J2bb ;2 S bbBM; AMi2 7 +2 T > HH2HBX i
KmHIB@#HQ+F bi m+im 2/ MmK2 B+ H bQHPp.
1?72 MmK2 B+ HbBKmH iBQM Q7 p BQm
1H2+i Q@>v/ Q@.vM KB+ ~Qrb
IK2b? EmK "~ a2i?

hQ +Bi2 i?Bb p2 " bBQM,

IK2b? EmK "~ a2i?X J2bb :2 S bbBM; AMi2 7 +2 T ° HH2HBx iBQM Q7 K
bQHpP2' X TTHB+ iBQMiQi?2 MmK2 B+ HbBKmH iBQM Q7 p "BQmb ivTE
2HBM:; M/ aBKmH iBQMX IMBp2 bBid /2 SQBiB2 b- kyRNX 1M:HBb?X L

> G A/, iI2ZH@yYyk98N8Ne
?2i1iTbh,ffi2HX "+?Bp2b@Qmp2 i2bX7 fiZH@yk98
am#KBii2/ QM kN C M kyky

> G Bb KmHiB@/Bb+BTHBM v GOT24WB p2 Dmbp2 "i2 THm B/BbBIBTHBN
"+?Bp2 7Q i?72 /2TQbBi M/ /Bbb2KIBEBMBR MNQ@T™+B2® " H /BzmbBQM /2 /
2MiB}+ "2b2 "+?2 /Q+mK2Mib- r?2i?@+B2MMiB}2mM2b#/@ MBp2 m "2+?22 +?22- T
HBb?2/ Q° MQiX h?2 /IQ+mK2Mib MK VW+RK2Z2EF IQKHBbb2K2Mib /62Mb2B;M
i2 +?BM; M/ "2b2 "+? BMbiBimiBQWER BM?8 7M#M2I @b Qm (i~ M;2 b- /2b H
#Q /-Q 7 QK Tm#HB+ Q T ' Bp i2T2HRAB+B @2MT2BIpXib X



THESE

Pour lobtention du grade de

DOCTEUR DE LUNIVERSITf DE POITIERS
UFR des sciences fondamentales et appliquZes
P™Ie poitevin de recherche pour I'ingZnieur en mZcanique, matZriaux et ZnergZtique
PPRIMME
(DipI™me NationalArrstZ du 25 mai2016)
fcole doctorale : Sciences et ingZniggsmatZriaux, mZcanique,
ZnergZtique SIMME
Secteur de recherche : MZcanique des milieux fluides

PrZsentZe par

Umesh Kumar SETH

Message Passing Interface parallelization of a mutblock
structured numerical solver.

Application to the numerical simulation of various typical
Electro-hydro-dynamic flows.

Directeur de These PhilippeTRAORf
Co-Directeurs Eric MOREAU, Pdro VAZQUEZ

Souterue le29 mars 2019

Jury
Rapporteur Sakir AMIROUDINE Professor, University of Bordeaux, France
Rapporteur SylvainLAIZET Senior Lecturer, Imperial College Ldon, England
Membre Azeddine KOURTA Professor, University of Ozans, France
Membre Philippe TRAORf Associate Professor, University of Poitiers, France
Membre Eric MOREAU Professor, University of Poitiers, France

Membre PZdro VAZQUEZ Associate Professor, University of Seville, Spain






ACKNOWELEDGMENTS

| express my sincere gratitude towards my thesis direagssciate ProfPhilippe TraorZ, Prof.
Eric Moreau and\ssociate ProfPZdro A. Vazquez foproviding me this opportunity to work
with them, andheirvaluable guidancesupportand supervisiothroughout the duration dtis
work.

The contributions of my office colleagues Philippe Parnaudeau, Alexandre Poux and Francisco
J. DuranOlivencia hae been crucial in accomplishing the overall work. Especially, their
support with the daunting tasks of hitgvel scientific programming was invaluable. | also
wish to thankPierreFraneoisand Francis for always extending their support at their earliest.

The cordial atmosphere of the office made it possible for me to sustdioraign culture, and

the demanding researcher life. | am grateful to all the people who work in the H2 building who
were always friendly, patient and encouraging regardingnerydh language competences. My
friends Pierre, Thomas, Gwenael, Yann, Ugo, Etienne, Emmanuel, Sachin, Arthur, Clement,
Ayyoub and others were always there with me when | needed them.

| extend my gratitude towards the French ministry of Education who @aviee funding for
this work.

Thanks to all the jury membetar their interest in this research work.

| also thank my family members who have always been there with me in all ups and downs of
life.






Abstract

Several intricately coupled applications of modern industries fall under thecisaiplinary
domain of Electrohydrodynamics (EHD), where the interactions among charged and neutral
particles are studied in context of both fluid dynamics and electrastagetherThe charge
particles in fluids are generated with various physical mechanisms, anthdveyinder the
influence of external electric field and the fluid velocity. Generally, with suffigksttric force
magnitudesmomentum transfer occursofn the charged species to the neutral particles also.
This coupled system is solved with the Maxwell equations, charge transport equations and
Navier-Stokes equations simulated sequentially in a common time loop. The charge transport
is solved consideringonvection, diffusion, source terms and other relevant mechanisms for
species. Then, the bulk fluid motion is simulated considering the induced electric force as a
source term in the NaviStokes equations, thus, coupling the electrostatic system with th
fluid. In this thesis, we numerically investigated some EHD phenomena like unipolar injection,
conduction phenomenon in weakly conducting liquids and flow control with dielectric barrier
discharge (DBD) plasma actuators.

Solving such complex physical $gms numerically requires hig¢nd computing resources
and parallel CFD solvers, as these large EHD models are mathematiéa#ipnd highly time
consuming due to the rangethe and length scales involvethis thesiontributes towards
advancing theapability of numerical simulations carried out within the EFD group at Institut
Pprime by developing high-performanceparallel solver with advanced EHD models. Being
the most popular and specific technolpggveloped for the distributed memory plathsy,
Message Passing Interface (MPI) was used to parallelize our-blodk structured EHD
solver. In the first part the parallelization of our numerical EHD solver with advanced MPI
protocols such as Cartesian topology and {@@mmunicators is undertakeln particular a
specific strategy has been designed and detailed to account for thbloultstructured grids
feature of the code. The parallel code has been fully validated through several bencmmdarks
scalability testscarried out on up to 1200 cores on our local clustewed gcdlent parallel
speedups with our approach. A trustworthy database containing all these validation tests
carried out on multiple cores provided to assist ifuture developments.

The secad part of this thesis deals with the numerical simulations of several typical EHD
flows. We have examineitireedimensional electroconvection induced by unipolar injection
between two plangparallel electrodes. Unsteady hexagonal cells were observed stualy.

3D flow phenomenon with electaonvective plumes was also studied in the blaldee
electrode configuration considering both autonomous andantomomous injection laws.
Conduction mechanism based on the dissociation of neutral moleculesakly conductive

liquid has been successfully simulated. Our results have been validated with some numerical
computatios undertaken with the commerc@de Comsol. Physical implications of Robin
boundary condition and Onsager effect on the charge spe@ee highlighted in electro
conduction in a rectangular channel. Finally, flow control using Dielectric Barrier Discharge
plasma actuator has been simulated using the Sdazeng model. Impacts of dielectric
thickness, gap between the electrodes, freqjuand waveform of applied voltage etc. were
investigated in terms of their effect on the induced maximum ionic wind velocity and average



body force. Flow control simulations with backward facing step showed that a laminar flow
separation could be drastilgacontrolled by placing the actuator at the tip of the step with both
electrodes perpendicular to each other.

Keywords: MPI, Cartesian topology, Intecommunicators, Electroconvection, Unipolar
injection, conduction phenomenon, Plasma discha®geerHuang Model



RZsumZ long en franeais
Chapitre 1.
Introduction

Au XXle siscle, les progres dans tous les domaines de la science et du gZnie dZpendent de plus
en plus des progres de l'informatique. La capacitZ des ordinateurs modernes d'effectuer un grand
nombre de calculs mathZmatiquagec unerapiditZ inimaginable ¥ W DX F°XU GH FH
dZpendance. La disponibilitZ du matZriel et des logiciels pertinents est la clZ de cette
impressionnante capacitZ des ordinateurs. La loi de Moore a guidZ lindustrie des semi
conducteurs au cours deisquants dernisres annZes pourifia progresser et anticiper l'avenir

du matZriel informatique ; selon cette loi, le nombre de transistors sur circuits intZgrZs devait
doubler chaque annZe depuis 1965, et apres ¥Ne5 ZtZ rZvisdpour doubler tous les deux

ans. Cela a conduit ~ ureoissance rapide dans les technologies de matZriel informatique qui
se poursuit encore. D'autre part, plusieurs modsles de programmation ont ZtZ proposZs pour
concevoir efficacement les programmes logiciels afin de bZnZficier des capacitZs matZrielles
toujours croissantes.

Il est Zvident que pour vraiment profiter des progres en matisre de matZriel et de logiciels, les
deux technologies doivent progresser de fason cohZrente I'une par rapport " l'autre. En fait,
comme l'industrie du matZriel informatiquems de l'avance sur le domaine du logiciel, les
innovations logicielles doivent suivre les architectures matZrielles dZj~ disponibles. Les
progiciels existants et les codes scientifiques existants doivent stre modernisZs avec les
architectures de processe en constante Zvolution pour permettre aux utilisateurs de bZnZficier
GH O RPQLSUpVHQFH GHV SURFHVVHXUV PXOWLF°XUV [H
technique est l'un des plus grands consommateurs de ces technologies de calcul haute
performane (HPC) en pleine croissance. Et il y a des organisations qui montrent la voie ~
suivre " la communautZ scientifique pour la tenir ~ jour avec ces technologies HPC qui Zvoluent
rapidement. Par exemple, le Partnership for Advanced Computing in Europe HPBgt@ne
organisation qui vise " faciliter les dZcouvertes scientifiques ~ fort impact et la recherche en
ingZnierie dans toutes les disciplines en fournissant aux communautZs europZennes membres
les ressources informatiques et de gestion des donnpéssievancZes disponibles en Europe.

De nombreux problemes importants de la science et de l'ingZnierie ne peuvent stre rZsolus sans
cette technologiemoderne de calcul haute performance. Les prZvisions climatiques ou
mZtZorologiques, les turbulences plus petites Zchelles, les Ztudes aZrodynamiques du corps
entier des vZhicules aZrospatiaux, etc. sont quelques problsmes oe les Zchelles de longueur sont
tres importantes, d'autre part, la physique de la dZcharge du plasma, les collisions atomiques,
etc.sont des problemes o- les Zchelles de temps soomitrarioextrememenipetites Ces deux

types de problemes exigent des capacitZs modernes de calcul haute performance pour bien
comprendre les phZnomenes sgaisents.



Le contexte de cette these est basiZ un solveunumZrique dZveloppZ au sein du groupe
ElectroFluido-'\QDPLTXH GH OY,QVWLWXW 3SULPH VSpFLILTXHPHQ
des Zcoulementsldetro-Hydro-dynamique Ce code de calculOracle3D, avec lequel nous
souhaitons Ztudier iieraction Zlectrostatique et hydrodynamiqueuessolver des Zquations

de Navier-Stokes incompressitdesurdes maillages structurd multi-blocs 1l estbasZ sur la
mZthode desolume fins avec des schZzmas en temps et en espace du secondl otiise
l'algorithme SIMPLE pour le couplage de la vitesseela pression Les flux convectifs pour

les quantitZs scalaires peuvent «tre traitZs avec des scR¥®ég$otal Variation Diminishing)

avec plusieurs limiteurs de flux disponibles. LeAuia” correction diffZrZemZliorZgIDC)

est utilisZ pour traiter les flux diffusifpour les maillages fortement distordu€es
caractZristiques sont expliquZes en dZtail dans les chapitres suivants. Le code est principalement
dZveloppZ pour simuler digeproblemes Zlectrbydrodynamiques.

Il existe plusieurs situations rZelles oe certains types d'especes ioniques interagissent avec les

molZcules neutres de fluide environnantes et il se produit un Zchange d'Znergie, d'impulsion, de
potentiel Zlectriquestc. entre les ions et les particules neutres, qui nZcessite une Ztude dZtaillZe.

De telles interactions d'especes ioniques avec le fluide neutre sont considZrZes sous la discipline
de IElectroHydro-Dynamique (EHD). L'objectif global de cette these cstesi moderniser le

code Oracle3D pour s'attaquer ~ des simulations EHD complexes et de grande envergure sur
des systrmes HPC avancZs et "~ Ztudier numZriquement les problemes EHD dans des

configurations tridimensionnelles.

Les applications de l'industrimoderne, qui sont intimement liZes, regroupent les branches de
I'hydrodynamique, de I'Zlectrostatique, de I'Zlectrochimie, etc. dans le cadre de la recherche
pluridisciplinaire EHD. Le groupe Electfeluido-Dynamique (EFD) de ['Institut Pprime en
France peicipe activement " f] p O D E R LhBuwelleR @clhélogies du domaine EHD et ouvre

la voie " la rZsolution de nombreux problemes industriels tels tredZtachement

G 1 p F R X O Br®Iyh@riigue Bar son appartenancélnstitut Pprime en collaboratiorvac
I'UniversitZ de Poitierke groupeEFD dispose d'installations expZrimentales et HPC de pointe.
Des efforts ont ZtZ faits, au cours de ce travail de these, pour faire progresser significativement
la capacitZ de recherche numZrique du groupe en condevebW PHWWDQW HQ °XYUH
parallsle pour le code Oracle3D et en le validant rigoureusement. Un travail numZrique dZtaillZ
et une mZthodologie de calcul ont ZtZ fournis dans cette these pour les utilisateurs actuels et
futurs de ce solveur EHD.

Cetravail ne se concentre pas en profondeur sur un seul probleme physique ; cependant, il
fournit une gamme d'applications EHD incluant l'injection unipolaire, I'’Zkecmoluction, le
contr™le deZcoulements paiZcharge plasma Des tests de validatiorigoureux, dans
plusieurs configurationsnt ZtZ menZpour construire une large base de donnZes pour le
nouveau code. Certains problemes classiqug ¢ 'ont ZtZ rZexamin£s unebibliographie

des travaux antZrieurs pertinents a ZtZ fourni dans les ebagitsections correspondants.
Comme le code a ZtZ parallZlisZ "~ partir de I'ancienne version Fortran 77, les dZtails de
limplZmentation MPI sont fournis dans cette these pour faciliter les avancZes et
dZveloppements futurs.

Le solveur EHDOracle3D, est en cours de dZveloppement depuis plus d'une dZcennie
maintenant, et des fonctionnalitZs avancZes sont ajoutZes rZgulisrement pour Ztendre sa portZe
" de nouveauxproblemes EHD plus complexes. Au cours de cette these, le soeaale3D a



ZtZmis " jour avec des fonctionnalitZs Fortran modernes et, plus important enco&/Zil a
parallZlisZavec l'interface MPI (Message Passing Interface) pour stre exZcutZ sur des clusters
CPU "~ mZmoire distribuZe. La parallZlisation d'un code scientifigisepte de nombreux dZfis

en termes de programmation. Ainsi, la t%.che de parallZlisation du solveur EHD complet a ZtZ
divisZe en soutkeches qui comprenaient la prZparation de codes scalaires et paralleles
individuels pour des modeles physiques simples tgls le solveur de Poisson, le solveur
NavierStokes, un solveur de transport scalaire etc.

Pour simplifier I'’Ztape de pptocessingunoutil a ZtAZveloppZ afin dére les donnZeissues

du mailleurBlockMesh etde les convertir dans le format apprippourle solveurOracle3D

Des fonctions MP| avancZéslles que laopologie cartZsiennéa topologie degroupeses
inter-communicateurs, etc. ont ZtZ implZmentZes dans le code pour prZparer une stratZgie
Zvolutive de transmission de messages paucdéculs paralleleslans un contexte mulkloc.

La premisre partie de la these porte sur la mZthodologie utilisZe pour parallZlidéfAesnts

solveurs et leur validation avec les rZsultats existants. Voici un bref rZsumZ des chapitres :

X Le chapitre2 mentionne brisvement la mZthode des volumes finis (MVF) comme Ztant
l'approche numZrique utilisZe pour la discrZtisation des ZquatiisZes dans
Oracle3D. Au lieu d'une Zquation gZnZrale de transport, les Zquations spZcifiques
utilisZes dans le cedsont prises comme exemples de discrZtisation. La nZcessitZ et les
PRGDOLWpPV GH P LseidmdIyD SowtldAailZieésvpour les utilisateurs du
code. De nouvelles conditions limites ont ZtZ introduites dans le code, qui sont
expliquZes " l'aide dhe approche de discrZtisation pertinente.

X Le chapitre 3 dZtaille la mZthodologie utilisZe pour la parallZlisation du code avec les
fonctions MPI avancZes. Un apersu gZnZral vers des modsles de programmation
paralleles est fourni dans la lere section. dection 2 traite des caractZristiques de la
topologie cartZsienne de MPI qui ont ZtZ initialement utilisZes pour parallZliser les
calculs dansles blocs individuels. La 3sme partie prZsente I'ensemble de la stratZgie
utilisZe pour parallZliser les gZom&tiasZes sur des maillageslti-blocs, avec tous
OHV GpWDLOV GH PLVH HQ °XYUH SR Xte @aavilid@oht OLVDW |
fournis avec des explications pour juger de l'efficacitZ parallsle du nouveau code.

X Le chapitre 4 prZsenteus les cas de test effectuZs pour valider les solveurs parallsles
individuels : Solveur de Poisson, solveur de Na@twkes, solveur de transport
scalaire La plupart des nouvelles fonctionnalitZs ajoutZes ont ZtZ validZes avec un
QRPEUH GLIIp¥&pd@ WriGeHI'dpprédhe de transmission des messages dans
les solveurs parallsles.

Dans la deuxisme partie, nous fournissons les Ztudes EHD rZalisZes avec Oracle3D au cours de
cette these.



X Le chapitre 5 traite de I'injection unipolaire EHD. Le proi# de I'Zlectraonvection
est dZfini, et une breve revue de la littZrature est donnZe pour commencer. Quelques
premieres Ztudes 2D sont prZsentZes pour valider le modele d'injection unipolaire du
code. La formation de motifs tridimensionnels de celludesivectives dans une
configuration d'Zlectrodes " plaques parallles est ZtudiZe en dZtail. Ensuite, les
panaches d'injection 3D sont ZtudZD QV OH FDZiGed@dtrodemeplan
avecdiffZrentes lois d'injection.

X Le chapitre 6prZsente plusieurs calculs dans le cadre du phZnomene dZlectro
conduction. Certains tests de validation ont ZtZ effectuZs pour congsargsultats
avec ceux obtenus par le code indust@amsol Un Zcoulement gZnZrZ par le
phZnomene deonduction dans un canaD3a ZtZ simulZ pour la 1ere fois. Dans la
deuxieme section, nous donnons un apereu de la configuration d'Zcoulement observZe
dans urcas de conductioavecla gZomZtrie lamplan.

x Le dernier chapitre traite dedémulation dedZcharge plasma. Nous avons utilisZ, dans
cette premiere approche, le modsle Suzénang (SH) qui est dZcrit'impact de la
longueur de Debye est brisvement explorZ dans le contexte du modsle SH. Une Ztude
paramZtrique portant sur les paramstres gZomZgigti&lectriques caractZrisant les
actionneurs DBD est fournie. Une ZtuaisZe sur des donnZes expZrimentales de la
force ZlectriqueitilisZe comme terme source dans les Zquations de MNtelezsque
nous rZsolvongstrZalisZe Enfin, une breve Ztude ae un contr™i& fpFRXOHPHQW
laminaire sur une marche arriere est fournie.

Chapitre 2.

MZthode des volumes finis dans le
contexte d'Oracle3D

La mZthode des volumes finEM) est l'une des approches mathZmatiques les plus populaires

parmi d'autres, qusont utilisZes pour rZsoudre les problemes de mZcaniquenitiesx

continus en discrZtisant les Zquations aux dZrivZes partielles correspondantes dans le temps et
l'espace. La discrZtisation spatiale d'un probleme se rZfere " la division du domaiatdipat

probleme en entitZs gZomZtriques beaucoup plus petites colesreellules de calcul, les faces

et les noeuds. Ensuite, le probleme physique dans I'ensemble du domaine spatial est dZcrit de
maniere combinZe par les relations algZbriques dZfinigéU FHY FHOOXOHV HW Q°X
individuels. Les Zquations algZbriques pour les cellules de calcul individuelles sont obtenues

en intZgrant les Zquations aux dZrivZes partiellesFalidcsur chaque cellule discrete.



Lorsque le probleme est de naturestationnaire une discrZtisatioen temps est Zgalement
nZcessaire, ce qui s'effectue simivisantle temps de la simulation en sepss de temps

beaucoup plus pes. L'Zvolution du probleme physique avec des pas de temps plus petits
fournit une solutiorinstationnairecomplete. Un organigramme complet du processus gZnZral

de discrZtisation, tel qu'il est habituellement suivi dans les analyses numastprgsentZ

la figure 2.1. Dans ce chapitre, nous parlerons principalement des stratZ§¥M delles

qu'utilisZes dans notre solveur, Oracle3D. Nous avons essayZ d'expliquer les diffZrentes
GLVFUpWLVDWLRQV QRXYHOOHPHQW PLYHWC KQproXemgsH HW O
rZels rencontrZs dans les modsles physiques qui sont disponibles dans le code. Il s'agit de
faciliter la comprZhension du code pour les futurs utilisateurs.

2.1 La mZthodedesvolumesfinis: un bref apereu

Un grand nombre de mZthesiet de schZmas sont disponibles dans le cadre de l'approche des
volumes finis, selon la nature du probleme physique (diffusion, convection, etc.), l'ordre de
prZcision requis, latructuredu maillagegtc. La nature conservatrice inhZreutda mZthode

des volumes finis est sa caractZristique dominante qui la place en tete de toutes les autres
techniques numZriques lorsqu'il est question de dynamique des fluides numZrique (CFD).
Lorsqu'il s'agit de flux de quantitZs conservatrices sur les faces desscei calcul, il est
imposZque le flux entrant dans un volume de contsBftédentique au flux sortant du volume
adjacent, ce qui rend BVM strictement et fondamentalement conservatrice. En particulier,
cette caractZristique est un avantage suppii&ine pour les problemes de mZcanique des
fluides o* nous devons satisfaire les lois de conservation de la mass$®,cdantitZ de
mouvemenet de I'’Znergie ~ chaque pas de temps. Avec les progres significatifs de la CFD, au
cours des dernisres dZcenni¢s FVM a gagnZ beaucowsn popularitZ en Ztant capable de
s'attaquer " toutes sortes de problemes physiques complesés surtout de gZomZtries
complexes

De la meme faeon que poure$ autres approchée discrZtisation telles qqilee mZthode des

diff Zrences finies (FD) et la mZthode des ZIZments finis (FEM), alari&hode & volumes

finis nous transformons aussi les Zquations aux dZrivZes partiEldd en Zquations
algZbriques linZaires. Tous les phZnomenes physigpuie®mus concernesbnt dZdts pardes

EDP qui dZfinissent distinctement la nature mathZmatique et physique du probleme " 'Ztude.
Par exemple, dans la CFD, IE®P les plus frZquemment rencontrZes sont les Zquations de
Navier-Stokes, qui sont dZfinies par les lois de conservakiota masse et de tuantitZ de
mouvementDansle processus de discrZtisation &P, qui nZcessite la transformation des
intZgrales de volume et de surface en Zquations algZbriques discretesilisousle thZoreme

de la divergence (thoreme de @reOstrogradski ou thZoreme d@&aus}.

Le thZoreme dda divergence indique que le flux global d'un champ vector@la( travers

Gsfirface fermZe (S) est Zgal au volume total de toutes les sources et puits sur la rZgion confinZe
par cette surface, eq. (2.1). Ici, le volume total de toutes les sources et puits est dZfini par
lintZgrale du volume de la divergence de ce champ vectaiiadi, avec ce thZorsme, nous
convertissons habituellement les intZgrales de volume en flux de surface, qui sont ensuite
utilisZs pour former les Zquations algZbriques discrstes.
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Nous prZsentons ici, ~ titre d'exemple, Zquation de conservation d'une variable scalaire
JpQpPUDOH 3 SRXU H[SULPHU OaXiVigénce/dmrWNL R'Qquatln\ B XpRUqP |
montre les quatre termes prZsents dans une Zquation gZnZratesetation :le terme
transitoire,le terme convectifle terme de diffusion ee WHUPH VRXUFHmasseL ! HV\
volumiquedu fluide,u HVW OH FKDPS GX YHFWHXU YLWHVVH HW + HV
Y D U L DEoDdHgaBdons le traitement du terme transitoire pour plus tard et montrons ici la
transformation de ¢ EDP(eq. 2.2) en flux de surfaser les volumes de contr™le. L'Zquation
2.3 reprZsente la forme stationnaire de I'Zquation 2.2. Ces deux Zquatioesnent
I'ensemble du domaine.

II\

K—H faei@ L i, E \_3H

terme transitoireterme convectif  terme diffusif terme source
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Nous intZgrons I'’Zquation 2.3 sur une cellu@olume de contr™le donhZquation 2.4 est
la forme intZgrale I'Zquation de conservatitationnairesur un volume de contr™le. Nous

utilisons mainteant I'Zquation 2.1 (thZorsme deedivergence) pour convertir les intZgrales de
volume des termes convectifs et diffusifs en intZgrales de surface, comme le montre I'’Zquation

2.5. Ici V_c est le volume de la cellule C $tS estle vecteur surfacassociZ au volume de
contr™lel'Zquation 2.5 est habituellement appelZe ZquationdisenZtisZe dans RVM, car
elle reprZsente les contributions des cellules de volume fini individuelles[1].
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Avec I'Zquation serdiscrZtisZe, nous devons obtenir les Zquations algZbriques discrstes pour
chaqgwe cellule, qui seront la contribution des cellules individuelles en termes de diffusion,
convection et source pour l'ensemble du probleme. La diffusion, la convection et les
sources/puits sont trois phZnomenes de nature physique complstement difffsesuet traitZs
sZparZment pour obtenir leur contribution, puis finalement combinZs pour la solution globale.
Nous avons discutZ de l'approche mathZmatique pour obtenir les Zquations algZbriques
discretes pour chaque terme dans ce chapitre.



Le schZma dealiscrZtisationamont est le schZma le plus stableil etst inconditionnel ;
cependant, il introduit un niveau ZlevZ de diffusion numZrique car il n'est prZcis qu'au ler
ordre[1,7]. Les schZmas d'ordre supZrieur tels euwsehZma centrfe schZma QUICK son

plus prZcis, mais ils peuvent donner des oscillations intempestives (wiggles) lorsque le nombre
de Peclet est Zlev{>2). Ces oscillations numZriquepeuvent conduire ~ des valeurs
physiquement irrZalistes et rendre la solution instable. Pour remZchtte "caractZristique
indZsirable deschZmas haute rZsolution (HR) sont formulZs. Les schZrRsont formulZs

de maniere ~ prZserver la nature convective des schZmas prZcZdents tout en amZliorant le critere
dfXQH VROXWLRQ ERUQpPH

PlusieursschZmasiumZriquesont ZtZ mis au poiftce jouret ure revuede tous ceschZmas

est disponible dans[1,3]. Les schZri#® qui ont ZtZ dZveloppZs damtre cadre font partie

de la classe des schZmas convectifstype TVD. Les schZmas TVD sont spZcialement
dZvelopZs pour contrer les oscillations parasites en ajoutant une diffusion artificielle ou une
pondZration vers la contribution en amont dans les Zquations discrZtisZes. L'implZmentation des
schZmas TVD dans Oracle3D est dZtaillZe dans ce chapitre.

/D PLVH uH&cotrecte des conditions aux limites dans n'importe quelle rZsolution
numZrique est de la plus haute importance. Dans de nombreux problemes physiques, les
chercheurs ont souvent des points de vue diffZrents sur les conditions aux limites numZriques
quidoiventreprZsenter les conditions physiques. Parfois, les conditions aux limites numZriques
sont trop simplifiZes ou approximative® | L Qvi@r{certaines difficultZs et complexitZs
numZriques, tout egarantissant toutefois une certaprécision physique. Au cours de cette
these, nous avons implZmentZ dans Oracel3D de nouvelles conditions aux limites qui Ztaient
d'une importance physiqueatme, et il a toujours Z&dulignZque l'utilisateur devait faire tres
attentionORUV T X L O \s§idtis: M/Quaidons adix GBmites.

Il est Zgalement tres important que I'utilisateur comprenne " la fois la discrZtisation gZnZrale de
condition” la limite et sache comment elles sont rZellenmplZmentZedans le code. Dans

cette section, nous discutons de la discrZtisation de certaines conditions limites (sections 2.6.1
2.6.6.3) et enfin nous fous®ns une approche gZnZrale (section 2d)implZmentetout

type de conditions aux limites pour Oracle3DOn peut se rZfZrer “approche gZnZrale
mentionnZe " la section 2.6.4 avant de passer aux sectionB&1pour un rZsumZ rapide

et une approche diffZren@ RUV GH O T L Ri€&s@mBitb@sWhilt#g.L R Q

Chapitre 3
Oracle3D parallele avec MPI

Les programmes informatiques paralleles hautement Zvolutifs sont devenus des outils
indispensables " I'avancement de la recherche numZrique. Les chercheurs ont plus d'espoir que
jamais auparavant pour s'attaquer "~ des problemes d'ingZnierie et sciestifiom@lexes et
Znormes en raison de la disponibilitZ des ressources informatiques nZcessaires au cours des
vingt dernisres annZes. En ce qui concerne les ressources matZrielles, les progres semblent



largement supZrieurs aux progres dans le domaine degatppis (logiciels). Il existe de
nombreux codes hZritZs qui sont encore pertinents aujourd'hui, mais ils n‘ont pas I'approche
moderne pour utiliser efficacement les ressources matZrielles disponibles. Parmi les problemes
de calcul Znormes qui ne peuveiné rZsolus sans les technologies modernes de calcul haute
performance (HPC), on peut citer : les prZvisions mZtZorologiques, I'analyse astrophysique,
l'analyse tectonique des plaques, la modZlisatida tebulence, la physiquesdplasma, etc.

Il estinimaginable de rZsoudre ces problemes sur un ordinatslaire mongrocesseur et

encore plus lorsque les calculs sontlimensionnelsL 'informatique parallele estlorsla seule
fasondeVIDWWDTXHU j OD UpVROXWLRQ GH WHOV SUREOQPHYV

En gZnZralle calcul parallele consiste " rZsoudre simultanZment des parties d'un probleme sur

des machines informatiques mui° XUV 8Q SUREOQPH TXL SHXW rWUH GL»
parties discretes qui peuvent etre rZsolues indZpendamestat) bon candlat pour le calcul
SDUDOOgqOH /HVY SDUWLHV GLVFUgWHV GX SUREOgPH VRQW
fois terminZes, elles sont synchronisZes pour fournir la solution "~ I'ensemble du probleme.
L'informatique parallsle offre plusieurs avaneggaux utilisateurs : gain de temps et d'argent,
rZsolution de problemes complexes et volumineux, multit%.ches, etc. Les progrss du calcul haute
performance ont fourni une autre fa*colG DS SUpKHQG HJW%c® Daucaldul HQ FH
scientifiqueparallslement auxbranches plus classiques des sciences expZrimentales et
thZoriques. Les informaticiens utilisent leurs mZthodes de simulation lorsqu'elles sont plus
avantageuses et plus rZalisables que les approches classiques de la thZorie et des expZriences.

Les trois gands domaines du calcul parallele sont le matZriel, les algorithmes et les logiciels.
6XU OH SODQ PDWpPULHO O DMRXW GH SOXV HQ SOXV GF
G LOWHUFRPPXQLFDWLRQ HIILFDFH HQWUH OHV XUV D
informatiques. En termes algorithmiques, les scientifiques cherchent comment un probleme

peut stre dZfini par des mZcanismes physiques indZpendants et comment il peut etre rZsolu par

un ensemble indZpendant d'Zquations mathZmatiques. Cependant,gramuudZfi est posZ

par les logiciels inadZquats, qui ne sont pas en mesure de profiter pleinement des progres
rZalisZs en matiere de matZriel et d'algoritjues. En termes de caractZristiques importantes,

les codes modernes doivent stre optimisZs, ptetaet ~ I'Zpreuve du temps avec chaque
Zvolution des technologies HPC. Comme le montre la Fig. 3.1, un code doit faire un usage
optimal des propriZtZs matZrielles telles que la conception du cache, les registres vectoriels, les
noyaux multiples, etc. Itloit «tre dZveloppZ avec les modeles standard de programmation
parallele tels que MPI, OpenMP, Offloading, etc.

Fig. 3.1 CaractZristiques d'un code moderne



Ce chapitre traite de l'approche de parallZlisatitiisZe pour le codeElectroHydro-
Dynamique (EHD}Oracle3D. Oracle3D est un solveur voligfiais pour maillages structurZs

par blocsll est paralldsZavec les protocoles de l'interface de transmission des messages (MPI)
3.1. Ce chapitre est pringement divisZ en trois parties : 1) Modesles de programmation
parallele, 2) ParallZlisation de la grille MPI ai chaillagemonacbloc, et 3) ParallZlisatiosur
maillages multi-blocs. Nous prZsentons brievement quelques modsles de programmation
parallele & dZcrivons le modele de transmission des messages dans la premiere partie. Dans la
deuxieme partie, nous dZcrivons en dZtail la mZthodologie MPI utilisZe pour parallZliser le code
pour les grilles ~ blocs simples seulement.

Les fonctions de transmisside messages de la bibliotheque MPI qui sont pertinentes pour de

telles approches sont fournies. Certains rZsulletsscalabilitZsont fournis pour vZrifier

l'efficacitZ de l'approche. La troisi*me section traite de I'extension de I'approche pour les cas

des maillagesnulti-blocs, o« certaines caractZristiques plus avanc2dglilont ZtZ utilisZes.

/ID PLVH HQ °XYUH GpwWDLOOpH GH FHWWH VWUDikepJLH EDV
communicateurs est proposZe aux utilisateurs du code, et dehgrebeurs qui travaillent

avec des codes similaires aii souhaitent parallZliser leur code en utilisant MPI pourraient
Zgalement bZnZficier de ce chapitre dZtaillZ sur diverses fonctionnalitZs MPI.

Apereu du prZsent chapitre :

1. Vue d'ensemble da programmation parallsle
2. MPI etmaillagemonabloc
3. Extension MPI auxnaillagesmulti-blocs

Dans la premiere section, nous avons discutZ brievement de quelques modeles de calcul
parallsles pourfixer le contexte de I'approche que nous avonsdsg pour parallZliser notre
code. Les modeles de calcul paralleles peuvent etre classZs de maniere informelle en fonction
de leur utilisation de la mZmoire (partagZe ou distribuZe), du modele de communication, des
types d'opZrations, etc.

La deuxisme p@rtie du chapitre traite des fonctionnalitZs de MPI en gZnZral, et telles qu'elles
sont implZmentZes dans Oracle3D pour la mise en parallsle des grilles de blocs individuels en
premier. Principalement, les caractZristiques topologiques cartZsiennes danPdiscutZes

en dZtail, qui ont ZtZ utilisZes pour optimiser I'efficacitZ des communications paralleles. Dans
la troisieme section, nous Ztendrons notre stratZgie de topologie cartZsiermaikbages
multi-blocs en utilisant des fonctions MPI plus avZes.

MPI a ZtZ dZveloppZ pour combiner les meilleures caractZristiques de nombreux modeles de
transmission de messages qui ont existZ au fil des ans. Il s'agit d'une tentative d'organiser et
d'amZliorer les caractZristiques existantes des modesles manission de messages et de



prZparer une norme qui reste portable " travers la gamme de matZriel et de logiciels disponibles
sur le marchZ. Comme dZénpar la norme, "MPI (Messageassing Interface) est une
spZcification de bibliotheque de transmissianrdessages'[2,7]. MPI n'est pas un langage de
programmation, c'est une bibliotheque de fonctions qui facilite le transfert de donnZes pendant
les communications paralleles. Ce protocole de communication est le modele de transmission
de messages le plusd@ment utilisZ sur diverses architectures de mZmoire distribuZe " travers
diffZrents clusters de supercalculateurs. MPI est la premiere spZcification qui permet d'Zcrire
des bibliotheques paralleles rZellement portables.

Maintenir la portabilitZ, I'effiacitZ et la fonctionnalitZ des programmes parallsles est I'objectif
principal de MPI. Quelques caractZristiques avancZes de MPI incluent la gestion dynamique
des groupes de processus, des structures de processus orientZes application, un grand nombre
d'opZations collectives, etc. Les caractZristiques plus gZnZrales et frZquemment utilisZes de
MPI sont : les opZrations point ~ point, les communicateurs, les opZrations collectives, les
groupes, etc. Nous avons discutZ de ces caractZristiques dans ce chapitre

Des fonctions MPI avancZes de topologie cartZsienne et-@amenunicateurs ont ZtZ mises

HQ °XYUH SRXU SUpSDUHU XQH VWUDWpPJIJLH G pFKDQJH GF
maillagesstructurZes multi-blocs. Certains teside scalabilitZont montrZ descalabilitZs
superlinZaires qui sont attribuZes ~ des effets de cache favorables tout en augmentant le nombre

de noyaux et gr¥oce aux algorithmes avancZs utilisZs par les processeurs Intel modernes pour
fonctionner dynamiquemeftdes frZquences supZrieures " leurs frZquences de base. Pour le
bZnZfice des futurs utilisateurs de ce code, I'ensemble de la stratZgie MPI a ZtZ dZcrite en dZtail
dans la these, ce qui faciliterait Zgalement le dZveloppement futur du code.

Chapitre 4
Validation : Oracle3D parallsle

La stratZgie MP| dZtaillZe discutZe dans le chapitre prZcZdent a ZtZ implZmentZe dans Oracle3D
au sein des diffZrentes versions ou modules du solveur. Comme mentionnZ prZcZdemment, le
code a ZtZ ¢Zcrit avec unstructure @noduleE du FORTRAN 90, pour le rendre plus organisZ

et orientZ dans le cadre moderne Fortran. De la meme maniere, nous avons Zgalement prZparZ
les versions individuelles pour les modules spZcifiques comme : le solveur-Stokes pur,

le soleur de Poisson, le solveur de transport gZnZral, le solveur plasma basA&ureet

le modele ~ 3 especes, puis le solveur Oracle3D complet. Cet agencement du code en modules
individuels plus petits a grandement facilitZ le transfert de la mZthoedlijidans la version
complete du code. De plus, chaque module plus petit nous a donnZ I'occasion de valider et de
tester la performance de I'implZmentation parallele dans diffZrents modeles mathZmatiques. Ce
chapitre prZsente tous les tests de validatla version finale des diffZrents modules qui ont

ZtZ parallZlisZ. Ainsi, ce chapitre fournit les toutes premieres simulations avec le code



dZveloppZ et permet de b%otir une certaine confiance pour les utilisateurs d'Orcale3D avec des
cas de validationgfouvZs.

La validation de tout nouveau dZveloppement dans le code est une Ztape cruciale avant les
applications finales prZvues. Ce dZveloppement a commencZ avec la version de base Fortran
77 d'Oracle3D, qui a dZj" ZtZ longuement validZe et plusieulsszdat ZtZ publiZes avec cette
version[t5]. Le dZveloppement a commencZ avec la conversion de la version Fortran 77 du
code vers la version Fortran 90. A chaque Ztape de ce processus de conversion, le nouveau
dZveloppement a ZtZ vZrifiZ par comparaisen &s rZsultats de la version prZcZdente. Les
Ztapes majeures de cette conversion incluent I'implZmentation des fonctionnalitZs de Fortran 90
WHOOHV TXH LPSOLFLW QRQH OYDOORFDWLRQ G\QDPLTX
O 1 X W L O Liiddves B®).. GeBl Versions finales Fortran 90 des diffZrents solveurs ont ZtZ
validZes, cependant, nous ne prZsenterons ici que les rZsultats de validation avec les versions
parallsles de ces solveurs.

4.1 Le solveur de Poisson parallsle

La mZthodologé MPI, telle que dZtaillZe prZcZdemment, a d'abord ZtZ testZe rigoureusement
avec quelques Zchanges de donnZes entisres tres simples aux deux types d'interfaces, dans
plusieurs combinaisons de blocs et de stormaines. Aprss les essais prZliminairestiatggie
03, D G DERUG pWp PLVH HQ °XYUH GDQV XQ VROYHXU GH 3
est une Zquation aux dZrivZes partielles de type elliptique. Nous utilisons ici la mZthode des
volumes finis pour discrZtiser I'’Zquation de Poisson dammte. L'Zquation (4.1) est la forme
gZnZrale de |'Zquation de Poisson :

0 0 0P
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/H VROYHXU SDUDOOQOH GH 3RLVVRQ D pJDOHPHQW SHUPL\
correction diffZrZe amZliorZe (IDC) avec les nouveaux dZveloppements du code. Le schZma
IDC est une technique de discrZtisation en volumes finis, spfieiaielZveloppZe dans notre

groupe de I'Institut Pprime, pour la discrZtisation des flux diffusifs sur des maillages complexes
particulierement distordus [2]. Des rZfZrences publiZes sont disponibles dans lesquelles le
schZma IDC a ZtZ introduit et ex@losur diffZrents maillages complexes. Les rZsultats
disponibles dans les rZfZrences ont ZtZ obtenus avec la version 2D de notre code Fortran 77.
Ainsi, pour valider le nouveau solveur MP| Poisson, nous avons choisi la meme Zquation de
Poisson que celle liZe par TraorZ et al (2009) :

1 Ltek?KFORTFOERTOEte*k?KEO2UF OF 2 Uo vVl
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Des conditions aux limites pZriodiques pour les tdiisctions (X, Y et Z) ont ZtZ mises en
°XYUH GDQV OH VROYHXU GH 3RLVVRQ &HWWH FDUDFWpUL
GT(+' R GDQV FHUWDLQV FDV QRXV DYRQV EHVRLQ GH FHW
spatialement pZriodique @Zconeue pour tester l'implZmentation pZriodique du solveur de
Poisson.

4.2 Validation du solveur NavierStokes

Cette section est consacrZe "~ la validation du solveur parallsle Nato&es. Les
caractZristiqgues MPI de la topologie et des in@mmuni@teurs ont ZtZ implZmentZes dans le
solveur NavierStokes pur d'Oracle3D. C'est un solveur pour les Zcoulements incompressibles,
dans lequel le couplage vitegseession est rZalisZ par l'algorithme SIMPLE standard de
Patankar [11]. Le schZma de discitten centrZ est utilisZ pour la discrZtisation spatiale de
tous les cas de validation. Le schZma de Gear est utilisZ pour la discrZtisation en temps. Les
Zquations gZnZrales de continuitZ et de conservation de la quantitZ de mouvement pour les
Zcoulementscompressibles rZsolues dans ce solveur prennent la forme :

A GQ Ly

O'SE&E [4é@@ LFILETaa:1@E:1@'; E & VK
Le probleme de rZfZrence standard de la cavitZ entra’nZe a ZtZ simulZ pour valider ce solveur
incompressible. Deux valeurs diffZrentes (100 et 400) du nombre de Reynolds du dZbit ont ZtZ
prises pour comparaison avec la solution de rZfZrence de Ghialé}. alii autre probleme
standard et bien ZtudiZ pour la validation des solveurs Naigkes est celui de I'Zcoulement
derrisre une marche descendante (Backward Facing Step). Plusieurs benchmarks et rZsultats
expZrimentaux sont disponibles avec diffZreatedigurations du canal, selon la hauteur de la
PDUFKH HW OD YDOHXU GX QRPEUH GH 5H\QROGV GH OfYpFR.
implZmentation MPI, en particulier les conditions limites d'entrZe et de sortie ~ diffZrents
nombres de Reynolgddans cette section.

Les conditions aux limites pZriodiques sont essentielles pour tout solveur-Stokes. Nous
fournissons ici les rZsultats obtenus sur deux cas test qui ont ZtZ rZalisZs pour valider
limplZmentation de cette condition ~ limite pffique dans Oracle3D. Les Zcoulements
classiques de Poiseuille et de Couette ont ZtZ utilisZs pour la validation de I'implZmentation des
conditions aux limites pZriodiques dans notre code.

4.3 ParallZlisation du solveur de transport

Dans le cadre d'Ora@®, nous avons Zgalement dZveloppZ un solveur de transport gZnZral. Ce
solveur rZsout principalement une Zquation de transport convectif pour une variable scalaire

3 FRPPH OD GHQVLWpPp YROXPLTXH GH FKDUJH pOHFWUL
O 1 p FReXtOLke terme de diffusion des phZnomenes de transport n'est pas inclus ici pour
pWXGLHU H[FOXVLYHPHQW O HIILFDFLWp HW OD PLVH HQ °.



79' 7TRWDO 9DULDWLRQ 'LPLQLVKLQJ VRQW PL\péatige°XYUH ¢
avec une prZcision supZrieure au 2e ordre. Une attention particuliere a ZtZ accordZe " la mise
HQ °XYUH SDUDOOQqOH GX VFKpPD 79' DX[ Q°XGV G LQWHUI
cellules fant™mes est adoptZe pour stocker les donnZes desawaisimerfaces, car dans les
VFKpPDV 79' OHV GRQQpHV GH SOXV G XQ Q°XG YRLVLQ GDt¢
fonction de la direction du flux. De plus, les conditions aux limites pZriodiques ont ZtZ mises

HQ °XYUH HW WHVW paGib ' ZEuativhRyInY el dié t@uhsport utilisZe dans ce
solveur est :

0: é1
oP

'HV VLPXODWLRQV RQW pWp HIITHFWXpHYVY SRXU YDOLGHU OD
des conditions aux limites pZriodiques pour le solveur de transport. Dels @icat 3D ont
ZtZ rZalisZs avec de multiples processus MPI. Dans le cas 2D, un domaine carrZ avec des limites
pZriodiques dans les directions X et Z a ZtZ considZrZ. Le meme calcul a ZtZ effectuZ cette fois
dans un domaine 3D, os nous avons une pZricflitans les 3 directions. Le maillage pour ce
FDV pWDLW GH ; ; HW SURFHVVXV 03, RQW pWp >
passif permet de tester l'efficacitZ des schZmas convectifs en prZsentant plus de cisaillement
GDQV OfpF R Xe®éhPdd EaevestentDDessant pour tester I'efficacitZ de I'implZmentation
parallsle, car il prZsente un degrZ plus ZlevZ de complexitZ dans la communication de donnZes
au niveau des interfaces du domaine MPI.

"El&gé@ ;L ra VY,

Chapitre 5
EHD Injection Unipolaire

Oracle3Dest principalement un solveur Zlectrohydrodynamique (EHD) qui a ZtZ utilisZ pour
rZaliser plusieurs Ztudes dont l'injection unipolaire, la conduction EHD, I'Zégienation, la
convection Zlectrothermique, les Ztudes de contr™le de flux utilisactidesears plasma,

etc. [+11]. Tous les dZtails nZcessaires et importants concernant le code Oracle3D ont ZtZ
dZcrits dans les chapitres prZcZdents, y compris les tests de validation et deapesfofia
chapitre prZsente lgsavaux numZriques relatifs I'’Zlectroconvection (EC) rZalisZs avec
Oracle3D au cours de cette these. Oracle3D se compose d'un solveur de Poisson, d'un solveur
de NavierStokes et d'un solveur de transport scalaire pour plusieurs especes. Une combinaison
de ces trois modeles physigs constitue le code complet d'Oracle3D.

En termes de solveurs de transport, trois modules distincts sont maintenant disponibles pour
rZsoudre individuellement les modsles d'injection unipolaire @ewseespece de charge), de
pompage par Zlectrocondiat (deux especes de charge) et de dZchargengldtrois especes

GH FKDUJH -XVTXTj SUpV H Q \ortdleHtpripoigale@enitis Bsyibnfaiagd DF O H
bidimensionnels Maintenant, alors que la version parallsle est prZparZe, nous revisitons
guebues problemes classiques HelD en nous concentrant principalement sur leurs aspects

3D. Les grandes lignes de ce chapitre sont les suivaatgsemiere partie (5.1) de ce chapitre



traite du probleme deO { (+de l'injection unipolaire dans les liquide#Zlectriques entre
plagues parallsles. Quelques tests initiaux avec quelques cas 2D sont fournis pour valider
limplZmentation en code, puis I'Zleetranvection 3D est discutZe en dZtail. La deuxisme
partie (5.2) traite des panachedD induits par l'ipection d'ions en configuration lanpan.

Les rZsultats simulZs sont comparZs ~ ceux d'Ztudes similaires dispdaitséda littZrature

5.1 Injection unipolaire entre Zlectrodes ~ plaques parallsles

Le phZnomene de linjection unipolaire dans lesitigs diZlectriques est bien documentZ
expZrimentalement et numZriqguement. Plusieurs Ztudes numZriques bidimensionnelles sont
disponibles pour comparer les rZsultats qualitatifs et quantitatifs avec ce fa®|9¢9,27,28].

Un bon nombre de publicationst’tZ rZalisZes avec la version prZcZdente d'Oracle3D (version
de base Fortran 77)1-11]. Ceci nous donne l'opportunitZ de validerredule d'injection
unipolaire de notreode parallele Oracle3D par rapport aux rZsultats du code scalaire. Quelques
simuations 2D avec des rZsultats Ztablis sont fournies apres avoir expliquZ I'Zlectroconvection
en injection unipolaire avec le modele mathZmatique. Une analyse 3D dZtaillZe du probleme
suivra par la suite.

5.1.1 Introduction

L'Zlectroconvection entre Zleotles planaires paralleles a ZtZ largement ZtudiZe au cours des
dernisres dZcennig42-23]. Un liquide diZlectrique, confinZ entre deux Zlectrodes mZtalliques

" plaques parallsles, ressent un impact significatif du champ Zlectrique produit par les deux
Zkctrodes, lorsqu'il est alimentZ avec une diffZrence de potentiel Zlectrique. Un champ
Zlectrique ZlevZ entre ces Zlectrodes provoque des rZactions Zlectrochimiques complexes ~ la
surface des Zlectrodes. Dans de telles situations, linjection de parteutdmrge peut se
produire " l'interface du liquide et de la surface de I'Zlectrode, sur une ou les deux Zlectrodes
[2,25]. Lorsque l'injection d'ions se produit sur une seule des surfaces de I'Zlectrode, on l'appelle
F H Oiljecidh unipolaire[1].

Les ions injectZmigrentdu faitdu champ Zlectrique. Un champ Zlectrique assez fort dZveloppe
une instabilitZ qui met Zgalement le liquide en mouvement, affectant la convection globale des
ions injectZ$6]. Un tel mouvement de liquidayec une conductivitZ suffisamment faible, peut

otre comparZ ~ un mouvement liquide dZ " la diffZrence de tempZrature entre les couches de
liquide (thermeconvection)13]. Les deux modes dmnvection dans les liquidds, therme
convection et I'Zlectroonvection sont souvent comparZs en fonction de leurs similaritZs de
modeles d'Zcoulement inét (rouleaux, hexagones, etcet des dissemblances dans les
mZcanismes soyacents[12, 37].

En injection unipolaire, plusieurs Ztudes bidimensionnelles a@htpidbliZes par plusieurs

groupes utilisant diffZrentes mZthodes numZriques pour rZsoudre I'ensemble des Zquations E
[7,21,23,27]. Perez et ses collaborateurs (1989) ont ZtudiZ le r™le de la diffusion et de la
rZpulsion de Coulomb avec les algorithmes r@@spoJW j 1OX[ FRUULJEC ")&7 GD(
amplitude finie. Ils ont soulignZ que la distribution des charges instationnaires dZpend
principalement des termes d'advection, et que la diffusion ne doit etre incluse que si des
solutions en rZgime permanent ssimiulZeg20]. Castellanos (1990) a ZtudiZ les instabilitZs

induites par injection et a mis en Zvidence un Zcoulement chaotique dans l'injection unipolaire

" des champs Zlectriques ZlevZs. Vazquez et ses collaborateurs (2008) ont effectuZ une analyse
de dabilitZ et ont obtenu la structure ~ deux rouleaux par ZIZments @3 & Particlein-



cell (PIC). TraorZet ses collaborateurs (2013) ont ZtudiZ I'Zvolution de I'’Zcoulement de la
conductivitZ Zlectrique d'une structure de cellule de convection "stewgures de cellule de
convection et enfin le rZgime chaotique-dessus de T = 1500. Wu et ses collaborateurs (2013)
se sont penchZs sur la question de la stabilitZ dans les cavitZs dZlimitZepaaisksgec
diffZrents rapports d'aspect, enigtiht la mZthode du volume firfi'YM). Toutes ces Ztudes

ont ZtZ rZalisZes dans des cavitZs bidimensionnelles.

Le probleme de l'injection unipolaire a ZtZ ZtudiZ avec le solveur EHD complet. Des tests de
validation 2D ont ZtZ effectuZs pour valider lesiitAts avec le module d'injection unipolaire

par rapport aux donnZes dZj" disponibles dans la littZrature. Ce probleme de I'Zlectroconvection
(EC) est souvent ZtudiZ en considZrant son analogie avec le probleme de la convection
thermique de RayleigBenad (RBC). Dans les Ztudes expZrimentales, des mod-eles de cellules
de convection H[DJRQDOH VR QWER Enitél de¥ ledtroGed Qilag@e$ paralleles,
comme c'est Zgalement le cas dans les GR. Nous avons rZalisZ une Ztude tridimensionnelle du
modele de cellules convectives pour reproduire numZriquement les cellules hexagonales dans
ce probleme deET. Nous avons observZ la formation de cellules hexagonales " I'aide de notre
solveur ; cependant, nous avons constatZ un impact significatif des canditiotimites de
Neumann sur les cellules convectives en Zvolution qui interdisait la stabilisation de ces cellules
hexagonales dans nos Ztudes.

Nous avons simulZ diffZrents cas en modifiant plusieurs paramstres tels que le pas de temps, la
taille de la gille, les conditions de tésse verticale initiale, etc. & il a ZtZ observZ qu'une

limite deNeumann ~ gradient zZro n'Ztait pas appropriZe pour stabiliser les cellules convectives.
DiffZrents cas ont ZtZ entrepris avec des tailles de grille vari@ninilons ~ 25 millions de

cellules, etavec 50 processus MPI ~ 400 processus MPI. L'efficacitZ parallele du code, dans
I'’Zchange de donnZes aux interfaces de processus, avec ce flux dZpendant de l'instabilitZ, Ztait
conforme aux attentes.

5.2 Injection unipolaire entre la lame et les Zlectrodes planes

Les phZnomenes d'Zcoulement induits Zlectrohydrodynamiquement dans les liquides
diZlectriques dans le cas d'une configuration d'Zlectrodes ~ lames planes ont ZtZ ZtudiZs, " la
fois numZriqguemeri#t8, 5355] et expZrimentalemeii§6-58]. Le flux EHD se produit dans

les mZcanismes d'injection et de conduction du transport de charge dans les liquides
diZlectriques. Dans cette section, nous traitons principalement du mZcanisme d'injection, qui
exige l'apparitia d'un certain seuil de champ Zlectrique et en dessous de ce seuil, la conduction
du champ Zlectrique domine dans les liquides diZlectriquedegsus de cette valeur critique

du champ Zlectrique, l'injectiole chargesse produit ~ linterface laméluide. Dans les
phZnomenes d'injection, la lame fonctionne comme un Zmetteur de sbatgéectrode plane

se comporte comme un collecteur. Les particules chargZes injectZes mettent Zgalement en
mouvement le fluide environnant en transfZrienr quantitZ denouvementaux particules

neutres du fluide. Le fluide se dZplace ainsi comme un jet vers I'Zlectrode plane. Cet Zcoulement
de type jet est communZment app@panache Zlectrohydrodynamigbgs4].

Ce type de jet a ZtZ ZtudiZ pour des applications telles que I'amZlioration du transfert de chaleur,
le mZlange des fluides, le contr™le du dZbit, etc. Ainsi, tout comme les panaches thermiques, la
description de ces panaches EHD est importante d'un ¢g@imiie industriel. Vazquez et ses

collaborateurs (1995) ont entrepris une Ztude comparative des panaches thermiques et des
panaches EHD, en analysant les panaches axisymZtriques pour divers nombres de Prandtl.



Plusieurs Ztudes numZriques de Vazquez ehbItZ rZalisZes avec des approches numZriques
par ZIZments finis pour dZcrire adZquatement les panada®ax leurs caractZristiquiso-

61]. Perez et ses collaborateurs (2009) ont analysZ les paftbetans ue configuration
planlame, avec la ntdode desvolumes finis ~ l'aide d'un schZzma TVD (SMART), et ont
examinZ diffZrents rZgimes d'Zcoulement et structures d'Zcoulement caractZristiques dans de
tels Zcoulements deHD.

La plupart des Ztudes prZcZdentes Ztaient bidimensionnelles. Ici, vomss ZudiZ le
phZnomene d'injection de la lame en 3D dans un liquide diZlectrique avec Oracle3D en
parallele. Un cas d'instabilitZ, avec Rel=5000, C=10 et M=10 a ZtZ simulZ pour cette Ztude.
Trois lois sur l'injection ont ZtZ prises en considZration sitnelation avec une loi d'injection
autonome classique, dans laquelle la densitZ de charge " la surface de la lame est indZpendante
du champ Zlectrique " la surface de la lame, a ZtZ rZalisZe comme cas de rZfZrence. Apres avoir
comprisle phZnomene, nousvans incorporZ deux lois d'injection simulZes par Traore et al
(2013). Avec les lois d'injection, un couplage plus fort entre les variables comme la charge, le
champ Zlectrique, la vitesse, etc. est induit.

Chapitre 6
EHD Conduction

Dans ce chapitre, neuprZsentons le modsle d'Zlectroconduction et quelques Ztudes de cas
rZalisZes avec Oracle3D. Principalement, certains cas de validation avec analyse des
caractZristiques d'Zcoulement dans une configuration de canal de conduction ont ZtZ comparZs
avec dessolutions COMSOL et les rZsultats sont rapportZs. Les rZsultats obtenus avec des
FRQGLWLRQV DX[ OLPLWHV GH 5RELQ HW GH 1HXPDQQ QRQ
sont prZsentZs et leur significatioB K\VLTXH HVW n(pacy HesWqridulatiofs
mathZmatiques : implicite et explicite en cas de discrZtisation B¥N& du transport des

especes, et@ffet Onsagesur la conduction de la DHM sohtisvement soulign€ Dans la

dernisre section, le diagramme d'Zcoulement a¥e@ H G Y p O H F WethBpBatéauGddt W\ S H
discutZ en 2D et en 3D.

6.1 Introduction

Les charges Zlectriques prZsentes dans la conduction Zlectrohydrodynamique (EHD) sont
crZZes par dissociation et recombinaison d'un Zlectrolyte faible dans un liquide non polaire ou
IZgerement polme. Lorsqu'un champ Zlectrique externe est appliquZ, des couches avec une
charge Zlectrique nette apparaissent ~ ¢™tZ de chaque Zlectrode. Ce sont leSitiiriees
charges, avec une polaritZ opposZe " celle des Zlectrodes. Le mouvement des espyZes cha
dans le liquide est dZ " la densitZ de force Zlectrigq@equi rZsulte de trois composeast
physiques diffZrents. La premisre et la plus importasge la force de Coulomb qui est le
premier terme du c™tZ droit de I'Zquation (1§leuieme terme est la force diZlectrique qui

n'est prZsente que lorsque le gradient de permittiVifZekiste. Le troisisme terme est connu

sous le nom de force Zlectrostrictive qui, Ztant le gradient d'un scalaire, peut stre incorporZ dans
la pressior}1,2].
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Ainsi, seule la force de Coulombl VW | O {1 RwlveménHEBDXpermanent dans de tels
phZnomenes de conduction. Dans la plupart des applications EitB farce de Coulomb met

en mouvement le liquide qui est utilisZ pour les applications prZvues comme le pompage, les
jets muraux, etc. La force nette de Coulomb n'est gZnZrZe que s'il y a un dZsZquilibre dans les
densitZs des porteurs de charge positifsnggatifs. Les configurations d'Zlectrodes
asymZtriques jouent un r’™le important dans la crZation de ce dZsZquilibre dans les densitZs des
porteurs de charge, qui ont ZtZ explorZes dans de nombreuse§224jdes mZcanisme de
conduction EHD fournit usapproche non mZcanique et ~ faible consommation d'Znergie pour
gZnZrer ou contr™|er un fllex fason activequi peut stre utilisZ pour des applications ciblZes

dans des conditions terrestres et en microgr§sjitZ

Nous expliquons laconduction EHD dans les liquides diZlectriques ~ partir des couches
hZtZrogenes d'especes gZnZrZes par la dissociation et la recombinaison des ions sous l'influence
d'un champ Zlectrique externe. En l'absence de champ Zlectrique externe, les taux de
dissodation (G) et de recombinaison@) sont considZrZs constants. Nous avons ZtudiZ le
modele GOhsager basZ sur le concept d'amZlioration du processus de dissociation par
augmentation du champ Zlectrique extdi@]. Le courant Zlectrique est ['un gesametres

les plus importants lorsque I'on discute du phZnomene d'Zlectroconduction. Nous avons tracZ le
courant Zlectrique plusieurs fois pour comparer et analyser les rZsultats obtenus avec nos
simulations. Le courant Zlectrique se manifeste prinaipate par le flux combinZ des densitZs

des especes de charge "~ travers les surfaces des Zlectrodes.

6.3 ftudes de validation et d'analyse des flux

Nous avons prZsentZ les toutes premieres Ztudes de cas qui ont ZtZ rZalisZes pour valider le
modele de conduion EHD tel qu'implZmentZ dans Oracle3D. Les effets des conditions aux
limites telles que Neumann BC, Robin BC, Neumann-mamogene et Periodic BC sont
ZtudiZs, et les rZsultats ont ZtZ comparZs aux rZ@stetsieCOMSOL. L'Zcoulement par
Zlectrocondction a ZtZ simulZ dans un canal rectangulaire ~ domaine non dimensionnel.

RZsumZ de cette section :

6.3.1 Cas de validation

I. Substrat Neumann BC sans effet Onsager

II. Substrat Robin BC avec effet Onsager

lll. Sans la GB. pZriodique sur les faces est et ouest
6.3.2 Impact de I'effet Onsager
6.3.3 Effet de la condition limite du merle sur le substrat

Nous avons comparZ deux rZsultats de simulation prZformZs avec notre configuration de canal
EHD avec et sankeffet Onsager. Sur substrat, nous avons utilisZ Robin BC pour l'espece et
Neumann nothomogene pour le potentiel Zlectrique. Nos rZsultats avec effet Onsager montrent
une augmentation du countaZlectrique sur I'Zlectrode haute tensibest ~ noter ge dans

notre modele de conduction, la nouvelle charge est gZnZrZe par dissociation, et avec l'effet
Onsager nous augmentons le taux de dissociation des especes neutres dans le liquide. Par
consZquent, les flux de chasgaur les Zlectrodes augmententgeé entra’ne des valeurs de
courant plus ZlevZes.



6.4 Conduction dans la gZomZtrie du plan de la lame

Les configurations d'Zlectrodes asymZtriques sont importantes pour gZnZrer une force de
Coulomb nette dans les flux de DHM. Dans cette section, nouamiens le rZglage de
I'Zlectrode du plan de la lame avec un Zcoulement dominZ par la conduction. On pense
gZnZralement que l'apparition de phZnomenes de conduction et d'injection dans les liquides
diZlectriques dZpend de la tension Zlectrique. La condugst censZe se manifester lorsque la
tension Zlectrique appliquZe est infZrieure ~ une tension de seuil nZcessaire ~ l'inj2ktion
Cependant, les expZriences montrent que la conduction et I'injection peuvent coexister lorsqu'un
fort champ Zlectriquest prZsent dans un liquide. Les autres facteurs tels que les propriZtZs du
liquide, la configuration des Zlectrodes, la tempZrature de travail, la quantitZ d'impuretZs dans
le liquide, etc. ne peuvent pas etre nZgligZs lors de la dZcision sur la qdessiavoir quels
phZnomenes surviennent.

Il est essentiel de comprendre les caractZristiques de dZbit pour dZcrire completement le

phZnomene de DHM qui les gZnere. Il a dZj° ZtZ observZ que dans les rZglages dominants de
conduction, le flux global est d&lectrode plane vers I'Zlectroidene[6], ce qui est opposZ aux

cas d'injection. Nous avons Zgalement simulZ le cas classique (Traore et al. (2015)) avec notre
code parallele pour comprendre le comportement classique de la conduction dans ce contexte.

Deux tourbillons contrarotatifs sont observZs des deux c™tZs de I'Zlectrode " lame avec des
vecteurs de vitesse. La direction globale de I'’Zcoulement devant la zone de la lame est de
I'Zlectrode plane " I'Zlectrode de la lame, comme indiquZ[6hns

Nous awns effectuZ des tests numZriques pour examiner les caractZristiques d'Atdalesne

des configurations lamglan avec un ensemble diffZrent de parametres, sous linfluence de la
conduction. Pour les parametres d'entrZe, nous avons pris M=0,2, Co=0,leavembre
Zlectrique de Reynold&¢) Zgal ~ 2500. La simulation a ZtZ exZcutZe pour 5 unitZs de temps
non dimensionnelles, et des vecteurs de vitesse ont ZtZ enregistrZs apres chaque 0,05 heure non
dimensionnelle. Nous avons s#yvZ que I'Zcoulementitinl se dZplace d'un plan "~ l'autre
(t=0,75) ; mais ~ t=5 nous observons que les vecteurs se dZplacent d'un plan " l'autre. Ceci s'est
avZrZ contradictoire avec ce qui a ZtZ observZ dans notre cas de conduction classique et notre
rZf. [6]. Le comportememtZcoulement observZ prZsentait deux types de rZgimes d'Zcoulement
diffZrents dans ce cas. Nous appelons le rZgime d'Zcoulement par conduction classique comme
R1, o la direction de I'’Zcoulement " I'Ztat stationnaire est duvglemla lamecomme indiqid

dans[6]. Le comportement d'Zcoulement observZ " I'Ztat d'Zquilibre avec ces rZglages de cas
est app©Op UpJLPH 5 R+ O Hcablerneddsinde RQan@ Herdfctrode plane.
Cependant, le flux est restZ 2D dans ce cas, meme avec une grille 3D

Nous avons ZtudiZ un autre cas avec un nombre de Reynolds Zlectrique plus ZlevZ (Rel
10000) les autreparamstres Ztant M=0,1, Co=0,1. Dans ce cas, nous avons rZduit de moitiZ la
valeur de M. Nous avons d'abord analysZ les vecteurs de vitesse aveniss simulations

2D. Nous avons observZ la meme configuration que celle dZcritessus avec M=0,2ed
YHFW H XtboVe@aht G TDERUG GH OD S Oniai§ ks Vidddrtairénps,D P H
I'’ZcoulementV fLQYHUVH HW YD &tk Cobne B Rateuy ReUegt gh@reSois plus
ZlevZe dans ce cas, nous avons Zgalement ZtudiZ le cas 3D pour les memes rZglages.

Nous avons tracZ les isarfaces de la-zorticitZ pour analyser la symZtrie des tourbillons, s'il
y en a. Dans les premieres Ztapes temporelles, nous avons observZ qusudadss de la
corrZlation z Ztaient symZtriques le long de l'axe z. Cependant, avec I'Zvolution du flux, nous



avons commencZ “bserver la nature turbulente du flux, et la symZtrie du flux le long de la
direction z a ZtZ reprise par des caractZristiques 3D rZelles. isesf@m®s de corrZlation de
la torsion z " t=1,5 suggerent que I'Zcoulement est Zvidemment tridimensionnel.

Il montre que le diagramme d'Zcoulement en conduction avec des configurations d'Zlectrodes
asymZtriques dZpend fortement des propriZtZs du liquide et non seulement de la tension
appliquZe. Des analyses plus dZtaillZes aveaelitiZs propriZtZs de liquide wte fraction
d'impuretZsvariablesdoivent etre ZtudiZes afin d'amZliorer encore la comprZhension de ces
Zcoulements de DHM. Nous soulignons Zgalement que dans de tels Zcoulements
Zlectroconducteurs, il existe des combinaisons de parametres non dimetss{dhnCO, Rel)

pour lesquels I'Zcoulement restera en rZgime R1, ce qui est considZrZ comme un comportement
de conduction typique. Cependant, nous pouvons avoir quelques combinaisons de propriZtZs
du fluide et de parametres d'entrZe qui conduiront ~ Laerteemble de parametres (M, CO, Rel)

pour lesquels nous observerons l'inversion de flux vers le rZgime R2. Nous avons mentionnZ
plusieurs facteurs qui affectent ce comportement et d'autres Ztudes sont nZcessaires pour une
comprZhension plus large de céZpomenes

Chapitre 7.

Modele SuzenHuang pour
actionneurs DBD

Le contr™le de I'’Zcoulemént] B delhombreuses applications pratiques. Particulisrement dans

les industries liZes "~ I'aZrodynamique, le c§@H RX OD PRGLILFDWLRQ GH OfpV
resteune prZoccupation majeure pour les ingZnieurs. Au cours des 15 dernisres annZes, les
CactionneursplasmaE ont fait I'objet de nombreuses recherches o ces actionneurs ont ZtZ
ZtudiZs comme des candlisl de choix pour des applications de conttGep FRX.OHP H QW

Un actionneurplasma comporte gZnZralement deux Zlectrodes sZparZes par un matZriau
diZlectrique. Une Zlectrode est gZnZralement exposZe " l'air et l'autre est mise " la terre, Fig.
7.1.1.1. Cee configuration est connue sous le nom d'actionneur plasma ~ dZ¢Haagriere
diZlectrique (SDBD) [1,2]. Lorsqu'il est alimentZ par une tension Zlectriqgue, un champ
Zlectrique est gZnZrZ entre les deux Zlectrodes qui, s'il est suffisamment foraduenet pne
dZcharge Zlectrique dans l'air ambi#nt.sein de la dZcharge, des ions sont produits gar d
mZcanismes tels que l'ionisation, la recombinaison, le dZtachement, la photoionisation, etc. qui
se produisent " des Zchelles de temps picosec¢a@s La force Zlectrique induite fait dZriver

ces charges sous linfluence du champ Zlectrique en fonction de leur polaritZ. Pendant le
mouvement, une partie d& quantitZ de mouvement des ions est transfZrZe aux molZcules
neutrespar collisions ente elles et, apres un certain temps, tout le fluide entourant I'Zlectrode
HV est mis en mouvement. Ce phZnomene d'Zcoulement est appelZ vent ionique ou vent
Zlectrique.



Fig. 7.1.1.1 SchZma type d'un actionneur plasmahatge ~ barriere diZlectrique.

GZnZralement, la force Zlectrique produijet le long déa surface diZlectrique juste-dessus

de I'Zlectrode mise " la terre en raison du phZnomene de dZcharge, figure 7.1.1. En raison de ce
jet, l'air audessusdu bord droit de I'Zlectrode haute s&m est aspirZle long de la paroi
diZlectrique avec une vitesse de quelques metres par seconde. Ce jet peut stre utilisZ pour
modifier I'’Zcoulement global le long de fparoi Principalement, dans les applications de
contr™le de dZcollemeogt actionneur est placZ pres du point de sZpardtiasieursZtudes
expZrimentalef2,6] et numZriques[4,5,8,]1.6nt ZtZ publiZes pour explorer les caractZristiques

des actionneurs DBDMoreau (2007) et Benard et ses collaborateurs (2014) ont foniZiat

GH QflilZWes Ztudes expZrimentales effectuZes au cours des 15 dernieres annZes, tout
comme Corke et ses collafateurs (2010).

Ces actionneurprZsentent deux directions ddé : (1) I'Ztude de la physique des plasmas
impliquZs dans le phZnomen@) (‘exploratonGH OfLQWpUrW GH FHVY DFWLRQQH
applications industriellesPlusieurs physiciens ont ZtudiZ numZriqguement le phZnomene du

vent ionique avec une, de ou plusieurs especes chimiques dans le plad®hd530]. Des

Ztudes numZriqueZcentes ont utilisZ trois especes (Zlectrons, ions positifs et nZgatifs) et ont
montrZ le mZcanisme en rZsolvant les Zquations de transport de ces [8dp3dgsLes

modeles numZriques qui impliquent le calcul de la distribution de la densitZ de charge dans le
temps sont appelZs modeles autosuffisants. Plusieurs modsles numZriques ont ZtZ proposZs en
fonction de la nre des phZnomenes Zlectriques [1,14,22indce chafrie, nous traitons
principalement du modelde SuzenrHuang[5].

Seth et ses collaborateurs (2018) passent en revue la plupart des Ztudes initiales rZalisZes avec
le modele SuzefHuang (SH). Ces recherches Ztaient basZes sur les diffZrentes mises " jour
[13,20,22] du modele et sur diverses applications qui ont montrZ des rZsultats prometteurs
[7,12,24]. Le modele SH est fondamentalement un modele d'ingZnierie simple qui n'integre pas

toute la physique des plasmas impliquZs dans les actionneurs DBD. Cepiésdaapproche

de la densitZ de charge basZe sur les rZsultats expZrimentaux et calcule la force de Coulomb
induite par l'actionneur DBD. Cette force de Coulomb est utilisZe comme terme source dans les
Zquations de NavieBtokes pour simuler les conditis d'Zcoulement. Plus rZcemment,

Mahfoze et ses collaborateurs (2017) ont utilisZ deux variantes du modsle SH pour Ztudier la
rZduction de la tra’nZe de frottemaams uncanal /D VLPSOLFLWpPp GH PLVH HQ °XY
cozts de calcul de ce model@permis ~ la communautZ d'explorer la pertinence de ce modele

dans de nombreuses applications. Ici, le modsle SH a Zgalement ZtZ implZmentZ dans Oracle3D

et nous avons rZalisZ une Ztude paramZttigM¢ TXHOTXHV FDV GH FRQWU{OH
prZseris dans ce chapitre.

La dZrivation mathZmatique du modele SH a ZtZ&xpT XpH GDQV FH FKDSLWUH 20Q
faiblessedu modele SH que nous avons besoin de conna’tre la distribution de densitZ de charge.



Et, comme cette distribution de densitZ dargh peut changer avec diffZrentes configurations
d'actionneurs, nous devons calibrer ce mod-le avec diffZrentes configurations d'actionneurs. La
densitZ de charge maximaléd©¢; et la longueur de Debyeé,,; sont les deux parametres
scalaires du wdele SH qui dZpendent des conditions expZrimentales. La distribution
numZrique globale de la densitZ de charge dans le modsle SH dZpend de ces deux paramstres.

Le modele SuzetrHuang (SH) a ZtZ implZmentZ dans Oracle3D pour explorer ses performances
dansla simulation du flux avec des configurations d'actionneurs plasma DBD. Une Ztude
paramZtrique a ZtZ publiZe sur la base des parametres gZomZtriques qui caractZrisent le
fonctionnement des actionneurs DBD. L'impact de I'ZpaiskediZlectrique, de I'Zcaentre

les Zlectrodes, de la frZquence et de la forme d'onde de la tension, etc. a ZtZ dZcrit en fonction
de leur effet sur la vitesse maximale induite et la f&EE moyenne. Une breve Ztudie
FRQWU{OH G §@Z&ZRis® EpakeQak utilisanta valeur de la force EHD obtenue
expZrimentalemerdomme terme source numZrique dissZquations de Navi§tokes, de

fason ~ reproduire numZriquement les vitesgapZrimentaleslLa capacitZ des actionneurs

DBD ~ manipuler un Zcoulemera ZtZ dZmontrZe avec une configuraiittn marche
descendante; faible nombre de Reynolds. Il a ZtZ dZmontrZ qu'une sZparation laminaire
pouvait stre considZrablement contr™|Ze en plasant I'actionneur ~ I'extrZmitZ de la marche avec
les deux Zlectrodes mendiculaires 'une ~ lautre. Dans I'ensemble, nous avons prZparZ le
code parallele pour ces simulations d'actionneurs DBD, de sorte que des Ztudes 3D complstes
puissent maintenant stre rZalisZes avec diffZrentes configurations de RBD mdmbres de
Reynolds plus important.






ACRONYMS

2D/3D Two/Three Dimensional

AVX Advanced Vector Extension
BC Boundary Condition

BFS Backward Facing Step

CDS Central Differencing Scheme
CFD Computational Fluid Dynamics
CPU CentralProcessing Unit

CVv Control Volume

DBD Dielectric Barrier Discharge
DNS Direct Numerical Simulation
EC ElectroConvection

EHD Electrohydro-dynamics

FVM Finite Volume Method

HPC High Performance Computing
HV High Voltage

IDC Improved DeferredCorrection
LES Large Eddy Simulation

MPI Message Passing Interface
NS Navier-Stokes

OpenMP Open MultiProcessing

PDEs Partial Differential Equations
PIV Particle Image Velocimetry
QUICK Quadratic Upstream Interpolation for Convective Kinematics
RAM Random Access Memory

RBC RayleighBenard Convection
SDBD Single Dielectric Barrier Discharge
SDC Standard Deferred Correction
SH SuzenHuang

SIMPLE Semilmplicit Method for Pressure Linked Equations
SMART Sharp and Monotonic Algorithm for RedlsTransport
TVD Total Variation Diminishing

ubD Upwind Difference






NOMENCLATURE

Symbol Discription Unit

Permittivity of vacuum/air [F/m]

L Electricfield vector [V/m]
% Force field vector [N/m?]
& Electric Currentlensity  [A/m?]
" Boltzmann Constant [J/K]
Y Dissociation constant

* Recombination constant
+ Positive charge density  [C/mf]
+. Negative charge density [C/m?]
+ Charge density at equilibriu@/m?q]
& Velocity vector [m/s]
Lt Debye Length ! [m]!
2, Density [kg/m?3]
! Permittivity [F/m]
D Diffusion coefficient [m?/s]
I Electric Current [A]
Vv Electric voltage [V]
e Elementary electronic char¢€]
K ionic mobility coefficient  [m?/V.s]
q lonic chargedensity [C/m?]
3 Dynamic viscosity [kg/m.s]
4 Kinetic viscosity [m?/s]
5 unit normal vector

NON-DIMENSIONAL PARAMETERS

Pe Peclet Number

R Reynolds Number

Rel Electric Reynolds Number
T Electric Rayleigh Number
C Injection Strength

M Mobility Parameter

6 lonic diffusion number

Dc Non-dimensional Coulomb force parameter in SH model
I, Relative permittivity
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Chapter 1.
Introduction

In 215 century the advancemenis every domairof science and engineering have become
closely dependent on the progress in computer science. The ability of modern computers to do
huge number of mathematical calculations in unimaginably quick israethe coreof this
dependence. Availability of hanéire and relevant software is the key behind such impressive
ability of thecomputers. MooreOs law has guithedsemiconductor industry for last 5 decades
to advance and anticipate the future of computer har¢gwaecerding to which the number of
transisbrs on integrated circuits were to double every yean 1965 and after 197% was
revised todouble every two yeardhis led to a rapid growth in the computing hardware
technologieswhich still continues. On the other hand, several programming mogkks
proposed to effectively design the softwgmegramsto benefit from theeverincreasing
hardware capabilities.

It is evidentthat to really profit from the progress in hardware and softviani technologies

must advance coherently with each otlherfact, as the hardware industry has advanced ahead
of the softwaredomain the software innovations have to follow according to dheady
available hardware architectures. The existing software paclegkshe legacy scientific
codeshave to be modeized with the everchanging processor architectures to allow thesuser

to benefitfrom the ubiquitous multicore processors.Scientific and engineering research
community is one of the biggest consumers of tlggsaving highperformance computing
(HPC) technologiesAnd, there are organizations which are leading the way forward for the
scientific community to keep it updated with these-fested HPC technologie&or example,

the Partnership for Advanced Computing in Europe (PRACE) is an organizatiacilitate
high-impact scientific discoveries and engineering research across all disciplines by providing
most advanced computing and data management resources available across Europe to the
member European communities.

Many important problems of sciemand engineering cannotiedertaken without the modern

HPC systems. The climate or weather prediction, turbulence at the smallestfatidbesly
aerodynamic studiesf aerospace vehicles etc. are some problems where the length scales
matter a lot, o the other hand, the physics of plasma discharge, atomic collisions etc. are the
problems where the time scales are also immensely impdBiathttypes of problems require

the modern HPC capabilities to make proper understanding of the underlying phanome

The context of this thesis is based on ahanse electrohydrodynamic soly@racle3D with

which we wish to study the interamti of electrostatics with hyddgnamics.Oracle3D is a

Finite Volume based muiblock structured grid, incompressible \Wer-Stokes solver for
steady and unsteady flow conditions. It uses SIMPLE algorithm for pressure velocity coupling
and 29 order Gear Scheme for temporal discretization. It approximates the convective fluxes
with Total Variation Diminishing (TVD) schemeithr several available flux limiters. Improved
Deferred Correction (IDC) scheme is used to treat the diffusive fluxes. These features are



explained with details in following chaptefishe code is mainly developed to simulate various
electrehydrodynamic prblems.

There are severakatlife situations where some kiaf ionic species interact with the
surrounding neutral moleculed fluid and there occuran exchange of energy, momentum,
electric potential etcbetween the ions and neutral particejch demands detailed study.
Such interactions of ionic species with the neutral fluid is considered under the discipline of
Electrohydrodynamics (EHD)Y.he overallaim of this thesis consists of modernizing the code
Oracle3D to tackle lge and complexeHD dmulations on advanced HPC systerand
numerically studying thEHD problems in three dimensional configurations.

Intricately coupled application®f modern industries bring together the branches of
hydrodynamics, electrostatics, electrochemistry etceutind multidisciplinary EHD research.

The ElectreFluido-Dynamics (EP) group at the Institut Pprime in France is actively
participating in building the new technologies comprising the EHD domain and leading the way
in solving many industrial problemsa@uas the aerodynamic flow separation. The group has
stateof-the art experimental and HPC facilities at the Institut Pprime in collaboration with the
University of PoitiersEfforts have been made, during this PhD work, to significantly advance
the numerical research capability of the group by designing and implementing the parallel
strategy for the code Oracle3D and rigorously validating it. Detailed numerical work and
compuational methodology has been provided in this thesis for the current and forthcoming
users of this EHD solver.

This work does not focus-depth on a single physical problem; however, it provides a range
of EHD applications including unipolar injectiodeetro-conduction, flow separation control

with plasma dischargetc. withinitial validation tests irseveral domain configurations to kil

a broad database for the new co8eme classical EHD problems were revisigedl the
background summary with bibgraphy of the relevant previous waskhas beemprovided

within corresponding chapters and sections. As the code was parallelized beginning from the
legacy Fortran 77 versioMPIl implementation details are provide in this thesis to facilitate
further adancementand developmenis future.

Scope of this thesis

Thein-houseEHD solver, OracleD, has beennderdevelopmentor more thara decade now,

and advanced features are being added regulagktead its scope to newer and more complex
EHD problens. During the course of this thesis, the solver OOracle3DO was upgitaded
modern Fortran featureand more importantly it was parallelized with Messagssihg
Interface (MPI)to berun ondistributed memory CPU@lusters Parallelizing a scientificode
presents a lot of challenges in terms of programming the intricate core level details, and then
adapting the whole scalar code to the parallel methodoldgys, the task of parallelizing the
complete EHDsolverwas divided in subasks which includeg@reparing individual scalar and
parallel codes for simple physical models such as the PoissonOs solver, thé&tdreser
solver, a scalar transport solver etc.

To simplify preprocessing stage of grid preparation, a Fortran code was designed to c&ad blo
grid data from OBlockMeshO and convert it into the suitable format febimektiOracle3D
grids. Advanced MPI features of Cartesian topologies, groups-aoet@municators etc. were



implemented in the code to prepare a scalable message passing doatdge parallel
computationsThe first part of thehtesis deals with the methodology useg#nallelze the
solver codesind their vadation with existing results. A short summary of the chapters is as
follows:

¥ Chapter 2 briefly mentions the FiniteMime methodFVM) as the numerical approach
used for discretizatioaf governing equations Oracle3D Instead of general transport
equation, specific equations used in the code are taken as discretization examples
wherever possibleThe need and thémplementationdetailsof OTVDO schemare
detailed for the users of the co&mme n& boundary conditions were implemented in
the code which are explained with relevant discretization approach.

¥ Chapter 3 details the methodology used for parallelizatidheocode with advanced
MPI features. A general outline towards parallel paogming models is provided it
section. Section™ deals with the Cartesian topology features of MPI which were
initially used to parallelize single block grids. Th& $ection puts forth the whole
strategy used to parallelize the midlock grid geometries, with complete
implementation details for users. Finally, some scalability testpranaded with
explanationgo judge the parallel efficiency of the new code.

¥ Chapter 4 provides all the test cases performed to validate the individual parallel solvers:
Poisson solver, Navigstokes solveradvectivetransport solver. Most of the new
features added were validated with different number of cores to verify the message
passing approadh the parallel solvers.

In the second part, we provideethHD studies performed with Oracle3D during the course of
this thesis.

¥ Chapter 5 deals with EHD unipolar injection. Thkctreconvectionproblem is
defined, and a briditerature review is given to start with. Somdéial 2D studies are
presentedto validate the unipolar injection modef the code Threedimensional
convective cellsO pattern formation in parallel plate ebitroonfigurationis
investigated in detailThen, 3D injection plumeare investigated with blagdane
electrode geometry under different injection laws.

¥ Chapter 6 accounts faeveral computations in the framewaf electreconduction
phenomenonSome validation testwere performed tocomparewith Comsol and
results are provided. A 3D conduction channel was simulated fof'timel In second
section, we provide some insight into the flow pattern observed with our conduction
case settings in blag#ane electrode geometry.

¥ The last chaptedeals with plasma discharge. We have used, in this first approach the
SuzenHuang (SH) model which idescribé with the derivationof model andits
parameters. Impact of the Debye length is briefly explarembntext of SH modelA
parametric study dealing with the geometrical and electrical parameters characterizing
the DBD actuators is provided. A study with experimental force used as a source term



in NavierStokes equations highlighted Lastly, a brief study witta laminarflow
control overa backward facing step is provided.



Chapter 2.

Finite Volume Method In context of
Oracle3D

Finite Volume methodFVM) is one of the most popular mathematical approaches among
others, which are used to solve the problems of continuum mechanics by disciézing
corresponding partial differential equatioims time and spaceSpatial dscretization of a
problem refers to dividing thepatial domairof a problem intomuch smallergeometrical
entities likecomputational cells, faces and nodes. nfhé&e physical problem in the whole
spatial domain is combauly described by the algebraic relatiaeined on thesedividual
computational cells and nodeslgebraic equations for the individual computational cells are
obtained by integrating the partial differehegguations with FVM over each discrete cell.

When the problem is of unsteady nature, discretization in time is also required which is carried
out by dividing the overall problem time into much smaller time steps. The evolution of
physical problem withrealler time stps altogether provides the completesteady solution.

A complete flow chart for thgeneraldiscretization processs usually followed in numerical
analysesn given in Fig. 2.1In, this chapter, we will mainly talk about the FVM stratsgas

used in our solver, Oracle3D. We have tried to explain the various newly implemented
discretizatios and the boundary conditions with the actual probletmsh are encountered in

the physical models thare available in the ced This is to facilits¢ the understandingf the

code for the future users.

2.1 Finite Volume Method: a brief overview

A large number of methods and schemes are availatiien the framework ofinite Volume
approachdepending on the nature of physical problem (diffusion, convection etc.), required
order of acaracy,nature of grid etc. Inherent conservative naturgionite Volumemethod is

its prominent feature which puts it ahead all other numerical techniquescaitmutational

fluid dynamicg(CFD)is talked about. When dealing with fluxes of conservative quantities over
the faces of computational cells, it is stated that the flux entering a control volume is identical
to the flux leaving the adjacent volupmeaking the FVM strictly and inherently conservative.
Especially, this feature is an added advantage for the fluid mechanics problems where we have
to satisfy the conservation laws of mass, momerandenergyin every single problemt each

time step With thesignificant advancements in CFD, in last few decades, FVM hasdyin

lot of popularity by being able to tackle all kinds of comgdaysicalproblems.

As the other numerical approaches, like Finite Difference method (FD) and Finite Element
method (FEM),n Finite volume also we transform the partial differential equations (PDES)
into linear algebraic equations. All the physical phenomena are described by some kind of
PDEs, which distinctly define the mathematical goiysical nature of the probleomder
consideration. For examplen CFD the most frequently encountered PDEs are the Navier
Stokes equations, whieredefined by the conservation lanaf mass and momentufiowards

the discretization process of PDEs, which requires the transformatiariuofie and surface



integrals into discrete algebraic equations, we undeniably come across the divergence theorem
(GaussO theorem) in FVM.

Fig. 2.1 A general overview of discretization process (courtesy Moukalled2et#)

The divergence theorem stathat the overall flux of a vector field¥ through any closed
surface (S) is equal to the total volume of all the sources and sinks over the region confined by
that surface, eq. (2.1). Here the total volume of all sources and sinks is defined by itiee volu
integral of the tvergence of that vector field. Thus, with this theorem we usually convert the
volume integrals into surface fluxes, which are then used to form the discrete algebraic
equations.
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We present here, as an example, the conservation equation for a general scalar3véviable
express the utilization of divergence theolierkVM. Eq. 2.2 shows the four terms present in
a general conservation equatitnansient term, convective term, diffusion term and the source
term. Here, 4 is the density of fluid}# is the velocity vector fieldand5 is the diffusion
coefficientof the variable3. We keep the treatment of the transient termldter andshow
here the transformation of this PDE (eq. 4Arp surface fluxes of control volumes. Eq. 2.3
represerd the steady state form of eq. 2.Zhese two equations are for the whole problem
domain.
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We now take the discretized finite volume cells of the doraathintegrate eq. 2.3 over a cell
C. Eg. 2.4 is the volume integral form of the steady conservation equatien a control
volume cell Now, we use the eq. 2.1 (divergence theorem) to cotherolume integrals of
convective and diffusive terms into surface integrals, as depicted by edie?&s.. is the

volume of the cell C anffis the surface vector of the cell surfaBguation 2.5 is usually
termed as the serdiscretized equatioim FVM, as it represents the contributions by individual
finite volume cells [1].
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With the semidiscretized equation, we have to obtain the discrete algebraic equations for each
cell, which will be the contribution of individual cells in diffusion, convection and sdaroes

for the wholeproblem. Diffusion, convection and the effect sources/sinks are three phenomena
which are completely of different physical natureydole explainingthey are generally dealt
separately to obtain their contribution and then finally combined for thelbsehation. We

will discuss the mathematical approach to get the discrete algebraic equations for each term in
following sections.

2.2 Discretization of Diffusion term

We take an equation with diffusion term, as an example, to understand this discretization
process. This equation (Eg. 2.6) is the charge density equation from thetauzrenmodel

[2], which is a part of the overall framework of this thesis. This equatiasa newly
implemented in the Oracle3D code, so it fesimportant to provide the discretization of this
equatiorhereas an example problern equation 2.6, the leftand sid€LHS) termsolves our
requirement o& diffusion term.
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Here4. refers to the charge density (is the Debye length ari is the relative permittivity
of the mediumRearranging this equatida get all terms witld. on one gle as:
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Let usintegrate eq. (2.7) as per the FVM approtctiscretize itwhich gives us
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Using the divergere theorentor the diffusion term
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Let us take4. - 3¢, following our codeOs conventidntegrating the first terrf equation
(2.9) separatelyfor control volume with centre node P

P,
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WhereP, is the volume of the cell with center node P. Now @ering the second terof eq.
(2.9) for cell with centre node P, which is a surface integral over thiseltan replace the
surface integral with a summation over the control volume fa¢estransformation is the first
approximation introduced inuo FVM approachHerek represents all the fas®f the control
volumein all six directions (east, west, north, south, bottom and o@D arrangement of
cells with neighbour nodes in respective diredjoapresented with capital letters, are shown
in Fig. 2.2. Orthogonal cells are shown in Fig. 2.2 just to simplify the understarafing
nomenclature used here.
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Fig. 2.2Control volumes arrangement &2D grid

2.2.1 The Standard Deferred Correction¥)

Here/ 1 is the area of the respective face of the control volamé(%: is the unit normal vector
for k face Now in the above expression we needctmpute(3)( ¥ with a suitable
approximation As we often deal with omplex geometries whemon-orthogonal grids are
usually encountered,we demonstrate herthe standard deferred correction (SD@gthod
which is used to deal with the nonthogonal control iames along with the diffusion term
discretization[3,8]. We follow the normal decomposition approac¢hig. 2.3) for our
discretization inwhich (% can be represented as follows:



Fig. 2.3Decomposition of surface normal vec(@¥;) in SDC
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Here¥ is theunit vector joining the central nodes of the two adjacent control volumes, using
this we can write
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SDC utilizes tis normal decomposition and gives anatere procedure to solve thigfusive
term in equationZ.11}
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Wheremrefersto the solution o%8(3)+ duringcurrent iteation and ml is the solution from
the previous iteration. Theecond term on the RHS égjuation(2.13)is solved explicitly from
the terms of previous itations and they form the deferred correction part of theisn. The
first term on RHS can bapproximated with second ordentralschemeor the first derivate
which is written as eq. (2.14)

N
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Here d(PK) is the disance from Point P to point Kcor, simplicity we considea 2D grid, as
shown in Fig. 2.2and the extension to 3D cases will remain similaruSimg equation (20)
and (2.13)n SH model equation (2 9ve geteq. (2.15).We keep the deferred correction term
on the RHS of eq. (2.15) asistcomputed explicitly from the known values of the previous
iterations (m1).
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We solvethe eq(2.15) without the RHS term now, just to show the following approach more
clearly. The RHS term of e(R.15), which is theleferred correctionontribution, is used as a
source term in Oracle3[D the algebraic equatiomsd is explained at the end of this section
Expandingthe 2 termof LHS by writing the flux contribution from all 4 faced the cell with
node P(Fig. 22), we get:
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In eq.(2.16)we only have théermsat current time step (mpo we droghe superscrippmO
and earrange the terms for node P and neighbouring nodes respectively as
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Eq. (2.18) is the final algebraic equation for cell P aedehthe Acoefficients are called the
discretization coefficients, from corresponding neighbouring control volumes, of the equation.
Their values are:
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Wg Is the coefficient of the control volume under consideration itself, and it is given by eq.
(2.19).

Wg - HwnHwW, Hw Hw 8 /p(((((IMMe22N
Here/g - —( it comes from the RHS term of the base eq. (2.6). In Oracle3D, we treat such

contrlbutlons which come from other than the neighbouring nodes, i tleem. e do not
haveany source term in the equatioh®) so here S& 0O, which is thevariable used in
Oracle3D for the contribution from the source/sink terms
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For athreedimensionatase we will have thierms for top and bottomode contributions also,
and the final discretized algebraic equation for node P will become:
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For diffusion coefficien{As) (Wwe use the linear interpolation, wh&gs the interpolation factor
based on the ratios of distances between the cell centroids
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Heree stands for the central node on the interface between the two celts; @nelwrefer to

the corresponding distances between the cell centroids and the. ibdedeferrectorrection
terms which were dropped in eq. (2.16)¢ approxnatedand used as source terms in algebraic
equationsWe writeherethe RHS term of eq2.15 and expand it in two ternas follows:
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Thesetwo termson the RHS of eq. (2.24Are stored in variables SUEH and SUEIOracle3D.
Contributions in these terms from all the cell faces can be obtained similarly as shown above
for the LHS of eq. (2.15). Some code relevant details corresponding these terms are provided
in appendix Mwith further explanations'he final algebraic equatiacorresponding to eq. (2.6)

for a control volume cell as used in Orcale3D can be written as:
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2.2.2The Improved Deferred Correction (IDC)

Based on the idea of SDC scheme, Traore et al. (2009) introduced an improvement in the
approximation of diffusive flux for nenrthogonal grids which was testedth extremely
skewed gridsand proved to beobust with better efficiency than the SDC sch¢&§). It was

also reported that the convergence properties and the order of accuracy of the discretization
were not degraded witthis improved deferred correction (IDC) scheme everxinemely
skewed gridsThe decompositionfacsurface normal vector ilDC is shown in Fig. 2.4The

main idea is to express the surface nor#dg) in term of a unit vector parallel to the surface

/ 1. Thesurface normals4) in this case can be written as:

M- (€78 (foHK
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Where€, - o andf. - ,S<@ . This updated value d¢% should be used in eq. (2.11) to

e :t %0’
obtain the new approximation of diffusive flux with IDC scheme. The derivation with IDC will

follow in similar manner as explained above for the SDC scheme. This IDC scheme was
implemented in parldl Oracle3D code and the same tests cases, as provided in Traore et al.
(2009),were performedo validate the Poisson solver of the code. The detailed validation cases
having the comparison with reference [8] are provided in chapter 4 of this thesigrtRer

details on the IDC scheme interested readers should redgr [8

Fig. 2.4Decomposition of surface normal vector in IBEheme (Traore et al. (2009))

2.3 Discretization of convectiveterm

We take thentegral form ofconvective ternfrom eq. (2.9 andwrite the integral of surface as
the sumof fluxes from thecontrol volunmefacesin all directions We introduce the mass flux

%2 variable herewhich is « Z- (41(%(%( 1. This represents the mass flux whipass
through thesurface 1.

$ M3W+H- S WMIM M+ - (S M3M M- S - LB ()

?*= = TUVWXYZ] TUVWXYZ]

Now, we need to find thapproximations forelocity field (%) and the scalar variab(8+)
through the control volume facef. simple linear interpolation for the velocity field is
considered in our solvevhich takes the form:

- < (HR8 % H« )M (
Where the interpolatiofactor is defined as
+9%d ca)
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So the final expressin for the mass flux becomes
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There are several schemes available in literature to approximate the v@ugk oh(the centre
of faces which are common between two control volui@estral Differencing Scheme (CDS)
is the simplest and used quite often to approximate the convective terms. WitB 9D&kes
the form:

3r(* CBrB%H-)Be

And the total convetive flux with CDS scheme’(“ °"°) from face kbecomes:
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When used in a transport problem with dominant diffusive nature, the CDS approximation of
convective fluxworks well and gives physical results. But, as the convective nature of the
problem becomes more dominatinigan diffusion then with CDS scheme unphysical results
are very likely.The linear profile withCDS schemeonsidersequal weighton both upwind

and downwind nodes. Howeverhet convective lpenomena arestrictly flow direction
dependentand the contribution from the upwind nodes will be domimastrong convective
flows. By analysing the discretization further uniform grids it is observed that if the cell
Peclet number,- 4( (P*+ G2 () is larger than Zhen unphysical results are obtaineith the
CDS|[1,3]. Peclet number ia dimensionless number v is usually defined as the ratio of
rates of advection and diffusioh @ physical quantity.

Thus, in place of CDS thgpwind Difference (UD)scheme is better suited for the convective
fluxes which approximaté3 for the east facas:

3Rl H™1(
Bu- (- )
N(CFEX

The Upwind schemmimics the underlying physics of advective flavedter as the face values

of thefluxesare made dependent the upwind node values, which makes the flux more tuned
with the flow direction than the CDS approaghe Upwind scheme is only'brder accuate

but it gives bounded solutions even for higher values of Peclet numbers. The CDS"being 2
order acarate gives better resultisan Upwind, for flows withy,$ 1, but the solutions are
unphysicalfor higher values ob,numbers Thus, numerical analysis of convective flows
wanderdetween the issues of accuracy and stability with thesedinemes anlgads the way
forward for the need ahore robust and acrate schemes

2.4.1TVD schems
|

Upwind differencing scheme is the most stable and unconditionally bosodeohehowever,
it introduces a high level of false diffusion (numerical diffusion) because it is &rbyder
accuratdl,7]. Higherorderschemes lik€entral differencinghybrid and QUICK schenseare

13



more accurate but they cgive spurious oscillations (wiggles) in the form of undershoots and
overshoots when the Peclet number is high. These wiggles can lead t@lphysicealistic
valuesand make the solution unstableo BRddress this undesirabfeature of numerical
oscillationsin these schemebligh Resolution (HRkchemes are formulatedR schemes are
formulated topreserve the convectiveasednature of pevious sclemeswith improving the
boundedness criterion.

Several HR schmes have been developed till date and a good review of all these schemes is
available in [1,3].The HR schemeshat weredeveloped in the Total Variation Diminishing
(TVD) frameworkmake the TVD class of convective schemPgD schemesare apecially
developed tocounter the spurious oscillations by adding artificial diffusion or weighting
towards upstream contribution in discretized equatibtahematically thélotal Variation is
definedas:

» - (G (@ HEe.((((uuuuun'e

Here i is the index of the control volume node in the spatially discretized dolnscheme is
said to safify the TVD nature ithe total variation (TV) in the solutictoes not increase with
time, which iswritten as

IO RV (LT« yw

Pioneering work on TVD schembg Harten (1983) and Sweby (19844l to the TVD class of

HR convective scheme$,p]. Harten proved in his work on HR schemes thahonotone
scheme is TVD, and a TVD scheme is monocity presef@ndf the value of a local minimum

does not decrease and the value of a local maximum does not increase in the solution domain,
then thescheme is said to be monotonicity preservilg In other words,monotonicity
preserving schemes will not produce overshoots and undershoots in the solution domain.
Several formulations were developed by different researchers which toady come under the TVD
class of scheme3he implementation of TVD sches in Orcale3D followsipwind biased
formulation [7]. TVD schemes with different flux limiter options aseailable for the
convective part of the transported variables

2.4.2Implementation of TVD scheme in Oracle3D

This section explainshe generalTVD formulationin the specific way it is implemented in
Oracle3D Some details are intended for the users/developers of the coéeVamvill talk

about some variables which are used in code as they are describekh [3&roblems, each

control volune has 6 contributions ofukes from each of the 6 faces$g west, north, south,

top and bottom). However, for any two adjacent cells the flux through the common face is same
in magnitude but opposite in direction (for one cell the flux goes out fieradmmon face and

the same flux enters into the adjacent cell). This leads us to reduce some computational cost,
by calculating the common flux from a face only for one cell and using the same flux with a
negative sign for the adjacent cell for the otflieection.

Thus, we scan the control vohe faces only in 3 directions (east, north am) for computing

the fluxes and coefficients in Oracle3D. The contribution from the other sides (west, south and
bottom) is taken from the adjacent cadluesas exylained above. For example, the subroutines
CELQ is called 3 times in Transport subroutine for the three diredleast, north and top.
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The contributions of the common faces for the adjacent cells are also calculated at the end of
this routine.

SU(INP)= SU(INP)+ (SUEHSUEL)
SU(INE) = SU(INE) - (SUEH-SUEL)

HerelNP is the index of a cell and INE the index of the adjacent cell in the positive direction
SU(INP) is the variable for sour¢erm contributions for a celand SU(INE) will make the

west, south and bottom source terms for the respective adjacent cells. The TVD schemes have
their contribution in the source term of convective part, in the discretization used in Oracle3D.
The TVD ontributions to source terms (SU) are treated similarly as the deferred corrections
for the diffusion term, so the related terms are placed ongiehandside of the equations.

To understandhe basic aspect of TVD schemest us consider anedimensionalflow in
positive x directior{u > 0) We take asa generatonvecting scalar variable hefe.Fig. 2.5,
with the Upwindscheme we will get the east face value a@fs

W'(R

Fig. 2.51D control volumes arrangement wiplsitive flowwvelocity

Now, as explained above the Upwind scheme is very stable butalhgdr accurate. Let us
add an additioal flux contribution in \yto make it higher order accurdig incorporating two
upwind node valuesNVe can add a linear upwind biasedfpe such as:

2
w- ( R8(I%RH( o)

This additionaterm makes the updated formulat@rsecond order accurate schemeich is
called asa linear upwind differencing (LUD) scherig. Similarly, other schemes like CDS
QUICK etc. can be updated loycorporating upwind biased terms [Based on this idea, a
gereral notation for an upwind biasegy,, within a convective discretization scheen be
given as

2
w- (8 (71 %)% nH( &) ((((@errM

Here, weapproxmate ,with the value on the previous upwind ndde;) and an additional
term.With | %) being an appropriatémiter functionof r to provide the required features
TVD in the schemeand r is theratio of upwindside gradient to downwinside gradientof
correspondingransportedjuantity, which isgiven by

\_(KRH(pL
mH(R

With the introduction of eq. (282, the task of developing a TVD scheme is reduced to simply
finding a limiter function { %)), for an existing scheme to makeT/D or monotone [7].
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Several flux limiters are developed with this idea and further details are available in [1, 7]. We
focus in the following part the implementation method of TVD schefaesur solver,
especially for the boundary nod€onsider Fig. & to understané moregeneralu >0 and u

< 0) notation ofconvective fluxcontributionin the overallflux (for 1D) by the TVD schemes

as written by eq. (29):

Fig. 2.61D domain showingoth flow directions with corresponding r notations for thet éaseof
node P

2 .
[£0 - TOBRH Wi %) Hevii %)% nH g)!

! ! ! B8E'xBx'i W) H®H )i B)PoeH ) (AN

The value o# \,depends on flow direction in the cell,= O for u < 0 and += 1 for u > 0.The
massfluxes (+ £) throwgh cell faces are denoted by. Notations'\§ and’\y correspond to the
variable r when the flow is in positive or negative x direction respectiMelye the surce term
contributionby TVD convective fluxesfor node Pfrom both the side@ast and wegaces is

given in eq. (29). However, as explained above, in Qe8D® only the easdide source term
contributions are exclusively computed. The west side for this case will be taken as the negative
of east side of adjacent cell. So, tlggiation we consider in Oracle3D becomes only:

1§P - = WORH Wi Yan) Hewi %0%)e% H g)NININIININIGE" | )!

According to the direction of the flow we will have either Yj@r the "% part of eq(2.30), as
shown in Fig. . Moreover, for the north and top directions also we use the same notations of
the variablesn the codejust the corresponding directions are changed with the loop [imits
J, K).

~y r H p A mmH m

V- L - K@

m R m R

Now, with eq (2.30) we compute the TVD source terms for the cells, for east, north and top
directionsin full 3D problem which is donen CELQ subroutinen code The contributions
from the west, south arfmbttomfacesare obtained byhe adjacent ceflux values as explained
above. The loops for scanning the required faces in all 3 directions start with 1=J=K=2 and ends
with NI-2,NJ-2 and NK2 respectively. Thee loops computehe TVDflux contribttion for all
the cells (for all Gaces) except the contributions from the boundary side faces of the boundary
cells. The contribution from the boundary sideds arecomputed in the MODQ subroutine.

Here we should note that for the positive flow direction (u > 0) we work\§iflactorandthe
value of |, for the boundary cells in west, south and bottom directions is not knownlto us.
Fig. 2.7P is the index of boundary cell centroid andsthe node lying on the west boundary
face itselfIn all such cases the value ofat the boundary face its€RI(INE), as set in SETBC
subroutine) is considered ag in Oracle3D.
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Similarly, when the flow is in negative direction (u < 0), we ygethen the value of ., is
not known to us for the last cells of the scannoaplin east (NR), north(NJ2) and top(NK
2) directions.In this case we take the boundary value ¢ be the ,,for these cells in east,
north and top direction$ig. 2.8)

Flux from the Boundary face

¥ CASE 11- For u > 0 at the west boundary cetide ORG:2), Fig. 2.7 we need the
contribution of fluxes from the 2 faces (east and west) of the cell. For this boundary cell
we have the contribution of east face already from the previous section (as explained
above) which is computed with eq. (DB Now we only need the contribution from the
west sidedce. Being at the boundatiijs west sidéace of the weddirectionboundary
cell doesnot contribute to the TVD source terridie treatment with ed2.30) is not
required here, as we do not need to approximate the valuewofthis west face, we
have the exact as the imposed boundary conditidheir contribution is taken directly
from the value imposed aheboundary ( pmo; wievsso )-

West face contribution tthe source term =x (' pmo( wievsBo

East face contribution to source terrE‘a\f_Hi %i) % H R)

Fig. 2.7Convectivdlux contributionto the vest direction boundary nod®), u>0

¥ CASE 1.2 - For u > 0 at the east boundary d®E(NI-1), Fig. 2.8 there will be no
TVD contribution from the east boundarycéa It will be computedirectly from the
meo{ wievs'Bo IMposed on that boundary face. The west face contribution coomes f

eq (2.3) from the calculations addjacent cellOs (X)) east face.
East face contribution to source termg mao; wicvsso

West face contribution to source terng‘-—xﬁ' %)% H R)

Fig. 2.8Convectivdlux contributionto theeast direction boundary nod&), u>0

¥ CASE 21 - For u < 0 at the east boundary o®IE®I-1), Fig. 2.9 the west face
contribution comes from the adjacent cellOsNast contribution which is computed
with eq (2.3) in previous section. And, the east face contribution does not have any
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TVD source contribution becausehis comes directly from the boundary value

[‘W meof wievsBo B
East face contribution to source termyg e wicvsso

West face contribution to source ternE‘:Xﬂ—u Yay) @ H R)

Fig. 2.9Convectivdlux contributionto theeast direction boundary nod&), u <0

¥ CASE 22 - For u <0 at the west boundagll (1=2):
West face contribution to source termyd ,mo; wievsso

East face contribution to source terrE‘a\f_} Yay) @ H R)

Fig. 2.10Convectivelux contributionto thewest direction boundary nod®), u<0

Finally, the mainpoints to notéespecially for the users of the codeg
1)! there is no TVD contribution in the source terms from the boundary faces (boundary

side faces of the boundary control volumes), e.g. the west faces of the west boundary
cells and east faces of thast boundary cells are not treated in TVD manner.

2)! all the rest of the faces of all the control volumes (cells) are treatech& 4D manner
as explained with eq. (DB

I"! Source term contributions and coefficients of discretization equations, from the
common faces between two adjacent cells, are computed once only for the positive
directions (east, north and top,g. in CELQ, CELUVW etc. subroutinesThe
contributions fran thewest, south and bottom faces come from the adjacent tte{Os
contribuion from that common faceyith only a change of direction (negatisign). #
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2.4 Discretization of transient term

We write the integral form, for FVM, of the transport equation for a s&las previously
shown in eq. (2.2)

6%3
$ T)+’ (8(% «%B)( (- N((er's2)

*

The second term in eq. &) contains all the ther terms (diffusive, convective, source etc.).
We need to discretize now the transient term with FVM. We need an approximation for the
derivative of %43) with time, which is the done with Gear scheme for Oracle3D [3,4]. It
corresponds to"@ order accuacy for the first derivate and written as shown in e@23j2Here

n+1 depicts the value at current time step. Gear scheme is an implicietrekscheme, which

uses the variable values from two previous time steps.

6943) 3 -H>BY¥8 (3% - .
+ (» @40 1P7 QP, (Oas1)

$* 67

2.5 Combined formulation of ConvectionDiffusion discretization

Discretization of both diffusion and convection terms are briefly explained in the previous
sections. We revisit the combinejuation of a steady convectidiffusion without any
sources to provide a combined formulation for the final algebraic equation for individual control
volumes. We recall eq. (2.5) without the source tanth consider a uniform 1D grid as shown

in Fig. 2.1L.

(((($9* %43 1" +1H- (% %°&3) +A@@@@@@@@@as; )

Fig. 2.11 A 1D grid arrangement

This can be simplified in term of summation of fluxes from all the faces of a control volume
(here in 1D case just west and east)
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Let us expand the terms in eq. (@.3or the control volume with center nodevi® note that

the surface vectors on the opposite sides (east and west)caufitinel volume have opposite
signs. In Oracle3D, the effect of surface vector sign for the convective fluxes are already
considered in mass flux € - (41 (% (%( 1), but we need to consider the sign for the diffusion

term. We consider the CDS scheto approximat8 and2" order approximation fdi;% . We
can write:

3p
((H(5x/x( —p ® |

2 .
7 Z,(%R83m)8(_ £@8r8 3 )H(5w/w(

2 . 2 2 . 2 . _ N
I' a(3m8 _' %3‘3 8 KI' %8 I' %L3RH(—V\3mH( X3p 8 /6w8( X)3R- |

Where 1 - (%%(; is termed as the diffusion coefficient for the algebraic equétion face

k. We collect together the contributions from individual cells.

H(_\/\®3 8 (== H( x®3p 8 - %8((_w8 SRR (Me)

With the continuity equation, we can write

e 48 Z- |
Let us takeng is the coefficienbf 3y in eq. (2.%) which canberewritten by subtracting the
continuity equation from jtas:

7 8 (w8 “xH% %8+ ¥)

WR - H.lz"’ .%8(( w8 x

Rewriting eq. (2.8) in the form of algebraic equation witlscretization coefficients, we get

Wr3g 8 Wm3,8 wp 3, - (NI e

Here thew; coefficients are called the discretization coefficierftem corresponding
neighbouring control volumes, of the equation. Their values are:

'x7-

Wy -

- (Ho/((Wm8 Wo )

H( x
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For the full 3D discretization, the algebraic equation fdrReaVill be written as eq. (273, and

the discretization coefficient are obtained as shown above with the east and west contributions.
This equation is valid for all the control volumes of temain;however, the boundary side
fluxes are treated differently which is described in negtien with some examples.

- 4 <4

1 H( v( Wo - 1 H( v

Wr'(

~

.1ZH(_Z(C W{ - .1ZH(_[

Wg - (H%Wn 8 w, 8 W, 8 wo 8 w 8 wy)
Wr35 8 Wn@3,8 Wy 3, @B 3, 8 wp3,8(W; 3, 8w 3 - I (@@@4a5I)(

w - (

2.6 Discretization of Boundary Conditions

Correct implementation of boundary conditions in any numerical solver is of utmost
importance.In many physical problems, there are ofseme differing views of researchers
regarding which numerical boundary conditions will represent the physical conditions more
accuratelySometimes, the numerical boundary conditions are over simplified or approximated
to avoid certain numerical difficuéts and complexities; keeping the physical accuracy at stake.
During the course of this thesise implemented some new boundary condition®racel3D
which were of huge physical importan@nd it was always noticed that the user should pay
close attentoin while discretizig the boundary equations.

It is also very importarthat the useanderstand both the general discretization of the boundary
equation and simultaneously know how they are really implemented in the code. In this section,
we will discusghe discretization of some boundary conditi(section®.6.1-2.6.3)and finally

we will provide a generapproachsection2.6.4)to work outall the boundary conditions for
Oracle3D.The general approach as mentioned in section 2.6.4 can also bedrb&dfore going

to sections 2.6-2.6.3, for a quick summary and having a different approach for implementing
the boundary conditions.

2.6.1 Robin Boundary condition

Let us consider a 2D grid arrangement at a south direction boundary, Fig. 2.12 figutie,

the blue line is the boundary in the south direction, and the node S which is shown in red is the
node on the boundary side face. The direstafrsurfacenormalvectors are shown at all four
faces of the control volume with centre node P.
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Fig. 2.12 A 1D grid arrangement with the south side boundary nodes

Setting the boundary values for all the variablegely important which can be provided by
several formulatiosdepending on the physics involvédne of the simplest forntd boundary
conditiors istermed as Dichletboundary condition, in which, a fixed value of the variable is
given on the boundary node S.Zero fluxNeumann boundary conditi@erogradient of the
variable is provided at the boundary node S. Robin boyrmarditions area kind of mixed
boundary conditions between Dirichlet and Neumlaomndary conditions. They are generally
provided as some partial differential equations which represent the physical phenomena at the
boundary nodes. These equations are thecretized by FVM to get the flux contribution from
the boundary faces. Here, we take an example Robin boundary cofalitielectric charge
density variable3) which was encountered in the eleetanduction problemas implemented

in Oracle3D. ThdRobin BC is giveras follows:

fA® H5@3@ *- @@ —«©nm

Here K is the mobilityof ions I%is the electric field vector5 is the diffusion coefficient and
‘#is the unit normal vector to the boundary surface. In this case, the surfacefeoedtha
boundary faceoints in the negative y directi@s shown irFig. 2.12. Now, this equation is
valid only for the boundary node S. We discretize this equationFMM as:

$ A" H5E&3Q M, - |

% o3 H5@3(, - |

63
%l c3)z H(5 KL - |
Z

Here Obithplies that these expressions are to be evaluated at the baufkdargadient is
approximated witldownwind schemewhere d(PS) is the distance betee node P and S.

Hr H (Mo

+9%hd) |

Wl e)zMo H(5;
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5 5
Kidl ¢g, 8 (WC/)(LHO H(W(HR - |

Mo - (Grg= (HU@@@@a’N)

Ho- - (MMM ©a>1)(

Where: - %(, - §;R®) andC =fdl o9,- Equdion (239) gives the value of variab® at

the boundary node S, in terms of the central node P. It is very important to understand how
finally this value ofj is utilized, with other information, to implement the overall boundary
condition (eq. (&B9)) in the code. We recalhe algebraic eation for cell Peq. (2.3), and

write it for a 2D grid as:

Wr3R 8 Wm(3,8 W, 3, B W 3, 8 w3, - (@

When this equation is written for the control volumes which are not at the boundawitisen
given by:
Wg - (H%Wn 8 w, 8 (W 8 wy()

However, vhen we are dealing with boundasglls the flux contribution from the boundary
face is different from other faceghe fluxes from the boundaries are not obtained with CDS
and central schemes approximations, as éineyxomputed from the given boundary conditions
directly. For examplethe southboundary face coefficient, will be given byw, - « ZH( y.

The w, coefficient for boundary nodes is defined as OADCO in OraclEH3, in general
derivationfor the boundarycells the wg coefficient becomes:

Wg - (H%Wm8 w, 8 (wr 8 w T ) (@@@@@a>2

However,In Oracle3D, the flux contribution from the boundary nodes are computed separately
within /g term which is later added wmi term to complete the coefficienalues So, in
Oracle3D thewg coefficient, for the boundary cell, before adding the boundéage
contribution is writteronly as

Wg - (H%W, 8 W, 8 (W )
We rewrite the algebraic equation usitiget o for this case froneq. (240), we get
Wr3p 8 Wm3,8 Wy 3, @ W 3, 8 wo( (g - (KO
%Wir 8 Wo( )88 W38 wp 3, @M 3, - I (@a>1)

From eq. (2.8), it is clear that the coefficient 8, has an extra contributiasther thamg, as

given by wo(- , which comes fronthe boundary node SAnd, also the value ofr does not
have Bw,O included in it as per the general notationgaoferm. So, these two contributions
are provided witim the/ g term in Oracle3DIn thisspecificcase thé gz term will be

Ir- (Hwo 8 wo( - (w0 H 2) ((((@en>; )(
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2.6.2 NonHomogeneous Neumann boundary comidn

Electroconduction model as implemented in Oracle3D also provides @&amongeneous
Neumann boundary condition for electric potential on dielectric substrate. The boundary
condition is given as:

&M (U UUUEA>>)
We discretize eq. (24 with FVM, as explained above.

$ &M+, - ($ ¢+,

We consider this BC at the soutité, as shown in Fig. 2.12, thus the unit normalbvgaints
in By directin. Here! is known as the surface charge density variable, accumulated over the
substrate. We integrate the equation and solve further.

HKz—:,aL o - (o
VA
Takingdownwind schem& approximate the gradient 8fon loundary nodas:
HrH (Mo - e
+%¢d )

Ho- (M8 * (%) (>0

H

Eq. (2.%) gives the electric potential value orethoundary node S when eq. @.4 set as

the boundary condition for the potential varialllae algebraic equation for a boundary cell
for this BC is written as eq. (B3 The electric potential is governed by a Poisson equation,
and in this case thig, variable for the node P idbtained as zero.

Wiz 8 W()3; 8 Wm(3,,8 Wy 3, B 3, - H((wo(* (+% /) ((((A>G
2.6.3 Dirichlet andzero fluxboundary conditiors

As briefed above, a Dirichlet boundary condition refers to a f{gpdcified)value of3 on the
boundary, given as

Ho = (Hvew<ow (A=)

The algebraic equation for a boundary cell for this BC is written as e§).(2hk/ g value for
this caseascomputed with above mentioned procedure comes out/tg b&Hw.

WrEBR 8 WmB,8 W, 3, B W 3, 8 Wollvowewmws T (AAAMCA>N

A zero flux Neumann boundary condition is set by setting the gradient of the variable zero on
the boundary node, such as

&3" M- 1 (
With FVM this boundary condition gives
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Ho - (Mr((NMMTTNImIMuU AN

The algebraic equation for this BC is eq5@, and the correspondirig is zero.

Wi 8 Wo(35 8 Wm(3,8 W 3, B0 3, - 1 ((((((UUCr' @)

2.6.4 A generalized approach to discretize boundary conditions

Let us take a generalised procedure to summarise the implementation of above mentioned
boundary conditions in Oracle3D. We take a general boundary congiiiem as

63
Yz 8 A L, A’ o2

We discretized this eq. (2pwith FVM taking1torder scheméor gradient approximation
H
Yz 8 4 u; b C(/u)o SR ([t @

In eq. @.52), we have not considered the direction of the surface vector, for now, letOs say that
we keep the sign of corresponding direction of surface vector in distance variable d(P, S). We
rearrange e(2.52) to get the boundary value 8f

ek H Y
Ho™ 9 i v

E7Z: %
o - Kol H K (@@

Let us say that in our problem the final algebraic equation for a control volume at boundary is
given by:

Wr3g 8 Wn(3,8 W, 3, @ 3, 8 w3, -/} (UUUIUCr' @7

Here we have SU as the contribution from source terms, as used in Oracle3D. If the boundary
value of 3 is also given in the form @& as:

Ho- W8 (Cr(((((((((Muuui'op
Thenwe use eq(2.5) in (2.54) to obtain
Wiz 8 (Wo¢ )38 WmB,8 Wy 3, B 3, - /} H wo(((Cr'@%B
From eq. (2.6) it is observed that
Ir- (Wo¢

/5 - (Hwow
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As, it was expdined above, with eq&.41 B2.43) that in Oracle3D the algebraic equations are

not wised as exactly given by eq.%8). We recall eq. (23), which gives the value fatg when
implementing boundary conditions in Oracle3D.

IR - (Hwo 8 wpe (NN rn'ay

Let us discuss the aboweentioned boundary conditions with this generalized approach to
obtain quickly the rd 4 andp o valuesfor Oracle3D

$% Dirichlet BC :##HHHH#HHHH
Ho - (Hyvow<ow{CCCCCCC@@@@@@@@@@@n
After comparing with eq. (25; A = Hyow<erews B =0
Ir- (Hwy

I'a - (HWo (U yoweerws

2.! Neumann BC (zero gradient):

63

6.
After comparing witheq. (2.9)

a=0,b=1,¢c=0
Ho- (MR
comparing witheq. (25: A=0,B=1
Ir- (HWp 8 (Wo - 1 (
Ia- (Hwpw- [ (

3.I Non-Homogeneous NeumaniBC:

H K63L 1
6,
After comparingwith eq.(2.51)
a=0b=-1,c
Ho- ¢ (+8(ur

comparing with eq. (25: A=1(+, B=1
Ir- (HWo 8 (Woe - 1 (
I'a - (Hwo(t (+(
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4.! Robin BC:
fdI" H5&3(@Q #- |
63
%Wl 3),H(5 k=L - |
6 VA
After comparing with eq. (25
a =4l ©)Z ) b:'SZ, C:(I

_( 52
o™ 561 o+)2 8 55(

(MR

o

comparing with eq. (25: A=Il, B= % ms) 2° (

Ir- (Hw 8 (Woé - (Wo(% H 2)
Ia- (Hwolw- 1 (

In this section, we have described a general approach based on a generalized equation for
boundary conditions to discretize boundary condition equations with FVM. With this general
approach we obtained the correspondipg/ 4 and variable for therespective BC. The

values obtained with this generalized approach and the discretizing approach for individual
boundary conditions reach the same solutions.

2.6.5Periodic Boundary condition

Periodic boundary conditiorsse used to deal wittlifferent type 6 symmetries (geometrical,
physical etc.)n the problem domain [7Usually, br setting the periodic boundaritevalues
of thevariables exiting theutletperiodic plane are equal the variables entering the inlet
periodic plane.

Fig. 2.13 Location otells at inlet and outlet periodic boundaries

In Fig. 2.13, a 1D grid arrangement shows the location of control volume cells at perietic

and periodieoutlet boundary sides. The green coloured node is situated on the face of the
boundaries and blue and red are the cell centre nodes at inlattiidozations respectively.

In ourimplementation of periodic boundaries, we hagaated the node values on tloeindary

face nodesTo explain the stepsye firstshowtransferring othe value ohodeat NI-1 (outlet
location)to a ghost cell justhead the inlet cefl =2), as shown Fig2.13. With thevalues of

inlet node (blue) and the outlet node (red) we computeahees at the inlet face center node
(green), with CDSeq. (2.8). After computing this inlet face node value (I = 1), this eak
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also transferred to the outlet face node (Whus, by making the boundary values (green) same
we fulfil the conditions for the periodic boundaries.

3%) 8 BWAH 2)

3%) - 1 ((M(Mmuurn am

3%A) - 3 %) (((((---tc((Er' @l

After the3 values are computed with egs. 4&nd 2.9, the periodic BC on both sides are
same as having Dirichlet BC, and thus, the coefficients are computed in same manner as done
for Dirichlet BC.

Ir- (Hwp

I'a - (HWo (U yoweerws
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Chapter 3
Parallel Oracle3D with MPI

Highly scalable parallel computer programs have become indispensabdels for the
advancement of numerical researRbsearchers araorehopefulthan ever beforen tackling
complex and hugeengineering andcientific problemsdue to the availability ofequired
computational resourcés pasttwenty yearsin terms of the hardware resourtles progress
seemswell ahead of the progress in applicatisoftware)domain.There are many legacy
codes which aretifl relevant in todaybut they lack the modern approach to efficiently use the
available hardware resourcé&me of the computationally huge problems which cannot be
solved without the modern higterformance computin@HPC)technologies includeveather
forecasting, astrophysical analysgate tectonics analysigurbulence modeling, plasma
physics etc. It is unimaginable to work out these problems on single core computers, parallel
computing is the only way forward for such problems.

In geneal, parallel computing refers to solving parts of a problem simultaneously orcondti
computing machines. A problem which can be broken into multiple snaaltediscrete parts

which can be solved independently, makes a good candidate for parallaitc@gnghe
discrete parts of the problem are solved on different computing cores and after finishing they
are synchronized to provide the solution of the whole problem. Parallel computing offers
several benefits to users: saving time and money, solvinglegrand large problems, multi
tasking etcAdvancements in HPC have provided another ®&omputational scienégof

doing science along with the classical branches of experimental and theoretical sciences.
Computational scientists make use of their simulation methods when they are more
advantageouand feasible@ver the classical approaches of theory and experiments

Three broad areas of parallel computing are hardware, algorithms and software. In hardware,
adding more and more cores and providing efficientiod®nmunication network among cores

has increased the parallel nature of computing machines. In algaridms, scientists seek

how a problem can be defined by independent physical mechanisms, and, how it can be solved
with independent set of mathematical equations. Howeavbiggerchallengeis posed by the
inadequate software, which are not fully abletofit by the progress made in hardware and
algorithms.In terms of important characteristics, thedern codeshould be optimized,
portableand futureproof with every evolvingHPC technologiesAs shown in Fig3.1, a code

should make optimal use ofelihardware properties such as the cache design, vector registers,
multiple cores etc. It should be developed with the standard parallel progrgmmodels such

as MPI, OpenMP, filoading etc.



Fig. 3.1 Characteristics of a modern code

This chaptedeals with the parallelization approacted for then-house electrohydrodynamic
(EHD) code OOracle3DOracle3D is a multblock structured gridfinite volume solverlt is
parallelized with message passing interface (MPI) 3.1 protocols. This clsaptenly divided

in threeparts: 1)Parallel programming models, B)PI andsingle blockgrid parallelization
and 3 multi-block grid parallelization We briefly introduce some parallel programming
models and describe message passing model in firstrptré secong@art we describe in detail
the MPI methodology used to parallelize the code for the single block grids only.

The message passing features of MPI library which are relevasucto approaches are
provided.Some scalability results are provided to verify the efficiency of the approhc.

section deals with the extension of the approach for the-blattk grid cases, where some
more advanced features of MPI have been uBed.detailed implementation diis strategy

based on the Cartesian topology and Inter communicatpts ferth for the users of the cqde

and other researcher who are working with similar codes and wish to parallelize their code using
MPI could also benefit with this detailed chaptarvarious MPI features

Outline of this Chapter:

1.! Overview ofParallel Programming
2.! MPI andSingle Block grid

3. MPI extension to Multiblock grids

3.1 Parallel Programming Models

We will discuss briefly about some parallel computational modelsate a background for the
approach we used to parallelize our code. Parallel computational models can be informally
classified on the basis of their memory utilization (shared or distributed), communication
pattern, types of operations etc. Some of thallghicomputational models are:

I I Data parallelism
The notion of data parallelism model can be simply explained with vectorization technique of
modern processors. It is based on the SIMD (single instruction, multiple data) framework, in



which an operation is performed on a set of array elements simultaneously by the special vector
resistors (e.g. Intel AVX). It was one of the first ideas from where the whole idea of parallel
computingstarted. hiere can be many instances in program wheFgrocessors operate on
multiple data elements at the same tiifiee sole idea is to parallelize the data.

I I Shared memory

Multiple computing cores sharing a common memory among them is a kiodnabl
parallelismwhere data independence is not pregdirectly and the parallelism is explicitly
performel by programmers. Most of the modern multicore processors are shared memory
machines. Intel Xeon Phi coprocessors have up to 64 cores embedded togetimgy ati
common memoryThese kinds of multare processors are assembled together to build large
supercomputing clusters of distributed mem@g. 3.1.1 (b))

I"# $#

Fig. 3.1.1a) Sharedand b)Distributedmemory architecture/model

I I Message passing

Message passing a software concept, in which different processes transfer their data with
other processes. Here, a process is an instance of a computer program which is being executed.
In terms of hardware and software relation, a process is usually associated with an individual
hardware core. Thus) imessage passing pel models processwork with their own local
memorywhich is attached with tlrecore, and they can communicatetlwother processto

access their datal’he data of other processis accessed by executing send and receive
operations, which are performed by both the involved preseSsacle3D is parallelized with
message passing interface (MPI) which is a mesgagg&ng model. This model supports the
hardware parallelism where large number of proced$msiware)are used in distributed
memory schemes, and data is transferred among distantly lying processors by communications
done through the processes (softyare

I I Remote memory operations

On Cray T3E machin@ut and get data operations model was used, in which the remote
memory of a processor is accessed by other processors only byapnaperation. The
participation of both processors is not required. Some implementations use the Oactive
messageO operations where acsiiime is executed in other processors memory. This active
message model provides tramote memory copyirfigature with just onsided operations.

This kind of parallel model is said to be lying half way between the shared memory and

! "0



message passing masleTMC CM5 was the first machine to commercially popularize this
model[1].

I'I Threads

OpenMP is the most welkinown models of parallel computing which works with the threads
model. Itis a higHevel programming approach whamelltiplethreads arereated dynamically
during the egcution of a program. Compiler directives are used to tell the code to create threads
when they are needed. It is also a shared memory model, in which all the tiseduls
common memory with some kind of locking system while accessing common data
simultaneously. POSIX Standard is another widely available thread nibjdeModern
processors technologies liketelOHyperThreadingcanalsobe consideredinder threading
parallel models where a physical core is used by multiple processing threads, makrlg it
asmultiple logical coresHyperthreading is also termed as simultaneous multithregtling

I' 1 Hybrid models

All of the worldOs largest computing systems work witcombination of above described
parallel models. The supercomputing machines are hybrid at the level of hardware itself. They
have several nodes of multiple processors connected by network cables, making it the
distributed memory hardware at bigger levend, at the same time the individual processors

in each computing node have their memories shared among their member cofe$, ZFifo

exploit optimally such hybrid hardwasgstemswe must use hybrid programmingpdelsalso.

Fig. 3.1.2 Hybrid nature of hardware memory architectures

One example of hybrid programming model is to use MPI and OpenMP together on large
machines. MPI uses the message passing model to communicate data at the distributed memory
level (node level), andoncurrently OpenMP is implemented to make use of shared memory in
processors by providing multiple thred8%. Additionally, when these models are doing their
respective operations the data parallelism is in place in vector resistors, thus makinge¢he who
parallel computingeally of hybrid nature. Fig3.1.3 illustrates a truly hybrigaradigm of
software and hardware, where we have latest Intel Xeon Phi coprocessors networked with other
host CPUs. In this figure MPI and OpenMP are used witdth#loding model(y which the
executing program is dynamically offloaded to Xeon Phi coprocessors.



Fig. 3.1.3 Hybrid parallel programming on hybrid Intel hardw&gd.
|

3.1.1 MessagePassingModel

This parallel programming model is based on mespagsing among the hardware cores in
multi-core architectures. In this model, the executing processes have local memigraasd

they send and receive data (messages) among other processes as rduplioperdtion to

transfer certain data from a process to another process is carried out by both the processes. One
process sends data and another process receives theTHmamethod of two-way
communication from two memory addresses defines the mechanism of messsiog

parallel models.

SomeAdvantages of the Messag®assing model:

a) Universality: The message passing model is used at most of the plaeéshe worldOs
largest supercomputing systems or the work station netwotikgjng the available hardware
capabilities.

b) Expressivity: Message passing is a complete model to express parallel algorithms. Message
passing can be used for both shared and distributed memory architectures.

c) Ease of debuggingSeveral higkcapability debuggers exist for message passing maeels.
these mdels control memory references more explicitly in comparison with other models,
locating error of memory reads and write are easier than other models.

d) Performance In distributed memory architectures, as the core count is increased by adding
more pra@essors to nodes or more cores to processors, the memory and cache is also increased
with the number of cores. In these systems, memory bound applications can exhidiheaper
speedups. And, they are best exploited with message passing models oalyseBet the
performance gains the message passing models will remain permaneot e parallel
programming frameworks for long time in future.
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3.2 MPI and Single block grid parallelization

This part of chapter deals with the features of MRjeneral and as they are implemented in
Oracle3Dfor parallelizing the single block grids first. Mainly, the Cartesian topology features
of MPI are discussed in detail, which were used to optimize the efficiency of parallel
communications.

#
Problem desaption and objective

We briefly describe our problem before going into the MPI solutions in following sections. Fig.
3.2.1 presentsneexamplesingle block grid with total control volumégrid cells shown with

thin black lines)equal to © #$ %!Odistributed in x and y directions respectively. Assuming
this problem has huge computational requirements and we wish to solve it in peitallel
multiple CPUsWe decide to solve thigoblem with 12 computing cores (hardware processors)
and thus we neet divide the whole grid domain in 12 sdbmains, each of which will be
assigned tone ofthe 12 individual cores to do the relevant computations for theidsoiain

grid nodes. Fig. 3.2.1 shows the outer domain boundary in dark blasktid¢he redines are

the subdomain interfacesifter this domain decomposition each sidmain hag#$ ' grid

cells as visible in Fig. 3.2.1.

! !
Fig.3.2.1 Example single block grid before and after MPI domain decomposition

#

In Finite Volume discretizatiomethodsto computehe value of a variable ongaid cellnode

we requirethe variable values from one or more neighbor nodes also, depending upon the
discretization schenseused We need these neighboodes@ata specially to prepare the
algebraic equations for all the variables at all the mesh nodes. Usually, the internalftioeles
subdomainshaveaccess to the data of their neighbor nodderasach suttlomain # internal

nodes belong to the sarere However, the nodes whidielong to the cellat thesubdomain
interfaces(red lines)do not have access to their neighbor n@desa which lie on the other

side of the interface. Hneighbor nodgbelong to anothezoresand their memory is not shared
with othercores in MPI To get the data from the neighbor nedes need to make parallel
communications between dvwadjoiningcores An MPI process (a program instance) is created

to work on each individual core in our MPI strategies with which we willgewhole parallel
communication environment. So, the main aim of this chapter is to describe how the whole MPI



environment is set by the code in both single and rbildttk grids. And, we discuss these
strategies in detail in following sections of thisapter.

#

#
3.2.1 MessagePassing Interface (MPI)

MPI is developed to combine together the best features of many messagey models that
existed over the years. It is an attempt to organize and improve the existing features of message
passingnodelsand preparing a standard which remains portable across the range of hardware
and software, available in markeAs defined by the standard, OMPI (Messagssing
Interface) is a messagmssing library specification{2,7]. MPI is not a programming
langua@, it is a library of functions which facilitate dateansfer during the parallel
communicationsThiscommunication protocas the most widely sed message passing model

on varioudistributed memorarchitecturegacross variousupercomputing clustersiPI is the

first specification which makes it possible to write truly portable parallel libraries.

Maintaining the portability, efficiency and functiditg of parallel programs igheprimary goal

of MPI. Some advanced feature$ MPI include dynamic management of process groups,
applicationorientedprocess structures, large set of collective operationMete general and
frequently utilizedfeatures of MPI are: point to point operations, communicatmigctive
opetions,grougs etc. We will discuss these features in following sections.

COMMUNICATOR . A communicator defines the messagessing or communication
context among th®IPI processefor all the communication operationsthre MPI framework.

It specifies the scopfr all the MPI featuredike groups topologiesetc With the help of a
communicator a distinct communication universe is sethkyWPI library for each distinct
messaggassing context. MPI_COMM_WORLD is the default -gefined communicator
provided by MPI, which makes available all therocesse for different communication
operations which are accessible after MPI is initialized. Following two types of communicators

are defined in MPI
|

I
!
In MPI terminology, a communicator is a universe (collection) of processes which are
independent othe other universes of processes (ottmmunicatorsin the context of the
overall programThe processes of a communicator do not have direct commanitiaks with



the processes of other communicatdiisese individual communicators are called as intra
communicatorsAn intra communicator is &ollection of processes which make a same
communicator context and can make message passing withicotttesxtonly. As shown in

Fig. 3.22, we have two intraommunicators, A and B, depicted with blue colored boundaries
and containing their individual processes (P1, P2 etc.). The processes of either of these intra
communicators cannot make message passing with the processes of the ather intr
communicator. To make communication between processes of different communicators MPI
provides the concept of Olatemmunication{l,2].

Fig.3.2.2 Sketch fointra and intercommunicators
|
INTER -COMMUNICATOR . Parallel communications which involve the member processes
of a same group are performed with irtammunicators. In intreommunicators, the send and
receive contexts are identical. A group in itcanmunicator is any group of processes which
belong b this intracommunicator. In mukdisciplinary and modular applications, several
groups of processes are required to work in separate communication contexts. In some situation,
the processes of different groups need to communicate with each othersdrcéises, the
communications require the ranks of target processes and their group ideifié®s, these
types of ommunications are termed aster-communications. In simple words, inter
communications are the message passing between processderandroups which are
disjoint. And, these groups belong to different MPI communicators.

An inter-communicator is created with two idlcammunicators. For each irHeommunicator
there are two groups of processes. One group is termed as locabgubtige other group is
termed as remote grolgr each communication operatiorhe group whose processinitiate
some intercommunication operatiomecomeghe local grougor that operation, and the other
group becomes the remote group for that operafior example, for a send operation the group
which has the sending processgsource) is the local group, and for the receive operation the
groupwhich has the receiver processs the local group. Thgroup of target processis
alwaysthe remote grau In a send operation the receiverOs grotiei®mote group; and in



receive operation the senderOs group is the remote group. MPI guarantees not to have conflict
between operations of inteommunicators and other communicators.

Both groups belontp one of the parent int@mmunicators which are used to create the-inter
communicatorin Fig. 3.22, we see that intraommunicator OAO has a group of processes (P2,
P3 and P5) and the inttmmmunicator OBO has a group of process (P1, P2 afid Réke

some data transfer between the processes of these two groups we need to make an inter
communicator which will provide a communication context for the data transfer between these
processes which belong to different int@mmunicatorsThe detailed desiption for creatng

such communicators is provided in following sections.
|

PROCESSOR TOPOLOGIES In literal meaning, a topology is an arrangement of
constituents of a group of things which are under study. A topology provides the information
about theihkages and inteconnections between various members of the group or network. In
parallel computing framework of MPI, two types of topologies are discussed: 1) hardware
coresO topology and 2) the process topdRig¥irst one reflects the arrangement or structure

of the underlying hardware cores (processors) in the ugmeputing machines or clusters. The
users of these machines have no control over the hardware topology, as it is decided by the
manufacturer and theser uses it as it is available.

The second one is also termed as the Ovirtual topologyO or Oapplication topologyO. Virtual
topology as discussed here is the pattern of linkages of processes with each other in individual
applications. It is clearly ghication dependent and the user controls it as the problem
requirements suggest. Hergracesgefers to a computer program which is actively exagu

certain instructions which it is asked tois a purely software concept which is different from

a processor which is a hardware unitpfocessomay consist of one or several computing

cores which have the central processing units embedded in them.

For example, one of the supsmputing clusters at Institut Pprid®©THORO, on which most

of the conputations of this work have been carried out, has Intel Xee2686 V2 processors.

Each of these processors has 10 physical computing cores (CPUs). Intel defines a aore as: O
hardware term that describes the number of independent central processinm angmgle
computing component (die or chigyt). This Intel Xeon processor has Intel Hyféreading

(Intel HT Technology) which delivers two processing threads per physical core, making 20
virtual CPUs on 10 cores. Thread is defined by Intel A3:head, or thread of execution, is a
software term for the basic ordered sequence of instructions that can be passed through or
processed by a single CPU cQid].

As described in introduction, a communicator sets up an appropriate message passifay scop

all the communication operations as desired with the available number of cores. Within a
communicator with N processes, all the processes are ranked from-0. tdhi sequential
ranking arrangement of processdses not adequately reflect the peohl specific logical
communication pattern of processes. The communication pattern of the processes is always



problem dependent and is defined by the underlying geometry and numerical algorithms used
for the problem The problem geometries are often twotlaree dimensional in scientific
computations according to the phenomena under study. These 2D or 3D grid problems usuall
lead to2D or 3D topologies of communicating processes.

This virtual topology of processes is machindependent and used to map tommunication
pattern on the underlying hardware topology. At the run time, the virtual topology is exploited
by the system in assigning these software processes onto the physical processors (cores). This
mapping of processes onto the cores usuallyigesyperformance gains in terms of computing
hours orsupercomputingmachine. If the user has no way to prepare a virtual topology of the
processes otihe hardware corethen a random mapping results. A random mapping may lead
to difficulties and contdrons in the interconnectingrocessometwork on some machines.
Publications are available which report about the performance gains from a good-forocess
processor mappind.,3,7] In addition to the possible performance benefits, virtual topologies
also provide for a convenient process naming structure which significantly improve the
readability of programs.

Graphs can be used to represent the communication pattern topologngstgbe. In graphs,
nodes can represent the processes and the edges of graph show-toam&etions between

two processes. A virtual topology with graphs can be used for all applications, however, many
applications have regular communication pattennd they can be more easily defined with
other efficient methods. Many parallel applications maleotisings, 2D or 3D grids, tori etc.

for their process topologies. In regular 2D and 3D geometries, the process topologies are easy
to define with numbenf dimensions and total number of processes in each coordinate direction.
These standard rings, tori and -3D grids are easier than implementing graph topologies.
Cartesian topology is one such standard process topologies which is explained exptloitly in
literature and in Oracle3D Cartesian topologies have been used for significant performance
benefits.

CARTESIAN TOPOLOGY . MPI provides support for three types of topologies: 1)
Cartesian, 2) graph and 3) distributed graph. There are separate IPRbd repare each of

these topologies as required by the problem. In a Cartesian topology, the process coordinates
begin their numbering at 0. Cartesian topologies usemayor numbering for the processes.

For example, a®2 grid of processes would besiggnedo four-memberprocesses as shown

in Fig. 3.23. It shows the coordinates of each prodesthe 2D Cartesian topology and red

numbers are the ranks assigned to the respective processes in this tthpology.
!
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A topology is an extrand optional feature which is attached to a communicator. To set up a
topology we need a communicator with a number of processehb wiei want to be the part of
that topology. Foa Cartesian topology creation MPI has the standard OMPI_CART_CREATEO

operaton.
I
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Creates a Cartesian communicator

COMM: input communicator handle

nDIMS: number of dimensions of Cartesian grid (integer)
DIMS: number of process@s each direction (integer array)
PERIODS: for periodic faces (logical array)

REORDER: managing the order of rankings of processes
CART_COMM: new communicator with Cartesian topology

IERR: error indicatot
|

The first argument for the MPI_CART_CREATE opé#&ratis an input, intr&communicator
handle, which will be converted into a Cartesian topology communicator. A Cartesian topology
cannot be created with an ilemmunicator. Second input argument is nDIMS which is the
number of dimesions of required Caesian topologylt has to be an integer which will be 2

for a 2D topology, and 3 for a 3D topology. DIMS is an integer array whose size is equal to
nDIMS. Each element of DIMS(1:3) represents the total numbprocesses assigned in X,Y
andZ direction respectivg. The PERIODS argument is a logical array with true or fadse

each of the three directisnlt is true for a direction whettte grid has p&vdic boundary
condition else it is false. Reordering of the process ranks in new camator is carried out

with the argument REORDER. It may be required for good embedding of the procésgytopo
onto the hardware topology.riordes the ranks in new communicatibrcertain performance

gain could be obtained with reorderinf REORDER= false, then the ranks pfocesses in

new communicatois kept sameas in input communicatoil he output argument is the new
communicator handle OCARCOMMO which is attached with tBartesiartopology which

is provided by MPI as a result of this call

()*+5*(6+,.0-/018).2,63#45*(63#5*(63#*0..7 #
To obtain number of processes in each direction of the Cartesian communicator

MPI also provides some convenience functions for the creation of Cartesian topology.
OMPI_DIMS_CREATEO assists user in allotting a balanced distribution of processes in each
coordinate direction. This function takes total number of available cores (NPROCS) astan in
argument along with nDIMS. As an output, this function gives the variable DIMS in return.
The user can also specify some constraints with variable DIMS. If DIMS is initialized with O
then the MPI automatically provides a good distribution in respedtregetions. If the user
wants to fix some specified number of processes in some direction, then he has to initialize
DIMS with that number for that particular direction. For example, initializing DIMS(2) = 5 will

fix the number of processes in y directimn5. A divisibility algorithm is used by MPI to set
DIMS for each direction as closettte otherdirectionas possible. DIMS, when set by the call,

will be in nonincreasing order for the three directions.
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Table 3.2.1 provides some examples with farsction. In first case, no preferred DIMS are
given by user to MPI library so 16 processes are distributeé as ih two directions. In case

2, 13 process are divided in $31 as no other combination is possible. Case 3 sets DIMS in x
direction to 3 as input, so 15 processes are dividedi®$ 1 for a 3dimensional topology.

In case 4, DIMS iny is fixed as 3 with input and total processes are 7. As 7 cannot be factorized
in factors of 3, there will be an error in creating the output DIMS with this tall.

Table 32.1 Some ramples for OMPI_DIMS_CREATEO operation.

5*(6 #94:,<# =4><9?24#>@AA 5*(6 A?;<.,;<T#
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1"3"# ()*+5*(6+,.0-/01  %C3®(6 # 1%C38&7
1C3"3% ()*+5*(6+,.0-/01%&3C3 H*(6 # 1C3&3%07
1"3C3% #HiE+5%(6+,.0-/01D3C3  #H*(6 # OEEZE
O*+,2((+.-8F1,-./+,2((3#,-./+.-8F3#*0..7 #

Assign ranks to all processes of a communicator

Ranks of the processes should always be attaotitbdm after creation of a new communicator.
There is a stadard function to assign a ramariable to each process in a communicator.
MPI_COMM_RANK takes the communicator handle as input argument in which we want to
assign ranks to a variable. And thepu is the new ranks variable for all the processes of that
communicator. Here, we input the newly created Cartesian communicator OCART_COMMO as
the input and OCART_RANKO will be the output of this function here. So, after this function is
returned; eaclprocess in the CART_COMM will attach its rank in the CART_COMM to the

variable CART_RANK.
|
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Assigncoordinatedo each process in the Cartesian communicator
|

In the beginning of this section, thencept of coordinates of theggesses was highlighted in

Fig. 3.2.3. MPI has another important function for providing the coordinates of processes in a
Cartesian topology. The coordinates of the processes are also attached with the Cartesian
communicato. The Cartesian communicator handle is the first input argument of the function

to get process coordinates. The coordinates are provided for each process of the communicator;
thus, each process has to make a call to this function with the second argument being the
Cartesian rank of that process. Number of total dimension of the Cartesian topology is the third
input argument for MPI_CART_COORDS function. The coordinates of eachgsratehe
Cartesian topology are returned in fourth argument. The COORDS variable is an integer array
with a size of number of dimensions of the topology.

O*+,-.[+46G*=/1,2((3# HOEI><9?43#BI81?; E>I3#H1J<94 @<9?48#*0..7
Obtain ranks of the neighbor presses, for each process, in all the direction



MPI_CART_SHIFT is one of the most important functions of the Cartesian topology. It
provides the neighbor process ratds$he caling process in alé dimensionsof the topology.

Thus, each process after calling this function knows its neighb@snog useful in the cases
wheredata shift operations are performeith the neighbors in all direction one datashift
operation aprocessends some data a neighboring pra&ssand also receives some data from
some neighbor via the corresponding interface nod&he required user inputs for
MPI_CART_SHIFT are the communicator handle, direction in which neighbor ranks are
needed and the step size after which the ranks areche&tle source and destination arguments
represent theutputranks of the source process and destination process of the caller process in
the direction specified by the second argument. In cases where the caller process is at the
boundary of the topologyand so there is no neighbor on the boundary side, then value
MPI_PROC_NULL is returned for the respective source or neighbor rank. MPI_PROC_NULL
tells that the rank of source or destination in that direction is out of range of the topology.

There areseveral MPI send and receive operations according to the requiseofietite
situations. Here, we have used OMPI_SENDRECVO operation for all the data exchange via the
interfaces. It is a blocking semdceive operation. With MPI_SENDRECYV thecessemake
combined send and receive operations in one single call. The send and receive can be to the
sameprocessor a different one. If there is a requirement of data shift operation across a chain
of processeghen MPI_SENDRECYV can be the most suitable operalimindividual blocking

send andlocking receive operations user has to take care of the cyclic dependencies of the
calls indatashift operationsSo, the usehas to correctly order the send and receive calls to
avoid a deadlock situationhile usingindividual send and receiv&Vith MPI_SENDRECV

the MPI communication subsystem takes care of these troubling i8ssiesll description of

the basic MPI_SEND and MPI_RECYV operations is provided in Appendix Il, and more details
can befound in [1,2].

In the MPI_SENDRECYV, the catfig process needs the destination rank for sending part and

the origin rank for the receiving part of the operatiarthe Cartesian topology environments

MPI_SENDRECYV is especially very useful with MPI_CART_SHIFT operation. With

MPI_CART_SHIFT eaclprocessknows is neighborand it can quickly make use of the

MPI_SENDRECYV to make the data shift operations. The stafdiafdSENDRECYV operation

as used iracle3D SWAP_3D subroutines as follows!!

|

I Message sending and receivingdrdirection
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Making a blocking send and receive W|th a single function call

|

The first five arguments are for the send operationthadnext five arguments are for the

receive operation. Starting from SEND_WEST the arguments respectively are: send buffer,

send buffer size, send data type, destination rank and tag for the send operation. Same sequence




is followed in the receive part tife call. The last three arguments are the communicator handle,
status object and the error indicator variable. This sec€ive operation can also receive a
message sery a regular sendperation the sent message liyis senereceivecan also be
received by a regular receive. Both the send and receive can have different sizes and data types.
And, they both must be disjoint; meaning a same buffer cannot simultaneously send and receive
data. There is only one communicator handle so thetlsend and receive operation must be
performed within same communicator.

In this example call, the calling process sends and receives data from its neighbor in west
direction (NBR_WEST). SEND_WEST and RECV_WEST are the variables which hold the
data tosend and data which will be received by the calling process from NBR_WH&GT.

3.24 shows an example 2D cartesian topology with 12 processes, ranked from 0 to 11. The
neighbors for rank 7 are shown in all 4 directions in this figure (NBR_WEST=4,
NBR_EAST=10, NBR_NORTH=8, NBR_SOUTH=6). As explained above the
MPI_CART_SHIFT function when called by process ranked 7, the output will be the ranks of

these four neighbor processes.
!

Fig.3.24 Example 2Dcartesian topology with process ranks

In Fig. 3.24, the outer black line represents the whole problem domain and we divide this
domain in as many numbers of sdbmains as we have MPI processes. Here we have divided
this domain in 12 subdomains (4 3) which have red lines as their interfaces with neaghb
subdomains.At each sulllomaininterface,we have grid nodes (on both sides) for which we
need to send and receive some data to the neighbor on the other side of jnidrictes
performed with MPI_SENDRECY Each subdomain will be assigned to anP process
according to the created cartesian topology, and this MPI process will handle all the
computational work related with its sdlomain. More details on domain decomposition are
provided in section 3.3 while discussing the mbltick grid problems

3.2.2Implementation of Cartesian topology in Oracle3D

The Cartesian topology featgref MPI are implemented in Oracle3D as they are described in
previous sectionlhe majoroveralltasksto parallelize single block gridaclude:



l.!Grid management,
[I.'Initializing MPI environment
[1l.!'Setting Cartesian topology
IV.!Finding the neighbors in all direction, and
V.!Making the MPI communications with MPI_SENDRECV.

All of these stages amxplained in much more detail next sectior(section 3.3.1yhen we
describethe overall, broad strategy to parallelize the rhilbick grids with examples
Understading the concept and use of Cartesian topology features is exiffior thispart of
the report. This whole methodology of MPI was implemented in a Poisson, ssveprovides

a simple problem to assess the working of MPkimilar strategy forparallelizinga Poisson
solver is well explained by W. Gropp et @1999)in their book titled OUsing MP[@. This
book along with the MPI 3.1 standardanualshould bereferred for moreadvanced features
on Cartesian topology as providedM#I. After the Poisson solver was parallelized, we tested
the performance of the code with angle problemSeveral detailed validation cases are
provided in next chapter, here, we restrict ourselvem#dyzethe initial performance of the
codewith the newly implementeMPI features

Two values of time takefor the program executioare noted: 1) total time taken for the
complete execution of code, 2) time taken during the actual computations alone (Computational
time). Computational time for this steady case is mainly devoted to the linear system solver,
which is the most timeonsuming part. Except this computational time, the other tasks in code
(total time)include mainly reading the grid, partitioning and distributing thedsrbain to all
processes etc., these tasks d@one by only one proces® they donOt come into the patal

part of the code. There are also the subroutines which compute some geometrical parameters
of the grid like volume of cells, interpolation factors etc., these tasks are done after the grid
management, so they are done by individual processes onwimesubdomain, however, they

are not included in computational time here.

Parallel Efficiency

A single block orthogonal grid with 200 ceitseach direction (X, Y and Z), was taken as the
test problem here. We solttee Poisson equatiorPP?R1S3T3aJ7 V B, for this testHere we show

the performance of adapted MPI methodology with scalability and speedup plots Margly.
strict tolerance (1.#) for linear system solver was set, so that it remains unachievable in given
maximum number oiterations(4 million in this case)because it is essential to have exactly
the same computational load for all the cases with different number of MPI Seren sets

of cores (10, 20, 40, 100, 200, 400 and 800) were taken to analyze the efficicmeycode

with increasing computational power.



| |

Fig. 3.25 Performance plots with single block MPI implementat@nscabbility, b) speedup
|
Excellent performance is achieved with our implementation fglesiolock Poisson casEig.
3.25(a)illustrates the standard scalability plot with decreasing time as we increase the number
of MPI cores. Speedp plot shows almost matching performamgéh computational timen
comparison with the ideal values till 400 MPI cores. Here it should be natetthéhbase value
for speedup comparison was taken as the time taken by 10 cores, because with the current
problem size it would have taken roughly 15 dayasimgle coreTaking the baseline speedup
to 8,10,16 0128 cores is a usual practiwbere scalbility is performed with huge number of
cores on large problems [8,9,1However, a smaller problem was simulated to verify the
speedp from 1 core to 16ores, and desired speedup was obtained in that probig. 3.26.

! !
Fig.3.26 Performance plots with to 16 cores a) scalability, b) speedup

Interestingly, the total time is increasing with increasing number of cores, this is due to the
sequential part of the code, mainly, the grid management task which is always performed by a
single master process. So, as the number of cores increasesdimeoeeanumber of partitioned

to be done, and the partitioned data is to be sent to more number of member processes. Thus,
increasing the unidirectional MPI_SEND calls to send thedsubain data to the member



processes by the master process. We compheditference of total time and computational
time for all the cases and found that this difference in time, which represent the part of
sequential code, was almost showing linear behavior after 200 Eqye8,27 (a).

We also observe that for 800 certhedesiredspeedup isiot obtained with tis problem size,

Fig. 3.27 (b). Table 3.2.2slightly assists in understanding this probleWe see that the
computational time for 800 cores is o089 minutes. We can say thttis problem size was

not sufficiently large for achieving a desired speedup with 800 ctwresuch fixed size
problems data per processor is decreasing as the number of processors are increased, leading to
a higher communicatieto-computation ratios wbh prevents achieving a desired speed up
[10]. In this case the communication overhead was not small in comparison with the
compuational time We again note that the totaimber of iterations in this cag@as 4 million

and at each iteration every conakes the communication with neighbdfge will revisit such
problem in multiblock case also antthere we will increase the computational load of the
problem and check the performance with increased work load.

Table. 3.2.2Time values in minutes foinree set of cores

Cores | Total_time (T1) Computational_time (T2) T1-T2
200 100 92.71 7.29
400 64 48.10 15.9
800 71 38.94 32.06

Fig.3.2.7 a) effect of sequentiplart of code, b)Speedp resultsshowing thesffect of communication
overhead with 800 cores.



3.3 MPI extension to Multi-Block grids
#

Numerical simulations are performed on eitheucured or unstructured gridStructured
grids have some notable advantages over the unstructured gridas3aoaler memory usage,
bettercache utilization, vectorization, simpler coding, faster convergenceldicJur code
OOracel3DO works with milidck structured grids to make use of these advantages of
structured gridsGenerally, omplex engineeringapmetries are very difficult to meslith one
block structured meshMulti-block structured grids arereatedin such cases, in which a
geometry is meshed with several individual structured mesh bésckbown irFig. 3.3.1 In
the previoussection we disussed hovCartesiartopology features of MPI provide wgth an
advantageous methodology to prepare scalBlecodes in single block gridin this section,
we will extend ourCartesiartopolagy strategy to mukblock grids using some more advanced
MPI features

! !
Fig.3.3.1 Example mulblock structured grids for a NACA and DBD actuator problem

In single blockgrid cases we created &artesiartopology of the MPI processef®or the grid
block and MPI communicatios among the partitioned stdomainsof the grid blockwere
carried out withirthe contextof the createdCartesian communicatawith single block grids,
we obtained a very good scalability with the features of Cartesian communitaesaesults
from the previous section led us to state that Cartesian topology features gamatient MPI
communication speedufeeping this in mindve proposed thah multi-block gridswe make
individual Cartesian communicatofer eachgrid block to achievea very good scalability
within individualblocks. And, as we achieve very goadalability within a blockconsequently
we will achieve a desired alability in overall grid also, provided we manage the interface
communications effectively as well.

|

In single block grids we have to make MPI communications aidsuhain interfaces for FVM
discretizationIn multi-block grids,two neighborgrid blockshave common interface between
them, and the nodes which belong to the cells at these block interfaces also need to access the
data of the cell nodes on the other side of this block interfecproposedabove, multiblock
grids will require individual Caesian communicators for individual grid blocks.aninterface

the neighbong nodes belong to tHdPIl processon the other side of thiaterface And, in
multi-block grids, this neighbor procesdelongs to a differenCartesiancommunicator
altogether And there is no direct link of comunication between the processef different
communicators unless they have an wti@mmunicator as a bridge betweearth

! &)



From the definition itself, a communicator is a universe of processes which has no direct
knowledge of the other universes. Thus, if we create individual Cartesianwacators for

each grid blockthen we must have inteommunicators to have data exchange at the interfaces
of these individual Cartesian communicat®y.this point we have ¢tained the need to have
multiple Cartesian communicators anceitommunicators. Let us discyss more detail, the
concept of intecommunicators.

3.3.1Setting the MPI environment for multblock grids

|

This section provides a brief problem statement and a summary of the rest of the chapter.
Oracle3D works withmulti-block structured gridshe first task is to read the whole gird
accordance withts block structureThen we need toetompose the gridf each blockn as

many numbersof subdomains as we have Mprocessesor that grid block.The griddata
(coordinates, boundary nodes etf.jhe decmposed suHalomains are then distributed among
the respectivéViPl processesvith standard MPI send and receive operations. To set up the
whole paallel communicatiorpattern mapve have to go through several steps to create the
complete MPlenvironmentwith variousgroups anecommunicatorswhich we discuss one by

one inthis setion. First, let us explain the main objective with an example case and some
sketches.

Fig. 3.32 represerd the probleminput grid and the created inteommunicators at the
interfaces. Here, we consider a geometry which has 4 grid blaglshown numbered from 1
to 4 in green color. The green colored lines are the interfaces between the two neighboring
blocksand the outer black lines are the boundaiiéss is our base grid before preparing the
MPI communication environment for the ptelm. The right part of the sketch represents
specifically the output intecommunicators which are created at the four block interfaces. Each
blockOs inner partition is done with 9 cores each which will make one Cartesian communicator
per grid block and ahe interfaces we would need the intemmunicators to exchange data
between two blocks. The inteommunicator between block 1 and 2 is named as
INTER_COMM12 and, similarly, the other inteommunicatorsare also named as shown in
Fig. 3.32. Thus, it B our main objective in this section to set the whole MPI mapping of cores
for the communication in mutblock geometries.
|
Major steps towards creating iHBBmmunicators:
[.! Grid management
[I.! CartesianT opology
l1l.! InterfaceGroups
IV.! Interfacelntra-communicators
V.! Interface Intelcommunicators
VI.! TheNUM_CFI array
VII.! Data exchangeamong MPIprocesses




!
Fig.3.32 The input dblock geometry and the final output showing the #etenmunicators at the
interfaces of the grid blocks.

!
Fig.3.33 Flowchart with the sequence of operations to create i‘ob@nmunicators

&+



Fig. 3.33 provides us a summary flowchart for preparing the iotenmunicators from
MPI_COMM_WORLD. All the major steps towards the creation of final interface-inter
communicatorsare shown in this flowchart and tleesteps are discussed in detaith
corresponding MPI operations in following sections.

|
[.!I' Grid Management

Main Objectives:

a) allocatiorof MPI processe® each grid block

b) readinghe multiblock grid for parallel implementation

¢) partitioningeachblock into MPI subdomairs

d) distribution of sullomaindata to respective Mprocesses

As soon asiser provideshe number of available MRirocesse$NPROCS) for the problem
and the number of geometrical blocks in grid (NBLOCKT), we have to distribute the NPROCS
among the grid blocks. For this, we first decide how n@aogesseshould be provided to each
grid black according the sizes (total number of control volumes) of all the blocks. We make
calculations to have a proper load balancing among all thepkéleesseanddecide number
oflprocesses$or each block. After thisve start with first grid block and fird¢IPI processes
(RANK=0) and proceed with allottingrocesseso each successive block with successive
RANKS. For exampleif we have 4 grid blocks and @@PI processesand the number of
processesach block after good load balancing is 12,18,15 and 15. Thitherocesseare
allotted to blocks as shown in TaI81.
|

Tab.3.3.1ExampleMPI processallocation to grid blocks
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The MPI processedistribution is done in CORE_INFO subroutine. In this subroutine we also
assign some important variables to all phecesseswhich are local to the specifizocesses
Eachprocessssigns the variable OMY_GEOM_BLKO the ID of the block to whigirdicisss

has been allotted. For instance, in above example glirdeessefrom RANK 12 to 29 will
assign MY_GEOM_BLK to 2and these cores will be called the nbemprocesse®f that
block Variable OCOLORCQsigainassigned thtD of the block to which thprocessebelongs.

The variable OCOLORO is specifically used with the MPI operation of communicats split
used in standard reference§l,2], and is explaingl in next section And, variable
OMY_GEOM_BLKO is used at all other places in code wheretlessebave to provide their
block IDs.A variable named OREADER_RANKO is also assigned fopesmdss which is



the rank of thgprocessewhich will read the grid data of its block, decompose the grid data and
distribute the grid data to the respectivemberprocessesVe have assigned the fipgocessO
rank of eaclyrid block as the GBRADER_RANKO of that blockn ithe tab.3.3.&xamplefanks

0, 12, 30 and 45 are respectively the OREADERIKD oblocks 1,2,3 and 4.

This OREADER_RANKO strategy to read and partition the grid blocks by differcegses
especiallyefficient in cases of muHblock grids of huge sizes. During the sdality tests we
have observed that indablock grid of 8 million control volumesn total, the test with 512
cores took nearly 45 minutes just to read, partition and distribute thdosudin datamong

all theprocessesin that case there were 4 reader cores which managed the 4 grid block data.
Thus, if we keep the grid management job to just one masieessand it alone does all the
partition and distributionthen certainly it will take mucimore tme than the reaa process
method. The readegsrocessstrategy also avoids certain possible deadlock situations while
distributing the grid data to membprocesse®f a block. In this strategy, the sending and
receivingof data is happening only in one direction; thedezgrocessesf the blocks only
send the grid data and the mempmacessesnly receive the data. This would not have been
possible if we would have taken the RANKS 0 to 3 to managgriti®f 4 blocks; it could lead

to possible deadlock situations inraode.

In the grid file (*.grd) wemainly have the coordinates or vertices, control volume numbers in
each direction and the boundary condition data related to the grid blocks. All the data related to
a particulargrid block is written in same section thfe grid file and after data of one block
finishes the data of next block starts. During preparation of the grid file the sequence of grid
blocks from 1 to NBLOCK is strictly followed. Now, with the OREADER_RAN¥&llable

only the readeprocessesead and store the information of theaspectiveblocks, this task of
readingthe grid fileis done in subroutine READGRID Oracle3D

Then, MANAGE_MPI_GRID subroutinecalls two different subroutines to decompose the
coordinates and boundarmgondition data of the grid blocks. In these two subroutines:
PARTITION_COORDINATES and PARTITION_BOUNDARY_POINTS, the reader
processemake the partition aheir grid blocks into the numbeof processeallotted fortheir
blocks. After the partition the decompossdlbbdomain data are setd the respective member
processesf that block with standard MPI_SEND and MPI_RECYV operations. And, the reader
processes alskeeptheir own subdomain data tthenseles

|
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At this stage, all of thegarocesse$RANK 0 to 59) belong to the default MP1 communicator
which is the MPI_COMM_WORLDOur experience with single geometrical block case tells
us that with Cartesian topology features of MPI we a&trvgry goodscalability and speed up
with increasing number of MPprocesses The experience and results with Cartesian
communicators lead ue think about implementation of this Cartesian topology feature in the
multi-block cases also. However, a single Cartesian communicator, as applied to single block



cases, will not work in case of mulilock grids. But the Cartesian topology can be usigd w
individual grid blocks, which will certainly give us very good parallel efficiemathin
individual blocks. Considering these points, we decided to divide our default communicator
(MPI_COMM_WORLD) into as many number of Cartesian communicators as dnergrid
blocks.

|

[I.! Cartesian Topology

Main Objectives:

a)!'Splitting the default communicator into required irtcanmunicators

b) creating one Cartesian communicator for each block

c¢) Assigning local Cartesiaranks, coordinates to all processethin their respective Cartesian
communicators

d) Finding neighbor processes of each process on all directions

The creation of Cartesian topology for individual blocks is managed in subroutine
CART_TOPO_MUTIBLOCK. We have our default world commaatorfor the input here. A
Cartesian communicator carbe created with the standard MPI operatidd
OMPI_CART_CREATEOQ. This operation neadsnput communicator handle as its first
argument, which wilbeconveredinto a Cartesian communicator. In the single block cases we
needed only on€artesiarcommunicatorso the default world communicator was completely
converted into £artesiarcommunicator. But, in muHblock cases waeed as mangumbers

of inputcommunicators ashe number of Cartesimommunicatorsequired whichis equal to

the number oblocks we have. So, first we have to split the world communicator into the
required number ohtra-communicators. And, following which we will convert those newly
createdntra-communicators into th€artesiarcommunicators.

The task of splitting the world communicator is carried out with the standard MPI operation
OMPI_COMM_SPLIT@his operation has five arguments, out of which first three are input
argumentsand last two are the output arguments. The first argument is the handle of the
communicator which we want to split, here it is our world communicator
(MP1_COMM_WORLD). The second is the OCOLORO argument. This OCOLORO argument is
the identification of thgroupsto which theprocessebelong. In our context the identification

of the groups corresponds to the grid block ID, meaning the groppooéssesvhich are
assignedo a same grid block.

So, processasssignedo same grid block will all have samalue of the OCOLORO argument.
And, as a result therocessewsvhich have same value of OCOLORO witlaatibinedlymake a

new intracommunicator among themselves which wikhve only these processes as its
members The third argument is the rank of thecesswhich is reading/makg this call of
splitting. Bvery processmakes a call to MPI_COMM_SPLIT with itRANK and COLOR
valueswhich lets each process associate with the output communicator and the other member

processes of the that communicator.
!
!

! %
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Fig.3.3.3Global ranks within MPI_COMM_WORLD and local ranks in each BLOCK_COMMs
|
As a result of this OMPI_COMM_SPLITO operation, thiifee as many new communicators
as there are different OCOLORO vdeblocks) The new communicator handle, which is
OBLOCK_COMMO in our code, is the same for allptbeessedecause everprocess
recognizes only the OBLOCK_COMMO communicator \ithécbated itself. Aprocessnakes
the communicator with its OCOLORO value and it has no knowledge of the communicator which
was created with a different OCOLORO value by some prtiess In other words, a
OBLOCK_COMMO is knownaaly thoseprocessewhich has the OCOLORO value which was
used to create this OBLOGBOMMO.

In the example ofig. 3.32 we considered that each block will haveg®cessesSo, the
OCOLORO values of tirecesses rankedito 8 will be 1ranks9 to 17 willhave COLOR ag

and similarly for rest of thprocessesFor example, ranks 18 to 26 all will have color value 3
and they will make a BLOCK_COMM for their@up by the split operatiorfig. 3.3.3shows

this example with 4 blockhaving their ranks shown in different colarerresponding to
individual BLOCK_COMMSs Here we also note that whenever a new communicator is created
the local ranks of thprocessesvhich belong to this new communicator will start from zero
again, withinthis new communicator.

Note Although we could have used the variable OMY_GEOM_BLKO in place of variable O
because both the variables are exactly the same. But we kept the standard approach as usec
references which use the varia@OLORO as the identification of the groups. Moreover, it W
easier for new users to relate this operation with OCOLORO variable to standard referen
understand quickly.
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Creates a Cartesian communicator OCART_COMMO from existing-coimmnaunicator
OBLOCK_COMMO

After splitting of MPI_COMM_WORLD we have obtained one communicator for each block

: OBLOCK_COMMA@Ve will convert these OBLOCK_COMMsO into Cartesian communicators
for the respective block®Ve use the MPI operatiddDMPI_CART_CREATE,as explained in

the single block case and obtain the requiCedtesiancommunicators for each blockig.

3.3.4 illustrates the steps of creating the Cartesian communicators from the existing world
communicatorWe use other features of Cartesian togglo get the information on the newly

created Cartesian communicatorsese featuresere well explained previosly, they are:
|
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Returns local Cartesian ranksof all processes in variable OCART_RANKO within respective
CART_COMM

#
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Returns coordinates of processesha topology ofespective CART_COMMs
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Returns the ranks of neighbor processes in respective directions
!

Fig. 3.3.4Sequence of creatir@artesiancommunicators from 4 grid blocks
!
!
We identify thdocal ranks within eacBartesiartommunicator with variable OCART _RARK
andthe global ranks in world communicator were identified with variable ORANKO.

! ! ! Tab.3.3.2Global and local ranks within communicators
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With the Cartesiancommunicators we will manage tlemputationsand message passing

within the individual blocksBut, we have to make data exchas@etweerihe blocks alsto

compute the variables on the nodes which belong to the interfacefctlis block gridsTo

make these intdolock data exchangese would need to make commuricas among the
processes of different Cartesian communicators, as each block is assigned to one Cartesian
communicator And, there is no direct communication link among the processes of different
communicators. For thisye proceed towards creating théemcommunicators.

Now, not all of theprocessesf a Cartesiarcommunicator will take part in data exchange with
neighborCartesiancommunicatas. Only thoseprocessesvhich are at the interfaces of two
neighbor blocks will have to communicate with eatherfor data exchange between them
Also, aCartesiancommunicator may have more than one direction in whietoilld have
neighborCartesiarcommunicatorsThus, a communicator negetb have several local groups
of processest different interfaces which will communicate withe processe®f neighbor
Cartesiarcommunicatorst respective interfaceshese local groups of processes will be used
to create the intraommunicators at the corresponding interfaces, and subsequemilytra
communicators lying on either side of an interface will be used to create acanterunicator

at that block interface.
I
!

[Il. I'Interface Groups

Main Objectives:
a) Finding theMPI processes at the block interfaces
b) Creating MPI groups girocesses which belong to the same ISIDE of a block

As a next step towards creating the irlikrck communications, we make groupgobcesses
within eachCartesiancommunicator athe directionan which it has to exchange data. We
follow the MPIstandards and Bt creatgroup of all th@rocessesf aCartesiarcommunicator
with operationMPI_COMM_GROUP. This operation takes as input the communicator handle
in which we want to create the group of all gfrecessesAnd it returns a group haredivhich
consists of all therocessesf the input communicatoin our case OCART_COMMO is the
input communicator handle and OCART_GROUPO is the return group!handle.

|
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Creates an MPI group OCART_GROUPO from Communicator OCART_COMMO

|

Here, t should be notethat in MPInew groups canOt be created from scr@uabups can be
constructed by manipulating already existing grd@psMPI provides thdéase group wish is
associated with the globa@lommunicator MPI_COMM_WORLDand this groupcan be
accessed with the function MPI_COMM_GROUP. Thue need to create tiparentgroup of

all the processdsa each ofour CART_COMMSs and then the suproups at the interfaces will
be createdrom the parent group with the processes at respective interfaces.



With the newly created OCART_GROU#®hIn eachCartesiancommunicator, we can now
create several stdroups ofprocesseswhich belong to theblock interfacesn respective
directions. For this, we have to first find whiphocessesvithin a Cartesiancommunicator
belong to which interfacénterfaces are identified with the direction to whibky belong. We

are working with 3block structured grids and each of our griddiis have six faces. We refer
these six faces with six directions respectivelgst, east, south, north, back, and fréditthe
block interfaces will belong to one of these six directions and will be identified with variable
ISIDE. Where ISIDE being 12, 3, 4, 5 and 6 corresponding to the above mentioned six
directions.

The important aspect to note here is that after the creatiQamésiancommunicators, the
CART_RANKSs will be used for all the operations withiCartesiarcommunicator. So, when

we need to find theprocessesvhich are at the interfaces we have to find their |@zatesian
communicator ranks (CART_RANK). This job is done in subroutine
OINTERFACE_GROUPSOQOThis subroutine uses the fact that all the ranks @agesian
communicatolare arranged ia predefined direction oincrement The ranks start with zero,

the inner most loop to assign the ranks runs in Z direction, then the middle loop runs in Y
direction and the outer mostdp goes in X directiorkig. 3.3.5Shows thearrangement of local
ranks in an exampl@D Cartesiartopology.

As we now understand how the logabcesses a 3D Cartesian topology are arranged,

can easily find outhe processesvhich belong to the 6 faces of the block gridve will not

need tofind the processest all the six faces rather, we know from the grid file which faces
hawe interfaces with neighbor grid blocks. So, we find the ISIDE in which a Cartesian
communicator has a block interface, and then we run the loop according to the face direction at
which we are looking for the ranks. The subroutine OINTERFACE_GROUPO prepares the
variabe OLOCAL_RANKS_INFO whiaiontainsthose processes GART_RANKS of the
Cartesian communicator which are at the interfatks.first index of this array is the ISIDE,

and the second index is the Cartesian ranks of the processes at that ISIDE interface.

Note: OGroup® is again an MPI concept like communicators. A group def
collection of processes which have ordered ranks in the communication pattern.
define the scope of process names (ranks) in collective and-tpgaint
communication opations in the MPI environment. In other words, a group is atta
to and used within a communicator to describe the constituent processes
communication universe. Although, groups are defined and manipulated sep
from communicators but onlgommunicators are used in all the communicat

operations.
!




Fig. 3.3.5Arrangement of ranks of cores in a 3D Cartesian topology

Theseprocessest the individual interfaces will now make local groups at interfaces. These
local interface ranksO groups are denoted with handle OINF_GROUPO. This @atyesia
communicator will have one interface groomp the face side which hédock interface. Ad
these OINF_GROUPfcessewill be usedto createrespectivantra D communicator among
themselvedor the interfacehtey belong The standardub-group creation operation used here
is:

()*+N.20)+*8,71,-./+N.20)3#8+ ,2.063#N.20) +.-8F61 %8+,2.067 34t

# # # # *8=+N.20)18MZ3*6*5043#*0. .7/

Createsan MPI sub group from an existing growp processes

|
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8+,2.06[#4;\alE#?M>?EIJ#b]9>1#4IIH I#<?#Hal#94>A HIH#944#<]I#41b#_E?;:

N.20)+.-8F6[HE@4 A ,-./+.-8F T# <] I#>?EII#D]9>[#41IHI#< ?#al#94>A;HIHAA# <] I#4 1 bH#HE?;:
*8=+N.20)[#<]I#4Ib#_E?;:#]@4HAM#
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MPI_GROUP_INCL operation creates a syoup from an existing groupAs mentioned

earlier a group is always attached to a communicator and the processes which are part of a group
have their ranks ordered as in parent communicator. Fegrsuip creation we need the total
number of processes which we want to include im#h& group, this is the second argument

in the group include operation. The third argument is an integer array which has the ranks of
the processes which are to be included in new group. First argument is the input parent group
handle, and, the fourth anguentis theoutput subgroup handleFig. 3.3.6 on left, showshe

local Cartesiamanks(CART_RANK) within each Cartesian communicatand on the right



arejust the ranks which are at the interfaces and which are selected to create the interface
groups. Thus, each Cartesian communicator has different local ranks at the different interfaces,

and these interface processes will alone take part in the formatioeratontmunicators.
!

v

Fig.3.3.6 Selectionf those Cartesian communicator ranks which are at the interfaces
!

IV.!Interface Intra -communicator
Main Objectives:
a) Creating interface intraommunicatorérom interface MPI groups
b) Assigning the local and remote leaders for each ISIDE

In subroutine INTERFACE_GROUP, we prepare another important variable named
OLOCAL_LEADERQvhichis required to makater-communicators. It is aargument in the
inter-communicator creation operatid®MPI_INTERCOMM_REATEO. This MPI operation
requireswo intracommunicators, witlkachhaving one of its processes as the local leddwes.
local leader of the remote group is the remote leader for any MPI communiG@digorank of
thislocal leader procasalong with the remote leader ramkused to make the communication
link between the two intr@ommunicatorsAs in MPI, a communicator has an independent
communication context, and it canOt communicate with othemuaaicators on its ownWe
decided that the highest ran@f the interface groupsill be the local leader rank in respective
interface intracommunicatorWe can take any process as the local leader and there is no
constraint on thatWhile preparing thenterface groups, we made the local leaders such that
each process knows the rank of its local leader process.

0*+,2((+,.0-/0+N.20)1,-./+,2((3#*8=+N.20)18MZ3*6*50+7 3####C #

# #H # [-N+*N18MZ3#*6*50+73#*8=+,2((18MZ3*6*50+73*0..#7
Create an intracommunicatofrom an existing group of processes within a communigator
I

-, 2(([#>?\,49> @ <?E#]| @ 4AHAI#<?#D]9>[#<|I#94<IEr@>1#_E?;:#alAR4_J
*8=+N.20)[#<]l#_E?;:#|@4HM?E#<]I#:E?>IJIII#@ <#<]|I#94HE @ >I
[-N+*N[#<@_#;JIH#<?#HIMERHIRA <9 Al#>@AAIHad#) @\ IHIE?>13JI
*8=+,2(([#41b#>?\\;49>@<?E#|@4HAI#b]9> I#>EI@<IH#b9<]#94<IEN@>1#:E?>1JJIJ
*0..[#IEE?E#94HO>@<?E#



Subroutine OINTERFACE_INTRA_COMMSO creates-aumamunicators from the interface
groups created previoys These groups gbrocessest interfaces are now directlysed to
create interface intreommunicators with the standard MPI  operation -
OMPI_COMM_CREATE_GROUPTe first input argument is the parent communicator from
which a new intracommunicator is to be created; in our case the Cartesian communicator.
The second argument provides the handle of theysulp of the processes which willlbeg

to the new communicatolNF_GROURJs the required sufroupof interface processes.

Fig.3.3.7Different interfacantra-communicators at the various interfaces of the grid blocks.

Tags for thecreation of these new communicatbes/e to be prepared properly, because there
are some processes which willldreg to more than one newommunicatar And, to create
distinct communicators they need distintgigs. The output argument in our case is the
INF_COMM handle, which is the newly created int@mmunicatorWe used a 2D array for
this newcommunicator handle here. The first index of the array is the identificatioa btk

and the second index represents the direction to which this intediareunicator belong®.

Fig. 3.3.7shows all the different irtrcommunicators at respective interfaces. Sehare new
communicatorgnd thereforégheir member processes will again héaeal ranks startig from
zero, as illustratenh Fig. 3.3.7.

|

Subroutine  OINTERFACE_INTRA_COMMSO also prepares  the  variable
OREMOTE_EADERO for each interface inttammunicator. As summarized in the
introduction ofthis chapter, each inter communicator has two groupsoaessedocal group

and remote group. These two groupsadcessesre mandatorily disjoint from each other,
meaning that these two groups cannot have conpnacessebetween themAn overlap of
local and remote groups that are used to make an inter communicator is pr¢R2jbBeath an

! "+



overlap of thegrocessess erroneous and could lead to a deadlock situaBoth the groups
belong to respective int@ommunicatas which arelocated aeither side of dlock interface.

V.! Interface Inter-communicator

Main Objectives:

la) Preparing the OTAGO argument for all the interface processes for creating inter

communicators

b) Preparing the OINTER_COMMO afamyinter-communicatohandle

C) creating the intecommunicators

|

Within an intercommunicator context, the OLOCAL_LEADERO of a group is the
OREMOTE_LEADERO of the corresponding remote gktmipever, it is very important to
note that the OLOCAL_LEADERO variable is the rank @ititessn the intracommunicator
(which is a local rank); but the OREMOTE_LEADERO is the rank gidbessin a peer
communicatofglobal communicator in our cage)whichthe leaders dboththegroupsbelong
to. In other words, there muskist a peer communicator to which the local leader and its
corresponding remote leader belong, and they must know each otherOs rank in this peer
communicator Fig. 3.3.8showsthe local ranks of interface processes and their ranks in the
global world communicator which is the peer communicator for us.

?-H5D!A5670!C

;D-P5D!A56[70

Fig.3.3.8Local interface intracommunicatorankswith local leader ranks circlednd therespectiv

globalworld communicator ranksf all the processes

|

!
In standard practices, the default MPI_COMM_WORLD or its duplicate communicator is
usually used as the peer communicaldrs peer commupnator provides a communication
contextin which both the leadeprocessexan communicate with each othét.is also
mandatorythat all the other membgprocessesf these interfacéntra-communicators knowhe
ranks oftheir local leadeand the remotkeaderlt is requiredoecause all the interface processes
have to call the intecomnunicator creation function to create thenespectiveinter-
communicators, and the leader ranks are input arguments for that MPI function.

Now, we have mentioned thdtet local leader ranks were assigned during the interface group
creation and all the interface processes know their local Badmk. However, the remote

! (#



leader rank is not yet provided to processes. The remote leaders are members of the remote
group, whch is a group of MPI processes in a different wtmanmunicator(precisely the
communicator on the other side of block interfaée)d, as mentioned earlier there is no direct
communication link between two intmmunicatorsand,this is the sole reason why weed

to create intecommunicatorsHowever herethe remote leader rank must be transferred
between the processes of two different communicators even to create to®imbennicator
between themThis remote leader rank ithe rank of remote leadgrocessin the peer
communicator, not its local rank the intraacommunicator.

These two tasks are managed in subroutine INTERFACE_INTRA_COMMS. First, we try to
find the remote leader rank ipeer communicator. We have mentioned that with
MPI_COMM_RANK function a process can assign its rank in a particular communicator to a
variable. This functionwas used to assign the CART_RAN&iisd INF_RANKSsof processes

in their Cartesiamandinterfaceintra-communicators. We also note that local leader ranks were
stored in LOCAL_LEADER(NBL, ISIDE) array, whose first index is the geometrical block ID
and the second index corresponds to the direction of the inteBianéarly, we allocate a two
dimensionahrray for the remote leadeankDREMOTE_LEADER(GEOM_BLOCKS, 6).

We run doop on all geometrical blocks and their interface directions to get the array values for
LOCAL_LEADER(NBL, ISIDE). At each ISIDE we separate the local leader process and make
it call the function MPI_COMM_RANK to get its rank in the peer communicatbe peer
communicator rank of local leader is stored in array REMOTE_LEADER with first index
referring to neighbor block IPNBR) and second index referring to ISIDE value of héigr

block (NBR_SIDE)for the respective directio@orrespondingode lires are provided ikig.

3.3.9 Note thabnly therelevantcode lines are providduereto explain ths task

Fig.3.3.9Code lines for finding remote leader rank in peemmunicator

Along with storing the required remote leader rané mitable array position, this rank is also
written in a text file OREMOTE_LEADER.datO. Keep in mind that this work is done by the
local leader alone. As we work in distributed memoanfework, the job done by individual
process is known only to itself unless it is transferred to others. So, until now the values filled
in REMOTE_LEADER array are only known to the local leaders who filled this array in their



own memory. We have to transfinis remote leader array to all the interface processes. We
have the remote leader ranks written in the text file, which is available to all prodéssdie

was written for the sequence from block 1GBOM_BLOCKSand within block index we
followed the sequence of respective ISIDEs. Now, all the processes should open and read this
file in the same sequence for NBL and ISIDE. Each proe#kstore the values of this fila

the variable REMOTE_LEADER with the relevant indices for block and direstidunesas

shown with code lines iRig. 3.3.10

Fig.3.3.10Storing the remote leader value done by all processeseatace

We used the MPI operatidOMPIINTERCOMM_CREATEO to creatger communicators
at the block interfaces. The operation call details are as follows:

()*+*8/0.,2((+,.0-/01*8=+,2((18MZ3 #6*50473422,-2Z0-50.1 SMZ3#*6*50 3HcH
)00.+ ,2((3#.0(2/0  +Z0-50.18MZ3*6*50+73#/-N3#*8/0.+,2((1*573#*0. . Tt

Creates an intecommunicator with two existing int@mmunicators
I
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|

Again, all theprocessewhich are at the block interfaces will make above call to create their
correspondingnter-communicatas. Thesgrocesseblave to provide the five arguments as the
input for the intercommunicator creatiofunction The OPEER_COMM€same for all the
processeshowever, the other four arguments depend on the block ID and the ISIDE values. By
this, we make sure thall ghe processesvhich are at garticularinterface provide the same
valuesfor these input arguments for thembinaton of NBL and ISIDE The values for®, 2

and 4" arguments have already been computed abo\alfthe processesnow we prepare the
OTAGO argument.

In inte-communicator creatiqnt is very important that the tag argument is well set. Here, all
the processesf the local and remote grosipill make theabovecall to create their respective
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inter-communicators. Thprocessesf one particular locajroupandthecorresponding remet
group must all give exactly the same value for the tag argumentreatetheir inter-
communicator Only theprocessesf thelocal groupand the respective remote group which
providethe same tag valueill createan exclusiventer-communicatoemong themselves

In Oracle3D, we need to create the irdemmunicators dynamicallgdepending upon the
present blocks in the griénd thus this tag should also be generated dynamazadbyrding to
the base gridlt is also important to prepare thigtearefully becausdirstly, there are alays
someprocessesvhich belong tawo or more interface intraommunicators. Ad secondly,
while creating intecommunicators for a particular ISIDE thepeocessesnust have a
particular tag for that intetommunicator.Now, we know that there is always only one local
leader and a corresponding remote leattar all the processesof an interface The
correspondinganks of these two leadprocesseare known to all therocessesf local and
remote group And these ranks are specifior a particulainterface aloneThus,it was decided
that the multiplication of the ranks of local and remote leadiérbe used as the tag for the
corresponding interfac&.his will always be specific to one particulaterfaceand this will
also bethe same forall the local and remoterocessesf that inte-communicatar Thus,we
chose to have tag as follows:

[-N#V#.0(2/0+20-50.18MZ3 #6*50+7#e#.0(2/0+Z0-50.18M.38M.+6*507#H#

Fig.3.3.11Creating the IntetCOMM array

Following the similar requirement as tBeFrAGO argument, all the member processssth
the groupsof a particular interface must also provittee same handle for the new inter
communicator because they combinedly makieis new intercommunicator exclusively
among themselvedt was achieved by utilizing an integer an@TER_COMM) for inter-
communicator handle. This INTER_COMM array was prepdrgdll interface processes
before makmg the call to create their inteommunicator. Within a loop on blocks and ISIDES,
all the processespn the two sides of a particular interfaggere assigne@ same integer
identifier for the common intecommunicatorAnd, thesadentifiers were used to create the
aray INTER_COMM to kep it samefor the processesf only a particulainterface. The



creation of this inter communicator array should easily be understood by following the loop in
subroutine INTER_COMMSs shown irFig. 3.3.11

Another importanaispect waso keep same nureb of processesn both sides of an interface.

In our multiblock structured grids, the number of control volumes on both sides of a particular
block interface are always the same and each control volume has a common cell interface with
the neighbor control volume of the neighbor blothus, on therterface the grids on both the

sides are exactly the same. The idea of this grid level symmitgck interfaces was used

while decomposing the blocks into sdbmains also. We decided that at each block interface
the number of sudomains (subsequenttilfe MPI processes) on both sides will be the same.
And, a subdomain will have an exclusive interface only with a singledoimain on the other

side of interfaces shown irFFig. 3.3.12 (a)

Fig. 3.3.12 a) Symmetric and) asymmetricdecomposition of grid blocks at block interfaces

This symmetry of sulmlomains at interfactacilitates one to one data exchange between two
neighborprocessesn eachside oftheinterface An asymmetrical arrangemenf processes

Fig. 3.3.12(b), at the interfaces would lead to significantly more time to send and receive data
at the interfacedn anasymmetrical arrangemera processnay need to send and recedada

from more than onprocessesn the opposite side. Managing which controlumesO data

be sent to whicbrocessesn the opposite sidand, then which data to be received from which
processesequiresscanningand copyingof big arrays on both sides ahinterface. This is an
unnecessarily timeonsuming task.

Moreover, the data at the interfaces have to be exchanged at each time step of computation and
also for each variable making thi®mmunicationvery expensive. Keepingsymmetrical
arrangement gprocessesn interfacesvould have givems flexibility in terms of having any

number ofprocessem each Cartesian communicator but it costs us hugmunt otime duing

very large simulationsTherefore, the code was prepared to work with such symmetrical
configuratiors of decomposition at interfacesrig. 3.313 shows the created inter
communicators at the interfaces of Cartesian communicators, with the local interface ranks of
the individual communicatorEor facilitating the explanatiorh¢ intercommunicator between

block 1 and 2 is named as INTER_COMM12 and, similarly, the othergntemunicators are

also named as shownkig. 3.3.13



Fig. 3.3.13 Inter-communicators with their membgrocesses on both sides of interface
!
I

VI.! The NUM_CFI array

Main Objectives:
a) Creating a separate array for managing the interface nodesO data
b) Utilizing the COORDS feature of Cartesian topologyirtd the interfaces

|
By creating the requirecCartesianand intercommunicators, we have set the parallel
environment within which thprocessesan communicate with each otlier message passing
We have two types of interfaces where we have to makeattaexchanges: 1) internaub
domaininterfaces withm the Cartesiancommunicators, and 2) block interfadestween two
CartesiarcommunicatorsAccording the location odiprocessn Cartesian topology, process
may have one or both types of interfadesOracle3D, we have named an array ONUM_CFIO
to keepall thegrid relatedinformation ofnodes which lie a@heinterface cell centers (INP) and
interface cell face cente(8i\D). Let us consider an example to understand the information
contained by the NUM_CFI arrayhis array is prepared in the code wbsoutinecalled
NUM_CFI_SUB_BLOCKS.Fig. 3.3.4 represents a block interface (blue line) common
between two blockwhich extend in west and east direction of this interface as shown.

Here we are considering only one sidimain on each side of the blimerface and both sub
domains have four control volumes (grid cells) & ithterface. The west side sdlemain has

its interface cellsO central nodes (INPs) denoted with black dots, and the eastdmeasub

has the interface cellsO central node®$)Nlenoted with red dots. In parallel computations
each sullomain is handled by an individual MPI process, so the indices of nodes shown in
Fig. 3.3.4 are local to individual sudomains. The blue dots lying on the block interface are
the face centralodes(INDs) of these interface control volumes. Both the-domains have

their own local numbering for these interface side face central nddes.we have taken a
random numbering to explain the NUM_CFI arrais NUM_CFl is a 2D array witthe F!
dimension haing only one element which is the number of that node in the list of interface cell



central nodes. Here we have four interfaelts, so this number goes from 1 to 4 for both-sub
domains. The "® dimension has three elements: INPs, ISIDE and INDs of the corresponding
cell centralnode.Fig. 3.3.14 describes the example shown with the corresponding NUM_CFlI
array valuesThis array helps us while making the data exchange at the interfaces.

Fig.3.3.4 Example for NUM_CFI array values

We have three types of grid nodes in Oracle3D: the inner nodes, boundary nodes and the
interface nodes. And, these different types of nodes are treated differently in the code, according
to the underlying mathematics. In this section we discuss briefhati#ling of interface nodes.

As mentioned above, each of dilocks have siouterfaceswith respective directions. In the
same way, after the partitioning of grid, all th@&>domains also have six outer facésery
MPI procesgakes care of all the nodesitsf ownsubdomain. Eaclprocessas to prepare the
interface array NUM_CFI with all the interface nodes it lhasall relevant directionin
subroutine NUM_CFI_SUB_BLOCK®ach processprepars this NUM_CFI array in two
pars. First, the internal interfaces are managed #ien the block interface© COORDSO
property of Cartesian topology is used to velififg procesdas an internal interface in certain
directionor not After aCartesiarcommunicator isreatedwith MPI_CART_CREATE, MPI

has another operation to assign coordinated fwrocesses of @artesiarcommunicato®!
!

Fig.3.3.15 Example 2D Cartesian topology with COORDS and CART_RANKSs
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With the opeation of MPI_CART_COORDS, each procdssows its coordinate in the
Cartesiartopology. A sample X:2rocess2-D Cartesiartopology is shown ifrig.3.3.5. The

outer red lines of the block represent the boundaries of the grid block and the internal black
lines are the internal interfaces between thedsuhains of the grid, which are created after
partitioning of the domain. The domain had one block beforétipamg and there are now
twelve subdomains which are assigned to idcesse®f the Cartesiancommunicator. The
rednumbers on the top right corners of each-daimain are the local ranks (CART_RANK)

of the processesind in brackets the coordinateseafchprocess are showagccording to its
location in theCartesiartopology.

COORDS(1) is Xindex and COORDS(2) representsinfdexof topology coordinates. Here,

the DIMS variable values are 4 and 3 respectively in x and y direction; which means this
Cartesiantopology has 4rocessen x and 3processed y direction. With COORDS and
DIMS information gporocessan easilknow if it has an internal interface on a certain direction
(ISIDE) or not. For example, COORDS(@)ll be equal ta0 for all the processesn the west
boundary of the block. Thus, to have an intesadldomaininterface on the west facgeocess
must haveCOORDS(1) > 0Because COORDS(1) = 0O represents the west boundary of the
block, and there are no neighbor gldmains on the hodaries.Similarly, COORDS(2) =
DIMS(2) b1 for all theprocessesn the north boundary of the block. Thus, to have an internal
interface on the north face @mocessmust have COORDS(2) < DIMS() Rest of the
combination for a 3D grid block are showrdve:

*=1,22.56 1% 71" T# #HHHHHHHHHEEH O A< | EY@>|
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With this information the NUM__CFI array for the internal interfaces is prepared. The next step

is to see if @rocesslso has a block interface. During, the preparation of-sdermunicators
eachproces was assigned a logical variable OINTERFACE_PROCO:; forotessesvhich

were at the block interfaces this variable was assigned OTRUEO and rest were given OFALSEO.
Also, OINF_RANKO which is the rank gfracessin its interface intra&communicator was

assigned to eagbrocesswhich was ata block interface. With these two variables and grid
information regarding the block interfaces and respective ISIDES, we managed to prepare the

NUM_CFI array for the block interfaces also.
[
#
#

VII. ! Data exchangeamong MPI processes



Throughout the code, this NUM_CFI array is used to manage the information regarding the
interface nodes. There are separate subroutines which manage the computations with different
variables on the interfaces. This NUM_CFI array is prepared once, jushaftereation of the
inter-communicators, by eagtrocesdor its different interfaces, and then used afterwards in

the code. There are several instances in the code where we need to makéndateextong

the processes at block interfaces. This commatdon is managed with subroutine
OSWAP_3DO. This subroutine has two sections for data exchange at internal and block
interfaces. At the locations where data exchange is required a sabrioutineSWAP_3D is

made by all the processes individually. Epobcesgyoesthrough this routine and firghanage

the internal interfaces and then block interfaces if it has any.

SWAP_3D routine utilizes MPI_SENDRECV for data exchangeThe method to use

MPI_SENDRECYV s same as it was explained for single bloakes. In mukblock cases, we

have multiple Cartesian communicators for internal communications,madiiple inter

communicators for data exchange at the interfaceglace of the COMM argument, the

procesdas to use respective communicator hanthe. standard MPI_SENDRECYV operation

as used in SWAP_3D subroutine is as follows:

|

I Message sending and receivingdrdirection

()*+6085.0,K16085+L06/3  94:L3#)*+.F3#8M.+L06/3#/-N3 #HlH I
HHHHHHHHHHHHHOT KA OBIOMALBIH4 F 3#8M .+ L06/3#/-N 3#
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Making a blocking send and receive with a single function call

Fig.3.3.16 Sample MPI_SENDRECYV functiased for intercommunicator data exchange

Some additionaINTER_COMMUNICATOR functions which could be utilized in Orale3D
on requirementare following

#

0*+,2((+/06/+*8/0.1,2((3#=2-N 3#*0.. 7

Tests whether a communicatsirinter-communicator or not
#

(0*+,2((+.0(2/0+6*Y01,2((3#6*Y0 3#*0.. 7
Provides the number of processes in the remote group of theartenunicator

#

(*+,2((+.0(2/0+N.20)1,2((3#N.20) 3#*0..7#

Provides a handle fahe remote group of an inteommunicator

#

()*+*8/0.,2((+(0.NO1*8/0.+,2((3 #H5*NG3#80L+*8/.-+,2((  3#*0.. 7

Creates an intrecommuniator by merginghe local and remotgroups of intercommunicator



#
(*+,2((+60/+8-(01,2((3#8-(0 3#*0.. 7/
Associates a name string with a communicator

(0*+,2((+NO/+8-(01,2((3#8-(03#.0602/208 3#*0..7#
Returns the namand length of name stringassociatedvith a communicator

3.3.2Scalability Resultsvith Oracle3D

The whole MPI environment was programmed in OracleBi3t for a Poisson solveAfter the
codeis ready, two important questions have to be answered carefupgrdl)elperformance
and 2) validationWe have prepareal separate chaptéhapter 4for detailed analysis otie
validation ofcode withthe MPI strategywith dfferent types of solvers ownaried physical
problemsHere, we cafine thispartwith some preliminary performanéestsonly. Testing the
codes with a mukblock grid problem is the most important thing hewéich is the extension
from the previously dealt syhe block gridsection.

Fig. 3.3.17 (a) illustrates the 4 blockgrid which was considered for this scalability tdste
individual control volumes in each direction for each bl@ek. B1=Block 1)is mentioned in
figure. The totahumber of contrololumes for the case was 8 millio8ix different cases for
different number of MPprocesse§l6, 32, 64, 128, 320 and 51&gre set to analyze thiene
taken with increasingumber ofprocessesilt is very importanfor comparisorthatall six cases
have exactly the same computational I0&d, avery strict tolerance (1.25) was set for the
linear system solveso that it is nevareachedand thesupplied maximum number of iterations
are always reached in all cas&ése maximum number of iteratisrwere sesuch that even
with 512 processesthe communication overhead remains sufficiently lowdan the
computatiortime.

As mentioned in single block cadellowing two values of time taken are noted here :aljo

total time, and 2) computationtine. However, the grid management is not completely serial
in case of multblock grids as we use reader processes for managing the individual grid blocks.
It is sufficient to mention here tha Laplaceproblem PCRIS3T3J7V "#Bwas solvedfor an
SDBD actuatorsetting This other details regarding this problem are given in dedicated chapter
7, here we only test the parallel efficiency of the MPI strategy used in the codePGsaEnm
problens with different sourceand necessary boundary condis@are alsodescribedn the
nextchapter where provide the validation of the code with these problel@se we consider

R as the electric potential variable whichessential for o uEHD problemsAn example 2D
solution of ourproblem isillustrated inFig.33.17 (b).



Fig.3.3.17 a) Grid blocks and cell coun@eft), b) Solution of.aplaceequation on the gridright)

For the first test, maximum number of iterasevere set to 2.1%. The results for this case are
shown inFig.3.3.8. We find that both the total time and computational time decrease with
increasing number of MRirocessesThe computational time with lfrocessesvas 1217.47

min which reduced to roughly 22 times (53.5 min) with 2OcessesFig.3.3.8B (left). The
speedup results are a little surprising as we see a-ugar speedup with an increase in the
MPI processesount. It is possible to have such super linear speed ups in parallel computations,
as reported by many researchers [1,10,11]. First) v note here that our base solution to
compare the speedup is the time take bprbgesseswe showed apeedup plot for 1 to 16
processeand it gave us desired speedup, Fig. 3\8/d also mentioned several studies where
8,10,16,32 or 128 cores wetaken as baseline solution assuming these cases give perfect
scalability [1013]. Mavriplis et al. (2005) reported achieving a sulieear speed up of 2395
with 2008 CPUs on single grid, and a speed up of 2250 on 2008 CPUs with four level multi
grid in their case configurations. They explained the slipear speedips with the favorable
cache effects in their casgd].

In parallel computing, when we keep tbeerall grid size same and keep on increasing the
number ofMPI processesthe grid size peprocessdecreasesWe note here that for all our
cases one MPI process was assigned to one physicalrcdigtributed memory architectures,

like ours, each new coreswith its own memoryfRAM) and cache. Thus, by increasing the
number of cores we not only increase the physical computing units (cores) but also the cache
and RAMavailable for the MPI subdomainis such situations, there may come a time when
thegrid size(mathematical problem sizpgr core reduces so much thatan fit into the cache

itself andit decreases the latency due to memory 80, the ideal speedup suggests a scenario
wherewe increase only the computing cores and keep problem size fixed, whiclihecase

in modern HPC systems.



Fig.3.3.18 Perforamce plots with mukblock grid case on Poisson problem

There aralso the effectof some oimodern processor technologiesichareembedded in the
processorsin our case, we used thHatel Xeon E&680 V2processorswhich have with
following technologies by Intel: Turbo Boost technolog®.0 , 2) HyperThreading 3)
Enhanced Inel SpeedSteyc. Intel Turbo Boost technologgutomaticallyaccelerates the
processor performance for peak loatishey are running below the power, current and
temperature specification limitit. does it by allowing thg@rocessors to ruabove the rated
operating frequencyelow the specification limitsXeon E52680 V2 processor has base
frequency of 2.8 GHz anthe maximum turbo frequency is 3.6 GHAe maximum turbo
frequencyis the highest possible frequency achievable when the working conditions are suitable

[4].

Several factors are dynamically considered by the processor algorithms to check whether to
enter into the turbo boost mode or nidiese factors include workload, processors temperature,
numer of active cores per node, software, other supporting hardeeseall system
configurations etdntel has multiple parallel algorithms to managewleking parameters of
processors and the al@wnentioned factors do not present an exhaustivg4fistThus in
summary this technology gives the user a burst of speed by taking advanftéaourable

factors when it is need, and in the other casas increase energe efficieny is maintained.

With HyperThreading technology each physical cof@ur processocan work atwo logical
cores but this depends on user to provide a rthittaded job to the processor. It vimasdone

in our codeEnhanced SpeedStep technology works on the detesed switching adpplied
voltageand frequencylt works as a power managemésthnology which keeps the applied
volatge and clock speeds to minimum necessary level until & inoeficieny is not required.

It also works in tandem with other processor technologies like hotst technology to provide
anhanced efficieny when reiqed. These all factors with favorable cache effects explain the
superlinear speed up$.or more details on these processor technolaégader is suggested

to refer the corresponding Intel manui@sthe mentioned processors
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Fig.3.3.19 a) Isometric view with 512 cores, bpmparison of mukcores solution along a section in

XY palne at Y.
1
The first guess on maximum number of iterations was found to be not sufficient for 512
processedo overcome the communication hed&er this case, the solution time with 512
processesvas noted to be much higher than the time taken by 320 cores. So, we decided to
make a run with 5 times the number of maximum iterations with onlypbd@essesWe
decided to extrapolate the values ofeiwith the other sebf processe$16,32 etc.)or the
same number of maximum iteration as were taken fopsd@ssessuch extraplation of time
values for highenumber of iteration is justifiable as the computations performed per iteration
are exacltythe same and thbase numbeof iteration to extrapolate the values is 2.1 million

which is enough to get an average.
!

]
Fig. 3.3.20 Estimated appoximate speeduypto512 cores
!
Fig. 3.3.19 (a) illustrate the decomposed domain with fit@cessebkaving the solution obur
Laplaceequation, in total we have J#ocessesalong X, 8processesalong Y and 4rocesses
along Z direction, making the simulation to be completely parallel in 3D. A sample validation
along the section Y=1, in XY plane, shownFig. 3.3.19 (b) assures that the soultion remains

! )%



same with number gbrocessesThe approximated speedup obtaindthvé12 processesor

higher work load is provided iRig.3.320, showing a perfect scalability on our HPC cluster.
!

Fig.3.3.21 Perforamce plotsa) scalability , b) speed up with NaviStokes solver

We also performed a scalability test with a Nav&tokes problem. We solved the classical lid
driven cavity problem with a four symmetrical grid blocks geometry. The wholehga®B
million control volumes which were equally distributed in four geomethtatks (2 million

cells each block)The number of iterations were set such that the problem was sufficient for up
to 1200 coresResults show that in this case also the code achieveslsgsrspeed up when

the number oprocessego beyond 500Fig. 3.3.21. This problem was more symmetric then
the Laplaceproblem mentioned above as the 4 grid blocks were of same size, so the workload
on the 4grid reademprocessewas also balanced equally. Same computational load was assured
by keeping equal grid ned for each MPprocessand exactly the same number of iterations,
by setting an unattainable tolerance. The causes of-Bnpar speed up should be explained

as detailed above.

It should also be noted that for all of these scalability test problesrisdd balancing among

all the processesvas managed equally, so egmocesshad same amount of computational
work to perform, which is important to achieve high scalability. This assures that there was no
waiting for any MPI processat practically any time during the linear system solver
computations. With our MPI strategy of cartesian communicators anecortenunicators we

made sure that eacprocessknows its 6 neighbours on 6 directions easily, and the
communication link with althe neighbours was set in the beginning. At each time step, every
processcalls the communication subroutine and this does the two way communication (send
and receive) without any delay. After achieveing the desired parallel performance we will carry
outthe validation of various solvers in next chapter.
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Chapter 4

Validation: Parallel Oracle3D

The detailed MPI strategy discussed in previous chapter was implemented in Orcale3D within
the various individual solver versions of the code. As mentioned previously, the code was
transformed in the Omodusé@ctureof FORTRAN 90, to make it more organized and oriented

in the modern Fortran framework. In the same manner, we have also prepared the individual
versions for specific solvers like: Pure Nav&iokes solver, Poisson solver, general transport
solve, 3 species plasma solver and then the complete Oracle3D. This arrangement of code in
smaller individual versions helped immensely in transferthiegMPl methodology into the full
version of codeAnd alsg each smaller version presented us with the dppiy to validate

and test the performance of the parallel implementatidifferent mathematical model3 his

chapter presentslahe validationtestsof the final version of variousolvers which were
parallelized.Thus, this chapter provides thery initial simulations with theleveloped code

and build the truswith verification cases for the users of Orcale3D.

Validation of any new development in the code is a crucial step before the intended final
applicationsThis development started with the base line Fortran 77 version of Oracle3D, which
has beemreviously validated,and several studies have beenblishedwith it [1-5]. The
development started with the conversion of Fortran 77 version of the code to tifae POr
version. At each step of this conversion process the new development was verified by
comparing with the results of previous versidhe major stages of this conversimelude
implementng the Fortran 90 features likemplicit none dynamic allocation of arrays,
vectorization of loopgnodules and several oth@&he final Fortran 90 versions of the different
solverswere validated, however, here we will present only the validation results with the
parallel versions of the solvers.

4.1 The Parallel Poisson Solver

The MPI metlodology as detailed earliewas firsttestedrigorously with some very simple
integer data exchanges at the two kinds of interfaoeseveral combinations of blocksd
subdomainsAfter the preliminarytesting, the MPI strategy was firsiplemented in a Poisson
solver. The welkknown Poisso®sequationis a partial differentialequationof elliptic type
which does not have an unsteady taf@re we use the Finite volume methods to discretize the
Poissm equation in spac&quation (4.1) is thgeneral form oPoisso®®quation:
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Here* is a scalar variable aridis the source term for the PoissonOs equation. The Laplacian
operator3” is also denoted by, making the equatios* . / 1 A PoissonOs equation solver is

a good candidate to test theorking of our parallel strategylhere are severaksources
availablefor the sample parallel Poisson solveaosstart with6-9]. For us, it also important to
note that Oracle3D is mainly arneetrohydrodynamic solverwhere we always deal with
electrical chargesAnd, in MaxwellOs equations we solve the electric potedtial to the
distribution of chargevith a Poisso®®quation Consequentlywe decidedirst to prepare the
parallel versionof a Poisson solvein the framework of Oracle3DAnd then only after
validating thisparallel Poisson solvethe parallel strategy would be implemented in other
solvers.

At first, the parallel Poisson solver was developed for single block gsidg he Cartesian
topology featuresThis single blockversion resulted in very good scalable code on parallel
clusterOTHORAG! Institut PprimeThe scalability and speed up of the code were measured with
different number oprocessesand desired performanees obtainedas reported in Chapter
lll. The strategy of parallelizing with Cartesian communicgta@ved very efficienin our
single block grids case3his ledusto decide that even in mulblock geometrieshe data
exchange inside the individual drblocks should be done with Cartesian topology features.
And, for the data exchange at thed block interfaces the Inteommunicators were used.
After completing the develaopent and some initial testingie have tatrictly validate the code
and check the parallel performancghe PoissonOs equation beagindependentpartial
differential equation has the analytical solutiosadily availableto validate the simulated
results

4.1.1 Poisson solver validation on distorted grids

The parallel Poisson solver also presented an opportutatyerify the implementation of
Improved Ceferred Correction (IDC) schemagth the new developments in code. IDC scheme
is a finite volume discretization technique, especially developed, in our grimsitat Pprime,

for discretization of diffusive fluxes on highly skewed grjids?]. Published references are
available in which the IDC s&eme was introduced and explored with various skewed grids.
The resllts available in references wesbtained with2D version ofour Fortran 77 codeSo,

to validate thenewly developedIP| Poisson solver, we chose themePoisso®squationas
used byTraore et al. (2009)
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We chose the same three grids as founbraore et al.(2009) 1) orthogonal grid , 1I) highly
skewed anisotropically distorted grid, and 11l) randomly distorted grid. Griasllllaprovide
very stiff configurations to test IDC schemad alsdo test thedlomain decomositionmethod

in parallel codeThe grids as shown ifig. 4.11 wee created, which have 51 control volumes
eachin both x and y directionsSo, the square domain {@1] has2601 ontrol volumes in
total. Theanalyticalsolution d the Poisson equation, eq. 408,these grids wheadl boundaries

of domain are sdiy eq. 4.4, will be given by the same eq.. 4 e analytical solution is the
surface as depicted Fig. 4.12, where the z axis shows the magnitudg of



Fig. 4.11 Orthogonalanisotropically skewednd randonty distortedgrids, partitionedwith 4 sub
blocks.

Fig. 4.12 Analyticalsolution surface*( . ':<=#+6$- %':<="46&- )



Absolute errowvas computedwith respect to the analytical solutido, check the validity of

the parallel codeand the results were compared with the results obtained by the scalar Fortran
77 codg2]. The results irFig. 4.12 should be compared with the results in Fig. 9 of Traore et

al. (2009). It was observed that the magnitude of the absolute error was a veryagctod/ith

the previous results. Figure 4.4 show the analytical solution in 2D smtha&l solution obtained

with the parallel code. The parallel code solutionFa. 4.14 was performed with 33 MPI
processes, to check the domain decomposition capability of code in such odd number cells grids
(51 @51), with random number of partitior{$1 @'?). An extensive study of the IDC scheme

with many other grids, with the scalar version of the code, is availaflé]in

Fig. 4.13 Iso-contours of absolute erranade withrespect to thanalytical solution

"%
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Fig. 4.14 The2D analytical solution on the xy planand, solution with grid Il performed
with 33 subdomains.

Absolute error with this random domain decomposition of grid was also plBited..15, and

the magnitude of error was found to be the same as with the preolotion of scalar code.

The black linesnside the square domains in Fgl.4 and 41.5 are the boundaries of the
partitioned MPI sulilomains. This exercise proves the accuracy of the parallel methodology
used in our code, stating that with random nunolb&1P1 processethe solution remains same.

It should also be notdukre that these grids were faidgarsehaving just 51 control volumes

in each direction, and with the refined grids the solutiondefinitely improve furtherin the

next test fovalidation of Poisson solver we have used a 3D grid with 8 million control volumes
in total.

Fig. 4.15 Absolute & or with a random domain decompositiongoid (22 @7?)

4.1.2 Validation of 3D decomposition

This section deals with some mapeantitativevalidation tests for the parallel Poisson solver
in 3D. We have taken grids with multiple number of geometrical blocks to verify the working

! "&



of data exchange by the inteommunicatorswhich are specifically responsible for the MPI
communicabns at thélock interfacesk-or the first test case we have taken 4 orthogonal grids:
1) 1 block, 11) 2 blocks, IIl) 4 symmetrical blockand IV) 4 asymmetrical blocksrig. 4.16
shows blocks Il to IV, where the red lines are geemetricablock bowndaries and the thin
black lines inside the blocks are the boundaries of the MPdsoiains after partitiang. Each

of the blocks have 8 million control volumes in total, and the distribution of the control volumes
is consistent with size of blockEomgdete details on mesh sizes is given in Tab.1dbglow.

Fig. 4.17 shows an example mesh for the 4 symmetrical blocks case.

Table 4.11 Details of mesh for the 4 test cases

Grid Geometry Mesh details
| 1 block (200 @4AA@200)
Il 2 blocks Each block({100 @4AA@200)
11 4 symmetrical blocks Each block{100 @2AA@200)
\Y 4 asymmetrical blocks B1: (50 @2BA@200)

B2: (50 @BA@200)

B3: (150 @2BA@200)

B4: (150 @BA@200)

! !
Fig. 4.16 The multiblock grids: a) 2 blocks, b) 4 symmetrical blocks, aggmmetrical blocks

Fig.4.17 Orthogonal grid for the 4ymmetricablockscase each block(100 @2AA@200)
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The following Poisson problem was considered for this case:

Jfx Qe n—n———nn5e s, 0B
The boundary condition for this cage all the boundary facegsgiven by eq. (4.6)

4B & (- . 1B O & g (i ———————, 0L

The analytial solution of the eq. 4.5 is given by eq..AMe solved this 3D problem on the 4

test grids mentioned in tab. 4.1. Three plots were drawn along three different sectiptige and
solution was compared with the obtained analytical solukan.4.18 show the results when

the domain decomposition was performed only in x and y directions. Blocks | and Il were
solved with 8 MPI processes, and blocks Il and IV were partitiovidd16 MPI processes.

First plot inFig. 4.18 was taken along line X=0.6 in plane Z=0.6. Second plot corresponds to
the solution along line Y=0.4 in plane X=0%olutions were obtained with 8 and 16 procs to
check if the solution depends on the numbdeviBl processes used, and also, because in the 4
blocks asymmetrical case the minimum number of MPI processes for a good load balancing
were 16. As mentioned the control volumes in each grid were 8 million, so the grids were taken
very fine to avoid the dcrepancy due to grid coarseness. The tolerance for the linear system
solver was also kept very stri@APE- to be sure of a good convergence of the linear system
residuals.

Fig. 4.18 Comparison on two planes with 2D detposition: a) XY plan&=0.6), b) YZ plane
(X=0.6)

Results show a very good quantitative match among all the MPI simulations and the analytical
solution. During the simulations, it was observed that the solution gets better and better with
the decreasing tolerance of the linegstem solver and by refining the grid sizes. The outcomes
of these tests give confidence with the parallel methodology used in our code, both
guantitatively and qualitatively. One case was simulated with decomposition in z direction also.
The grids Illand IV were simulated with 32 MPI processes, having twedsubains in z
direction, and 4 subdomains each in x and y. Results are shovign4.19 with the analytical
solution. This case also was a perfect match with the analytical solution. A-2éniswir for

this case is also provided in plane Y=0.Blg. 4.19 (b), the thin black lines shothat there

were 2 MPI sullomains in z directionlo better understand the MPI partitionifgg. 4.110
depicts two isometric views of the full 3D domain deposed with 32 MPI Processes, along
with the solution corresponding to Poisson equatidfis:. C.

! %!



Fig. 4.19 a) Solution with 3D decomposition in plane Y=0.Bpiso-contour in plane Y=0.85

Fig. 4.110 3D isometric view of the solution with BP| processes4@'0' @2)

A test case with eq. 4\sas also performed withZD Kershaw grid. This was a single block
skewed grid as shown iaig. 4.111 (a); all the 3 directions have 51 control volumes gach
giving an odd number distribution of cellEhis grid was simulated with 18 MPI processes. The
MPI provided domain decomposition is showrFig. 4.111 (b), where the domain is divided

in 4 @7?" @2 subdomains, respectively x, y and z direction The solution for the Poisson
equation wagkept in transparent mode in this figure, to better visualize the complex domain
decomposition and the respective sldmain shapes after the MPI partitioning.

! %,
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Fig. 4.111 3D skewed grid with decomposition iry)z direction 24 Procs4(@'?' @2)

For the quantitative analysis of solution in this stiff case, we took a section along the highly
skewed grids cellsFig. 4.112 shows the red line along which the computed solution is
compared with the analytical one; this red line lies in the plane B.¥1@. 4.112 (b) shows

the comparison of two solutions. For almost half length of the curve, the two solutions match
very well, and the mismatch in rest of the curve is also not too drastfact, as noted in
previous sections that the solution imypee with the grid refinement and here we have very
coarse grid for this case. It is also reported in the studirégre et al. (2009jhat the IDC
scheme is theoretically a second order accurate scheme, and thus refining the grid will reduce
the simulatio errors. They have reported solutions for different refined skewed grids where
these trends were obserj@e2,11]. Thus, in such skewed grids with coarsely distributed grids
cells it was worth noting that a desired solution was obtained without anygeiner issues,

even with multiple MPI processes.

Fig. 4.112 Location of section X=0.8 and the results with IDC and analytical solution.

One more simulation was performed to test the MPI Poisson solver with higher number of MPI
processesFor this test, we chose the four symmetrical blocks grid (grid Ill, Tab.4.1). Three



simulations were performed: 1) §bocesses2) 200processesvith MPI provided DIMS, 3)

200 processeswith manually setting DIMS values for three directions. The resuéise
compared on a section X=0.15 in plane Y=0.85, with analytical solution. As observed
previously, the solution was an exact match for all the three cases with the analyti€adone,
4.1.13. Thusit is assurd here that the solution mompletelyindependent of the number of

MPI processesised.It proves that the message passing strategy as implemented in the code
works perfectly.

Fig. 4.1.13a) Solution with higher number of MProcesses) DIMS set by user in Z direction

In this grid of four symmetrical blocks, each block is assigned equal humpeoaassess
thegrid sizes are same. Moreover, we have more than one option to assign nupntbeesdes

in X, Y and Z directions, according tbe possible factors of 50. itmlly, for 2" case we left

the choice to MPI library to distribute tipeocesses three directions. We hdsD processes

for each block and MPI assigned (5,52)cesses respectively X, Y and Z directioit. was

noted that the grid size of each block was: 100 X 100 X 200, which makes it denser in Z
direction. But, MPI factorizes the numberbcessewith a balanced and decreasing value in

Z direction approach.

MPI camot recognize that the actual gste is denser in a particular elition. Thus, it is
advisable that uséeep attention for such situatewhere the grid malgedenser in Z direction

and needs morprocesseshan x and y directionsSo, in this study with 20Processesve
manually sethe DIMS value for Z as 5 and the remaining factors (5 and 2) could betgiven
either direction as the number of celte same in X and ¥ig. 4.1.13 (b) shows the partitioned
grid with DIMS value (5,2,5)However, whatever the distribution of theocesseghe solution

will not change. But, in some sétions number of send and receive operations may be reduced
by properly assigning the DIMSalues considering the number of grid cell®ach direction.

4.1.3 Validation of Periodic Boundary

Periodicboundary conditions for all three directions (X, Y and Z) were implemented in the
Poisson solver. This feature is essentiavotous EHD problems, where mosttbé variables

of the problem are assigned periodic boundary conditions for certain paosirtdary faces.

A general explanation and specific implementation details for periodic bourwiaditionsare



provided in chapter 2. Here,spatially periodic function was designed to test the periodic
implementation of Poisson solver, which is given by

2 2 2
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This function is paodic in X, Y and Z directions. Periodic implementation on the three pairs
of boundaries: westast (x direction), southorth (ydirection) andtiop-bottom (z direction)
respectively, will imply that the value of the variableon each node of periodicboundary
face will be exactly the same on the corresponding node gdined periodic face of that
boundary face. The solutiai eq. (4.7)with periodic boundaries on a cubic domain will be as
given in Fig. 4.1.14.

Fig. 4.1.14 a) 3D isanetric, and b) 2D planar (XY plane) view of potential contours with periodic BC

4.2 Validation of Navier-Stokes solver

This section is devoted towardise validation of paralleINavierStokes solver. The MPI
features of topology and inteommunicators were implemented in the pure NaSiekes
solver of Oracle3D. It is an incompressible flow solver, in which the pressioeity coupling

is managed wit the standard SIMPLE algorithm of Patankar efldl]. Central differencing
scheme is used for spatial discretization for all the validation dases.scheme manages the
discretization in time. The general equasidar continuity and momentum conserea, for
incompressible flowsas solved in this solveare



whereP is the fluid densityS is thedynamic viscosityof the fluid Mis the velocity vector
andRis the pressur&xternal forcesire considered within the source tefin

4.2.1 Lid driven Cavity

The standard benchmark problem of Lid driven cavity was consideradligate this
incompressible solver. Two different values (100 and 400) of flow Reynolds number were taken
for comparison with benchmark solution of Ghia e{Hb]. The problem is defined as shown

in Fig. 4.2.1. The top wall of square (1 X 1) cavityii®fl as a moving wall with a constant U
velocity of value 1, and the other three walls are provided with no slip boundary conditions
(U=0.0, V=0.0). It should be noted that rdimensional computations are performed. Two
dimensional versions of same fognid cases (Fig. 4.1.6) were considered, so we had only 1
control volume in Z direction.

Fig. 4.2.1 The problem definition of Lid driven cavity test case

First, the results with all the cases with different block and different numipeocéssesvere
compared with each other to check whether all the casesa@me results or not. Fig. 4.2.2
illustrates this comparison and shows that the results are an exact match within all the cases.
The sections taken for both the cases pass from the cavity center. Section for U velocity
comparison is X=0.5, and section for V velocity comparison is Y=h&s, proving that the
parallelization of NavieStokes solver is also carried out well andgbkition is independent

of number of blocks and number pfocessesThe obtained two dimensional contours of
velocity compoents are provided in Fig. 4.2.8 is visible from this figure that the dat
exchange at the stdomain interfaces is very smoothnd the MPI communications are
correctly performedrlhe blacKines in Fig. 4.2.3represent the sedlomaininterfaces, and each
subdomain is managed by a different Mitbcess



Fig. 4.2.2U and V velocity components for different blocks proceses

Fig. 4.2.3Two dimensional contours of U and V velocities fopt@cessesase.

As the results with various cases matched with each other, the validation results are only shown
with the 16processeasymmetrical block case in Fig.4.2The values for velocity components

were extracted from the sections as mentioned abidwe.comparison illustrates a perfect
match with thebenchmark resultef Ghia et al. for the case of Reynolds number 100. The
benchmark results are available in Ghiaakt(1982)[16]. A streamline figure was also
produced with the 16rocesseasymmetrical block case. A big vortex at the cavity center is
observed together with two smaller vortices at the cavity bottom corners. The vortex at the
bottom right corner islightly bigger than the left corner vortex as reported by other researchers.
This Fig. 42.5 should be compared with the Figpf3eference Gia et al. (1982]16].



Fig. 4.2.4Comparison of 1@rocessesase with benchmark results by Ghia etR#100)

Fig. 4.2.5 Flow streamlines with R=100 in péocessesPI case.

The second validation case was carried out with R=#0i3. case was performed with higher
values of MPprocessesThe three cases consist of 400, 200 angr@6essesach. The results
of these simulation were again compared against the benchmark provided by Gltamteal.
sections passing through the cavity center were taken for velocityAfataported for the
R=100 @ase, the results with R=4@0so give an exachatch with the benchmark. Fig. 4.2.6
illustrates the comparison of U and V velocity valt@sR=400 casevith GhiaOs results.

! %



Fig. 4.2.6 Comparisons results for R=400 casesidlbcity (left), Welocity (right)

Streamlines plot was also compared with benchmark plot at R=400. The center of the bigger
vortex is slightly shifted towards the bottom left corner, in comparison with R=100 case.
Streamlines plot shown in Fig. 4.2.7 is taken with 400 RiBtessesase, lte light red lines
behind the streamlines ngsent the subdomain interfaces. This figure should be compared
with the streamlines fig. 3 in Ghia et al (1982). We worked with 400 angr2@@sses this

case so a very fine mesh (1000 X 1000) was tékéave enough computational load for the
processeand to obtain grid independent solution. The-dalmains are partitioned with equal
sizes, we see smaller sdbmains near the top wall than the bottom wall, because the grid was
much refined at the top wal

Fig. 4.2.7 Streamlines and 2D U velocity contour for R=400 case with 40(pMiEeSses



4.2.2 Backward facing step case

Backward facing ste(BFS)flow is anotheistandard and weltudied problenfor validation
of NavierStokes solversSeveral benchmarks, both experimental and numerical, are available
with different configurations of the channdigtstep height and flow ReynsldhumberWe
aim to validate our MPI implementation, especially the inlet and outflow boundary conditions,
with a steady incompressible BFS flow at different Reynolds numbers, in this section.

Fig. 4.2.8 The BFS configuration used for our simulations

The problem configuration is illustrated in Fig. 4.2.8. We chose to use the configuration used
by Gartling (L990, asbenchmarlquantitativeresults are available with this setting which will

be compared with our solution. The velocity inlet is located exactly above the channel step and
a fully developed parabolic velocity profilet& . 40&tAB; & for AV &V AB, is used as

the inlet flow.This inlet velocity profile wasised byGartling (1990)and it gives a maximum

inlet velocity ofL\yxy . 2B'and aninlet average velocity ofxz; . 1.0.This helps us remove

the inlet channel portion which is used if the inlet velocity is not fully developed (e.g. u =1.0)
for a channel flow. The step height and channel mdgghtare0.5, making the overall channel
width in the downgeam portion to 1.0/ e use the nedimensional computains to facilitate
comparison withother similar settinggl3,15]. All the walls are set to no slip boundaries for

the velocities as shown, and an outflow boundary condition is set at the channel outlet such that
the upsream flow mainly the recirculating regions, ot affected by the odiiow boundary
conditions

The oveall channel length is 30 for thesase where we compare with the quantitative results

of Gartling (1990) This is equal to 60 times the chanhelght ands sufficiently long b have

a developed channel flow, and, provide accurate solutions in the sensitive near step regions of
the domain. Flow was simulated with Reynotdnumber 800, until a converged steathte

solution is obtainedTwo well defined stable recirculating regions are observed as visible in
Fig. 4.2.9. The recirculation region just behind the step extendscun@lO, 12 times thestep

height, as reported in previous studi#2-15]. The upper \all vortex starts forming at x 4.8

and extends until x ~ 1Q.8he approximate recirculation lengths for both of these regions are
reported in various studi¢$2-15], as mentioned in Tab. 4.2.1.

Important point to mention as reported by Armaly et(B83)is that above Reynolds 400

three dimensional effects become significant and the comparison with 2D studies fail to provide
accurate match. These approximate results are reported in Gartling (1990), and it was also noted
that in other studies no tabular results were given so itliffagilt to get the accurate quantities.
Graphical results were optically scanned to get these results. However, our results match quite
satisfactorily with the other 2D studjeRab. 4.2.1.



Tab. 4.2.1Approximate ¢éngths of upper and lower waécirculation regions.

Study \I" '@ pedle pamb | @  ghhje Ddibb
Gartling (1990) 6.1 5.6
Armaly et al. 7.2 4.1
Kim et al. 6.0 5.75
Sohn et al. 5.8 4.7
Oracle3D 5.91 5.8

Fig. 4.2.9 Flow streamlinesbtainedwith GartlingOs configuration at R=80@ith Oracle3D

For quantitative comparison, {klocity results for two downstream sections at X=7.0 and
X=15 were extracted to compare with benchmark resul@aofiing (1990) Fig.4.2.10 shows

that results with ouparallel NavierStokes solvematch excellently with the benchmark results
provided in[12]. It is evident that the downstream flow at x=15.0 has developed a parabolic
velocity profile and far away from the step the flow behaves as a normal channel iew. T
solution was foundo converge weland there was no impact of the outflow boundary on the
flow upstreamFig. 4.2.11 shows velocity vectors on different x section along the Y direction.
In these figures, complete domain length for X = 30 is not showetter visualize the results.

Fig. 4.2.10 U velocity comparison plots: a) X=7.0, b) X=15.0



Fig. 4.2.11 Velocity vectors on different sections, R=800

It is also important to note here that this simulation was performed with 8prdédssesT he

grid size was 4000 X 200 ctval volumes, which was refined at the bottom and top walls. Fig.
4.2.12 shows the velocity contour along with thin black lines which represent the MPI sub
domain interfaces. Thus, each smaller domain as defined with tlaekelibes in Fig.4.2.12
was managed by a different Mpfocess

Fig. 4.2.12 Velocity contours within individual MPI sdbmains.

Same configuration of BFS (Fig. 4.2.8) was also analyzed for other Reynolds numbers: 100,
200, 389. In these cases, however, the domain length was reduced to x = 10.0 only, as there
areno phenomena of interestcurring further downstream. These problemse solved with

180 MPIlprocessesand the grid size was 4000 X 900 control volumBse decomposition of
domain in MPI sullomain is presented in Fig. 4.2.13. The distributioprotessess 40 X 9,

in X and Y respectively. The grid is finer near the step and gets coarser and coarser after x =
5.0, thus the distribution gdrocessess finer near the step, as egmtocesshas equal size of
computational cells to work ofigure 4.2.14 illugate the full domain with velocity contours
provided within each MPI subomain, for Reynolds 389.

Fig. 4.2.13 BFS configuration with domain decomposition indi@essesase.



Fig. 4.2.14 Velocity contour in individual swlomain for R=389

Thereattachment lengsof the separated flow from the step cornenédl reported, and it is

often used to compare the results with different methddee, we consider the reattachment
lengths with above mentioned three Reynolds numbers. Fig. 4.2.15atisstthe flow
streamlines for steady state flow with Reynolds numBeiB0, 200 and 389. This is laminar
regime and the size of the recirculation zone increases with increasing Reynolds number, as
evident from Fig. 4.2.15Thelocation of reattachment abtained from the numerical results

of Armaly et al. (1983), and corresponding values obtained with our simulations are provided
in tab. 4.2.2Non-dimensional valugof reattachment length are used here which is the division

of reattachment length withé step height: Xr/h. Here, step height (h) is 0.5.

Table 4.2.2. Comparison of numeriyabbtainedvalues of reattachment lengtfsr/h)

Reattachment length

R=100 R=200 R=389
Armaly et al. (1983) 3.18 5.0 7.9
Oracle3D 3.1 5.2 8.2
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Fig. 4.2.15 Flow streamlines: a) R=100, b) R=200, c) R=389

4.2.3 Validation of Periodic Boundary

Periodic boundaries are essential part of any N&dtigkes solver. We provide here the solution
figures of two test cases which wegverformed to validate the implementation of periodic
boundary condibnOs implementation in OracleFeriodic boundary conditions were newly
implemented in the MPI version of the code, so it was felt important to provide the test cases
for the benefit ofprospective users of Oracle3D. Classical Poiseuille and Couette flows were
used for the validation of the periodic boundary implementation in our code. Details of these
flows can be obtained from any standard Fluid Mechanics H&@k4§.

Fig. 4.2.16 Bows Poiseuille flow with Periodic boundary conditions, which depicts that the
flow comes out at the east face in a parabolic profile, and the same flow enters at the west face
of the channel. In Couette flow, we provide a velocity U=1 at the top fadeaohelas the
boundary conditionDue to the difference in velocities of adjacent layers of fluid a pressure
gradient is developed in the channel which makes the bottom portion of the fluid moving in
negative x direction. And, as we have periodic boundarteeast and west faces, we see that

the flow which comes out the west face goes in at the east face. These two simple test prove
that the periodic boundaries are well implemented in the parallel solver.

Fig. 4.2.16PoiseuilleFlow with periodic boundaries along X direction



Fig. 4.2.17 Couett&low with periodic boundaries along X directiowith an adverse pressure
gradient

4.3 Parallelization of Transport Solver

Within the Oracle3D framework, we developed a gentgeaisport solver also. This solver
mainly solves a convective transport equation for a scalar vaifahldike electric charge
density The diffusion term ofhe transporphenomends not included her® exclusively study

the efficiencyand implementi#on of the convective schemes. Total Variation Diminishing
(TVD) schemes are implemented to resolve the spatial discretization with highettbede?
accuracy. Special attention was paid for the parallel implementation of TVD scheme at the
interface wdesand the boundariesshost cell method is adopted to store the neighbor tlata a
interfaces, because in TVD schendesa from more than one neighbor nodes in each direction
is required depending on the flow directiédso, the periodic bandary conditon feature was
implementedand testedn this transport solverThe whole implementation is detailed in
Chapter Il. The general transport equation as used in this solver is:
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4.3.1 Tesof Periodic transport

Test simulations were performed to validate the parallel implementation of TVD scheme and
periodic boundary condition for the tisport solver. Both, 2D and 3D runs were undertaken
with multiple number of MPIprocessesin the 2D case, a square domain with periodic
boundaries on both pairs of boundaries (X and Z direction) was taken. A smaller square area in
the domain is provided Wi value* . 2 which extends from 0.2 to 0.5 in both directiphRiy.

4.3.1 (a) The constant velocity componeimsthe two directions are givenas U =1.0and W =
1.0, which will direct the overall velocity along the diagonal of the square domain. Under the
influence of this diagonal velocity the scalar quantifywill get transported (advected) in the
diagonal drection. As we have set the periodic conditions on both pairs of the boundaries, we
will see the smaller square corresponding to 2, will go out of the domain from upper right
corner and it will reenter the domain from the botteeft corner. This is épicted in Fig. 4.3.1

(b).



Fig. 4.3.1 a) smaller square with. 2, b) Periodic transport of , along X and Z boundaries

This test was carried out with a fine grid (500 X b@® have enough load for all the MPI
processesised In total, 100 MPlprocessesvere used for this prédm, 10processes each
direction. The thin black lines in the domamepresents the boundaries for the MPI-sub
domains, which are handled by differenbcessesAn animation was created to bettemakze

the transport mechanism through periodic boundaries. We observe that there are some portions
of the smaller square visible at the upfegt and bottorrright corners also, which is perfectly
valid, as the vertical side of uppeght corner is peridically paired with the vertical side of
upperleft corner. And similarly, the vertical side of bottdeft corner is periodically paired

with the vertical side of bottomght corner. Same argumergee giverfor the horizontal sides

of these corners alswhich is the reason for the appearance of square portions at the other two
corners.

Same case is repeated in 3D domain, where we have set all three pairs of the boundaries as
periodic. Grid for this case was 200 X 200 X 200, and 32 pM&tessewere sed. As shown

in Fig. 4.3.2, the domain in X was partitioned withrécessesn Y with 2processeand in Z

with 4 processeamnaking the total count girocesseto 32 for this case. The velocity vector as

given in this case waM. +2,2,2-, which againprovides the diagonal overall velocity. The
location of cube before and after the periodic transport is shown in Fig. 4.3.2. Thus, the cube
goes out of the domain at the corner location (1, 1, 1) ardtezs the domairrdm bottom

corner at (0, 0, 0). Aese two tests show the capability of the TVD scheme and the periodic
boundary implementation ithe parallel code which are the most important features for the

EHD problems.



Fig. 4.3.2 3D periodic transport of a culgth* . 2, location after and before the periodic
transport

4.3.2Test of rotational transport

Rotational deformation allows to test the efficacy of convective schemes by presenting greater
number of discontinuitiesluring the motion And, alsofor the test efficacy of parallel
implementation this case presents higher degree of complexity in data communication at MPI
domain interfaces. In this test, a squsineped scalar field extends from 0.4 to 0.6 in both x
and y directions, as shown in Fig.3.3. The square scalar field is subjected to rotational
velocity field given by:

L. "Ly 1Kl 4645 $- | <=4B4&; & - +0D2-
m. 'm | IN0'+64$; $ -1 8I:464&; & -y +0D4-

HerelL; andm are the magnitude of velocity components which are set to 1. The coordinate
(%, & - corresponds to the point (0.5, 0.5), which is the center of the square and also the center
of the domain. This velocity field introduces a clegise motionin the squee scalar field. The

level of numerical diffusion of the TVD scheme depends highly on the grid refinement. We
carried out this test with three different grid sizes: 1) 100 X 100, 2) 200 X 200 and 3) 1000 X
1000. Naturally the coarse grids are expectedddyce higher degree of false diffusion than

the refined gridwhich was observed durinis test Fig. 4.3.4 1t is also observed that at the
corners of the square scalar field the edges have been curved a little in case of the refined grid.
This test wa simulated with 1@rocesseshowever the square scalar field was limited to only
central 4processesas seen in Fig. 4.3.3. It is evident with the solution that the implementation

of TVD scheme at the interface of the MPI domains is well done, astdi®nal motion was
observed to be smooth and continuous at the interfaces.



Fig. 4.3.3 Location of square scalar field before rotational deformation test.
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Fig. 4.3.4Rotational deformation comparison with 3 grids
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Chapter 5
EHD Unipolar Injection

Oracle3D is mainly an Electrohydrodynamic (EHD)ver which has been used to perform
several studies includingnipolar Injection, EHD conduction, electrgeparation.electro

thermo convectiorflow control studiesusing plasma actuatgrstc. [1-11]. All the necessary

and important details regarding the code Oracle3D have been described in previous chapters,
including the validation and performance te3tsis chapter presents the import&iéctro
convection (ECyelatednumerical work carried out with Oracle3D during the course of this
PhD. Oracle3D consists of a Poisson solver, a NaStekes solver, and scalartransport

solver for severadpecis. A combination of these three physical models makes the complete
Oracle3D code.

In terms of tansport solvers, three separate modules are availableich individually solve
the Unhipolar Injection (one charge specidsgctro-conduction pumping (two charge species),
and Plasma discharge (three charge speciesglmddhe studies with Oracle3until now,
mainly dealt with two dimensional domajngniting its use for three dimensional aspects
associated with the EHD problems. Now, as the parallel veisioreparedwe revisit some
classical EHD problems focusimgainly on their 3D aspectén outline for this chapter is as
follows:

The first part (5.1) othis chapter covers the EHRoblemof unipolar injection in dielectric
liquids between parallel plateSome initial tests with son®D cases are provided to validate
the implementation in codeand then 3D electroonvection is discussed in some details
Second prt (5.9 dealswith EHD plumes induced by ion injection in blagkane configuration
Simulated results ammpaed with ®me similaravailablestudies

5.1 Unipolar Injection between parallel plate electrodes

The phenomenon ohipolar injection indielectricliquids is well reportedboth experimentally
and numerically Severaltwo-dimensionalnumerical studies are aviable to compare the
qualitative and quditative results with this model [1,2,9,27,28A good amount of
publicationson this problemwere carried out witlthe previous version of Oracle3D (Fortran
77 basbkne version) [l-11]. This presents us withn opportunity to validate the unipolar
injection module ofparallel Oracle3D codeagainst the scalar codeesults Some 2D
simulaions with established results are provided after explaiieciraconvectionn unipolar
injectionwith the mahematical mdel. And, a detaile@D analis of the problem will follow
afterwards.

5.1.1Introduction

Electraconvectionbetween planar parallel electrodessbeen investigated widein last few
decadeg12-23]. A dielectric liquid, confined between two paralpdate metallic electrogks,
feels significant impact dhe electric field produced by the two electrqdeisen supplied with

an electric potential differencéligh electric field between these electrodes leads to complex
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electrochemical reactions at tekectrode surfaces. In such situations, charge particle injection
may occur at the interface of liquid and electrode surface, on one or both elef2t@8gs
Whenthe ion injection occurat only one of the electrode surfaces then it is commonly termed
as unipolar injection1].

Theinjected ionggain momentum due to the Couaib force, and they start migratiagcording

to the electric field directiorA strong enough electric field develops an instability which also
sets the liquid into motion, affenty the overall convection of the injected i¢ls Such motion

of liquid, with low enough conductivity, can be compared with a liquid motion due to the
difference of temperature between liquid layers (thecormvection)[13]. The two ways of
convection idiquids: thermeconvection and electroonvection are often compared according

to their similarities of induced flow patterns (rolls, hexagons etc.), and, dissimilarities in the
underlying mechanisni42, 37]

Unipolar injection phenomena, which is famdental to EHDmakes a definitive analogy with

the classical RayleigBenardconvection (RBC]12, 25. The liquid motion is hindered by the
viscosity (for weak forces), and the state of liquid is potentially unstable in both phenomena.
Atten et al. (197Ppexplained differences in transport mechanisms in both types of flows. In
thermoconvection, heat is transferrdaly liquid convection and diffusignhowever, in
electroconvection the diffusion of charge particles is mostly negligible, and charges mainly
move under the influence difjuid convection aneklectric field with a significant mobility.

From numerical point of view, electroconvection is a system oflinear oupled set of
equations, andn RBC the energy equations (heat convection) are ofrlinaturefor the
temperaturavith the OberbeckBoussinesq approximation [12 3&tudies on specific pattern
formations, both numerical and experimental, in these two phenomena have been reperted sin
the conception of RBC in 1900Sellular flow patternsike parallel rolls, rectangles, hexagons
etc. are numerically investigated irBR by several authors [407]. Getling et al. (2003)
presented an evolution study ona&dimensional patterns iRBC andnoted that the flow
seeks optimal scale to stabilize. Rapaport (2006) performed a molecular dynamics simulation
to attain the hexagonal convective patterns in RBC.

In unipolar injection, searaltwo-dimensionalktudies have been published several grops

using different numerical methods tovathe set of EC equationg,p1,23,27. Perez et al.
(1989) discussed the role of diffusion and Coulomb repulsion with Flux corrected transport
(FCT) algorithms in finite amplitude EC. They highlighted that eady charge distribution is
mainly dependent on advection terms, and diffusion needs to be included only itssstady
solutions are simulated [R@Castellanos (1990) investigated injection induced instabilities and
highlighted chaotic flow in unipolanjectionat high electric fieldsVazquez et al. (2008) did

a stability analysis and obtained the two roll structure with Finite eleBEQIT and Particle

in-cell (PIC) methodsTraore et al. (2013) investigated the evolution of EC flow from one
convecton cell structure to two convection cell structure; and then finally the chaotic regime
above T = 1500. Wu et al. (2013) addressed the stability issue in wall bounded cavities with
different aspect ratios, with Finite Volume method (FVM). All of theseistudere carried out

in two dimensional cavities.

Naturally, a large amount of research work in EC is accompanied by a lot of industrial
applications also. Heat transferhr@mncement48,49, electrostatic precipitation$1,53], flow
control application52], EHD drag pmps [50], atomization technology and EHD turbulent
mixer [53, are just a few to mention her@oulomb force by the external electric field is the
main driving force for the injected charge particles in gases. The high mobilities of gaeseis
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make them move much faster than the neutral gas molecules. However, in liquids, the ions
having rather low mobilities are also convected by the bulk liquid mexeept their drift
velocities due to the Coulomb forCEhus, the charge particles liquids experience both the

drift and the strong coupling with the liqundotion Both the electrical and the hydrodynamic
effects are strongly felt by the injected species in liquid.

5.1.2Mathematical Formulation

The motion of liquid greatly modifies the charge distribution within the bulk and, consequently,
the electric field due to the charge particles is also modified. This elgairodynamic
coupling, along with the mathematigabtability, presentgreat dificulties for those seeking

to solve thisEC problem numerically in complex settingstten and Lacroix (1979) studied

the unipolar injection problem theoretically and experimentally, and successfully predicted the
characteristics of this EC flow with Gakin-type method [12 R Their model was later verified

with several nmerical studies [9,19,23The complete set of nesimensional, coupled EHD
equations governing unipolar injectiaas follows:
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We assume the liquid to be incompressible, Newtonian and completely insukstrgfying

eg. (5.1) Here, %( [BHE-EGHis the velocity vectofor the bulk fluid Generalized presse in

the bulk liquid is expressed with, which contains both the hydtaic pressure and the
electrostriction parflhe transport of charge due to diffusion is neglected in our unipolar model
from the eq. (5.3)The external electric fiel® is induced by the potential differertds (

B; 0 B, between the two electrodes. The chadgesity’9, is acted upon by the Coulomb

force, 9% which acts as the only source for fluid motion in eq. (5.2). The fluid is considered
homogeneous and isothermal, leaving the effects of temperature on systemegligible.

The charges always assumed to be injected by the lower electrode in our aaskethe other
electrodeworks as a collector of chargedVe find four nondimensional numbers to be
explained with above equations: 23, M and C.
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Here, T isthe electric Rayleigh numbawhich is described abhe ratio of Coulomb force to
viscous forces. C is termed #e injection strengtlwvhich is a dimensionless measure of the
injection level.M is the ratio between the hydrodynamic mobility and actual ionic mobility,
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and23,is the electric Reynolds numb@&ihe fluid properties are denoted wWiNh(fluid density),
O(kinematic visceity) andM(electric permittivity).

Fig. 5.11 Computational field and the boundary conditions

5.1.3 Unipolar injection D cases

The 2D problem cdrguration is provided in Fig. 5.1. The bottom wall is used as an injecting
electrode and thimp wall behaves as a collecting electrode. Dirichlet boundary conditions for
electric potential and charge density are set for these two walls. The side walls are given with
Neumann boundary conditions as showne Electricpotential and charge is initized with

an analytical solution, to quickly achieve the desired solution.

A)!' T= 200 case

Several values of T parameter are considered to validate the 2D solution against available data
in literature. The solution with T=200, C=10 and M=10 is well eshbd. In this configuration

and parameter setting, a single convection cell is observed with T=200. We took a mesh of 100
X 200 control volumes in X and Y direction respectively. The domain width of 0.614
corresponds to wave lengthof one convection ck(cell size) in this setting.

Firstly, it is important for us that our MPI implementation gives same results withuamyen

of MPI processesised. Weconsidered 4 cases: 1)1 block, 2) 2 symmetrical bjo8kst
symmetrical blocks, and 4) 4 asymmesti blocks. And, also siulated these cases with 8
processeand 16processeCharge density contour results are provided in Fig. 5.1.2 for these
four cases, in which one convection cell is observed for all the four casesyassreported
with T=200 in[6,9].



a) b)!

C) d)

Fig. 5.1.2 Charge density contour showing one convection cell with T = 200, for 4 cases of different
block configurationsa) 1 block (8rocesses b) 2 blocks (§rocesses ¢) 4 symmetrical blocks (8
processers d) 4 asymmetrical blocks (JBocesses

For quantitative comparison, different variables wdadted on a section at X = Q.4our
variables, charge density, electric potential, U velocity and V velocity components were
obtained as shown fig. 5.1.3 and Fig. 5.1.4. All the plots show a very good match among all
the four cases, which justifies the parallel implementation, mainly the message passing at the
interfaces of differenprocessesElectric potential contours with thé 4ase (4 asnmetrical

blocks) are depicted in Fig. 5.1.5.
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Fig. 5.1.3 Charge density and electric potential plots for different block configurations.

Fig. 5.1.4 X and Y components of velopityts for different block configurations.

Results withparallel Oracle3D, were also compared with the baseline Fortran 77 code, which
has been alidated previously [7]. Maximum velocity profile obtained with 1 block case (8
processeswas compared with the profile obtained from baseline code. Fig. 5.1.6 shaiv

the obtained maximum velocity is same with the baseline code, however, there is a small delay
with the parallel code in the onset of instability. It was observed that this problem of unipolar
injection was numerically very sensitive to several facike grid, time stepnumber of
processestc., for the onset of instabilif9]. However, the magnitude of the maximum velocity
obtained wasalways comparabl®r same conditions. Plot on the right in Fig. 5.1.6 is the charge
density profile comparisoan the section (X=0.4), which shows a very good match with the
previously validated code results.



Fig. 5.1.5 Electric potential contours with pgocesse&t block asymmetric case)

Fig. 5.1.6 Maximum velocity and charge density profi@sparison with baseline code results

B)! T > 200 cases

As we increase thelectric Rayleigh number (T), keeping the M parameter constant (here
M=10), we increase the electric Reynolds numbey) @ the induced EHD flowThe flow
remains in stationarymainar regime, with one convectieell, until T=250 [1 With the higher
values ofT the flow structure between the two parallel plates changes significah#dyflow
reportedly starts to oscillate periodically in timelaspace at T=260 [t wasreported in [1,9

that the one convection cell EHD flow changes tava-convectioncell regime at T=300.tI

was observed on the maximum velocity profile that firstly, the flow sets into motion with the
onset of instabilityfollowing the exponential growtin maximum velocity At the maximum
velocity state, the flogeems steady for some tinkdowever, a the flow is allowed to evolve
furtherin time, flow starts oscillatingandthere appears a sudden falkthe maximum velocity
which corresponds to the sgt of second instability in the flovit this point, the one cell steady
regime turns into a two steady convective cells regime. Traore and Perez (2012) showed two
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convective cells flow structure with T=300, which was obtained by Jian (2012) also. They
obtained these results with Finite Volume method, however, Vazquez et al. (2008) had reported
thetwo-cell regime at T=400 with particle in cell method (PIC).

Our simulation was carried out withpBocessesn same settingss Traore et al. (2012). Fig.
5.1.7 shows the profile of maximum velocity evolution with time, which clearly indicates the
second instability at roughly 60 nalimensional time units. The contour of charge density
shows the two convective cell structure of the EHD flow, as reportedheysotFig. 5.1.7
should be compared with Fig. 15 in Traore et al. (2012). The magnitude of maximum velocity
is also a goodnatch with mentioned studies.

Fig. 5.1.7 Maximum velocity time evolution and charge density contour after occurrence of second
instability, for T=300 with 8processes

Simulations were also performed with T=400 witl10, 16 and 2@rocessesAll of these tests
showed thesteady twecell flow structure.Increasing further the T parameter, leads to the
chaotic regime of flowmwhich has been well reported in [f,Fhe steady two cells are observed

till T=500 and above thaperiodic oscillations start again. Above T = 1500 the flow is
characterized by the EHD plumigg. The flow becomes fully unsteady and the plumes occur
more frequently as we increase T further. The destabilization of laminalagab near the
emitter electrode gives rise to the formation lafrge particle plumes [1Simulation results

with T=4000 are depicted in Fig. 5.1 Bhe Vmax plot explains the unstBanature of flow

and charge density contour indicates a rising charge plume from the emitter electrode surface.
A simulation was carried out with 10 times longer domain, results of which are shown in Fig.
5.1.9. This simulation had 600 X 100 grid cellsl anwas simulated with 3@rocessesThis

figure shows larger number of frequent EHD plumes arising from the emitter surface.
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Fig. 5.1.8 Maximum velocity evolution with time and the contour of charge density showing EHD
plume formation.

Fig. 5.1.9 Charge density plumes with longer domain at T=4000, [grid (600 X 10pjp82ssels

5.1.4Unipolar injection 3D cases

A full 3D EC problen is computationally very demandidge to the presence of high gradients

of charge density, and theraplex coupling of nofinear equations of charge density, electric
potential and flow variableI'he complex nature of governing equationas restricted EHD
communityto a very few 3D numerical studid=or such problems, a parallel code with desired
scdability is indispensableVazquez et al. (2011) performed a stability analysis of a 3D EC
between parallel plate electrodes using PIC method. They simulated weak injection regime and
obtained the critical values of T parameter for onset of instabilitgamgared the results with

the values obtained from linear stability analysis. Kourmatzis et al. (2012) discussed mainly the
turbulent regime of EC flow between two parallel plates.

Demekhin et al. (2014) used Finite Difference method to simulate 3Desdlstructures with

direct numerical simulation (DNS), and described the evolution of patterns in EC. They
observed three characteristic patterns:-tliwvoensional EC rolls, 3D regular hexagons and
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other 3D structures of spatiotemporal chaos (a combinafidmexagons, quadrangles and
triangles). They showed that the transition from 3D regular patterns to chaos was accompanied
by interacting two dimensional solitary pulses. A 3D flow pattern study is most recently
reported by Luo et al. (2018), where thegdribed the use of Lattice Boltzmann method (LBM)

to obtain stable hexagonal cells in plane parallel plate electrode configurEtein.study
covered the most comprehensive stability analysis of hexagonal cells with a range of non
dimensional paramete($, M etc) [37,38]

After validating the injection module of Oracle3D with 2D casesalseinvestigate 3D flow
patternevolutionin the unipolar injection case in planar parallel plate electrode settitig

our Finite \blume approachrheoccurrence of hexagonal cells is a core featureaf 8aws,

which has been observedperimentally and theetically. In pure, isotropic liquids there is no
favoured direction for the convective cells to develop in horizontal plane, and hexagonal
convetive cells has higher symmetry to stabilize than other polygonal patternsrgsqu
rectangles etc.) [12,)1.3However,before Luo el al. (2018) stableexagonal cells were not
reproduced by any numerically study in EC.

We started our study with symmetspundary conditions (zero gradients for all variables) on
the four vertical boundarig&ig. 5.1.10) No-slip condition for velocities on the high voltage
electrode, andero gradienbn the grounded electrode. Electric potential was set to Dirichlet
boundary conditions on high voltage (V=1) and grounded elect¢de0). Charge density

was set to Dirichlet value (g = 1) on high voltage electrode and zero gradient on grounded
electrodeThe nondimensional parameters were taken as T=170, M=10, C=10.

Fig. 5.1.10 Boundary conditions for 3D E@se with symmetry on four sides

In experiments, hexagons were observed in cylindrical cavity laige aspect ratio [];2and

in stability analysis an infinite domain with fully developialv is usually assunte[34, 317.

Larger domain sizes (L=W=5, 10) were simulated first to reduce the impagmohetry
boundaries on the conuemn cell formation. The effects of domain size, grid, time step and
initial velocity perturbations were analysed to obtain steady hexagonal cells. Table 5.1 provides



the details of thretestscases presented haviéh symmetry boundaries on lateral walls first
case, no initial velocity perturbations were providaddevolution of Vmax was plotted with
time (Fig. 5.1.11).The instability occurred around 50 nrdimensional time units, and it was
observed thathe flow started evolving with initial heganal cells. Al the convection cells
which did not have direct contact with the lateral walls vedagervedo bein hexagonal shapes
at the onset of instability.

Tab. 5.1 Cases details ran with symmetry BC on vertical boundaries

Grid Control Volumes total | Vinitia Time step T
(Lx,Ly, Ly (million) (dt)
1. (5,15 6.25 (250 X 100 X 250 0 10° 170
2. (5,15 6.25 Hexa 10° 170
3. (10,1, 10) 25 Hexa 10° 170

In Fig. 5.1.11, a towiew of charge density issurfaces at q=0.19 is shown. The observed
hexagonal cells were of random shapes at the onset of instability, as they were evolving. The
cells were pushing each other in all directions to achieve an opitalalto stabilizéhemselves

as also reported b§etling et al. (2003jor RBC and by others in EC [37,38The charge
density isesurfaces at q=0.0fh Fig. 5.1.12depict a bun like shapef convection cellas
reported byLuo et al. (2018), the charge density inside this cell was observed to be zero. This
explains the8D charge transport mechanism in such EC f&svexplained by Atten et al. (1979)

and Luo et al. (2018wherethe charge particles mainly migrate under th delocity effect

and this drift velocity compete with the liquid velocity after the instability occurs. The domain
regions wherehe drift velocity of charges is balanced te liquid velocity component in
electric fied direction, remainmd of chage particles [1R and these regions (convection cell
centres) are strictly free of charge.

Fig. 5.1.11 Vmax evolution plot (case 1), and the top view with charge densiyiréace at g=0.19
at the onset of instability.
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The clarge void regionsre a characteristic featuod these EC flows which is completely
different from RBC. In these EC flows, the fluid always descends in the centre of cells,
however, in thermal convection both upflow and downflow hexagonal cells have been observed
to be coeisting [44,43. In Fig. 5.1.13, we present the vertical velocity-ssmfaces at Vy=1

(in yellow) and Vy=1 (blue), which show that the flow velocities in the peripheral regions of
the cells are in upward direction and in tentreof the cells it is a odwnward motion. We
observed that the flow did not reach a steady state in this simulation, as the hexagonal cells
could not stabilize untiLl50time units and the maximum velocity evolution plot shows the
unsteady nature of flomHowever, it was observetthat as the convection cells pattern was
evolving the flow in the cell centres was always downwards.

Fig. 5.1.2 Charge density issurfaces at q=0.19 (hexagonal cells), and q=0.02 {baped cells),
at the onset of instability.

Fig. 5.1.13 Vertical velocity(Vy) iso-surfaces at Vy=1 (yellow) showing upward flow at convection
cell perimeters, and Vy =1 (blue) showing downward motion at the centre of hexagonal cells
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Fig. 5.1.1 Charge density iseurfaces at 150 nedimensional time (q=09)

In this simulation, the convective cells seemed to be evolving more towards attaining
rectangular shapes as observed in the charge denssiyrisge plot taken at the last time step
(Fig. 5.1.14). Acording to the theoretit stability analysis [1]2 perfect hexagonal cells are
preferred in infinite domain. Due to the limited numerical domain size and the consfraint
numericalboundary conditions, we could see flow evolving with irregular hexagons and finally
after a long time trying to stabiliz@ rectangular cellsWe also noticed that the instability
occurred around0-time units for case 1 (Tab. 5.1which was computationally expensive
without any gainTo expedite the occurrence of instabilggd obtaining a stable hexagonal
pattern, wenitialized the flow with arartificial perturbatiorin vertical velocity componenin

all following simulations

Luo et al. (2018) reportedly used a special initialization technique to reproduce the regular
hexagonal pattern, where they introduced a albatperiodic small perturbation in vertical
velocity component. This perturbation is a hexagonal pattern whicheis gy Chandrasekhar
function [37 as:

F( B WYH L]/ xvz—A_[‘ aXYZR[.\—]S'u I

WhereF is the vertical velocity, V(y) is the amplitude of the perturbafigns the wave number
corresponding thevavelengths of hexagonetlls; and], = are the coordinate points on the
boundary. Fig. 5.1.15 shows a sample domain with the contourstichvgelocity initialized

with eq. (5.7). This function was used for all further simulations, as depicted in column 4 (Vin)
of Tab. 5.1.
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Fig. 5.1.5 Spatially periodic hexagonal perturbation contour

Case 2 (Tab. 5.1) was simulated vihirs perturbation in vertical velocity (eq. 5.7). Maximum
velocity evolution and charge density 4sarfaces are shown in Fig. 5.6.IThe instability
occurred within20-time units in this case, which is the clear effect of using the initial
perturbation.Near the onset of instability, the convection cells started developing with the
initial hexagonal cells as shown in Fig. 58.The burshaped cells with issurfaces (q=0.02)
were observed in this case also. Fig. ¥ Hépicts, the charge density isorfaes with the

MPI subdomain interfaces, showing that one convection cells is spanned over many MPI
processesin all three directionsverifying that the code communicated data among many
processe®ffectively to producea continuous convection cell patterfhis simulation was
carried out with 200 MPprocessesAlthough, the maximum velocity plot shows that the
maximum velocity was much more stable than Case 1, however, the hexagonal cell pattern was
not stable,and the flow evolved with irregular patteras observed in Case 1.

Fig. 5.1. Vmax evolution plot (case 2), and the top view with charge densiyr&aces at g=0.19
at the onset of instability.



Fig. 5.1.I7 Charge density issurfaces at q=0.19 (hexagonal cells), and q=0.02 {bbapecdcells),
at the onset of instability, with MPI domain decomposition.

Attempt was also made to simulate this flowairdomain with L=10, W=10, H=1t was
expected that theonvection cells which are farthom the boundaries will be more stable

than the ones near the boundaries. However, the hexagonal pattern did not stabilize even for
the cells which were farth@wayfrom the boundaries. Fig. 5.B%hows the convection cell

pattern at the onset of instability, where many irregular shaped cellssamweth The state of
flow at the last time step was observed to be more chaotic.

Fig. 5.1.8 Vmax evolution plot (cas®), and the top view with charge density-mafaces at q=0.19
at the onset of instability.
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With all the simulationslone with symratry boundarigswe observed that there was a strong
influence of the applied boundary conditions on the stability of the convective cells. The
hexagonal pattern as observed in other studies is a spatially periodic patterBg]2y@7ere

it is seen thathe wavelength of hexagonal cells in z directiog) s Atimes the wavelength

in x direction(/.) [38]. It was observed that in numerical simulations the domain size in
multiples of wavelengths of the periodic pattern in both directions (x and z) is important to
stabilize the convective cells [37,38]. In other words, if the domain size is suchdhaffit a
certain number of convection cells completely, then the whole flow will gain its optimal scale
rather quickly and stabilize sooner than within a random sized domain. Also, with such domain
sizes it becomes important to use the periodic bourztanglitions.

As mentioned, the EC flow resembles with the RBGe cellular pattern studies RBC [41-

47] have been available in literature for a longer period of time thaB@h&udiesGetling et

al. (2003) have reported raumerical patten study wih RBC, wherethey discussed their
numerical schemes and described the transition of pataomng various cell types. In EC
flows, two studies reported in 201fave used similanumerical technique@nainly periodic

BC), as Getling et al. (2003and in he most recent one they observed the stable hexagonal
pattern[38]. In our study, we did observe the hexagonal cell patievea without using the
hexagonal initial vertical velocity perturbations (Case 1), which Luo et al. (2018) reported as
essential tmbtain a fully developed state, but they were not stabl®efsz et al. (1989) noted

that the role of diffusion is negligible in these injection phenomena, but to attain a steady state
in numerical simulations we should consider diffusion of charge alsmet al. (2018) have

also used a diffusion coefficient in the range of £A.0*.

We attempted similar values of diffusion coefficient with our zero gradient boundary conditions
but with diffusion also we could not stabilize the hexagonal patt@nally, we note that the

zero gradient boundary conditions are not suitable to realise the stable hexagonal patterns, and
periodic boundary conditions, with and without diffusion, should be examined with Oracle3D

to obtain a stable EC flow. Some initiatnsilations with periodic boundaries were performed

but for satisfactory results a complete dedicated study is required which in the constraint of
time limit of this PhD could not be achieved.



5.2Unipolar Injection between blade and plane electrodes

Electrohydrodynamically induced flow phenomenaliglectric liquidsin case of bladglane
electrode configuration has been studisath umerically @38, 5355] and experimentally [56

58]. The EHD fow occurs in both injection and conduction mechanisms of charge tramsport
dielectric liquids In this section, we mainly deal with the injection mechanism, which requires
a certain threshold of electric field to occur and below this threshold valekedatfic field
conduction dominates in dielectric liquidsbove this critical value of electric field, injection

of charge particles occurs at the bldlded interface.In injection phenomena, the blade works

as an emitter of charge patrticles, and tlanelelectrode behaves as a collecibe injected
charged particles bring the surrounding fluid also into motion by transferring their momentum
to neutral fluid particles. This sets the fluid motion like a jet towards the plane electrode. This
jet like flow is commonly referred as aleetrohydrodynamic plume [$4

This type of jet flow has been investigated for applications like tnaasfer enhancement
mixing of fluid, flow control etc Thus, like the thermal plumes, describing these EHD plumes
is important from the industrial point of view. Vazquez et al. (1995) undertook a comparative
study of thermal and EHD plumes, analysing axisymmetric plumes for various Prandtl
numbers.Several flowing numerical studies by Vazquez et al. were performed with Finite
element based numerical approaches to adequately describe the EHD phanéseir
characteristics [581]. Perez et al. (2009) analysed the EHD plumes in bidamiee setting,

with Finite Volume method using a TVD scheme (SMARAnd addressed different flow
regimes and characteristic flow structures in such EHD flows.

Recently, Traore et al. (2013) numerically analysed the EHD plume flows with different blade
configurations, incorp@ting various injection laws [94 They found significant impact of
blade shape and injection laws on flow structure, specially the transition of flow from steady to
unsteady regime<ritical Reynolds number for the hyperbolic bade configuration was noted
for considered injection laws and it was shown that for Reynolds number of #G0@0w

turns turbulent with development oKalvin-Helmoltz instability [54. Wu et al. (2014) carried

out a numerical heat transfer enhancement study with EHD plume fldwy. also used a
hyperbolic blade design in strong injection conditions. A dramatical increase in heat transfer
rates from the plate electrode surface was reported with the applicatiopioging EHD jet

flows [48]. Traore et al. (2015) also briefly reped an unsteady injection case, with electric
Reynolds number of 200, describing the formation of Von Karman street of ventnaesating

from the blade tip [5b

5.2.1Problem Definition

Most of the abowenentioned studies were two dimensionalwdger, it is important to analyse

the turbulent EHD plume cases in 3D, which are of immense practicaRu3B. bladeplane
injection phenomenom adielectric liquidwas studied with parallel Oracle3D. In blgglane

setting, the blade is used as a high voltage electandethe plane electrode is ground@dth
electrodes are separated by a distance d, as shown in Fig. 5.1.1. A voltage diffeBe0& of

, Is appied between the two electrodes to generate an electric field in the gap, towards the plane.
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Fig. 5.2.1Bladebplane configuratiorsketch

A hyperbolic bladgplane configuratiomwvas usedor this study which corresponds to blade 1

of Traore et al(2013) The computational grid consists of 100 X 196 X 100 control volumes

in X, Y and Z directions respectively, making it roughly a 2 million cells.dgfig. 5.1.2 depicts

the nondimensional domain extents in all three directions and provides 2D ante@® of
grids.The grid near the blade tip and the surroundings was refined to capture the sharp gradients
of charge in those regionAlso, this grid was created following the ipotential and iso

electric field lines. It should be noted that the cogeace rate improves in the grids which

have grid lines aligned with the ipmtential andso-electricfield lines [B4].

Fig. 5.22 Bladeplane computational grid: 2D and 3D views
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Boundary conditions for thisrpblem are described iRig. 5.23, with a 2D sketch, zero
gradientconditions were usedn the front and backoundaries (z planes)he fluid is
considered at rest at the start, and all the boundaries are sedlijfp candition for the velocity
components. For electric potel, Dirichlet conditions oB = 1 andB = 0 are set on the blade
and plane electrodes respectivéljectric charge density is set@q , , on the blade and rest

of the boundaries are set to Neumann condition of zero charge density grAdieletailel
earlier, a 2¢ order TVD scheme (SMART) was incorporated to discretize charge density, so
that the sharp gradiesttould be preserved without numerical oscillatiortse set of governing
equations detailed in section 5.1.1 applies to this case also.

Fig. 5.23 Boundary conditions for blag@ane injection case

5.2.2Initial simulation with autonomousnjection law

An unsteady case, witR=5000, C=10 and M=10 was simulated fuiststudy. Thre@jection
laws were taken into consideratidgimulation with a classical autonomous injection law, in
which the charge density on the blade surface is independent of the electric field on the blade
surface, was performed as a reference tseobserved in this case thhe injection of charge
extends over the whole surface of blaéey. 5.2.4. An isometric view of the charge density
iso-surfaces with two values (g=0.1, 0i8)presented in Fig. 5.2.4vhich is taken at nen
dimensional timé=0.003 An iso-surface plot showing the afgee densitydistribution,on XY
plane, at the end of simulation is shown in Fig. 5.ZHe isesurface at value q=0.3 (green)
shows that the charge transports towards the plane electrode ,aanal je@ith time it expands
quite a lotinto the surroundingvhich leadso a good overall mixing of the neutral fluid and
charge itself.

118



Fig. 5.2.4lsometricview of tiarge density issurfaces at g=0.1 (blue) and g=0.3(green) with
autonomous injection law

Fig. 5.2.5 Isesurfaces of charge densifg=0.1, 0.3)as seen on XY plane

In second casehé¢ charge density on blade surface was setDwoiehlet value (q = 1) only
where theocal electric field was 60% of the maximum electric fielcthe 60% condition is
arbitrarily setas suggested in [54lk is noticed in experimental studies that the injection does
not occur from whole surface of the blaaeset with the Dirichlet boundary condition tine
autonomous lawit is rather confined to the tip of the blade where the electric field is
concentratedThus,in this case we réscted thecharge injection from only those location of



blade where the electric field reached 60% of the maximum electric fiehs also been
reported that blades with sharper tips inject more charge than the hyperbolic blade [54].

Fig. 5.2.6 a) Charge deitg iso-surfaces (g=0.}, and b) Velocity magnitude issurfaces (Vmag=
12, 8, 3)att=0.047

Fig. 5.2.7a) Vorticity magnitude issurfaces 400, 200, 1) and b) Q-criteria iso-surface§Q=100)
at t=0.047 with f'injection law.

12C



fq

Fig. 5.2.8Vorticity componentso-surfaces at value0 (green)and +20(yellow)at t=0.047
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The results withour second caseepicts that the injection is now limited from the tip of the
blade electrode only. Fig. 5.2.6 a) shows that the injected charge densiyfemest value
g=0.1larelimited at the tip of the blade alone, &hdre is no charge present on the bladiasar
as predicted with the autonomous injection lahe Velocity magnitude issurfaces with three
values Vmag = 12 (red), 8 (yellow), 3 (greeade shown irFig. 5.2.6 b); which depicts that
the charge injectioplumeis like a jetof velocity towards he plane electrode. Fig. 572.
provides the information on rotational nature of the induced.flow

We have shown iseurfaces of voitity magnitude of three values: 400 (pink), 2@6een) and
10 (blue); which tells thaddjacent to the plume the velgcdradients aref highermagnitude
and vortical structures of several gnitudes are present in the flow descrihings aturbulent
flow. Q-criteria isasurfaces (Q=100) amdsoshown to describe the real 3D nature of the flow
which aidsto the mixingbehaviour of the flowery well Fig. 5.2.8 depicts the issurfaces of
three components of vorticitat magnitudes20 and +2Qwhich are completely distinct from
each otherlt suggest that the flow rotation isandom in all three directiswhich promotes
the idea ofurbulent mixing in such configurationsading teefficient heat transfenechanism
from the plane elgrode surfacky EHD plumeg48].

5.2.3Simulations withnon-autonomousinjection laws

After understanding the basidea of the phenomena, we incorporated two injection laws as
simulated by Traore et al. (2013). With injection laws stronger coupling between the variables
like charge, electric field, velocity etc. is induced. We simulated viitintl 3 injection laws

from ref. [64], in which the boundary condition for charge density on the blade electrode is set
as:

1stinjection law: 9 ( *6*Ewhere: *h )'Ui *

o !
3%injection law: 9 (| *-DnoRmG*

I'o

In both of these injection laws thgection zone of the charge is limited to the part of blade
electrode where the local electric field reaches certain percentage of the maximum electric field
(Emay. Here this threshold electric field) is taken as 60 % of thenk. For 3%law: q()'UI

* ke IS the threshold electric field to initiate injectionyg, is the local electric field on the

nodes of the blade, and C represents the injection strength as given in eq. (5.6). Thus, each node
on the blade surface which satisfiesh ) 'Ui * . will inject charge density in*llaw, and

in 3“law injection depends an, value We shall provide a comparison of these two laws with
relevant flow variables and also comment on the studies previously done-@dintewnsional
settings.In the following section, the comparison figures on left hand side will correspond to
the B'law and on the right side will correspond t618w, unless mentioned specifically.

Firstly, we analyse the 3D evolution of charge density with both laws.thiee figures (5.2:9
5.2.11) provide instantaneous charge densitysistaces with two values (g=0.1, Q.B)ig.

5.2.9 gives a 3D isometric view at rdimensional time 0.0017, which expresses that the 1
law charge distribution is rather smoother tB&raw, and also the charge has diffused more
with the 39 law, with a higher rate of turbulent mixing. Smooth surfaces of charge as seen in
15t law distribution is not visible in"8law figure. Fig. 5.2.10 is also taken at the same instant
of time whid shows a view perpendicular to the XY plane. It can be seen that the amount of
charge diffused in the domain is also higher in casé’¢d\8.
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Fig. 5.2.93D dharge density isgurfaces (q = 0.1 (blue) and q = 0.5 (green)) at+aidimensional time
0.0017, for ¥and 3% laws

A tendency to form initiatoherentvortices is seen in both flows at the onset of injection, but
the injection strength is such that the initial vortices are quickly diffused due to the upcoming
jet of charge just behind ém. Threedimensionaimixing diffuses the charge so quickly that
initial and upcoming vortices are not at all sustained in the flow, as seen in some 2D studies
performed with Rey=10000 [54]. Sustained vortex shedding with Kélelmholtz instability

was dserved in the 2D study [54] which was not observed in our 3D cases. Fig. 5.2.11 shows
the charge density distribution at t=0.02 which also suggeststhgeation has higher amount

of charge injected than wittftlaw. Fig. 5.2.12 is taken at t=0.0the jet of charge impinging

on the plane electrode with green colouredsigsidace (q=0.5) is visibleith a corresponding
velocity magnitude issurface plot at Vmag=8 (yellow) and Vmag=15 (red)

Fig. 5.210 Two-dimensionaktharge densityso-surfaces (g 0.1 (blue) and g = 0.5 (greghat
nondimensional time 0.0017or 1%tand 3¢ laws



Fig. 5.2.112D slice ofcharge density issurfaces (g 0.1 (blue) and q = 0.5 (greghat non
dimensional time 0.002or 1% and 3% laws

Fig. 5.2.12 Isemetric view of ajharge density isgurfaceqq=0.1,0.5), andb) velocity magnitude
(Vmag=8, 15), at t=0.01 (&' law)
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Fig. 5.2.13 3D avorticity iso-surfaces € 4 ( *0+) ¥st / +)* at nondimensional time 0.0Q2or 1*
and 3% laws

Two initial vortices rotating in clockwise and countéockwise directions are sbrved before

the flow sets into complete turbulent motion. The jet moves in +x direction-aodiaty

shows the prominent rotating vortices along théreation. Fig. 5.2.13 shows\orticity iso-
surfaces at50(green) and +50(red) values which are present clockwise andauhkivise

rotation respectively. The plume contains vortices of many sizes as seen in Fig. 5.2.13, and we
also notice that with'8law the vortices are diffused faster than thidatv.

Fig. 5.2.14 2DCharge density contours in three different planes in Z direeti¢nl.2 X 10° with 3
injection law.



Two-dimensionakcharge densitgontours were plotted in three different planes (Z= 0.8,
3.5) to observe the 3D nature of chang®pagation. Fig. 5.2.1dhows that in 3 planes the
charge density contours are distinct with each offigr 5.2.15roves that the flow has strong
3D features as thecomponenbdf velocity has a sigificant magnitudeandthe contours of this
velocity (W) are also different in 3 planeBig. 5.2.16the 3D vortical structures of the flow
with Q-criteria and vorticitynagnitudevariables.

Fig. 5.2.15Z-component of velocity contours in three different planes in Z direatitrl.2 X 10°
with 3 injection law.

Fig. 5.2.16a) Q-criteria iso-surfaces (Q=20,000 (green), +20,000 (refl)and, b)VVorticity magnitude
iso-surface¢f u( A)) * , att=1.6 X 10° with3" injection law
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Chapter 6
EHD Conduction

In this chaptewe present the electrconduction model and some initial case studies performed
with some new implementations in the conduction model as availal®eairie3D.Mainly,

some validation casesith flow feature analysign a conduction channel configuratiarere
compared wittCOMSOL solutions and results are report&egsults with newly implemented
Robin and nofhomogeneous Neumann boundary conditions are presented and their physical
significarce is discussed. Impact of mathematical formulations: implicit and explicitse of

FVM discretization of transport of speciesd effect of Onsager effect on EHD conducison
briefly highlighted.In last section, flow pattern with blagane electrde configuration with

a case is discussed in both 2D and 3D.

6.1 Introduction

The electric charges present in Electrohydrodynamic (EHD) conduction are created by
dissociation and recombination of a weak electrolyte in apoder or mildly polar liquid.

When an exteral electric field is appliedayers with a neg¢lectric charge appear nextdach
electrode. These are the heterocharge layers, with a polarity opposed to the one of the
electrodesThemotion of charged speci@sthe bulk liquidis dueto the electric force density

I;$ which results fronthree different physical componenthe first and the most dominant
component is the Coulomb foradnich is the first ternon right siden eq. (1).The secondierm

is the dielectric force which {@esent onlywhen the permittivity gradierf¥®) exists.The third

term is known as the electrostrictive foreehich, being the gradient of a scalar, can be
incorporatd in pressuié,?2].

B (F+ 89 & W0 37 g .S

8
Thus, the Coulomb force alone is left which sustain a permanent EHD motion in such
conduction phenomenkl most of the EHD applications, this Coulomb force sets the liquid in
motionwhich is utilized br the intended purposes like pumping, wall jetsBte net Coulomb
force is generated only ifiere is an imbalance in the densities of positive and negative charge
carriers. Asymmetrical electrode configurations play an important role in creating this
imbalance ircharge carriersO densitiedich have been explored in many studd]. The
mechanism of EHD conduction provides a +machanical and loywower consumption
approach to generate or control an active flatvich can be used for applicatiaiasgeted for
terrestrial and microgravity conditions [6].
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6.2 Mathematical model

The electreconduction model as available in Oracle3D is based on the original model proposed
by Atten et al. (2003). This model considers chemical dissociatioreaathbination of neutral

liquid molecules within a reversible reaction. The concentrations of produced ions in the parent
liquid are controlled by the dissociatiorn. | and recombinatio(F, ) rates. A general reversible
chemical equation can be givest a

If ¢ is the concentration efeutral molecules and, and@ are the charge densities of positive
and negative iospeciesthenat the thermodynamic equilibrium one can write:

=C @@y =8 Q@' =,Q@¢

Where OO€&fers to the values at equilibrium, a@y' $@p' @ follows from the

equilibrium condition, which results i@p' $=.C3,$. Thetransport mechanism of the
species under the influence of external electric field is governed by followin§ eguiations:
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Where the current density fluxes are provided by:
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In the above equations the mobility and diffusion coeffisesf positive and negative ion
species g given byJ, , Uy, Vg VngrespectivelyThe overall liquid velocity is denoted 8y

We can write the Gauss law to obtain the electric fif)ddue to the species as:

Here&refers to the permittivity of liquid. The whole system can be explained as a combination
of hydrodynamics and electrostatics. Wmsiderthe effects of motion of chargespecies on

the neutral fluid by adding tHferce on the charged species in the Na@rkes equations as a
source term. The transport equations of the liquid can be written as:
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The pressure term contains the contribution from electrostriction force and the liquid
pressureThedynamic viscosityof liquid is denoted by . The reombination rate constant is
="' :U . Uy<&®, as given by LangevineOs approximation for dielectric ligdidkl]. We
work in the universal framework of natimensional equations by taking the reference
variables as:

bod$e £ le —2 8 Tedly, il
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HereUy andVp_ arethemobility and diffusion coefficients of the positiw@nsat equilibrium

0p® C& arethe reference valgeof density, dynamic viscosity angermittivity for liquid
respectively The length reference is the distance between the electrddes, € p is the
potential difference between the two electrodes. These reference variables lead to-the non
dimensional set of equations for the transport of spéciedich the nordimensional values

are represented with star (*)

H a,
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This set of nordimensional equations introduces the following-+danensional parameters
which characterize our conduction problem:
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