K. L. Gould, N. P. Johnson, T. M. Bateman, R. S. Beanlands, F. M. Bengel et al., Anatomic versus physiologic assessment of coronary artery disease, J. Am. Coll. Cardiol, vol.62, pp.1639-1653, 2013.

D. C. Lee and N. P. Johnson, Quantification of absolute myocardial blood flow by magnetic resonance perfusion imaging, JACC-Cardiovasc. Imag, vol.2, pp.761-770, 2009.

M. Jerosch-herold, Quantification of myocardial perfusion by cardiovascular magnetic resonance, J. Cardiov. Magn. Reson, vol.12, p.57, 2010.

M. Li, T. Zhou, L. Yang, Z. Peng, J. Ding et al., Diagnostic accuracy of myocardial magnetic resonance perfusion to diagnose ischemic stenosis with fractional flow reserve as reference: systematic review and meta-analysis, JACC Cardiovasc. Imag, vol.7, pp.1098-1105, 2014.

J. P. Greenwood, N. Maredia, J. F. Younger, J. M. Brown, J. Nixon et al., Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial, Lancet, vol.379, issue.11, pp.61335-61339, 2012.

K. Kudo, S. Christensen, M. Sasaki, L. Østergaard, H. Shirato et al., Stroke Imaging Repository (STIR) Investigators, Accuracy and reliability assessment of CT and MR perfusion analysis software using a digital phantom, Radiology, vol.267, pp.201-211, 2013.

S. P. Sourbron and D. L. Buckley, Tracer kinetic modelling in MRI: estimating perfusion and capillary permeability, Phys. Med. Biol, vol.57, pp.1-33, 2012.

M. D. Cerqueira, N. J. Weissman, V. Dilsizian, A. K. Jacobs, S. Kaul et al., American heart association writing group on myocardial segmentation and registration for cardiac imaging, standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the American heart association, Int. J. Cardiovasc. Imaging, vol.18, pp.539-542, 2002.

T. F. Ismail, L. Hsu, A. M. Greve, C. Goncalves, A. Jabbour et al., Coronary microvascular ischemia in hypertrophic cardiomyopathy -a pixel-wise quantitative cardiovascular magnetic resonance perfusion study, J. Cardiov. Magn. Reson, vol.16, p.49, 2014.

T. Chitiboi, A. Hennemuth, L. Tautz, P. Stolzmann, O. F. Donati et al., Automatic detection of myocardial perfusion defects using object-based myocardium segmentation, Cardiology Conference (Cinc), pp.639-642, 2013.

P. D. Gatehouse, A. G. Elkington, N. A. Ablitt, G. Yang, D. J. Pennell et al., Accurate assessment of the arterial input function during high-dose myocardial perfusion cardiovascular magnetic resonance, J. Magn. Reson. Imaging, vol.20, pp.39-45, 2004.

H. Xue, J. Guehring, L. Srinivasan, S. Zuehlsdorff, K. Saddi et al., Evaluation of rigid and non-rigid motion compensation of cardiac perfusion MRI, Pt Ii, Proceedings, pp.35-43, 2008.

R. W. Underberg, F. J. Lagerwaard, B. J. Slotman, J. P. Cuijpers, and S. Senan, Use of maximum intensity projections (MIP) for target volume generation in 4DCT scans for lung cancer, Int. J. Radiat. Oncol. Biol. Phys, vol.63, pp.253-260, 2005.

M. S. Hansen, H. Olafsdottir, K. Sjostrand, S. G. Erbou, M. B. Stegmann et al., Ischemic segment detection using the support vector domain description, Medical Imaging 2007: Image Processing, 200765120.

S. Lloyd, Least-squares quantization in Pcm, IEEE Trans. Inf. Theory, vol.28, pp.129-137, 1982.

D. Arthur, S. Vassilvitskii, and K. , Means Plus Plus : the Advantages of Careful Seeding, 2007.

L. Raymond-dice, Measures of the amount of ecologic association between species, Ecology, vol.26, pp.297-302, 1945.

M. R. Avendi, A. Kheradvar, and H. Jafarkhani, A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI, Med. Image Anal, vol.30, pp.108-119, 2016.

X. Alba, K. Lekadir, M. Pereanez, P. Medrano-gracia, A. A. Young et al., Automatic initialization and quality control of large-scale cardiac MRI segmentations, Med. Image Anal, vol.43, pp.129-141, 2018.

A. H. Curiale, F. D. Colavecchia, P. Kaluza, R. A. Isoardi, and G. Mato, Automatic Myocardial Segmentation by Using A Deep Learning Network in Cardiac MRI, 2017.

P. V. Tran, A Fully Convolutional Neural Network for Cardiac Segmentation in Short-Axis MRI, p.494, 2016.

J. Schwitter, C. M. Wacker, N. Wilke, N. Al-saadi, E. Sauer et al., MR-IMPACT II: magnetic Resonance Imaging for Myocardial Perfusion Assessment in Coronary artery disease Trial: perfusion-cardiac magnetic resonance vs. singlephoton emission computed tomography for the detection of coronary artery disease: a comparative multicentre, multivendor trial, Eur. Heart J, vol.34, pp.775-781, 2013.

C. Daviller,

D. L. Thomas, M. F. Lythgoe, G. S. Pell, F. Calamante, and R. J. Ordidge, The measurement of diffusion and perfusion in biological systems using magnetic resonance imaging, Phys. Med. Biol, vol.45, pp.97-138, 2000.

J. P. Greenwood, N. Maredia, J. F. Younger, J. M. Brown, J. Nixon et al., Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial, Lancet, vol.379, issue.11, pp.61335-61339, 2012.

M. Li, T. Zhou, L. Yang, Z. Peng, J. Ding et al., Diagnostic accuracy of myocardial magnetic resonance perfusion to diagnose ischemic stenosis with fractional flow reserve as reference: systematic review and meta-analysis, JACC Cardiovasc Imaging, vol.7, pp.1098-1105, 2014.

M. Jerosch-herold, C. Swingen, and R. T. Seethamraju, Myocardial blood flow quantification with MRI by model-independent deconvolution, Med Phys, vol.29, pp.886-897, 2002.

O. M. Muehling, M. Jerosch-herold, P. Panse, A. Zenovich, B. V. Wilson et al., Regional heterogeneity of myocardial perfusion in healthy human myocardium: Assessment with Magnetic Resonance Perfusion Imaging, J. Cardiov. Magn. Reson, vol.6, pp.499-507, 2004.

C. Klein, S. G. Nekolla, F. M. Bengel, M. Momose, A. Sammer et al., Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging -Comparison with positron emission tomography, Circulation, vol.105, pp.162-167, 2002.

D. C. Lee and N. P. Johnson, Quantification of Absolute Myocardial Blood Flow by Magnetic Resonance Perfusion Imaging, JACC-Cardiovasc. Imag, vol.2, pp.761-770, 2009.

B. L. Gerber, S. V. Raman, K. Nayak, F. H. Epstein, P. Ferreira et al., Myocardial first-pass perfusion cardiovascular magnetic resonance: history, theory, and current state of the art, J. Cardiov. Magn. Reson, vol.10, p.18, 2008.

F. E. Mordini, T. Haddad, L. Hsu, P. Kellrnan, T. B. Lowrey et al., Diagnostic Accuracy of Stress Perfusion CMR in Comparison With Quantitative Coronary Angiography, JACC-Cardiovasc. Imag, vol.7, pp.14-22, 2014.

M. A. Neimatallah, T. L. Chenevert, R. C. Carlos, F. J. Londy, Q. Dong et al., Subclavian MR arteriography: Reduction of susceptibility artifact with short echo time and dilute gadopentetate dimeglumine, Radiology, vol.217, pp.581-586, 2000.

C. A. Cuenod and D. Balvay, Perfusion and vascular permeability: Basic concepts and measurement in DCE-CT and DCE-MRI, Diagnostic and Interventional Imaging, vol.94, pp.1187-1204, 2013.

. Jacquez, compartmental analysis in biology and medecine: second edition, 1985.

P. S. Tofts, G. Brix, D. L. Buckley, J. L. Evelhoch, E. Henderson et al., Références Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: Standardized quantities and symbols, J. Magn. Reson. Imaging, vol.10, pp.223-232, 1999.

S. P. Sourbron and D. L. Buckley, Tracer kinetic modelling in MRI: estimating perfusion and capillary permeability, Phys. Med. Biol, vol.57, pp.1-33, 2012.

K. Gould, K. Lipscomb, and G. Hamilton, Physiologic Basis for Assessing Critical Coronary Stenosis -Instantaneous Flow Response and Regional Distribution During Coronary Hyperemia as Measures of Coronary Flow Reserve, Am. J. Cardiol, vol.33, pp.90743-90750, 1974.

K. L. Gould, Does Coronary Flow Trump Coronary Anatomy?, vol.2, pp.1146-1146, 2009.

Q. Cuisset, C. Qu, and &. , est-ce que la FFR ? Comment l'utiliser ?, pp.45-49

K. C. Wu, E. A. Zerhouni, R. M. Judd, C. H. Lugo-olivieri, L. A. Barouch et al., Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction, Circulation, vol.97, pp.765-772, 1998.

R. Nijveldt, P. A. Van-der-vleuten, A. Hirsch, A. M. Beek, R. A. Tio et al., Early Electrocardiographic Findings and MR Imaging-Verified Microvascular Injury and Myocardial Infarct Size, vol.2, pp.1187-1194, 2009.

A. A. Cochet, L. Lorgis, A. Lalande, M. Zeller, J. Beer et al., Major prognostic impact of persistent microvascular obstruction as assessed by contrast-enhanced cardiac magnetic resonance in reperfused acute myocardial infarction, Eur. Radiol, vol.19, pp.2117-2126, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00787362

M. D. Cerqueira, N. J. Weissman, V. Dilsizian, A. K. Jacobs, S. Kaul et al., American Heart Association Writing Group on Myocardial Segmentation and Registration for Cardiac Imaging, Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on, Clinical Cardiology of the American Heart Association, vol.18, pp.539-542, 2002.

A. Haase, Principles and applications of FLASH NMR imaging, Magn. Reson. Mat. Phys. Biol. Med, vol.2, pp.157-160, 1994.

F. Bloch, Nuclear Induction, Physical Review, vol.70, 1946.

M. Décorps, Imagerie de résonance magnétique, 2011.

R. Ernst and W. Anderson, Application of Fourier Transform Spectroscopy to Magnetic Resonance, Rev. Sci. Instrum, vol.37, p.93, 1966.

J. Hennig, K-space sampling strategies, Eur. Radiol, vol.9, pp.1020-1031, 1999.

P. D. Gatehouse, A. G. Elkington, N. A. Ablitt, G. Yang, D. J. Pennell et al., Accurate assessment of the arterial input function during high-dose myocardial perfusion cardiovascular magnetic resonance, J Magn Reson Imaging, vol.20, pp.39-45, 2004.

H. Weinmann, R. Brasch, W. Press, and G. Wesbey, Characteristics of Gadolinium-Dtpa Complex -a Potential Nmr Contrast Agent, Am. J. Roentgenol, vol.142, pp.619-624, 1984.

. Références,

V. M. Runge, Characteristics of Gadolinium-DTPA Complex: A Potential NMR Contrast Agent, Am. J. Roentgenol, vol.190, pp.1433-1434, 2008.

M. Jerosch-herold, Quantification of myocardial perfusion by cardiovascular magnetic resonance, J. Cardiov. Magn. Reson, vol.12, p.57, 2010.

G. Brix, L. Schad, M. Deimling, and W. Lorenz, Fast and Precise T1 Imaging Using a Tomrop Sequence, Magn. Reson. Imaging, vol.8, p.90041, 1990.

J. P. Vallee, H. D. Sostman, J. R. Macfall, T. Wheeler, L. W. Hedlund et al., MRI quantitative myocardial perfusion with compartmental analysis: A rest and stress study, Magn.Reson.Med, vol.38, pp.981-989, 1997.

D. Mcrobbie, MRI from picture to proton, 2007.

R. Brasch, New Directions in the Development of Mr Imaging Contrast-Media, Radiology, vol.183, pp.1-11, 1992.

E. Kanal, K. Maravilla, and H. A. Rowley, Gadolinium Contrast Agents for CNS Imaging: Current Concepts and Clinical Evidence, Am. J. Neuroradiol, vol.35, pp.2215-2226, 2014.

K. Zierler, Equations for Measuring Blood Flow by External Monitoring of Radioisotopes, Circ.Res, vol.16, p.309, 1965.

C. M. Wacker, F. Fidler, C. Dueren, S. Hirn, P. M. Jakob et al., Quantitative assessment of myocardial perfusion with a spin-labeling technique: Preliminary results in patients with coronary artery disease, J. Magn. Reson. Imaging, vol.18, pp.555-560, 2003.

G. A. Keith, C. T. Rodgers, M. A. Chappell, and M. D. Robson, A look-locker acquisition scheme for quantitative myocardial perfusion imaging with FAIR arterial spin labeling in humans at 3 tesla, Magn. Reson. Med, vol.78, pp.541-549, 2017.

F. Kober, T. Jao, T. Troalen, and K. S. Nayak, Myocardial arterial spin labeling, J. Cardiov. Magn. Reson, vol.18, p.22, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01425517

E. Botvinick, Current methods of pharmacologic stress testing and the potential advantages of new agents, vol.37, pp.14-25, 2009.

G. Siasos, V. Tsigkou, M. Zaromytidou, J. D. Sara, A. Varshney et al., Role of local coronary blood flow patterns and shear stress on the development of microvascular and epicardial endothelial dysfunction and coronary plaque, Curr. Opin. Cardiol, vol.33, pp.638-644, 2018.

D. D. Bellamy, R. S. Pereira, C. A. Mckenzie, F. S. Prato, D. J. Drost et al., Gd-DTPA bolus tracking in the myocardium using T-1 fast acquisition relaxation mapping (T-1 FARM), vol.46, pp.555-564, 2001.

T. F. Christian, R. S. Aletras, A. E. Balaban, and . Arai, Absolute quantification of high contrast dose perfusion imaging can be repeated at two hours despite elevated baseline

J. P. Vallee, F. Lazeyras, L. Kasuboski, P. Chatelain, N. Howarth et al., Quantification of myocardial perfusion with FAST sequence and Gd bolus in patients with normal cardiac function, JMRI-J. Magn. Reson. Imaging, vol.9, pp.197-203, 1999.

. Références,

W. Utz, A. Greiser, T. Niendorf, R. Dietz, and J. Schulz-menger, Single-or dual-bolus approach for the assessment of myocardial perfusion reserve in quantitative MR perfusion imaging, Magn. Reson. Med, vol.59, pp.1373-1377, 2008.

H. B. Larsson, S. Rosenbaum, and T. Fritz-hansen, Quantification of the effect of water exchange in dynamic contrast MRI perfusion measurements in the brain and heart, Magn. Reson. Med, vol.46, pp.272-281, 2001.

T. Niendorf and D. K. Sodickson, Parallel imaging in cardiovascular MRI: methods and applications, vol.19, pp.325-341, 2006.

K. P. Pruessmann, M. Weiger, M. B. Scheidegger, and P. Boesiger, SENSE: Sensitivity encoding for fast MRI, Magn. Reson. Med, vol.42, pp.952-962, 1999.

P. Kellman, F. H. Epstein, and E. R. Mcveigh, Adaptive sensitivity encoding incorporating temporal filtering (TSENSE), Magn. Reson. Med, vol.45, pp.846-852, 2001.

M. A. Griswold, P. M. Jakob, R. M. Heidemann, M. Nittka, V. Jellus et al., Generalized Autocalibrating Partially Parallel Acquisitions (GRAPPA), vol.47, pp.1202-1210, 2002.

D. K. Sodickson and W. J. Manning, Simultaneous acquisition of spatial harmonics (SMASH): Fast imaging with radiofrequency coil arrays, Magn.Reson.Med, vol.38, pp.591-603, 1997.

D. Sodikson, Spatial Encoding Using Multiple rf Coils: SMASH Imaging and Parallel MRI, 2007.

P. M. Jakob, M. A. Griswold, R. R. Edelman, and D. K. Sodickson, AUTO-SMASH: A selfcalibrating technique for SMASH imaging, Magn. Reson. Mat. Phys. Biol. Med, vol.7, pp.42-54, 1998.

R. M. Heidemann, M. A. Griswold, A. Haase, and P. M. Jakob, VD-AUTO-SMASH imaging, Magn. Reson. Med, vol.45, pp.1066-1074, 2001.

P. Roemer, W. Edelstein, C. Hayes, S. Souza, and O. Mueller, The Nmr Phased-Array, Magn.Reson.Med, vol.16, pp.192-225, 1990.

M. Blaimer, F. Breuer, M. Mueller, R. Heidemann, M. A. Griswold et al., GRAPPA: how to choose the optimal method, Topics in Magnetic Resonance Imaging, vol.15, pp.223-259, 2004.

B. J. Wintersperger, K. Nikolaou, O. Dietrich, J. Rieber, M. Nittka et al., Single breath-hold real-time cine MR imaging: improved temporal resolution using generalized autocalibrating partially parallel acquisition (GRAPPA) algorithm, Eur. Radiol, vol.13, pp.1931-1936, 2003.

R. Heidemann, P. M. Jakob, M. A. Griswold, and D. Porter, Minimizing Distortions and Blurring in Diffusion Weighted Single Shot EPI using High Performance Gradients in Combination with Parallel Imaging, 2001.

R. Heidemann, M. A. Griswold, and B. Kiefer, Resolution enhancement in lung 1H imaging using parallel imaging methods, Magnetic Resonnace in Medicine, vol.49, pp.391-394, 2003.

D. Wicks, G. Barker, and P. Tofts, Correction of Intensity Nonuniformity in Mr Images of Any Orientation, Magn. Reson. Imaging, vol.11, issue.93, pp.90023-90030, 1993.

E. Plante and L. Turkstra, Sources of Error in the Quantitative-Analysis of Mri Scans, Magn. Reson. Imaging, vol.9, pp.589-595, 1991.

A. Simmons, P. Tofts, G. Barker, and S. Arridge, Sources of Intensity Nonuniformity in Spin-Echo Images at 1.5-T, Magn.Reson.Med, vol.32, pp.121-128, 1994.

. Références,

J. Haselgrove and M. Prammer, An algorithm for compensation of surface-coil images for sensitivity of the surface coil, Magnetic Resonance Imaging, vol.4, pp.469-472, 1986.

E. Mcveigh, M. Bronskill, and R. Henkelman, Phase and Sensitivity of Receiver Coils in Magnetic-Resonance-Imaging, Med. Phys, vol.13, pp.806-814, 1986.

U. Vovk, F. Pernus, and B. Likar, A review of methods for correction of intensity inhomogeneity in MRI, IEEE Trans. Med. Imaging, vol.26, pp.405-421, 2007.

C. Hayes, W. Edelstein, J. Schenck, O. Mueller, and M. Eash, An Efficient, Highly Homogeneous Radiofrequency Coil for Whole-Body Nmr Imaging at 1.5-T, J. Magn. Reson, vol.63, pp.622-628, 1985.

J. G. Sled and G. B. Pike, Standing-wave and RF penetration artifacts caused by elliptic geometry: An electrodynamic analysis of MRI, IEEE Trans. Med. Imaging, vol.17, pp.653-662, 1998.

S. Prima, N. Ayache, T. Barrick, and N. Roberts, Maximum Likelihood Estimation of the Bias Field in MR Brain Images: Investigating Different Modelings of the Imaging Process, 2001.
URL : https://hal.archives-ouvertes.fr/inria-00615873

J. Sijbers, A. J. Dekker, P. Scheunders, and D. Van-dyck, Maximum-likelihood estimation of Rician distribution parameters, IEEE Trans. Med. Imaging, vol.17, pp.357-361, 1998.

W. M. Wells, W. E. Grimson, R. Kikinis, and F. A. Jolesz, Adaptive segmentation of MRI data, IEEE Trans. Med. Imaging, vol.15, pp.429-442, 1996.

M. H. Hoffmann, F. T. Schmid, M. Jeltsch, A. Wunderlich, J. L. Duerk et al., Multislice MR first-pass myocardial perfusion imaging: Impact of the receiver coil array, J. Magn. Reson. Imaging, vol.21, pp.310-316, 2005.

S. Roy, A. Carass, P. Bazin, and J. L. Prince, Intensity Inhomogeneity Correction of Magnetic Resonance Images using Patches, Proc SPIE Int Soc Opt Eng, vol.7962, p.79621, 2011.

F. P. Kremers, M. B. Hofman, J. G. Groothuis, M. Jerosch-herold, A. M. Beek et al., Improved Correction of Spatial Inhomogeneities of Surface Coils in Quantitative Analysis of First-Pass Myocardial Perfusion Imaging, J. Magn. Reson. Imaging, vol.31, pp.227-233, 2010.

H. Mihara, N. Iriguchi, and S. Ueno, A method of RF inhomogeneity correction in MR imaging, Magn. Reson. Mat. Phys. Biol. Med, vol.7, pp.115-120, 1998.

L. Y. Hsu, K. L. Rhoads, J. E. Holly, P. Kellman, A. H. Aletras et al., Quantitative myocardial perfusion analysis with a dual-bolus contrast-enhanced first-pass MRI technique in humans, J. Magn. Reson. Imaging, vol.23, pp.315-322, 2006.

L. Y. Hsu, K. L. Rhoads, A. H. Aletras, and A. E. Arai, Surface coil intensity correction and non-linear intensity normalization improve pixel-resolution parametric maps of myocardial MRI perfusion, Medical Image Computing and Computer-Assisted Intervention -Miccai, vol.2, pp.975-976, 2003.

P. Kellman and A. E. Arai, Imaging sequences for first pass perfusion -A review, J. Cardiov. Magn. Reson, vol.9, pp.525-537, 2007.

S. Nielles-vallespin, P. Kellman, L. Hsu, and A. E. Arai, FLASH proton density imaging for improved surface coil intensity correction in quantitative and semi-quantitative SSFP perfusion cardiovascular magnetic resonance, J. Cardiov. Magn. Reson, vol.17, p.16, 2015.

. Références,

A. Cernicanu and L. , Theory-based signal calibration with single-point T1 measurements for first-pass quantitative perfusion MRI studies. -PubMed -NCBI, 2018.

W. Perl, N. Lassen, and R. Effros, Matrix Proof of Flow, Volume and Mean Transit-Time Theorems for Regional and Compartmental Systems, Bull. Math. Biol, vol.37, pp.80049-80057, 1975.

J. Bassingthwaighte, E. Butterworth, B. Jardine, G. Raymond, and M. Neal, JSim, an opensource modeling system for data analysis and reproducibility in research, Faseb J, vol.28, 2014.

D. Peukert, N. Kaufels, M. Laule, J. Schnorr, S. Carme et al., Improved evaluation of myocardial perfusion and viability with the magnetic resonance blood pool contrast agent P792 in a nonreperfused porcine infarction model, Invest. Radiol, vol.42, pp.248-255, 2007.

T. Boutelier, K. Kudo, F. Pautot, and M. Sasaki, Bayesian Hemodynamic Parameter Estimation by Bolus Tracking Perfusion Weighted Imaging, IEEE Trans. Med. Imaging, vol.31, pp.1381-1395, 2012.

S. Sourbron, M. Ingrisch, A. Siefert, M. Reiser, and K. Herrmann, Quantification of Cerebral Blood Flow, Cerebral Blood Volume, and Blood-Brain-Barrier Leakage with DCE-MRI, Magn. Reson. Med, vol.62, pp.205-217, 2009.

L. , Tissue Mean Transit-Time from Dynamic Computed-Tomography by a Simple Deconvolution Technique, Invest. Radiol, vol.18, pp.94-99, 1983.

M. Jerosch-herold, N. Wilke, A. E. Stillman, and R. F. Wilson, Magnetic resonance quantification of the myocardial perfusion reserve with a Fermi function model for constrained deconvolution, Med. Phys, vol.25, pp.73-84, 1998.

S. Pica, G. Di-giovine, M. Bollati, L. Testa, F. Bedogni et al., Cardiac magnetic resonance for ischaemia and viability detection. Guiding patient selection to revascularization in coronary chronic total occlusions: The CARISMA_CTO study design, Int. J. Cardiol, vol.272, pp.356-362, 2018.

G. S. Werner, V. Martin-yuste, D. Hildick-smith, N. Boudou, G. Sianos et al., A randomized multicentre trial to compare revascularization with optimal medical therapy for the treatment of chronic total coronary occlusions, Eur. Heart J, vol.39, pp.2484-2493, 2018.

J. P. Henriques, L. P. Hoebers, T. Ramunddal, P. Laanmets, E. Eriksen et al., Percutaneous Intervention for Concurrent Chronic Total Occlusions in Patients With STEMI The EXPLORE Trial, J. Am. Coll. Cardiol, vol.68, pp.1622-1632, 2016.

M. M. Brooks, W. E. Boden, and R. L. Frye, Clinical implications of the BARI 2D and COURAGE trials: overview, Coronary Artery Dis, vol.21, pp.383-385, 2010.

. Références,

T. Baks, R. J. Van-geuns, D. J. Duncker, F. Cademartiri, N. R. Mollet et al., Prediction of left ventricular function after drug-eluting stent implantation for chronic total coronary occlusions, J. Am. Coll. Cardiol, vol.47, pp.721-725, 2006.

R. J. Kim, E. Wu, A. Rafael, E. L. Chen, M. A. Parker et al., The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction, N. Engl. J. Med, vol.343, pp.1445-1453, 2000.

S. W. Kirschbaum, T. Baks, M. Van-den-ent, G. Sianos, G. P. Krestin et al., Evaluation of left ventricular function three years after percutaneous recanalization of chronic total coronary occlusions, Am. J. Cardiol, vol.101, pp.179-185, 2008.

G. Vincenti, P. G. Masci, P. Monney, T. Rutz, S. Hugelshofer et al., Stress Perfusion CMR in Patients With Known and Suspected CAD, vol.10, pp.526-537, 2017.

C. Jaarsma, T. Leiner, S. C. Bekkers, H. J. Crijns, J. E. Wildberger et al., Diagnostic Performance of Noninvasive Myocardial Perfusion Imaging Using Single-Photon Emission Computed Tomography, Cardiac Magnetic Resonance, and Positron Emission Tomography Imaging for the Detection of Obstructive Coronary Artery Disease A Meta-Analysis, J. Am. Coll. Cardiol, vol.59, pp.1719-1728, 2012.

M. Jerosch-herold, R. T. Seethamraju, C. M. Swingen, N. M. Wilke, and A. E. Stillman, Analysis of myocardial perfusion MRI, J. Magn. Reson. Imaging, vol.19, pp.758-770, 2004.

K. Kudo, S. Christensen, M. Sasaki, L. Østergaard, H. Shirato et al., Stroke Imaging Repository (STIR) Investigators, Accuracy and reliability assessment of CT and MR perfusion analysis software using a digital phantom, Radiology, vol.267, pp.201-211, 2013.

K. Kudo, . Christensen, . Sasaki, . Fujiwara, . Ishizaka et al., Acuracy and Reliability of Post-Processing Software for DSC MR Perfusion: Quantitative Analysis by Digital Phantom Data, 2010.

F. Calamante and A. Connelly, Perfusion Precision in Bolus-Tracking MRI: Estimation Using the Wild-Bootstrap Method, Magn. Reson. Med, vol.61, pp.696-704, 2009.

K. Kudo, T. Boutelier, F. Pautot, K. Honjo, J. Hu et al., Bayesian Analysis of Perfusion-weighted Imaging to Predict Infarct Volume: Comparison with Singular Value Decomposition, Magn. Reson. Med. Sci, vol.13, pp.45-50, 2014.

K. L. Gould, N. P. Johnson, T. M. Bateman, R. S. Beanlands, F. M. Bengel et al., Anatomic Versus Physiologic Assessment of Coronary Artery Disease, J. Am. Coll. Cardiol, vol.62, pp.1639-1653, 2013.

P. Knaapen, Quantitative myocardial blood flow imaging: not all flow is equal, European Journal of Nuclear Medicine and Molecular Imaging, vol.41, pp.116-118, 2014.

. Références,

J. Schwitter, C. M. Wacker, N. Wilke, N. Al-saadi, E. Sauer et al., Magnetic Resonance Imaging for Myocardial Perfusion Assessment in Coronary artery disease Trial: perfusion-cardiac magnetic resonance vs. single-photon emission computed tomography for the detection of coronary artery disease: a comparative multicentre, multivendor trial, Eur Heart J, vol.34, pp.775-781, 2013.

A. Cernicanu and L. , Theory-based signal calibration with single-point T1 measurements for first-pass quantitative perfusion MRI studies, Acad. Radiol, vol.13, pp.686-693, 2006.

N. A. Pack and E. V. Dibella, Comparison of Myocardial Perfusion Estimates From Dynamic Contrast-Enhanced Magnetic Resonance Imaging With Four Quantitative Analysis Methods, Magn. Reson. Med, vol.64, pp.125-137, 2010.

. Klingensmith, The Mathematics and Biology of the Biodistribution of Radiopharmaceuticals -A Clinical Perspective -Chapter, p.59, 2016.

L. Ostergaard, R. M. Weisskoff, D. A. Chesler, C. Gyldensted, and B. R. Rosen, High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis, Magn Reson Med, vol.36, pp.715-725, 1996.

F. Calamante, D. G. Gadian, and A. Connelly, Quantification of bolus-tracking MRI: Improved characterization of the tissue residue function using Tikhonov regularization, Magn Reson Med, vol.50, pp.1237-1247, 2003.

O. Wu, L. Østergaard, R. M. Weisskoff, T. Benner, B. R. Rosen et al., Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix, Magn Reson Med, vol.50, pp.164-174, 2003.

M. Jerosch-herold, X. D. Hu, N. S. Murthy, and R. T. Seethamraju, Time delay for arrival of MR contrast agent in collateral-dependent myocardium, IEEE Trans. Med. Imaging, vol.23, pp.881-890, 2004.

O. M. Muehling, A. Huber, C. Cyran, S. O. Schoenberg, M. Reiser et al., The delay of contrast arrival in magnetic resonance firstpass perfusion imaging: a novel non-invasive parameter detecting collateral-dependent myocardium, Heart, vol.93, pp.842-847, 2007.

M. Jacobs, M. Benovoy, L. Chang, A. E. Arai, and L. Hsu, Evaluation of an automated method for arterial input function detection for first-pass myocardial perfusion cardiovascular magnetic resonance, J Cardiovasc Magn Reson, vol.18, p.17, 2016.

K. P. Kunze, C. Rischpler, C. Hayes, T. Ibrahim, K. Laugwitz et al., Measurement of Extracellular Volume and Transit Time Heterogeneity Using Contrast-Enhanced Myocardial Perfusion MRI in Patients After Acute Myocardial Infarction, Magn. Reson. Med, vol.77, pp.2320-2330, 2017.

L. Hsu, D. W. Groves, A. H. Aletras, P. Kellman, and A. E. Arai, A Quantitative Pixel-Wise Measurement of Myocardial Blood Flow by Contrast-Enhanced First-Pass CMR Perfusion Imaging Microsphere Validation in Dogs and Feasibility Study in Humans, JACC-Cardiovasc. Imag, vol.5, pp.154-166, 2012.

D. A. Broadbent, J. D. Biglands, A. Larghat, S. P. Sourbron, A. Radjenovic et al., Myocardial Blood Flow at Rest and Stress Measured with Dynamic Contrast-Enhanced MRI: Comparison of a Distributed Références Parameter Model with a Fermi Function Model, Magn. Reson. Med, vol.70, pp.1591-1597, 2013.

P. Kellman, M. S. Hansen, S. Nielles-vallespin, J. Nickander, R. Themudo et al., Myocardial perfusion cardiovascular magnetic resonance: optimized dual sequence and reconstruction for quantification, J Cardiovasc Magn Reson, vol.19, p.43, 2017.

G. Papanastasiou, M. C. Williams, M. R. Dweck, S. Alam, A. Cooper et al., Quantitative assessment of myocardial blood flow in coronary artery disease by cardiovascular magnetic resonance: comparison of Fermi and distributed parameter modeling against invasive methods, J Cardiovasc Magn Reson, vol.18, p.57, 2016.

T. H. Giang, D. Nanz, R. Coulden, M. Friedrich, M. Graves et al., Detection of coronary artery disease by magnetic resonance myocardial perfusion imaging with various contrast medium doses: first European multi-centre experience, Eur. Heart J, vol.25, pp.1657-1665, 2004.

J. Schwitter, C. M. Wacker, A. C. Van-rossum, M. Lombardi, N. Al-saadi et al., MR-IMPACT: comparison of perfusion-cardiac magnetic resonance with single-photon emission computed tomography for the detection of coronary artery disease in a multicentre, multivendor, randomized trial, Eur. Heart J, vol.29, pp.480-489, 2008.

T. F. Ismail, L. Hsu, A. M. Greve, C. Goncalves, A. Jabbour et al., Coronary microvascular ischemia in hypertrophic cardiomyopathy -a pixel-wise quantitative cardiovascular magnetic resonance perfusion study, J. Cardiov. Magn. Reson, vol.16, p.49, 2014.

T. Chitiboi, A. Hennemuth, L. Tautz, P. Stolzmann, O. F. Donati et al., Automatic Detection of Myocardial Perfusion Defects using Object-based Myocardium Segmentation, Cardiology Conference (Cinc), pp.639-642, 2013.

S. Mure, T. Grenier, D. S. Meier, C. R. Guttmann, and H. Benoit-cattin, Unsupervised spatio-temporal filtering of image sequences. A mean-shift specification, Pattern Recognit. Lett, vol.68, pp.48-55, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01206150

M. S. Hansen, H. Olafsdottir, K. Sjostrand, S. G. Erbou, M. B. Stegmann et al., Ischemic segment detection using the support vector domain description, Medical Imaging 2007: Image Processing, vol.1, p.65120, 2007.

C. Frindel, M. Robini, and D. Rousseau, A 3-D spatio-temporal deconvolution approach for MR perfusion in the brain, Medical Image Analysis, vol.18, pp.144-160, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00977610