
�>���G �A�/�, �i�2�H�@�y�k�9�8�N�8�N�e

�?�i�i�T�b�,�f�f�i�2�H�X���`�+�?�B�p�2�b�@�Q�m�p�2�`�i�2�b�X�7�`�f�i�2�H�@�y�k�9�8�N�8�N�e

�a�m�#�K�B�i�i�2�/ �Q�M �k�N �C���M �k�y�k�y

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�J�2�b�b���;�2 �S���b�b�B�M�; �A�M�i�2�`�7���+�2 �T���`���H�H�2�H�B�x���i�B�Q�M �Q�7 ��
�K�m�H�i�B�@�#�H�Q�+�F �b�i�`�m�+�i�m�`�2�/ �M�m�K�2�`�B�+���H �b�Q�H�p�2�`�X ���T�T�H�B�+���i�B�Q�M �i�Q

�i�?�2 �M�m�K�2�`�B�+���H �b�B�K�m�H���i�B�Q�M �Q�7 �p���`�B�Q�m�b �i�v�T�B�+���H
�1�H�2�+�i�`�Q�@�>�v�/�`�Q�@�.�v�M���K�B�+ �~�Q�r�b

�l�K�2�b�? �E�m�K���` �a�2�i�?

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�l�K�2�b�? �E�m�K���` �a�2�i�?�X �J�2�b�b���;�2 �S���b�b�B�M�; �A�M�i�2�`�7���+�2 �T���`���H�H�2�H�B�x���i�B�Q�M �Q�7 �� �K�m�H�i�B�@�#�H�Q�+�F �b�i�`�m�+�i�m�`�2�/ �M�m�K�2�`�B�+���H
�b�Q�H�p�2�`�X ���T�T�H�B�+���i�B�Q�M �i�Q �i�?�2 �M�m�K�2�`�B�+���H �b�B�K�m�H���i�B�Q�M �Q�7 �p���`�B�Q�m�b �i�v�T�B�+���H �1�H�2�+�i�`�Q�@�>�v�/�`�Q�@�.�v�M���K�B�+ �~�Q�r�b�X �J�Q�/�@
�2�H�B�M�; ���M�/ �a�B�K�m�H���i�B�Q�M�X �l�M�B�p�2�`�b�B�i�û �/�2 �S�Q�B�i�B�2�`�b�- �k�y�R�N�X �1�M�;�H�B�b�?�X ���L�L�h �, �k�y�R�N�S�P�A�h�k�k�e�9���X ���i�2�H�@�y�k�9�8�N�8�N�e��

THESE

Pour l!obtention du grade de

DOCTEUR DE L!UNIVERSITƒ DE POITIERS
UFR des sciences fondamentales et appliquŽes

P™le poitevin de recherche pour l'ingŽnieur en mŽcanique, matŽriaux et ŽnergŽtique -
PPRIMME

(Dipl™me National - Arr•tŽ du 25 mai 2016)
ƒcole doctorale : Sciences et ingŽnierie des matŽriaux, mŽcanique,

ŽnergŽtique - SIMME
Secteur de recherche : MŽcanique des milieux fluides

PrŽsentŽe par

Umesh Kumar SETH

Message Passing Interface parallelization of a multi-block
structured numerical solver.

Application to the numerical simulation of various typical
Electro-hydro-dynamic flows.

Directeur de Th•se : Philippe TRAORƒ

Co-Directeurs : Eric MOREAU, PŽdro VAZQUEZ

Soutenue le 29 mars 2019

Jury

Rapporteur Sakir AMIROUDINE Professor, University of Bordeaux, France
Rapporteur Sylvain LAIZET Senior Lecturer, Imperial College London, England
Membre Azeddine KOURTA Professor, University of OrlŽans, France
Membre Philippe TRAORƒ Associate Professor, University of Poitiers, France
Membre Eric MOREAU Professor, University of Poitiers, France
Membre PŽdro VAZQUEZ Associate Professor, University of Seville, Spain

ACKNOWELEDGMENTS

I express my sincere gratitude towards my thesis directors Associate Prof. Philippe TraorŽ, Prof.
Eric Moreau and Associate Prof. PŽdro A. Vazquez for providing me this opportunity to work
with them, and their valuable guidance, support and supervision throughout the duration of this
work.

The contributions of my office colleagues Philippe Parnaudeau, Alexandre Poux and Francisco
J. Duran-Olivencia have been crucial in accomplishing the overall work. Especially, their
support with the daunting tasks of high-level scientific programming was invaluable. I also
wish to thank Pierre-Fran•ois and Francis for always extending their support at their earliest.

The cordial atmosphere of the office made it possible for me to sustain in a foreign culture, and
the demanding researcher life. I am grateful to all the people who work in the H2 building who
were always friendly, patient and encouraging regarding my French language competences. My
friends Pierre, Thomas, Gwenael, Yann, Ugo, Etienne, Emmanuel, Sachin, Arthur, Clement,
Ayyoub and others were always there with me when I needed them.

I extend my gratitude towards the French ministry of Education who provided the funding for
this work.

Thanks to all the jury members for their interest in this research work.

I also thank my family members who have always been there with me in all ups and downs of
life.

Abstract

Several intricately coupled applications of modern industries fall under the multi-disciplinary
domain of Electrohydrodynamics (EHD), where the interactions among charged and neutral
particles are studied in context of both fluid dynamics and electrostatics together. The charge
particles in fluids are generated with various physical mechanisms, and they move under the
influence of external electric field and the fluid velocity. Generally, with sufficient electric force
magnitudes, momentum transfer occurs from the charged species to the neutral particles also.
This coupled system is solved with the Maxwell equations, charge transport equations and
Navier-Stokes equations simulated sequentially in a common time loop. The charge transport
is solved considering convection, diffusion, source terms and other relevant mechanisms for
species. Then, the bulk fluid motion is simulated considering the induced electric force as a
source term in the Navier-Stokes equations, thus, coupling the electrostatic system with the
fluid. In this thesis, we numerically investigated some EHD phenomena like unipolar injection,
conduction phenomenon in weakly conducting liquids and flow control with dielectric barrier
discharge (DBD) plasma actuators.

Solving such complex physical systems numerically requires high-end computing resources
and parallel CFD solvers, as these large EHD models are mathematically stiff and highly time
consuming due to the range of time and length scales involved. This thesis contributes towards
advancing the capability of numerical simulations carried out within the EFD group at Institut
Pprime by developing a high-performance parallel solver with advanced EHD models. Being
the most popular and specific technology, developed for the distributed memory platforms,
Message Passing Interface (MPI) was used to parallelize our multi-block structured EHD
solver. In the first part the parallelization of our numerical EHD solver with advanced MPI
protocols such as Cartesian topology and Inter-Communicators is undertaken. In particular a
specific strategy has been designed and detailed to account for the multi-block structured grids
feature of the code. The parallel code has been fully validated through several benchmarks, and
scalability tests carried out on up to 1200 cores on our local cluster showed excellent parallel
speed-ups with our approach. A trustworthy database containing all these validation tests
carried out on multiple cores is provided to assist in future developments.

The second part of this thesis deals with the numerical simulations of several typical EHD
flows. We have examined three-dimensional electroconvection induced by unipolar injection
between two planar-parallel electrodes. Unsteady hexagonal cells were observed in our study.
3D flow phenomenon with electro-convective plumes was also studied in the blade-plane
electrode configuration considering both autonomous and non-autonomous injection laws.
Conduction mechanism based on the dissociation of neutral molecules of a weakly conductive
liquid has been successfully simulated. Our results have been validated with some numerical
computations undertaken with the commercial code Comsol. Physical implications of Robin
boundary condition and Onsager effect on the charge species were highlighted in electro-
conduction in a rectangular channel. Finally, flow control using Dielectric Barrier Discharge
plasma actuator has been simulated using the Suzen-Huang model. Impacts of dielectric
thickness, gap between the electrodes, frequency and waveform of applied voltage etc. were
investigated in terms of their effect on the induced maximum ionic wind velocity and average

body force. Flow control simulations with backward facing step showed that a laminar flow
separation could be drastically controlled by placing the actuator at the tip of the step with both
electrodes perpendicular to each other.

Keywords: MPI, Cartesian topology, Inter-communicators, Electroconvection, Unipolar
injection, conduction phenomenon, Plasma discharge, Suzen-Huang Model

RŽsumŽ long en fran•ais

Chapitre 1.

Introduction

Au XXIe si•cle, les progr•s dans tous les domaines de la science et du gŽnie dŽpendent de plus
en plus des progr•s de l'informatique. La capacitŽ des ordinateurs modernes d'effectuer un grand
nombre de calculs mathŽmatiques avec une rapiditŽ inimaginable e�V�W�� �D�X�� �F�°�X�U�� �G�H�� �F�H�W�W�H��
dŽpendance. La disponibilitŽ du matŽriel et des logiciels pertinents est la clŽ de cette
impressionnante capacitŽ des ordinateurs. La loi de Moore a guidŽ l'industrie des semi-
conducteurs au cours des cinquantes derni•res annŽes pour faire progresser et anticiper l'avenir
du matŽriel informatique ; selon cette loi, le nombre de transistors sur circuits intŽgrŽs devait
doubler chaque annŽe depuis 1965, et apr•s 1975, elle a ŽtŽ rŽvisŽe pour doubler tous les deux
ans. Cela a conduit ˆ une croissance rapide dans les technologies de matŽriel informatique qui
se poursuit encore. D'autre part, plusieurs mod•les de programmation ont ŽtŽ proposŽs pour
concevoir efficacement les programmes logiciels afin de bŽnŽficier des capacitŽs matŽrielles
toujours croissantes.

Il est Žvident que pour vraiment profiter des progr•s en mati•re de matŽriel et de logiciels, les
deux technologies doivent progresser de fa•on cohŽrente l'une par rapport ˆ l'autre. En fait,
comme l'industrie du matŽriel informatique a pris de l'avance sur le domaine du logiciel, les
innovations logicielles doivent suivre les architectures matŽrielles dŽjˆ disponibles. Les
progiciels existants et les codes scientifiques existants doivent •tre modernisŽs avec les
architectures de processeurs en constante Žvolution pour permettre aux utilisateurs de bŽnŽficier
�G�H�� �O�
�R�P�Q�L�S�U�p�V�H�Q�F�H�� �G�H�V�� �S�U�R�F�H�V�V�H�X�U�V�� �P�X�O�W�L�F�°�X�U�V���� �/�H�� �P�L�O�L�H�X�� �G�H�� �O�D�� �U�H�F�K�H�U�F�K�H�� �V�F�L�H�Q�W�L�I�L�T�X�H�� �H�W��
technique est l'un des plus grands consommateurs de ces technologies de calcul haute
performance (HPC) en pleine croissance. Et il y a des organisations qui montrent la voie ˆ
suivre ̂ la communautŽ scientifique pour la tenir ˆ jour avec ces technologies HPC qui Žvoluent
rapidement. Par exemple, le Partnership for Advanced Computing in Europe (PRACE) est une
organisation qui vise ˆ faciliter les dŽcouvertes scientifiques ˆ fort impact et la recherche en
ingŽnierie dans toutes les disciplines en fournissant aux communautŽs europŽennes membres
les ressources informatiques et de gestion des donnŽes les plus avancŽes disponibles en Europe.

De nombreux probl•mes importants de la science et de l'ingŽnierie ne peuvent •tre rŽsolus sans
cette technologie moderne de calcul haute performance. Les prŽvisions climatiques ou
mŽtŽorologiques, les turbulences aux plus petites Žchelles, les Žtudes aŽrodynamiques du corps
entier des vŽhicules aŽrospatiaux, etc. sont quelques probl•mes o• les Žchelles de longueur sont
tr•s importantes, d'autre part, la physique de la dŽcharge du plasma, les collisions atomiques,
etc. sont des probl•mes o• les Žchelles de temps sont ˆ contrario extr•mement petites. Ces deux
types de probl•mes exigent des capacitŽs modernes de calcul haute performance pour bien
comprendre les phŽnom•nes sous-jacents.

Le contexte de cette th•se est basŽ sur un solveur numŽrique dŽveloppŽ au sein du groupe
Electro-Fluido-�'�\�Q�D�P�L�T�X�H���G�H���O�¶�,�Q�V�W�L�W�X�W���3�S�U�L�P�H���V�S�p�F�L�I�L�T�X�H�P�H�Q�W���G�p�G�L�p���j���O�D���V�L�P�X�O�D�W�L�R�Q���Q�X�P�p�U�L�T�X�H��
des Žcoulements Electro-Hydro-dynamique. Ce code de calcul : Oracle3D, avec lequel nous
souhaitons Žtudier l'interaction Žlectrostatique et hydrodynamique est un solver des Žquations
de Navier-Stokes incompressibles sur des maillages structurŽs multi-blocs. Il est basŽ sur la
mŽthode des volume finis avec des schŽmas en temps et en espace du second ordre. Il utilise
l'algorithme SIMPLE pour le couplage de la vitesse et de la pression. Les flux convectifs pour
les quantitŽs scalaires peuvent •tre traitŽs avec des schŽmas TVD (Total Variation Diminishing)
avec plusieurs limiteurs de flux disponibles. Le schŽma ̂ correction diffŽrŽe amŽliorŽe (IDC)
est utilisŽ pour traiter les flux diffusifs pour les maillages fortement distordus. Ces
caractŽristiques sont expliquŽes en dŽtail dans les chapitres suivants. Le code est principalement
dŽveloppŽ pour simuler divers probl•mes Žlectro-hydrodynamiques.

Il existe plusieurs situations rŽelles o• certains types d'esp•ces ioniques interagissent avec les
molŽcules neutres de fluide environnantes et il se produit un Žchange d'Žnergie, d'impulsion, de
potentiel Žlectrique, etc. entre les ions et les particules neutres, qui nŽcessite une Žtude dŽtaillŽe.
De telles interactions d'esp•ces ioniques avec le fluide neutre sont considŽrŽes sous la discipline
de l'Electro-Hydro-Dynamique (EHD). L'objectif global de cette th•se consiste ˆ moderniser le
code Oracle3D pour s'attaquer ˆ des simulations EHD complexes et de grande envergure sur
des syst•mes HPC avancŽs et ˆ Žtudier numŽriquement les probl•mes EHD dans des
configurations tridimensionnelles.

Les applications de l'industrie moderne, qui sont intimement liŽes, regroupent les branches de
l'hydrodynamique, de l'Žlectrostatique, de l'Žlectrochimie, etc. dans le cadre de la recherche
pluridisciplinaire EHD. Le groupe Electro-Fluido-Dynamique (EFD) de l'Institut Pprime en
France participe activement ̂ l�¶�p�O�D�E�R�U�D�W�L�R�Q���G�H nouvelles technologies du domaine EHD et ouvre
la voie ˆ la rŽsolution de nombreux probl•mes industriels tels que le dŽtachement
�G�¶�p�F�R�X�O�H�P�H�Q�W�V���DŽrodynamiques. Par son appartenance ˆ l'Institut Pprime en collaboration avec
l'UniversitŽ de Poitiers le groupe EFD dispose d'installations expŽrimentales et HPC de pointe.
Des efforts ont ŽtŽ faits, au cours de ce travail de th•se, pour faire progresser significativement
la capacitŽ de recherche numŽrique du groupe en concevan�W���H�W���P�H�W�W�D�Q�W���H�Q���°�X�Y�U�H�� �O�D���V�W�U�D�W�p�J�L�H��
parall•le pour le code Oracle3D et en le validant rigoureusement. Un travail numŽrique dŽtaillŽ
et une mŽthodologie de calcul ont ŽtŽ fournis dans cette th•se pour les utilisateurs actuels et
futurs de ce solveur EHD.

Ce travail ne se concentre pas en profondeur sur un seul probl•me physique ; cependant, il
fournit une gamme d'applications EHD incluant l'injection unipolaire, l'Žlectro-conduction, le
contr™le des Žcoulements par dŽcharges plasma. Des tests de validation rigoureux, dans
plusieurs configurations ont ŽtŽ menŽs pour construire une large base de donnŽes pour le
nouveau code. Certains probl•mes classiques d�¶�(�+�' ont ŽtŽ rŽexaminŽs et une bibliographie
des travaux antŽrieurs pertinents a ŽtŽ fourni dans les chapitres et sections correspondants.
Comme le code a ŽtŽ parallŽlisŽ ˆ partir de l'ancienne version Fortran 77, les dŽtails de
l'implŽmentation MPI sont fournis dans cette th•se pour faciliter les avancŽes et
dŽveloppements futurs.

Le solveur EHD Oracle3D, est en cours de dŽveloppement depuis plus d'une dŽcennie
maintenant, et des fonctionnalitŽs avancŽes sont ajoutŽes rŽguli•rement pour Žtendre sa portŽe
ˆ de nouveaux probl•mes EHD plus complexes. Au cours de cette th•se, le solveur Oracle3D a

ŽtŽ mis ˆ jour avec des fonctionnalitŽs Fortran modernes et, plus important encore, il a ŽtŽ
parallŽlisŽ avec l'interface MPI (Message Passing Interface) pour •tre exŽcutŽ sur des clusters
CPU ̂ mŽmoire distribuŽe. La parallŽlisation d'un code scientifique prŽsente de nombreux dŽfis
en termes de programmation. Ainsi, la t‰che de parallŽlisation du solveur EHD complet a ŽtŽ
divisŽe en sous-t‰ches qui comprenaient la prŽparation de codes scalaires et parall•les
individuels pour des mod•les physiques simples tels que le solveur de Poisson, le solveur
Navier-Stokes, un solveur de transport scalaire etc.

Pour simplifier l'Žtape de prŽ-processing, un outil a ŽtŽ dŽveloppŽ afin de lire les donnŽes issues
du mailleur BlockMesh et de les convertir dans le format appropriŽ pour le solveur Oracle3D.
Des fonctions MPI avancŽes telles que la topologie cartŽsienne, la topologie de groupes, les
inter-communicateurs, etc. ont ŽtŽ implŽmentŽes dans le code pour prŽparer une stratŽgie
Žvolutive de transmission de messages pour les calculs parall•les dans un contexte multi-bloc.
La premi•re partie de la th•se porte sur la mŽthodologie utilisŽe pour parallŽliser les diffŽrents
solveurs et leur validation avec les rŽsultats existants. Voici un bref rŽsumŽ des chapitres :

�x Le chapitre 2 mentionne bri•vement la mŽthode des volumes finis (MVF) comme Žtant
l'approche numŽrique utilisŽe pour la discrŽtisation des Žquations utilisŽes dans
Oracle3D. Au lieu d'une Žquation gŽnŽrale de transport, les Žquations spŽcifiques
utilisŽes dans le code sont prises comme exemples de discrŽtisation. La nŽcessitŽ et les
�P�R�G�D�O�L�W�p�V���G�H���P�L�V�H���H�Q���°�X�Y�U�H���G�H�V��schŽmas TVD sont dŽtaillŽes pour les utilisateurs du
code. De nouvelles conditions limites ont ŽtŽ introduites dans le code, qui sont
expliquŽes ˆ l'aide d'une approche de discrŽtisation pertinente.

�x Le chapitre 3 dŽtaille la mŽthodologie utilisŽe pour la parallŽlisation du code avec les
fonctions MPI avancŽes. Un aper•u gŽnŽral vers des mod•les de programmation
parall•les est fourni dans la 1•re section. La section 2 traite des caractŽristiques de la
topologie cartŽsienne de MPI qui ont ŽtŽ initialement utilisŽes pour parallŽliser les
calculs dans des blocs individuels. La 3•me partie prŽsente l'ensemble de la stratŽgie
utilisŽe pour parallŽliser les gŽomŽtries basŽes sur des maillages multi-blocs, avec tous
�O�H�V���G�p�W�D�L�O�V���G�H���P�L�V�H���H�Q���°�X�Y�U�H���S�R�X�U���O�H�V���X�W�L�O�L�V�D�W�H�X�U�V�����(�Q�I�L�Q�����F�H�U�W�D�L�Q�V���W�H�V�W�V��de scalabilitŽ sont
fournis avec des explications pour juger de l'efficacitŽ parall•le du nouveau code.

�x Le chapitre 4 prŽsente tous les cas de test effectuŽs pour valider les solveurs parall•les
individuels : Solveur de Poisson, solveur de Navier-Stokes, solveur de transport
scalaire. La plupart des nouvelles fonctionnalitŽs ajoutŽes ont ŽtŽ validŽes avec un
�Q�R�P�E�U�H���G�L�I�I�p�U�H�Q�W���G�H���F�°�X�Us pour vŽrifier l'approche de transmission des messages dans
les solveurs parall•les.

Dans la deuxi•me partie, nous fournissons les Žtudes EHD rŽalisŽes avec Oracle3D au cours de
cette th•se.

�x Le chapitre 5 traite de l'injection unipolaire EHD. Le probl•me de l'Žlectro-convection
est dŽfini, et une br•ve revue de la littŽrature est donnŽe pour commencer. Quelques
premi•res Žtudes 2D sont prŽsentŽes pour valider le mod•le d'injection unipolaire du
code. La formation de motifs tridimensionnels de cellules convectives dans une
configuration d'Žlectrodes ˆ plaques parall•les est ŽtudiŽe en dŽtail. Ensuite, les
panaches d'injection 3D sont ŽtudiŽs �G�D�Q�V���O�H���F�D�V���G�¶�X�Q�H��gŽomŽtrie d'Žlectrode lame-plan
avec diffŽrentes lois d'injection.

�x Le chapitre 6 prŽsente plusieurs calculs dans le cadre du phŽnom•ne d'Žlectro-
conduction. Certains tests de validation ont ŽtŽ effectuŽs pour comparer les rŽsultats
avec ceux obtenus par le code industriel Comsol. Un Žcoulement gŽnŽrŽ par le
phŽnom•ne de conduction dans un canal 3D a ŽtŽ simulŽ pour la 1•re fois. Dans la
deuxi•me section, nous donnons un aper•u de la configuration d'Žcoulement observŽe
dans un cas de conduction avec la gŽomŽtrie lame-plan.

�x Le dernier chapitre traite de la simulation de dŽcharge plasma. Nous avons utilisŽ, dans
cette premi•re approche, le mod•le Suzen-Huang (SH) qui est dŽcrit. L'impact de la
longueur de Debye est bri•vement explorŽ dans le contexte du mod•le SH. Une Žtude
paramŽtrique portant sur les param•tres gŽomŽtriques et Žlectriques caractŽrisant les
actionneurs DBD est fournie. Une Žtude basŽe sur des donnŽes expŽrimentales de la
force Žlectrique utilisŽe comme terme source dans les Žquations de Navier-Stokes que
nous rŽsolvons est rŽalisŽe. Enfin, une br•ve Žtude avec un contr™le �G�¶�p�F�R�X�O�H�P�H�Q�W��
laminaire sur une marche arri•re est fournie.

Chapitre 2.
MŽthode des volumes finis dans le
contexte d'Oracle3D

La mŽthode des volumes finis (FVM) est l'une des approches mathŽmatiques les plus populaires
parmi d'autres, qui sont utilisŽes pour rŽsoudre les probl•mes de mŽcanique des milieux
continus en discrŽtisant les Žquations aux dŽrivŽes partielles correspondantes dans le temps et
l'espace. La discrŽtisation spatiale d'un probl•me se rŽf•re ˆ la division du domaine spatial d'un
probl•me en entitŽs gŽomŽtriques beaucoup plus petites comme : les cellules de calcul, les faces
et les noeuds. Ensuite, le probl•me physique dans l'ensemble du domaine spatial est dŽcrit de
mani•re combinŽe par les relations algŽbriques dŽfinies �V�X�U�� �F�H�V�� �F�H�O�O�X�O�H�V�� �H�W�� �Q�°�X�G�V�� �G�H�� �F�D�O�F�X�O��
individuels. Les Žquations algŽbriques pour les cellules de calcul individuelles sont obtenues
en intŽgrant les Žquations aux dŽrivŽes partielles avec FVM sur chaque cellule discr•te.

Lorsque le probl•me est de nature instationnaire, une discrŽtisation en temps est Žgalement
nŽcessaire, ce qui s'effectue en subdivisant le temps de la simulation en sous-pas de temps
beaucoup plus petits. L'Žvolution du probl•me physique avec des pas de temps plus petits
fournit une solution instationnaire compl•te. Un organigramme complet du processus gŽnŽral
de discrŽtisation, tel qu'il est habituellement suivi dans les analyses numŽriques est prŽsentŽ ˆ
la figure 2.1. Dans ce chapitre, nous parlerons principalement des stratŽgies de FVM telles
qu'utilisŽes dans notre solveur, Oracle3D. Nous avons essayŽ d'expliquer les diffŽrentes
�G�L�V�F�U�p�W�L�V�D�W�L�R�Q�V���Q�R�X�Y�H�O�O�H�P�H�Q�W���P�L�V�H�V���H�Q���°�X�Y�U�H���H�W���O�H�V���F�R�Q�G�L�W�L�R�Q�V���D�X�[���O�L�P�L�W�Hs avec les probl•mes
rŽels rencontrŽs dans les mod•les physiques qui sont disponibles dans le code. Il s'agit de
faciliter la comprŽhension du code pour les futurs utilisateurs.

2.1 La mŽthode des volumes fini s : un bref aper•u

Un grand nombre de mŽthodes et de schŽmas sont disponibles dans le cadre de l'approche des
volumes finis, selon la nature du probl•me physique (diffusion, convection, etc.), l'ordre de
prŽcision requis, la structure du maillage, etc. La nature conservatrice inhŽrente de la mŽthode
des volumes finis est sa caractŽristique dominante qui la place en t•te de toutes les autres
techniques numŽriques lorsqu'il est question de dynamique des fluides numŽrique (CFD).
Lorsqu'il s'agit de flux de quantitŽs conservatrices sur les faces des cellules de calcul, il est
imposŽ que le flux entrant dans un volume de contr™le soit identique au flux sortant du volume
adjacent, ce qui rend la FVM strictement et fondamentalement conservatrice. En particulier,
cette caractŽristique est un avantage supplŽmentaire pour les probl•mes de mŽcanique des
fluides o• nous devons satisfaire les lois de conservation de la masse, de la quantitŽ de
mouvement et de l'Žnergie ˆ chaque pas de temps. Avec les progr•s significatifs de la CFD, au
cours des derni•res dŽcennies, la FVM a gagnŽ beaucoup en popularitŽ en Žtant capable de
s'attaquer ˆ toutes sortes de probl•mes physiques complexes mais surtout de gŽomŽtries
complexes.

De la m•me fa•on que pour les autres approches de discrŽtisation telles qque la mŽthode des
diffŽrences finies (FD) et la mŽthode des ŽlŽments finis (FEM), dans la mŽthode des volumes
finis nous transformons aussi les Žquations aux dŽrivŽes partielles (EDP) en Žquations
algŽbriques linŽaires. Tous les phŽnom•nes physiques qui nous concernent sont dŽcrits par des
EDP qui dŽfinissent distinctement la nature mathŽmatique et physique du probl•me ˆ l'Žtude.
Par exemple, dans la CFD, les EDP les plus frŽquemment rencontrŽes sont les Žquations de
Navier-Stokes, qui sont dŽfinies par les lois de conservation de la masse et de la quantitŽ de
mouvement. Dans le processus de discrŽtisation des EDP, qui nŽcessite la transformation des
intŽgrales de volume et de surface en Žquations algŽbriques discr•tes, nous utilisons le thŽor•me
de la divergence (thor•me de Green-Ostrogradski ou thŽor•me de Gauss).

Le thŽor•me de la divergence indique que le flux global d'un champ vectoriel (�Q�,�&) au travers
�G�¶surface fermŽe (S) est Žgal au volume total de toutes les sources et puits sur la rŽgion confinŽe
par cette surface, eq. (2.1). Ici, le volume total de toutes les sources et puits est dŽfini par
l'intŽgrale du volume de la divergence de ce champ vectoriel. Ainsi, avec ce thŽor•me, nous
convertissons habituellement les intŽgrales de volume en flux de surface, qui sont ensuite
utilisŽs pour former les Žquations algŽbriques discr•tes.

± �:�Ï�ä���Q�,�&�;
�Ï

���@�8
L������
± �Q�,�&���ä�J�,�&���@�5
�Ì

���:�t�ä�s�;

Nous prŽsentons ici, ˆ titre d'exemple, l'Žquation de conservation d'une variable scalaire
�J�p�Q�p�U�D�O�H���3�� �S�R�X�U���H�[�S�U�L�P�H�U�� �O�
�X�W�L�O�L�V�D�W�L�R�Q���G�X���W�K�p�R�U�q�P�H�� �G�H la divergence en FVM. L'Žquation 2.2
montre les quatre termes prŽsents dans une Žquation gŽnŽrale de conservation : le terme
transitoire, le terme convectif, le terme de diffusion et le �W�H�U�P�H�� �V�R�X�U�F�H���� �,�F�L���� �!�� �H�V�W�� �O�D��masse
volumique du fluide, u �H�V�W���O�H���F�K�D�P�S���G�X���Y�H�F�W�H�X�U���Y�L�W�H�V�V�H�����H�W���+���H�V�W���O�H���F�R�H�I�I�L�F�L�H�Q�W���G�H���G�L�I�I�X�V�L�R�Q���G�H���O�D��
�Y�D�U�L�D�E�O�H���3����Nous gardons le traitement du terme transitoire pour plus tard et montrons ici la
transformation de cette EDP (eq. 2.2) en flux de surface sur les volumes de contr™le. L'Žquation
2.3 reprŽsente la forme stationnaire de l'Žquation 2.2. Ces deux Žquations concernent
l'ensemble du domaine.

�ò�:�é�î�;

�ò�P
��������������
E�������������������Ï�ä�:�é�î�Q�,�&�;��������������
L���������������Ï���ä�:�� �� �Ï�î �;����������
E���������������3�� ���:�t�ä�t�;

 �Ï�ä�:�é�î�Q�,�&�;��
L���Ï���ä�:�� �� �Ï�î �;
E���3�� ���:�t�ä�u�;

Nous intŽgrons l'Žquation 2.3 sur une cellule C ou volume de contr™le donnŽ. L'Žquation 2.4 est
la forme intŽgrale l'Žquation de conservation stationnaire sur un volume de contr™le. Nous
utilisons maintenant l'Žquation 2.1 (thŽor•me de la divergence) pour convertir les intŽgrales de
volume des termes convectifs et diffusifs en intŽgrales de surface, comme le montre l'Žquation

2.5. Ici V_c est le volume de la cellule C et S S est le vecteur surface associŽ au volume de
contr™le. L'Žquation 2.5 est habituellement appelŽe Žquation semi-discrŽtisŽe dans la FVM, car
elle reprŽsente les contributions des cellules de volume fini individuelles[1].

± �Ï�ä�:�é�î�Q�,�&�;
�Ï�Î

�@�8������
L��
± �Ï���ä�:�� �� �Ï �î �;
�Ï�Î

�@�8
E��
± �3��

�Ï�Î

���@�8���:�t�ä�v�;

����
± �:�é�î�Q�,�&�;�ä�@�5�&
�!�Ï�Î

L������
± �:�� �� �Ï �î �;�ä�@�5�&
�Ï�Î

E��
± �3��

�Ï�Î

���@�8���:�t�ä�w�;

Avec l'Žquation semi-discrŽtisŽe, nous devons obtenir les Žquations algŽbriques discr•tes pour
chaque cellule, qui seront la contribution des cellules individuelles en termes de diffusion,
convection et source pour l'ensemble du probl•me. La diffusion, la convection et les
sources/puits sont trois phŽnom•nes de nature physique compl•tement diffŽrente. Ils sont traitŽs
sŽparŽment pour obtenir leur contribution, puis finalement combinŽs pour la solution globale.
Nous avons discutŽ de l'approche mathŽmatique pour obtenir les Žquations algŽbriques
discr•tes pour chaque terme dans ce chapitre.

terme transitoire terme convectif terme diffusif
terme source

Le schŽma de discrŽtisation amont est le schŽma le plus stable et il est inconditionnel ;
cependant, il introduit un niveau ŽlevŽ de diffusion numŽrique car il n'est prŽcis qu'au 1er
ordre[1,7]. Les schŽmas d'ordre supŽrieur tels que le schŽma centrŽ, le schŽma QUICK sont
plus prŽcis, mais ils peuvent donner des oscillations intempestives (wiggles) lorsque le nombre
de Peclet est ŽlevŽ (>2). Ces oscillations numŽriques peuvent conduire ˆ des valeurs
physiquement irrŽalistes et rendre la solution instable. Pour remŽdier ˆ cette caractŽristique
indŽsirable des schŽmas ˆ haute rŽsolution (HR) sont formulŽs. Les schŽmas HR sont formulŽs
de mani•re ̂ prŽserver la nature convective des schŽmas prŽcŽdents tout en amŽliorant le crit•re
d�¶�X�Q�H���V�R�O�X�W�L�R�Q���E�R�U�Q�p�H.

Plusieurs schŽmas numŽriques ont ŽtŽ mis au point ˆ ce jour et une revue de tous ces schŽmas
est disponible dans[1,3]. Les schŽmas HR qui ont ŽtŽ dŽveloppŽs dans notre cadre font partie
de la classe des schŽmas convectifs de type TVD. Les schŽmas TVD sont spŽcialement
dŽveloppŽs pour contrer les oscillations parasites en ajoutant une diffusion artificielle ou une
pondŽration vers la contribution en amont dans les Žquations discrŽtisŽes. L'implŽmentation des
schŽmas TVD dans Oracle3D est dŽtaillŽe dans ce chapitre.

�/�D�� �P�L�V�H�� �H�Q�� �°uvre correcte des conditions aux limites dans n'importe quelle rŽsolution
numŽrique est de la plus haute importance. Dans de nombreux probl•mes physiques, les
chercheurs ont souvent des points de vue diffŽrents sur les conditions aux limites numŽriques
qui doivent reprŽsenter les conditions physiques. Parfois, les conditions aux limites numŽriques
sont trop simplifiŽes ou approximatives �D�I�L�Q�� �G�¶Žviter certaines difficultŽs et complexitŽs
numŽriques, tout en garantissant toutefois une certaine prŽcision physique. Au cours de cette
th•se, nous avons implŽmentŽ dans Oracel3D de nouvelles conditions aux limites qui Žtaient
d'une importance physique Žnorme, et il a toujours ŽtŽ soulignŽ que l'utilisateur devait faire tr•s
attention �O�R�U�V�T�X�¶�L�O���V�¶�D�J�L�V�V�D�L�W���G�H���GiscrŽtiser les Žquations aux limites.

Il est Žgalement tr•s important que l'utilisateur comprenne ˆ la fois la discrŽtisation gŽnŽrale de
condition ˆ la limite et sache comment elles sont rŽellement implŽmentŽes dans le code. Dans
cette section, nous discutons de la discrŽtisation de certaines conditions limites (sections 2.6.1-
2.6.6.3) et enfin nous fournissons une approche gŽnŽrale (section 2.6.4) pour implŽmenter tout
type de conditions aux limites pour Oracle3D. On peut se rŽfŽrer ˆ l'approche gŽnŽrale
mentionnŽe ˆ la section 2.6.4 avant de passer aux sections 2.6.1-2.6.3, pour un rŽsumŽ rapide
et une approche diffŽrente �O�R�U�V���G�H���O�¶�L�P�S�O�p�P�H�Q�W�D�W�L�R�Q��des conditions limites.

Chapitre 3

Oracle3D parall•le avec MPI

Les programmes informatiques parall•les hautement Žvolutifs sont devenus des outils
indispensables ˆ l'avancement de la recherche numŽrique. Les chercheurs ont plus d'espoir que
jamais auparavant pour s'attaquer ˆ des probl•mes d'ingŽnierie et scientifiques complexes et
Žnormes en raison de la disponibilitŽ des ressources informatiques nŽcessaires au cours des
vingt derni•res annŽes. En ce qui concerne les ressources matŽrielles, les progr•s semblent

largement supŽrieurs aux progr•s dans le domaine des applications (logiciels). Il existe de
nombreux codes hŽritŽs qui sont encore pertinents aujourd'hui, mais ils n'ont pas l'approche
moderne pour utiliser efficacement les ressources matŽrielles disponibles. Parmi les probl•mes
de calcul Žnormes qui ne peuvent •tre rŽsolus sans les technologies modernes de calcul haute
performance (HPC), on peut citer : les prŽvisions mŽtŽorologiques, l'analyse astrophysique,
l'analyse tectonique des plaques, la modŽlisation de la turbulence, la physique des plasmas, etc.
Il est inimaginable de rŽsoudre ces probl•mes sur un ordinateur scalaire mono-processeur et
encore plus lorsque les calculs sont tri-dimensionnels. L'informatique parall•le est alors la seule
fa•on de �V�¶�D�W�W�D�T�X�H�U���j���O�D���U�p�V�R�O�X�W�L�R�Q���G�H���W�H�O�V���S�U�R�E�O�q�P�H�V����

En gŽnŽral, le calcul parall•le consiste ˆ rŽsoudre simultanŽment des parties d'un probl•me sur
des machines informatiques multi-�F�°�X�U�V�����8�Q���S�U�R�E�O�q�P�H���T�X�L���S�H�X�W���r�W�U�H���G�L�Y�L�V�p���H�Q���S�O�X�V�L�H�X�U�V���S�H�W�L�W�H�V��
parties discr•tes qui peuvent •tre rŽsolues indŽpendamment, est un bon candidat pour le calcul
�S�D�U�D�O�O�q�O�H�����/�H�V���S�D�U�W�L�H�V���G�L�V�F�U�q�W�H�V���G�X���S�U�R�E�O�q�P�H���V�R�Q�W���U�p�V�R�O�X�H�V���V�X�U���G�L�I�I�p�U�H�Q�W�V���F�°�X�U�V���G�H���F�D�O�F�X�O���H�W���X�Q�H��
fois terminŽes, elles sont synchronisŽes pour fournir la solution ˆ l'ensemble du probl•me.
L'informatique parall•le offre plusieurs avantages aux utilisateurs : gain de temps et d'argent,
rŽsolution de probl•mes complexes et volumineux, multit‰ches, etc. Les progr•s du calcul haute
performance ont fourni une autre fa•on �G�¶�D�S�S�U�p�K�H�Q�G�H�U�� �O�D�� �V�F�L�H�Q�F�H gr‰ce au calcul
scientifique parall•lement aux branches plus classiques des sciences expŽrimentales et
thŽoriques. Les informaticiens utilisent leurs mŽthodes de simulation lorsqu'elles sont plus
avantageuses et plus rŽalisables que les approches classiques de la thŽorie et des expŽriences.

Les trois grands domaines du calcul parall•le sont le matŽriel, les algorithmes et les logiciels.
�6�X�U�� �O�H�� �S�O�D�Q�� �P�D�W�p�U�L�H�O���� �O�
�D�M�R�X�W�� �G�H�� �S�O�X�V�� �H�Q�� �S�O�X�V�� �G�H�� �F�°�X�U�V�� �H�W�� �O�D�� �P�L�V�H�� �H�Q�� �S�O�D�F�H�� �G�
�X�Q�� �U�p�V�H�D�X��
�G�
�L�Q�W�H�U�F�R�P�P�X�Q�L�F�D�W�L�R�Q�� �H�I�I�L�F�D�F�H�� �H�Q�W�U�H�� �O�H�V�� �F�°�X�U�V�� �D�� �D�F�F�U�X�� �O�D�� �Q�D�W�X�U�H�� �S�D�U�D�O�O�q�O�H�� �G�H�V�� �P�D�F�K�Lnes
informatiques. En termes algorithmiques, les scientifiques cherchent comment un probl•me
peut •tre dŽfini par des mŽcanismes physiques indŽpendants et comment il peut •tre rŽsolu par
un ensemble indŽpendant d'Žquations mathŽmatiques. Cependant, un plus grand dŽfi est posŽ
par les logiciels inadŽquats, qui ne sont pas en mesure de profiter pleinement des progr•s
rŽalisŽs en mati•re de matŽriel et d'algorithmiques. En termes de caractŽristiques importantes,
les codes modernes doivent •tre optimisŽs, portables et ˆ l'Žpreuve du temps avec chaque
Žvolution des technologies HPC. Comme le montre la Fig. 3.1, un code doit faire un usage
optimal des propriŽtŽs matŽrielles telles que la conception du cache, les registres vectoriels, les
noyaux multiples, etc. Il doit •tre dŽveloppŽ avec les mod•les standard de programmation
parall•le tels que MPI, OpenMP, Offloading, etc.

Fig. 3.1 CaractŽristiques d'un code moderne

Ce chapitre traite de l'approche de parallŽlisation utilisŽe pour le code Electro-Hydro-
Dynamique (EHD) :Oracle3D. Oracle3D est un solveur volumes finis pour maillages structurŽs
par blocs. Il est parallŽlisŽ avec les protocoles de l'interface de transmission des messages (MPI)
3.1. Ce chapitre est principalement divisŽ en trois parties : 1) Mod•les de programmation
parall•le, 2) ParallŽlisation de la grille MPI et du maillage mono-bloc, et 3) ParallŽlisation sur
maillages multi-blocs. Nous prŽsentons bri•vement quelques mod•les de programmation
parall•le et dŽcrivons le mod•le de transmission des messages dans la premi•re partie. Dans la
deuxi•me partie, nous dŽcrivons en dŽtail la mŽthodologie MPI utilisŽe pour parallŽliser le code
pour les grilles ˆ blocs simples seulement.

Les fonctions de transmission de messages de la biblioth•que MPI qui sont pertinentes pour de
telles approches sont fournies. Certains rŽsultats de scalabilitŽ sont fournis pour vŽrifier
l'efficacitŽ de l'approche. La troisi•me section traite de l'extension de l'approche pour les cas
des maillages multi-blocs, o• certaines caractŽristiques plus avancŽes de MPI ont ŽtŽ utilisŽes.
�/�D�� �P�L�V�H�� �H�Q�� �°�X�Y�U�H�� �G�p�W�D�L�O�O�p�H�� �G�H�� �F�H�W�W�H�� �V�W�U�D�W�p�J�L�H�� �E�D�V�p�H�� �V�X�U�� �O�D�� �W�R�S�R�O�R�J�L�H�� �F�D�U�W�p�V�L�H�Q�Q�H�� �H�W�� �O�H�V��inter-
communicateurs est proposŽe aux utilisateurs du code, et d'autres chercheurs qui travaillent
avec des codes similaires et qui souhaitent parallŽliser leur code en utilisant MPI pourraient
Žgalement bŽnŽficier de ce chapitre dŽtaillŽ sur diverses fonctionnalitŽs MPI.

Aper•u du prŽsent chapitre :

1. Vue d'ensemble de la programmation parall•le

2. MPI et maillage mono-bloc

3. Extension MPI aux maillages multi-blocs

Dans la premi•re section, nous avons discutŽ bri•vement de quelques mod•les de calcul
parall•les pour fixer le contexte de l'approche que nous avons utilisŽe pour parallŽliser notre
code. Les mod•les de calcul parall•les peuvent •tre classŽs de mani•re informelle en fonction
de leur utilisation de la mŽmoire (partagŽe ou distribuŽe), du mod•le de communication, des
types d'opŽrations, etc.

La deuxi•me partie du chapitre traite des fonctionnalitŽs de MPI en gŽnŽral, et telles qu'elles
sont implŽmentŽes dans Oracle3D pour la mise en parall•le des grilles de blocs individuels en
premier. Principalement, les caractŽristiques topologiques cartŽsiennes du IPM sont discutŽes
en dŽtail, qui ont ŽtŽ utilisŽes pour optimiser l'efficacitŽ des communications parall•les. Dans
la troisi•me section, nous Žtendrons notre stratŽgie de topologie cartŽsienne aux maillages
multi-blocs en utilisant des fonctions MPI plus avancŽes.

MPI a ŽtŽ dŽveloppŽ pour combiner les meilleures caractŽristiques de nombreux mod•les de
transmission de messages qui ont existŽ au fil des ans. Il s'agit d'une tentative d'organiser et
d'amŽliorer les caractŽristiques existantes des mod•les de transmission de messages et de

prŽparer une norme qui reste portable ˆ travers la gamme de matŽriel et de logiciels disponibles
sur le marchŽ. Comme dŽfinie par la norme, "MPI (Message-Passing Interface) est une
spŽcification de biblioth•que de transmission de messages"[2,7]. MPI n'est pas un langage de
programmation, c'est une biblioth•que de fonctions qui facilite le transfert de donnŽes pendant
les communications parall•les. Ce protocole de communication est le mod•le de transmission
de messages le plus largement utilisŽ sur diverses architectures de mŽmoire distribuŽe ˆ travers
diffŽrents clusters de supercalculateurs. MPI est la premi•re spŽcification qui permet d'Žcrire
des biblioth•ques parall•les rŽellement portables.

Maintenir la portabilitŽ, l'efficacitŽ et la fonctionnalitŽ des programmes parall•les est l'objectif
principal de MPI. Quelques caractŽristiques avancŽes de MPI incluent la gestion dynamique
des groupes de processus, des structures de processus orientŽes application, un grand nombre
d'opŽrations collectives, etc. Les caractŽristiques plus gŽnŽrales et frŽquemment utilisŽes de
MPI sont : les opŽrations point ˆ point, les communicateurs, les opŽrations collectives, les
groupes, etc. Nous avons discutŽ de ces caractŽristiques dans ce chapitre.

Des fonctions MPI avancŽes de topologie cartŽsienne et d'inter-communicateurs ont ŽtŽ mises
�H�Q�� �°�X�Y�U�H�� �S�R�X�U�� �S�U�p�S�D�U�H�U�� �X�Q�H�� �V�W�U�D�W�p�J�L�H�� �G�
�p�F�K�D�Q�J�H�� �G�H�� �G�R�Q�Q�p�H�V�� �K�D�X�W�H�P�H�Q�W�� �p�Y�R�O�X�W�L�Y�H�� �S�R�X�U�� �O�H�V��
maillages structurŽes ˆ multi-blocs. Certains tests de scalabilitŽ ont montrŽ des scalabilitŽs
super-linŽaires qui sont attribuŽes ̂ des effets de cache favorables tout en augmentant le nombre
de noyaux et gr‰ce aux algorithmes avancŽs utilisŽs par les processeurs Intel modernes pour
fonctionner dynamiquement ˆ des frŽquences supŽrieures ˆ leurs frŽquences de base. Pour le
bŽnŽfice des futurs utilisateurs de ce code, l'ensemble de la stratŽgie MPI a ŽtŽ dŽcrite en dŽtail
dans la th•se, ce qui faciliterait Žgalement le dŽveloppement futur du code.

Chapitre 4

Validation : Oracle3D parall•le
La stratŽgie MPI dŽtaillŽe discutŽe dans le chapitre prŽcŽdent a ŽtŽ implŽmentŽe dans Oracle3D
au sein des diffŽrentes versions ou modules du solveur. Comme mentionnŽ prŽcŽdemment, le
code a ŽtŽ rŽ-Žcrit avec une structure Ç module È du FORTRAN 90, pour le rendre plus organisŽ
et orientŽ dans le cadre moderne Fortran. De la m•me mani•re, nous avons Žgalement prŽparŽ
les versions individuelles pour les modules spŽcifiques comme : le solveur Navier-Stokes pur,
le solveur de Poisson, le solveur de transport gŽnŽral, le solveur plasma basŽ Suzen-Huang et
le mod•le ˆ 3 esp•ces, puis le solveur Oracle3D complet. Cet agencement du code en modules
individuels plus petits a grandement facilitŽ le transfert de la mŽthodologie MPI dans la version
compl•te du code. De plus, chaque module plus petit nous a donnŽ l'occasion de valider et de
tester la performance de l'implŽmentation parall•le dans diffŽrents mod•les mathŽmatiques. Ce
chapitre prŽsente tous les tests de validation de la version finale des diffŽrents modules qui ont
ŽtŽ parallŽlisŽ. Ainsi, ce chapitre fournit les toutes premi•res simulations avec le code

dŽveloppŽ et permet de b‰tir une certaine confiance pour les utilisateurs d'Orcale3D avec des
cas de validation ŽprouvŽs.

La validation de tout nouveau dŽveloppement dans le code est une Žtape cruciale avant les
applications finales prŽvues. Ce dŽveloppement a commencŽ avec la version de base Fortran
77 d'Oracle3D, qui a dŽjˆ ŽtŽ longuement validŽe et plusieurs Žtudes ont ŽtŽ publiŽes avec cette
version[1-5]. Le dŽveloppement a commencŽ avec la conversion de la version Fortran 77 du
code vers la version Fortran 90. A chaque Žtape de ce processus de conversion, le nouveau
dŽveloppement a ŽtŽ vŽrifiŽ par comparaison avec les rŽsultats de la version prŽcŽdente. Les
Žtapes majeures de cette conversion incluent l'implŽmentation des fonctionnalitŽs de Fortran 90
�W�H�O�O�H�V�� �T�X�H�� ���� �L�P�S�O�L�F�L�W�� �Q�R�Q�H���� �O�¶�D�O�O�R�F�D�W�L�R�Q�� �G�\�Q�D�P�L�T�X�H�� �G�H�V�� �W�D�E�O�H�D�X�[���� �O�D�� �Y�H�F�W�R�U�L�V�D�W�L�R�Q�� �G�H�V�� �E�R�X�F�O�H�V����
�O�¶�X�W�L�O�L�V�D�W�L�R�Q���G�H�V modules etc... Les versions finales Fortran 90 des diffŽrents solveurs ont ŽtŽ
validŽes, cependant, nous ne prŽsenterons ici que les rŽsultats de validation avec les versions
parall•les de ces solveurs.

4.1 Le solveur de Poisson parall•le

La mŽthodologie MPI, telle que dŽtaillŽe prŽcŽdemment, a d'abord ŽtŽ testŽe rigoureusement
avec quelques Žchanges de donnŽes enti•res tr•s simples aux deux types d'interfaces, dans
plusieurs combinaisons de blocs et de sous-domaines. Apr•s les essais prŽliminaires, la stratŽgie
�0�3�,���D���G�
�D�E�R�U�G���p�W�p���P�L�V�H���H�Q���°�X�Y�U�H���G�D�Q�V���X�Q���V�R�O�Y�H�X�U���G�H���3�R�L�V�V�R�Q�����/�D���F�p�O�q�E�U�H���p�T�X�D�W�L�R�Q���G�H���3�R�L�V�V�R�Q��
est une Žquation aux dŽrivŽes partielles de type elliptique. Nous utilisons ici la mŽthode des
volumes finis pour discrŽtiser l'Žquation de Poisson dans l'espace. L'Žquation (4.1) est la forme
gŽnŽrale de l'Žquation de Poisson :

�F
�ò�6

�ò�T�6

E

�ò�6

�ò�U�6

E��

�ò�6

�ò�V�6
�G�î �:�T�á�U�á�V�;
L �B�:�T�á�U�á�V�;���:�v�ä�s�;

�Ï �6�î �:�T�á�U�á�V�;
L �B�:�T�á�U�á�V�;���:�v�ä�t�;

�/�H���V�R�O�Y�H�X�U���S�D�U�D�O�O�q�O�H���G�H���3�R�L�V�V�R�Q���D���p�J�D�O�H�P�H�Q�W���S�H�U�P�L�V���G�H���Y�p�U�L�I�L�H�U���O�D���P�L�V�H���H�Q���°�X�Y�U�H���G�X���V�F�K�p�P�D���G�H��
correction diffŽrŽe amŽliorŽe (IDC) avec les nouveaux dŽveloppements du code. Le schŽma
IDC est une technique de discrŽtisation en volumes finis, spŽcialement dŽveloppŽe dans notre
groupe de l'Institut Pprime, pour la discrŽtisation des flux diffusifs sur des maillages complexes
particuli•rement distordus [1-2]. Des rŽfŽrences publiŽes sont disponibles dans lesquelles le
schŽma IDC a ŽtŽ introduit et explorŽ sur diffŽrents maillages complexes. Les rŽsultats
disponibles dans les rŽfŽrences ont ŽtŽ obtenus avec la version 2D de notre code Fortran 77.
Ainsi, pour valider le nouveau solveur MPI Poisson, nous avons choisi la m•me Žquation de
Poisson que celle utilisŽe par TraorŽ et al (2009) :

�¿�î
L �t�è�6
k�?�K�O�6�:�è�T�;
F�O�E�J�6�:�è�T�;
o
E�t�è�6
k�?�K�O�6�:�è�U�;
F �O�E�J�6�:�è�U�;
o�����������������������������������:�v�ä�u�;

�î
L���O�E�J�6�:�è�T�;
E���O�E�J�6�:�è�U�;���:�v�ä�v�;

Des conditions aux limites pŽriodiques pour les trois directions (X, Y et Z) ont ŽtŽ mises en
�°�X�Y�U�H���G�D�Q�V���O�H���V�R�O�Y�H�X�U���G�H���3�R�L�V�V�R�Q�����&�H�W�W�H���F�D�U�D�F�W�p�U�L�V�W�L�T�X�H���H�V�W���H�V�V�H�Q�W�L�H�O�O�H���S�R�X�U���G�L�Y�H�U�V���S�U�R�E�O�q�P�H�V��
�G�¶�(�+�'���R�•���G�D�Q�V���F�H�U�W�D�L�Q�V���F�D�V���Q�R�X�V���D�Y�R�Q�V���E�H�V�R�L�Q���G�H���F�H�W�W�H���F�R�Q�G�L�W�L�R�Q���j���O�D���O�L�P�L�W�H�����,�F�L�����X�Q�H���I�R�Q�F�W�L�R�Q��
spatialement pŽriodique a ŽtŽ con•ue pour tester l'implŽmentation pŽriodique du solveur de
Poisson.

4.2 Validation du solveur Navier-Stokes

Cette section est consacrŽe ˆ la validation du solveur parall•le Navier-Stokes. Les
caractŽristiques MPI de la topologie et des inter-communicateurs ont ŽtŽ implŽmentŽes dans le
solveur Navier-Stokes pur d'Oracle3D. C'est un solveur pour les Žcoulements incompressibles,
dans lequel le couplage vitesse-pression est rŽalisŽ par l'algorithme SIMPLE standard de
Patankar [11]. Le schŽma de discrŽtisation centrŽ est utilisŽ pour la discrŽtisation spatiale de
tous les cas de validation. Le schŽma de Gear est utilisŽ pour la discrŽtisation en temps. Les
Žquations gŽnŽrales de continuitŽ et de conservation de la quantitŽ de mouvement pour les
Žcoulements incompressibles rŽsolues dans ce solveur prennent la forme :

�Ï�ä�:�é�Q�,�&�;
L �r!"""#$!%&"

�ò�:�é�Q�;�,�,�,�,�&

�ò�P

E�Ï�ä�:�é�Q�,�&���Q�,�&�;
L
F�Ï�L
E�Ï�ä�:�ä���:�Ï�Q�,�&
E�:�Ï�Q�,�&�;�Í �;
E���B�&�����������������������������������:�v�ä�x�;"

Le probl•me de rŽfŽrence standard de la cavitŽ entra”nŽe a ŽtŽ simulŽ pour valider ce solveur
incompressible. Deux valeurs diffŽrentes (100 et 400) du nombre de Reynolds du dŽbit ont ŽtŽ
prises pour comparaison avec la solution de rŽfŽrence de Ghia et al [16]. Un autre probl•me
standard et bien ŽtudiŽ pour la validation des solveurs Navier-Stokes est celui de l'Žcoulement
derri•re une marche descendante (Backward Facing Step). Plusieurs benchmarks et rŽsultats
expŽrimentaux sont disponibles avec diffŽrentes configurations du canal, selon la hauteur de la
�P�D�U�F�K�H���H�W���O�D���Y�D�O�H�X�U���G�X���Q�R�P�E�U�H���G�H���5�H�\�Q�R�O�G�V���G�H���O�¶�p�F�R�X�O�H�P�H�Q�W�����1�R�W�U�H���R�E�M�H�F�W�L�I���H�V�W���G�H���Y�D�O�L�G�H�U���Q�R�W�U�H��
implŽmentation MPI, en particulier les conditions limites d'entrŽe et de sortie ˆ diffŽrents
nombres de Reynolds, dans cette section.

Les conditions aux limites pŽriodiques sont essentielles pour tout solveur Navier-Stokes. Nous
fournissons ici les rŽsultats obtenus sur deux cas test qui ont ŽtŽ rŽalisŽs pour valider
l'implŽmentation de cette condition ˆ limite pŽriodique dans Oracle3D. Les Žcoulements
classiques de Poiseuille et de Couette ont ŽtŽ utilisŽs pour la validation de l'implŽmentation des
conditions aux limites pŽriodiques dans notre code.

4.3 ParallŽlisation du solveur de transport

Dans le cadre d'Oracle3D, nous avons Žgalement dŽveloppŽ un solveur de transport gŽnŽral. Ce
solveur rŽsout principalement une Žquation de transport convectif pour une variable scalaire
���3������ �F�R�P�P�H�� �O�D�� �G�H�Q�V�L�W�p�� �Y�R�O�X�P�L�T�X�H�� �G�H�� �F�K�D�U�J�H�� �p�O�H�F�W�U�L�T�X�H�� �R�X�� �O�H�� �W�U�D�Q�V�S�R�U�W�V�� �G�H�V�� �L�R�Q�V�� �G�D�Q�V��
�O�¶�p�F�R�X�O�Hment. Le terme de diffusion des phŽnom•nes de transport n'est pas inclus ici pour
�p�W�X�G�L�H�U�� �H�[�F�O�X�V�L�Y�H�P�H�Q�W�� �O�
�H�I�I�L�F�D�F�L�W�p�� �H�W�� �O�D�� �P�L�V�H�� �H�Q�� �°�X�Y�U�H�� �G�H�V�� �V�F�K�p�P�D�V�� �F�R�Q�Y�H�F�W�L�I�V���� �/�H�V�� �V�F�K�p�P�D�V��

�7�9�'�����7�R�W�D�O���9�D�U�L�D�W�L�R�Q���'�L�P�L�Q�L�V�K�L�Q�J�����V�R�Q�W���P�L�V���H�Q���°�X�Y�U�H���S�R�X�U���U�p�V�R�X�G�U�H���O�D���G�L�V�F�U�p�W�L�V�D�W�L�R�Q spatiale
avec une prŽcision supŽrieure au 2e ordre. Une attention particuli•re a ŽtŽ accordŽe ˆ la mise
�H�Q�� �°�X�Y�U�H�� �S�D�U�D�O�O�q�O�H�� �G�X�� �V�F�K�p�P�D�� �7�9�'�� �D�X�[�� �Q�°�X�G�V�� �G�
�L�Q�W�H�U�I�D�F�H�� �H�W�� �D�X�[�� �O�L�P�L�W�H�V���� �/�D�� �P�p�W�K�R�G�H�� �G�H�V��
cellules fant™mes est adoptŽe pour stocker les donnŽes des voisins aux interfaces, car dans les
�V�F�K�p�P�D�V���7�9�'�����O�H�V���G�R�Q�Q�p�H�V���G�H���S�O�X�V���G�
�X�Q���Q�°�X�G���Y�R�L�V�L�Q���G�D�Q�V���F�K�D�T�X�H���G�L�U�H�F�W�L�R�Q���V�R�Q�W���Q�p�F�H�V�V�D�L�U�H�V���H�Q��
fonction de la direction du flux. De plus, les conditions aux limites pŽriodiques ont ŽtŽ mises
�H�Q���°�X�Y�U�H���H�W���W�H�V�W�p���G�D�Q�V���F�H���V�R�O�Y�H�X�U���G�H��transport. L'Žquation gŽnŽrale de transport utilisŽe dans ce
solveur est :

�ò�:�é�î �;
�ò�P

E�Ï�ä�:�é�Q�,�&�î �;
L �r���ä���:�v�ä�y�;

�'�H�V���V�L�P�X�O�D�W�L�R�Q�V���R�Q�W���p�W�p���H�I�I�H�F�W�X�p�H�V���S�R�X�U���Y�D�O�L�G�H�U���O�D���P�L�V�H���H�Q���°�X�Y�U�H���S�D�U�D�O�O�q�O�H���G�X���V�F�K�p�P�D���7�9�'���H�W��
des conditions aux limites pŽriodiques pour le solveur de transport. Des calculs 2D et 3D ont
ŽtŽ rŽalisŽs avec de multiples processus MPI. Dans le cas 2D, un domaine carrŽ avec des limites
pŽriodiques dans les directions X et Z a ŽtŽ considŽrŽ. Le m•me calcul a ŽtŽ effectuŽ cette fois
dans un domaine 3D, o• nous avons une pŽriodicitŽ dans les 3 directions. Le maillage pour ce
�F�D�V���p�W�D�L�W���G�H���������� �;�� �������� �;�� �������� �H�W�������� �S�U�R�F�H�V�V�X�V���0�3�,�� �R�Q�W���p�W�p���X�W�L�O�L�V�p�V���� �/�D���U�R�W�D�W�L�R�Q���G�¶�X�Q���V�F�D�O�D�L�U�H��
passif permet de tester l'efficacitŽ des schŽmas convectifs en prŽsentant plus de cisaillement
�G�D�Q�V���O�¶�p�F�R�X�O�H�P�H�Q�W�����e�J�Dlement ce cas est intŽressant pour tester l'efficacitŽ de l'implŽmentation
parall•le, car il prŽsente un degrŽ plus ŽlevŽ de complexitŽ dans la communication de donnŽes
au niveau des interfaces du domaine MPI.

Chapitre 5

EHD Injection Unipolaire
Oracle3D est principalement un solveur Žlectrohydrodynamique (EHD) qui a ŽtŽ utilisŽ pour
rŽaliser plusieurs Žtudes dont l'injection unipolaire, la conduction EHD, l'Žlectro-sŽparation, la
convection Žlectrothermique, les Žtudes de contr™le de flux utilisant des actionneurs plasma,
etc. [1-11]. Tous les dŽtails nŽcessaires et importants concernant le code Oracle3D ont ŽtŽ
dŽcrits dans les chapitres prŽcŽdents, y compris les tests de validation et de performance. Ce
chapitre prŽsente les travaux numŽriques relatifs ˆ l'Žlectro-convection (EC) rŽalisŽs avec
Oracle3D au cours de cette th•se. Oracle3D se compose d'un solveur de Poisson, d'un solveur
de Navier-Stokes et d'un solveur de transport scalaire pour plusieurs esp•ces. Une combinaison
de ces trois mod•les physiques constitue le code complet d'Oracle3D.

En termes de solveurs de transport, trois modules distincts sont maintenant disponibles pour
rŽsoudre individuellement les mod•les d'injection unipolaire (une seule esp•ce de charge), de
pompage par Žlectroconduction (deux esp•ces de charge) et de dŽcharge plasma (trois esp•ces
�G�H���F�K�D�U�J�H�������-�X�V�T�X�¶�j���S�U�p�V�H�Q�W�����O�H�V���p�W�X�G�H�V���D�Y�H�F���2�U�D�F�O�H���'��portaient principalement sur les domaines
bidimensionnels. Maintenant, alors que la version parall•le est prŽparŽe, nous revisitons
quelques probl•mes classiques de EHD en nous concentrant principalement sur leurs aspects
3D. Les grandes lignes de ce chapitre sont les suivantes : la premi•re partie (5.1) de ce chapitre

traite du probl•me de �O�¶�(�+�' de l'injection unipolaire dans les liquides diŽlectriques entre
plaques parall•les. Quelques tests initiaux avec quelques cas 2D sont fournis pour valider
l'implŽmentation en code, puis l'Žlectro-convection 3D est discutŽe en dŽtail. La deuxi•me
partie (5.2) traite des panaches EHD induits par l'injection d'ions en configuration lame-plan.
Les rŽsultats simulŽs sont comparŽs ˆ ceux d'Žtudes similaires disponibles dans la littŽrature.

5.1 Injection unipolaire entre Žlectrodes ˆ plaques parall•les

Le phŽnom•ne de l'injection unipolaire dans les liquides diŽlectriques est bien documentŽ
expŽrimentalement et numŽriquement. Plusieurs Žtudes numŽriques bidimensionnelles sont
disponibles pour comparer les rŽsultats qualitatifs et quantitatifs avec ce mod•le [1,2,9,9,27,28].
Un bon nombre de publications ont ŽtŽ rŽalisŽes avec la version prŽcŽdente d'Oracle3D (version
de base Fortran 77) [1-11]. Ceci nous donne l'opportunitŽ de valider le module d'injection
unipolaire de notre code parall•le Oracle3D par rapport aux rŽsultats du code scalaire. Quelques
simulations 2D avec des rŽsultats Žtablis sont fournies apr•s avoir expliquŽ l'Žlectroconvection
en injection unipolaire avec le mod•le mathŽmatique. Une analyse 3D dŽtaillŽe du probl•me
suivra par la suite.

5.1.1 Introduction

L'Žlectroconvection entre Žlectrodes planaires parall•les a ŽtŽ largement ŽtudiŽe au cours des
derni•res dŽcennies [12-23]. Un liquide diŽlectrique, confinŽ entre deux Žlectrodes mŽtalliques
ˆ plaques parall•les, ressent un impact significatif du champ Žlectrique produit par les deux
Žlectrodes, lorsqu'il est alimentŽ avec une diffŽrence de potentiel Žlectrique. Un champ
Žlectrique ŽlevŽ entre ces Žlectrodes provoque des rŽactions Žlectrochimiques complexes ˆ la
surface des Žlectrodes. Dans de telles situations, l'injection de particules de charge peut se
produire ˆ l'interface du liquide et de la surface de l'Žlectrode, sur une ou les deux Žlectrodes
[2,25]. Lorsque l'injection d'ions se produit sur une seule des surfaces de l'Žlectrode, on l'appelle
�F�H�O�D���O�¶ injection unipolaire [1].

Les ions injectŽs migrent du fait du champ Žlectrique. Un champ Žlectrique assez fort dŽveloppe
une instabilitŽ qui met Žgalement le liquide en mouvement, affectant la convection globale des
ions injectŽs [6]. Un tel mouvement de liquide, avec une conductivitŽ suffisamment faible, peut
•tre comparŽ ˆ un mouvement liquide dž ˆ la diffŽrence de tempŽrature entre les couches de
liquide (thermo-convection) [13]. Les deux modes de convection dans les liquides, la thermo-
convection et l'Žlectro-convection sont souvent comparŽs en fonction de leurs similaritŽs de
mod•les d'Žcoulement induit (rouleaux, hexagones, etc.) et des dissemblances dans les
mŽcanismes sous-jacents [12, 37].

En injection unipolaire, plusieurs Žtudes bidimensionnelles ont ŽtŽ publiŽes par plusieurs
groupes utilisant diffŽrentes mŽthodes numŽriques pour rŽsoudre l'ensemble des Žquations EC
[7,21,23,27]. Perez et ses collaborateurs (1989) ont ŽtudiŽ le r™le de la diffusion et de la
rŽpulsion de Coulomb avec les algorithmes de transpo�U�W�� �j�� �I�O�X�[�� �F�R�U�U�L�J�p�� ���)�&�7���� �G�D�Q�V�� �O�¶EC ˆ
amplitude finie. Ils ont soulignŽ que la distribution des charges instationnaires dŽpend
principalement des termes d'advection, et que la diffusion ne doit •tre incluse que si des
solutions en rŽgime permanent sont simulŽes [20]. Castellanos (1990) a ŽtudiŽ les instabilitŽs
induites par injection et a mis en Žvidence un Žcoulement chaotique dans l'injection unipolaire
ˆ des champs Žlectriques ŽlevŽs. Vazquez et ses collaborateurs (2008) ont effectuŽ une analyse
de stabilitŽ et ont obtenu la structure ˆ deux rouleaux par ŽlŽments finis - FCT et Particle-in-

cell (PIC). TraorŽ et ses collaborateurs (2013) ont ŽtudiŽ l'Žvolution de l'Žcoulement de la
conductivitŽ Žlectrique d'une structure de cellule de convection ˆ deux structures de cellule de
convection , et enfin le rŽgime chaotique au-dessus de T = 1500. Wu et ses collaborateurs (2013)
se sont penchŽs sur la question de la stabilitŽ dans les cavitŽs dŽlimitŽes par des parois avec
diffŽrents rapports d'aspect, en utilisant la mŽthode du volume fini (FVM). Toutes ces Žtudes
ont ŽtŽ rŽalisŽes dans des cavitŽs bidimensionnelles.

Le probl•me de l'injection unipolaire a ŽtŽ ŽtudiŽ avec le solveur EHD complet. Des tests de
validation 2D ont ŽtŽ effectuŽs pour valider les rŽsultats avec le module d'injection unipolaire
par rapport aux donnŽes dŽjˆ disponibles dans la littŽrature. Ce probl•me de l'Žlectroconvection
(EC) est souvent ŽtudiŽ en considŽrant son analogie avec le probl•me de la convection
thermique de Rayleigh-Benard (RBC). Dans les Žtudes expŽrimentales, des mod•les de cellules
de convection h�H�[�D�J�R�Q�D�O�H���V�R�Q�W�� �R�E�V�H�U�Y�p�V���G�D�Q�V�� �O�¶EC entre des Žlectrodes ˆ plaques parall•les,
comme c'est Žgalement le cas dans les GR. Nous avons rŽalisŽ une Žtude tridimensionnelle du
mod•le de cellules convectives pour reproduire numŽriquement les cellules hexagonales dans
ce probl•me de �O�¶EC. Nous avons observŽ la formation de cellules hexagonales ˆ l'aide de notre
solveur ; cependant, nous avons constatŽ un impact significatif des conditions aux limites de
Neumann sur les cellules convectives en Žvolution qui interdisait la stabilisation de ces cellules
hexagonales dans nos Žtudes.

Nous avons simulŽ diffŽrents cas en modifiant plusieurs param•tres tels que le pas de temps, la
taille de la grille, les conditions de vitesse verticale initiale, etc. Mais il a ŽtŽ observŽ qu'une
limite de Neumann ̂ gradient zŽro n'Žtait pas appropriŽe pour stabiliser les cellules convectives.
DiffŽrents cas ont ŽtŽ entrepris avec des tailles de grille variant de 2 millions ˆ 25 millions de
cellules, et avec 50 processus MPI ˆ 400 processus MPI. L'efficacitŽ parall•le du code, dans
l'Žchange de donnŽes aux interfaces de processus, avec ce flux dŽpendant de l'instabilitŽ, Žtait
conforme aux attentes.

5.2 Injection unipolaire entre la lame et les Žlectrodes planes

Les phŽnom•nes d'Žcoulement induits Žlectrohydrodynamiquement dans les liquides
diŽlectriques dans le cas d'une configuration d'Žlectrodes ˆ lames planes ont ŽtŽ ŽtudiŽs, ˆ la
fois numŽriquement [48, 53-55] et expŽrimentalement [56-58]. Le flux EHD se produit dans
les mŽcanismes d'injection et de conduction du transport de charge dans les liquides
diŽlectriques. Dans cette section, nous traitons principalement du mŽcanisme d'injection, qui
exige l'apparition d'un certain seuil de champ Žlectrique et en dessous de ce seuil, la conduction
du champ Žlectrique domine dans les liquides diŽlectriques. Au-dessus de cette valeur critique
du champ Žlectrique, l'injection de charges se produit ˆ l'interface lame-fluide. Dans les
phŽnom•nes d'injection, la lame fonctionne comme un Žmetteur de charges et l'Žlectrode plane
se comporte comme un collecteur. Les particules chargŽes injectŽes mettent Žgalement en
mouvement le fluide environnant en transfŽrant leur quantitŽ de mouvement aux particules
neutres du fluide. Le fluide se dŽplace ainsi comme un jet vers l'Žlectrode plane. Cet Žcoulement
de type jet est communŽment appelŽ Ç panache Žlectrohydrodynamique È [54].

Ce type de jet a ŽtŽ ŽtudiŽ pour des applications telles que l'amŽlioration du transfert de chaleur,
le mŽlange des fluides, le contr™le du dŽbit, etc. Ainsi, tout comme les panaches thermiques, la
description de ces panaches EHD est importante d'un point de vue industriel. Vazquez et ses
collaborateurs (1995) ont entrepris une Žtude comparative des panaches thermiques et des
panaches EHD, en analysant les panaches axisymŽtriques pour divers nombres de Prandtl.

Plusieurs Žtudes numŽriques de Vazquez et al. ont ŽtŽ rŽalisŽes avec des approches numŽriques
par ŽlŽments finis pour dŽcrire adŽquatement les panaches de EHD et leurs caractŽristiques [59-
61]. Perez et ses collaborateurs (2009) ont analysŽ les panaches EHD dans une configuration
plan-lame, avec la mŽthode des volumes finis ˆ l'aide d'un schŽma TVD (SMART), et ont
examinŽ diffŽrents rŽgimes d'Žcoulement et structures d'Žcoulement caractŽristiques dans de
tels Žcoulements de EHD.

La plupart des Žtudes prŽcŽdentes Žtaient bidimensionnelles. Ici, nous avons ŽtudiŽ le
phŽnom•ne d'injection de la lame en 3D dans un liquide diŽlectrique avec Oracle3D en
parall•le. Un cas d'instabilitŽ, avec Rel=5000, C=10 et M=10 a ŽtŽ simulŽ pour cette Žtude.
Trois lois sur l'injection ont ŽtŽ prises en considŽration. Une simulation avec une loi d'injection
autonome classique, dans laquelle la densitŽ de charge ˆ la surface de la lame est indŽpendante
du champ Žlectrique ˆ la surface de la lame, a ŽtŽ rŽalisŽe comme cas de rŽfŽrence. Apr•s avoir
compris le phŽnom•ne, nous avons incorporŽ deux lois d'injection simulŽes par Traore et al
(2013). Avec les lois d'injection, un couplage plus fort entre les variables comme la charge, le
champ Žlectrique, la vitesse, etc. est induit.

Chapitre 6

EHD Conduction
Dans ce chapitre, nous prŽsentons le mod•le d'Žlectroconduction et quelques Žtudes de cas
rŽalisŽes avec Oracle3D. Principalement, certains cas de validation avec analyse des
caractŽristiques d'Žcoulement dans une configuration de canal de conduction ont ŽtŽ comparŽs
avec des solutions COMSOL et les rŽsultats sont rapportŽs. Les rŽsultats obtenus avec des
�F�R�Q�G�L�W�L�R�Q�V���D�X�[���O�L�P�L�W�H�V���G�H���5�R�E�L�Q���H�W���G�H���1�H�X�P�D�Q�Q���Q�R�Q���K�R�P�R�J�q�Q�H�V���Q�R�X�Y�H�O�O�H�P�H�Q�W���P�L�V�H�V���H�Q���°�X�Y�U�H��
sont prŽsentŽs et leur signification �S�K�\�V�L�T�X�H�� �H�V�W�� �G�L�V�F�X�W�p�H���� �/�¶�Lmpact des formulations
mathŽmatiques : implicite et explicite en cas de discrŽtisation de la FVM du transport des
esp•ces, et �O�¶effet Onsager sur la conduction de la DHM sont bri•vement soulignŽs. Dans la
derni•re section, le diagramme d'Žcoulement avec �X�Q�H�� �� �G�¶�p�O�H�F�W�U�R�G�H�� �G�H�� �W�\�S�H��lame-plateau est
discutŽ en 2D et en 3D.

6.1 Introduction

Les charges Žlectriques prŽsentes dans la conduction Žlectrohydrodynamique (EHD) sont
crŽŽes par dissociation et recombinaison d'un Žlectrolyte faible dans un liquide non polaire ou
lŽg•rement polaire. Lorsqu'un champ Žlectrique externe est appliquŽ, des couches avec une
charge Žlectrique nette apparaissent ˆ c™tŽ de chaque Žlectrode. Ce sont les couches �G�¶hŽtŽro-
charges, avec une polaritŽ opposŽe ˆ celle des Žlectrodes. Le mouvement des esp•ces chargŽes
dans le liquide est dž ˆ la densitŽ de force Žlectrique, �(�&�Ø, qui rŽsulte de trois composantes
physiques diffŽrents. La premi•re et la plus importante est la force de Coulomb qui est le
premier terme du c™tŽ droit de l'Žquation (1). Le deuxi•me terme est la force diŽlectrique qui
n'est prŽsente que lorsque le gradient de permittivitŽ (�Ï�0) existe. Le troisi•me terme est connu
sous le nom de force Žlectrostrictive qui, Žtant le gradient d'un scalaire, peut •tre incorporŽ dans
la pression [1,2].

�(�&�Ø
L �M�'�,�&
F��
�s
�t

���' �6�Ï�Ý
E�Ï �H�é
�' �6

�t

l
�ò�Ý
�ò�é

p
�Í

���I���:�s�;��

Ainsi, seule la force de Coulomb �H�V�W���j�� �O�¶�R�U�L�J�L�Q�H���D�X mouvement EHD permanent dans de tels
phŽnom•nes de conduction. Dans la plupart des applications EHD, cette force de Coulomb met
en mouvement le liquide qui est utilisŽ pour les applications prŽvues comme le pompage, les
jets muraux, etc. La force nette de Coulomb n'est gŽnŽrŽe que s'il y a un dŽsŽquilibre dans les
densitŽs des porteurs de charge positifs et nŽgatifs. Les configurations d'Žlectrodes
asymŽtriques jouent un r™le important dans la crŽation de ce dŽsŽquilibre dans les densitŽs des
porteurs de charge, qui ont ŽtŽ explorŽes dans de nombreuses Žtudes [2-4]. Le mŽcanisme de
conduction EHD fournit une approche non mŽcanique et ˆ faible consommation d'Žnergie pour
gŽnŽrer ou contr™ler un flux de fa•on active, qui peut •tre utilisŽ pour des applications ciblŽes
dans des conditions terrestres et en microgravitŽ [6].

Nous expliquons la conduction EHD dans les liquides diŽlectriques ˆ partir des couches
hŽtŽrog•nes d'esp•ces gŽnŽrŽes par la dissociation et la recombinaison des ions sous l'influence
d'un champ Žlectrique externe. En l'absence de champ Žlectrique externe, les taux de
dissociation (�G�½) et de recombinaison (�G�Ë) sont considŽrŽs constants. Nous avons ŽtudiŽ le
mod•le �G�¶Onsager basŽ sur le concept d'amŽlioration du processus de dissociation par
augmentation du champ Žlectrique externe [7,9]. Le courant Žlectrique est l'un des param•tres
les plus importants lorsque l'on discute du phŽnom•ne d'Žlectroconduction. Nous avons tracŽ le
courant Žlectrique plusieurs fois pour comparer et analyser les rŽsultats obtenus avec nos
simulations. Le courant Žlectrique se manifeste principalement par le flux combinŽ des densitŽs
des esp•ces de charge ˆ travers les surfaces des Žlectrodes.

6.3 ƒtudes de validation et d'analyse des flux

Nous avons prŽsentŽ les toutes premi•res Žtudes de cas qui ont ŽtŽ rŽalisŽes pour valider le
mod•le de conduction EHD tel qu'implŽmentŽ dans Oracle3D. Les effets des conditions aux
limites telles que Neumann BC, Robin BC, Neumann non-homog•ne et Periodic BC sont
ŽtudiŽs, et les rŽsultats ont ŽtŽ comparŽs aux rŽsultats issus de COMSOL. L'Žcoulement par
Žlectroconduction a ŽtŽ simulŽ dans un canal rectangulaire ˆ domaine non dimensionnel.

RŽsumŽ de cette section :

6.3.1 Cas de validation
I. Substrat Neumann BC sans effet Onsager
II. Substrat Robin BC avec effet Onsager
III . Sans la C.-B. pŽriodique sur les faces est et ouest

6.3.2 Impact de l'effet Onsager
6.3.3 Effet de la condition limite du merle sur le substrat

Nous avons comparŽ deux rŽsultats de simulation prŽformŽs avec notre configuration de canal
EHD avec et sans l'effet Onsager. Sur substrat, nous avons utilisŽ Robin BC pour l'esp•ce et
Neumann non-homog•ne pour le potentiel Žlectrique. Nos rŽsultats avec effet Onsager montrent
une augmentation du courant Žlectrique sur l'Žlectrode haute tension. Il est ˆ noter que dans
notre mod•le de conduction, la nouvelle charge est gŽnŽrŽe par dissociation, et avec l'effet
Onsager, nous augmentons le taux de dissociation des esp•ces neutres dans le liquide. Par
consŽquent, les flux de charges sur les Žlectrodes augmentent, ce qui entra”ne des valeurs de
courant plus ŽlevŽes.

6.4 Conduction dans la gŽomŽtrie du plan de la lame

Les configurations d'Žlectrodes asymŽtriques sont importantes pour gŽnŽrer une force de
Coulomb nette dans les flux de DHM. Dans cette section, nous rŽexaminons le rŽglage de
l'Žlectrode du plan de la lame avec un Žcoulement dominŽ par la conduction. On pense
gŽnŽralement que l'apparition de phŽnom•nes de conduction et d'injection dans les liquides
diŽlectriques dŽpend de la tension Žlectrique. La conduction est censŽe se manifester lorsque la
tension Žlectrique appliquŽe est infŽrieure ˆ une tension de seuil nŽcessaire ˆ l'injection [2].
Cependant, les expŽriences montrent que la conduction et l'injection peuvent coexister lorsqu'un
fort champ Žlectrique est prŽsent dans un liquide. Les autres facteurs tels que les propriŽtŽs du
liquide, la configuration des Žlectrodes, la tempŽrature de travail, la quantitŽ d'impuretŽs dans
le liquide, etc. ne peuvent pas •tre nŽgligŽs lors de la dŽcision sur la question de savoir quels
phŽnom•nes surviennent.

Il est essentiel de comprendre les caractŽristiques de dŽbit pour dŽcrire compl•tement le
phŽnom•ne de DHM qui les gŽn•re. Il a dŽjˆ ŽtŽ observŽ que dans les rŽglages dominants de
conduction, le flux global est de l'Žlectrode plane vers l'Žlectrode lame[6], ce qui est opposŽ aux
cas d'injection. Nous avons Žgalement simulŽ le cas classique (Traore et al. (2015)) avec notre
code parall•le pour comprendre le comportement classique de la conduction dans ce contexte.
Deux tourbillons contrarotatifs sont observŽs des deux c™tŽs de l'Žlectrode ˆ lame avec des
vecteurs de vitesse. La direction globale de l'Žcoulement devant la zone de la lame est de
l'Žlectrode plane ˆ l'Žlectrode de la lame, comme indiquŽ dans [6].

Nous avons effectuŽ des tests numŽriques pour examiner les caractŽristiques d'Žcoulement dans
des configurations lame-plan avec un ensemble diffŽrent de param•tres, sous l'influence de la
conduction. Pour les param•tres d'entrŽe, nous avons pris M=0,2, Co=0,1 avec le nombre
Žlectrique de Reynolds (Rel) Žgal ˆ 2500. La simulation a ŽtŽ exŽcutŽe pour 5 unitŽs de temps
non dimensionnelles, et des vecteurs de vitesse ont ŽtŽ enregistrŽs apr•s chaque 0,05 heure non
dimensionnelle. Nous avons observŽ que l'Žcoulement initial se dŽplace d'un plan ˆ l'autre
(t=0,75) ; mais ˆ t=5 nous observons que les vecteurs se dŽplacent d'un plan ˆ l'autre. Ceci s'est
avŽrŽ contradictoire avec ce qui a ŽtŽ observŽ dans notre cas de conduction classique et notre
rŽf. [6]. Le comportement d'Žcoulement observŽ prŽsentait deux types de rŽgimes d'Žcoulement
diffŽrents dans ce cas. Nous appelons le rŽgime d'Žcoulement par conduction classique comme
R1, o• la direction de l'Žcoulement ˆ l'Žtat stationnaire est du plan vers la lame, comme indiquŽ
dans [6]. Le comportement d'Žcoulement observŽ ˆ l'Žtat d'Žquilibre avec ces rŽglages de cas
est appe�O�p�� �U�p�J�L�P�H�� �5������ �R�•�� �O�D�� �G�L�U�H�F�W�L�R�Q�� �G�H�� �O�¶Žcoulement est de la lame vers l'Žlectrode plane.
Cependant, le flux est restŽ 2D dans ce cas, m•me avec une grille 3D.

Nous avons ŽtudiŽ un autre cas avec un nombre de Reynolds Žlectrique plus ŽlevŽ (Rel =
10000), les autres param•tres Žtant M=0,1, Co=0,1. Dans ce cas, nous avons rŽduit de moitiŽ la
valeur de M. Nous avons d'abord analysŽ les vecteurs de vitesse obtenus avec les simulations
2D. Nous avons observŽ la m•me configuration que celle dŽcrite ci-dessus avec M=0,2, les
�Y�H�F�W�H�X�U�V���G�H���O�¶Žcoulement allant �G�¶�D�E�R�U�G���G�H���O�D���S�O�D�T�X�H���Y�H�U�V���O�D���O�D�P�H, mais apr•s un certain temps,
l'Žcoulement �V�¶�L�Q�Y�H�U�V�H���H�W���Y�D���G�H���O�D���O�D�P�H���Y�H�U�V���O�D���Slaque. Comme la valeur Rel est quatre fois plus
ŽlevŽe dans ce cas, nous avons Žgalement ŽtudiŽ le cas 3D pour les m•mes rŽglages.

Nous avons tracŽ les iso-surfaces de la z-vorticitŽ pour analyser la symŽtrie des tourbillons, s'il
y en a. Dans les premi•res Žtapes temporelles, nous avons observŽ que les iso-surfaces de la
corrŽlation z Žtaient symŽtriques le long de l'axe z. Cependant, avec l'Žvolution du flux, nous

avons commencŽ ˆ observer la nature turbulente du flux, et la symŽtrie du flux le long de la
direction z a ŽtŽ reprise par des caractŽristiques 3D rŽelles. Les iso-surfaces de corrŽlation de
la torsion z ˆ t=1,5 sugg•rent que l'Žcoulement est Žvidemment tridimensionnel.

Il montre que le diagramme d'Žcoulement en conduction avec des configurations d'Žlectrodes
asymŽtriques dŽpend fortement des propriŽtŽs du liquide et non seulement de la tension
appliquŽe. Des analyses plus dŽtaillŽes avec diffŽrentes propriŽtŽs de liquide et une fraction
d'impuretŽs variables doivent •tre ŽtudiŽes afin d'amŽliorer encore la comprŽhension de ces
Žcoulements de DHM. Nous soulignons Žgalement que dans de tels Žcoulements
Žlectroconducteurs, il existe des combinaisons de param•tres non dimensionnels (M, C0, Rel)
pour lesquels l'Žcoulement restera en rŽgime R1, ce qui est considŽrŽ comme un comportement
de conduction typique. Cependant, nous pouvons avoir quelques combinaisons de propriŽtŽs
du fluide et de param•tres d'entrŽe qui conduiront ̂ un tel ensemble de param•tres (M, C0, Rel)
pour lesquels nous observerons l'inversion de flux vers le rŽgime R2. Nous avons mentionnŽ
plusieurs facteurs qui affectent ce comportement et d'autres Žtudes sont nŽcessaires pour une
comprŽhension plus large de ces phŽnom•nes.

Chapitre 7.

Mod•le Suzen-Huang pour
actionneurs DBD
Le contr™le de l'Žcoulement �G�¶�D�L�U��a de nombreuses applications pratiques. Particuli•rement dans
les industries liŽes ˆ l'aŽrodynamique, le contr�{�O�H���R�X���O�D���P�R�G�L�I�L�F�D�W�L�R�Q���G�H���O�¶�p�W�D�W���G�¶�X�Q���p�F�R�X�O�H�P�H�Q�W��
reste une prŽoccupation majeure pour les ingŽnieurs. Au cours des 15 derni•res annŽes, les
Ç actionneurs plasma È ont fait l'objet de nombreuses recherches o• ces actionneurs ont ŽtŽ
ŽtudiŽs comme des candidats de choix pour des applications de contr™le �G�¶�p�F�R�X�O�H�P�H�Q�W.

Un actionneur plasma comporte gŽnŽralement deux Žlectrodes sŽparŽes par un matŽriau
diŽlectrique. Une Žlectrode est gŽnŽralement exposŽe ˆ l'air et l'autre est mise ˆ la terre, Fig.
7.1.1.1. Cette configuration est connue sous le nom d'actionneur plasma ˆ dŽcharge ˆ barri•re
diŽlectrique (SDBD) [1,2]. Lorsqu'il est alimentŽ par une tension Žlectrique, un champ
Žlectrique est gŽnŽrŽ entre les deux Žlectrodes qui, s'il est suffisamment fort, peut produire une
dŽcharge Žlectrique dans l'air ambiant. Au sein de la dŽcharge, des ions sont produits par des
mŽcanismes tels que l'ionisation, la recombinaison, le dŽtachement, la photoionisation, etc. qui
se produisent ̂ des Žchelles de temps picosecondes [2,9]. La force Žlectrique induite fait dŽriver
ces charges sous l'influence du champ Žlectrique en fonction de leur polaritŽ. Pendant le
mouvement, une partie de la quantitŽ de mouvement de ces ions est transfŽrŽe aux molŽcules
neutres par collisions entre elles et, apr•s un certain temps, tout le fluide entourant l'Žlectrode
HV est mis en mouvement. Ce phŽnom•ne d'Žcoulement est appelŽ vent ionique ou vent
Žlectrique.

Fig. 7.1.1.1 SchŽma type d'un actionneur plasma ˆ dŽcharge ˆ barri•re diŽlectrique.

GŽnŽralement, la force Žlectrique produit un jet le long de la surface diŽlectrique juste au-dessus
de l'Žlectrode mise ˆ la terre en raison du phŽnom•ne de dŽcharge, figure 7.1.1. En raison de ce
jet, l'air au-dessus du bord droit de l'Žlectrode haute tension est aspirŽ le long de la paroi
diŽlectrique, avec une vitesse de quelques m•tres par seconde. Ce jet peut •tre utilisŽ pour
modifier l'Žcoulement global le long de la paroi. Principalement, dans les applications de
contr™le de dŽcollement, cet actionneur est placŽ pr•s du point de sŽparation. Plusieurs Žtudes
expŽrimentales [2,6] et numŽriques[4,5,8,10] ont ŽtŽ publiŽes pour explorer les caractŽristiques
des actionneurs DBD. Moreau (2007) et Benard et ses collaborateurs (2014) ont fourni un Žtat
�G�H�� �O�¶�D�U�W dŽtaillŽ des Žtudes expŽrimentales effectuŽes au cours des 15 derni•res annŽes, tout
comme Corke et ses collaborateurs (2010).

Ces actionneurs prŽsentent deux directions d'Žtude : (1) l'Žtude de la physique des plasmas
impliquŽs dans le phŽnom•ne, (2) l'exploration �G�H���O�¶�L�Q�W�p�U�r�W���G�H���F�H�V���D�F�W�L�R�Q�Q�H�X�U�V���S�O�D�V�P�D�V���G�D�Q�V���G�H�V��
applications industrielles. Plusieurs physiciens ont ŽtudiŽ numŽriquement le phŽnom•ne du
vent ionique avec une, deux ou plusieurs esp•ces chimiques dans le plasma [14,15,30]. Des
Žtudes numŽriques rŽcentes ont utilisŽ trois esp•ces (Žlectrons, ions positifs et nŽgatifs) et ont
montrŽ le mŽcanisme en rŽsolvant les Žquations de transport de ces esp•ces [31-34]. Les
mod•les numŽriques qui impliquent le calcul de la distribution de la densitŽ de charge dans le
temps sont appelŽs mod•les autosuffisants. Plusieurs mod•les numŽriques ont ŽtŽ proposŽs en
fonction de la nature des phŽnom•nes Žlectriques [1,14,22]. Dans ce chapitre, nous traitons
principalement du mod•le de Suzen-Huang [5].

Seth et ses collaborateurs (2018) passent en revue la plupart des Žtudes initiales rŽalisŽes avec
le mod•le Suzen-Huang (SH). Ces recherches Žtaient basŽes sur les diffŽrentes mises ˆ jour
[13,20,22] du mod•le et sur diverses applications qui ont montrŽ des rŽsultats prometteurs
[7,12,24]. Le mod•le SH est fondamentalement un mod•le d'ingŽnierie simple qui n'int•gre pas
toute la physique des plasmas impliquŽs dans les actionneurs DBD. Cependant, il se rapproche
de la densitŽ de charge basŽe sur les rŽsultats expŽrimentaux et calcule la force de Coulomb
induite par l'actionneur DBD. Cette force de Coulomb est utilisŽe comme terme source dans les
Žquations de Navier-Stokes pour simuler les conditions d'Žcoulement. Plus rŽcemment,
Mahfoze et ses collaborateurs (2017) ont utilisŽ deux variantes du mod•le SH pour Žtudier la
rŽduction de la tra”nŽe de frottement dans un canal�����/�D���V�L�P�S�O�L�F�L�W�p���G�H���P�L�V�H���H�Q���°�X�Y�U�H���H�W���O�H�V���I�D�L�E�O�H�V��
cožts de calcul de ce mod•le ont permis ˆ la communautŽ d'explorer la pertinence de ce mod•le
dans de nombreuses applications. Ici, le mod•le SH a Žgalement ŽtŽ implŽmentŽ dans Oracle3D
et nous avons rŽalisŽ une Žtude paramŽtrique �H�W���T�X�H�O�T�X�H�V���F�D�V���G�H���F�R�Q�W�U�{�O�H���G�¶�p�F�R�X�O�H�P�H�Q�W���V�H�U�R�Q�W
prŽsentŽs dans ce chapitre.

La dŽrivation mathŽmatique du mod•le SH a ŽtŽ exp�O�L�T�X�p�H���G�D�Q�V���F�H���F�K�D�S�L�W�U�H�����2�Q���Y�R�L�W���T�X�¶�X�Q�H���G�H�V��
faiblesse du mod•le SH que nous avons besoin de conna”tre la distribution de densitŽ de charge.

Et, comme cette distribution de densitŽ de charge peut changer avec diffŽrentes configurations
d'actionneurs, nous devons calibrer ce mod•le avec diffŽrentes configurations d'actionneurs. La
densitŽ de charge maximale (�é�Ö

�à�Ô�ë�; et la longueur de Debye �:�ã�½�; sont les deux param•tres
scalaires du mod•le SH qui dŽpendent des conditions expŽrimentales. La distribution
numŽrique globale de la densitŽ de charge dans le mod•le SH dŽpend de ces deux param•tres.

Le mod•le Suzen-Huang (SH) a ŽtŽ implŽmentŽ dans Oracle3D pour explorer ses performances
dans la simulation du flux avec des configurations d'actionneurs plasma DBD. Une Žtude
paramŽtrique a ŽtŽ publiŽe sur la base des param•tres gŽomŽtriques qui caractŽrisent le
fonctionnement des actionneurs DBD. L'impact de l'Žpaisseur du diŽlectrique, de l'Žcart entre
les Žlectrodes, de la frŽquence et de la forme d'onde de la tension, etc. a ŽtŽ dŽcrit en fonction
de leur effet sur la vitesse maximale induite et la force EHD moyenne. Une br•ve Žtude de
�F�R�Q�W�U�{�O�H�� �G�¶�p�F�R�X�O�H�P�H�Q�W��a ŽtŽ mise en place, en utilisant la valeur de la force EHD obtenue
expŽrimentalement comme terme source numŽrique dans les Žquations de Navier-Stokes, de
fa•on ˆ reproduire numŽriquement les vitesses expŽrimentales. La capacitŽ des actionneurs
DBD ˆ manipuler un Žcoulement a ŽtŽ dŽmontrŽe avec une configuration de marche
descendante, ˆ faible nombre de Reynolds. Il a ŽtŽ dŽmontrŽ qu'une sŽparation laminaire
pouvait •tre considŽrablement contr™lŽe en pla•ant l'actionneur ˆ l'extrŽmitŽ de la marche avec
les deux Žlectrodes perpendiculaires l'une ˆ l'autre. Dans l'ensemble, nous avons prŽparŽ le
code parall•le pour ces simulations d'actionneurs DBD, de sorte que des Žtudes 3D compl•tes
puissent maintenant •tre rŽalisŽes avec diffŽrentes configurations de DBD et des nombres de
Reynolds plus important.

ACRONYMS

2D/3D Two/Three Dimensional
AVX Advanced Vector Extension
BC Boundary Condition
BFS Backward Facing Step
CDS Central Differencing Scheme
CFD Computational Fluid Dynamics
CPU Central Processing Unit
CV Control Volume
DBD Dielectric Barrier Discharge
DNS Direct Numerical Simulation
EC Electro-Convection
EHD Electro-hydro-dynamics
FVM Finite Volume Method
HPC High Performance Computing
HV High Voltage
IDC Improved Deferred Correction
LES Large Eddy Simulation
MPI Message Passing Interface
NS Navier-Stokes
OpenMP Open Multi-Processing
PDEs Partial Differential Equations
PIV Particle Image Velocimetry
QUICK Quadratic Upstream Interpolation for Convective Kinematics
RAM Random Access Memory
RBC Rayleigh-Benard Convection
SDBD Single Dielectric Barrier Discharge
SDC Standard Deferred Correction
SH Suzen-Huang
SIMPLE Semi-Implicit Method for Pressure Linked Equations
SMART Sharp and Monotonic Algorithm for Realistic Transport
TVD Total Variation Diminishing
UD Upwind Difference

NOMENCLATURE

Symbol Discription Unit

! ! Permittivity of vacuum/air [F/m]
"#$ Electric field vector [V/m]
%$ Force field vector [N/m3]
&$ Electric Current density [A/m2]
' (Boltzmann Constant [J/K]
') Dissociation constant
' * Recombination constant
+, Positive charge density [C/m3]
+- Negative charge density [C/m3]
+./ Charge density at equilibrium [C/m3]
0#$ Velocity vector [m/s]
1) ! ! Debye Length!! ! [m]!
2! Density [kg/m3]
! Permittivity [F/m]
D Diffusion coefficient [m2/s]
I Electric Current [A]
V Electric voltage [V]
e Elementary electronic charge [C]
K ionic mobility coefficient [m2/V.s]
q Ionic charge density [C/m3]
3 Dynamic viscosity [kg/m.s]
4 Kinetic viscosity [m2/s]
5#$ unit normal vector

NON-DIMENSIONAL PARAMETERS

Pe Peclet Number
R Reynolds Number
Rel Electric Reynolds Number
T Electric Rayleigh Number
C Injection Strength
M Mobility Parameter
6 Ionic diffusion number
Dc Non-dimensional Coulomb force parameter in SH model
! 7 Relative permittivity

Table of Contents
1.! Introduction __1

PART I: Oracle3D: an EHD Solver

2.! Numerical Methods in context of Oracle3D ______________________5
2.1!Finite Volume Method: a brief overviewÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ..5
2.2!Discretization of Diffusion termsÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ.É.7

2.2.1! Standard Deferred correction (IDC) ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ8
2.2.2! Improved Deferred correction (IDC) ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ.11

2.3!Discretization of convective term ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ....12
2.3.1! TVD schemes ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ..13
2.3.2! Implementation of TVD scheme in Oracle3D ÉÉÉÉÉÉÉÉÉÉÉÉÉ....14

2.4!Discretization of transient term ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ19
2.5!Combined formulation of Convection-Diffusion discretizationÉÉÉÉÉÉÉ...19
2.6!Discretization for boundary conditions ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ....21

2.6.1! Robin boundary condition ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ...21
2.6.2! Non-Homogeneous Neumann boundary condition ÉÉÉÉÉÉÉÉÉÉÉÉ.24
2.6.3! Dirichlet and zero flux boundary condition ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ24
2.6.4! A generalized approach to discretize boundary conditions ÉÉÉÉÉÉÉÉÉ25
2.6.5! Periodic boundary condition ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ...27

Bibliography ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ.29

3.! Parallelization of Oracle3D ___________________________________30

3.1 Parallel Programming Models ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ..É.31
3.2 MPI and Single Block grid parallelization ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ35

3.2.1 Message-Passing Interface (MPI) ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ36
3.2.2 Implementation of Cartesian Topology in Oracle3D ÉÉÉÉÉÉÉÉÉÉÉ...43

3.3 MPI extension to Multi-block grids ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ.47
 3.3.1 Setting MPI environment for multi-block grids ÉÉÉ ÉÉÉÉÉÉÉÉÉÉ... 48

I.! Grid Management ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ..50
II. ! Cartesian Topology ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ52

III. ! Interface Groups ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ55
IV.! Interface Intra-Communicators ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ.58
V.! Interface Inter-Communicators ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ 60

VI.! The NUM_CFI array ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ.65
VII. ! Data Exchange among MPI processes ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ..67

 3.3.2 Scalability results with Oracle3D ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ69

 Bibliography ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ74

4.! Validation: Parallel Oracle3D _________________________________75

4.1!Parallel Poisson Solver ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ.75
4.1.1! Validation on distorted grids ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ.76
4.1.2! Validation of 3D decomposition ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ...79
4.1.3! Validation of Periodic boundary ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ...84

4.2!Navier-Stokes Solver ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ85
4.2.1! Lid Driven Cavity cases ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ..86
4.2.2! Backward-facing step cases ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ.90
4.2.3! Periodic Boundary cases ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ..94

4.3!Transport Solver ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ...95
4.3.1! Periodic transport ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ.95
4.3.2! Rotational transport ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ97

 Bibliography ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ99

PART II: Applications with Oracle3 D

5.! EHD: Unipolar Injection ____________________________________100
5.1!Unipolar injection between parallel plate electrodes .ÉÉÉÉÉÉÉÉÉÉÉ100

5.1.1! Introduction ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ...100
5.1.2! Mathematical Formulation ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ102
5.1.3! Unipolar injection 2D cases ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ..103
5.1.4! Unipolar injection 3D cases ..ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ108

5.2!Unipolar injection between blade-plane electrodes ÉÉÉÉÉÉÉÉÉÉÉÉ116
5.2.1! Problem Definition ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ116
5.2.2! Initial simulation with autonomous injection law ÉÉÉÉÉÉÉÉÉÉÉÉ.118
5.2.3! Simulations with non-autonomous injection laws ÉÉÉÉÉÉÉÉÉÉÉÉ.122

Bibliography ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ. ..127

6.! EHD Conduction __132

6.1!Introduction ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ132
6.2!Mathematical model ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ...133

6.2.1! The Onsager effect ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ.135
6.2.2! The Electric Current (I) ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ .136

6.3!Validation and flow analysis studies ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ..139
6.3.1! Validation Cases ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ140

I.! Neumann BC substrate without Onsager effect ÉÉÉÉÉÉÉÉÉÉÉ..140
II. ! Robin BC substrate with Onsager effect ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ.145

III. ! Without periodic BC on east and west faces ÉÉÉÉÉÉÉÉÉÉÉÉ...149
6.3.2! Impact of Onsager effect ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ...152
6.3.3! Effect of Robin BC on substrate ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ154

6.4!Conduction case in Blade-plane geometry ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ.157
6.4.1! General Conduction phenomenon ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ. 157
6.4.2! Reversed flow phenomenon with higher Rel ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ..159
6.4.3! Case with 10000 Rel ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ..169

Bibliography ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ...172

7.! Suzen-Huang model for DBD actuators ________________________173
7.1!Introduction ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ173
7.2!Mathematical model ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ...174
7.3!Initial investigations with SH model ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ..178

7.3.1! Comparison of electrical parameters ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ.179
7.3.2! Analysis of the produced ionic wind ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ180
7.3.3! Impact of the Debye length ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ...183

7.4!A parametric study ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ.185
7.4.1! Effect of the electrical parameters ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ.187
7.4.2! Effect of the Dielectric thickness ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ...189
7.4.3! Effect of the gap between the electrodes ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ...189

7.5!Analyzing the measured force with SH model: a brief study ÉÉÉÉÉÉÉÉ.192
7.6!Backward-facing step flow control ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ...196
Bibliography ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ.204

Conclusions & Perspectives _____________________________________208

Appendix 1 É ..211

Appendix 2 É ..213

 1

Chapter 1.

Introduction

In 21st century, the advancements in every domain of science and engineering have become
closely dependent on the progress in computer science. The ability of modern computers to do
huge number of mathematical calculations in unimaginably quick time is at the core of this
dependence. Availability of hardware and relevant software is the key behind such impressive
ability of the computers. MooreÕs law has guided the semiconductor industry for last 5 decades
to advance and anticipate the future of computer hardware; according to which the number of
transistors on integrated circuits were to double every year from 1965, and after 1975 it was
revised to double every two years. This led to a rapid growth in the computing hardware
technologies which still continues. On the other hand, several programming models were
proposed to effectively design the software programs to benefit from the ever-increasing
hardware capabilities.

It is evident that to really profit from the progress in hardware and software, both technologies
must advance coherently with each other. In fact, as the hardware industry has advanced ahead
of the software domain, the software innovations have to follow according to the already
available hardware architectures. The existing software packages and the legacy scientific
codes have to be modernized with the ever-changing processor architectures to allow the users
to benefit from the ubiquitous multicore processors. Scientific and engineering research
community is one of the biggest consumers of these growing high-performance computing
(HPC) technologies. And, there are organizations which are leading the way forward for the
scientific community to keep it updated with these fast-paced HPC technologies. For example,
the Partnership for Advanced Computing in Europe (PRACE) is an organization to facilitate
high-impact scientific discoveries and engineering research across all disciplines by providing
most advanced computing and data management resources available across Europe to the
member European communities.

Many important problems of science and engineering cannot be undertaken without the modern
HPC systems. The climate or weather prediction, turbulence at the smallest scales, full body
aerodynamic studies of aerospace vehicles etc. are some problems where the length scales
matter a lot, on the other hand, the physics of plasma discharge, atomic collisions etc. are the
problems where the time scales are also immensely important. Both types of problems require
the modern HPC capabilities to make proper understanding of the underlying phenomena.

The context of this thesis is based on an in-house electrohydrodynamic solver, Oracle3D, with
which we wish to study the interaction of electrostatics with hydrodynamics. Oracle3D is a
Finite Volume based multi-block structured grid, incompressible Navier-Stokes solver for
steady and unsteady flow conditions. It uses SIMPLE algorithm for pressure velocity coupling
and 2nd order Gear Scheme for temporal discretization. It approximates the convective fluxes
with Total Variation Diminishing (TVD) scheme with several available flux limiters. Improved
Deferred Correction (IDC) scheme is used to treat the diffusive fluxes. These features are

 2

explained with details in following chapters. The code is mainly developed to simulate various
electro-hydrodynamic problems.

There are several real-life situations where some kinds of ionic species interact with the
surrounding neutral molecules of fluid and there occurs an exchange of energy, momentum,
electric potential etc. between the ions and neutral particles, which demands detailed study.
Such interactions of ionic species with the neutral fluid is considered under the discipline of
Electrohydrodynamics (EHD). The overall aim of this thesis consists of modernizing the code
Oracle3D to tackle large and complex EHD simulations on advanced HPC systems and
numerically studying the EHD problems in three dimensional configurations.

Intricately coupled applications of modern industries bring together the branches of
hydrodynamics, electrostatics, electrochemistry etc. under the multi-disciplinary EHD research.
The Electro-Fluido-Dynamics (EFD) group at the Institut Pprime in France is actively
participating in building the new technologies comprising the EHD domain and leading the way
in solving many industrial problems such as the aerodynamic flow separation. The group has
state-of-the art experimental and HPC facilities at the Institut Pprime in collaboration with the
University of Poitiers. Efforts have been made, during this PhD work, to significantly advance
the numerical research capability of the group by designing and implementing the parallel
strategy for the code Oracle3D and rigorously validating it. Detailed numerical work and
computational methodology has been provided in this thesis for the current and forthcoming
users of this EHD solver.

This work does not focus in-depth on a single physical problem; however, it provides a range
of EHD applications including unipolar injection, electro-conduction, flow separation control
with plasma discharge etc. with initial validation tests in several domain configurations to build
a broad database for the new code. Some classical EHD problems were revisited and the
background summary with bibliography of the relevant previous works has been provided
within corresponding chapters and sections. As the code was parallelized beginning from the
legacy Fortran 77 version, MPI implementation details are provide in this thesis to facilitate
further advancements and developments in future.

Scope of this thesis

The in-house EHD solver, Oracle3D, has been under development for more than a decade now,
and advanced features are being added regularly to extend its scope to newer and more complex
EHD problems. During the course of this thesis, the solver ÔOracle3DÕ was upgraded with
modern Fortran features and more importantly it was parallelized with Message Passing
Interface (MPI) to be run on distributed memory CPU clusters. Parallelizing a scientific code
presents a lot of challenges in terms of programming the intricate core level details, and then
adapting the whole scalar code to the parallel methodology. Thus, the task of parallelizing the
complete EHD solver was divided in sub-tasks which included preparing individual scalar and
parallel codes for simple physical models such as the PoissonÕs solver, the Navier-Stokes
solver, a scalar transport solver etc.

To simplify pre-processing stage of grid preparation, a Fortran code was designed to read block-
grid data from ÔBlockMeshÕ and convert it into the suitable format for multi-block Oracle3D
grids. Advanced MPI features of Cartesian topologies, groups, inter-communicators etc. were

 3

implemented in the code to prepare a scalable message passing strategy for the parallel
computations. The first part of the thesis deals with the methodology used to parallelize the
solver codes and their validation with existing results. A short summary of the chapters is as
follows:

¥! Chapter 2 briefly mentions the Finite Volume method (FVM) as the numerical approach
used for discretization of governing equations in Oracle3D. Instead of general transport
equation, specific equations used in the code are taken as discretization examples
wherever possible. The need and the implementation details of ÔTVDÕ schemes are
detailed for the users of the code. Some new boundary conditions were implemented in
the code which are explained with relevant discretization approach.

¥! Chapter 3 details the methodology used for parallelization of the code with advanced
MPI features. A general outline towards parallel programming models is provided in 1st
section. Section 2nd deals with the Cartesian topology features of MPI which were
initially used to parallelize single block grids. The 3rd section puts forth the whole
strategy used to parallelize the multi-block grid geometries, with complete
implementation details for users. Finally, some scalability tests are provided with
explanations to judge the parallel efficiency of the new code.

¥! Chapter 4 provides all the test cases performed to validate the individual parallel solvers:
Poisson solver, Navier-Stokes solver, advective transport solver. Most of the new
features added were validated with different number of cores to verify the message
passing approach in the parallel solvers.

In the second part, we provide the EHD studies performed with Oracle3D during the course of
this thesis.

¥! Chapter 5 deals with EHD unipolar injection. The electro-convection problem is

defined, and a brief literature review is given to start with. Some initial 2D studies are
presented to validate the unipolar injection model of the code. Three-dimensional
convective cellsÕ pattern formation in parallel plate electrode configuration is
investigated in detail. Then, 3D injection plumes are investigated with blade-plane
electrode geometry under different injection laws.

¥! Chapter 6 accounts for several computations in the framework of electro-conduction
phenomenon. Some validation tests were performed to compare with Comsol, and
results are provided. A 3D conduction channel was simulated for the 1st time. In second
section, we provide some insight into the flow pattern observed with our conduction
case settings in blade-plane electrode geometry.

¥! The last chapter deals with plasma discharge. We have used, in this first approach the
Suzen-Huang (SH) model which is described with the derivation of model and its
parameters. Impact of the Debye length is briefly explored in context of SH model. A
parametric study dealing with the geometrical and electrical parameters characterizing
the DBD actuators is provided. A study with experimental force used as a source term

 4

in Navier-Stokes equations is highlighted. Lastly, a brief study with a laminar flow
control over a backward facing step is provided.

 5

Chapter 2.
Finite Volume Method in context of
Oracle3D

Finite Volume method (FVM) is one of the most popular mathematical approaches among
others, which are used to solve the problems of continuum mechanics by discretizing the
corresponding partial differential equations in time and space. Spatial discretization of a
problem refers to dividing the spatial domain of a problem into much smaller geometrical
entities like computational cells, faces and nodes. Then, the physical problem in the whole
spatial domain is combinedly described by the algebraic relations defined on these individual
computational cells and nodes. Algebraic equations for the individual computational cells are
obtained by integrating the partial differential equations with FVM over each discrete cell.

When the problem is of unsteady nature, discretization in time is also required which is carried
out by dividing the overall problem time into much smaller time steps. The evolution of
physical problem with smaller time steps altogether provides the complete unsteady solution.
A complete flow chart for the general discretization process as usually followed in numerical
analyses in given in Fig. 2.1. In, this chapter, we will mainly talk about the FVM strategies as
used in our solver, Oracle3D. We have tried to explain the various newly implemented
discretizations and the boundary conditions with the actual problems which are encountered in
the physical models that are available in the code. This is to facilitate the understanding of the
code for the future users.

2.1 Finite Volume Method: a brief overview

A large number of methods and schemes are available within the framework of Finite Volume
approach, depending on the nature of physical problem (diffusion, convection etc.), required
order of accuracy, nature of grid etc. Inherent conservative nature of Finite Volume method is
its prominent feature which puts it ahead all other numerical techniques when computational
fluid dynamics (CFD) is talked about. When dealing with fluxes of conservative quantities over
the faces of computational cells, it is stated that the flux entering a control volume is identical
to the flux leaving the adjacent volume, making the FVM strictly and inherently conservative.
Especially, this feature is an added advantage for the fluid mechanics problems where we have
to satisfy the conservation laws of mass, momentum and energy in every single problem at each
time step. With the significant advancements in CFD, in last few decades, FVM has gained a
lot of popularity by being able to tackle all kinds of complex physical problems.

As the other numerical approaches, like Finite Difference method (FD) and Finite Element
method (FEM), in Finite volume also we transform the partial differential equations (PDEs)
into linear algebraic equations. All the physical phenomena are described by some kind of
PDEs, which distinctly define the mathematical and physical nature of the problem under
consideration. For example, in CFD the most frequently encountered PDEs are the Navier-
Stokes equations, which are defined by the conservation laws of mass and momentum. Towards
the discretization process of PDEs, which requires the transformation of volume and surface

 6

integrals into discrete algebraic equations, we undeniably come across the divergence theorem
(GaussÕ theorem) in FVM.

Fig. 2.1 A general overview of discretization process (courtesy Moukalled et al. 2016)

The divergence theorem states that the overall flux of a vector field (!"#) through any closed
surface (S) is equal to the total volume of all the sources and sinks over the region confined by
that surface, eq. (2.1). Here the total volume of all sources and sinks is defined by the volume
integral of the divergence of that vector field. Thus, with this theorem we usually convert the
volume integrals into surface fluxes, which are then used to form the discrete algebraic
equations.

$ %&'(!"#)
*

(+, - ((($!"#('."#(+/
0

(((%1'2)

We present here, as an example, the conservation equation for a general scalar variable 3 to
express the utilization of divergence theorem in FVM. Eq. 2.2 shows the four terms present in
a general conservation equation: transient term, convective term, diffusion term and the source
term. Here, 4 is the density of fluid, !"# is the velocity vector field, and 5 is the diffusion
coefficient of the variable 3 . We keep the treatment of the transient term for later and show
here the transformation of this PDE (eq. 2.2) into surface fluxes of control volumes. Eq. 2.3
represents the steady state form of eq. 2.2. These two equations are for the whole problem
domain.

 7

6%43)

67
(((((((8 (((((((((&' %43 !"#) (((((((- (((((((&(' %59 &3) (((((8 (((((((: 9 ((((((((((((((((((((%1'1)

 &' %43 !"#) (- (&(' %59 &3) 8 (: 9 (((%1';)

We now take the discretized finite volume cells of the domain and integrate eq. 2.3 over a cell
C. Eq. 2.4 is the volume integral form of the steady conservation equation, over a control
volume cell. Now, we use the eq. 2.1 (divergence theorem) to convert the volume integrals of
convective and diffusive terms into surface integrals, as depicted by eq. 2.5. Here ,< is the
volume of the cell C and /# is the surface vector of the cell surface. Equation 2.5 is usually
termed as the semi-discretized equation in FVM, as it represents the contributions by individual
finite volume cells [1].

$ &' %43 !"#)
*=

+, (((- ($ &(' %59 &3)
*=

+, 8 ($: 9

*=

(+, (((((((((((((((((((((((((((((((((%1'>)

(($ %43 !"#)' +/#
?* =

- ((($ %59 &3)' +/#
*=

8 ($: 9

*=

(+, ((((((((((((((((((((((((((((((((((((%1'@)

With the semi-discretized equation, we have to obtain the discrete algebraic equations for each
cell, which will be the contribution of individual cells in diffusion, convection and source terms
for the whole problem. Diffusion, convection and the effect sources/sinks are three phenomena
which are completely of different physical nature, so while explaining they are generally dealt
separately to obtain their contribution and then finally combined for the overall solution. We
will discuss the mathematical approach to get the discrete algebraic equations for each term in
following sections.

2.2 Discretization of Diffusion term

We take an equation with diffusion term, as an example, to understand this discretization
process. This equation (Eq. 2.6) is the charge density equation from the Suzen-Huang model
[2], which is a part of the overall framework of this thesis. This equation was newly
implemented in the Oracle3D code, so it was felt important to provide the discretization of this
equation here as an example problem. In equation 2.6, the left-hand side (LHS) term solves our
requirement of a diffusion term.

&' %AB&(4<) - (4<
CD

EF ((%1'G)

Here 4< refers to the charge density, CD (is the Debye length and AB is the relative permittivity
of the medium. Rearranging this equation to get all terms with 4< on one side as:

4<
CD

EF H(&' %AB&(4<) - (I (((%1'J)(

Transient term convective term diffusive term
source term

 8

Let us integrate eq. (2.7) as per the FVM approach to discretize it, which gives us

($ K4<
CD

EF L
*=

+, H ($ &' %AB&(4<)
*=

(+, (- I (((((((((((((((((((((((((((((((((%1'M)

Using the divergence theorem for the diffusion term:

$ K4<
CD

EF L
*=

+, H ($ (%AB&(4<)
0

' ."#(+/ (- I ((%1'N)

Let us take 4< - 3 (, following our codeÕs convention. Integrating the first term of equation
(2.9) separately, for control volume with centre node P

$ K3
CD

EF L
*=

+, - ((O
P,
CD

E Q(3 R(((%1'2I)

Where P, is the volume of the cell with center node P. Now considering the second term of eq.
(2.9) for cell with centre node P, which is a surface integral over this cell. We can replace the
surface integral with a summation over the control volume faces. This transformation is the first
approximation introduced in our FVM approach. Here k represents all the faces of the control
volume in all six directions (east, west, north, south, bottom and top). A 2D arrangement of
cells with neighbour nodes in respective directions, represented with capital letters, are shown
in Fig. 2.2. Orthogonal cells are shown in Fig. 2.2 just to simplify the understanding of
nomenclature used here.

$ (%AB&(3)
0

' ."#(+/ (- S %AB&(3)T(' ."#T/ T

TUVWXYZ[

- S ABT/ T%&(3)T(' ."#T

TUVWXYZ[

(((((((((((((((%1'22)(

Fig. 2.2 Control volumes arrangement in a 2D grid

2.2.1 The Standard Deferred Correction (SDC)

Here / T is the area of the respective face of the control volume, and (."#T is the unit normal vector
for k face. Now in the above expression we need to compute %&(3)T(' ."#T with a suitable
approximation. As we often deal with complex geometries where non-orthogonal grids are
usually encountered, we demonstrate here the standard deferred correction (SDC) method
which is used to deal with the non-orthogonal control volumes, along with the diffusion term
discretization [3,8]. We follow the normal decomposition approach (Fig. 2.3) for our
discretization in which (."#T can be represented as follows:

 9

Fig. 2.3 Decomposition of surface normal vector ((."#T) in SDC

(."#T - (\#T 8 %(."#T H (\#T)

Here \#T is the unit vector joining the central nodes of the two adjacent control volumes, using
this we can write

%&(3)T(' ."#T - ((%&(3)T(' \#T 8 (%&(3)T(' %(."#T H (\#T)((((((((((((((((((((((((((((((((((((%1'21)

SDC utilizes this normal decomposition and gives an iterative procedure to solve the diffusive
term in equation (2.11):

S ABT/ T%&(3)T(' ."#T -
TUVWXYZ[

(S ABT/ T

TUVWXYZ[

%&(3)T
] (' \#T ((((((((8 (

S ABT/ T

TUVWXYZ[

%&(3)T
] ^ _(' %(."#T H (\#T)(((((((((((((((((((((((((((((((%1'2;)

Where m refers to the solution of %&(3)T during current iteration and m-1 is the solution from
the previous iteration. The second term on the RHS in equation (2.13) is solved explicitly from
the terms of previous iterations and they form the deferred correction part of the solution. The
first term on RHS can be approximated with second order central scheme for the first derivate
which is written as eq. (2.14):

Àa / T(%&(3)T
] (' \#T - (

Àa / T

+%bcd)
%3 e

] H 3 R
])(((%1'2>)

Here d(P, K) is the distance from Point P to point K. For, simplicity we consider a 2D grid, as
shown in Fig. 2.2, and the extension to 3D cases will remain similar. So, using equation (2.10)
and (2.13) in SH model equation (2.9) we get eq. (2.15). We keep the deferred correction term
on the RHS of eq. (2.15) as it is computed explicitly from the known values of the previous
iterations (m-1).

 10

O
P,
CD

E Q(3R
] H (S

Àa / T

+%bcd)
f 3e

] H 3R
] g

TUVWXY

(((((((((

- ((h S ABT/ T

TUVWXY

%&3()T
] ^ _(' %(."#T H (\#T)(((i ((%1'2@)

We solve the eq. (2.15) without the RHS term now, just to show the following approach more
clearly. The RHS term of eq. (2.15), which is the deferred correction contribution, is used as a
source term in Oracle3D in the algebraic equations and is explained at the end of this section.
Expanding the 2nd term of LHS by writing the flux contribution from all 4 faces of the cell with
node P, (Fig. 2.2), we get:

O
P,
CD

E Q3R
] H (j

Àk / W

+%bcl)
f 3m

] H 3R
] gH

Àn / X

+%bco)
f 3R

] H 3p
] g8

À. / V

+%bcq)
f 3 r

] H 3R
] g

H
Às / Y

+%bc/)
f 3R

] H 30
] gt (((((- (((((I ((%1'2G)

In eq. (2.16) we only have the terms at current time step (m), so we drop the superscript ÔmÕ
and rearrange the terms for node P and neighbouring nodes respectively as:

u
P,
CD

E 8
Àk / W

+%bcl)
8

Àn / X

+%bco)
8

À. / V

+%bcq)
8

Às / Y

+%bc/)
v(3 R H(K

Àk / W

+%bcl)
L3 m H(K

Àn / X

+%bco)
L3 p

H K
À. / V

+%bcq)
L3 r H K

Às / Y

+%bc/)
L30 ((((((- ((I (((%1'2J)

wR3 R 8 (wm(3 m 8 wp 3 p 8 wr 3 r 8 w030 - I (((%1'2M)((

Eq. (2.18) is the final algebraic equation for cell P and here the A coefficients are called the
discretization coefficients, from corresponding neighbouring control volumes, of the equation.
Their values are:

wm - (H
Àk / W

+%bcl)
(c wp - H

Àn / X

+%bco)

wr - (H
À. / V

+%bcq)
c w0 - (H

À. / V

+%bc/)

wR is the coefficient of the control volume under consideration itself, and it is given by eq.
(2.19).

wR - Hwm H wp H wr H w0 8 / R(((%1'2N)

Here / R -
P*

xy
z (, it comes from the RHS term of the base eq. (2.6). In Oracle3D, we treat such

contributions, which come from other than the neighbouring nodes, in the / R term. We do not
have any source term in the equation (2.6) so here SU = 0, which is the variable used in
Oracle3D for the contribution from the source/sink terms.

 11

For a three-dimensional case we will have the terms for top and bottom node contributions also,
and the final discretized algebraic equation for node P will become:

wR3 R 8 (wm(3 m 8 wp 3 p (8 (wr 3 r 8 w0308 (w{ 3 { 8 w| 3 | - I (((((((((((((((((((((((((((%1'1I)((

For diffusion coefficient (AB)(we use the linear interpolation, where CWis the interpolation factor
based on the ratios of distances between the cell centroids:

ABW- AR%2 H CW) 8 (AmCW(

CW- (
+RW

+RW8 +mW

Here e stands for the central node on the interface between the two cells, and +RWc +mW refer to
the corresponding distances between the cell centroids and the node e. The deferred correction
terms, which were dropped in eq. (2.16), are approximated and used as source terms in algebraic
equations. We write here the RHS term of eq. (2.15) and expand it in two terms as follows:

S ABT/ T

TUVWXYZ[

%&(3)T
] ^ _(' %(."#T H (\#T)

- ((h S ABT/ T

TUVWXYZ[

%&(3)T
] ^ _' (."#T (H (S ABT/ T

TUVWXYZ[

%&(3)T
] ^ _' \#Ti ((((%1'12)

These two terms on the RHS of eq. (2.21) are stored in variables SUEH and SUEL in Oracle3D.
Contributions in these terms from all the cell faces can be obtained similarly as shown above
for the LHS of eq. (2.15). Some code relevant details corresponding these terms are provided
in appendix I with further explanations. The final algebraic equation corresponding to eq. (2.6)
for a control volume cell as used in Orcale3D can be written as:

((wR3 R 8 (S wT3 T

TUVWXYZ[

(- /}l~ H /}l• (((((((((((((((((((((((((((((((((((((((%1'11)((

2.2.2 The Improved Deferred Correction (IDC)

Based on the idea of SDC scheme, Traore et al. (2009) introduced an improvement in the
approximation of diffusive flux for non-orthogonal grids which was tested with extremely
skewed grids and proved to be robust with better efficiency than the SDC scheme [8,9]. It was
also reported that the convergence properties and the order of accuracy of the discretization
were not degraded with this improved deferred correction (IDC) scheme even in extremely
skewed grids. The decomposition of surface normal vector in IDC is shown in Fig. 2.4. The
main idea is to express the surface normal %."#T) in term of a unit vector parallel to the surface
/ T. The surface normal %."#T) in this case can be written as:

."#T - (€• ‚ •
"""#8 (ƒ• „•"""#(

 12

Where €• -
_

…†‡̂ ‰
 ; and ƒ• - „Š‹ ŒT . This updated value of ."#T should be used in eq. (2.11) to

obtain the new approximation of diffusive flux with IDC scheme. The derivation with IDC will
follow in similar manner as explained above for the SDC scheme. This IDC scheme was
implemented in parallel Oracle3D code and the same tests cases, as provided in Traore et al.
(2009), were performed to validate the Poisson solver of the code. The detailed validation cases
having the comparison with reference [8] are provided in chapter 4 of this thesis. For further
details on the IDC scheme interested readers should refer [8,9].

Fig. 2.4 Decomposition of surface normal vector in IDC scheme (Traore et al. (2009))

2.3 Discretization of convective term

We take the integral form of convective term from eq. (2.5) and write the integral of surface as
the sum of fluxes from the control volume faces in all directions. We introduce the mass flux
%• Ž) variable here which is • TŽ - (4T(!"#T(."#T(/ T. This represents the mass flux which pass
through the surface / T.

$ %43 !"#)' +/#
?* =

- $ %43 !"#)' ."#(+/
?* =

- (S %43 !"#)T

TUVWXYZ[

' ."#(/ T - S • TŽ(3 T

TUVWXYZ[

((((((((%1'1;)

Now, we need to find the approximations for velocity field (!"#T) and the scalar variable (3 T)
through the control volume faces. A simple linear interpolation for the velocity field is
considered in our solver which takes the form:

!"#T - • (!"#R 8 %2 H •)(!"#e (

Where the interpolation factor is defined as

• - (
+%d ca)
+%d cb)

So, the final expression for the mass flux becomes:

• TŽ - (4T(!"#T(."#T(/ T - (4T(%• (!"#R 8 %2 H •)!"#e)."#T(/ T(((((((((((((((((((((((((%1'1>)

 13

There are several schemes available in literature to approximate the value of (3 T), on the centre
of faces which are common between two control volumes. Central Differencing Scheme (CDS)
is the simplest and used quite often to approximate the convective terms. With CDS (3 T) takes
the form:

3 T (• (• (3 R 8 %2 H •)((3 e

And the total convective flux with CDS scheme (‘’!“ T
” c”D0) from face k becomes:

‘’!“ T
” c”D0 - (• TŽ(3 T - (• TŽ(%• (3 R 8 %2 H •)(3 e)((((((((((((((((((((((%1'1@)

When used in a transport problem with dominant diffusive nature, the CDS approximation of
convective flux works well and gives physical results. But, as the convective nature of the
problem becomes more dominating, than diffusion, then with CDS scheme unphysical results
are very likely. The linear profile with CDS scheme considers equal weight on both upwind
and downwind nodes. However, the convective phenomena are strictly flow direction
dependent, and the contribution from the upwind nodes will be dominant in strong convective
flows. By analysing the discretization further in uniform grids, it is observed that if the cell
Peclet number (bW- 4(! (P“ • (59 () is larger than 2 then unphysical results are obtained with the
CDS [1,3]. Peclet number is a dimensionless number which is usually defined as the ratio of
rates of advection and diffusion of a physical quantity.

Thus, in place of CDS the Upwind Difference (UD) scheme is better suited for the convective
fluxes, which approximates(3 for the east face as:

3W- (–
3 R((((((((((—(̃• WŽ(™I (

3 m((((((((((—(̃• WŽ š (I

The Upwind scheme mimics the underlying physics of advective flows better, as the face values
of the fluxes are made dependent on the upwind node values, which makes the flux more tuned
with the flow direction than the CDS approach. The Upwind scheme is only 1st order accurate
but it gives bounded solutions even for higher values of Peclet numbers. The CDS being 2nd
order accurate gives better results than Upwind, for flows with bWš 1, but the solutions are
unphysical for higher values of bW(numbers. Thus, numerical analysis of convective flows
wanders between the issues of accuracy and stability with these two schemes and leads the way
forward for the need of more robust and accurate schemes.

2.4.1 TVD schemes

!
Upwind differencing scheme is the most stable and unconditionally bounded scheme; however,
it introduces a high level of false diffusion (numerical diffusion) because it is only 1st order
accurate [1,7]. Higher order schemes like Central differencing, hybrid and QUICK schemes are

 14

more accurate but they can give spurious oscillations (wiggles) in the form of undershoots and
overshoots when the Peclet number is high. These wiggles can lead to physically unrealistic
values and make the solution unstable. To address this undesirable feature of numerical
oscillations in these schemes, High Resolution (HR) schemes are formulated. HR schemes are
formulated to preserve the convective biased nature of previous schemes with improving the
boundedness criterion.

Several HR schemes have been developed till date and a good review of all these schemes is
available in [1,3]. The HR schemes that were developed in the Total Variation Diminishing
(TVD) framework make the TVD class of convective schemes. TVD schemes are especially
developed to counter the spurious oscillations by adding artificial diffusion or weighting
towards upstream contribution in discretized equations. Mathematically the Total Variation is
defined as:

›, - ((S ((œ3 •ž _ H (3 •œ
•

(((%1'1G)

Here i is the index of the control volume node in the spatially discretized domain. A scheme is
said to satisfy the TVD nature if the total variation (TV) in the solution does not increase with
time, which is written as:

 ›, (%3 [ž P[) Ÿ ›, (%3 [)(((%1'1J)

Pioneering work on TVD schemes by Harten (1983) and Sweby (1984) led to the TVD class of
HR convective schemes [5,6]. Harten proved in his work on HR schemes that a monotone
scheme is TVD, and a TVD scheme is monocity preserving [6]. If the value of a local minimum
does not decrease and the value of a local maximum does not increase in the solution domain,
then the scheme is said to be monotonicity preserving [3]. In other words, monotonicity
preserving schemes will not produce overshoots and undershoots in the solution domain.
Several formulations were developed by different researchers which toady come under the TVD
class of schemes. The implementation of TVD schemes in Orcale3D follows upwind biased
formulation [7]. TVD schemes with different flux limiter options are available for the
convective part of the transported variables.

2.4.2 Implementation of TVD scheme in Oracle3D

This section explains the general TVD formulation in the specific way it is implemented in
Oracle3D. Some details are intended for the users/developers of the code alone. We will talk
about some variables which are used in code as they are described here. In 3D problems, each
control volume has 6 contributions of fluxes from each of the 6 faces (east, west, north, south,
top and bottom). However, for any two adjacent cells the flux through the common face is same
in magnitude but opposite in direction (for one cell the flux goes out from the common face and
the same flux enters into the adjacent cell). This leads us to reduce some computational cost,
by calculating the common flux from a face only for one cell and using the same flux with a
negative sign for the adjacent cell for the other direction.

Thus, we scan the control volume faces only in 3 directions (east, north and top) for computing
the fluxes and coefficients in Oracle3D. The contribution from the other sides (west, south and
bottom) is taken from the adjacent cell values as explained above. For example, the subroutines
CELQ is called 3 times in Transport subroutine for the three directions Ð east, north and top.

 15

The contributions of the common faces for the adjacent cells are also calculated at the end of
this routine.

 SU(INP) = SU(INP) + (SUEH-SUEL)
 SU(INE) = SU(INE) - (SUEH-SUEL)

Here INP is the index of a cell and INE is the index of the adjacent cell in the positive direction.
SU(INP) is the variable for source term contributions for a cell, and SU(INE) will make the
west, south and bottom source terms for the respective adjacent cells. The TVD schemes have
their contribution in the source term of convective part, in the discretization used in Oracle3D.
The TVD contributions to source terms (SU) are treated similarly as the deferred corrections
for the diffusion term, so the related terms are placed on the right-hand side of the equations.

To understand the basic aspect of TVD schemes, let us consider a one-dimensional flow in
positive x direction (u > 0). We take as a general convecting scalar variable here. In Fig. 2.5,
with the Upwind scheme we will get the east face value of as

 W- (R

Fig. 2.5 1D control volumes arrangement with positive flow velocity

Now, as explained above the Upwind scheme is very stable but only 1st order accurate. Let us
add an additional flux contribution in W to make it higher order accurate by incorporating two
upwind node values. We can add a linear upwind biased profile such as:

 W- (R 8 (
2
1

% R H(p)

This additional term makes the updated formulation a second order accurate scheme, which is
called as a linear upwind differencing (LUD) scheme [7]. Similarly, other schemes like CDS,
QUICK etc. can be updated by incorporating upwind biased terms [7]. Based on this idea, a
general notation for an upwind biased W , within a convective discretization scheme can be
given as

 W- (R 8 (
2
1

¡ %̀)% m H(R)((%1'1M)

Here, we approximate W with the value on the previous upwind node % R) and an additional
term. With ¡ %̀) being an appropriate limiter function of r to provide the required features of
TVD in the scheme, and, r is the ratio of upwind-side gradient to downwind-side gradient of
corresponding transported quantity, which is given by

` - (K
 R H (p

 m H(R
L

With the introduction of eq. (2.28), the task of developing a TVD scheme is reduced to simply
finding a limiter function (¡ %̀)), for an existing scheme to make it TVD or monotone [7].

 16

Several flux limiters are developed with this idea and further details are available in [1, 7]. We
focus in the following part the implementation method of TVD schemes for our solver,
especially for the boundary nodes. Consider Fig. 2.6 to understand a more general (u > 0 and u
< 0) notation of convective flux contribution in the overall flux (for 1D) by the TVD schemes
as written by eq. (2.29):

Fig. 2.6 1D domain showing both flow directions with corresponding r notations for the east face of

node P

/ ¢
{*D -

2
1

‘ W£%2 H • W)¡ %̀W
^) H • W' ¡ %̀W

ž)¤' % m H R)!

! ! ! 8 (
_

E
‘ X £• X ' ¡ %̀X

ž) H %2 H • X)' ¡ %̀X
^)¤% R H p)((((((((((((%1'1N)!

The value of • W depends on flow direction in the cell, • W= 0 for u < 0 and • W= 1 for u > 0. The
mass fluxes (• TŽ) through cell faces are denoted by ‘ T. Notations `W

ž and ̀W
^ correspond to the

variable r when the flow is in positive or negative x direction respectively. Here the source term
contribution by TVD convective fluxes, for node P, from both the sides (east and west faces) is
given in eq. (2.29). However, as explained above, in Oracle3D only the east side source term
contributions are exclusively computed. The west side for this case will be taken as the negative
of east side of adjacent cell. So, the equation we consider in Oracle3D becomes only:

/ ¢
{*D -

_

E
‘ W£%2 H • W)¡ %̀W

^) H • W' ¡ %̀W
ž)¤% m H R)!!!!!!!!!!!!!!!!!!!!!!!!!!%1'; I)!

According to the direction of the flow we will have either the `W
^ or the ̀Wž part of eq. (2.30), as

shown in Fig. 2.6. Moreover, for the north and top directions also we use the same notations of
the variables in the code, just the corresponding directions are changed with the loop limits (I,
J, K).

`W
ž - K

 R H p

 m H R
Lc(((((`W

^ - K
 mmH m

 m H R
L(((((((((((((((((!

Now, with eq. (2.30) we compute the TVD source terms for the cells, for east, north and top
directions in full 3D problem, which is done in CELQ subroutine in code. The contributions
from the west, south and bottom faces are obtained by the adjacent cell flux values, as explained
above. The loops for scanning the required faces in all 3 directions start with I=J=K=2 and ends
with NI-2, NJ-2 and NK-2 respectively. These loops compute the TVD flux contribution for all
the cells (for all 6 faces) except the contributions from the boundary side faces of the boundary
cells. The contribution from the boundary side faces, are computed in the MODQ subroutine.

Here we should note that for the positive flow direction (u > 0) we work with `W
ž factor and the

value of p for the boundary cells in west, south and bottom directions is not known to us. In
Fig. 2.7 P is the index of boundary cell centroid and W is the node lying on the west boundary
face itself. In all such cases the value of at the boundary face itself (FI(INE), as set in SETBC
subroutine) is considered as p in Oracle3D.

 17

Similarly, when the flow is in negative direction (u < 0), we use `W
^ , then the value of mm is

not known to us for the last cells of the scanning loop in east (NI-2), north(NJ-2) and top(NK-
2) directions. In this case we take the boundary value of to be the mm for these cells in east,
north and top directions (Fig. 2.8).

Flux from the Boundary faces

¥! CASE 1.1 - For u > 0 at the west boundary cell node ÔPÕ (I=2), Fig. 2.7, we need the
contribution of fluxes from the 2 faces (east and west) of the cell. For this boundary cell
we have the contribution of east face already from the previous section (as explained
above) which is computed with eq. (2.30). Now we only need the contribution from the
west side face. Being at the boundary, this west side face of the west direction boundary
cell does not contribute to the TVD source terms. The treatment with eq. (2.30) is not
required here, as we do not need to approximate the value of on this west face, we
have the exact as the imposed boundary condition. Their contribution is taken directly
from the value imposed on the boundary (pm0{ ¥Z¦¢V§¨B©).

West face contribution to the source term = ‘ X (pm0{ ¥Z¦¢V§¨B©

 East face contribution to source term =
_

E
‘ W£H¡ %̀W

ž)¤% m H R)

Fig. 2.7 Convective flux contribution to the west direction boundary node (P), u>0

¥! CASE 1.2 - For u > 0 at the east boundary cell ÔEÕ (NI-1), Fig. 2.8, there will be no
TVD contribution from the east boundary face. It will be computed directly from the
 mª0{ ¥Z¦¢V§¨B© imposed on that boundary face. The west face contribution comes from

eq. (2.30) from the calculations of adjacent cellÕs (NI-2) east face.
 East face contribution to source term = ‘ W(mª0{ ¥Z¦¢V§¨B©

 West face contribution to source term =
_

E
‘ X £¡ %̀W

ž)¤% m H R)

Fig. 2.8 Convective flux contribution to the east direction boundary node (E), u>0

¥! CASE 2.1 - For u < 0 at the east boundary cell ÔEÕ(NI-1), Fig. 2.9, the west face

contribution comes from the adjacent cellÕs (NI-2) east contribution which is computed
with eq. (2.30) in previous section. And, the east face contribution does not have any

 18

TVD source contribution because this comes directly from the boundary value
[‘ W(mª0{ ¥Z¦¢V§¨B© ¤.

East face contribution to source term = ‘ W(mª0{ ¥Z¦¢V§¨B©

 West face contribution to source term =
_

E
‘ X £H¡ %̀W

^)¤% m H R)

Fig. 2.9 Convective flux contribution to the east direction boundary node (E), u <0

¥! CASE 2.2 - For u < 0 at the west boundary cell (I=2):

West face contribution to source term = ‘ X (pm0{ ¥Z¦¢V§¨B©

 East face contribution to source term =
_

E
‘ W£¡ %̀W

^)¤% m H R)

Fig. 2.10 Convective flux contribution to the west direction boundary node (P), u<0

Finally, the main points to note (especially for the users of the code) are:
1)! there is no TVD contribution in the source terms from the boundary faces (boundary

side faces of the boundary control volumes), e.g. the west faces of the west boundary
cells and east faces of the east boundary cells are not treated in TVD manner.

2)! all the rest of the faces of all the control volumes (cells) are treated in same TVD manner
as explained with eq. (2.30).

!" ! Source term contributions and coefficients of discretization equations, from the
common faces between two adjacent cells, are computed once only for the positive
directions (east, north and top), e.g. in CELQ, CELUVW etc. subroutines. The
contributions from the west, south and bottom faces come from the adjacent cellÕs flux
contribution from that common face, with only a change of direction (negative sign). #

 19

2.4 Discretization of transient term

We write the integral form, for FVM, of the transport equation for a scalar 3 , as previously
shown in eq. (2.2)

$
6%43)

67*=

+, ((8 ($ «%3)
*=

(+, (((((((- I (((((((((((((((((((((((((((((((((((((((%1';2)

The second term in eq. (2.31) contains all the other terms (diffusive, convective, source etc.).
We need to discretize now the transient term with FVM. We need an approximation for the
derivative of %43) with time, which is the done with Gear scheme for Oracle3D [3,4]. It
corresponds to 2nd order accuracy for the first derivate and written as shown in eq. (2.32). Here
n+1 depicts the value at current time step. Gear scheme is an implicit three-level scheme, which
uses the variable values from two previous time steps.

$
6%43)

67*=

+, (• (4 O
; 3 R

Vž _ H >(3 R
V 8 (3 R

V^ _

1P7
Q(P, ((((((((((((((((((((((%1';1)

2.5 Combined formulation of Convection-Diffusion discretization

Discretization of both diffusion and convection terms are briefly explained in the previous
sections. We revisit the combined equation of a steady convection-diffusion without any
sources to provide a combined formulation for the final algebraic equation for individual control
volumes. We recall eq. (2.5) without the source term and consider a uniform 1D grid as shown
in Fig. 2.11.

(((($ %43 !"#)' +/#
?* =

- ((($ %59 &3)' +/#
*=

((%1';;)

Fig. 2.11 A 1D grid arrangement

This can be simplified in term of summation of fluxes from all the faces of a control volume
(here in 1D case just west and east).

 20

S K• Ž3 H 59 /
+3
+“

L
TTUWX

- I (((%1';>)

Let us expand the terms in eq. (2.34) for the control volume with center node P, we note that
the surface vectors on the opposite sides (east and west) of the control volume have opposite
signs. In Oracle3D, the effect of surface vector sign for the convective fluxes are already
considered in mass flux (• TŽ - (4T(!"#T(."#T(/ T), but we need to consider the sign for the diffusion
term. We consider the CDS scheme to approximate 3 and 2nd order approximation for

§9

§¬
 . We

can write:

2
1

• WŽ(%3 R 8 3 m) 8 (
2
1

• XŽ(%3 R 8 3 p) H (­ 5W
9 / W(

3 m H 3 R

P“
((H (5X

9 / X (
3 R H 3 p

P“
®- I

2
1

• WŽ(3 m 8
2
1

• XŽ3 p 8 K
2
1

• WŽ8
2
1

• XŽL3 R H(¯ W3 m H(¯ X 3 p 8 %̄ W8 (¯ X)3 R - I

Where ̄ T - (
° ‰

± 0‰

%P¬)‰
, is termed as the diffusion coefficient for the algebraic equation from face

k. We collect together the contributions from individual cells.

 ­
] ²Ž

E
H (¯ W®3 m 8 (­

] ³Ž

E
H (¯ X ®3 p 8 ­

] ²Ž

E
8

] ³Ž

E
8 ((¯ W8 ¯ X ®3 R - I '(((((((((((%1';@)

With the continuity equation, we can write

• WŽ8 • XŽ - I

Let us take wR is the coefficient of 3 R in eq. (2.35) which can be rewritten by subtracting the
continuity equation from it, as:

wR - (
• WŽ
1

8
• XŽ
1

8 ((¯ W8 ¯ X H %• WŽ8 • XŽ)

 (

wR - H
• WŽ
1

H
• XŽ
1

8 ((¯ W8 ¯ X

Rewriting eq. (2.35) in the form of algebraic equation with discretization coefficients, we get

wR3 R 8 (wm(3 m 8 wp 3 p - I (((%1';G)((

Here the wT coefficients are called the discretization coefficients, from corresponding
neighbouring control volumes, of the equation. Their values are:

wm - (
• WŽ
1

H(¯ W(c wp -
• XŽ
1

H(¯ X

wR - (H%((wm 8 wp)

 21

For the full 3D discretization, the algebraic equation for cell P will be written as eq. (2.37), and
the discretization coefficient are obtained as shown above with the east and west contributions.
This equation is valid for all the control volumes of the domain; however, the boundary side
fluxes are treated differently which is described in next section with some examples.

wr - (
• VŽ
1

H(¯ V(c w0 -
• YŽ
1

H(¯ Y

w| - (
• ZŽ
1

H(¯ Z(c w{ -
• [Ž
1

H(¯ [

wR - (H%((wm 8 wp 8 wr 8 w0 8 w| 8 w{)

wR3 R 8 (wm(3 m 8 wp 3 p (8 (wr 3 r 8 w0308 (w{ 3 { 8 w| 3 | - I ((((((((((((((((%1';J)((

2.6 Discretization of Boundary Conditions

Correct implementation of boundary conditions in any numerical solver is of utmost
importance. In many physical problems, there are often some differing views of researchers
regarding which numerical boundary conditions will represent the physical conditions more
accurately. Sometimes, the numerical boundary conditions are over simplified or approximated
to avoid certain numerical difficulties and complexities; keeping the physical accuracy at stake.
During the course of this thesis, we implemented some new boundary conditions in Oracel3D
which were of huge physical importance, and it was always noticed that the user should pay
close attention while discretizing the boundary equations.

It is also very important that the user understand both the general discretization of the boundary
equation and simultaneously know how they are really implemented in the code. In this section,
we will discuss the discretization of some boundary conditions (sections 2.6.1-2.6.3) and finally
we will provide a general approach (section 2.6.4) to work out all the boundary conditions for
Oracle3D. The general approach as mentioned in section 2.6.4 can also be referred before going
to sections 2.6.1-2.6.3, for a quick summary and having a different approach for implementing
the boundary conditions.

2.6.1 Robin Boundary condition

Let us consider a 2D grid arrangement at a south direction boundary, Fig. 2.12. In this figure,
the blue line is the boundary in the south direction, and the node S which is shown in red is the
node on the boundary side face. The directions of surface normal vectors are shown at all four
faces of the control volume with centre node P.

 22

Fig. 2.12 A 1D grid arrangement with the south side boundary nodes

Setting the boundary values for all the variables is very important which can be provided by
several formulations depending on the physics involved. One of the simplest forms of boundary
conditions is termed as Dirichlet boundary condition, in which, a fixed value of the variable is
given on the boundary node S. In zero flux Neumann boundary condition zero gradient of the
variable is provided at the boundary node S. Robin boundary conditions are a kind of mixed
boundary conditions between Dirichlet and Neumann boundary conditions. They are generally
provided as some partial differential equations which represent the physical phenomena at the
boundary nodes. These equations are then discretized by FVM to get the flux contribution from
the boundary faces. Here, we take an example Robin boundary condition for electric charge
density variable (3) which was encountered in the electro-conduction problems as implemented
in Oracle3D. The Robin BC is given as follows:

 f (d l"#3 H 5(&3(g' ."# - I ((%1';M)

Here K is the mobility of ions, l"# is the electric field vector, 5 is the diffusion coefficient and
."# is the unit normal vector to the boundary surface. In this case, the surface vector for the
boundary face points in the negative y direction as shown in Fig. 2.12. Now, this equation is
valid only for the boundary node S. We discretize this equation with FVM as:

$ f (d l"#3 H 5(&3(g' ."#(+, - I
*

%d l ©3 H 5(&3()Z - I

%d l ©3)Z H ((5Z K
63
6´

L
Z

- I

Here ÔbÕ implies that these expressions are to be evaluated at the boundary. The gradient is
approximated with downwind scheme, where d(P, S) is the distance between node P and S.

%d l ©)Zµ 0 H ((5Z
µ R H(µ 0

+%bc/)
- I

 23

Kf d l ©g
Z

8 (
5Z

+%bc/)
(Lµ 0 H (

5Z

+%bc/)
(µ R - I

µ 0 - (
¯

¶ 8 ¯
(µ R((%1';N)

µ 0 - · (µ R((%1'>I)(

Where · -
D

” ž D
(, ¯ -

° ¸

§%Rc0)
 and C = f d l ©g

Z
. Equation (2.39) gives the value of variable 3 at

the boundary node S, in terms of the central node P. It is very important to understand how
finally this value of µ 0 is utilized, with other information, to implement the overall boundary
condition (eq. (2.38)) in the code. We recall the algebraic equation for cell P, eq. (2.37), and
write it for a 2D grid as:

wR3 R 8 (wm(3 m 8 wp 3 p (8 (wr 3 r 8 w030 - I ((((((((((((((((((((((((((((((((

When this equation is written for the control volumes which are not at the boundary then wR is
given by:

wR - (H%((wm 8 wp 8 (wr 8 w0()

However, when we are dealing with boundary cells, the flux contribution from the boundary
face is different from other faces. The fluxes from the boundaries are not obtained with CDS
and central schemes approximations, as they are computed from the given boundary conditions
directly. For example, the south boundary face coefficient wY will be given by w0 - • YŽH(¯ Y.
The w0 coefficient for boundary nodes is defined as ÔADCÕ in Oracle3D. Thus, in general
derivation for the boundary cells the wR coefficient becomes:

wR - (H%((wm 8 wp 8 (wr 8 w¯¶ ()((((((((((((((((((((((((((((((((((((((%1'>2)

However, In Oracle3D, the flux contribution from the boundary nodes are computed separately
within / R term which is later added in wR term to complete the coefficient values. So, in
Oracle3D the wR coefficient, for the boundary cell, before adding the boundary face
contribution is written only as

wR - (H%((wm 8 wp 8 (wr)

We rewrite the algebraic equation using the µ 0 for this case from eq. (2.40), we get

wR3 R 8 (wm(3 m 8 wp 3 p (8 (wr 3 r 8 w0(· (µ R - I ((((((((((((((((((((((((((((((((

%wR 8 w0(·)(3 R 8 (wm(3 m 8 wp 3 p (8 (wr 3 r - I (((((((((((((((((((((((%1'>1)

From eq. (2.42), it is clear that the coefficient of 3 R has an extra contribution other than wR, as
given by w0(· , which comes from the boundary node S. And, also the value of wR does not
have ÔHw0Õ included in it as per the general notation of wR term. So, these two contributions
are provided within the / R term in Oracle3D. In this specific case the / R term will be:

 / R - (Hw0 8 w0(· - ((w0(%· H 2)((((((((((((((((((((((((((((((((((((((%1'>;)(

 24

2.6.2 Non-Homogeneous Neumann boundary condition

Electro-conduction model as implemented in Oracle3D also provides a non-homogeneous
Neumann boundary condition for electric potential on dielectric substrate. The boundary
condition is given as:

&3 ' ."#(- ¹ (((%1'>>)

We discretize eq. (2.44) with FVM, as explained above.

$ &3 ' ."#
*

(+, - ($ ¹
*

(+,

We consider this BC at the south face, as shown in Fig. 2.12, thus the unit normal vector points
in Ð y direction. Here ¹ is known as the surface charge density variable, accumulated over the
substrate. We integrate the equation and solve further.

H K
63
6´

L
Z

, º - ¹ (, º (

Taking downwind scheme to approximate the gradient of 3 on boundary node as:

H
µ R H(µ 0

+%bc/)
- (¹

µ 0 - (µ R 8 ¹ (+%bc/)((%1'>@)

Eq. (2.45) gives the electric potential value on the boundary node S when eq. (2.44) is set as
the boundary condition for the potential variable. The algebraic equation for a boundary cell
for this BC is written as eq. (2.46). The electric potential is governed by a Poisson equation,
and in this case the / R variable for the node P is obtained as zero.

%wR 8 w0()3 R 8 (wm(3 m 8 wp 3 p (8 (wr 3 r - H((w0(¹ (+%bc/)((((((((((((((((((((%1'>G)

2.6.3 Dirichlet and zero flux boundary conditions

As briefed above, a Dirichlet boundary condition refers to a fixed (specified) value of 3 on the
boundary, given as

 µ 0 - (µ YºW<•»•W§(((%1'>J)

The algebraic equation for a boundary cell for this BC is written as eq. (2.48). The / R value for
this case as computed with above mentioned procedure comes out to be / R - (Hw0.

wR(3 R 8 (wm(3 m 8 wp 3 p (8 (wr 3 r 8 w0(µ YºW<•»•W§- I (((((((((((((((((((((((%1'>M)

A zero flux Neumann boundary condition is set by setting the gradient of the variable zero on
the boundary node, such as

 &3 ' ."# - I (

With FVM this boundary condition gives

 25

µ 0 - (µ R(((%1'>N)

The algebraic equation for this BC is eq. (2.50), and the corresponding / R is zero.

%wR 8 w0()3 R 8 (wm(3 m 8 wp 3 p (8 (wr 3 r - I ((((((((((((((((((((((((((((((((((%1'@I)

2.6.4 A generalized approach to discretize boundary conditions

Let us take a generalised procedure to summarise the implementation of above mentioned
boundary conditions in Oracle3D. We take a general boundary condition given as

¼(µ Z 8 ½(K
63
6.

L
Z

- ¾((%1'@2)

We discretized this eq. (2.51) with FVM taking 1st order scheme for gradient approximation

¼(µ Z 8 ½(
µ R H(µ 0

+%bc/)
(- ¾(((%1'@1)

In eq. (2.52), we have not considered the direction of the surface vector, for now, letÕs say that
we keep the sign of corresponding direction of surface vector in distance variable d(P, S). We
rearrange eq. (2.52) to get the boundary value of 3

µ 0 - (
¾+(H ½µ R

¼+H ½

µ 0 - K
¾+(

¼+H ½
L H K

½(
¼+H ½

Lµ R(((((((((((((((((((((((((((((((((%1'@;)

Let us say that in our problem the final algebraic equation for a control volume at boundary is
given by:

 wR3 R 8 (wm(3 m 8 wp 3 p (8 (wr 3 r 8 w030 - /} (((((((((((((((((((((((((((((%1'@>)

Here we have SU as the contribution from source terms, as used in Oracle3D. If the boundary
value of 3 is also given in the form of 3 R as:

µ 0 - w8 ¿(3 R(((%1'@@)

Then we use eq. (2.55) in (2.54) to obtain

 %wR 8 (w0¿)3 R 8 (wm(3 m 8 wp 3 p (8 (wr 3 r - /} H (w0(w((((((((((((((((((((((((%1'@G)

From eq. (2.56) it is observed that

 / R - (w0¿

 / À - (Hw0w

 26

As, it was explained above, with eqs. (2.41 Ð 2.43) that in Oracle3D the algebraic equations are
not used as exactly given by eq. (2.56). We recall eq. (2.43), which gives the value for / R when
implementing boundary conditions in Oracle3D.

/ R - (Hw0 8 w0(¿(((%1'@J)

Let us discuss the above-mentioned boundary conditions with this generalized approach to
obtain quickly the / Rc/ À and µ 0 values for Oracle3D.

$%! Dirichlet BC :############
 µ 0 - (µ YºW<•»•W§(((

 After comparing with eq. (2.55); A = µ YºW<•»•W§, B = 0

 / R - (Hw0

 / À - (Hw0(µ YºW<•»•W§

2.! Neumann BC (zero gradient):

63
6.

- I

 After comparing with eq. (2.51)

 a = 0, b =1, c= 0

µ 0 - (µ R

 comparing with eq. (2.55): A = 0, B = 1

 / R - (Hw0 8 (w0 - I (

 / À - (Hw0w - I (

3.! Non-Homogeneous Neumann BC:

H K
63
6´

L
Z

- ¹

 After comparing with eq. (2.51)

 a = 0, b = -1, c=(¹

µ 0 - (¹ (+ 8 (µ R

 comparing with eq. (2.55): A = ¹ (+, B = 1

 / R - (Hw0 8 (w0¿ - I (

 / À - (Hw0(¹ (+(

 27

4.! Robin BC:

(f (d l"#3 H 5(&3 (g' ."#- I

%d l ©3)Z H ((5Z K
63
6´

L
Z

- I

 After comparing with eq. (2.51)

 a =%d l ©)Z , b = -5Z, c =(I

µ 0 - (
5Z

%d l ©+)Z 8 5Z(
(µ R

 comparing with eq. (2.55): A = I , B =
° ¸

%e mÁ§)¸ ž ° ¸ (

 / R - (Hw0 8 (w0¿ - (w0(%¿ H 2)

 / À - (Hw0(w - I (

In this section, we have described a general approach based on a generalized equation for
boundary conditions to discretize boundary condition equations with FVM. With this general
approach we obtained the corresponding / R, / À and µ 0 variable for the respective BC. The
values obtained with this generalized approach and the discretizing approach for individual
boundary conditions reach the same solutions.

2.6.5 Periodic Boundary condition

Periodic boundary conditions are used to deal with different type of symmetries (geometrical,
physical etc.) in the problem domain [7]. Usually, for setting the periodic boundaries the values
of the variables exiting the outlet-periodic plane are equal to the variables entering the inlet-
periodic plane.

Fig. 2.13 Location of cells at inlet and outlet periodic boundaries

In Fig. 2.13, a 1D grid arrangement shows the location of control volume cells at periodic-inlet
and periodic-outlet boundary sides. The green coloured node is situated on the face of the
boundaries and blue and red are the cell centre nodes at inlet and outlet locations respectively.
In our implementation of periodic boundaries, we have equated the node values on the boundary
face nodes. To explain the steps, we first show transferring of the value of node at NI-1 (outlet
location) to a ghost cell just ahead the inlet cell (I =2), as shown Fig. 2.13. With the values of
inlet node (blue) and the outlet node (red) we compute the values at the inlet face center node
(green), with CDS, eq. (2.58). After computing this inlet face node value (I = 1), this value is

 28

also transferred to the outlet face node (NI). Thus, by making the boundary values (green) same
we fulfil the conditions for the periodic boundaries.

3 %2) -
3%1) 8 (3 %qÂH 2)

1
(((%1'@M)

 3 %qÂ) - 3 %2)(((%1'@N)

After the 3 values are computed with eqs. 2.58 and 2.59, the periodic BC on both sides are
same as having Dirichlet BC, and thus, the coefficients are computed in same manner as done
for Dirichlet BC.

/ R - (Hw0

/ À - (Hw0(µ YºW<•»•W§

 29

Bibliography

[1]! F. Moukallel, L. Managani, M. Darwish, ÒThe Finite Volume Method in Computational
Fluid Dynamics,Ó Springer International Publishing, Switzerland (2016)

[2]! Y. B. Suzen, P. G. Huang, J. D. Jacob and D. E. Ashpis, ÒNumerical simulations of plasma-
based flow control applications,Ó AIAA Fluid Dynamics Conference, Toronto, Ontario
Canada, 35, (2005)

[3]! J. H. Ferziger, M. Peric, ÒComputational Methods for Fluid DynamicsÓ, 3rd edition,
Springer (2002)

[4]! P. Traore, ÒSimulation numerique en mecanique des fluides et en dynamique des milieux
granulaires. Modelisation des phenomenes Electro-Hydro-Dynamiques. LÕHabilitation A
Diriger des Recherches, Universite de Poitiers.

[5]! A. Harten, ÒHigh Resolution Schemes for Hyperbolic Conservation Laws,Ó J.
Computational Phys., 49, 357-393 (1983)

[6]! P. K. Sweby, ÒHigh Resolution Schemes using Flux Limiters for Hyperbolic Conservation
Laws,Ó SIAM Journal on Numerical Analysis, 21, 5, 995-1011 (1984)

[7]! H. K. Versteeg, W. Malalasekara,ÒAn Introduction to Computational Fluid Dynamics: The
Finite Volume Method,Ó 2nd edition, Pearson Education Limited, (2007)

[8]! P. Traore, Y. M. Ahipo, C. Louste, ÒA robust and efficient finite volume scheme for the
discretization of diffusive flux on extremely skewed meshed in complex geometries,Ó
Journal of Computational Physics, 228, 5148-5159 (2009)

[9]! Y. M. Ahipo, P. Traore, ÒA robust iterative scheme for finite volume discretization of
diffusive flux on highly skewed meshes,Ó Journal of Computational and Applied
Mathematics, 231, 478-491 (2009)

! "#!

Chapter 3
Parallel Oracle3D with MPI

Highly scalable, parallel computer programs have become indispensable tools for the
advancement of numerical research. Researchers are more hopeful than ever before, in tackling
complex and huge engineering and scientific problems due to the availability of required
computational resources in past twenty years. In terms of the hardware resources the progress
seems well ahead of the progress in application (software) domain. There are many legacy
codes which are still relevant in today, but they lack the modern approach to efficiently use the
available hardware resources. Some of the computationally huge problems which cannot be
solved without the modern high-performance computing (HPC) technologies include: weather
forecasting, astrophysical analysis, plate tectonics analysis, turbulence modeling, plasma
physics etc. It is unimaginable to work out these problems on single core computers, parallel
computing is the only way forward for such problems.

In general, parallel computing refers to solving parts of a problem simultaneously on multi-core
computing machines. A problem which can be broken into multiple smaller and discrete parts
which can be solved independently, makes a good candidate for parallel computing. The
discrete parts of the problem are solved on different computing cores and after finishing they
are synchronized to provide the solution of the whole problem. Parallel computing offers
several benefits to users: saving time and money, solving complex and large problems, multi-
tasking etc. Advancements in HPC have provided another way Ð Ôcomputational scienceÕ, of
doing science along with the classical branches of experimental and theoretical sciences.
Computational scientists make use of their simulation methods when they are more
advantageous and feasible over the classical approaches of theory and experiments.

Three broad areas of parallel computing are hardware, algorithms and software. In hardware,
adding more and more cores and providing efficient inter-communication network among cores
has increased the parallel nature of computing machines. In algorithmic terms, scientists seek
how a problem can be defined by independent physical mechanisms, and, how it can be solved
with independent set of mathematical equations. However, a bigger challenge is posed by the
inadequate software, which are not fully able to profit by the progress made in hardware and
algorithms. In terms of important characteristics, the modern codes should be optimized,
portable and future-proof with every evolving HPC technologies. As shown in Fig. 3.1, a code
should make optimal use of the hardware properties such as the cache design, vector registers,
multiple cores etc. It should be developed with the standard parallel programming models such
as MPI, OpenMP, Offloading etc.

! "$!

Fig. 3.1 Characteristics of a modern code

This chapter deals with the parallelization approach used for the in-house electrohydrodynamic
(EHD) code- ÔOracle3DÕ. Oracle3D is a multi-block structured grid, finite volume solver. It is
parallelized with message passing interface (MPI) 3.1 protocols. This chapter is mainly divided
in three parts: 1) Parallel programming models, 2) MPI and single block grid parallelization,
and 3) multi-block grid parallelization. We briefly introduce some parallel programming
models and describe message passing model in first part. In the second part we describe in detail
the MPI methodology used to parallelize the code for the single block grids only.

The message passing features of MPI library which are relevant to such approaches are
provided. Some scalability results are provided to verify the efficiency of the approach. Third
section deals with the extension of the approach for the multi-block grid cases, where some
more advanced features of MPI have been used. The detailed implementation of this strategy
based on the Cartesian topology and Inter communicators is put forth for the users of the code,
and other researcher who are working with similar codes and wish to parallelize their code using
MPI could also benefit with this detailed chapter on various MPI features.

Outline of this Chapter:
1.! Overview of Parallel Programming
2.! MPI and Single Block grid
3.! MPI extension to Multi-block grids

3.1 Parallel Programming Models

We will discuss briefly about some parallel computational models to draw a background for the
approach we used to parallelize our code. Parallel computational models can be informally
classified on the basis of their memory utilization (shared or distributed), communication
pattern, types of operations etc. Some of the parallel computational models are:

! ! Data parallelism
The notion of data parallelism model can be simply explained with vectorization technique of
modern processors. It is based on the SIMD (single instruction, multiple data) framework, in

! "%!

which an operation is performed on a set of array elements simultaneously by the special vector
resistors (e.g. Intel AVX). It was one of the first ideas from where the whole idea of parallel
computing started. There can be many instances in program where the processors operate on
multiple data elements at the same time. The sole idea is to parallelize the data.

! ! Shared memory
Multiple computing cores sharing a common memory among them is a kind of control
parallelism where data independence is not present directly, and the parallelism is explicitly
performed by programmers. Most of the modern multicore processors are shared memory
machines. Intel Xeon Phi coprocessors have up to 64 cores embedded together utilizing a
common memory. These kinds of multicore processors are assembled together to build large
supercomputing clusters of distributed memory (Fig. 3.1.1 (b)).

Fig. 3.1.1 a) Shared, and b) Distributed memory architecture/model

! ! Message passing

Message passing is a software concept, in which different processes transfer their data with
other processes. Here, a process is an instance of a computer program which is being executed.
In terms of hardware and software relation, a process is usually associated with an individual
hardware core. Thus, in message passing parallel models processes work with their own local
memory which is attached with their core, and they can communicate with other processes to
access their data. The data of other processes is accessed by executing send and receive
operations, which are performed by both the involved processes. Oracle3D is parallelized with
message passing interface (MPI) which is a message passing model. This model supports the
hardware parallelism where large number of processors (hardware) are used in distributed
memory schemes, and data is transferred among distantly lying processors by communications
done through the processes (software).

! ! Remote memory operations
On Cray T3E machine put and get data operations model was used, in which the remote
memory of a processor is accessed by other processors only by one-way operation. The
participation of both processors is not required. Some implementations use the Ôactive
messageÕ operations where a subroutine is executed in other processors memory. This active-
message model provides the remote memory copying feature with just one-sided operations.
This kind of parallel model is said to be lying half way between the shared memory and

!

!" # $"#

! "" !

message passing models. TMC CM-5 was the first machine to commercially popularize this
model [1].

! ! Threads

OpenMP is the most well-known models of parallel computing which works with the threads
model. It is a high-level programming approach where multiple threads are created dynamically
during the execution of a program. Compiler directives are used to tell the code to create threads
when they are needed. It is also a shared memory model, in which all the threads use the
common memory with some kind of locking system while accessing common data
simultaneously. POSIX Standard is another widely available thread model [1]. Modern
processors technologies like IntelÕs Hyper-Threading can also be considered under threading
parallel models where a physical core is used by multiple processing threads, making it work
as multiple logical cores. Hyperthreading is also termed as simultaneous multithreading [1].

! ! Hybrid models

All of the worldÕs largest computing systems work with a combination of above described
parallel models. The supercomputing machines are hybrid at the level of hardware itself. They
have several nodes of multiple processors connected by network cables, making it the
distributed memory hardware at bigger level. And, at the same time the individual processors
in each computing node have their memories shared among their member cores, Fig. 3.1.2. To
exploit optimally such hybrid hardware systems, we must use hybrid programming models also.

Fig. 3.1.2 Hybrid nature of hardware memory architectures

One example of hybrid programming model is to use MPI and OpenMP together on large
machines. MPI uses the message passing model to communicate data at the distributed memory
level (node level), and concurrently OpenMP is implemented to make use of shared memory in
processors by providing multiple threads [3]. Additionally, when these models are doing their
respective operations the data parallelism is in place in vector resistors, thus making the whole
parallel computing really of hybrid nature. Fig. 3.1.3 illustrates a truly hybrid paradigm of
software and hardware, where we have latest Intel Xeon Phi coprocessors networked with other
host CPUs. In this figure MPI and OpenMP are used with the ÔOffloading modelÕ, by which the
executing program is dynamically offloaded to Xeon Phi coprocessors.

! "&!

Fig. 3.1.3 Hybrid parallel programming on hybrid Intel hardware [3].

!
3.1.1! Message-Passing Model

This parallel programming model is based on message-passing among the hardware cores in
multi-core architectures. In this model, the executing processes have local memories only and
they send and receive data (messages) among other processes as required. The operation to
transfer certain data from a process to another process is carried out by both the processes. One
process sends data and another process receives the data. This method of two-way
communication from two memory addresses defines the mechanism of message-passing
parallel models.

Some Advantages of the Message-Passing model:
a) Universality: The message passing model is used at most of the places, be it the worldÕs
largest supercomputing systems or the work station networks, utilizing the available hardware
capabilities.
b) Expressivity: Message passing is a complete model to express parallel algorithms. Message
passing can be used for both shared and distributed memory architectures.
c) Ease of debugging: Several high-capability debuggers exist for message passing models. As
these models control memory references more explicitly in comparison with other models,
locating error of memory reads and write are easier than other models.
d) Performance: In distributed memory architectures, as the core count is increased by adding
more processors to nodes or more cores to processors, the memory and cache is also increased
with the number of cores. In these systems, memory bound applications can exhibit super-linear
speedups. And, they are best exploited with message passing models only. Because of the
performance gains the message passing models will remain permanent part of the parallel
programming frameworks for long time in future.

! "' !

 3.2 MPI and Single block grid parallelization

This part of chapter deals with the features of MPI in general, and as they are implemented in
Oracle3D for parallelizing the single block grids first. Mainly, the Cartesian topology features
of MPI are discussed in detail, which were used to optimize the efficiency of parallel
communications.

#
Problem description and objective

We briefly describe our problem before going into the MPI solutions in following sections. Fig.
3.2.1 presents an example single block grid with total control volumes (grid cells shown with
thin black lines) equal to Ô!" #$ %!Õ, distributed in x and y directions respectively. Assuming
this problem has huge computational requirements and we wish to solve it in parallel with
multiple CPUs. We decide to solve this problem with 12 computing cores (hardware processors)
and thus we need to divide the whole grid domain in 12 sub-domains, each of which will be
assigned to one of the 12 individual cores to do the relevant computations for their sub-domain
grid nodes. Fig. 3.2.1 shows the outer domain boundary in dark black lines and the red lines are
the sub-domain interfaces. After this domain decomposition each sub-domain has &#$ ' grid
cells as visible in Fig. 3.2.1.

! !
Fig.3.2.1 Example single block grid before and after MPI domain decomposition

#
In Finite Volume discretization methods, to compute the value of a variable on a grid cell node
we require the variable values from one or more neighbor nodes also, depending upon the
discretization schemes used. We need these neighbor nodesÕ data specially to prepare the
algebraic equations for all the variables at all the mesh nodes. Usually, the internal nodes of the
sub-domains have access to the data of their neighbor nodes as for each sub-domain all internal
nodes belong to the same core. However, the nodes which belong to the cells at the sub-domain
interfaces (red lines) do not have access to their neighbor nodesÕ data which lie on the other
side of the interface. The neighbor nodes belong to another cores and their memory is not shared
with other cores in MPI. To get the data from the neighbor nodes we need to make parallel
communications between two adjoining cores. An MPI process (a program instance) is created
to work on each individual core in our MPI strategies with which we will set the whole parallel
communication environment. So, the main aim of this chapter is to describe how the whole MPI

! "(!

environment is set by the code in both single and multi-block grids. And, we discuss these
strategies in detail in following sections of this chapter.

#
#

3.2.1 Message-Passing Interface (MPI)

MPI is developed to combine together the best features of many message-passing models that
existed over the years. It is an attempt to organize and improve the existing features of message
passing models and preparing a standard which remains portable across the range of hardware
and software, available in market. As defined by the standard, ÒMPI (Message-Passing
Interface) is a message-passing library specificationÓ [2,7]. MPI is not a programming
language, it is a library of functions which facilitate data transfer during the parallel
communications. This communication protocol is the most widely used message passing model
on various distributed memory architectures across various supercomputing clusters. MPI is the
first specification which makes it possible to write truly portable parallel libraries.

Maintaining the portability, efficiency and functionality of parallel programs is the primary goal
of MPI. Some advanced features of MPI include dynamic management of process groups,
application-oriented process structures, large set of collective operations etc. More general and
frequently utilized features of MPI are: point to point operations, communicators, collective
operations, groups etc. We will discuss these features in following sections.

COMMUNICATOR . A communicator defines the message-passing or communication
context among the MPI processes for all the communication operations in the MPI framework.
It specifies the scope for all the MPI features like groups, topologies etc. With the help of a
communicator a distinct communication universe is set by the MPI library for each distinct
message-passing context. MPI_COMM_WORLD is the default pre-defined communicator
provided by MPI, which makes available all the processes for different communication
operations which are accessible after MPI is initialized. Following two types of communicators
are defined in MPI
!

!
!
In MPI terminology, a communicator is a universe (collection) of processes which are
independent of the other universes of processes (other communicators) in the context of the
overall program. The processes of a communicator do not have direct communication links with

! ") !

the processes of other communicators. These individual communicators are called as intra-
communicators. An intra communicator is a collection of processes which make a same
communicator context and can make message passing within this context only. As shown in
Fig. 3.2.2, we have two intra-communicators, A and B, depicted with blue colored boundaries
and containing their individual processes (P1, P2 etc.). The processes of either of these intra-
communicators cannot make message passing with the processes of the other intra-
communicator. To make communication between processes of different communicators MPI
provides the concept of ÔInter-communicationÕ [1,2].

!
Fig.3.2.2 Sketch for Intra and inter-communicators!

!
INTER -COMMUNICATOR . Parallel communications which involve the member processes
of a same group are performed with intra-communicators. In intra-communicators, the send and
receive contexts are identical. A group in intra-communicator is any group of processes which
belong to this intra-communicator. In multi-disciplinary and modular applications, several
groups of processes are required to work in separate communication contexts. In some situation,
the processes of different groups need to communicate with each other. In these cases, the
communications require the ranks of target processes and their group identifiers. In MPI, these
types of communications are termed as inter-communications. In simple words, inter-
communications are the message passing between processes in different groups which are
disjoint. And, these groups belong to different MPI communicators.

An inter-communicator is created with two intra-communicators. For each inter-communicator
there are two groups of processes. One group is termed as local group and the other group is
termed as remote group for each communication operation. The group whose processes initiate
some inter-communication operation becomes the local group for that operation, and the other
group becomes the remote group for that operation. For example, for a send operation the group
which has the sending processes (source) is the local group, and for the receive operation the
group which has the receiver processes is the local group. The group of target processes is
always the remote group. In a send operation the receiverÕs group is the remote group; and in

! "* !

receive operation the senderÕs group is the remote group. MPI guarantees not to have conflict
between operations of inter-communicators and other communicators.

Both groups belong to one of the parent intra-communicators which are used to create the inter-
communicator. In Fig. 3.2.2, we see that intra-communicator ÔAÕ has a group of processes (P2,
P3 and P5) and the intra-communicator ÔBÕ has a group of process (P1, P2 and P4). To make
some data transfer between the processes of these two groups we need to make an inter-
communicator which will provide a communication context for the data transfer between these
processes which belong to different intra-communicators. The detailed description for creating
such communicators is provided in following sections.
!

PROCESSOR TOPOLOGIES. In literal meaning, a topology is an arrangement of
constituents of a group of things which are under study. A topology provides the information
about the linkages and inter-connections between various members of the group or network. In
parallel computing framework of MPI, two types of topologies are discussed: 1) hardware
coresÕ topology and 2) the process topology [2]. First one reflects the arrangement or structure
of the underlying hardware cores (processors) in the super-computing machines or clusters. The
users of these machines have no control over the hardware topology, as it is decided by the
manufacturer and the user uses it as it is available.

The second one is also termed as the Ôvirtual topologyÕ or Ôapplication topologyÕ. Virtual
topology as discussed here is the pattern of linkages of processes with each other in individual
applications. It is clearly application dependent and the user controls it as the problem
requirements suggest. Here, a process refers to a computer program which is actively executing
certain instructions which it is asked to. It is a purely software concept which is different from
a processor which is a hardware unit. A processor may consist of one or several computing
cores which have the central processing units embedded in them.

For example, one of the super-computing clusters at Institut Pprime Ð ÔTHORÕ, on which most
of the computations of this work have been carried out, has Intel Xeon E5-2680 V2 processors.
Each of these processors has 10 physical computing cores (CPUs). Intel defines a core as: Òa
hardware term that describes the number of independent central processing units in a single
computing component (die or chip)Ó [4] . This Intel Xeon processor has Intel Hyper-Threading
(Intel HT Technology) which delivers two processing threads per physical core, making 20
virtual CPUs on 10 cores. Thread is defined by Intel as: ÒA Thread, or thread of execution, is a
software term for the basic ordered sequence of instructions that can be passed through or
processed by a single CPU coreÓ [4] .

As described in introduction, a communicator sets up an appropriate message passing scope for
all the communication operations as desired with the available number of cores. Within a
communicator with N processes, all the processes are ranked from 0 to N-1. This sequential
ranking arrangement of processes does not adequately reflect the problem specific logical
communication pattern of processes. The communication pattern of the processes is always

! "+!

problem dependent and is defined by the underlying geometry and numerical algorithms used
for the problem. The problem geometries are often two or three dimensional in scientific
computations according to the phenomena under study. These 2D or 3D grid problems usually
lead to 2D or 3D topologies of communicating processes.

This virtual topology of processes is machine-independent and used to map the communication
pattern on the underlying hardware topology. At the run time, the virtual topology is exploited
by the system in assigning these software processes onto the physical processors (cores). This
mapping of processes onto the cores usually provides performance gains in terms of computing
hours on super-computing machines. If the user has no way to prepare a virtual topology of the
processes on the hardware cores, then a random mapping results. A random mapping may lead
to difficulties and contentions in the interconnecting processor network on some machines.
Publications are available which report about the performance gains from a good process-to-
processor mapping [1,3,7]. In addition to the possible performance benefits, virtual topologies
also provide for a convenient process naming structure which significantly improve the
readability of programs.

Graphs can be used to represent the communication pattern topologies of any type. In graphs,
nodes can represent the processes and the edges of graph show the inter-connections between
two processes. A virtual topology with graphs can be used for all applications, however, many
applications have regular communication patterns and they can be more easily defined with
other efficient methods. Many parallel applications make use of rings, 2D or 3D grids, tori etc.
for their process topologies. In regular 2D and 3D geometries, the process topologies are easy
to define with number of dimensions and total number of processes in each coordinate direction.
These standard rings, tori and 2D-3D grids are easier than implementing graph topologies.
Cartesian topology is one such standard process topologies which is explained explicitly in the
literature and in Oracle3D Cartesian topologies have been used for significant performance
benefits.

CARTESIAN TOPOLOGY . MPI provides support for three types of topologies: 1)
Cartesian, 2) graph and 3) distributed graph. There are separate MPI calls to prepare each of
these topologies as required by the problem. In a Cartesian topology, the process coordinates
begin their numbering at 0. Cartesian topologies use row-major numbering for the processes.
For example, a 2$ 2 grid of processes would be assigned to four-member processes as shown
in Fig. 3.2.3. It shows the coordinates of each process in the 2D Cartesian topology and red
numbers are the ranks assigned to the respective processes in this topology.!!
!

!! !
! Fig.3.2.3 Sample process ranks and respective coordinates in a 2$ 2, Cartesian grid.

!!!!!!!!!!!!!,--./0!1#2#34!.567!#!
! ,--./0!1#2$34!.567!$!!!!!!!!
! ,--./0!1$2#34!.567!%!
! ,--./0!1$2$34!.567!"!
!

! &#!

A topology is an extra and optional feature which is attached to a communicator. To set up a
topology we need a communicator with a number of processes which we want to be the part of
that topology. For a Cartesian topology creation MPI has the standard ÔMPI_CART_CREATEÕ
operation.
!!
()*+,-./+,.0-/01,2((3#45*(63#5*(63#)0.*2563#.02.50.3 #,-./+,2((3#*0..7 ##########################
Creates a Cartesian communicator

COMM: input communicator handle
nDIMS: number of dimensions of Cartesian grid (integer)
DIMS: number of processes in each direction (integer array)
PERIODS: for periodic faces (logical array)
REORDER: managing the order of rankings of processes
CART_COMM: new communicator with Cartesian topology
IERR: error indicator##
!
The first argument for the MPI_CART_CREATE operation is an input, intra-communicator
handle, which will be converted into a Cartesian topology communicator. A Cartesian topology
cannot be created with an inter-communicator. Second input argument is nDIMS which is the
number of dimensions of required Cartesian topology. It has to be an integer which will be 2
for a 2D topology, and 3 for a 3D topology. DIMS is an integer array whose size is equal to
nDIMS. Each element of DIMS(1:3) represents the total number of processes assigned in X,Y
and Z direction respectively. The PERIODS argument is a logical array with true or false for
each of the three directions. It is true for a direction where the grid has periodic boundary
condition, else it is false. Reordering of the process ranks in new communicator is carried out
with the argument REORDER. It may be required for good embedding of the process topology
onto the hardware topology. It reorders the ranks in new communicator if certain performance
gain could be obtained with reordering. If REORDER = false, then the ranks of processes in
new communicator is kept same as in input communicator. The output argument is the new
communicator handle ÔCART_COMMÕ which is attached with the Cartesian topology, which
is provided by MPI as a result of this call.

()*+5*(6+,.0-/018).2,63#45*(63#5*(63#*0..7 #
To obtain number of processes in each direction of the Cartesian communicator

MPI also provides some convenience functions for the creation of Cartesian topology.
ÔMPI_DIMS_CREATEÕ assists user in allotting a balanced distribution of processes in each
coordinate direction. This function takes total number of available cores (NPROCS) as an input
argument along with nDIMS. As an output, this function gives the variable DIMS in return.
The user can also specify some constraints with variable DIMS. If DIMS is initialized with 0
then the MPI automatically provides a good distribution in respective directions. If the user
wants to fix some specified number of processes in some direction, then he has to initialize
DIMS with that number for that particular direction. For example, initializing DIMS(2) = 5 will
fix the number of processes in y direction to 5. A divisibility algorithm is used by MPI to set
DIMS for each direction as close to the other direction as possible. DIMS, when set by the call,
will be in non-increasing order for the three directions.

! &$!

Table 3.2.1 provides some examples with this function. In first case, no preferred DIMS are
given by user to MPI library so 16 processes are distributed as 4 $ 4 in two directions. In case
2, 13 process are divided in 13 $ 1 as no other combination is possible. Case 3 sets DIMS in x
direction to 3 as input, so 15 processes are divided in 3 $ 5 $ 1 for a 3-dimensional topology.
In case 4, DIMS in y is fixed as 3 with input and total processes are 7. As 7 cannot be factorized
in factors of 3, there will be an error in creating the output DIMS with this call. !

Table 3.2.1 Some examples for ÔMPI_DIMS_CREATEÕ operation.
5*(6 #194:;<7# =;4><9?4#>@AA# 5*(6 #1?;<:;<7#

1"3"7# ()*+5*(6+,.0-/01%B3!3 #5*(6 7# 1'3'7#
1"3"7# ()*+5*(6+,.0-/01 %C3!3#5*(6 7# 1%C3%7#

1C3"3"7# ()*+5*(6+,.0-/01%&3C3 #5*(6 7# 1C3&3%7#
1"3C3"7# #####()*+5*(6+,.0-/01D3C3 #5*(6 7# 0EE?E#

()*+,2((+.-8F1,-./+,2((3#,-./+.-8F3#*0..7 #
Assign ranks to all processes of a communicator

Ranks of the processes should always be attached to them after creation of a new communicator.
There is a standard function to assign a rank variable to each process in a communicator.
MPI_COMM_RANK takes the communicator handle as input argument in which we want to
assign ranks to a variable. And the output is the new ranks variable for all the processes of that
communicator. Here, we input the newly created Cartesian communicator ÔCART_COMMÕ as
the input and ÔCART_RANKÕ will be the output of this function here. So, after this function is
returned; each process in the CART_COMM will attach its rank in the CART_COMM to the
variable CART_RANK.
!
()*+,-./+,22.561,-./+,2((3#,-./+.-8F3#45*(63#,22.563#*0..7# #
Assign coordinates to each process in the Cartesian communicator
!
In the beginning of this section, the concept of coordinates of the processes was highlighted in
Fig. 3.2.3. MPI has another important function for providing the coordinates of processes in a
Cartesian topology. The coordinates of the processes are also attached with the Cartesian
communicator. The Cartesian communicator handle is the first input argument of the function
to get process coordinates. The coordinates are provided for each process of the communicator;
thus, each process has to make a call to this function with the second argument being the
Cartesian rank of that process. Number of total dimension of the Cartesian topology is the third
input argument for MPI_CART_COORDS function. The coordinates of each process in the
Cartesian topology are returned in fourth argument. The COORDS variable is an integer array
with a size of number of dimensions of the topology.

()*+,-./+6G*=/1,2((3# H9EI><9?43#H9J:3#J?;E>I3#HIJ<94@<9?43#*0..7#
Obtain ranks of the neighbor processes, for each process, in all the direction

! &%!

MPI_CART_SHIFT is one of the most important functions of the Cartesian topology. It
provides the neighbor process ranks to the calling process in all 6 dimensions of the topology.
Thus, each process after calling this function knows its neighbors. It is most useful in the cases
where data shift operations are performed with the neighbors in all directions. In one data shift
operation, a process sends some data to a neighboring process and also receives some data from
some neighbor via the corresponding interface nodes. The required user inputs for
MPI_CART_SHIFT are the communicator handle, direction in which neighbor ranks are
needed and the step size after which the ranks are needed. The source and destination arguments
represent the output ranks of the source process and destination process of the caller process in
the direction specified by the second argument. In cases where the caller process is at the
boundary of the topology, and so there is no neighbor on the boundary side, then value
MPI_PROC_NULL is returned for the respective source or neighbor rank. MPI_PROC_NULL
tells that the rank of source or destination in that direction is out of range of the topology.

There are several MPI send and receive operations according to the requirements of the
situations. Here, we have used ÔMPI_SENDRECVÕ operation for all the data exchange via the
interfaces. It is a blocking send-receive operation. With MPI_SENDRECV the processes make
combined send and receive operations in one single call. The send and receive can be to the
same process or a different one. If there is a requirement of data shift operation across a chain
of processes, then MPI_SENDRECV can be the most suitable operation. In individual blocking
send and blocking receive operations user has to take care of the cyclic dependencies of the
calls in data shift operations. So, the user has to correctly order the send and receive calls to
avoid a deadlock situation while using individual send and receive. With MPI_SENDRECV
the MPI communication subsystem takes care of these troubling issues. A small description of
the basic MPI_SEND and MPI_RECV operations is provided in Appendix II, and more details
can be found in [1,2].

In the MPI_SENDRECV, the calling process needs the destination rank for sending part and
the origin rank for the receiving part of the operation.!In the Cartesian topology environments
MPI_SENDRECV is especially very useful with MPI_CART_SHIFT operation. With
MPI_CART_SHIFT each process knows is neighbors and it can quickly make use of the
MPI_SENDRECV to make the data shift operations. The standard MPI_SENDRECV operation
as used in Oracle3D (SWAP_3D subroutine) is as follows: !
!
! Message sending and receiving in X direction
()*+6085.0,K16085+L06/3 #94:L3#()*+.F3#8M.+L06/3#/-N3 ###
. ###############################. 0,K+L06/3#94:L3#()*+.F3#8M.+L06/3#/-N3##
####################################,-./+,2((3#6/-/O63#*0..7## ##
Making a blocking send and receive with a single function call
!

The first five arguments are for the send operation and the next five arguments are for the
receive operation. Starting from SEND_WEST the arguments respectively are: send buffer,
send buffer size, send data type, destination rank and tag for the send operation. Same sequence

! &"!

is followed in the receive part of the call. The last three arguments are the communicator handle,
status object and the error indicator variable. This send-receive operation can also receive a
message sent by a regular send operation; the sent message by this send-receive can also be
received by a regular receive. Both the send and receive can have different sizes and data types.
And, they both must be disjoint; meaning a same buffer cannot simultaneously send and receive
data. There is only one communicator handle so both the send and receive operation must be
performed within same communicator.

In this example call, the calling process sends and receives data from its neighbor in west
direction (NBR_WEST). SEND_WEST and RECV_WEST are the variables which hold the
data to send and data which will be received by the calling process from NBR_WEST. Fig.
3.2.4 shows an example 2D cartesian topology with 12 processes, ranked from 0 to 11. The
neighbors for rank 7 are shown in all 4 directions in this figure (NBR_WEST=4,
NBR_EAST=10, NBR_NORTH=8, NBR_SOUTH=6). As explained above the
MPI_CART_SHIFT function when called by process ranked 7, the output will be the ranks of
these four neighbor processes.
!

Fig.3.2.4 Example 2D cartesian topology with process ranks

In Fig. 3.2.4, the outer black line represents the whole problem domain and we divide this
domain in as many numbers of sub-domains as we have MPI processes. Here we have divided
this domain in 12 sub-domains (4 ! 3) which have red lines as their interfaces with neighbor
sub-domains. At each sub-domain interface, we have grid nodes (on both sides) for which we
need to send and receive some data to the neighbor on the other side of interface, which is
performed with MPI_SENDRECV. Each sub-domain will be assigned to an MPI process
according to the created cartesian topology, and this MPI process will handle all the
computational work related with its sub-domain. More details on domain decomposition are
provided in section 3.3 while discussing the multi-block grid problems.

3.2.2 Implementation of Cartesian topology in Oracle3D

The Cartesian topology features of MPI are implemented in Oracle3D as they are described in
previous section. The major overall tasks to parallelize single block grids include:

! &&!

I.!Grid management,
II.!Initializing MPI environment

III. !Setting Cartesian topology
IV.!Finding the neighbors in all direction, and
V.!Making the MPI communications with MPI_SENDRECV.

All of these stages are explained in much more detail in next section (section 3.3.1) when we
describe the overall, broad strategy to parallelize the multi-block grids with examples.
Understanding the concept and use of Cartesian topology features is sufficient for this part of
the report. This whole methodology of MPI was implemented in a Poisson solver, as it provides
a simple problem to assess the working of MPI. A similar strategy for parallelizing a Poisson
solver is well explained by W. Gropp et al. (1999) in their book titled ÔUsing MPIÕ [1]. This
book along with the MPI 3.1 standard manual should be referred for more advanced features
on Cartesian topology as provided by MPI. After the Poisson solver was parallelized, we tested
the performance of the code with a sample problem. Several detailed validation cases are
provided in next chapter, here, we restrict ourselves to analyze the initial performance of the
code with the newly implemented MPI features.

Two values of time taken for the program execution are noted: 1) total time taken for the
complete execution of code, 2) time taken during the actual computations alone (Computational
time). Computational time for this steady case is mainly devoted to the linear system solver,
which is the most time-consuming part. Except this computational time, the other tasks in code
(total time) include mainly reading the grid, partitioning and distributing the sub-domain to all
processes etc., these tasks are done by only one process, so they donÕt come into the parallel
part of the code. There are also the subroutines which compute some geometrical parameters
of the grid like volume of cells, interpolation factors etc., these tasks are done after the grid
management, so they are done by individual processes on their own sub-domain, however, they
are not included in computational time here.

Parallel Efficiency

A single block orthogonal grid with 200 cells in each direction (X, Y and Z), was taken as the
test problem here. We solve the Poisson equation: PQR1S3T3U7 V B, for this test. Here we show
the performance of adapted MPI methodology with scalability and speedup plots mainly. Very
strict tolerance (1.E-25) for linear system solver was set, so that it remains unachievable in given
maximum number of iterations (4 million in this case), because it is essential to have exactly
the same computational load for all the cases with different number of MPI cores. Seven sets
of cores (10, 20, 40, 100, 200, 400 and 800) were taken to analyze the efficiency of the code
with increasing computational power.

! &' !

! !
Fig. 3.2.5 Performance plots with single block MPI implementation; a) scalability, b) speedup

!

Excellent performance is achieved with our implementation for single block Poisson case. Fig.
3.2.5 (a) illustrates the standard scalability plot with decreasing time as we increase the number
of MPI cores. Speed-up plot shows almost matching performance with computational time in
comparison with the ideal values till 400 MPI cores. Here it should be noted that the base value
for speedup comparison was taken as the time taken by 10 cores, because with the current
problem size it would have taken roughly 15 days on a single core. Taking the baseline speedup
to 8,10,16 or 128 cores is a usual practice where scalability is performed with huge number of
cores on large problems [8,9,12]. However, a smaller problem was simulated to verify the
speedup from 1 core to 16 cores, and desired speedup was obtained in that problem, Fig. 3.2.6.

! !
Fig.3.2.6 Performance plots with 1 to 16 cores ; a) scalability, b) speedup

Interestingly, the total time is increasing with increasing number of cores, this is due to the
sequential part of the code, mainly, the grid management task which is always performed by a
single master process. So, as the number of cores increases there are more number of partitioned
to be done, and the partitioned data is to be sent to more number of member processes. Thus,
increasing the unidirectional MPI_SEND calls to send the sub-domain data to the member

! &(!

processes by the master process. We computed the difference of total time and computational
time for all the cases and found that this difference in time, which represent the part of
sequential code, was almost showing linear behavior after 200 cores, Fig. 3.2.7 (a).

We also observe that for 800 cores the desired speedup is not obtained with this problem size,
Fig. 3.2.7 (b). Table 3.2.2 slightly assists in understanding this problem. We see that the
computational time for 800 cores is only ~39 minutes. We can say that this problem size was
not sufficiently large for achieving a desired speedup with 800 cores. In such fixed size
problems data per processor is decreasing as the number of processors are increased, leading to
a higher communication-to-computation ratios which prevents achieving a desired speed up
[10]. In this case the communication overhead was not small in comparison with the
computational time. We again note that the total number of iterations in this case was 4 million
and at each iteration every core makes the communication with neighbors. We will revisit such
problem in multi-block case also and there we will increase the computational load of the
problem and check the performance with increased work load.

Table. 3.2.2. Time values in minutes for three sets of cores

Cores Total_time (T1) Computational_time (T2) T1-T2
200 100 92.71 7.29
400 64 48.10 15.9
800 71 38.94 32.06

Fig.3.2.7 a) effect of sequential part of code, b) Speedup results showing the effect of communication

overhead with 800 cores.
!
!
!
!
!
!

! &)!

3.3 MPI extension to Multi-Block grids
#
Numerical simulations are performed on either structured or unstructured grids. Structured
grids have some notable advantages over the unstructured grids, such as: lower memory usage,
better cache utilization, vectorization, simpler coding, faster convergence etc. [14]. Our code
ÔOracel3DÕ works with multi-block structured grids to make use of these advantages of
structured grids. Generally, complex engineering geometries are very difficult to mesh with one
block structured mesh. Multi -block structured grids are created in such cases, in which a
geometry is meshed with several individual structured mesh blocks as shown in Fig. 3.3.1. In
the previous section we discussed how Cartesian topology features of MPI provide us with an
advantageous methodology to prepare scalable MPI codes in single block grids. In this section,
we will extend our Cartesian topology strategy to multi-block grids using some more advanced
MPI features.

! !
Fig.3.3.1 Example multi-block structured grids for a NACA and DBD actuator problem

In single block grid cases we created a Cartesian topology of the MPI processes for the grid
block and MPI communications among the partitioned sub-domains of the grid block were
carried out within the context of the created Cartesian communicator. With single block grids,
we obtained a very good scalability with the features of Cartesian communicators. These results
from the previous section led us to state that Cartesian topology features provide excellent MPI
communication speedup. Keeping this in mind, we proposed that in multi-block grids we make
individual Cartesian communicators for each grid block to achieve a very good scalability
within individual blocks. And, as we achieve very good scalability within a block, consequently
we will achieve a desired scalability in overall grid also, provided we manage the interface
communications effectively as well.
!
In single block grids we have to make MPI communications at sub-domain interfaces for FVM
discretization. In multi-block grids, two neighbor grid blocks have common interface between
them, and the nodes which belong to the cells at these block interfaces also need to access the
data of the cell nodes on the other side of this block interface. As proposed above, multi-block
grids will require individual Cartesian communicators for individual grid blocks. At an interface
the neighboring nodes belong to the MPI process on the other side of the interface. And, in
multi-block grids, this neighbor process belongs to a different Cartesian communicator
altogether. And there is no direct link of communication between the processes of different
communicators unless they have an inter-communicator as a bridge between them.

! &*!

From the definition itself, a communicator is a universe of processes which has no direct
knowledge of the other universes. Thus, if we create individual Cartesian communicators for
each grid block, then we must have inter-communicators to have data exchange at the interfaces
of these individual Cartesian communicators. By this point we have explained the need to have
multiple Cartesian communicators and inter-communicators. Let us discuss, in more detail, the
concept of inter-communicators.

3.3.1 Setting the MPI environment for multi-block grids
!

This section provides a brief problem statement and a summary of the rest of the chapter.
Oracle3D works with multi-block structured grids, the first task is to read the whole grid in
accordance with its block structure. Then we need to decompose the grid of each block in as
many numbers of sub-domains as we have MPI processes for that grid block. The grid data
(coordinates, boundary nodes etc.) of the decomposed sub-domains are then distributed among
the respective MPI processes with standard MPI send and receive operations. To set up the
whole parallel communication pattern map we have to go through several steps to create the
complete MPI environment with various groups and communicators, which we discuss one by
one in this section. First, let us explain the main objective with an example case and some
sketches.

Fig. 3.3.2 represents the problem input grid and the created inter-communicators at the
interfaces. Here, we consider a geometry which has 4 grid blocks, as shown numbered from 1
to 4 in green color. The green colored lines are the interfaces between the two neighboring
blocks and the outer black lines are the boundaries. This is our base grid before preparing the
MPI communication environment for the problem. The right part of the sketch represents
specifically the output inter-communicators which are created at the four block interfaces. Each
blockÕs inner partition is done with 9 cores each which will make one Cartesian communicator
per grid block and at the interfaces we would need the inter-communicators to exchange data
between two blocks. The inter-communicator between block 1 and 2 is named as
INTER_COMM12 and, similarly, the other inter-communicators are also named as shown in
Fig. 3.3.2. Thus, it is our main objective in this section to set the whole MPI mapping of cores
for the communication in multi-block geometries.
!
Major steps towards creating inter-communicators:

I.! Grid management
II.! Cartesian Topology

III. ! Interface Groups
IV.! Interface Intra-communicators
V.! Interface Inter-communicators

VI.! The NUM_CFI array
VII. ! Data exchange among MPI processes

! &+!

!
Fig.3.3.2 The input 4 block geometry and the final output showing the inter-communicators at the

interfaces of the grid blocks.

!

!
Fig.3.3.3 Flowchart with the sequence of operations to create inter-communicators

! '# !

Fig. 3.3.3 provides us a summary flowchart for preparing the inter-communicators from
MPI_COMM_WORLD. All the major steps towards the creation of final interface inter-
communicators are shown in this flowchart and these steps are discussed in detail with
corresponding MPI operations in following sections.

!

I.! Grid Management
Main Objectives:

 a) allocation of MPI processes to each grid block
 b) reading the multi-block grid for parallel implementation
 c) partitioning each block into MPI sub-domains

d) distribution of sub-domain data to respective MPI processes

As soon as user provides the number of available MPI processes (NPROCS) for the problem
and the number of geometrical blocks in grid (NBLOCKT), we have to distribute the NPROCS
among the grid blocks. For this, we first decide how many processes should be provided to each
grid block according the sizes (total number of control volumes) of all the blocks. We make
calculations to have a proper load balancing among all the MPI processes and decide number
of!processes for each block. After this we start with first grid block and first MPI processes
(RANK=0) and proceed with allotting processes to each successive block with successive
RANKS. For example, if we have 4 grid blocks and 60 MPI processes and the number of
processes each block after good load balancing is 12,18,15 and 15. Then the MPI processes are
allotted to blocks as shown in Tab.3.3.1.
!

Tab.3.3.1 Example MPI process allocation to grid blocks
89:;<=8:>?@ ! ,=?=A ! B-C5D!8EF!

G.-HI00I0!!
8EF!G.-HI00I0!

1AJK@03!
A<JL<A:AJK@!

$! $! $%! #!M!$$! #!
%! %! $*! $%!M!%+! $%!
" ! " ! $' ! "#!M!&&! "#!

&! &! $' ! &'!M!'+ ! &' !
!!
!

The MPI processes distribution is done in CORE_INFO subroutine. In this subroutine we also
assign some important variables to all the processes, which are local to the specific processes.
Each process assigns the variable ÔMY_GEOM_BLKÕ the ID of the block to which this process
has been allotted. For instance, in above example all the processes from RANK 12 to 29 will
assign MY_GEOM_BLK to 2; and these cores will be called the member processes of that
block. Variable ÔCOLORÕ is again assigned the ID of the block to which the processes belongs.
The variable ÔCOLORÕ is specifically used with the MPI operation of communicator split as
used in standard references [1,2], and is explained in next section. And, variable
ÔMY_GEOM_BLKÕ is used at all other places in code where the processes have to provide their
block IDs. A variable named ÔREADER_RANKÕ is also assigned for each process, which is

! '$!

the rank of the processes which will read the grid data of its block, decompose the grid data and
distribute the grid data to the respective member processes. We have assigned the first processÕ
rank of each grid block as the ÔREADER_RANKÕ of that block. In the tab.3.3.1 example, ranks
0, 12, 30 and 45 are respectively the ÔREADER_RANKsÕ of blocks 1,2,3 and 4.

This ÔREADER_RANKÕ strategy to read and partition the grid blocks by different processes is
especially efficient in cases of multi-block grids of huge sizes. During the scalability tests we
have observed that in a 4-block grid of 8 million control volumes in total, the test with 512
cores took nearly 45 minutes just to read, partition and distribute the sub-domain data among
all the processes. In that case there were 4 reader cores which managed the 4 grid block data.
Thus, if we keep the grid management job to just one master process and it alone does all the
partition and distribution, then certainly it will take much more time than the reader process
method. The reader process strategy also avoids certain possible deadlock situations while
distributing the grid data to member processes of a block. In this strategy, the sending and
receiving of data is happening only in one direction; the reader processes of the blocks only
send the grid data and the member processes only receive the data. This would not have been
possible if we would have taken the RANKS 0 to 3 to manage the grid of 4 blocks; it could lead
to possible deadlock situations in our code.

In the grid file (*.grd) we mainly have the coordinates or vertices, control volume numbers in
each direction and the boundary condition data related to the grid blocks. All the data related to
a particular grid block is written in same section of the grid file and after data of one block
finishes the data of next block starts. During preparation of the grid file the sequence of grid
blocks from 1 to NBLOCK is strictly followed. Now, with the ÔREADER_RANKÕ available
only the reader processes read and store the information of their respective blocks, this task of
reading the grid file is done in subroutine READGRID in Oracle3D.

Then, MANAGE_MPI_GRID subroutine calls two different subroutines to decompose the
coordinates and boundary condition data of the grid blocks. In these two subroutines:
PARTITION_COORDINATES and PARTITION_BOUNDARY_POINTS, the reader
processes make the partition of their grid blocks into the number of processes allotted for their
blocks. After the partition the decomposed sub-domain data are sent to the respective member
processes of that block with standard MPI_SEND and MPI_RECV operations. And, the reader
processes also keep their own sub-domain data to themselves.
!

()*+60851W3#8WXY-3#()*+.F3#506/3#/-N3#,-./+,2((3#9IEE7###
()*+.0,K1W3#8WXY-3#()*+.F3#62O.,03#/-N3#,-./+,2((3#6/-/O63#9IEE7#
!

At this stage, all of these processes (RANK 0 to 59) belong to the default MPI communicator
which is the MPI_COMM_WORLD. Our experience with single geometrical block case tells
us that with Cartesian topology features of MPI we can get very good scalability and speed up
with increasing number of MPI processes. The experience and results with Cartesian
communicators lead us to think about implementation of this Cartesian topology feature in the
multi-block cases also. However, a single Cartesian communicator, as applied to single block

! '%!

cases, will not work in case of multi-block grids. But the Cartesian topology can be used with
individual grid blocks, which will certainly give us very good parallel efficiency within
individual blocks. Considering these points, we decided to divide our default communicator
(MPI_COMM_WORLD) into as many number of Cartesian communicators as there are grid
blocks.
!

II. ! Cartesian Topology
Main Objectives:
a)!Splitting the default communicator into required intra-communicators
b) creating one Cartesian communicator for each block
c) Assigning local Cartesian ranks, coordinates to all processes within their respective Cartesian
communicators
d) Finding neighbor processes of each process on all directions

The creation of Cartesian topology for individual blocks is managed in subroutine
CART_TOPO_MUTIBLOCK. We have our default world communicator for the input here. A
Cartesian communicator can be created with the standard MPI operation Ð
ÔMPI_CART_CREATEÕ. This operation needs an input communicator handle as its first
argument, which will be converted into a Cartesian communicator. In the single block cases we
needed only one Cartesian communicator, so the default world communicator was completely
converted into a Cartesian communicator. But, in multi-block cases we need as many numbers
of input communicators as the number of Cartesian communicators required, which is equal to
the number of blocks we have. So, first we have to split the world communicator into the
required number of intra-communicators. And, following which we will convert those newly
created intra-communicators into the Cartesian communicators.

The task of splitting the world communicator is carried out with the standard MPI operation -
ÔMPI_COMM_SPLITÕ. This operation has five arguments, out of which first three are input
arguments and last two are the output arguments. The first argument is the handle of the
communicator which we want to split, here it is our world communicator
(MPI_COMM_WORLD). The second is the ÔCOLORÕ argument. This ÔCOLORÕ argument is
the identification of the groups to which the processes belong. In our context the identification
of the groups corresponds to the grid block ID, meaning the group of processes which are
assigned to a same grid block.

So, processes assigned to same grid block will all have same value of the ÔCOLORÕ argument.
And, as a result the processes which have same value of ÔCOLORÕ will all combinedly make a
new intra-communicator among themselves which will have only these processes as its
members. The third argument is the rank of the process which is reading/making this call of
splitting. Every process makes a call to MPI_COMM_SPLIT with its RANK and COLOR
values which lets each process associate with the output communicator and the other member
processes of the that communicator.
!
!

! '" !

()*+,2((+6)Z*/1()*+,2((+L2.Z53#,2Z2.3#.-8F3#MZ2,F+ ,2((3#*0.. 7##
Split a communicator in required number of intra-communicators

##()*+,2((+L2.Z5[#94:;<#>?\\;49>@<?E#]@4HAI #
##,2Z2.[#9HI4<9^9>@<9?4#?^#<]I#_E?;:#
##.-8F[#E@4`#?^#<]I#>@AA94_#>?EI#
##MZ2,F+,2(([#?;<:;<#>?\\;49>@<?E#]@4HAI#
##*0..[#IEE?E#94H9>@<?E##
!

!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! !
!

Fig.3.3.3 Global ranks within MPI_COMM_WORLD and local ranks in each BLOCK_COMMs
!

As a result of this ÔMPI_COMM_SPLITÕ operation, there will be as many new communicators
as there are different ÔCOLORÕ values (or blocks). The new communicator handle, which is
ÔBLOCK_COMMÕ in our code, is the same for all the processes because every process
recognizes only the ÔBLOCK_COMMÕ communicator which it created itself. A process makes
the communicator with its ÔCOLORÕ value and it has no knowledge of the communicator which
was created with a different ÔCOLORÕ value by some other process. In other words, a
ÔBLOCK_COMMÕ is known to only those processes which has the ÔCOLORÕ value which was
used to create this ÔBLOCK_COMMÕ.

In the example of Fig. 3.3.2 we considered that each block will have 9 processes. So, the
ÔCOLORÕ values of the processes ranked 0 to 8 will be 1; ranks 9 to 17 will have COLOR as 2
and similarly for rest of the processes. For example, ranks 18 to 26 all will have color value 3
and they will make a BLOCK_COMM for their group by the split operation. Fig. 3.3.3 shows
this example with 4 blocks having their ranks shown in different colors corresponding to
individual BLOCK_COMMs. Here we also note that whenever a new communicator is created
the local ranks of the processes which belong to this new communicator will start from zero
again, within this new communicator.

Note: Although we could have used the variable ÔMY_GEOM_BLKÕ in place of variable ÔCOLORÕ
because both the variables are exactly the same. But we kept the standard approach as used in many
references which use the variable ÔCOLORÕ as the identification of the groups. Moreover, it will be
easier for new users to relate this operation with ÔCOLORÕ variable to standard references and
understand quickly.
!

! '& !

()*+,-./+,.0-/01 MZ2,F+,2((3#(-W+5*(63#5*(63#)0.*2563#.02.50.3#,-./+,2((3#*0..7# #
Creates a Cartesian communicator ÔCART_COMMÕ from existing intra-communicator
ÔBLOCK_COMMÕ

After splitting of MPI_COMM_WORLD we have obtained one communicator for each block
: ÔBLOCK_COMMÕ. We will convert these ÔBLOCK_COMMsÕ into Cartesian communicators
for the respective blocks. We use the MPI operation Ð MPI_CART_CREATE, as explained in
the single block case and obtain the required Cartesian communicators for each block. Fig.
3.3.4, illustrates the steps of creating the Cartesian communicators from the existing world
communicator. We use other features of Cartesian topology to get the information on the newly
created Cartesian communicators. These features were well explained previously, they are:
!

()*+,2((+.-8F1,-./+,2((3#,-./+.-8F3#*0..7 #
Returns local Cartesian ranks of all processes in variable ÔCART_RANKÕ within respective
CART_COMM
#
()*+,-./+,22.561,-./+,2((3#,-./+.-8F3#(-W+5*(63#,22.563#*0..7 #
Returns coordinates of processes in the topology of respective CART_COMMs

()*+,-./+6G*=/1,-./+,2((3#"3#%3#8M.+L06/3#8M.+0-6/3#*0..7 #
Returns the ranks of neighbor processes in respective directions
!

!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!! !
!

Fig. 3.3.4 Sequence of creating Cartesian communicators from 4 grid blocks
!
!

We identify the local ranks within each Cartesian communicator with variable ÔCART_RANKÕ,
and the global ranks in world communicator were identified with variable ÔRANKÕ.

! ! ! Tab.3.3.2 Global and local ranks within communicators

>?=,@!FL! AJK@!
18EF:,=88:N=A?L3 !

,JAB:AJK@!
1,JAB:,=883 !

$! #!O!* ! #!O!* !
%! +!O!$) ! #!O!* !

" ! $*!O!%(! #!O!* !
&! %)!O!"' ! #!O!* !

!

! '' !

!

With the Cartesian communicators we will manage the computations and message passing
within the individual blocks. But, we have to make data exchanges between the blocks also to
compute the variables on the nodes which belong to the interface cells of the block grids. To
make these inter-block data exchanges we would need to make communications among the
processes of different Cartesian communicators, as each block is assigned to one Cartesian
communicator. And, there is no direct communication link among the processes of different
communicators. For this, we proceed towards creating the inter communicators.

Now, not all of the processes of a Cartesian communicator will take part in data exchange with
neighbor Cartesian communicators. Only those processes which are at the interfaces of two
neighbor blocks will have to communicate with each other for data exchange between them.
Also, a Cartesian communicator may have more than one direction in which it would have
neighbor Cartesian communicators. Thus, a communicator needs to have several local groups
of processes at different interfaces which will communicate with the processes of neighbor
Cartesian communicators at respective interfaces. These local groups of processes will be used
to create the intra-communicators at the corresponding interfaces, and subsequently two intra-
communicators lying on either side of an interface will be used to create an inter-communicator
at that block interface.
!
!

III. ! Interface Groups
Main Objectives:
a) Finding the MPI processes at the block interfaces
b) Creating MPI groups of processes which belong to the same ISIDE of a block

As a next step towards creating the inter-block communications, we make groups of processes
within each Cartesian communicator at the directions in which it has to exchange data. We
follow the MPI standards and first create group of all the processes of a Cartesian communicator
with operation: MPI_COMM_GROUP. This operation takes as input the communicator handle
in which we want to create the group of all the processes. And it returns a group handle which
consists of all the processes of the input communicator. In our case ÔCART_COMMÕ is the
input communicator handle and ÔCART_GROUPÕ is the return group handle.!!
!
()*+,2((+N.2O)1,-./+,2((3#,-./+N.2O)3#*0..7# ##
Creates an MPI group ÔCART_GROUPÕ from Communicator ÔCART_COMMÕ
!
Here, it should be noted that in MPI new groups canÕt be created from scratch. Groups can be
constructed by manipulating already existing groups [2]. MPI provides the base group which is
associated with the global communicator MPI_COMM_WORLD, and this group can be
accessed with the function MPI_COMM_GROUP. Thus, we need to create the parent group of
all the processes in each of our CART_COMMs, and then the sub-groups at the interfaces will
be created from the parent group with the processes at respective interfaces.

! '(!

With the newly created ÔCART_GROUPÕ within each Cartesian communicator, we can now
create several sub-groups of processes which belong to the block interfaces in respective
directions. For this, we have to first find which processes within a Cartesian communicator
belong to which interface. Interfaces are identified with the direction to which they belong. We
are working with 3D block structured grids and each of our grid blocks have six faces. We refer
these six faces with six directions respectively: west, east, south, north, back, and front. All the
block interfaces will belong to one of these six directions and will be identified with variable
ISIDE. Where ISIDE being 1, 2, 3, 4, 5 and 6 corresponding to the above mentioned six
directions.

The important aspect to note here is that after the creation of Cartesian communicators, the
CART_RANKs will be used for all the operations within a Cartesian communicator. So, when
we need to find the processes which are at the interfaces we have to find their local Cartesian
communicator ranks (CART_RANK). This job is done in subroutine
ÔINTERFACE_GROUPSÕ. This subroutine uses the fact that all the ranks in a Cartesian
communicator are arranged in a pre-defined direction of increment. The ranks start with zero,
the inner most loop to assign the ranks runs in Z direction, then the middle loop runs in Y
direction and the outer most loop goes in X direction. Fig. 3.3.5 Shows the arrangement of local
ranks in an example 3D Cartesian topology.

As we now understand how the local processes in a 3D Cartesian topology are arranged, we
can easily find out the processes which belong to the 6 faces of the block grids. We will not
need to find the processes at all the six faces rather, we know from the grid file which faces
have interfaces with neighbor grid blocks. So, we find the ISIDE in which a Cartesian
communicator has a block interface, and then we run the loop according to the face direction at
which we are looking for the ranks. The subroutine ÔINTERFACE_GROUPÕ prepares the
variable ÔLOCAL_RANKS_INFÕ which contains those processes (CART_RANKs) of the
Cartesian communicator which are at the interfaces. The first index of this array is the ISIDE,
and the second index is the Cartesian ranks of the processes at that ISIDE interface.

Note: ÔGroupÕ is again an MPI concept like communicators. A group defines a
collection of processes which have ordered ranks in the communication pattern. Groups
define the scope of process names (ranks) in collective and point-to-point
communication operations in the MPI environment. In other words, a group is attached
to and used within a communicator to describe the constituent processes in that
communication universe. Although, groups are defined and manipulated separately
from communicators but only communicators are used in all the communication
operations.
!

! ') !

!
!

Fig. 3.3.5 Arrangement of ranks of cores in a 3D Cartesian topology

These processes at the individual interfaces will now make local groups at interfaces. These
local interface ranksÕ groups are denoted with handle ÔINF_GROUPÕ. This way each Cartesian
communicator will have one interface group on the face side which has block interface. And
these ÔINF_GROUPÕ processes will be used to create respective intra Ð communicator among
themselves for the interface they belong. The standard sub-group creation operation used here
is:

!

()*+N.2O)+*8,Z1,-./+N.2O)3#8+ ,2.063#N.2O) +.-8F61 %[8+,2.0673####
*8=+N.2O)18MZ3*6*50+73#*0..7#
Creates an MPI sub group from an existing group of processes
!

,-./+N.2O)[#_E?;:#?^#@AA#>?EIJ#?^#<]I#,@E<IJ9@4#>?\\;49>@<?E#
8+,2.06[#4;\aIE#?^#>?EIJ#b]9>]#4IIHJ#<?#aI#94>A;HIH#94#<]I#4Ib#_E?;:#
N.2O)+.-8F6[#E@4`J#1,-./+.-8F7#?^#<]I#>?EIJ#b]9>]#4IIHJ#<?#aI#94>A;HIH#94#<]I#4Ib#_E?;:#
*8=+N.2O)[#<]I#4Ib#_E?;:#]@4HAI##
*0..[#IEE?E#94H9>@<?E###
!
MPI_GROUP_INCL operation creates a sub-group from an existing group. As mentioned
earlier a group is always attached to a communicator and the processes which are part of a group
have their ranks ordered as in parent communicator. For sub-group creation we need the total
number of processes which we want to include in the new group, this is the second argument
in the group include operation. The third argument is an integer array which has the ranks of
the processes which are to be included in new group. First argument is the input parent group
handle, and, the fourth argument is the output sub-group handle. Fig. 3.3.6, on left, shows the
local Cartesian ranks (CART_RANK) within each Cartesian communicator, and on the right

! '* !

are just the ranks which are at the interfaces and which are selected to create the interface
groups. Thus, each Cartesian communicator has different local ranks at the different interfaces,
and these interface processes will alone take part in the formation of inter-communicators.
!

!! !
!

Fig.3.3.6 Selection of those Cartesian communicator ranks which are at the interfaces
!

!

IV. ! Interface Intra -communicator
Main Objectives:
 a) Creating interface intra-communicators from interface MPI groups
 b) Assigning the local and remote leaders for each ISIDE

In subroutine INTERFACE_GROUP, we prepare another important variable named -
ÔLOCAL_LEADERÕ, which is required to make inter-communicators. It is an argument in the
inter-communicator creation operation Ð ÔMPI_INTERCOMM_CREATEÕ. This MPI operation
requires two intra-communicators, with each having one of its processes as the local leader. The
local leader of the remote group is the remote leader for any MPI communication. The rank of
this local leader process, along with the remote leader rank, is used to make the communication
link between the two intra-communicators. As in MPI, a communicator has an independent
communication context, and it canÕt communicate with other communicators on its own. We
decided that the highest ranks of the interface groups will be the local leader rank in respective
interface intra-communicator. We can take any process as the local leader and there is no
constraint on that. While preparing the interface groups, we made the local leaders such that
each process knows the rank of its local leader process.

()*+,2((+,.0-/0+N.2O)1,-./+,2((3#*8=+N.2O)18MZ3*6*50+73####c #
/-N+*N18MZ3#*6*50+73#*8=+,2((18MZ3*6*50+73*0..#7
Create an intra-communicator from an existing group of processes within a communicator##
!
,-./+,2(([#>?\\;49>@<?E#]@4HAI#<?#b]9>]#<]I#94<IE^@>I#_E?;:#aIA?4_J#
*8=+N.2O)[#<]I#_E?;:#]@4HAI#̂?E#<]I#:E?>IJJIJ#@<#<]I#94<IE^@>I#
/-N+*N[#<@_#;JIH#<?#H9^^IEI4<9@<I#\;A<9:AI#>@AAJ#ad#J@\I#:E?>IJJIJ #
*8=+,2(([#4Ib#>?\\;49>@<?E#]@4HAI#b]9>]#9J#>EI@<IH#b9<]#94<IE^@>I#:E?>IJJIJ#
*0..[#IEE?E#94H9>@<?E##

! '+ !

Subroutine ÔINTERFACE_INTRA_COMMSÕ creates intra-communicators from the interface
groups created previously. These groups of processes at interfaces are now directly used to
create interface intra-communicators with the standard MPI operation -
ÔMPI_COMM_CREATE_GROUPÕ. The first input argument is the parent communicator from
which a new intra-communicator is to be created; in our case it is the Cartesian communicator.
The second argument provides the handle of the sub-group of the processes which will belong
to the new communicator. ÔINF_GROUPÕ is the required sub-group of interface processes.

!

!
!

Fig.3.3.7 Different interface intra-communicators at the various interfaces of the grid blocks.

Tags for the creation of these new communicators have to be prepared properly, because there
are some processes which will belong to more than one new communicator. And, to create
distinct communicators they need distinct tags. The output argument in our case is the
INF_COMM handle, which is the newly created intra-communicator. We used a 2D array for
this new communicator handle here. The first index of the array is the identification of the block
and the second index represents the direction to which this interface communicator belongs to.
Fig. 3.3.7 shows all the different intra-communicators at respective interfaces. These are new
communicators and therefore their member processes will again have local ranks starting from
zero, as illustrated in Fig. 3.3.7.
!

Subroutine ÔINTERFACE_INTRA_COMMSÕ also prepares the variable
ÔREMOTE_LEADERÕ for each interface intra-communicator. As summarized in the
introduction of this chapter, each inter communicator has two groups of processes: local group
and remote group. These two groups of processes are mandatorily disjoint from each other,
meaning that these two groups cannot have common processes between them. An overlap of
local and remote groups that are used to make an inter communicator is prohibited [2]. Such an

! (# !

overlap of the processes is erroneous and could lead to a deadlock situation. Both the groups
belong to respective intra-communicators which are located at either side of a block interface.

!

V.! Interface Inter -communicator
Main Objectives:
!a) Preparing the ÔTAGÕ argument for all the interface processes for creating inter-
communicators
 b) Preparing the ÔINTER_COMMÕ array for inter-communicator handle
 c) creating the inter-communicators

!

Within an inter-communicator context, the ÔLOCAL_LEADERÕ of a group is the
ÔREMOTE_LEADERÕ of the corresponding remote group. However, it is very important to
note that the ÔLOCAL_LEADERÕ variable is the rank of the process in the intra-communicator
(which is a local rank); but the ÔREMOTE_LEADERÕ is the rank of the process in a peer
communicator (global communicator in our case) to which the leaders of both the groups belong
to. In other words, there must exist a peer communicator to which the local leader and its
corresponding remote leader belong, and they must know each otherÕs rank in this peer
communicator. Fig. 3.3.8 shows the local ranks of interface processes and their ranks in the
global world communicator which is the peer communicator for us.

!!! !
Fig.3.3.8 Local interface intra-communicator ranks with local leader ranks circled, and the respective

global world communicator ranks of all the processes
!

!

In standard practices, the default MPI_COMM_WORLD or its duplicate communicator is
usually used as the peer communicator. This peer communicator provides a communication
context in which both the leader processes can communicate with each other. It is also
mandatory that all the other member processes of these interface intra-communicators know the
ranks of their local leader and the remote leader. It is required because all the interface processes
have to call the inter-communicator creation function to create their respective inter-
communicators, and the leader ranks are input arguments for that MPI function.

Now, we have mentioned that the local leader ranks were assigned during the interface group
creation and all the interface processes know their local leaderÕs rank. However, the remote

?-H5D!A5670!C-!

;D-P5D!A5670!

! ($!

leader rank is not yet provided to processes. The remote leaders are members of the remote
group, which is a group of MPI processes in a different intra-communicator (precisely the
communicator on the other side of block interface). And, as mentioned earlier there is no direct
communication link between two intra-communicators, and, this is the sole reason why we need
to create inter-communicators. However, here the remote leader rank must be transferred
between the processes of two different communicators even to create the inter-communicator
between them. This remote leader rank is the rank of remote leader process in the peer
communicator, not its local rank in the intra-communicator.

These two tasks are managed in subroutine INTERFACE_INTRA_COMMS. First, we try to
find the remote leader rank in peer communicator. We have mentioned that with
MPI_COMM_RANK function a process can assign its rank in a particular communicator to a
variable. This function was used to assign the CART_RANKs and INF_RANKs of processes
in their Cartesian and interface intra-communicators. We also note that local leader ranks were
stored in LOCAL_LEADER(NBL, ISIDE) array, whose first index is the geometrical block ID
and the second index corresponds to the direction of the interface. Similarly, we allocate a two-
dimensional array for the remote leader rank Ð REMOTE_LEADER(GEOM_BLOCKS, 6).

We run a loop on all geometrical blocks and their interface directions to get the array values for
LOCAL_LEADER(NBL, ISIDE). At each ISIDE we separate the local leader process and make
it call the function MPI_COMM_RANK to get its rank in the peer communicator. The peer
communicator rank of local leader is stored in array REMOTE_LEADER with first index
referring to neighbor block ID (NBR) and second index referring to ISIDE value of neighbor
block (NBR_SIDE) for the respective direction. Corresponding code lines are provided in Fig.
3.3.9. Note that only the relevant code lines are provided here to explain this task.

Fig.3.3.9 Code lines for finding remote leader rank in peer communicator

Along with storing the required remote leader rank in a suitable array position, this rank is also
written in a text file ÔREMOTE_LEADER.datÕ. Keep in mind that this work is done by the
local leader alone. As we work in distributed memory framework, the job done by individual
process is known only to itself unless it is transferred to others. So, until now the values filled
in REMOTE_LEADER array are only known to the local leaders who filled this array in their

! (%!

own memory. We have to transfer this remote leader array to all the interface processes. We
have the remote leader ranks written in the text file, which is available to all processes. This file
was written for the sequence from block 1 to GEOM_BLOCKS and within block index we
followed the sequence of respective ISIDEs. Now, all the processes should open and read this
file in the same sequence for NBL and ISIDE. Each process will store the values of this file in
the variable REMOTE_LEADER with the relevant indices for block and direction values as
shown with code lines in Fig. 3.3.10.

Fig.3.3.10 Storing the remote leader value done by all processes at interface

We used the MPI operation Ð ÔMPI_INTERCOMM_CREATEÕ to create inter communicators
at the block interfaces. The operation call details are as follows:

()*+*8/0.,2((+,.0-/01*8=+,2((18MZ3 #*6*50+73#Z2,-Z+Z0-50.1 8MZ3#*6*50+73#c#
)00.+ ,2((3#.0(2/0 +Z0-50 .18MZ3*6*50+73#/-N3#*8/0.+,2((1*573#*0..7#####
Creates an inter-communicator with two existing intra-communicators
!
*8=+,2(([#<]I#:@EI4<#94<E@#>?\\;49>@<?E#]@4HAI#b]9>]#9J#;JIH#<?#>EI@<I#94<IE#>?\\;49>@<?E#
Z2,-Z+Z0-50.[# A?>@A#AI@HIE#E@4`#94#94<E@#>?\\;49>@<?E#
)00.+,2(([# >?\\?4# >?\\;49>@<?E#]@4HAI#<?#b]9>]#a?<]#AI@HIEJ#aIA?4_#
.0(2/0+Z0-50.[#EI\?<I#AI@HIE#E@4#̀94#:IIE+>?\\ #
/-N[#<@_#<?#H9^^IEI4<9@<I#>@AAJ#^?E#H9^^IEI4<#94<IE#>?\\;49>@<?EJ#
*8/0.+,2((1*57[#?;<:;<#94<IE#>?\\;49>@<?E#]@4HAI#
*0.. [#IEE?E#9HI4<9^9IE##
!

Again, all the processes which are at the block interfaces will make the above call to create their
corresponding inter-communicators. These processes have to provide the five arguments as the
input for the inter-communicator creation function. The ÔPEER_COMMÕ is same for all the
processes, however, the other four arguments depend on the block ID and the ISIDE values. By
this, we make sure that all the processes which are at a particular interface provide the same
values for these input arguments for the combination of NBL and ISIDE. The values for 1st, 2nd
and 4th arguments have already been computed above for all the processes, now we prepare the
ÔTAGÕ argument.

In inter-communicator creation, it is very important that the tag argument is well set. Here, all
the processes of the local and remote groups will make the above call to create their respective

! (" !

inter-communicators. The processes of one particular local group and the corresponding remote
group must all give exactly the same value for the tag argument to create their inter-
communicator. Only the processes of the local group and the respective remote group which
provide the same tag value will create an exclusive inter-communicator among themselves.

In Oracle3D, we need to create the inter-communicators dynamically depending upon the
present blocks in the grid, and thus this tag should also be generated dynamically according to
the base grid. It is also important to prepare this tag carefully because, firstly, there are always
some processes which belong to two or more interface intra-communicators. And secondly,
while creating inter-communicators for a particular ISIDE these processes must have a
particular tag for that inter-communicator. Now, we know that there is always only one local
leader and a corresponding remote leader for all the processes of an interface. The
corresponding ranks of these two leader processes are known to all the processes of local and
remote groups. And these ranks are specific for a particular interface alone. Thus, it was decided
that the multiplication of the ranks of local and remote leader will be used as the tag for the
corresponding interface. This will always be specific to one particular interface and this will
also be the same for all the local and remote processes of that inter-communicator. Thus, we
chose to have tag as follows:

/-N#V#.0(2/0+Z0-50.18MZ3 #*6*50+7#e#.0(2/0+Z0-50.18M.38M.+6*507####

Fig.3.3.11 Creating the Inter-COMM array

Following the similar requirement as the ÔTAGÕ argument, all the member processes of both
the groups of a particular interface must also provide the same handle for the new inter-
communicator, because they combinedly make this new inter-communicator exclusively
among themselves. It was achieved by utilizing an integer array (INTER_COMM) for inter-
communicator handle. This INTER_COMM array was prepared by all interface processes
before making the call to create their inter-communicator. Within a loop on blocks and ISIDES,
all the processes, on the two sides of a particular interface, were assigned a same integer
identifier for the common inter-communicator. And, these identifiers were used to create the
array INTER_COMM to keep it same for the processes of only a particular interface. The

! (&!

creation of this inter communicator array should easily be understood by following the loop in
subroutine INTER_COMMS as shown in Fig. 3.3.11.

Another important aspect was to keep same number of processes on both sides of an interface.
In our multi-block structured grids, the number of control volumes on both sides of a particular
block interface are always the same and each control volume has a common cell interface with
the neighbor control volume of the neighbor block. Thus, on the interface the grids on both the
sides are exactly the same. The idea of this grid level symmetry at block interfaces was used
while decomposing the blocks into sub-domains also. We decided that at each block interface
the number of sub-domains (subsequently the MPI processes) on both sides will be the same.
And, a sub-domain will have an exclusive interface only with a single sub-domain on the other
side of interface as shown in Fig. 3.3.12 (a).

Fig. 3.3.12 a) Symmetric and b) asymmetric decomposition of grid blocks at block interfaces

This symmetry of sub-domains at interface facilitates one to one data exchange between two
neighbor processes on each side of the interface. An asymmetrical arrangement of processes,
Fig. 3.3.12 (b), at the interfaces would lead to significantly more time to send and receive data
at the interfaces. In an asymmetrical arrangement, a process may need to send and receive data
from more than one processes on the opposite side. Managing which control volumesÕ data to
be sent to which processes on the opposite side, and, then which data to be received from which
processes requires scanning and copying of big arrays on both sides of an interface. This is an
unnecessarily time-consuming task.

Moreover, the data at the interfaces have to be exchanged at each time step of computation and
also for each variable making this communication very expensive. Keeping asymmetrical
arrangement of processes on interfaces would have given us flexibility in terms of having any
number of processes in each Cartesian communicator but it costs us huge amount of time during
very large simulations. Therefore, the code was prepared to work with such symmetrical
configurations of decomposition at interfaces. Fig. 3.3.13 shows the created inter-
communicators at the interfaces of Cartesian communicators, with the local interface ranks of
the individual communicators. For facilitating the explanation, the inter-communicator between
block 1 and 2 is named as INTER_COMM12 and, similarly, the other inter-communicators are
also named as shown in Fig. 3.3.13.

! (' !

Fig. 3.3.13 Inter-communicators with their member processes on both sides of interface

!
!

VI. ! The NUM_CFI array
Main Objectives:
a) Creating a separate array for managing the interface nodesÕ data
b) Utilizing the COORDS feature of Cartesian topology to find the interfaces
!

By creating the required Cartesian and inter-communicators, we have set the parallel
environment within which the processes can communicate with each other for message passing.
We have two types of interfaces where we have to make the data exchanges: 1) internal sub-
domain interfaces within the Cartesian communicators, and 2) block interfaces between two
Cartesian communicators. According the location of a process in Cartesian topology, a process
may have one or both types of interfaces. In Oracle3D, we have named an array ÔNUM_CFIÕ
to keep all the grid related information of nodes which lie at the interface cell centers (INP) and
interface cell face centers (IND). Let us consider an example to understand the information
contained by the NUM_CFI array. This array is prepared in the code in subroutine called
NUM_CFI_SUB_BLOCKS. Fig. 3.3.14 represents a block interface (blue line) common
between two blocks which extend in west and east direction of this interface as shown.

Here we are considering only one sub-domain on each side of the blue interface and both sub-
domains have four control volumes (grid cells) at this interface. The west side sub-domain has
its interface cellsÕ central nodes (INPs) denoted with black dots, and the east side sub-domain
has the interface cellsÕ central nodes (INPs) denoted with red dots. In parallel computations
each sub-domain is handled by an individual MPI process, so the indices of nodes shown in
Fig. 3.3.14 are local to individual sub-domains. The blue dots lying on the block interface are
the face central nodes (INDs) of these interface control volumes. Both the sub-domains have
their own local numbering for these interface side face central nodes. Here we have taken a
random numbering to explain the NUM_CFI array. This NUM_CFI is a 2D array with the 1st
dimension having only one element which is the number of that node in the list of interface cell

! ((!

central nodes. Here we have four interface cells, so this number goes from 1 to 4 for both sub-
domains. The 2nd dimension has three elements: INPs, ISIDE and INDs of the corresponding
cell central node. Fig. 3.3.14 describes the example shown with the corresponding NUM_CFI
array values. This array helps us while making the data exchange at the interfaces.

Fig.3.3.14 Example for NUM_CFI array values

We have three types of grid nodes in Oracle3D: the inner nodes, boundary nodes and the
interface nodes. And, these different types of nodes are treated differently in the code, according
to the underlying mathematics. In this section we discuss briefly the handling of interface nodes.

As mentioned above, each of our blocks have six outer faces with respective directions. In the
same way, after the partitioning of grid, all the sub-domains also have six outer faces. Every
MPI process takes care of all the nodes of its own sub-domain. Each process has to prepare the
interface array NUM_CFI with all the interface nodes it has in all relevant direction. In
subroutine NUM_CFI_SUB_BLOCKS each process prepares this NUM_CFI array in two
parts. First, the internal interfaces are managed and then the block interfaces. ÔCOORDSÕ
property of Cartesian topology is used to verify if a process has an internal interface in certain
direction or not. After a Cartesian communicator is created with MPI_CART_CREATE, MPI
has another operation to assign coordinates to all processes of a Cartesian communicatorQ!!!!
!

!
!

Fig.3.3.15 Example 2D Cartesian topology with COORDS and CART_RANKs

!

!

! () !

With the operation of MPI_CART_COORDS, each process knows its coordinate in the
Cartesian topology. A sample 12- process, 2-D Cartesian topology is shown in Fig.3.3.15. The
outer red lines of the block represent the boundaries of the grid block and the internal black
lines are the internal interfaces between the sub-domains of the grid, which are created after
partitioning of the domain. The domain had one block before partitioning and there are now
twelve sub-domains which are assigned to 12 processes of the Cartesian communicator. The
red numbers on the top right corners of each sub-domain are the local ranks (CART_RANK)
of the processes and in brackets the coordinates of each process are shown, according to its
location in the Cartesian topology.

COORDS(1) is X index, and COORDS(2) represents Y index of topology coordinates. Here,
the DIMS variable values are 4 and 3 respectively in x and y direction; which means this
Cartesian topology has 4 processes in x and 3 processes in y direction. With COORDS and
DIMS information a process can easily know if it has an internal interface on a certain direction
(ISIDE) or not. For example, COORDS(1) will be equal to 0 for all the processes on the west
boundary of the block. Thus, to have an internal sub-domain interface on the west face a process
must have COORDS(1) > 0. Because COORDS(1) = 0 represents the west boundary of the
block, and there are no neighbor sub-domains on the boundaries. Similarly, COORDS(2) =
DIMS(2) Ð 1 for all the processes on the north boundary of the block. Thus, to have an internal
interface on the north face a process must have COORDS(2) < DIMS(2)-1. Rest of the
combination for a 3D grid block are shown below:

 *=1,22.561%7f"7# #######################g#bIJ<#94<IE^@>I#
###*=1,22.561%7h5*(61%7i%7######g#I@J<#94<IE^@>I#
###*=1,22.561!7f"7# ## #########g#J?;<]#94<IE^@>I#
###*=1,22.561!7h5*(61!7 i%7######g#4?E<]#94<IE^@>I#
###*=1,22.561C7f"7# ## #########g#a@>`#94<IE^@>I#
###*=1,22.561C7h5*(61C7 i%7######g#^E?4<#94<IE^@>I#
#
With this information the NUM_CFI array for the internal interfaces is prepared. The next step
is to see if a process also has a block interface. During, the preparation of Inter-communicators
each process was assigned a logical variable ÔINTERFACE_PROCÕ; for the processes which
were at the block interfaces this variable was assigned ÔTRUEÕ and rest were given ÔFALSEÕ.
Also, ÔINF_RANKÕ which is the rank of a process in its interface intra-communicator was
assigned to each process which was at a block interface. With these two variables and grid
information regarding the block interfaces and respective ISIDES, we managed to prepare the
NUM_CFI array for the block interfaces also.
!
#
#

VII. ! Data exchange among MPI processes
!!!!!!!!!Main Objectives:
!!!!! a) making the MPI communication!!
!

! (* !

Throughout the code, this NUM_CFI array is used to manage the information regarding the
interface nodes. There are separate subroutines which manage the computations with different
variables on the interfaces. This NUM_CFI array is prepared once, just after the creation of the
inter-communicators, by each process for its different interfaces, and then used afterwards in
the code. There are several instances in the code where we need to make data exchange among
the processes at block interfaces. This communication is managed with subroutine
ÔSWAP_3DÕ. This subroutine has two sections for data exchange at internal and block
interfaces. At the locations where data exchange is required a call to subroutine SWAP_3D is
made by all the processes individually. Each process goes through this routine and first manage
the internal interfaces and then block interfaces if it has any.

SWAP_3D routine utilizes MPI_SENDRECV for data exchange. The method to use
MPI_SENDRECV is same as it was explained for single block cases. In multi-block cases, we
have multiple Cartesian communicators for internal communications, and multiple inter-
communicators for data exchange at the interfaces. In place of the COMM argument, the
process has to use respective communicator handle. The standard MPI_SENDRECV operation
as used in SWAP_3D subroutine is as follows:
!
! Message sending and receiving in X direction
()*+6085.0,K16085+L06/3 #94:L3#()*+.F3#8M.+L06/3#/-N3 ###
. ###############################. 0,K+L06/3#94:L3#()*+.F3#8M.+L06/3#/-N3##
####################################,2((3#6/-/O63#*0..7## ##
Making a blocking send and receive with a single function call

Fig.3.3.16 Sample MPI_SENDRECV function used for inter-communicator data exchange

Some additional INTER_COMMUNICATOR functions which could be utilized in Oracle3D
on requirement are following:
#
()*+,2((+/06/+*8/0.1,2((3#=Z-N 3#*0..7#
Tests whether a communicator is inter-communicator or not
#
()*+,2((+.0(2/0+6*Y01,2((3#6*Y0 3#*0..7#
Provides the number of processes in the remote group of the inter-communicator
#
()*+,2((+.0(2/0+N.2O)1,2((3#N.2O) 3#*0..7#
Provides a handle for the remote group of an inter-communicator
#
()*+*8/0.,2((+(0.N01*8/0.+,2((3 #G*NG3#80L+*8/.-+,2((3#*0..7#
Creates an intra-communicator by merging the local and remote groups of inter-communicator

! (+!

#
()*+,2((+60/+8-(01,2((3#8-(0 3#*0..7#
Associates a name string with a communicator

()*+,2((+N0/+8-(01,2((3#8-(03#.06OZ/Z08 3#*0..7##
Returns the name and length of name string , associated with a communicator

3.3.2 Scalability Results with Oracle3D

The whole MPI environment was programmed in Oracle3D, first for a Poisson solver. After the
code is ready, two important questions have to be answered carefully: 1) parallel performance
and 2) validation. We have prepared a separate chapter (chapter 4) for detailed analysis on the
validation of code with the MPI strategy, with different types of solvers on varied physical
problems. Here, we confine this part with some preliminary performance tests only. Testing the
codes with a multi-block grid problem is the most important thing here, which is the extension
from the previously dealt single block grid section.

Fig. 3.3.17 (a) illustrates the 4 blocks grid which was considered for this scalability test. The
individual control volumes in each direction for each block (e.g. B1= Block 1) is mentioned in
figure. The total number of control volumes for the case was 8 million. Six different cases for
different number of MPI processes (16, 32, 64, 128, 320 and 512) were set to analyze the time
taken with increasing number of processes. It is very important for comparison that all six cases
have exactly the same computational load. So, a very strict tolerance (1.E-25) was set for the
linear system solver, so that it is never reached, and the supplied maximum number of iterations
are always reached in all cases. The maximum number of iterations were set such that even
with 512 processes the communication overhead remains sufficiently lower than the
computation time.

As mentioned in single block case, following two values of time taken are noted here also: 1)
total time, and 2) computational time. However, the grid management is not completely serial
in case of multi-block grids, as we use reader processes for managing the individual grid blocks.
It is sufficient to mention here that a Laplace problem, PQR1S3T3U7V " #3 was solved, for an
SDBD actuator setting. This other details regarding this problem are given in dedicated chapter
7, here we only test the parallel efficiency of the MPI strategy used in the code. Other Poisson
problems with different sources and necessary boundary conditions are also described in the
next chapter, where provide the validation of the code with these problems. Here we consider
R as the electric potential variable which is essential for our EHD problems. An example 2D
solution of our problem is illustrated in Fig.3.3.17 (b).

!)# !

Fig.3.3.17 a) Grid blocks and cell counts (left), b) Solution of Laplace equation on the grid (right)

For the first test, maximum number of iterations were set to 2.1E+6. The results for this case are
shown in Fig.3.3.18. We find that both the total time and computational time decrease with
increasing number of MPI processes. The computational time with 16 processes was 1217.47
min which reduced to roughly 22 times (53.5 min) with 320 processes, Fig.3.3.18 (left). The
speedup results are a little surprising as we see a super-linear speedup with an increase in the
MPI processes count. It is possible to have such super linear speed ups in parallel computations,
as reported by many researchers [1,10,11]. First thing we note here that our base solution to
compare the speedup is the time take by 16 processes, we showed a speed-up plot for 1 to 16
processes and it gave us desired speedup, Fig. 3.2.4. We also mentioned several studies where
8,10,16,32 or 128 cores were taken as baseline solution assuming these cases give perfect
scalability [10-13]. Mavriplis et al. (2005) reported achieving a super-linear speed up of 2395
with 2008 CPUs on single grid, and a speed up of 2250 on 2008 CPUs with four level multi-
grid in their case configurations. They explained the super-linear speed-ups with the favorable
cache effects in their cases [11].

In parallel computing, when we keep the overall grid size same and keep on increasing the
number of MPI processes, the grid size per process decreases. We note here that for all our
cases one MPI process was assigned to one physical core. In distributed memory architectures,
like ours, each new core has with its own memory (RAM) and cache. Thus, by increasing the
number of cores we not only increase the physical computing units (cores) but also the cache
and RAM available for the MPI subdomains. In such situations, there may come a time when
the grid size (mathematical problem size) per core reduces so much that it can fit into the cache
itself and it decreases the latency due to memory I/O. So, the ideal speedup suggests a scenario
where we increase only the computing cores and keep problem size fixed, which is not the case
in modern HPC systems.

!)$!

! !
Fig.3.3.18 Perforamce plots with multi-block grid case on Poisson problem

There are also the effects of some of modern processor technologies which are embedded in the
processors. In our case, we used the Intel Xeon E5-2680 V2 processors, which have with
following technologies by Intel: 1)Turbo Boost technology 2.0 , 2) Hyper-Threading, 3)
Enhanced Inel SpeedStep etc. Intel Turbo Boost technology automatically accelerates the
processor performance for peak loads if they are running below the power, current and
temperature specification limits. It does it by allowing the processors to run above the rated
operating frequency below the specification limits. Xeon E5-2680 V2 processor has base
frequency of 2.8 GHz and the maximum turbo frequency is 3.6 GHz. The maximum turbo
frequency is the highest possible frequency achievable when the working conditions are suitable
[4].

Several factors are dynamically considered by the processor algorithms to check whether to
enter into the turbo boost mode or not. These factors include workload, processors temperature,
numer of active cores per node, software, other supporting hardware, overall system
configurations etc. Intel has multiple parallel algorithms to manage the working parameters of
processors and the above mentioned factors do not present an exhaustive list [4]. Thus in
summary, this technology gives the user a burst of speed by taking advantage of favourable
factors when it is needed, and in the other cases an increase energe efficieny is maintained.

With Hyper-Threading technology each physical core of our processor can work as two logical
cores, but this depends on user to provide a multi-threaded job to the processor. It was not done
in our code. Enhanced SpeedStep technology works on the demand based switching of applied
voltage and frequency. It works as a power management technology which keeps the applied
volatge and clock speeds to minimum necessary level until a boost in efficieny is not required.
It also works in tandem with other processor technologies like turbo boost technology to provide
anhanced efficieny when required. These all factors with favorable cache effects explain the
super-linear speed ups. For more details on these processor technologies the reader is suggested
to refer the corresponding Intel manuals for the mentioned processors.

!)%!

! !
Fig.3.3.19 a) Iso-metric view with 512 cores, b) comparison of multi-cores solution along a section in

XY palne at Y=1.
!!

The first guess on maximum number of iterations was found to be not sufficient for 512
processes to overcome the communication head. For this case, the solution time with 512
processes was noted to be much higher than the time taken by 320 cores. So, we decided to
make a run with 5 times the number of maximum iterations with only 512 processes. We
decided to extrapolate the values of time with the other sets of processes (16,32 etc.) for the
same number of maximum iteration as were taken for 512 processes, such extrapolation of time
values for higher number of iteration is justifiable as the computations performed per iteration
are exaclty the same and the base number of iteration to extrapolate the values is 2.1 million
which is enough to get an average.
!

!
Fig. 3.3.20 Estimated appoximate speedup up to 512 cores

!

Fig. 3.3.19 (a) illustrate the decomposed domain with 512 processes having the solution of our
Laplace equation, in total we have 16 processes along X, 8 processes along Y and 4 processes
along Z direction, making the simulation to be completely parallel in 3D. A sample validation
along the section Y=1, in XY plane, shown in Fig. 3.3.19 (b) assures that the soultion remains

!)" !

same with number of processes. The approximated speedup obtained with 512 processes for
higher work load is provided in Fig.3.3.20, showing a perfect scalability on our HPC cluster.
!

Fig.3.3.21 Perforamce plots: a) scalability , b) speed up with Navier-Stokes solver

!

We also performed a scalability test with a Navier-Stokes problem. We solved the classical lid-
driven cavity problem with a four symmetrical grid blocks geometry. The whole grid has 8
million control volumes which were equally distributed in four geometrical blocks (2 million
cells each block). The number of iterations were set such that the problem was sufficient for up
to 1200 cores. Results show that in this case also the code achieves super-linear speed up when
the number of processes go beyond 500, Fig. 3.3.21. This problem was more symmetric then
the Laplace problem mentioned above as the 4 grid blocks were of same size, so the workload
on the 4 grid reader processes was also balanced equally. Same computational load was assured
by keeping equal grid nodes for each MPI process and exactly the same number of iterations,
by setting an unattainable tolerance. The causes of super-linear speed up should be explained
as detailed above.

It should also be noted that for all of these scalability test problems the load balancing among
all the processes was managed equally, so each process had same amount of computational
work to perform, which is important to achieve high scalability. This assures that there was no
waiting for any MPI process at practically any time during the linear system solver
computations. With our MPI strategy of cartesian communicators and inter-communicators we
made sure that each process knows its 6 neighbours on 6 directions easily, and the
communication link with all the neighbours was set in the beginning. At each time step, every
process calls the communication subroutine and this does the two way communication (send
and receive) without any delay. After achieveing the desired parallel performance we will carry
out the validation of various solvers in next chapter.

!)&!

Bibliography

[1]! W. Gropp, E. Lusk, A. Skjellum, ÒUsing MPI: Portable Parallel Programming with the

Message-Passing Interface,Ó 2nd edition, The MIT Press, (1999)
[2]! MPI: A Message-Passing Interface Standard, Version 3.1, (2015)
[3]! A. Vladimirov, R. Asai, V. Karpusenko, ÒParallel Programming and Optimization with

Intel Xeon Phi coprocessors,Ó Colfax International, 2nd Edition, (2015)
[4]! www.intel.com

[5]! www.idris.fr/formations/mpi

[6]! https://comptuting.llnl.gov/tutorials/mpi

[7]! https://www.mpi-forum.org

[8]! M. J. Berger, M. J. Aftosmis, D. D. Marshall, S. M. Murman, ÒPerformance of a new CFD

flow solver using a Hybrid Programming Paradigm,Ó Journal of Parallel and Distributed
Computing 65, 414-423 (2005)

[9]! W. D. Gropp, D. K. Kaushik, D. E. Keyes, B. F. Smith, ÒAnalyzing the Parallel Scalability

of an implicit unstructured mesh CFD code,Ó 7th International conference High
Performance Computing- HiPC, 395-404, (2000)

[10]!M. Aftosmis, M. Berger, R. Biswas, M. J. Djomehri, R. Hood, H. Jin, C. Kiris, ÒA detailed

performance characterization of Columbia using Aeronautics Benchmarks and
applications,Ó 44th AIAA Aerospace Sciences Meeting and Exhibit, (2006)

[11]!D. J. Mavriplis, M. Aftosmis, M. Berger, ÒHigh Resolution Aerospace applications using

the NASA Columbia Supercomputer,Ó Proceedings of the ACM/IEEE Conference on
Supercomputing, (2005) [DOI: 10.1109/SC.2005.32]

[12]!H. Jin, R. F. Van der Wijngaart, ÒPerformance Characteristics of the Multi-zone NAS

Parallel Benchmarks,Ó Journal of Parallel and Distributed Computing 66, 674-685 (2006)

[13]!F. C. Wong, R. P. Martin, R. H. Arpaci-Dusseau, D. E. Culler, ÒArchitectural Requirements

and Scalability of the NAS Parallel Benchmarks,Ó Proceedings of ACM/IEEE Conference
on Supercomputing, (1999) [DOI: 10.1109/SC.1999.10044]

[14]!F. Moukallel, L. Managani, M. Darwish, ÒThe Finite Volume Method in Computational

Fluid Dynamics,Ó Springer International Publishing, Switzerland (2016)

!
!
!

! "# !

Chapter 4

Validation: Parallel Oracle3D

The detailed MPI strategy discussed in previous chapter was implemented in Orcale3D within
the various individual solver versions of the code. As mentioned previously, the code was
transformed in the ÔmoduleÕ structure of FORTRAN 90, to make it more organized and oriented
in the modern Fortran framework. In the same manner, we have also prepared the individual
versions for specific solvers like: Pure Navier-Stokes solver, Poisson solver, general transport
solver, 3 species plasma solver and then the complete Oracle3D. This arrangement of code in
smaller individual versions helped immensely in transferring the MPI methodology into the full
version of code. And also, each smaller version presented us with the opportunity to validate
and test the performance of the parallel implementation in different mathematical models. This
chapter presents all the validation tests of the final version of various solvers which were
parallelized. Thus, this chapter provides the very initial simulations with the developed code
and build the trust with verification cases for the users of Orcale3D.

Validation of any new development in the code is a crucial step before the intended final
applications. This development started with the base line Fortran 77 version of Oracle3D, which
has been previously validated, and several studies have been published with it [1-5]. The
development started with the conversion of Fortran 77 version of the code to the Fortran 90
version. At each step of this conversion process the new development was verified by
comparing with the results of previous version. The major stages of this conversion include
implementing the Fortran 90 features like: implicit none, dynamic allocation of arrays,
vectorization of loops, modules and several other. The final Fortran 90 versions of the different
solvers were validated, however, here we will present only the validation results with the
parallel versions of the solvers.

4.1 The Parallel Poisson Solver

The MPI methodology, as detailed earlier, was first tested rigorously with some very simple
integer data exchanges at the two kinds of interfaces, in several combinations of blocks and
sub-domains. After the preliminary testing, the MPI strategy was first implemented in a Poisson
solver. The well-known PoissonÕs equation is a partial differential equation of elliptic type,
which does not have an unsteady term. Here we use the Finite volume methods to discretize the
Poisson equation in space. Equation (4.1) is the general form of PoissonÕs equation:

!
" #

"$ # %
" #

"& # %'
" #

"(#) * +$,&,(- . / +$,&,(- ''+012-

3#* +$,&,(- . / +$,&,(- '''+014-

! "$!

Here * is a scalar variable and / is the source term for the PoissonÕs equation. The Laplacian
operator 3# is also denoted by 5, making the equation 5* . / 1 A PoissonÕs equation solver is
a good candidate to test the working of our parallel strategy. There are several resources
available for the sample parallel Poisson solvers, to start with [6-9]. For us, it also important to
note that Oracle3D is mainly an electrohydrodynamic solver, where we always deal with
electrical charges. And, in MaxwellÕs equations we solve the electric potential due to the
distribution of charge with a PoissonÕs equation. Consequently, we decided first to prepare the
parallel version of a Poisson solver in the framework of Oracle3D. And then, only after
validating this parallel Poisson solver the parallel strategy would be implemented in other
solvers.

At first, the parallel Poisson solver was developed for single block grids using the Cartesian
topology features. This single block version resulted in very good scalable code on parallel
cluster ÔTHORÕ at Institut Pprime. The scalability and speed up of the code were measured with
different number of processes, and desired performance was obtained, as reported in Chapter
III. The strategy of parallelizing with Cartesian communicator proved very efficient in our
single block grids cases. This led us to decide that even in multi-block geometries the data
exchange inside the individual grid blocks should be done with Cartesian topology features.
And, for the data exchange at the grid block interfaces the Inter-communicators were used.
After completing the development and some initial testing, we have to strictly validate the code
and check the parallel performance. The PoissonÕs equation being an independent partial
differential equation has the analytical solution readily available to validate the simulated
results.

4.1.1 Poisson solver validation on distorted grids

The parallel Poisson solver also presented an opportunity to verify the implementation of
Improved Deferred Correction (IDC) scheme with the new developments in code. IDC scheme
is a finite volume discretization technique, especially developed, in our group at Institut Pprime,
for discretization of diffusive fluxes on highly skewed grids [1-2]. Published references are
available in which the IDC scheme was introduced and explored with various skewed grids.
The results available in references were obtained with 2D version of our Fortran 77 code. So,
to validate the newly developed MPI Poisson solver, we chose the same PoissonÕs equation as
used by Traore et al. (2009):

5* . 46#789:#+6$- ; :<=#+6$->%46#789:#+6&- ; :<=#+6&->'''''''''''''''''+01?-

* . ' :<=#+6$- %' :<=#+6&-'''+010-

We chose the same three grids as found in Traore et al. (2009), I) orthogonal grid , II) highly
skewed anisotropically distorted grid, and III) randomly distorted grid. Grids II and III provide
very stiff configurations to test IDC scheme and also to test the domain decomposition method
in parallel code. The grids as shown in Fig. 4.1.1 were created, which have 51 control volumes
each in both x and y directions. So, the square domain [1 @ 1] has 2601 control volumes in
total. The analytical solution of the Poisson equation, eq. 4.3, on these grids when all boundaries
of domain are set by eq. 4.4, will be given by the same eq. 4.4. The analytical solution is the
surface as depicted in Fig. 4.1.2, where the z axis shows the magnitude of * .

! "" !

Fig. 4.1.1 Orthogonal, anisotropically skewed and randomly distorted grids, partitioned with 4 sub-
blocks.

Fig. 4.1.2 Analytical solution surface (* . ' :<=#+6$- %' :<=#+6&-)

! "%!

Absolute error was computed, with respect to the analytical solution, to check the validity of
the parallel code, and the results were compared with the results obtained by the scalar Fortran
77 code [2]. The results in Fig. 4.1.2 should be compared with the results in Fig. 9 of Traore et
al. (2009). It was observed that the magnitude of the absolute error was a very good match with
the previous results. Figure 4.4 show the analytical solution in 2D and also the solution obtained
with the parallel code. The parallel code solution for Fig. 4.1.4 was performed with 33 MPI
processes, to check the domain decomposition capability of code in such odd number cells grids
(51 @ 51), with random number of partitions (11 @'?). An extensive study of the IDC scheme
with many other grids, with the scalar version of the code, is available in [10].

Fig. 4.1.3 Iso-contours of absolute error made with respect to the analytical solution

! "&!

!
Fig. 4.1.4 The 2D analytical solution on the xy plane, and, solution with grid II performed

with 33 sub-domains.

Absolute error with this random domain decomposition of grid was also plotted, Fig. 4.1.5, and
the magnitude of error was found to be the same as with the previous solution of scalar code.
The black lines inside the square domains in Fig. 4.1.4 and 4.1.5 are the boundaries of the
partitioned MPI sub-domains. This exercise proves the accuracy of the parallel methodology
used in our code, stating that with random number of MPI processes the solution remains same.
It should also be noted here that these grids were fairly coarse, having just 51 control volumes
in each direction, and with the refined grids the solution will definitely improve further. In the
next test for validation of Poisson solver we have used a 3D grid with 8 million control volumes
in total.

Fig. 4.1.5 Absolute error with a random domain decomposition of grid (22 @?)

4.1.2 Validation of 3D decomposition

This section deals with some more quantitative validation tests for the parallel Poisson solver
in 3D. We have taken grids with multiple number of geometrical blocks to verify the working

! %'!

of data exchange by the inter-communicators, which are specifically responsible for the MPI
communications at the block interfaces. For the first test case we have taken 4 orthogonal grids:
I) 1 block, II) 2 blocks, III) 4 symmetrical blocks, and, IV) 4 asymmetrical blocks. Fig. 4.1.6
shows blocks II to IV, where the red lines are the geometrical block boundaries and the thin
black lines inside the blocks are the boundaries of the MPI sub-domains after partitioning. Each
of the blocks have 8 million control volumes in total, and the distribution of the control volumes
is consistent with size of blocks. Complete details on mesh sizes is given in Tab. 4.1.1 below.
Fig. 4.1.7 shows an example mesh for the 4 symmetrical blocks case.

Table 4.1.1 Details of mesh for the 4 test cases
Grid Geometry Mesh details
I 1 block (200 @4AA@200)
II 2 blocks Each block: (100 @4AA@200)
III 4 symmetrical blocks Each block: (100 @2AA@200)
IV 4 asymmetrical blocks B1: (50 @2BA@200)

B2: (50 @BA@200)
B3: (150 @2BA@200)
B4: (150 @BA@200)

! !
Fig. 4.1.6 The multi-block grids: a) 2 blocks, b) 4 symmetrical blocks, c) 4 asymmetrical blocks

Fig.4.1.7 Orthogonal grid for the 4 symmetrical blocks case, each block: (100 @2AA@200)

! %(!

The following Poisson problem was considered for this case:

3#* . C1''+01B-
The boundary condition for this case on all the boundary faces was given by eq. (4.6):

* +$,&,(- . ' $# %'&# %' (#''+01C-

The analytical solution of the eq. 4.5 is given by eq. 4.6. We solved this 3D problem on the 4
test grids mentioned in tab. 4.1. Three plots were drawn along three different sections, and, the
solution was compared with the obtained analytical solution. Fig. 4.1.8 show the results when
the domain decomposition was performed only in x and y directions. Blocks I and II were
solved with 8 MPI processes, and blocks III and IV were partitioned with 16 MPI processes.
First plot in Fig. 4.1.8 was taken along line X=0.6 in plane Z=0.6. Second plot corresponds to
the solution along line Y=0.4 in plane X=0.6. Solutions were obtained with 8 and 16 procs to
check if the solution depends on the number of MPI processes used, and also, because in the 4
blocks asymmetrical case the minimum number of MPI processes for a good load balancing
were 16. As mentioned the control volumes in each grid were 8 million, so the grids were taken
very fine to avoid the discrepancy due to grid coarseness. The tolerance for the linear system
solver was also kept very strict (2ADE- to be sure of a good convergence of the linear system
residuals.

Fig. 4.1.8 Comparison on two planes with 2D decomposition: a) XY plane (Z=0.6), b) YZ plane

(X=0.6)

Results show a very good quantitative match among all the MPI simulations and the analytical
solution. During the simulations, it was observed that the solution gets better and better with
the decreasing tolerance of the linear system solver and by refining the grid sizes. The outcomes
of these tests give confidence with the parallel methodology used in our code, both
quantitatively and qualitatively. One case was simulated with decomposition in z direction also.
The grids III and IV were simulated with 32 MPI processes, having two sub-domains in z
direction, and 4 sub-domains each in x and y. Results are shown in Fig. 4.1.9 with the analytical
solution. This case also was a perfect match with the analytical solution. A 2D iso-contour for
this case is also provided in plane Y=0.85, Fig. 4.1.9 (b), the thin black lines show that there
were 2 MPI sub-domains in z direction. To better understand the MPI partitioning, Fig. 4.1.10
depicts two isometric views of the full 3D domain decomposed with 32 MPI Processes, along
with the solution corresponding to Poisson equations: 3#* . C .

! %)!

Fig. 4.1.9 a) Solution with 3D decomposition in plane Y=0.85. b) iso-contour in plane Y=0.85

Fig. 4.1.10 3D isometric view of the solution with 32 MPI processes (4 @'0' @ 2)

A test case with eq. 4.5 was also performed with a 3D Kershaw grid. This was a single block
skewed grid as shown in Fig. 4.1.11 (a); all the 3 directions have 51 control volumes each,
giving an odd number distribution of cells. This grid was simulated with 18 MPI processes. The
MPI provided domain decomposition is shown in Fig. 4.1.11 (b), where the domain is divided
in 4 @'?' @ 2 sub-domains, respectively in x, y and z directions. The solution for the Poisson
equation was kept in transparent mode in this figure, to better visualize the complex domain
decomposition and the respective sub-domain shapes after the MPI partitioning.

! %*!

Fig. 4.1.11 3D skewed grid with decomposition in x, y, z direction 24 Procs (4 @'?' @ 2)

For the quantitative analysis of solution in this stiff case, we took a section along the highly
skewed grids cells. Fig. 4.1.12 shows the red line along which the computed solution is
compared with the analytical one; this red line lies in the plane Z = 0.8. Fig. 4.1.12 (b) shows
the comparison of two solutions. For almost half length of the curve, the two solutions match
very well, and the mismatch in rest of the curve is also not too drastic. In fact, as noted in
previous sections that the solution improves with the grid refinement and here we have very
coarse grid for this case. It is also reported in the study by Traore et al. (2009) that the IDC
scheme is theoretically a second order accurate scheme, and thus refining the grid will reduce
the simulation errors. They have reported solutions for different refined skewed grids where
these trends were observed [1-2,11]. Thus, in such skewed grids with coarsely distributed grids
cells it was worth noting that a desired solution was obtained without any divergence issues,
even with multiple MPI processes.

Fig. 4.1.12 Location of section X=0.8 and the results with IDC and analytical solution.

One more simulation was performed to test the MPI Poisson solver with higher number of MPI
processes. For this test, we chose the four symmetrical blocks grid (grid III, Tab.4.1). Three

! %+!

simulations were performed: 1) 80 processes, 2) 200 processes with MPI provided DIMS, 3)
200 processes with manually setting DIMS values for three directions. The results were
compared on a section X=0.15 in plane Y=0.85, with analytical solution. As observed
previously, the solution was an exact match for all the three cases with the analytical one, Fig.
4.1.13. Thus, it is assured here that the solution is completely independent of the number of
MPI processes used. It proves that the message passing strategy as implemented in the code
works perfectly.

Fig. 4.1.13 a) Solution with higher number of MPI processes, b) DIMS set by user in Z direction

In this grid of four symmetrical blocks, each block is assigned equal number of processes as
the grid sizes are same. Moreover, we have more than one option to assign number of processes
in X, Y and Z directions, according to the possible factors of 50. Initially, for 2nd case we left
the choice to MPI library to distribute the processes in three directions. We had 50 processes
for each block and MPI assigned (5,5,2) processes in respectively X, Y and Z direction. It was
noted that the grid size of each block was: 100 X 100 X 200, which makes it denser in Z
direction. But, MPI factorizes the number of processes with a balanced and decreasing value in
Z direction approach.

MPI cannot recognize that the actual grid size is denser in a particular direction. Thus, it is
advisable that user keep attention for such situations where the grid may be denser in Z direction
and needs more processes than x and y directions. So, in this study with 200 processes we
manually set the DIMS value for Z as 5 and the remaining factors (5 and 2) could be given to
either direction as the number of cells are same in X and Y. Fig. 4.1.13 (b) shows the partitioned
grid with DIMS value (5,2,5). However, whatever the distribution of the processes the solution
will not change. But, in some situations number of send and receive operations may be reduced
by properly assigning the DIMS values considering the number of grid cells in each direction.

4.1.3 Validation of Periodic Boundary

Periodic boundary conditions for all three directions (X, Y and Z) were implemented in the
Poisson solver. This feature is essential for various EHD problems, where most of the variables
of the problem are assigned periodic boundary conditions for certain pairs of boundary faces.
A general explanation and specific implementation details for periodic boundary conditions are

! %#!

provided in chapter 2. Here, a spatially periodic function was designed to test the periodic
implementation of Poisson solver, which is given by

5* . ; 246#' F89: ! 46 G$;
2
4

H) I 89: ! 46 G&;
2
4

H) I 89: ! 46 G(;
2
4

H) J''''''''''''+01K-

This function is periodic in X, Y and Z directions. Periodic implementation on the three pairs
of boundaries: west-east (x direction), south-north (y direction) and top-bottom (z direction)
respectively, will imply that the value of the variable * on each node of a periodic boundary
face will be exactly the same on the corresponding node of the paired periodic face of that
boundary face. The solution of eq. (4.7) with periodic boundaries on a cubic domain will be as
given in Fig. 4.1.14.

Fig. 4.1.14 a) 3D iso-metric, and b) 2D planar (XY plane) view of potential contours with periodic BC

4.2 Validation of Navier-Stokes solver

This section is devoted towards the validation of parallel Navier-Stokes solver. The MPI
features of topology and inter-communicators were implemented in the pure Navier-Stokes
solver of Oracle3D. It is an incompressible flow solver, in which the pressure-velocity coupling
is managed with the standard SIMPLE algorithm of Patankar et al. [11]. Central differencing
scheme is used for spatial discretization for all the validation cases. Gear scheme manages the
discretization in time. The general equations for continuity and momentum conservation, for
incompressible flows, as solved in this solver are:

31+LMN- . A1''''''''''''''''''''''''''''''''''''''' '''''''''''''''''''''''''''' +01O-'
'

P!
" LMN
"Q

%31+LMN'LMN-) . ; 3R%31+S'+3LMN%+3LMN-T- %' /N'''''''''''''''''+01U-'

'

! %$!

 where P is the fluid density, S' is the dynamic viscosity of the fluid, LMN is the velocity vector
and R is the pressure. External forces are considered within the source term /N.

4.2.1 Lid driven Cavity

The standard benchmark problem of Lid driven cavity was considered to validate this
incompressible solver. Two different values (100 and 400) of flow Reynolds number were taken
for comparison with benchmark solution of Ghia et al. [16]. The problem is defined as shown
in Fig. 4.2.1. The top wall of square (1 X 1) cavity is fixed as a moving wall with a constant U
velocity of value 1, and the other three walls are provided with no slip boundary conditions
(U=0.0, V=0.0). It should be noted that non-dimensional computations are performed. Two
dimensional versions of same four grid cases (Fig. 4.1.6) were considered, so we had only 1
control volume in Z direction.

Fig. 4.2.1 The problem definition of Lid driven cavity test case

First, the results with all the cases with different block and different number of processes were
compared with each other to check whether all the cases give same results or not. Fig. 4.2.2
illustrates this comparison and shows that the results are an exact match within all the cases.
The sections taken for both the cases pass from the cavity center. Section for U velocity
comparison is X=0.5, and section for V velocity comparison is Y=0.5. Thus, proving that the
parallelization of Navier-Stokes solver is also carried out well and the solution is independent
of number of blocks and number of processes. The obtained two dimensional contours of
velocity components are provided in Fig. 4.2.3, it is visible from this figure that the data
exchange at the sub-domain interfaces is very smooth and the MPI communications are
correctly performed. The black lines in Fig. 4.2.3. represent the sub-domain interfaces, and each
sub-domain is managed by a different MPI process.

! %"!

Fig. 4.2.2 U and V velocity components for different blocks and processes

Fig. 4.2.3 Two dimensional contours of U and V velocities for 16 processes case.

As the results with various cases matched with each other, the validation results are only shown
with the 16 processes asymmetrical block case in Fig.4.2.4. The values for velocity components
were extracted from the sections as mentioned above. The comparison illustrates a perfect
match with the benchmark results of Ghia et al. for the case of Reynolds number 100. The
benchmark results are available in Ghia et al. (1982) [16]. A streamline figure was also
produced with the 16 processes asymmetrical block case. A big vortex at the cavity center is
observed together with two smaller vortices at the cavity bottom corners. The vortex at the
bottom right corner is slightly bigger than the left corner vortex as reported by other researchers.
This Fig. 4.2.5 should be compared with the Fig. 3 of reference Ghia et al. (1982) [16].

! %%!

Fig. 4.2.4 Comparison of 16 processes case with benchmark results by Ghia et al (R=100).

Fig. 4.2.5 Flow streamlines with R=100 in 16 processes MPI case.

The second validation case was carried out with R=400. This case was performed with higher
values of MPI processes. The three cases consist of 400, 200 and 16 processes each. The results
of these simulation were again compared against the benchmark provided by Ghia et al. Same
sections passing through the cavity center were taken for velocity data. As reported for the
R=100 case, the results with R=400 also give an exact match with the benchmark. Fig. 4.2.6
illustrates the comparison of U and V velocity values for R=400 case with GhiaÕs results.

! %&!

Fig. 4.2.6 Comparisons results for R=400 cases: U-velocity (left), V-velocity (right)

Streamlines plot was also compared with benchmark plot at R=400. The center of the bigger
vortex is slightly shifted towards the bottom left corner, in comparison with R=100 case.
Streamlines plot shown in Fig. 4.2.7 is taken with 400 MPI processes case, the light red lines
behind the streamlines represent the sub-domain interfaces. This figure should be compared
with the streamlines fig. 3 in Ghia et al (1982). We worked with 400 and 200 processes in this
case so a very fine mesh (1000 X 1000) was taken to have enough computational load for the
processes and to obtain grid independent solution. The sub-domains are partitioned with equal
sizes, we see smaller sub-domains near the top wall than the bottom wall, because the grid was
much refined at the top wall.

Fig. 4.2.7 Streamlines and 2D U velocity contour for R=400 case with 400 MPI processes.

! &' !

4.2.2 Backward facing step case

Backward facing step (BFS) flow is another standard and well-studied problem for validation
of Navier-Stokes solvers. Several benchmarks, both experimental and numerical, are available
with different configurations of the channel, the step height and flow Reynolds number. We
aim to validate our MPI implementation, especially the inlet and outflow boundary conditions,
with a steady incompressible BFS flow at different Reynolds numbers, in this section.

Fig. 4.2.8 The BFS configuration used for our simulations

The problem configuration is illustrated in Fig. 4.2.8. We chose to use the configuration used
by Gartling (1990), as benchmark quantitative results are available with this setting which will
be compared with our solution. The velocity inlet is located exactly above the channel step and
a fully developed parabolic velocity profile, L+&- . 40&+A1B; &- for A V & V A1B, is used as
the inlet flow. This inlet velocity profile was used by Gartling (1990), and it gives a maximum
inlet velocity of LWXY . 21B'and an inlet average velocity of LXZ[. 1.0. This helps us remove
the inlet channel portion which is used if the inlet velocity is not fully developed (e.g. u =1.0)
for a channel flow. The step height and channel inlet height are 0.5, making the overall channel
width in the downstream portion to 1.0. We use the non-dimensional computations to facilitate
comparison with other similar settings [13,15]. All the walls are set to no slip boundaries for
the velocities as shown, and an outflow boundary condition is set at the channel outlet such that
the upstream flow, mainly the recirculating regions, is not affected by the outflow boundary
conditions.

The overall channel length is 30 for this case where we compare with the quantitative results
of Gartling (1990). This is equal to 60 times the channel height and is sufficiently long to have
a developed channel flow, and, provide accurate solutions in the sensitive near step regions of
the domain. Flow was simulated with Reynolds number 800, until a converged steady-state
solution is obtained. Two well defined stable recirculating regions are observed as visible in
Fig. 4.2.9. The recirculation region just behind the step extends until x ~ 6.0, 12 times the step
height, as reported in previous studies [12-15]. The upper wall vortex starts forming at x ~ 4.8
and extends until x ~ 10.6. The approximate recirculation lengths for both of these regions are
reported in various studies [12-15], as mentioned in Tab. 4.2.1.

Important point to mention as reported by Armaly et al. (1983) is that above Reynolds 400,
three dimensional effects become significant and the comparison with 2D studies fail to provide
accurate match. These approximate results are reported in Gartling (1990), and it was also noted
that in other studies no tabular results were given so it was difficult to get the accurate quantities.
Graphical results were optically scanned to get these results. However, our results match quite
satisfactorily with the other 2D studies, Tab. 4.2.1.

! &(!

Tab. 4.2.1 Approximate lengths of upper and lower wall recirculation regions.
Study \]^_`a bcd]e Ddfbb \]^_`a ghh]e Ddfbb
Gartling (1990) 6.1 5.6
Armaly et al. 7.2 4.1
Kim et al. 6.0 5.75
Sohn et al. 5.8 4.7
Oracle3D 5.91 5.8

Fig. 4.2.9 Flow streamlines obtained with GartlingÕs configuration at R=800, with Oracle3D.

For quantitative comparison, U velocity results for two downstream sections at X=7.0 and
X=15 were extracted to compare with benchmark results of Gartling (1990). Fig.4.2.10 shows
that results with our parallel Navier-Stokes solver match excellently with the benchmark results
provided in [12]. It is evident that the downstream flow at x=15.0 has developed a parabolic
velocity profile and far away from the step the flow behaves as a normal channel flow. The
solution was found to converge well and there was no impact of the outflow boundary on the
flow upstream. Fig. 4.2.11 shows velocity vectors on different x section along the Y direction.
In these figures, complete domain length for X = 30 is not shown to better visualize the results.

Fig. 4.2.10 U velocity comparison plots: a) X=7.0, b) X=15.0

! &)!

Fig. 4.2.11 Velocity vectors on different sections, R=800

It is also important to note here that this simulation was performed with 80 MPI processes. The
grid size was 4000 X 200 control volumes, which was refined at the bottom and top walls. Fig.
4.2.12 shows the velocity contour along with thin black lines which represent the MPI sub-
domain interfaces. Thus, each smaller domain as defined with these black lines in Fig.4.2.12
was managed by a different MPI process.

Fig. 4.2.12 Velocity contours within individual MPI sub-domains.

Same configuration of BFS (Fig. 4.2.8) was also analyzed for other Reynolds numbers: 100,
200, 389. In these cases, however, the domain length was reduced to x = 10.0 only, as there
are no phenomena of interest occurring further downstream. These problems were solved with
180 MPI processes, and the grid size was 4000 X 900 control volumes. The decomposition of
domain in MPI sub-domain is presented in Fig. 4.2.13. The distribution of processes is 40 X 9,
in X and Y respectively. The grid is finer near the step and gets coarser and coarser after x =
5.0, thus the distribution of processes is finer near the step, as each process has equal size of
computational cells to work on. Figure 4.2.14 illustrate the full domain with velocity contours
provided within each MPI sub-domain, for Reynolds 389.

Fig. 4.2.13 BFS configuration with domain decomposition in 180 processes case.

! &*!

Fig. 4.2.14 Velocity contour in individual sub-domain for R=389

The reattachment lengths of the separated flow from the step corner is well reported, and it is
often used to compare the results with different methods. Here, we consider the reattachment
lengths with above mentioned three Reynolds numbers. Fig. 4.2.15 illustrates the flow
streamlines for steady state flow with Reynolds numbers Ð 100, 200 and 389. This is laminar
regime and the size of the recirculation zone increases with increasing Reynolds number, as
evident from Fig. 4.2.15. The location of reattachment as obtained from the numerical results
of Armaly et al. (1983), and corresponding values obtained with our simulations are provided
in tab. 4.2.2. Non-dimensional values of reattachment length are used here which is the division
of reattachment length with the step height: Xr/h. Here, step height (h) is 0.5.

Table 4.2.2. Comparison of numerically obtained values of reattachment lengths (Xr/h)
 Reattachment length
 R=100 R=200 R=389
Armaly et al. (1983) 3.18 5.0 7.9
Oracle3D 3.1 5.2 8.2

,-. !

,/. !

! &+!

Fig. 4.2.15 Flow streamlines: a) R=100, b) R=200, c) R=389

4.2.3 Validation of Periodic Boundary

Periodic boundaries are essential part of any Navier-Stokes solver. We provide here the solution
figures of two test cases which were performed to validate the implementation of periodic
boundary conditionÕs implementation in Oracle3D. Periodic boundary conditions were newly
implemented in the MPI version of the code, so it was felt important to provide the test cases
for the benefit of prospective users of Oracle3D. Classical Poiseuille and Couette flows were
used for the validation of the periodic boundary implementation in our code. Details of these
flows can be obtained from any standard Fluid Mechanics books [17, 18].

Fig. 4.2.16 shows Poiseuille flow with Periodic boundary conditions, which depicts that the
flow comes out at the east face in a parabolic profile, and the same flow enters at the west face
of the channel. In Couette flow, we provide a velocity U=1 at the top face of channel as the
boundary condition. Due to the difference in velocities of adjacent layers of fluid a pressure
gradient is developed in the channel which makes the bottom portion of the fluid moving in
negative x direction. And, as we have periodic boundaries on east and west faces, we see that
the flow which comes out the west face goes in at the east face. These two simple test prove
that the periodic boundaries are well implemented in the parallel solver.

Fig. 4.2.16 Poiseuille Flow with periodic boundaries along X direction

,0.!

! &#!

Fig. 4.2.17 Couette Flow with periodic boundaries along X direction, with an adverse pressure

gradient

4.3 Parallelization of Transport Solver

Within the Oracle3D framework, we developed a general transport solver also. This solver
mainly solves a convective transport equation for a scalar variable (*), like electric charge
density. The diffusion term of the transport phenomena is not included here to exclusively study
the efficiency and implementation of the convective schemes. Total Variation Diminishing
(TVD) schemes are implemented to resolve the spatial discretization with higher than 2nd order
accuracy. Special attention was paid for the parallel implementation of TVD scheme at the
interface nodes and the boundaries. Ghost cell method is adopted to store the neighbor data at
interfaces, because in TVD schemes data from more than one neighbor nodes in each direction
is required depending on the flow direction. Also, the periodic boundary condition feature was
implemented and tested in this transport solver. The whole implementation is detailed in
Chapter II. The general transport equation as used in this solver is:

" *
"Q

%31+* LMN- . A'1''+012A-

4.3.1 Test of Periodic transport

Test simulations were performed to validate the parallel implementation of TVD scheme and
periodic boundary condition for the transport solver. Both, 2D and 3D runs were undertaken
with multiple number of MPI processes. In the 2D case, a square domain with periodic
boundaries on both pairs of boundaries (X and Z direction) was taken. A smaller square area in
the domain is provided with value * . 2 which extends from 0.2 to 0.5 in both directions, Fig.
4.3.1 (a). The constant velocity components in the two directions are given as U = 1.0 and W =
1.0, which will direct the overall velocity along the diagonal of the square domain. Under the
influence of this diagonal velocity the scalar quantity * , will get transported (advected) in the
diagonal direction. As we have set the periodic conditions on both pairs of the boundaries, we
will see the smaller square corresponding to * . 2, will go out of the domain from upper right
corner and it will re-enter the domain from the bottom-left corner. This is depicted in Fig. 4.3.1
(b).

! &$!

Fig. 4.3.1 a) smaller square with * . 2 , b) Periodic transport of * , along X and Z boundaries

This test was carried out with a fine grid (500 X 500) to have enough load for all the MPI
processes used. In total, 100 MPI processes were used for this problem, 10 processes in each
direction. The thin black lines in the domain represents the boundaries for the MPI sub-
domains, which are handled by different processes. An animation was created to better visualize
the transport mechanism through periodic boundaries. We observe that there are some portions
of the smaller square visible at the upper-left and bottom-right corners also, which is perfectly
valid, as the vertical side of upper-right corner is periodically paired with the vertical side of
upper-left corner. And similarly, the vertical side of bottom-left corner is periodically paired
with the vertical side of bottom-right corner. Same arguments are given for the horizontal sides
of these corners also, which is the reason for the appearance of square portions at the other two
corners.

Same case is repeated in 3D domain, where we have set all three pairs of the boundaries as
periodic. Grid for this case was 200 X 200 X 200, and 32 MPI processes were used. As shown
in Fig. 4.3.2, the domain in X was partitioned with 4 processes, in Y with 2 processes and in Z
with 4 processes, making the total count of processes to 32 for this case. The velocity vector as
given in this case was LMN. +2,2,2-, which again provides the diagonal overall velocity. The
location of cube before and after the periodic transport is shown in Fig. 4.3.2. Thus, the cube
goes out of the domain at the corner location (1, 1, 1) and re-enters the domain from bottom
corner at (0, 0, 0). These two tests show the capability of the TVD scheme and the periodic
boundary implementation in the parallel code, which are the most important features for the
EHD problems.

! &"!

Fig. 4.3.2 3D periodic transport of a cube with * . 2 , location after and before the periodic

transport

4.3.2 Test of rotational transport

Rotational deformation allows to test the efficacy of convective schemes by presenting greater
number of discontinuities during the motion. And, also for the test efficacy of parallel
implementation this case presents higher degree of complexity in data communication at MPI
domain interfaces. In this test, a square-shaped scalar field extends from 0.4 to 0.6 in both x
and y directions, as shown in Fig. 4.3.3. The square scalar field is subjected to rotational
velocity field given by:

L . ' ; Li I jkl '+6+$; $i - I :<=+6+&; &i - '''''''''''''''''''''''''''+0122-

m. ' mi I lno'+6+$; $i - I 89:+6+&; &i - '''''''''''''''''''''''''''''''+0124-

Here Li and mi are the magnitude of velocity components which are set to 1. The coordinate
($i , &i - corresponds to the point (0.5, 0.5), which is the center of the square and also the center
of the domain. This velocity field introduces a clock-wise motion in the square scalar field. The
level of numerical diffusion of the TVD scheme depends highly on the grid refinement. We
carried out this test with three different grid sizes: 1) 100 X 100, 2) 200 X 200 and 3) 1000 X
1000. Naturally the coarse grids are expected to produce higher degree of false diffusion than
the refined grid, which was observed during this test, Fig. 4.3.4. It is also observed that at the
corners of the square scalar field the edges have been curved a little in case of the refined grid.
This test was simulated with 16 processes, however the square scalar field was limited to only
central 4 processes, as seen in Fig. 4.3.3. It is evident with the solution that the implementation
of TVD scheme at the interface of the MPI domains is well done, as the rotational motion was
observed to be smooth and continuous at the interfaces.

! &%!

Fig. 4.3.3 Location of square scalar field before rotational deformation test.

Fig. 4.3.4 Rotational deformation comparison with 3 grids

!!!!!!!!!!!!!!!!!!!!123456!!!-.!(''!7!('' ! ! !!!!!!!!!!!/.!)''!7!)'' ! !!!!!!!!!!!!!!!! 0.!!!(''' !7!('''

! &&!

Bibliography

[1]! Y. M. Ahipo, P. Traore, ÒA robust iterative scheme for finite volume discretization of
diffusive flux on highly skewed meshes,Ó J. Computational and Appl. Mathematics, 231,
478-491(2009)

[2]! P. Traore, Y. M. Ahipo, C. Louste, ÒA robust and efficient finite volume scheme for the
discretization of diffusive flux on extremely skewed meshes in complex geometries,Ó J.
Computational Physics, 228, 5148-5159 (2009)

[3]! P. Traore, A. T. Perez, ÒTwo-dimensional numerical analysis of electroconvection in a
dielectric liquid subjected to strong unipolar injection,Ó Phys. Fluids 24, 037102 (2012).

[4]! J. Wu, P. Traore, P. A. Vazquez, A. T. Perez, ÒOnset of convection in a finite two-
dimensional container due to unipolar injection of ions,Ó Phys. Rev. E 88, 053018 (2013).

[5]! P. Traroe, J. Wu, ÒOn the limitation of imposed velocity field strategy for Coulomb-driven
electroconvection flow simulations,Ó J. Fluid Mech. 727, R3 (2013).

[6]! W. Gropp, E. Lusk, A. Skjellum, ÒUsing MPI: Portable Parallel Programming with the
Message-Passing Interface,Ó 2nd edition, The MIT Press, 1999

[7]! www.idris.fr/formations/mpi
[8]! https://comptuting.llnl.gov/tutorials/mpi
[9]! https://www.mpi-forum.org
[10]! J. Wu, ÒContribution to numerical simulation of electrohydrodynamic flows: application

to electro-convection and electro-thermo-convection between two parallel plates.Ó PhD.
Thesis, University of Poitiers (2012)

[11]! S. V. Patankar, ÒNumerical Heat Transfer and Fluid Flow,Ó, 1980, Taylor & Francis
Publisheres

[12]! D. K. Gartling, ÒA test problem for outflow boundary conditions- flow over a Backward-
Facing step,Ó Int. J. for Numerical Methods in Fluids, 11, 953-967 (1990)

[13]! B. F. Armaly, F. Durst, J. C. F. Pereira, B. Schonung, ÒExperimental and theoretical
investigation of backward-facing step flow,Ó J. Fluid Mech., 127, 473-496 (1983)

[14]! H. Le, P. Moin, J. Kim, ÒDirect Numerical simulation of turbulent flow over a backward-
facing step,Ó J. Fluid Mech., 330, 349-374 (1997)

[15]! J. L. Sohn, ÒEvaluation of FIDAP on some classical laminar and turbulent benchmarks,Ó
Int. J. for Numerical Methods in Fluids, 8, 1469-1490 (1988)

[16]! U. Ghia, K. N. Ghia, C. T. Shin, Ò High-Re solutions for incompressible flow using the
Navier-Stokes equations and a Multigrid method,Ó J. Computational Physics, 48, 387-
411 (1982)

[17]! P. Kundu, I. M. Cohen, ÒFluid Mechanics,Ó 4th edition, Elsevier (2008)
[18]! R. K. Bansal, ÒA textbook of Fluid Mechanics,Ó 1st edition, Laxmi Publications Ltd.

(2008)

 100

Chapter 5
EHD Unipolar Injection

Oracle3D is mainly an Electrohydrodynamic (EHD) solver which has been used to perform
several studies including Unipolar Injection, EHD conduction, electro-separation, electro-
thermo convection, flow control studies using plasma actuators, etc. [1-11]. All the necessary
and important details regarding the code Oracle3D have been described in previous chapters,
including the validation and performance tests. This chapter presents the important Electro-
convection (EC) related numerical work carried out with Oracle3D during the course of this
PhD. Oracle3D consists of a Poisson solver, a Navier-Stokes solver, and a scalar transport
solver for several species. A combination of these three physical models makes the complete
Oracle3D code.

In terms of transport solvers, three separate modules are available now which individually solve
the Unipolar Injection (one charge species), Electro-conduction pumping (two charge species),
and Plasma discharge (three charge species) models. The studies with Oracle3D, until now,
mainly dealt with two dimensional domains, limiting its use for three dimensional aspects
associated with the EHD problems. Now, as the parallel version is prepared, we revisit some
classical EHD problems focusing mainly on their 3D aspects. An outline for this chapter is as
follows:

The first part (5.1) of this chapter covers the EHD problem of unipolar injection in dielectric
liquids between parallel plates. Some initial tests with some 2D cases are provided to validate
the implementation in code, and then 3D electro-convection is discussed in some details.
Second part (5.2) deals with EHD plumes induced by ion injection in blade-plane configuration.
Simulated results are compared with some similar available studies.

5.1 Unipolar Injection between parallel plate electrodes

The phenomenon of unipolar injection in dielectric liquids is well reported both experimentally
and numerically. Several two-dimensional numerical studies are available to compare the
qualitative and quantitative results with this model [1,2,9,27,28]. A good amount of
publications on this problem were carried out with the previous version of Oracle3D (Fortran
77 baseline version) [1-11]. This presents us with an opportunity to validate the unipolar
injection module of parallel Oracle3D code against the scalar code results. Some 2D
simulations with established results are provided after explaining electroconvection in unipolar
injection with the mathematical model. And, a detailed 3D analysis of the problem will follow
afterwards.

5.1.1 Introduction

Electroconvection between planar parallel electrodes has been investigated widely in last few
decades [12-23]. A dielectric liquid, confined between two parallel plate metallic electrodes,
feels significant impact of the electric field produced by the two electrodes, when supplied with
an electric potential difference. High electric field between these electrodes leads to complex

 101

electrochemical reactions at the electrode surfaces. In such situations, charge particle injection
may occur at the interface of liquid and electrode surface, on one or both electrodes [2,25].
When the ion injection occurs at only one of the electrode surfaces then it is commonly termed
as unipolar injection [1].

The injected ions gain momentum due to the Coulomb force, and they start migrating according
to the electric field direction. A strong enough electric field develops an instability which also
sets the liquid into motion, affecting the overall convection of the injected ions [6]. Such motion
of liquid, with low enough conductivity, can be compared with a liquid motion due to the
difference of temperature between liquid layers (thermo-convection) [13]. The two ways of
convection in liquids: thermo-convection and electro-convection are often compared according
to their similarities of induced flow patterns (rolls, hexagons etc.), and, dissimilarities in the
underlying mechanisms [12, 37].

Unipolar injection phenomena, which is fundamental to EHD, makes a definitive analogy with
the classical Rayleigh-Benard convection (RBC) [12, 25]. The liquid motion is hindered by the
viscosity (for weak forces), and the state of liquid is potentially unstable in both phenomena.
Atten et al. (1979) explained differences in transport mechanisms in both types of flows. In
thermo-convection, heat is transferred by liquid convection and diffusion; however, in
electroconvection the diffusion of charge particles is mostly negligible, and charges mainly
move under the influence of liquid convection and electric field with a significant mobility.
From numerical point of view, electroconvection is a system of non-linear coupled set of
equations, and, in RBC the energy equations (heat convection) are of linear nature for the
temperature with the Oberbeck-Boussinesq approximation [12,38]. Studies on specific pattern
formations, both numerical and experimental, in these two phenomena have been reported since
the conception of RBC in 1900s. Cellular flow patterns like parallel rolls, rectangles, hexagons
etc. are numerically investigated in RBC by several authors [40-47]. Getling et al. (2003)
presented an evolution study on three-dimensional patterns in RBC and noted that the flow
seeks optimal scale to stabilize. Rapaport (2006) performed a molecular dynamics simulation
to attain the hexagonal convective patterns in RBC.

In unipolar injection, several two-dimensional studies have been published by several groups
using different numerical methods to solve the set of EC equations [7,21,23,27]. Perez et al.
(1989) discussed the role of diffusion and Coulomb repulsion with Flux corrected transport
(FCT) algorithms in finite amplitude EC. They highlighted that unsteady charge distribution is
mainly dependent on advection terms, and diffusion needs to be included only if steady-state
solutions are simulated [20]. Castellanos (1990) investigated injection induced instabilities and
highlighted chaotic flow in unipolar injection at high electric fields. Vazquez et al. (2008) did
a stability analysis and obtained the two roll structure with Finite element Ð FCT and Particle-
in-cell (PIC) methods. Traore et al. (2013) investigated the evolution of EC flow from one
convection cell structure to two convection cell structure; and then finally the chaotic regime
above T = 1500. Wu et al. (2013) addressed the stability issue in wall bounded cavities with
different aspect ratios, with Finite Volume method (FVM). All of these studies were carried out
in two dimensional cavities.

Naturally, a large amount of research work in EC is accompanied by a lot of industrial
applications also. Heat transfer enhancement [48,49], electrostatic precipitations [51,53], flow
control application [52], EHD drag pumps [50], atomization technology and EHD turbulent
mixer [53], are just a few to mention here. Coulomb force by the external electric field is the
main driving force for the injected charge particles in gases. The high mobilities of ions in gases

 102

make them move much faster than the neutral gas molecules. However, in liquids, the ions
having rather low mobilities are also convected by the bulk liquid motion except their drift
velocities due to the Coulomb force. Thus, the charge particles in liquids experience both the
drift and the strong coupling with the liquid motion. Both the electrical and the hydrodynamic
effects are strongly felt by the injected species in liquid.

5.1.2 Mathematical Formulation

The motion of liquid greatly modifies the charge distribution within the bulk and, consequently,
the electric field due to the charge particles is also modified. This electro-hydrodynamic
coupling, along with the mathematical instability, presents great difficulties for those seeking
to solve this EC problem numerically in complex settings. Atten and Lacroix (1979) studied
the unipolar injection problem theoretically and experimentally, and successfully predicted the
characteristics of this EC flow with Galerkin-type method [12,2]. Their model was later verified
with several numerical studies [9,19,23]. The complete set of non-dimensional, coupled EHD
equations governing unipolar injection is as follows:

! "#$%&' () **#+", ' ***
*

- $%&
-.

/ ! "#$%&*$%&' (*0 ! 1 /
,

234
! "#! $%&/ #! $%&' 5 / *6*7 89:%&********************************#+"; '

- 9
-.

/ ! "<=>$%&/ :%&?@() *"**#+"A'

! 8B (*0 *6*9**#+"C'

:%&(*0 ! B***#+"+'

We assume the liquid to be incompressible, Newtonian and completely insulating, satisfying
eq. (5.1). Here, $%&(D$EFEGH is the velocity vector for the bulk fluid. Generalized pressure in
the bulk liquid is expressed with 1, which contains both the hydrostatic pressure and the
electrostriction part. The transport of charge due to diffusion is neglected in our unipolar model
from the eq. (5.3). The external electric field :%&, is induced by the potential difference,*I B (
*BJ 0 BK, between the two electrodes. The charge density,*9, is acted upon by the Coulomb
force, 9:%&, which acts as the only source for fluid motion in eq. (5.2). The fluid is considered
homogeneous and isothermal, leaving the effects of temperature on system to be negligible.
The charge is always assumed to be injected by the lower electrode in our cases, and the other
electrode works as a collector of charges. We find four non-dimensional numbers to be
explained with above equations: T, 234, M and C.

L (
M*I B
NJO*P

E*6 (*
9JQ8

M*I B
E*7 (*

,
P

R
M
NJ

S
KT8

*E***234 (*
L

7 8 **************************#+"U'

Here, T is the electric Rayleigh number which is described as the ratio of Coulomb force to
viscous forces. C is termed as the injection strength which is a dimensionless measure of the
injection level. M is the ratio between the hydrodynamic mobility and actual ionic mobility,

 103

and 234 is the electric Reynolds number. The fluid properties are denoted with NJ (fluid density),
O (kinematic viscosity) and M (electric permittivity).

Fig. 5.1.1 Computational field and the boundary conditions

5.1.3 Unipolar injection 2D cases

The 2D problem configuration is provided in Fig. 5.1.1. The bottom wall is used as an injecting
electrode and the top wall behaves as a collecting electrode. Dirichlet boundary conditions for
electric potential and charge density are set for these two walls. The side walls are given with
Neumann boundary conditions as shown. The electric potential and charge is initialized with
an analytical solution, to quickly achieve the desired solution.

A)! T= 200 case

Several values of T parameter are considered to validate the 2D solution against available data
in literature. The solution with T=200, C=10 and M=10 is well established. In this configuration
and parameter setting, a single convection cell is observed with T=200. We took a mesh of 100
X 200 control volumes in X and Y direction respectively. The domain width of 0.614
corresponds to a wave length of one convection cell (cell size) in this setting.

Firstly, it is important for us that our MPI implementation gives same results with any number
of MPI processes used. We considered 4 cases: 1)1 block, 2) 2 symmetrical blocks, 3) 4
symmetrical blocks, and 4) 4 asymmetrical blocks. And, also simulated these cases with 8
processes and 16 processes. Charge density contour results are provided in Fig. 5.1.2 for these
four cases, in which one convection cell is observed for all the four cases, as it was reported
with T=200 in [6,9].

 104

Fig. 5.1.2 Charge density contour showing one convection cell with T = 200, for 4 cases of different
block configurations. a) 1 block (8 processes), b) 2 blocks (8 processes), c) 4 symmetrical blocks (8

processes), d) 4 asymmetrical blocks (16 processes)

For quantitative comparison, different variables were plotted on a section at X = 0.4. Four
variables, charge density, electric potential, U velocity and V velocity components were
obtained as shown in Fig. 5.1.3 and Fig. 5.1.4. All the plots show a very good match among all
the four cases, which justifies the parallel implementation, mainly the message passing at the
interfaces of different processes. Electric potential contours with the 4th case (4 asymmetrical
blocks) are depicted in Fig. 5.1.5.

d) c)

b)! a)!

 105

Fig. 5.1.3 Charge density and electric potential plots for different block configurations.

Fig. 5.1.4 X and Y components of velocity plots for different block configurations.

Results with parallel Oracle3D, were also compared with the baseline Fortran 77 code, which
has been validated previously [1-7]. Maximum velocity profile obtained with 1 block case (8
processes) was compared with the profile obtained from baseline code. Fig. 5.1.6 shows that
the obtained maximum velocity is same with the baseline code, however, there is a small delay
with the parallel code in the onset of instability. It was observed that this problem of unipolar
injection was numerically very sensitive to several factors like grid, time step, number of
processes etc., for the onset of instability [9]. However, the magnitude of the maximum velocity
obtained was always comparable for same conditions. Plot on the right in Fig. 5.1.6 is the charge
density profile comparison on the section (X=0.4), which shows a very good match with the
previously validated code results.

 106

Fig. 5.1.5 Electric potential contours with 16 processes (4 block asymmetric case)

Fig. 5.1.6 Maximum velocity and charge density profiles comparison with baseline code results

B)! T > 200 cases

As we increase the electric Rayleigh number (T), keeping the M parameter constant (here
M=10), we increase the electric Reynolds number (Rel) of the induced EHD flow. The flow
remains in stationary laminar regime, with one convection cell, until T=250 [1]. With the higher
values of T the flow structure between the two parallel plates changes significantly. The flow
reportedly starts to oscillate periodically in time and space at T=260 [9]. It was reported in [1,9]
that the one convection cell EHD flow changes to a two-convection cell regime at T=300. It
was observed on the maximum velocity profile that firstly, the flow sets into motion with the
onset of instability following the exponential growth in maximum velocity. At the maximum
velocity state, the flow seems steady for some time. However, as the flow is allowed to evolve
further in time, flow starts oscillating and there appears a sudden fall in the maximum velocity
which corresponds to the onset of second instability in the flow. At this point, the one cell steady
regime turns into a two steady convective cells regime. Traore and Perez (2012) showed two

 107

convective cells flow structure with T=300, which was obtained by Jian (2012) also. They
obtained these results with Finite Volume method, however, Vazquez et al. (2008) had reported
the two-cell regime at T=400 with particle in cell method (PIC).

Our simulation was carried out with 8 processes on same settings as Traore et al. (2012). Fig.
5.1.7 shows the profile of maximum velocity evolution with time, which clearly indicates the
second instability at roughly 60 non-dimensional time units. The contour of charge density
shows the two convective cell structure of the EHD flow, as reported by others. Fig. 5.1.7
should be compared with Fig. 15 in Traore et al. (2012). The magnitude of maximum velocity
is also a good match with mentioned studies.

Fig. 5.1.7 Maximum velocity time evolution and charge density contour after occurrence of second

instability, for T=300 with 8 processes

Simulations were also performed with T=400 with 4, 10, 16 and 20 processes. All of these tests
showed the steady two-cell flow structure. Increasing further the T parameter, leads to the
chaotic regime of flow, which has been well reported in [6,9]. The steady two cells are observed
till T=500 and above that periodic oscillations start again. Above T = 1500 the flow is
characterized by the EHD plumes [9]. The flow becomes fully unsteady and the plumes occur
more frequently as we increase T further. The destabilization of laminar sub-layer near the
emitter electrode gives rise to the formation of charge particle plumes [1]. Simulation results
with T=4000 are depicted in Fig. 5.1.8. The Vmax plot explains the unsteady nature of flow
and charge density contour indicates a rising charge plume from the emitter electrode surface.
A simulation was carried out with 10 times longer domain, results of which are shown in Fig.
5.1.9. This simulation had 600 X 100 grid cells and it was simulated with 32 processes. This
figure shows larger number of frequent EHD plumes arising from the emitter surface.

 108

Fig. 5.1.8 Maximum velocity evolution with time and the contour of charge density showing EHD

plume formation.

Fig. 5.1.9 Charge density plumes with longer domain at T=4000, [grid (600 X 100), 32 processes]

5.1.4 Unipolar injection 3D cases

A full 3D EC problem is computationally very demanding due to the presence of high gradients
of charge density, and the complex coupling of non-linear equations of charge density, electric
potential and flow variables. The complex nature of governing equations, has restricted EHD
community to a very few 3D numerical studies. For such problems, a parallel code with desired
scalability is indispensable. Vazquez et al. (2011) performed a stability analysis of a 3D EC
between parallel plate electrodes using PIC method. They simulated weak injection regime and
obtained the critical values of T parameter for onset of instability and compared the results with
the values obtained from linear stability analysis. Kourmatzis et al. (2012) discussed mainly the
turbulent regime of EC flow between two parallel plates.

Demekhin et al. (2014) used Finite Difference method to simulate 3D coherent structures with
direct numerical simulation (DNS), and described the evolution of patterns in EC. They
observed three characteristic patterns: two-dimensional EC rolls, 3D regular hexagons and

 109

other 3D structures of spatiotemporal chaos (a combination of hexagons, quadrangles and
triangles). They showed that the transition from 3D regular patterns to chaos was accompanied
by interacting two dimensional solitary pulses. A 3D flow pattern study is most recently
reported by Luo et al. (2018), where they described the use of Lattice Boltzmann method (LBM)
to obtain stable hexagonal cells in plane parallel plate electrode configuration. Their study
covered the most comprehensive stability analysis of hexagonal cells with a range of non-
dimensional parameters (T, M etc.) [37,38].

After validating the injection module of Oracle3D with 2D cases, we also investigated 3D flow
pattern evolution in the unipolar injection case in planar parallel plate electrode setting, with
our Finite Volume approach. The occurrence of hexagonal cells is a core feature of such flows,
which has been observed experimentally and theoretically. In pure, isotropic liquids there is no
favoured direction for the convective cells to develop in horizontal plane, and hexagonal
convective cells has higher symmetry to stabilize than other polygonal patterns (squares,
rectangles etc.) [12,13]. However, before Luo el al. (2018) stable hexagonal cells were not
reproduced by any numerically study in EC.

We started our study with symmetry boundary conditions (zero gradients for all variables) on
the four vertical boundaries (Fig. 5.1.10). No-slip condition for velocities on the high voltage
electrode, and zero gradient on the grounded electrode. Electric potential was set to Dirichlet
boundary conditions on high voltage (V=1) and grounded electrodes (V=0). Charge density
was set to Dirichlet value (q = 1) on high voltage electrode and zero gradient on grounded
electrode. The non-dimensional parameters were taken as T=170, M=10, C=10.

Fig. 5.1.10 Boundary conditions for 3D EC case with symmetry on four sides

In experiments, hexagons were observed in cylindrical cavity with large aspect ratio [12]; and
in stability analysis an infinite domain with fully developed flow is usually assumed [34, 37].
Larger domain sizes (L=W=5, 10) were simulated first to reduce the impact of symmetry
boundaries on the convection cell formation. The effects of domain size, grid, time step and
initial velocity perturbations were analysed to obtain steady hexagonal cells. Table 5.1 provides

 110

the details of three tests cases presented here with symmetry boundaries on lateral walls. In first
case, no initial velocity perturbations were provided, and evolution of Vmax was plotted with
time (Fig. 5.1.11). The instability occurred around 50 non-dimensional time units, and it was
observed that the flow started evolving with initial hexagonal cells. All the convection cells
which did not have direct contact with the lateral walls were observed to be in hexagonal shapes
at the onset of instability.

Tab. 5.1 Cases details ran with symmetry BC on vertical boundaries
 Grid

(L x , Ly , Lz)
Control Volumes total

(million)
Vinitial Time step

(dt)
T

1. (5,1,5) 6.25 (250 X 100 X 250) 0 10-3 170
2. (5,1,5) 6.25 Hexa 10-3 170
3. (10, 1, 10) 25 Hexa 10-3 170

In Fig. 5.1.11, a top view of charge density iso-surfaces at q=0.19 is shown. The observed
hexagonal cells were of random shapes at the onset of instability, as they were evolving. The
cells were pushing each other in all directions to achieve an optimal scale to stabilize themselves
as also reported by Getling et al. (2003) for RBC and by others in EC [37,38]. The charge
density iso-surfaces at q=0.02 in Fig. 5.1.12 depict a bun like shape of convection cell as
reported by Luo et al. (2018), the charge density inside this cell was observed to be zero. This
explains the 3D charge transport mechanism in such EC flow as explained by Atten et al. (1979)
and Luo et al. (2018), where the charge particles mainly migrate under the drift velocity effect
and this drift velocity compete with the liquid velocity after the instability occurs. The domain
regions where the drift velocity of charges is balanced by the liquid velocity component in
electric field direction, remain void of charge particles [12], and these regions (convection cell
centres) are strictly free of charge.

Fig. 5.1.11 Vmax evolution plot (case 1), and the top view with charge density iso-surfaces at q=0.19

at the onset of instability.

 111

The charge void regions are a characteristic feature of these EC flows which is completely
different from RBC. In these EC flows, the fluid always descends in the centre of cells,
however, in thermal convection both upflow and downflow hexagonal cells have been observed
to be coexisting [44,42]. In Fig. 5.1.13, we present the vertical velocity iso-surfaces at Vy=1
(in yellow) and Vy=-1 (blue), which show that the flow velocities in the peripheral regions of
the cells are in upward direction and in the centre of the cells it is a downward motion. We
observed that the flow did not reach a steady state in this simulation, as the hexagonal cells
could not stabilize until 150-time units, and the maximum velocity evolution plot shows the
unsteady nature of flow. However, it was observed that as the convection cells pattern was
evolving the flow in the cell centres was always downwards.

Fig. 5.1.12 Charge density iso-surfaces at q=0.19 (hexagonal cells), and q=0.02 (bun-shaped cells),

at the onset of instability.

Fig. 5.1.13 Vertical velocity (Vy) iso-surfaces at Vy=1 (yellow) showing upward flow at convection

cell perimeters, and Vy = -1 (blue) showing downward motion at the centre of hexagonal cells

 112

Fig. 5.1.14 Charge density iso-surfaces at 150 non-dimensional time (q=0.19)

In this simulation, the convective cells seemed to be evolving more towards attaining
rectangular shapes as observed in the charge density iso-surface plot taken at the last time step
(Fig. 5.1.14). According to the theoretical stability analysis [12], perfect hexagonal cells are
preferred in infinite domain. Due to the limited numerical domain size and the constraint of
numerical boundary conditions, we could see flow evolving with irregular hexagons and finally
after a long time trying to stabilize in rectangular cells. We also noticed that the instability
occurred around 50-time units for case 1 (Tab. 5.1), which was computationally expensive
without any gain. To expedite the occurrence of instability and obtaining a stable hexagonal
pattern, we initialized the flow with an artificial perturbation in vertical velocity component, in
all following simulations.

Luo et al. (2018) reportedly used a special initialization technique to reproduce the regular
hexagonal pattern, where they introduced a spatially periodic small perturbation in vertical
velocity component. This perturbation is a hexagonal pattern which is given by Chandrasekhar
function [37] as:

F (*
,
A

*B#V' WXYZ#[\] ' / XYẐ
_A[\ `

;
a XYZR

[\]
;

Sb********************************#+"c'

Where F is the vertical velocity, V(y) is the amplitude of the perturbation, [\ is the wave number
corresponding the wavelengths of hexagonal cells; and] , ` are the coordinate points on the
boundary. Fig. 5.1.15 shows a sample domain with the contours of vertical velocity initialized
with eq. (5.7). This function was used for all further simulations, as depicted in column 4 (Vin)
of Tab. 5.1.

 113

Fig. 5.1.15 Spatially periodic hexagonal perturbation contour

Case 2 (Tab. 5.1) was simulated with this perturbation in vertical velocity (eq. 5.7). Maximum
velocity evolution and charge density iso-surfaces are shown in Fig. 5.1.16. The instability
occurred within 20-time units in this case, which is the clear effect of using the initial
perturbation. Near the onset of instability, the convection cells started developing with the
initial hexagonal cells as shown in Fig. 5.1.16. The bun-shaped cells with iso-surfaces (q=0.02)
were observed in this case also. Fig. 5.1.17 depicts, the charge density iso-surfaces with the
MPI sub-domain interfaces, showing that one convection cells is spanned over many MPI
processes, in all three directions; verifying that the code communicated data among many
processes effectively to produce a continuous convection cell pattern. This simulation was
carried out with 200 MPI processes. Although, the maximum velocity plot shows that the
maximum velocity was much more stable than Case 1, however, the hexagonal cell pattern was
not stable, and the flow evolved with irregular patterns as observed in Case 1.

Fig. 5.1.16 Vmax evolution plot (case 2), and the top view with charge density iso-surfaces at q=0.19

at the onset of instability.

 114

Fig. 5.1.17 Charge density iso-surfaces at q=0.19 (hexagonal cells), and q=0.02 (bun-shaped cells),

at the onset of instability, with MPI domain decomposition.
.

Attempt was also made to simulate this flow in a domain with L=10, W=10, H=1. It was
expected that the convection cells which are farther from the boundaries will be more stable
than the ones near the boundaries. However, the hexagonal pattern did not stabilize even for
the cells which were farther away from the boundaries. Fig. 5.1.18 shows the convection cell
pattern at the onset of instability, where many irregular shaped cells are observed. The state of
flow at the last time step was observed to be more chaotic.

Fig. 5.1.18 Vmax evolution plot (case 3), and the top view with charge density iso-surfaces at q=0.19

at the onset of instability.

 115

With all the simulations done with symmetry boundaries, we observed that there was a strong
influence of the applied boundary conditions on the stability of the convective cells. The
hexagonal pattern as observed in other studies is a spatially periodic pattern [12,37-38], where
it is seen that the wavelength of hexagonal cells in z direction (! d) is _A times the wavelength
in x direction (! e) [38]. It was observed that in numerical simulations the domain size in
multiples of wavelengths of the periodic pattern in both directions (x and z) is important to
stabilize the convective cells [37,38]. In other words, if the domain size is such that it can fit a
certain number of convection cells completely, then the whole flow will gain its optimal scale
rather quickly and stabilize sooner than within a random sized domain. Also, with such domain
sizes it becomes important to use the periodic boundary conditions.

As mentioned, the EC flow resembles with the RBC. The cellular pattern studies in RBC [41-
47] have been available in literature for a longer period of time than the EC studies. Getling et
al. (2003) have reported a numerical pattern study with RBC, where they discussed their
numerical schemes and described the transition of pattern among various cell types. In EC
flows, two studies reported in 2018 have used similar numerical techniques (mainly periodic
BC), as Getling et al. (2003), and in the most recent one they observed the stable hexagonal
pattern [38]. In our study, we did observe the hexagonal cell patterns even without using the
hexagonal initial vertical velocity perturbations (Case 1), which Luo et al. (2018) reported as
essential to obtain a fully developed state, but they were not stable. As Perez et al. (1989) noted
that the role of diffusion is negligible in these injection phenomena, but to attain a steady state
in numerical simulations we should consider diffusion of charge also. Luo et al. (2018) have
also used a diffusion coefficient in the range of 10-3 Ð 10-4.

We attempted similar values of diffusion coefficient with our zero gradient boundary conditions
but with diffusion also we could not stabilize the hexagonal pattern. Finally, we note that the
zero gradient boundary conditions are not suitable to realise the stable hexagonal patterns, and
periodic boundary conditions, with and without diffusion, should be examined with Oracle3D
to obtain a stable EC flow. Some initial simulations with periodic boundaries were performed
but for satisfactory results a complete dedicated study is required which in the constraint of
time limit of this PhD could not be achieved.

 116

5.2 Unipolar Injection between blade and plane electrodes

Electrohydrodynamically induced flow phenomena in dielectric liquids in case of blade-plane
electrode configuration has been studied, both numerically [48, 53-55] and experimentally [56-
58]. The EHD flow occurs in both injection and conduction mechanisms of charge transport in
dielectric liquids. In this section, we mainly deal with the injection mechanism, which requires
a certain threshold of electric field to occur and below this threshold value of electric field
conduction dominates in dielectric liquids. Above this critical value of electric field, injection
of charge particles occurs at the blade-fluid interface. In injection phenomena, the blade works
as an emitter of charge particles, and the plane electrode behaves as a collector. The injected
charged particles bring the surrounding fluid also into motion by transferring their momentum
to neutral fluid particles. This sets the fluid motion like a jet towards the plane electrode. This
jet like flow is commonly referred as an electrohydrodynamic plume [54].

This type of jet flow has been investigated for applications like heat transfer enhancement,
mixing of fluid, flow control etc. Thus, like the thermal plumes, describing these EHD plumes
is important from the industrial point of view. Vazquez et al. (1995) undertook a comparative
study of thermal and EHD plumes, analysing axisymmetric plumes for various Prandtl
numbers. Several following numerical studies by Vazquez et al. were performed with Finite
element based numerical approaches to adequately describe the EHD plumes and their
characteristics [59-61]. Perez et al. (2009) analysed the EHD plumes in blade-plane setting,
with Finite Volume method using a TVD scheme (SMART) and addressed different flow
regimes and characteristic flow structures in such EHD flows.

Recently, Traore et al. (2013) numerically analysed the EHD plume flows with different blade
configurations, incorporating various injection laws [54]. They found significant impact of
blade shape and injection laws on flow structure, specially the transition of flow from steady to
unsteady regimes. Critical Reynolds number for the hyperbolic bade configuration was noted
for considered injection laws and it was shown that for Reynolds number of 10000 the flow
turns turbulent with development of a Kelvin-Helmoltz instability [54]. Wu et al. (2014) carried
out a numerical heat transfer enhancement study with EHD plume flows. They also used a
hyperbolic blade design in strong injection conditions. A dramatical increase in heat transfer
rates from the plate electrode surface was reported with the application of impinging EHD jet
flows [48]. Traore et al. (2015) also briefly reported an unsteady injection case, with electric
Reynolds number of 200, describing the formation of Von Karman street of vortices emanating
from the blade tip [55].

5.2.1 Problem Definition

Most of the above-mentioned studies were two dimensional. However, it is important to analyse
the turbulent EHD plume cases in 3D, which are of immense practical use. A 3D blade-plane
injection phenomenon in a dielectric liquid was studied with parallel Oracle3D. In blade-plane
setting, the blade is used as a high voltage electrode, and the plane electrode is grounded. Both
electrodes are separated by a distance d, as shown in Fig. 5.1.1. A voltage difference of BJ 0 BK
, is applied between the two electrodes to generate an electric field in the gap, towards the plane.

 117

Fig. 5.2.1 Blade Ð plane configuration sketch

A hyperbolic blade-plane configuration was used for this study, which corresponds to blade 1
of Traore et al. (2013). The computational grid consists of 100 X 196 X 100 control volumes
in X, Y and Z directions respectively, making it roughly a 2 million cells grid. Fig. 5.1.2 depicts
the non-dimensional domain extents in all three directions and provides 2D and 3D views of
grids. The grid near the blade tip and the surroundings was refined to capture the sharp gradients
of charge in those regions. Also, this grid was created following the iso-potential and iso-
electric field lines. It should be noted that the convergence rate improves in the grids which
have grid lines aligned with the iso-potential and iso-electric field lines [54].

Fig. 5.2.2 Blade-plane computational grid: 2D and 3D views

 118

Boundary conditions for this problem are described in Fig. 5.2.3, with a 2D sketch, zero
gradient conditions were used on the front and back boundaries (z planes). The fluid is
considered at rest at the start, and all the boundaries are set to no-slip condition for the velocity
components. For electric potential, Dirichlet conditions of B = 1 and B = 0 are set on the blade
and plane electrodes respectively. Electric charge density is set to 9 (, , on the blade and rest
of the boundaries are set to Neumann condition of zero charge density gradient. As detailed
earlier, a 2nd order TVD scheme (SMART) was incorporated to discretize charge density, so
that the sharp gradients could be preserved without numerical oscillations. The set of governing
equations detailed in section 5.1.1 applies to this case also.

Fig. 5.2.3 Boundary conditions for blade-plane injection case

5.2.2 Initial simulation with autonomous injection law

An unsteady case, with Rel=5000, C=10 and M=10 was simulated for this study. Three injection
laws were taken into consideration. Simulation with a classical autonomous injection law, in
which the charge density on the blade surface is independent of the electric field on the blade
surface, was performed as a reference case. It is observed in this case that the injection of charge
extends over the whole surface of blade, Fig. 5.2.4. An isometric view of the charge density
iso-surfaces with two values (q=0.1, 0.3) is presented in Fig. 5.2.4, which is taken at non-
dimensional time t=0.003. An iso-surface plot showing the charge density distribution, on XY
plane, at the end of simulation is shown in Fig. 5.2.5. The iso-surface at value q=0.3 (green)
shows that the charge transports towards the plane electrode as a jet, and with time it expands
quite a lot into the surrounding which leads to a good overall mixing of the neutral fluid and
charge itself.

 119

Fig. 5.2.4 Isometric-view of charge density iso-surfaces at q= 0.1 (blue) and q=0.3(green) with
autonomous injection law

Fig. 5.2.5 Iso-surfaces of charge density (q=0.1, 0.3) as seen on XY plane

In second case, the charge density on blade surface was set to a Dirichlet value (q = 1) only
where the local electric field was 60% of the maximum electric field. The 60% condition is
arbitrarily set as suggested in [54]. It is noticed in experimental studies that the injection does
not occur from whole surface of the blade as set with the Dirichlet boundary condition in the
autonomous law, it is rather confined to the tip of the blade where the electric field is
concentrated. Thus, in this case we restricted the charge injection from only those location of

 120

blade where the electric field reached 60% of the maximum electric field. It has also been
reported that blades with sharper tips inject more charge than the hyperbolic blade [54].

Fig. 5.2.6 a) Charge density iso-surfaces (q=0.1), and, b) Velocity magnitude iso-surfaces (Vmag=
12, 8, 3) at t=0.047

Fig. 5.2.7 a) Vorticity magnitude iso-surfaces (400, 200, 10), and, b) Q-criteria iso-surfaces (Q=100)
at t=0.047 with 1st injection law.

 121

Fig. 5.2.8 Vorticity component iso-surfaces at values -20 (green) and +20 (yellow) at t=0.047

f e
f g

f d

 122

The results with our second case depicts that the injection is now limited from the tip of the
blade electrode only. Fig. 5.2.6 a) shows that the injected charge density iso-surfaces at value
q=0.1 are limited at the tip of the blade alone, and there is no charge present on the blade surface
as predicted with the autonomous injection law. The velocity magnitude iso-surfaces with three
values, Vmag = 12 (red), 8 (yellow), 3 (green) are shown in Fig. 5.2.6 b); which depicts that
the charge injection plume is like a jet of velocity towards the plane electrode. Fig. 5.2.7
provides the information on rotational nature of the induced flow.

We have shown iso-surfaces of vorticity magnitude of three values: 400 (pink), 200 (green) and
10 (blue); which tells that adjacent to the plume the velocity gradients are of higher magnitude
and vortical structures of several magnitudes are present in the flow describing it as a turbulent
flow. Q-criteria iso-surfaces (Q=100) are also shown to describe the real 3D nature of the flow,
which aids to the mixing behaviour of the flow very well. Fig. 5.2.8 depicts the iso-surfaces of
three components of vorticity, at magnitudes -20 and +20, which are completely distinct from
each other. It suggests that the flow rotation is random in all three directions which promotes
the idea of turbulent mixing in such configurations, leading to efficient heat transfer mechanism
from the plane electrode surface by EHD plumes [48].

5.2.3 Simulations with non-autonomous Injection laws

After understanding the basic idea of the phenomena, we incorporated two injection laws as
simulated by Traore et al. (2013). With injection laws stronger coupling between the variables
like charge, electric field, velocity etc. is induced. We simulated with 1st and 3rd injection laws
from ref. [54], in which the boundary condition for charge density on the blade electrode is set
as:

1st injection law: 9 (*6*E where : *h) "Ui *: jke

3rd injection law: 9 (*

l mnopm

l o
*6**

In both of these injection laws the injection zone of the charge is limited to the part of blade
electrode where the local electric field reaches certain percentage of the maximum electric field
(Emax). Here this threshold electric field (: q) is taken as 60 % of the Emax. For 3rd law : q () "Ui
*: jke is the threshold electric field to initiate injection. : 4\qk4 is the local electric field on the
nodes of the blade, and C represents the injection strength as given in eq. (5.6). Thus, each node
on the blade surface which satisfies : h) "Ui *: jke will inject charge density in 1st law, and
in 3rd law injection depends on : q value. We shall provide a comparison of these two laws with
relevant flow variables and also comment on the studies previously done in two-dimensional
settings. In the following section, the comparison figures on left hand side will correspond to
the 1st law and on the right side will correspond to 3rd law, unless mentioned specifically.

Firstly, we analyse the 3D evolution of charge density with both laws. Next three figures (5.2.9-
5.2.11) provide instantaneous charge density iso-surfaces with two values (q=0.1, 0.5). Fig.
5.2.9 gives a 3D isometric view at non-dimensional time 0.0017, which expresses that the 1st
law charge distribution is rather smoother than 3rd law, and also the charge has diffused more
with the 3rd law, with a higher rate of turbulent mixing. Smooth surfaces of charge as seen in
1st law distribution is not visible in 3rd law figure. Fig. 5.2.10 is also taken at the same instant
of time which shows a view perpendicular to the XY plane. It can be seen that the amount of
charge diffused in the domain is also higher in case of 3rd law.

 123

Fig. 5.2.9 3D charge density iso-surfaces (q = 0.1 (blue) and q = 0.5 (green)) at non-dimensional time

0.0017, for 1st and 3rd laws

A tendency to form initial coherent vortices is seen in both flows at the onset of injection, but
the injection strength is such that the initial vortices are quickly diffused due to the upcoming
jet of charge just behind them. Three-dimensional mixing diffuses the charge so quickly that
initial and upcoming vortices are not at all sustained in the flow, as seen in some 2D studies
performed with Rey=10000 [54]. Sustained vortex shedding with Kelvin-Helmholtz instability
was observed in the 2D study [54] which was not observed in our 3D cases. Fig. 5.2.11 shows
the charge density distribution at t=0.02 which also suggests that 3rd injection has higher amount
of charge injected than with 1st law. Fig. 5.2.12 is taken at t=0.01, the jet of charge impinging
on the plane electrode with green coloured iso-surface (q=0.5) is visible with a corresponding
velocity magnitude iso-surface plot at Vmag=8 (yellow) and Vmag=15 (red).

Fig. 5.2.10 Two-dimensional charge density iso-surfaces (q = 0.1 (blue) and q = 0.5 (green)) at

non-dimensional time 0.0017, for 1st and 3rd laws

 124

Fig. 5.2.11 2D slice of charge density iso-surfaces (q = 0.1 (blue) and q = 0.5 (green)) at non-

dimensional time 0.002, for 1st and 3rd laws

Fig. 5.2.12 Iso-metric view of a)charge density iso-surfaces (q=0.1,0.5), and, b) velocity magnitude

(Vmag=8, 15) , at t=0.01 (3rd law)

 125

Fig. 5.2.13 3D z-vorticity iso-surfaces (f d (*0 +) *rst / +) *) at non-dimensional time 0.002, for 1st
and 3rd laws

Two initial vortices rotating in clockwise and counter-clockwise directions are observed before
the flow sets into complete turbulent motion. The jet moves in +x direction and z-vorticity
shows the prominent rotating vortices along the z direction. Fig. 5.2.13 shows z-vorticity iso-
surfaces at -50(green) and +50(red) values which are present clockwise and anti-clockwise
rotation respectively. The plume contains vortices of many sizes as seen in Fig. 5.2.13, and we
also notice that with 3rd law the vortices are diffused faster than the 1st law.

Fig. 5.2.14 2D Charge density contours in three different planes in Z direction at t=1.2 X 10-3 with 3rd
injection law.

 126

Two-dimensional charge density contours were plotted in three different planes (Z= 0.5, 1.8,
3.5) to observe the 3D nature of charge propagation. Fig. 5.2.14 shows that in 3 planes the
charge density contours are distinct with each other. Fig. 5.2.15 proves that the flow has strong
3D features as the z-component of velocity has a significant magnitude and the contours of this
velocity (W) are also different in 3 planes. Fig. 5.2.16 the 3D vortical structures of the flow
with Q-criteria and vorticity magnitude variables.

Fig. 5.2.15 Z-component of velocity contours in three different planes in Z direction at t=1.2 X 10-3
with 3rd injection law.

Fig. 5.2.16 a) Q-criteria iso-surfaces (Q=-20,000 (green), +20,000 (red)), and, b) Vorticity magnitude
iso-surfaces(uf u(A)) *' , at t=1.6 X 10-3 with 3rd injection law

 127

Bibliography

[1]! P. Traore, A. T. Perez, ÒTwo-dimensional numerical analysis of electroconvection in a
dielectric liquid subjected to strong unipolar injection,Ó Phys. Fluids 24, 037102 (2012).

[2]! J. Wu, P. Traore, P. A. Vazquez, A. T. Perez, ÒOnset of convection in a finite two-

dimensional container due to unipolar injection of ions,Ó Phys. Rev. E 88, 053018 (2013).

[3]! P. Traroe, J. Wu, ÒOn the limitation of imposed velocity field strategy for Coulomb-driven

electroconvection flow simulations,Ó J. Fluid Mech. 727, R3 (2013).

[4]! J. Wu, P. Traore, ÒA finite-volume method for electro Thermoconvective phenomena in a

plane layer of dielectric liquid,Ó Numer. Heat Transfer, Part A 68, 471 (2015).

[5]! J. Wu, A. T. Perez, P. Traore, P. A. Vazquez, ÒComplex flow patterns at the onset of

annular electroconvection in a dielectric liquid subjected to an arbitrary unipolar injection,Ó
IEEE Trans. Dielectr. Insul. 22, 2637 (2015).

[6]! J. Wu, P. Traore, A. T. Perez, P. A. Vazquez, ÒOn two-dimensional finite amplitude

electro-convection in a dielectric liquid induced by a strong unipolar injection,Ó J.
Electrost. 74, 85 (2015).

[7]! J. Wu, P. Traore, C. Louste, ÒAn efficient finite volume method for electric field-space

charge coupled problems,Ó, J. Electrost. 71, 319-325, (2013).

[8]! J. Wu, P. Traore, F. Tian, ÒThree-dimensional numerical simulation of electro-convection
due to strong unipolar charge injection in a cubic cavity,Ó Annual Report Conference on
Electrical Insulation And Dielectric Phenomena, IEEE, (2013)

[9]! J. Wu, ÒContribution to numerical simulation of electrohydrodynamics flows: application

to electro-convection and electro-thermo-convection between two parallel plates.Ó PhD.
Thesis, University of Poitiers (2012)

[10]!D. Koulova, P. Traore, H. Romat, ÒNumerical study of the heat transfer and electro-thermo-
convective flow patterns in dielectric liquid layer subjected to unipolar injection,Ó J.
Elecctrost. 71, 970-975, (2013)

[11]!U. K. Seth, P. Traore, F. J. Duran-Olivencia, E. Moreau, P. A. Vazquez, ÒParametric study

of a DBD plasma actuator based on the Suze-Huang model,Ó J. Electrost. 93, 1-9, (2018)

[12]!P. Atten, J. C. Lacroix, ÒNon-linear hydrodynamic stability of liquids subjected to unipolar

injection,Ó J. Mec. 18 (1979).

[13]!P. Atten, J. C. Lacroix, ÒElectrohydrodynamic stability of liquids subjected to unipolar
injection: Non-linear phenomena,Ó J. Electrost. 5, 439-452, (1978).

[14]!B. Malraison, P. Atten, ÒChaotic behavior of instability due to unipolar ion injection in a

dielectric liquid,Ó Phys. Rev. Lett. 49, 10, 723-726 (1982).

 128

[15]!P. Atten, T. Honda, ÒThe electroviscous effect and its explanation I- the
electrohydrodynamic origin; study under unipolar D. C. injection,Ó J. Electrost. 11, 225-
245 (1982)

[16]!P. Atten, B. Malraison, S. A. Kani, ÒElectrohydrodynamic stability of dielectric liquids

subjected to A. C. Fields,Ó J. Electrost. 12, 477-488 (1982)

[17]!P. Atten, L. Elouadie, ÒEHD convection in a dielectric liquid subjected to unipolar
injection: coaxial wire/cylinder geometry,Ó J. Electrost. 34, 279-297 (1995)

[18]!P. Atten, ÒElectrohydrodynamic instability and motion induced by injected space charge

in insulating liquids,Ó IEEE Trans. Dielect. Elect. Insulation, Vol 3, 1, 1996

[19]!A. Perez, A Castellanos, ÒLaminar chaotic transport of charge in finite amplitude
electroconvection,Ó Phys. Rev. A 44, 6659 (1991).

[20]!A. Perez, A Castellanos, ÒRole of charge diffusion in finite-amplitude electroconvection,Ó

Phys. Rev. A 40, 10 (1989)

[21]!A. Castellanos, P. Atten, Numerical modeling of finite amplitude convection of liquids
subjected to unipolar injection,Ó IEEE Trans. Ind, Appl. IA-23, 825 (1987).

[22]!A. Castellanos, ÒInjection induced instabilities and chaos in electrohydrodynamics,Ó J.

Phys.: Condens. Matter 2, 499-503 (1990)

[23]!R. Chicon, A. Castellanos, E. Martin, ÒNumerical modelling of Coulomb-driven
convection in insulating liquids,Ó J. Fluid Mech. 344, 43-66 (1997)

[24]!K. Adamiak, P. Atten, ÒSimulation of corona discharge in point-plane configuration,Ó J.

Electrost. 61, 85 (2004).

[25]! A. Castellanos, Electrohydrodynamic, Springer Publication, (1998).

[26]!R. Chicon, A. Perez, A. Castellanos, ÒModelling the Finite Amplitude Electroconvection
in Cylindrical Geometry: Characterization of Chaos,Ó Annual Report Conference On
Electrical Insulation And Dielectric Phenomena, IEEE, (2002)

[27]!P. A. Vazquez, G. E. Georghiou, A. Castellanos, ÒNumerical analysis of the stability of the

electrohydrodynamic (EHD) electroconvection between two plates,Ó J. Phys. D: Appl.
Phys. 41 (2008)

[28]!P. A. Vazquez, A. Castellanos, ÒStability analysis of the 3D Electroconvective Charged

Flow Between Parallel Plates Using the Particle-in-Cell Method,Ó IEEE Internt.
Conference on Dielectric Liquids (2011)

[29]!A. T. Perez, P. A. Vazquez, J. Wu, P. Traore, ÒElectrohydrodynamic linear stability

analysis of dielectric liquids subjected to unipolar injection in a rectangular enclosure with
rigid sidewalls,Ó J. Fluid Mech. 758, 586-602 (2014)

 129

[30]!P. A. Vazquez, A. Perez, A Castellanos, ÒThermal and electrohydrodynamic plumes. A
comparative study,Ó Phys. Fluids 8, 2091 (1996)

[31]!E. A. Demekhin, V. S. Shelistov, S. V. Polyanskikh, ÒLinear and nonlinear evolution and

diffusion layer selection in electrokinetic instability,Ó Phys. Rev. E 84, 036318 (2011).

[32]!E. A. Demekhin, N. V. Nikitin, V. S. Shelistov, ÒDirect numerical simulation of
electrokinetic instability and transition to chaotic motion,Ó Phys. Fluids 25, 122001 (2013)

[33]!E. A. Demekhin, N. V. Nikitin, V. S. Shelistov, ÒThree-dimensional coherent structures of

electrokinetic instability,Ó Phys. Rev. E 90, 013031 (2014).

[34]!M. Zhang, F. Martinelli, J. Wu, P. J. Schmid, M. Quadrio, ÒModel and non-model stability
analysis of electrohydrodynamic flow with and without cross-flow,Ó J. Fluid Mech. 770,
319-349 (2015)

[35]!K. Luo, J. Wu, H. Yi, H. Tan, ÒLattice Boltzmann model for Coulomb-driven flows in

dielectric liquids,Ó Phys. Rev. E 93, 023309 (2016)

[36]!K. Luo, J. Wu, H. Yi, H. Tan, ÒLattice Boltzmann modelling of electro-thermo-convection
in a planar layer of dielectric liquid subjected to unipolar injection and thermal gradient,Ó
Intern. J. Heat and Mass Transf. 103, 832-846 (2016)

[37]!K. Luo, J. Wu, H. Yi, H. Tan, ÒThree-dimensional finite amplitude electroconvection in

dielectric liquids,Ó Phys. Fluids 30, 023602 (2018)

[38]!K. Luo, J. Wu, H. Yi, L. Liu, H. Tan, ÒHexagonal convective patterns and their
evolutionary scenarios in electroconvection induced by a strong unipolar injection,Ó Phys.
Rev. Fluids 3, 053702 (2018)

[39]!F. H. Busse, ÒNon-linear properites of thermal convection,Ó Rep. Prog. Phys. 41, 1978

[40]!H. S. Greenside, W. M. Coughran Jr., N. L. Schryer, ÒNonlinear Pattern Formation near

the Onest of Rayleigh-Benard Convection,Ó Phys. Rev. Lett. 49, No. 10 (1982).

[41]!V. Steinberg, G. Ahlers, D. S. Cannell, ÒPattern formation and wave-number selection by
Rayleigh-Benard convection in a cylindrical container,Ó Physica Scripta. T9, 97-110
(1985)

[42]!F. H. Busse, R. M. Clever, ÒAsymmetric Squares as Attracting Set in Rayleigh-Benard

Convection,Ó Phys. Rev. Lett. 81, No. 2 (1998).

[43]!R. M. Clever, F. H. Busse, ÒHexagonal convection cells under conditions of vertical

symmetry,Ó Phys. Rev. E 53, No. 3 (1996).

[44]!Michel Assenheimer, Victor Steinberg, ÒObservation of Coexisting Upflow and Downflow
Hexagons in Boussinesq Rayleigh-Benard Convection,Ó Phys. Rev. Lett. 76, No. 5 (1996).

[45]!E. Bodenschatz, W. Pesch, G. Ahlers, ÒRecent developments in Rayleigh-Benard

convection,Ó Annu. Rev. Fluid Mech. 32, 709-778 (2000)

 130

[46]!A. V. Getling, O. Brausch, ÒCellular flow patterns and their evolutionary scenarios in three-

dimensional Rayleigh-Benard convection,Ó Phys. Rev. E 67, 0463133 (2003)

[47]! D. C. Rapaport, ÒHexagonal convection patterns in atomistically simulated fluids,Ó Phys.
Rev. E 73, 025301 (R) (2006).

[48]!J. Wu, P. Traore, C. Louste, A. T. Perez, P. A. Vazquez, ÒHeat transfer enhancement by an

electrohydrodynamic plume induced by ion injection from a hyperbolic blade,Ó IEEE Int.
Conference on Liquid Dielectrics, (2014).

[49]!J. E. Bryan, J. S. Yagoobi, ÒElectrohydrodynamically enhanced convective boiling:

Relationship between electrohydrodynamic pressure and momentum flux rate,Ó J. Heat
Transf. 122, 266 (1999)

[50]!J. S. Yagoobi, ÒElectrohydrodynamic pumping of dielectric liquids.Ó J. Elecctrost. 63, 861

(2005)

[51]!P. Traore, M. Daaboul, C. Louste, ÒNumerical simulation and PIV experimental analysis
of electrohydrodynamic plumes induced by a blade electrode.Ó J. Phys. D: Appl. Phys. 43,
(2010)

[52]!C. Louste, Z. Yan, P. Traore, R. Sosa, ÒElectroconvective flow induced by dielectric barrier

injection in silicone oil,Ó J. Electrost. 71, 504 (2013)

[53]!J. H. Davidson, P. J. McKinney, ÒTurbulent mixing in a barbed plate-to-plate electrostatic
precipitator,Ó Atmosp. Environ. 23, 2093 (1989)

[54]!P. Traore, J.Wu, C. Louste, Q. Pelletier, L. Dascalescu, ÒElectro-Hydro-Dynamic plumes

due to autonomous and non-autonomous charge injection by a sharp blade electrode in a
dielectric liquid,Ó IEEE Transc. Industry Applications, (2013)

[55]!P. Traore, J. Wu, P. A. Vazquez, C. Louste, C. Gouriou, A. Perez, ÒNumerical simulation

of electrohydrodynamically induced dielectric liquid flow through pure conduction blade-
plane geometry,Ó 11th Int. Conference on Modern Problems of Electrophysics and
Electrohydrodynamics (MPEE-2015)

[56]!F. M. J. McCluskey, A. T. Perez, ÒThe electrohydrodynamic plume between a line source

or ions and a flat plate,Ó IEEE Trans. Electr. Insulation 2(27), 334 (1992)

[57]!B. Malraison, P. Atten, A. T. Perez, Panches charges resultant de lÕinjection dÕions dans
un liquid isolant par une lame ou une pointe placee en face dÕun plan, J. Phys. III France
4, 75 (1994)

[58]!A. T. Perez, P. A. Vazquez, A. Castellanos, ÒDynamics and linear stability of charged jets

in dielectric liquids,Ó IEEE Trans. Industry Appl. 31, 761 (1995)

[59]!P. A. Vazquez, E. C. Vera, A. Castellanos, T. C. Rebollo, ÒFinite element-particle method
calculation of EHD plumes,Ó Annual Report Conference on Electrical Insulation and
Dielectric Phenomena, IEEE, 208-211 (2002)

 131

[60]!P. A. Vazquez, E. C. Vera, A. Castellanos, T. C. Rebollo, ÒFinite element-particle method

calculation of EHD plumes,Ó Annual Report Conference on Electrical Insulation and
Dielectric Phenomena, IEEE, 706-709 (2003)

[61]!P. A. Vazquez, C. Soria, A. Castellanos, ÒNumerical simulation of two-dimensional EHD

plumes mixing finite element and particle methods,Ó Annual Report Conference on
Electrical Insulation and Dielectric Phenomena, IEEE, 122-125 (2004)

 132

Chapter 6

EHD Conduction

In this chapter we present the electro-conduction model and some initial case studies performed
with some new implementations in the conduction model as available in Oracle3D. Mainly,
some validation cases with flow feature analysis in a conduction channel configuration were
compared with COMSOL solutions and results are reported. Results with newly implemented
Robin and non-homogeneous Neumann boundary conditions are presented and their physical
significance is discussed. Impact of mathematical formulations: implicit and explicit in case of
FVM discretization of transport of species, and effect of Onsager effect on EHD conduction is
briefly highlighted. In last section, flow pattern with blade-plane electrode configuration with
a case is discussed in both 2D and 3D.

6.1 Introduction

The electric charges present in Electrohydrodynamic (EHD) conduction are created by
dissociation and recombination of a weak electrolyte in a non-polar or mildly polar liquid.
When an external electric field is applied, layers with a net electric charge appear next to each
electrode. These are the heterocharge layers, with a polarity opposed to the one of the
electrodes. The motion of charged species in the bulk liquid is due to the electric force density,
!"#$, which results from three different physical components. The first and the most dominant
component is the Coulomb force which is the first term on right side in eq. (1). The second term
is the dielectric force which is present only when the permittivity gradient (%&) exists. The third
term is known as the electrostrictive force which, being the gradient of a scalar, can be
incorporatd in pressure [1,2].

 !"# ' ()*" + $
,

-
$) - %&. %/0

12

-
3

45

46
7

8
$9$$$: ; <$

Thus, the Coulomb force alone is left which sustain a permanent EHD motion in such
conduction phenomena. In most of the EHD applications, this Coulomb force sets the liquid in
motion which is utilized for the intended purposes like pumping, wall jets etc. The net Coulomb
force is generated only if there is an imbalance in the densities of positive and negative charge
carriers. Asymmetrical electrode configurations play an important role in creating this
imbalance in charge carriersÕ densities, which have been explored in many studies [2-4]. The
mechanism of EHD conduction provides a non-mechanical and low-power consumption
approach to generate or control an active flow, which can be used for applications targeted for
terrestrial and microgravity conditions [6].

 133

6.2 Mathematical model

The electro-conduction model as available in Oracle3D is based on the original model proposed
by Atten et al. (2003). This model considers chemical dissociation and recombination of neutral
liquid molecules within a reversible reaction. The concentrations of produced ions in the parent
liquid are controlled by the dissociation (=>) and recombination (=?) rates. A general reversible
chemical equation can be given as:

If c is the concentration of neutral molecules and @A and @B are the charge densities of positive
and negative ion species, then at the thermodynamic equilibrium one can write:

=> C' $=? @AD@BD ' =? $@AD
- ' $=? @#E

- ' =? @#E
-

Where Ô0Õ refers to the values at equilibrium, and @AD ' $@BD ' @#E follows from the

equilibrium condition, which results in @AD ' $F=> CG$=? $. The transport mechanism of the
species under the influence of external electric field is governed by following set of equations:

H@A

HI
. %JK"L ' $=> C+ $=? @A@B$$$: MJ; <

H@B

HI
. %JK"N ' $=> C+ $=? @A@B$$$: MJO<

HC
HI

. %JPQR ' =? @A@B + $=> C$$$: MJS<

Where the current density fluxes are provided by:

 K"L ' $T*"@A . $UL @A)*" + $VL $%@A$$: MJW<

K"N ' $T*"@B + UN@B)*" + VN%@B$$: MJX<

$$PQR$' VQR%C$$$: MJM<

In the above equations the mobility and diffusion coefficients of positive and negative ion
species are given by UL , UN, VL $, VN$ respectively. The overall liquid velocity is denoted by$T*".

We can write the Gauss law to obtain the electric field ()*") due to the species as:

%J: &)*"< ' $@A + @B$$$: MJY<

Here & refers to the permittivity of liquid. The whole system can be explained as a combination
of hydrodynamics and electrostatics. We consider the effects of motion of charged species on
the neutral fluid by adding the force on the charged species in the Navier-Stokes equations as a
source term. The transport equations of the liquid can be written as:

 %JT*" ' Z$$$: MJ[<

 134

$0 \
HT*"
HI

. %J: T*"$T*"<] ' + %̂_ . %J: ` $: %T*" . : %T*"<8<. $: @A + @B<)*"$$$$$$$$$$$$$$$$$: MJa<

The pressure term _̂ contains the contribution from electrostriction force and the liquid
pressure. The dynamic viscosity of liquid is denoted by ` . The recombination rate constant is
=? ' : UL . UN<G&, as given by LangevineÕs approximation for dielectric liquids [4, 11]. We
work in the universal framework of non-dimensional equations by taking the reference
variables as:

bcd$e f ; I e
g2

hi j $: ki Nkl <
$; T*" e $T*"m#n ' $

hi j $: ki Nkl <

g

 ̂_ e $$$0$Tm#n
- ; @Ac@B $e $@#E

UL $cUN $e $$UDL ; VL $cVN $e $$VDL ; &$e $&D ; 0$e $0D

` $e $̀ D$o$$$$$$$p e : pD + p, <$;)*" $e $
: ki Nkl <

g
$

Here UDL and VDL are the mobility and diffusion coefficients of the positive ions at equilibrium.
0D$c̀ Dc&D are the reference values of density, dynamic viscosity and permittivity for liquid
respectively. The length reference is the distance between the electrodes (d), pD + p, is the
potential difference between the two electrodes. These reference variables lead to the non-
dimensional set of equations for the transport of species in which the non-dimensional values
are represented with star (*):

H@A
q

Hrq . %qJ3sTq****" . UL
q) q****"t @A

q7 ' u%qJ: VL
q$%q@A

q<. v
UL

q . UN
q

&q wxD$$s; + @A
q@B

qt $$$$$$$$$$$$$: MJ;Z <

H@B
q

Hrq . %qJ3sTq****" + UN
q) q****"t @B

q7 ' u%qJ: VN
q$%q@B

q<. v
UL

q . UN
q

&q w$xD$$s; + @A
q@B

qt $$$$$$$$$$$$$: MJ;; <

 %qJ: &q$%qy q<' $+ xD$s@A
q + @B

qt $$: MJ;O<

) q****" ' $+ %qy q$$: MJ;S <

%qJTq****" ' Z$$: MJ;W<

$
H0qTq****"

Hrq . %qJs0qTq****"$Tq****"t

' + %q _̂q .
;

z #{
%qJ3| q: %qTq****" . s%qTq****"t

8
<$7 . xD} - s@A

q + @B
qt $) q****"$$$$$$$$$$: MJ;X <

This set of non-dimensional equations introduces the following non-dimensional parameters
which characterize our conduction problem:

z #{ '
0DUDL $: pD + p, <

` D
$$o$$$$$$$} '

;
UDL

v
&
0D

w

,
-
$$$$o$$$$xD$' $$$

@#Ef -

&D: pD + p, <
$$o$

$$u ' $$$
VDL

UDL : pD + p, <
$$$$

