D. A. Schwarz, C. D. Katayama, and S. M. Hedrick, Schlafen, a new family of growth regulatory genes that affect thymocyte development, Immunity, vol.9, pp.657-668, 1998.

O. Bustos, Evolution of the Schlafen genes, a gene family associated with embryonic lethality, meiotic drive, immune processes and orthopoxvirus virulence, Gene, vol.447, pp.1-11, 2009.

E. Katsoulidis, Role of Schlafen 2 (SLFN2) in the generation of interferon alpha-induced growth inhibitory responses, J. Biol. Chem, vol.284, pp.25051-25064, 2009.

M. Recher, Genetic variation in schlafen genes in a patient with a recapitulation of the murine Elektra phenotype, J. Allergy Clin. Immunol, vol.133, pp.1462-1467, 2014.

P. Geserick, Modulation of T cell development and activation by novel members of the Schlafen (slfn) gene family harbouring an RNA helicase-like motif, International Immunology, vol.16, pp.1535-1548, 2004.

B. B. Patel, Schlafen 3, a novel gene, regulates colonic mucosal growth during aging, Am. J. Physiol. Gastrointest. Liver Physiol, vol.296, pp.955-62, 2009.

E. Mavrommatis, E. N. Fish, and L. C. Platanias, The Schlafen Family of Proteins and Their Regulation by Interferons, Journal of Interferon & Cytokine Research, vol.33, pp.206-210, 2013.

B. Neumann, L. Zhao, K. Murphy, and T. J. Gonda, Subcellular localization of the Schlafen protein family, Biochemical and Biophysical Research Communications, vol.370, pp.62-66, 2008.

F. Liu, P. Zhou, Q. Wang, M. Zhang, and D. Li, The Schlafen family: complex roles in different cell types and virus replication, Cell Biol Int, vol.10, pp.106-113, 2017.

A. Puck, Expression and regulation of Schlafen (SLFN) family members in primary human monocytes, monocyte-derived dendritic cells and T cells, Results Immunol, vol.5, pp.23-32, 2015.

E. Katsoulidis, Role of Interferon ? (IFN?)-inducible Schlafen-5 in Regulation of Anchorageindependent Growth and Invasion of Malignant Melanoma Cells, J. Biol. Chem, vol.285, pp.40333-40341, 2010.

M. Li, Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11, Nature, vol.491, pp.125-128, 2012.

W. Sohn, Novel transcriptional regulation of the schlafen-2 gene in macrophages in response to TLR-triggered stimulation, Molecular Immunology, vol.44, pp.3273-3282, 2007.

P. L. Kovalenko and M. D. Basson, Schlafen 12 expression modulates prostate cancer cell differentiation, Journal of Surgical Research, vol.190, pp.177-184, 2014.

G. Brady, L. Boggan, A. Bowie, and L. A. O'neill, Schlafen-1 causes a cell cycle arrest by inhibiting induction of cyclin D1, J. Biol. Chem, vol.280, pp.30723-30734, 2005.

J. Barretina, The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity, Nature, vol.483, pp.603-607, 2012.

G. Zoppoli, Putative DNA/RNA helicase Schlafen-11 (SLFN11) sensitizes cancer cells to DNA-damaging agents, Proc. Natl. Acad. Sci. U.S.A, vol.109, pp.15030-15035, 2012.

F. G. Sousa, Alterations of DNA repair genes in the NCI-60 cell lines and their predictive value for anticancer drug activity, DNA Repair, vol.28, pp.107-115, 2015.

V. Nogales, Epigenetic inactivation of the putative DNA/RNA helicase SLFN11 in human cancer confers resistance to platinum drugs, Oncotarget, vol.7, pp.3084-3097, 2016.

J. Murai, Resistance to PARP inhibitors by SLFN11 inactivation can be overcome by ATR inhibition, pp.1-17, 2016.

B. H. Lok, PARP Inhibitor Activity Correlates with SLFN11 Expression and Demonstrates Synergy with Temozolomide in Small Cell Lung Cancer, Clinical Cancer Research, vol.23, pp.523-535, 2017.

D. A. Schwarz, C. D. Katayama, and S. M. Hedrick, Schlafen, a new family of growth regulatory genes that affect thymocyte development, Immunity, vol.9, pp.657-68, 1998.

F. Liu, P. Zhou, Q. Wang, M. Zhang, and D. Li, The Schlafen family: complex roles in different cell types and virus replication, Cell Biol Int, 2017.

G. Zoppoli, M. Regairaz, E. Leo, W. C. Reinhold, S. Varma et al., Putative DNA/RNA helicase Schlafen 11 (SLFN11) sensitizes cancer cells to DNA damaging agents, Proc Natl Acad Sci, vol.109, pp.15030-15035, 2012.

J. Barretina, G. Caponigro, N. Stransky, K. Venkatesan, A. A. Margolin et al., The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity, Nature, vol.483, pp.603-610, 2012.

M. Li, E. Kao, X. Gao, H. Sandig, K. Limmer et al., Codon usage based inhibition of HIV protein synthesis by human schlafen 11, Nature, vol.491, pp.125-133, 2012.

V. Nogales, W. C. Reinhold, S. Varma, M. Cardus, A. Moutinho et al., Epigenetic inactivation of the putative DNA/RNA helicase SLFN11 in human cancer confers resistance to platinum drugs, Oncotarget, vol.7, pp.3084-97, 2016.

J. A. Seiler, C. Conti, A. Syed, M. I. Aladjem, and Y. Pommier, The intra S phase checkpoint affects both DNA replication initiation and elongation: single cell and DNA fiber analyses, Mol Cell Biol, vol.27, pp.5806-5824, 2007.

J. Bartek and J. Lukas, Chk1 and Chk2 kinases in checkpoint control and can cer, Cancer Cell, vol.3, pp.421-430, 2003.

A. Ciccia and S. J. Elledge, The DNA damage response: making it safe to play with knives, Mol Cell, vol.40, pp.179-204, 2010.

J. Murai, S. N. Huang, B. B. Das, A. Renaud, Y. Zhang et al., Trapping of PARP1 and PARP2 by clinical PARP inhibitors, Cancer Res, vol.72, pp.5588-99, 2012.

J. Murai, S. Huang, . Yn, A. Renaud, Y. Zhang et al., Stereospecific PARP trapping by BMN 673 and comparison with olaparib and rucaparib, Mol Cancer Ther, vol.13, pp.433-476, 2014.

J. Murai, Y. Feng, G. K. Yu, Y. Ru, S. Tang et al., Resistance to PARP inhibitors by SLFN11 inactivation can be overcome by ATR inhibition, Oncotarget, vol.7, pp.76534-50, 2016.

J. Ferlay, I. Soerjomataram, R. Dikshit, S. Eser, C. Mathers et al., Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012, Int J Cancer, vol.136, pp.359-86, 2015.

A. R. Munkarah and R. L. Coleman, Critical evaluation of secondary cytoreduc tion in recurrent ovarian cancer, Gynecol Oncol, vol.95, pp.273-80, 2004.

, Ovarian cancer (including fallopian tube cancer and primary peritoneal cancer

A. A. Wright, K. Bohlke, D. K. Armstrong, M. A. Bookman, W. A. Cliby et al., Neoadjuvant chemotherapy for newly diagnosed, advanced ovarian cancer: Society of Gynecologic Oncology and American Society of Clini cal Oncology Clinical Practice Guideline, Gynecol Oncol, vol.143, pp.3-15, 2016.

R. E. Bristow, I. Puri, and D. S. Chi, Cytoreductive surgery for recurrent ovarian cancer: a meta analysis, Gynecol Oncol, vol.112, pp.265-74, 2009.

K. L. Lloyd, I. A. Cree, and R. S. Savage, Prediction of resistance to chemotherapy in ovarian cancer: a systematic review, BMC Cancer, vol.15, p.117, 2015.

M. J. Duffy, J. M. Bonfrer, J. Kulpa, G. Rustin, G. Soletormos et al., CA125 in ovarian cancer: European Group on tumor markers guidelines for clinical use, Int J Gynecol Cancer, vol.15, pp.679-91, 2005.

M. Kobel, S. E. Kalloger, N. Boyd, S. Mckinney, E. Mehl et al., Ovarian carcinoma subtypes are different diseases: implications for biomarker studies, PLoS Med, vol.5, p.232, 2008.

C. Jeronimo, D. Forget, A. Bouchard, Q. Li, G. Chua et al., Systematic analysis of the protein interaction network for the human transcription machinery reveals the identity of the 7SK capping enzyme, Mol Cell, vol.27, pp.262-74, 2007.

W. Hendrickx, I. Simeone, S. Anjum, Y. Mokrab, F. Bertucci et al., Identification of genetic determinants of breast cancer immune phenotypes by integrative genome scale analysis, Oncoimmunology, vol.6, p.1253654, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01788951

C. Curtis, S. P. Shah, S. Chin, G. Turashvili, O. M. Rueda et al., The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups, Nature, vol.486, pp.346-52, 2012.

G. Zoppoli, S. Brohee, C. Desmedt, C. Sotiriou, and A. Ballestrero, Clinico pathological and transcriptomic determinants of SLFN11 expres sion in invasive breast carcinoma, J Immunother Cancer, vol.3, p.3, 2015.

D. Gendoo, N. Ratanasirigulchai, M. S. Schroder, L. Pare, J. S. Parker et al., Genefu: an R/Bioconductor package for computation of gene expression based signatures in breast cancer, Bioinformatics, vol.32, pp.1097-1106, 2016.

H. Abdi and D. Valentin, Multiple correspondence analysis, Encyclopedia of measurement and statistics, pp.651-658, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01126419

J. Friedman, T. Hastie, and R. Tibshirani, Regularization paths for generalized linear models via coordinate descent, J Stat Softw, vol.33, issue.1, pp.1-22, 2010.

P. Farmer, H. Bonnefoi, P. Anderle, D. Cameron, P. Wirapati et al.,

, A stroma related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer, Nat Med, vol.15, issue.1, pp.68-74, 2009.

G. Finak, N. Bertos, F. Pepin, S. Sadekova, M. Souleimanova et al., Stromal gene expression predicts clinical outcome in breast cancer, Nat Med, vol.14, issue.5, pp.518-545, 2008.

E. Van-cutsem, R. Labianca, G. Bodoky, C. Barone, E. Aranda et al., Randomized phase III trial comparing biweekly infusional fluoroura cil/leucovorin alone or with irinotecan in the adjuvant treatment of stage III colon cancer: PETACC 3, J Clin Oncol, vol.27, pp.3117-3142, 2009.

F. T. Bosman, P. Yan, S. Tejpar, R. Fiocca, E. Van-cutsem et al., Tissue biomarker development in a multicentre trial context: a feasibility study on the PETACC3 stage II and III colon cancer adjuvant treatment trial, Clin Cancer Res, vol.15, pp.5528-5561, 2009.

A. D. Roth, M. Delorenzi, S. Tejpar, P. Yan, D. Klingbiel et al., Inte grated analysis of molecular and clinical prognostic factors in stage II/III colon cancer, J Natl Cancer Inst, vol.104, pp.1635-1681, 2012.

B. Vogelstein, N. Papadopoulos, V. E. Velculescu, S. Zhou, L. Diaz et al., Cancer genome landscapes. Science, vol.339, pp.1546-58, 2013.

Y. Deng, Y. Cai, Y. Huang, Z. Yang, Y. Bai et al., High SLFN11 expression predicts better survival for patients with KRAS exon 2 wild type colorectal cancer after treated with adjuvant oxaliplatin based treatment, BMC Cancer, vol.15, p.833, 2015.

C. Rosty, J. P. Young, M. D. Walsh, M. Clendenning, R. J. Walters et al., Colorectal carcinomas with KRAS mutation are associated with distinctive morphological and molecular features, Modern Pathol, vol.26, pp.825-859, 2013.

, Article type: Research Article References

J. Ferlay, I. Soerjomataram, R. Dikshit, S. Eser, C. Mathers et al., Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012, Int. J. Cancer, vol.136, issue.5, pp.359-86, 2015.

J. and A. D. , K: Recent progress in the diagnosis and treatment of ovarian cancer, CA Cancer J Clin, vol.61, issue.3, pp.183-203, 2011.

R. Kurman and S. I. , The Dualistic Model of Ovarian Carcinogenesis: Revisited, Revised, and Expanded, Am. J. Pathol, vol.186, issue.4, pp.733-747, 2016.

R. Kurman and S. I. , The origin and pathogenesis of epithelial ovarian cancer: a proposed unifying theory, Am. J. Surg. Pathol, vol.34, issue.3, pp.433-443, 2010.

A. Karst and R. Drapkin, Ovarian cancer pathogenesis: a model in evolution, J Oncol, vol.2010, p.932371, 2010.

K. Levanon, C. Crum, and R. Drapkin, New insights into the pathogenesis of serous ovarian cancer and its clinical impact, J. Clin. Oncol, vol.26, issue.32, pp.5284-5293, 2008.

D. D. Bowtell, S. Böhm, A. A. , A. P. Bast, R. C. Beral et al.,

J. , B. S. Bookman, M. A. , B. J. , C. K. Martins et al.,

, Nat. Rev. Cancer, vol.15, issue.11, pp.668-679, 2015.

B. T. Hennessy, C. R. Markman, and M. , Ovarian cancer. Lancet, vol.374, issue.9698, pp.1371-1382, 2009.

R. E. Bristow, J. Chang, A. Ziogas, A. , and H. , Adherence to treatment guidelines for ovarian cancer as a measure of quality care, Obstet Gynecol, vol.121, issue.6, pp.1226-1234, 2013.

M. Li, J. Yin, M. N. Pan, and L. , Upregulation of phosphorylated cofilin 1 correlates with taxol resistance in human ovarian cancer in vitro and in vivo, Oncol. Rep, vol.29, issue.1, pp.58-66, 2013.

A. D. , Relapsed ovarian cancer: challenges and management strategies for a chronic disease, Oncologist, vol.7, pp.20-28, 2002.

D. Nicolantonio, F. Mercer, S. J. Knight, L. A. , G. F. et al., A: Cancer cell adaptation to chemotherapy, BMC Cancer, vol.5, issue.1, p.78, 2005.

G. Zoppoli, M. Regairaz, L. E. , R. W. Varma, S. Ballestrero et al., Putative DNA/RNA helicase Schlafen-11 (SLFN11) sensitizes cancer cells to DNA-damaging agents, Proc Natl Acad Sci, vol.109, issue.37, pp.15030-15035, 2012.

E. Katsoulidis, N. Carayol, J. Woodard, I. Konieczna, B. Majchrzak-kita et al., C: Role of Schlafen 2 (SLFN2) in the generation of interferon alpha-induced growth inhibitory responses, J. Biol. Chem, 2009.

P. Geserick, F. Kaiser, U. Klemm, S. H. Kaufmann, and J. Zerrahn, Modulation of T cell development and activation by novel members of the Schlafen (slfn) gene family harbouring an RNA helicase-like motif, Int Immunology, vol.16, issue.10, pp.1535-1548, 2004.

M. Li, E. Kao, X. Gao, H. Sandig, K. Limmer et al., Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11, Nature, vol.491, issue.7422, pp.125-128, 2012.

J. Murai, S. W. Tang, L. E. Baechler, S. A. Redon, C. E. Zhang et al.,

N. , N. E. Jenkins, L. M. , A. M. Pommier, and Y. , SLFN11 Blocks Stressed Replication Forks Independently of ATR, Mol. Cell, vol.69, issue.3, pp.371-384, 2018.

S. W. Tang, S. Bilke, L. Cao, J. Murai, F. G. Sousa et al., SLFN11 Is a Transcriptional Target of EWS-FLI1 and a Determinant of Drug Response in Ewing Sarcoma, Clinical Cancer Research, vol.21, issue.18, pp.4184-4193, 2015.

L. Tian, S. Song, X. Liu, Y. Wang, X. Xu et al., Schlafen-11 sensitizes colorectal carcinoma cells to irinotecan, Anti-Cancer Drugs, vol.25, issue.10, pp.1175-1181, 2014.

V. Nogales, R. W. Varma, S. Martinez-cardus, A. Moutinho, C. Moran et al., Epigenetic inactivation of the putative DNA/RNA helicase SLFN11 in human cancer confers resistance to platinum drugs, Oncotarget, vol.7, issue.3, pp.3084-3097, 2016.

M. H. Kang, W. J. Makena, M. R. , L. J. , P. N. et al., Activity of MM-398, Nanoliposomal Irinotecan (nal-IRI), in Ewing's Family Tumor Xenografts Is Associated with High Exposure of Tumor to Drug and High SLFN11

, Expression. Clinical Cancer Research, vol.21, issue.5, pp.1139-1150, 2015.

Y. Mu, J. Lou, M. Srivastava, B. Zhao, F. X. Liu et al., SLFN11 inhibits checkpoint maintenance and homologous recombination repair, EMBO reports, vol.17, issue.1, pp.94-109, 2016.

E. Mavrommatis, E. Fish, and P. L. , The Schlafen Family of Proteins and Their Regulation by Interferons, Journal of Interferon & Cytokine Research, vol.33, issue.4, pp.206-210, 2013.

D. Jain, S. Mathur, and V. Iyer, Cell blocks in cytopathology: a review of preparative methods, utility in diagnosis and role in ancillary studies, Cytopathology, vol.25, issue.6, pp.356-371, 2014.

C. A. Stewart, P. Tong, C. R. Sen, T. , L. L. et al., Dynamic variations in epithelial-to

J. Ferlay, I. Soerjomataram, R. Dikshit, S. Eser, C. Mathers et al., Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012, Int J Cancer, vol.136, issue.5, pp.359-86, 2015.

C. M. Perou, T. Sørlie, M. B. Eisen, M. Van-de-rijn, S. S. Jeffrey et al., Molecular portraits of human breast tumours. Nature, vol.406, pp.747-52, 2000.

C. Sotiriou and L. Pusztai, Gene-expression signatures in breast cancer, N Engl J Med, vol.360, issue.8, pp.790-800, 2009.

C. D. Hart, G. Sanna, O. Siclari, L. Biganzoli, D. Leo et al., Defining optimal duration and predicting benefit from chemotherapy in patients with luminal-like subtypes, Breast, vol.24, issue.2, pp.136-178, 2015.

J. Barretina, G. Caponigro, N. Stransky, K. Venkatesan, A. A. Margolin et al., The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity, Nature, vol.483, issue.7391, pp.603-610, 2012.

G. Zoppoli, M. Regairaz, E. Leo, W. C. Reinhold, S. Varma et al., Putative DNA/RNA helicase Schlafen-11 (SLFN11) sensitizes cancer cells to DNA-damaging agents

, Proc Natl Acad Sci USA. National Academy of Sciences, vol.109, issue.37, pp.15030-15035, 2012.

E. Katsoulidis, N. Carayol, J. Woodard, I. Konieczna, B. Majchrzak-kita et al., Role of Schlafen 2 (SLFN2) in the generation of interferon alpha-induced growth inhibitory responses, J Biol Chem, vol.284, issue.37, pp.25051-64, 2009.

P. Geserick, Modulation of T cell development and activation by novel members of the Schlafen (slfn) gene family harbouring an RNA helicase-like motif, International Immunology, vol.16, issue.10, pp.1535-1583, 2004.

M. Li, E. Kao, X. Gao, H. Sandig, K. Limmer et al., Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11, Nature

E. Mavrommatis, E. N. Fish, and L. C. Platanias, The Schlafen Family of Proteins and Their Regulation by Interferons, Journal of Interferon & Cytokine Research, vol.33, issue.4, pp.206-216, 2013.

O. Bustos, S. Naik, G. Ayers, C. Casola, M. A. Perez-lamigueiro et al., Evolution of the Schlafen genes, a gene family associated with embryonic lethality, meiotic drive, immune processes and orthopoxvirus virulence, Gene, vol.447, issue.1, pp.1-11, 2009.

D. A. Schwarz, C. D. Katayama, and S. M. Hedrick, Schlafen, a new family of growth regulatory genes that affect thymocyte development, Immunity, vol.9, issue.5, pp.657-68, 1998.

B. Neumann, L. Zhao, K. Murphy, and T. J. Gonda, Subcellular localization of the Schlafen protein family. Biochemical and Biophysical Research Communications, vol.370, pp.62-68, 2008.

J. Murai, S. Tang, L. E. Baechler, S. A. Redon, C. E. Zhang et al., SLFN11 Blocks Stressed Replication Forks Independently of ATR, Mol Cell, vol.69, issue.3, pp.371-377, 2018.

Y. Mu, J. Lou, M. Srivastava, B. Zhao, X. H. Feng et al., SLFN11 inhibits checkpoint maintenance and homologous recombination repair, EMBO reports, vol.17, issue.1, pp.94-109, 2016.

S. Tang, A. Thomas, J. Murai, J. Trepel, S. E. Bates et al., Overcoming resistance to DNA targeted agents by epigenetic activation of Schlafen 11

, SLFN11)expression with class I histone deacetylase inhibitors, Clinical Cancer Research, 2017.

S. Tang, S. Bilke, L. Cao, J. Murai, F. G. Sousa et al., SLFN11 Is a Transcriptional Target of EWS-FLI1 and a Determinant of Drug Response in Ewing Sarcoma, Clinical Cancer Research, vol.21, issue.18, pp.4184-93, 2015.

G. Zoppoli, Putative DNA/RNA helicase Schlafen-11 (SLFN11) sensitizes cancer cells to DNA-damaging agents, pp.1-6, 2017.

L. Tian, S. Song, X. Liu, Y. Wang, X. Xu et al., Schlafen-11 sensitizes colorectal carcinoma cells to irinotecan. Anti-Cancer Drugs, vol.25, pp.1175-81, 2014.

V. Nogales, W. C. Reinhold, S. Varma, A. Martinez-cardus, C. Moutinho et al., Epigenetic inactivation of the putative DNA/RNA helicase SLFN11 in human cancer confers resistance to platinum drugs, Oncotarget, vol.7, issue.3, pp.3084-97, 2016.

T. He, M. Zhang, R. Zheng, S. Zheng, E. Linghu et al., Methylation of SLFN11is a marker of poor prognosis and cisplatin resistance in colorectal cancer, Epigenomics, 2017.

M. C. Pietanza, S. N. Waqar, L. M. Krug, A. Dowlati, C. L. Hann et al., Double-Blind, Phase II Study of Temozolomide in Combination With Either Veliparib or Placebo in Patients With Relapsed-Sensitive or Refractory Small-Cell Lung Cancer, J Clin Oncol. American Society of Clinical Oncology, p.2018777672, 2018.

B. Haibe-kains, C. Desmedt, S. Loi, A. C. Culhane, G. Bontempi et al., A threegene model to robustly identify breast cancer molecular subtypes, J Natl Cancer Inst, 2012.

, Feb, vol.22, issue.4, pp.311-336

, Comprehensive molecular portraits of human breast tumours. Nature, vol.490, pp.61-70, 2012.

C. Curtis, S. P. Shah, S. Chin, G. Turashvili, O. M. Rueda et al., The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature, vol.486, pp.346-52, 2012.

S. Dedeurwaerder, C. Desmedt, E. Calonne, S. K. Singhal, B. Haibe-kains et al., DNA methylation profiling reveals a predominant immune component in breast cancers

, EMBO Mol Med. EMBO Press, vol.3, issue.12, pp.726-767, 2011.

W. Hendrickx, I. Simeone, S. Anjum, Y. Mokrab, F. Bertucci et al., Identification of genetic determinants of breast cancer immune phenotypes by integrative genome-scale analysis, OncoImmunology, vol.6, issue.2, p.1253654, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01788951

D. Gendoo, N. Ratanasirigulchai, M. S. Schröder, L. Paré, J. S. Parker et al., Genefu: an R/Bioconductor package for computation of gene expression-based signatures in breast cancer, Bioinformatics, vol.32, issue.7, pp.1097-1106, 2016.

D. W. Huang, B. T. Sherman, and R. A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources, Nat Protoc, vol.4, issue.1, pp.44-57, 2009.

A. Prat and C. M. Perou, Deconstructing the molecular portraits of breast cancer, Molecular Oncology, vol.5, issue.1, pp.5-23, 2010.

C. Desmedt, G. Zoppoli, G. Gundem, G. Pruneri, D. Larsimont et al., Genomic Characterization of Primary Invasive Lobular Breast Cancer, J Clin Oncol, vol.34, issue.16, pp.1872-81, 2016.

M. Ignatiadis, S. K. Singhal, C. Desmedt, B. Haibe-kains, C. Criscitiello et al., Gene modules and response to neoadjuvant chemotherapy in breast cancer subtypes: a pooled analysis, J Clin Oncol, vol.30, issue.16, pp.1996-2004, 2012.

C. Desmedt, B. Haibe-kains, P. Wirapati, M. Buyse, D. Larsimont et al., Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes, Clinical Cancer Research, vol.14, issue.16, pp.5158-65, 2008.

C. J. Stewart, Dynamic variations in epithelial-to-mesenchymal transition (EMT), ATM, and SLFN11 govern response to PARP inhibitors and cisplatin in small cell lung cancer, 2017.

A. Puck, R. Aigner, M. Modak, P. Cejka, D. Blaas et al., Expression and regulation of Schlafen (SLFN) family members in primary human monocytes, monocyte-derived dendritic cells and T cells, Results Immunol, vol.5, pp.23-32, 2015.

D. Bedognetti, W. Hendrickx, F. M. Marincola, and L. D. Miller, Prognostic and predictive immune gene signatures in breast cancer, Current Opinion in Oncology, vol.27, issue.6, pp.433-477, 2015.

C. Denkert, G. Minckwitz-von, J. C. Brase, B. V. Sinn, S. Gade et al., Tumor-Infiltrating Lymphocytes and Response to Neoadjuvant Chemotherapy With or Without Carboplatin in Human Epidermal Growth Factor Receptor 2-Positive and Triple-Negative Primary Breast Cancers, Journal of Clinical Oncology, vol.33, issue.9, pp.983-91, 2015.

I. Gingras, C. Desmedt, M. Ignatiadis, and C. Sotiriou, CCR 20th Anniversary Commentary: Gene-Expression Signature in Breast Cancer--Where Did It Start and Where Are We Now? Clinical Cancer Research, vol.21, pp.4743-4749, 2015.

S. J. Cleator, T. J. Powles, T. Dexter, L. Fulford, A. Mackay et al., The effect of the stromal component of breast tumours on prediction of clinical outcome using gene expression microarray analysis, Breast Cancer Res. BioMed Central, vol.8, issue.3, p.32, 2006.

S. Winslow, K. Leandersson, A. Edsjö, and C. Larsson, Prognostic stromal gene signatures in breast cancer, Breast Cancer Res. BioMed Central, vol.17, issue.1, p.747, 2015.

P. Farmer, H. Bonnefoi, P. Anderle, D. Cameron, P. Wirapati et al., A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer, Nat Med, vol.15, issue.1, pp.68-74, 2009.

G. Finak, N. Bertos, F. Pepin, S. Sadekova, M. Souleimanova et al., Stromal gene expression predicts clinical outcome in breast cancer, Nat Med, vol.14, issue.5, pp.518-545, 2008.

, CD4+ follicular helper T cell infiltration predicts breast cancer survival, J Clin Invest, vol.123, issue.7, pp.2873-92, 2013.

K. Meissl, S. Macho-maschler, M. Müller, and B. Strobl, The good and the bad faces of STAT1 in solid tumours, Cytokine, vol.89, pp.12-20, 2017.

G. Bianchini, J. M. Balko, I. A. Mayer, M. E. Sanders, and L. Gianni, Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease, vol.13, pp.674-90, 2016.

O. Metzger-filho, Z. Sun, G. Viale, K. N. Price, D. Crivellari et al., Patterns of Recurrence and outcome according to breast cancer subtypes in lymph node-negative disease: results from international breast cancer study group trials VIII and IX, J Clin Oncol, vol.31, issue.25, pp.3083-90, 2013.

R. Bhargava, S. Beriwal, D. J. Dabbs, U. Ozbek, A. Soran et al.,

, Immunohistochemical surrogate markers of breast cancer molecular classes predicts response to neoadjuvant chemotherapy. Cancer, vol.116, pp.1431-1440, 2010.

D. J. Nelson, B. Clark, K. Munyard, V. Williams, D. Groth et al., A review of the importance of immune responses in luminal B breast cancer, OncoImmunology, vol.6, issue.3, p.1282590, 2017.

O. Yersal and S. Barutca, Biological subtypes of breast cancer: Prognostic and therapeutic implications, World J Clin Oncol, vol.5, issue.3, pp.412-436, 2014.

L. D. Miller, J. A. Chou, M. A. Black, C. Print, J. Chifman et al., Immunogenic Subtypes of Breast Cancer Delineated by Gene Classifiers of Immune Responsiveness, Cancer Immunol Res, vol.4, issue.7, pp.600-610, 2016.

K. Yu and M. Snyder, Omics Profiling in Precision Oncology, Molecular & Cellular Proteomics, vol.15, pp.2525-2536, 2016.

D. A. Schwarz, C. D. Katayama, and S. M. Hedrick, Schlafen, a new family of growth regulatory genes that affect thymocyte development, vol.9, pp.657-668, 1998.

G. Zoppoli, M. Regairaz, and E. Leo, Putative DNA/RNA helicase Schlafen-11 (SLFN11) sensitizes cancer cells to DNA-damaging agents, Proc Natl Acad Sci, vol.109, pp.15030-15035, 2012.

J. Barretina, G. Caponigro, and N. Stransky, The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity, Nature, vol.483, pp.603-607, 2012.

M. C. Pietanza, S. N. Waqar, and L. M. Krug, Randomized, Double-Blind, Phase II Study of Temozolomide in Combination With Either Veliparib or Placebo in Patients With Relapsed-Sensitive or Refractory Small-Cell Lung Cancer, J Clin Oncol JCO2018777672, 2018.

V. Nogales, W. C. Reinhold, and S. Varma, Epigenetic inactivation of the putative DNA/RNA helicase SLFN11 in human cancer confers resistance to platinum drugs, Oncotarget, vol.7, pp.3084-3097, 2016.

G. Zoppoli, S. Brohee, and C. Desmedt, Clinico-pathological and transcriptomic determinants of SLFN11 expression in invasive breast carcinoma, Journal for ImmunoTherapy of Cancer, vol.3, pp.3-5, 2015.

M. Li, E. Kao, and X. Gao, Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11, Nature, vol.491, pp.125-128, 2012.

F. Valdez, J. Salvador, and P. M. Palermo, Schlafen 11 Restricts Flavivirus Replication, 2018.

M. Razzak, Schlafen 11 naturally blocks HIV, Nature Reviews Urology, vol.9, pp.605-605, 2012.

S. Tang, S. Bilke, and L. Cao, SLFN11 Is a Transcriptional Target of EWS-FLI1 and a Determinant of Drug Response in Ewing Sarcoma, Clinical Cancer Research, vol.21, pp.4184-4193, 2015.

M. H. Kang, J. Wang, and M. R. Makena, Activity of MM-398, Nanoliposomal Irinotecan (nal-IRI), in Ewing's Family Tumor Xenografts Is Associated with High Exposure of Tumor to Drug and High SLFN11 Expression, Clinical Cancer Research, vol.21, pp.1139-1150, 2015.

L. Tian, S. Song, and X. Liu, Schlafen-11 sensitizes colorectal carcinoma cells to irinotecan, Anti-Cancer Drugs, vol.25, pp.1175-1181, 2014.

T. He, M. Zhang, and R. Zheng, Methylation of SLFN11is a marker of poor prognosis and cisplatin resistance in colorectal cancer, Epigenomics, vol.9, pp.849-862, 2017.

C. J. Stewart, Dynamic variations in epithelial-to-mesenchymal transition (EMT), ATM, and SLFN11 govern response to PARP inhibitors and cisplatin in small cell lung, pp.1-13, 2017.

B. H. Lok, E. E. Gardner, and V. E. Schneeberger, PARP Inhibitor Activity Correlates with SLFN11 Expression and Demonstrates Synergy with Temozolomide in Small Cell Lung Cancer, Clinical Cancer Research, vol.23, pp.523-535, 2017.

J. Murai, S. Tang, and E. Leo, SLFN11 Blocks Stressed Replication Forks Independently of ATR, Mol Cell, vol.69, pp.371-384, 2018.

E. E. Gardner, B. H. Lok, and V. E. Schneeberger, Chemosensitive Relapse in Small Cell Lung Cancer Proceeds through an EZH2-SLFN11 Axis, Cancer Cell, vol.31, pp.286-299, 2017.

R. Yerushalmi, R. Woods, and P. M. Ravdin, Ki67 in breast cancer: prognostic and predictive potential, Lancet Oncology, vol.11, pp.174-183, 2010.

C. Denkert, S. Loibl, and B. M. Müller, Ki67 levels as predictive and prognostic parameters in pretherapeutic breast cancer core biopsies: a translational investigation in the neoadjuvant GeparTrio trial, Ann Oncol, vol.24, pp.2786-2793, 2013.

F. Petrelli, G. Viale, and M. Cabiddu, Prognostic value of different cut-off levels of Ki-67 in breast cancer: a systematic review and meta-analysis of 64,196 patients, Breast Cancer Research and Treatment, vol.153, pp.477-491, 2015.

C. M. Focke, P. J. Van-diest, and T. Decker, St Gallen 2015 subtyping of luminal breast cancers: impact of different Ki67-based proliferation assessment methods, Breast Cancer Research and Treatment, vol.159, pp.257-263, 2016.

M. Dowsett, T. O. Nielsen, A. 'hern, and R. , Assessment of Ki67 in breast cancer: recommendations from the International Ki67 in Breast Cancer working group, J Natl Cancer Inst, vol.103, pp.1656-1664, 2011.

H. M. Ragab, N. Samy, and M. Afify, Assessment of Ki-67 as a potential biomarker in patients with breast cancer, Journal of Genetic Engineering and Biotechnology, vol.16, pp.479-484, 2018.

G. O'hurley, E. Sjöstedt, and A. Rahman, Garbage in, garbage out: A critical evaluation of strategies used for validation of immunohistochemical biomarkers, Molecular Oncology, vol.8, pp.783-798, 2014.

M. J. Duffy, C. M. Sturgeon, and G. Sölétormos, Validation of New Cancer Biomarkers: A Position Statement from the European Group on Tumor Markers, Clinical Chemistry, vol.61, pp.809-820, 2015.