Skip to Main content Skip to Navigation

Development and optimization of mechanical polishing process for superconducting accelerating cavities

Abstract : Large-scale production of superconducting radio-frequency (SRF) cavities is an industrial challenge, not only because of the increasing number of unit for future projects but also because of requirements in term of reliability, reproducibility and performances very close to the physical limit of polycrystalline bulk Niobium. Nowadays, XFEL (DESY) and LHC (CERN) are the largest existing accelerators which are based on SRF technology. Even more challenging SRF accelerator projects like ILC (International Linear Collider) and FCC (Future Circular Collider) are being studied. For such large-scale facilities, higher performances, reduction in fabrication and operation costs are required and essential to proceed with industrialization.A pathway to reduce these costs and improve performances has been studied in this work. It consists in optimizing the cleaning process of cavity surfaces. Indeed, pollution and crystal defects on the surface created during fabrication steps of a SRF cavity have to be removed to ensure optimal superconducting performances. In order to get rid of impurities and to recover crystal structure, two polishing techniques are routinely used: the buffered chemical polishing (BCP) and electro-polishing (EP). However, these techniques involve highly concentrated acids, which lead to high operation costs and safety concerns. A way to overcome the aforementioned drawbacks and make the construction of future accelerators possible would be to replace or complement the conventional chemical polishing by alternative polishing techniques.Mechanical polishing has already been applied in SRF-community for decades by using centrifugal barrel polishing (CBP). This technique could provide a better surface roughness and could be more efficient at removing some surface defects compared to EP and BCP. However, this process does not satisfy requirements for large-scale production due to strong surface pollution and an extremely long processing time. The first part of the PhD work consisted in reproducing the state of the art, understanding its limitations and optimizing the recipe by the reduction of the surface pollution (embedded abrasives) and processing time (reduction of intermediate steps). As a conclusion to this first study, CBP could only be a complementary polishing technique to chemical treatments.The second part of the work focused on metallographic flat polishing. This technique cannot be directly applied on enclosed geometries however, it can remove efficiently surface defects (impurities and crystal damages) created during the fabrication of Niobium sheet. A 2-step process, inspired from metallographic techniques (typically 5-6 steps) has been successfully developed and optimized on Niobium for SRF applications. This process provides not only an improved roughness compared to conventional chemical treatments but also preserve the crystal quality underneath the surface, over the field penetration depth. Additional studies have to be now carried out to optimize conventional forming process or characterize alternative techniques to limit surface damages and preserve material quality as much as possible.Last but not least, the work done is of first importance for the future of SRF cavities meaning the use of new superconducting materials as thin films. The quality of thin-films of alternative superconductors depends strongly on the surface state of the substrate, typically polycrystalline bulk Niobium or Copper.
Complete list of metadatas

Cited literature [260 references]  Display  Hide  Download
Contributor : Abes Star :  Contact
Submitted on : Monday, January 27, 2020 - 9:14:15 AM
Last modification on : Wednesday, October 14, 2020 - 4:00:14 AM
Long-term archiving on: : Tuesday, April 28, 2020 - 1:01:33 PM


Version validated by the jury (STAR)


  • HAL Id : tel-02455975, version 1



Oleksandr Hryhorenko. Development and optimization of mechanical polishing process for superconducting accelerating cavities. Accelerator Physics [physics.acc-ph]. Université Paris-Saclay, 2019. English. ⟨NNT : 2019SACLS566⟩. ⟨tel-02455975⟩



Record views


Files downloads