system is an event-driven trust computation where, when a moving
client arrives at a trust computation zone, it starts exchanging information with fog servers to connect to
one of the trusted fog servers. Trust computation zones are regions in the simulation environment where
a fog client is leaving the network coverage area of the currently connected service provider. A trust
computation cycle (simulation cycle) is equal to travel from one end of the walkway to the other. If there
are multiple trust zones between the two ends of the road, the average value of trusts computed in all
zones is taken. We first presented evolutions of trust accuracy, trust convergence, and how resistant is
the system to malicious nodes. Next, a comparative analysis of different derivatives of the proposed
algorithm is given.

121



TABLE 7.3. DEFAULT SIMULATION PARAMETERS

Parameters Values
Number of Fog Servers 40
Number of Fog Clients 200
Number Owners 20
% of dishonest nodes (PD) 20%
Simulation period (Cycle) 25

7.4.1. EVALUATION OF TRUST ACCURACY, CONVERGENCE AND
RESILIENCE

The evaluation results of accuracy, convergence, and resilience of the proposed algorithm are
presented in the next paragraphs. Unless specified, the default parameters shown in TABLE 7.3 are
used. Figure 7.5 shows trust accuracy and convergence of randomly picked normal or good fog client a)
and good fog server b) with adaptive and static weighting factors (y) among direct and indirect trusts.
The trust management that relies on adaptive weighting factor is the most accurate and the fast
converging one. This is because indirect trust gets higher weights only when it is obtained from larger
number of recommenders. For static weighting, as the values of y increase, the trust converges faster,
and it has better accuracy. This confirms that the trust value obtained by self-observation better
describes the final trust value of an entity. This is because recommendations are affected by the presence
of malicious nodes [279]. In our system, by default, 20% nodes are dishonest. Trust value of 0.9 is
achieved at the 17" cycle when more weight is given to indirect trust for fog clients while only at 9"
cycle, the same value is achieved if more weight is provided for direct trust. As shown in the diagram,
though it takes a longer time to converge, relying on indirect trust doesn’t prevent the algorithm from
convergence. Therefore, we can say that indirect trust has a very important role, especially in cases
direct observation is imprecise or not possible. There is no significant difference between trust values of
fog clients and fog servers except in case of fog servers, where the graph is a bit smoother due to a
constant set of neighboring servers that feed recommendations.

D' 77777777777777777777777777 o- 7777777777777777777777777777777
()] @ |
o | o
5 o S @
> —— y=02 b g
7] y=05 k7] :
5 T —— y=038 2 S 8
= -&- y= Adaptive = daptive
| Ground Truth w0 | round Truth
o
wn Te]
o T T T T T o T T T T T
5 10 15 20 25 5 10 15 20 25
Trust Compition Cycle Trust Compition Cycle
a) Fog Client b) Fog Server

122



Figure 7.5: Trust values of a) Good fog client and b) Good fog server over trust computation cycle

The evaluation of the trust value of a randomly selected bad fog client and bad fog server are shown
in Figure 7.6. If a node is bad either intentionally or unintentionally, it acts undesirably. The algorithm
captures this behavior, and this is manifested by decreasing trust value of such nodes. The main
objective of this evaluation is assuming that a node is bad, how trust management system handles such
situations without going through the nitty-gritty of malicious node detection. The default trust value of a
node in this evaluation is 0.5. Based on the type of a node, the trust level increases or decreases in the
course of trust computation cycle. The algorithm is able to turn bad nodes worst. This is especially true
when the weighting factor of direct and indirect trust values is dynamically determined since the factor
depends on preceding trust values. The reduction of the trust values helps other nodes abstain from
creating a connection to such nodes and to remove such nodes from the network whenever necessary.
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Figure 7.6: Trust values of a) Bad fog client and b) Bad fog server over trust computation cycle

Figure 7.7 shows the resilience of the algorithm when the percentage of dishonest fog clients
increases with adaptive y. The percentage of dishonest nodes is set to 20%, 40%, and 60%. It can be
observed that as the percentage of dishonest nodes increases, it takes more time for a good fog client’s
trust to converge. Moreover, the trust value at which convergence appears decreases as more population
of malicious nodes is introduced. For instance, the trust value of a good fog client can’t attain 0.85 till
22" simulation cycle if the percentage of dishonest nodes is 60%. However, the algorithm is resilient to
hostility since it provides reasonably high trust value even in the presence of a large population of
dishonest nodes. The value meets the requirements of many applications, although the population of bad
nodes is large.
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Figure 7.8: Percentage of expelled dishonest nodes over trust computation cycle
Algorithm 7.1 is modified in such a way that dishonest nodes are expelled from the network. A fog

client is expelled if it is unable to be accepted by any neighboring service provider. That is, it passes a
trust computation zone without successfully connecting to another service provider due to its low trust
value. A fog server is expelled if it is not selected for service provision by any service requester over a
trust computation cycle. The percentage of expelled dishonest nodes in the simulation environment,
where the percentage of dishonest nodes is 50% is graphed in Figure 7.8. This data is collected by
counting nodes expelled up to a simulation cycle. At 25™ trust computation cycle, all bad fog servers and
82% of bad fog clients are expelled from the network.

The behavior of fog nodes may change over time [266], [280]. A good node may change its behavior
to a bad node because of malfunctioning, or to pose attacks, and a dishonest node may also change to
good behaving node. Figure 7.9 shows the trust value of a randomly selected good node whose behavior
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has turned to bad Figure 7.9 a) and a bad node whose behavior has changed to good Figure 7.9 b) at 12"
simulation cycle. The algorithm is able to capture the behavior change of nodes.
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Figure 7.9: Change of behavior of nodes a) from Good to Bad and b) from Bad to Good

7.4.2. COMPARATIVE ANALYSIS

The TTM system’s algorithm can be amended in different ways. Hence, the algorithm is modified in
such a way that a fog client evaluates the trust values of all neighboring servers and send a connection
request to the server with the highest possible trust value. The modification is named Modified Two-way
Trust Management (MTTM) system. In the original two-way algorithm, any fog server encountered
early, and that fulfills trust value requirement of the client is selected as long as the client itself is found
to be trustworthy. Random service provider selection, which randomly opts service providers without
regard to trust is another method on the plate for comparison. The three methods are evaluated in terms
of the average percentage of bad servers selected for service provision over 25 simulation cycles. A bad
server, in this case, is the one with trust value less than 0.5. The objective of the evaluation is to check
how effective is the proposed method in terms of selection of the best service provider with the
assumption that the quality of services provided depends on the trust level of the service provider. For
this evaluation, the percentage of dishonest nodes is set to 40%, and the number of fog servers has the
default value. The average percentage of bad service providers selected over the trust computation
cycles is plotted in Figure 7.10.
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MTTM has chosen only one dishonest fog server on average in all trust computation cycles. It is the
most effective method because of its ability to choose the most trusted node to create a connection.
However, since the method involves high overhead due to the computation of trust of all neighboring
servers, it is not suitable for real-time systems. TTM may select a server which does not possess the
highest trust value, but it is optimal in the selection of service providers with desired trust value, and it
has lesser computational overhead than MTTM.

The last set of experiments conducted are the evaluation of the trust level of servers opted for service
provision using MTTM, TTM and a newly added conventional One-way Trust Management (OTM)
system where clients can evaluate the trust of servers to which they are going to connect without their
trust being evaluated by the servers. This method works in the same way as TTM, except in this case,
clients’ trust is not evaluated. The purpose of this evaluation is to check if two-way trust computation
has indeed advantage over one-way trust computation. Hence, trust convergence and accuracy of the
three algorithms on randomly selected good fog server are evaluated over trust computation cycles.
Percentage of dishonest nodes is set to have the default value (i.e. 20%) and direct and indirect trust
contributions to the overall trust are decided dynamically. The result is shown in Figure 7. 11.
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Figure 7.11: Trust values of different derivatives of the algorithm for randomly selected good fog server

Modified two-way trust management system, MTTM, outperforms the other methods both in
accuracy and trust convergence though its difference with TTM is minor. This is bearing to its ability to
choose the most trusted fog server. One-way trust management system is the least performing algorithm.
The reason behind this is that, firstly, the trust value of the server they first encountered and selected
may not have the highest trust value in comparison with neighboring servers. Secondly, the indirect trust
computation of the servers misses recommendations from nearby servers. In the main algorithm, clients
propagate trust values of the servers they have computed to establish trusted data communication to
servers, and the servers use this value to weight recommendations of the servers. Therefore, we can
conclude that the two-way trust management system chooses most trusted service providers than the
one-way trust management system.

7.5/ CONCLUSION

Fog computing is the next frontier of cloud computing since it can compute, and store a massive
amount of data generated by loT devices near their sources. Indeed, transmitting all these data to the
cloud will take up a huge amount of bandwidth. Fog computing is a promising architecture that allows
data processing near to where they are generated instead of sending them to the cloud. Because of this, it
saves a great deal of bandwidth, and it is suitable for latency-sensitive applications like traffic safety
applications. Fog computing can be combined with omnipresence mobile devices to reduce high fatality
rates due to traffic safety architectures. Current mobile devices have a high computation, storage,
communication, and sensing capacity making them candidates to many solutions. An architecture that
uses mobile devices of VRUs to track the users and fog nodes to run collision prediction algorithms and
notify both VRUs’ and drivers is proposed in chapter 3. The evaluation of the solution reveals that it is
able to render alerts in real-time. However, before deploying the solution in a real environment,
challenges attributed to fog computing needs to be addressed. Its features and flexibility of deployment
make fog computing vulnerable to privacy attacks. For instance, co-location of a user and fog node
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means that users can be localized up to one fog node coverage area (e.g. city block area) by an
eavesdropper.

In this chapter, a P2P two-way trust management system that enables service requesters to evaluate
trust level of service providers before awarding the service and that allows service providers to check the
trustworthiness of the service demanders is presented. By exposing their information to only trusted
nodes, information security, and user privacy are ensured. The bidirectionality of the solution is the first
of its kind for fog computing, and it allows fog nodes abstain from connecting to untrustworthy nodes
and ensures secure data communication with only trusted nodes. The system dynamically incorporates
both QoS and social trust information to compute trust levels of fog nodes from an adaptive combination
of direct observation and recommendations. Subjective logic is used to aggregate trust values obtained
from neighboring recommenders. Extensive evaluations of the trust management system show that it
converges quickly, have high accuracy, and is resilient to trust-based attacks. The solution is modified in
two different ways and analytical comparison is made in terms of percentage of dishonest nodes selected
for service provision and trust convergence. The first modification is that service requester selects a
service provider with the highest trust value instead of selecting a trusted service provider encountered
first. The second amendment whereas is the conversion of TTM to the conventional one-way trust
management system. It is found that the proposed system gives an optimal solution since the
modifications have either high overhead, or do not converge in time, or have less accuracy.

The next chapter provides conclusions of the thesis and discusses the possible extension of
researches to the problems addressed by this thesis.
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CONCLUSIONS AND PERSPECTIVES

8.1/ CONCLUSIONS

Road traffic injuries are reasons for large numbers of avoidable deaths. It is the eighth leading cause
of death globally for all age groups and it is the leading cause of death for people aged five to twenty-
nine. Vulnerable road users make up more than 50% of all road traffic deaths and injuries. The rate of
road accidents is increasing globally. Deaths, injuries, physical disabilities, and psychological distress
caused by road traffic injuries are creating an incredible undesirable economic, and social consequence
on victims, their families, and the society in general, particularly in low- and middle-income countries.
Human errors are the main reasons for road traffic accidents. Some of the typical conduct of humans
which contribute to traffic accidents are speeding, drunken and intoxicated driving, distracted driving
and walking, not abiding by traffic laws, not using gears like seat belts and helmets. To solve the severe
public health problem caused by road traffic injuries, many passive and active road safety measures are
being taken.

The thesis began with a deep survey on road safety systems. We also discussed requirements of
VRU devices (VRU carried devices for traffic safety), and communication technologies to connect
VRUs with vehicles. Fog computing as intermediate infrastructure for V2VRU communication is also
explained. The descriptions include architecture, features, applications, and challenges of the computing
paradigm.

Next, an active safety system that integrates mobile devices owned by VRU and the rising fog
computing paradigm is presented. Rather than being causes of traffic accidents due to the new kind of
distractions they brought, mobile devices can function as VRU devices to save lives of many VRUs. On
the one hand, the devices have high computation, storage, sensing, and networking capabilities.
Moreover, they are possessed by almost all road users. Fog computing, on the other hand, comes with
plenty of attractive features that make the technology the best candidate for traffic safety, and other real-
time applications. Some features of fogging that suits traffic systems include low latency, location
awareness, geo-distribution, heterogeneity, scalability, reliability, and predominance of wireless
connections. The main duties of smartphones in the solution are sensing position and other data needed
for traffic accident prediction from VRUs and vehicles, and sending the CAM to a nearby fog server.
Once the fog server receives the data, it executes the VRU collision prediction algorithm. If an imminent
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accident is estimated, the server sends DENM to both VRUs and drivers. Mobile devices of VRUs and
drivers may be connected to fog server using either Wi-Fi, or cellular communication technologies. The
feasibility of the architecture is proven by testing its response time and packet delivery ratio in the
simulated environment, and by comparing it with other smartphone-based traffic accident avoidance
solutions based on criteria pertaining to the application.

Before deploying the architecture in a real environment, there are certain challenges that must be
addressed. The challenges are related to important components of the architecture: smartphones GPS
position accuracy doesn’t suffice for traffic safety applications, position sampling frequency of the
mobile device is slack, and the usage of the devices in traffic safety applications drains their batteries
quickly. Revealing users position continuously and densely exposes the identity of VRU’s and drivers.
Despite ample advantages of fog computing, there are challenges, including information security and
user privacy. Thus, we have provided solutions for the challenges mentioned above.

After conducting an experiment to check the position accuracy of contemporary mobile devices, a
two-stage position accuracy improvement algorithm based on map matching is able to correct inaccurate
position readings of mobile devices. In the first stage, deviated position readings are smoothed using the
Kalman filter. In the second stage, OTW based map matching is performed to align the positions to the
right road segments. Various variations of the OTW algorithms are compared in terms of matching
accuracy and time complexity. To satisfy the high sampling demand of traffic safety application (10Hz),
we have proposed a method that fuses position data obtained from GPS and inertial sensors. The
experiment we have conducted shows that maximum sampling frequency of smartphones is 1Hz while
inertial sensors can provide the data at a much higher rate. GPS fixes are used as ground truth positions
and to correct dead reckoning parameters. Other positions between two GPS fixes are dead reckoned
using inertial position data. Combining GPS positioning, which has long term accuracy and inertial
positioning, which has short term accuracy resulted in accurate positioning.

High rate position sampling and communicating with fog servers make small mobile devices more
energy-hungry devices. Thus, to increase the energy-efficiency of mobile devices, we have done two
different tasks. To reduce energy consumption due to position sampling, optimal inertial sensor data
sampling that saves energy without degrading the position accuracy is conceived. Energy consumption
due to high communication is dealt with a fuzzy-logic based adaptive beaconing management system-
based risk level VRU. The system makes traffic risk level prediction by considering factors that affect
traffic risks. The factors are related to pedestrian profile, the drivers, the kinematics of the vehicles, and
the road and environmental factors. Finally, the road accident levels are converted to beaconing rates
that conserve energy while keeping the VRU safe from traffic accidents. A smartphone that uses
adaptive beaconing rate can save twice more energy than the one with a static beaconing at a highest
rate.
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The last contribution of this thesis is on establishing trusted communication between fog servers and
VRU devices. Fog computing is susceptible to security and privacy attacks due to its proximity to end
users, location awareness, geo-distribution, etc. To overcome this problem, a two-way subjective logic-
based trust management system that enables VRU devices to check if fog servers can provide the right
service and that allows fog server to check the trustworthiness of the VRU devices is proposed. It
incorporates both QoS and social metrics to compute an aggregated trust of direct and indirect trusts.
The trust management is accurate, converges in few trust computations cycles, is resilient to trust
attacks, and captures behavior changes of nodes.

8.2/ PERSPECTIVES

This section is dedicated to highlighting some open questions and perspectives for future work in
relation to the problems addressed by the thesis.

e Offloading Trajectory Data among Fog Nodes: during their mobility, VRUs and vehicles may
leave the coverage area of a fog server they are currently connected, and join a new fog server.
For better accuracy of traffic accident prediction by looking at mobility history of the road
users, their trajectories have to be passed to the new fog node. The other reason for offloading
road users’ trajectories to nearby fog nodes is to distribute loads among fog nodes. Based on
the situations, part of the trajectory may be sent instead of the entire mobility history.

e Network Congestion: in roads which are densely populated by VRUs and vehicles, congestion
is a threat in the traffic safety architecture proposed. Sending position and other information at
such high rate to fog servers by road users through wireless communication channel may cause
congestion of the network, which eventually leads to transmission errors, and high VRUs
devices energy consumption. Clustering road users, contextual transmission, and letting fog
servers predict some information rather than sending all the time are candidate solutions to
reduce congestion.

e Collective Energy Saving: based on [281], up to 70% of people in a crowd are actually moving
in groups, such as friends, couples, or families walking together. If a group of people are
moving together, only the smartphone of the person with the highest risk of collision or/and
the better power charge level is supposed to beacon at high frequency. Others can beacon at a
lower frequency to check their battery level and for better accuracy. The frequent beaconing
role is periodically switched among cluster members, for fair energy efficiency. Grouping
pedestrians implies overall energy gain can be achieved and the gain increase as the number of
people in a group increase. However, caution has to be taken not to compromise safety.

e Combining Direct and Indirect Communication: communication between vehicle and VRU
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can be made using either in direct mode or in indirect mode through an infrastructure. So, as to
exploit the advantages of the two communication modes for maximum safety, they can be
combined. In normal situations, the two parties can communicate indirectly through an
infrastructure. However, when an about-to-occur collision is detected, they may be set to
communicate with each other. This highly reduces communication latency and increases
safety. However, the effort put to get the benefits is not sufficient.

3D position Tracking (3D Localization): is the measurement of a 3D position and orientation
of an object in a defined space relative to a known location. It has got a lot of attention from
the wide research community. 3D localization of vehicles and VRUSs increases position
accuracy and hence traffic safety. However, as far as we know, no efforts have been made to
employ 3D localization for tracking VRUs in traffic safety.
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