, Les expériences ont permis de mieux comprendre les différentes origines de cette dépolarisation, et certaines observations ont été bien reproduites par la modélisation, ce qui nous a permis d'améliorer le maintien de polarisation. Un élément clé de ce maintien est le dispositif de grossissement accordable, qui permet de minimiser la dépolarisation de l'objectif de microscope en permettant d

, le rapport signal sur bruit n'étant pas assez bon pour extraire la résonance du bruit sur la caméra même sur des temps d'acquisition de plusieurs dizaines de minutes. Le principal élément limitant est l'objectif de microscope. Nous ne pouvons pas utiliser les objectifs possédant le meilleur maintien de polarisation car ceux-ci possèdent des distances de travail trop courtes pour pouvoir travailler avec un cryostat

, Les auteurs observent des nanotubes de carbone de plusieurs nanomètres de diamètre mais estiment avoir une sensibilité suffisante pour observer les objets 1D de petit diamètre (jusqu'à 0,3 nm pour les nanotubes de carbone)

, Toutefois, il est peut-être possible de surmonter la difficulté d'une ouverture numérique importante en utilisant un milieu quasi-homogène à l'interface sur laquelle sont déposés les nanotubes. Cette configuration, que l'on nomme adaptation d'indice (index matching), réduirait considérablement la quantité de lumière réfléchie et permettrait d'observer la transition S 11 des (6,5) à froid sans le besoin d'un dispositif de maintien de polarisation. C'est ce genre de configuration qui a été utilisé pour observer des nanoparticules d'or extrêmement petites (jusqu'à quelques nanomètres, Mais atteindre une grande ouverture numérique est compliqué à basse température, où l'utilisation d'huile optique est impossible

, Cette technique a également été utilisée sur des (6,5) individuels dans l'équipe de Achim Hartschuh au LMU à Munich. Ces résultats ne sont pas publiés mais rapportés dans le manuscrit de thèse de Tobias Gokus, vol.85

, Ces deux études ont néanmoins été réalisées à température ambiante avec des huiles optiques pour réaliser l'adaptation d'indice, ce qui n

, L'utilisation d'une lentille à immersion solide d'indice proche de celui du substrat est une voie envisageable pour réaliser un dispositif d'adaptation d'indice possédant une grande ouverture numérique et compatible avec les températures cryogéniques

, Le dispositif de photoluminescence à température cryogénique a permis de mener une étude de super-résolution hyperspectrale sur des échantillons de (6,5) individuels présentant des raies de photoluminescence multiples à basse température. Leur présence est attribuée à une répartition spatiale de pièges excitoniques qui localisent

. Lv-radushkevich and . Lukyanovich, O strukture ugleroda, obrazujucegosja pri termiceskom razlozenii okisi ugleroda na zeleznom kontakte, Zurn Fisic Chim, vol.26, issue.1, p.5, 1952.

S. Iijima, Helical microtubules of graphitic carbon, Nature, vol.354, issue.6348, p.26, 1991.

. Ds-bethune, H. Ch, . Kiang, G. Ms-de-vries, R. Gorman et al., Cobalt-catalysed growth of carbon nanotubes with single-atomiclayer walls, Nature, vol.363, issue.6430, p.6, 1993.

S. Iijima and T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature, vol.363, issue.6430, pp.603-605, 1993.

T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi et al., Electrical conductivity of individual carbon nanotubes, Nature, vol.382, p.54, 1996.

M. S. Dresselhaus, G. Dresselhaus, and R. Saito, Physics of carbon nanotubes. Carbon, vol.33, issue.7, p.29, 1995.

A. Jorio, G. Dresselhaus, and M. S. Dresselhaus, Carbon Nanotubes : Advanced Topics in the Synthesis, Structure, Properties, and Applications. Number v. 111 in Topics in applied physics, vol.29, p.56, 2008.

R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and P. Avouris, Single-and multi-wall carbon nanotube field-effect transistors, Applied Physics Letters, vol.73, issue.17, pp.2447-2449, 1998.

M. M. Shulaker, G. Hills, N. Patil, H. Wei, H. Chen et al., Carbon nanotube computer, vol.501, issue.7468, pp.526-530, 2013.

J. M. Adriaan, . Mackus, F. W. Nick, . Thissen, J. L. Johannes et al., Resist-free fabricated carbon nanotube field-effect transistors with highquality atomic-layer-deposited platinum contacts, Applied Physics Letters, vol.110, issue.1, p.13101, 2001.

Y. Liu, S. Wang, H. Liu, and L. Peng, Carbon nanotubebased three-dimensional monolithic optoelectronic integrated system, Nature Communications, vol.8, p.15649, 2001.

M. J. O'connell, S. M. Bachilo, C. B. Huffman, and . Bruce-weisman, Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes, Science, vol.297, issue.5581, pp.593-596, 2002.

T. Ando, Excitons in carbon nanotubes, JPSJ, vol.66, issue.4, pp.1066-1073, 1997.

J. W. Mintmire and C. T. White, Universal Density of States for Carbon Nanotubes, Physical Review Letters, vol.81, issue.12, p.14, 1998.

T. W. Odom, J. Huang, P. Kim, and C. M. Lieber, Atomic structure and electronic properties of single-walled carbon nanotubes, Nature, vol.391, issue.6662, pp.62-64, 1998.

W. G. Jeroen, . Wilder, C. Liesbeth, A. G. Venema, R. E. Rinzler et al., Electronic structure of atomically resolved carbon nanotubes, Nature, vol.391, issue.6662, p.59, 1998.

M. S-m-bachilo, C. Strano, R. Kittrell, R. Hauge, R. Smalley et al., Structure-assigned optical spectra of single-walled carbon nanotubes, Science, vol.298, issue.5602, p.158, 2002.

H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki et al., Optical properties of single-wall carbon nanotubes, Synthetic Metals, vol.103, issue.1-3, p.17, 1999.

C. L. Kane and E. J. Mele, Electron Interactions and Scaling Relations for Optical Excitations in Carbon Nanotubes, Physical Review Letters, vol.93, issue.19, p.197402, 1920.

J. Maultzsch, R. Pomraenke, S. Reich, E. Chang, D. Prezzi et al., Exciton binding energies in carbon nanotubes from two-photon photoluminescence, Physical Review B, vol.72, issue.24, p.108, 1920.

F. Wang, G. Dukovic, L. E. Brus, and T. F. Heinz, The optical resonances in carbon nanotubes arise from excitons, Science, vol.308, issue.5723, pp.838-840, 2005.

. Claus-f-klingshirn, Semiconductor Optics, p.108, 1920.

K. Matsuda, Y. Kanemitsu, K. Irie, T. Saiki, T. Someya et al., Photoluminescence intermittency in an individual single-walled carbon nanotube at room temperature, Applied Physics Letters, vol.86, issue.12, p.123116, 2002.

H. Htoon, M. J. O'connell, P. J. Cox, S. K. Doorn, and V. I. Klimov, Low Temperature Emission Spectra of Individual Single-Walled Carbon Nanotubes: Multiplicity of Subspecies within Single-Species Nanotube Ensembles, Physical Review Letters, vol.93, issue.2, p.151, 2003.

J. Lefebvre, P. Finnie, and Y. Homma, Temperature-dependent photoluminescence from single-walled carbon nanotubes, Physical Review B, vol.70, issue.4, p.151, 2004.

. Bibliographie,

C. Georgi, M. Böhmler, H. Qian, L. Novotny, and A. Hartschuh, Probing exciton propagation and quenching in carbon nanotubes with near-field optical microscopy. physica status solidi (b), vol.246, p.119, 2009.

C. Georgi, A. A. Green, M. C. Hersam, and A. Hartschuh, Probing Exciton Localization in Single-Walled Carbon Nanotubes Using High-Resolution Near-Field Microscopy, ACS Nano, vol.4, issue.10, p.152, 2010.

A. Högele, C. Galland, M. Winger, and A. Imamolu, Photon antibunching in the photoluminescence spectra of a single carbon nanotube, Physical Review Letters, vol.100, issue.21, p.135, 2008.

F. Wang, G. Dukovic, E. Knoesel, L. E. Brus, and T. F. Heinz, Observation of rapid Auger recombination in optically excited semiconducting carbon nanotubes, Physical Review B, vol.70, issue.24, p.108, 2004.

M. S. Hofmann, J. Noé, A. Kneer, J. J. Crochet, and A. Högele, Ubiquity of Exciton Localization in Cryogenic Carbon Nanotubes, Nano Letters, vol.16, issue.5, p.151, 2016.

M. W. Graham, Y. Ma, A. A. Green, M. C. Hersam, and G. R. Fleming, Pure optical dephasing dynamics in semiconducting single-walled carbon nanotubes, The Journal of Chemical Physics, vol.134, issue.3, p.34504, 2002.

D. Schilling, C. Mann, P. Kunkel, F. Schöppler, and T. Hertel, Ultrafast Spectral Exciton Diffusion in Single-Wall Carbon Nanotubes Studied by Time-Resolved Hole Burning, The Journal of Physical Chemistry C, vol.119, issue.42, pp.24116-24123, 2002.

C. Galland, A. Högele, H. E. Türeci, and A. Imamo?lu, Non-Markovian Decoherence of Localized Nanotube Excitons by Acoustic Phonons, Physical Review Letters, vol.101, issue.6, p.155, 2008.

F. Vialla, Y. Chassagneux, R. Ferreira, C. Roquelet, C. Diederichs et al., Unifying the low-temperature photoluminescence spectra of carbon nanotubes: The role of acoustic phonon confinement, Physical Review Letters, vol.113, issue.5, p.155, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01066160

A. Hagen, M. Steiner, M. B. Raschke, C. Lienau, T. Hertel et al., Exponential Decay Lifetimes of Excitons in Individual Single-Walled Carbon Nanotubes, Physical Review Letters, vol.95, issue.19, p.154, 1920.

J. S. Lauret, C. Voisin, S. Berger, G. Cassabois, C. Delalande et al., Environmental effects on the carrier dynamics in carbon nanotubes, Physical Review B, vol.72, issue.11, p.113413, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00096347

A. Jeantet, Y. Chassagneux, C. Raynaud, P. Roussignol, J. Lauret et al., Widely tunable single-photon source from a carbon nanotube in the Purcell regime, Physical Review Letters, vol.116, issue.24, p.154, 0111.

S. Khasminskaya, F. Pyatkov, K. S?owik, S. Ferrari, O. Kahl et al., Fully integrated quantum photonic circuit with an electrically driven light source, Nature Photonics, vol.10, issue.11, p.109, 2016.

F. Pyatkov, V. Fütterling, S. Khasminskaya, B. S. Flavel, F. Hennrich et al., Cavity-enhanced light emission from electrically driven carbon nanotubes, Nature Photonics, vol.10, p.420, 2003.

X. He, H. Htoon, S. K. Doorn, W. H. Pernice, F. Pyatkov et al., Carbon nanotubes as emerging quantum-light sources, Nature Materials, issue.3, p.1, 2018.

J. Lauret, C. Voisin, G. Cassabois, C. Delalande, . Ph et al., Ultrafast Carrier Dynamics in Single-Wall Carbon Nanotubes, Physical Review Letters, vol.90, issue.5, p.154, 1920.
URL : https://hal.archives-ouvertes.fr/hal-00018421

K. Liu, X. Hong, Q. Zhou, C. Jin, J. Li et al., High-throughput optical imaging and spectroscopy of individual carbon nanotubes in devices, Nature Nanotechnology, vol.8, issue.12, p.184, 1991.

J. C. Noé, M. Nutz, J. Reschauer, N. Morell, I. Tsioutsios et al., Environmental Electrometry with Luminescent Carbon Nanotubes, Nano Letters, vol.18, issue.7, p.186, 2018.

M. Monthioux and V. L. Kuznetsov, Who should be given the credit for the discovery of carbon nanotubes? Carbon, vol.44, pp.1621-1623, 2005.

K. Liu, W. Wang, M. Wu, F. Xiao, X. Hong et al., Intrinsic radial breathing oscillation in suspended single-walled carbon nanotubes, Physical Review B, vol.83, issue.11, p.113404, 2011.

R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, vol.6, p.7, 1998.

A. H. Castro-neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Reviews of Modern Physics, vol.81, issue.1, p.11, 2009.

G. W. Semenoff, Condensed-Matter Simulation of a Three-Dimensional Anomaly, Physical Review Letters, vol.53, issue.26, pp.2449-2452, 1984.

R. Saito, M. Fujita, G. Dresselhaus, and M. Dresselhaus, Electronic structure of chiral graphene tubules, Applied Physics Letters, vol.60, issue.18, pp.2204-2206, 1992.

S. Reich, C. Thomsen, and J. Maultzsch, Carbon Nanotubes : Basic Concepts and Physical Properties, p.14, 2008.

P. Yu and M. Cardona, Fundamentals of Semiconductors : Physics and Materials Properties. Graduate Texts in Physics, p.14, 2010.

E. Mali?, M. Hirtschulz, F. Milde, A. Knorr, and S. Reich, Analytical approach to optical absorption in carbon nanotubes, Physical Review B, vol.74, issue.19, p.15, 2006.

A. Grüneis, R. Saito, G. G. Samsonidze, T. Kimura, M. A. Pimenta et al., Inhomogeneous optical absorption around the K point in graphite and carbon nanotubes, Physical Review B, vol.67, issue.16, p.165402, 2003.

S. Berciaud, V. Vikram, R. Deshpande, Y. Caldwell, C. Miyauchi et al., Alloptical structure assignment of individual single-walled carbon nanotubes from Rayleigh and Raman scattering measurements. physica status solidi (b), p.17, 2012.

B. Langlois, Propriétés optiques hors-équilibre des nanotubes de carbone nus ou fonctionnalisés, p.17, 2014.

K. Liu, J. Deslippe, F. Xiao, R. B. Capaz, X. Hong et al., An atlas of carbon nanotube optical transitions, Nature nanotechnology, vol.7, issue.5, p.19, 2012.

F. Vialla, Interaction entre les nanotubes de carbone et leur environnement physico-chimique : vers un contrôle des propriétés optiques, vol.39, p.112, 1921.

Y. Ma, L. Valkunas, S. M. Bachilo, and G. R. Fleming, Exciton Binding Energy in Semiconducting Single-Walled Carbon Nanotubes, The Journal of Physical Chemistry B, vol.109, issue.33, pp.15671-15674, 1921.

G. Dukovic, F. Wang, D. Song, M. Y. Sfeir, T. F. Heinz et al., Structural Dependence of Excitonic Optical Transitions and Band-Gap Energies in Carbon Nanotubes, Nano Letters, vol.5, issue.11, pp.2314-2318, 1920.

A. Graf, Y. Zakharko, S. P. Schießl, C. Backes, M. Pfohl et al., Large scale, selective dispersion of long single-walled carbon nanotubes with high photoluminescence quantum yield by shear force mixing, Carbon, vol.105, p.119, 2016.

H. Ozawa, N. Ide, T. Fujigaya, Y. Niidome, and N. Nakashima, One-pot Separation of Highly Enriched (6,5)-Single-walled Carbon Nanotubes Using a Fluorene-based Copolymer, Chemistry Letters, vol.40, issue.3, p.27, 2011.

A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit et al., Crystalline Ropes of Metallic Carbon Nanotubes, Science, vol.273, issue.5274, pp.483-487, 1928.

M. S. Arnold, A. A. Green, J. F. Hulvat, S. I. Stupp, and M. C. Hersam, Sorting carbon nanotubes by electronic structure using density differentiation, Nature Nanotechnology, vol.1, issue.1, pp.60-65, 1928.

C. Thomsen and S. Reich, Raman Scattering in Carbon Nanotubes, Light Scattering in Solid IX, Topics in Applied Physics, p.29, 2007.

M. S. Dresselhaus, G. Dresselhaus, R. Saito, and . Jorio, Raman spectroscopy of carbon nanotubes, Physics Reports, vol.409, issue.2, p.160, 2005.

M. G. Dresselhaus and . Dresselhaus, Characterizing carbon nanotube samples with resonance Raman scattering, New journal of physics, vol.5, issue.1, p.30, 2003.

J. Maultzsch, H. Telg, S. Reich, and C. Thomsen, Radial breathing mode of single-walled carbon nanotubes: Optical transition energies and chiral-index assignment, Physical Review B -Condensed Matter and Materials Physics, vol.72, issue.20, p.32, 2005.

H. Telg, J. G. Duque, M. Staiger, X. Tu, F. Hennrich et al., Chiral Index Dependence of the G + and G -Raman Modes in Semiconducting Carbon Nanotubes, ACS Nano, vol.6, issue.1, p.31, 2012.

Y. Piao, J. K. Jeffrey-r-simpson, G. Streit, M. Ao, . Zheng et al., Intensity Ratio of Resonant Raman Modes for ( n,m) Enriched Semiconducting Carbon Nanotubes, ACS Nano, vol.10, issue.5, p.34, 2016.

K. Liu, X. Hong, S. Choi, C. Jin, R. B. Capaz et al., Systematic determination of absolute absorption cross-section of Bibliographie individual carbon nanotubes, Proceedings of the National Academy of Sciences of the United States of America, vol.111, p.94, 2014.

R. G. Newton, Optical theorem and beyond, American Journal of Physics, vol.44, issue.7, p.52, 1976.

W. M. Itano, J. C. Bergquist, and D. J. Wineland, Laser Spectroscopy of Trapped Atomic Ions, Science, vol.237, issue.4815, p.53, 1987.

W. E. Moerner and L. Kador, Optical detection and spectroscopy of single molecules in a solid, Physical Review Letters, vol.62, issue.21, p.53, 1989.

M. Celebrano and P. Kukura, Singlemolecule imaging by optical absorption, Nature Photonics, vol.5, issue.2, p.52, 2011.

M. Pototschnig, Y. Chassagneux, J. Hwang, G. Zumofen, A. Renn et al., Controlling the phase of a light beam with a single molecule, Physical Review Letters, vol.107, issue.6, p.57, 2011.

A. Högele, S. Seidl, M. Kroner, K. Karrai, R. J. Warburton et al., Voltage-Controlled Optics of a Quantum Dot, Phys. Rev. Lett, vol.93, issue.21, p.52, 2004.

B. D. Gerardot, S. Seidl, P. A. Dalgarno, R. J. Warburton, M. Kroner et al., Contrast in transmission spectroscopy of a single quantum dot, Applied Physics Letters, vol.90, issue.22, p.52, 2007.

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy, Physical Review Letters, vol.93, issue.3, p.184, 2004.

L. Otto, G. Muskens, N. D. Bachelier, F. Fatti, A. Vallée et al., Quantitative Absorption Spectroscopy of a Single Gold Nanorod, Journal of Physical Chemistry C, vol.112, issue.24, p.80, 2008.

P. Thai-hien-tran, J. Siyushev, I. Wrachtrup, and . Gerhardt, Extinction of light and coherent scattering by a single nitrogen-vacancy center in diamond, Phys. Rev. A, vol.95, issue.5, p.53, 2017.

G. Zumofen, N. M. Mojarad, V. Sandoghdar, and M. Agio, Perfect reflection of light by an oscillating dipole, Physical Review Letters, vol.101, issue.18, p.52, 2008.

A. N. Vamivakas, M. Atatüre, J. Dreiser, S. T. Yilmaz, A. Badolato et al., Strong Extinction of a Far-Field Laser Beam by a Single Quantum Dot, Nano Letters, vol.7, issue.9, p.53, 2007.

Z. Meng-khoon-tey, . Chen, B. Syed-abdullah-aljunid, F. Chng, G. Huber et al., Strong interaction between light and a single trapped atom without the need for a cavity, Nature Physics, vol.4, issue.12, p.53, 2008.

J. Lefebvre and P. Finnie, Polarized Light Microscopy and Spectroscopy of Individual Single-Walled Carbon Nanotubes, Nano Research, vol.4, issue.8, p.63, 2011.

T. Gokus, Time-Resolved Photoluminescence and Elastic White Light Scattering Studies of Individual Carbon Nanotubes and Optical Characterization of Oxygen Plasma Treated Graphene, vol.91, p.184, 2011.

M. Striebel, J. Wrachtrup, and I. Gerhardt, Absorption and Extinction Cross Sections and Photon Streamlines in the Optical Near-field, Scientific Reports, vol.7, issue.1, p.56, 2017.

E. Mali?, M. Hirtschulz, F. Milde, Y. Wu, J. Maultzsch et al., Theoretical approach to Rayleigh and absorption spectra of semiconducting carbon nanotubes, Physica Status Solidi (B), issue.11, p.56, 2007.

C. E. Reed, J. Giergiel, J. C. Hemminger, and S. Ushioda, Dipole radiation in a multilayer geometry, Physical Review B, vol.36, issue.9, p.57, 1987.

D. Christofilos, J. C. Blancon, J. Arvanitidis, A. Miguel, A. Ayari et al., Optical imaging and absolute absorption cross section measurement of individual nano-objects on opaque substrates: Singlewall carbon nanotubes on silicon, Journal of Physical Chemistry Letters, vol.3, issue.9, p.57, 2012.

J. Blancon and M. Paillet, Direct measurement of the absolute absorption spectrum of individual semiconducting single-wall carbon nanotubes, Nature Communications, vol.4, p.57, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00925394

L. Oudjedi, A. Nicholas-g-parra-vasquez, A. G. Godin, L. Cognet, and B. Lounis, Metrological investigation of the (6,5) carbon nanotube absorption cross section, Journal of Physical Chemistry Letters, vol.4, issue.9, p.108, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00909291

F. Craig, . Bohren, and . Donald-r-huffman, Absorption and Scattering by Small Particles, p.58, 2007.

A. Crut, P. Maioli, N. D. Fatti, and F. Vallée, Optical absorption and scattering spectroscopies of single nano-objects, Chemical Society Reviews, vol.43, issue.11, p.90, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02311251

F. Vialla, C. Roquelet, B. Langlois, G. Delport, S. M. Santos et al., Chirality Dependence of the Absorption Cross Section of Carbon Nanotubes, Physical Review Letters, vol.111, issue.13, p.80, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00869868

A. V. Kuhlmann, J. Houel, D. Brunner, A. Ludwig, D. Reuter et al., A dark-field microscope for background-free detection of resonance fluorescence from single semiconductor quantum dots operating in a set-and-forget mode, Review of Scientific Instruments, vol.84, issue.7, p.68, 2013.

S. Deng, J. Tang, L. Kang, Y. Hu, F. Yao et al., High-Throughput Determination of Statistical Structure Information for Horizontal Carbon Nanotube Arrays by Optical Imaging, Advanced Materials, vol.28, issue.10, p.63, 2016.

Y. Matthew, F. Sfeir, L. Wang, C. Huang, J. Chuang et al., Probing Electronic Transitions in Individual Carbon Nanotubes by Rayleigh Scattering, Science, vol.306, issue.5701, p.90, 2004.

M. Shribak, S. Inoué, and R. Oldenbourg, Polarization aberrations caused by differential transmission and phase shift in high-numericalaperture lenses: Theory, measurement, and rectification, Optical Engineering, vol.41, issue.5, p.69, 2002.

L. Monniello, H. Tran, R. Vialla, G. Prévot, S. Tahir et al., A comprehensive model of the optical spectra of carbon nanotubes on substrate by polarized microscopy, p.75, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02134571

S. Yu, C. Chang, C. R. Lee, and C. Wang, Gold Nanorods:? lectrochemical Synthesis and Optical Properties, The Journal of Physical Chemistry B, vol.101, issue.34, p.77, 1997.

E. C. Erin-b-dickerson, X. Dreaden, . Huang, H. Ivan, H. El-sayed et al., Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice, Cancer letters, vol.269, issue.1, p.78, 2008.

S. Hsieh, C. Sheffer-meltzer, A. Chris-wang, M. E. Requicha, B. E. Thompson et al., Imaging and manipulation of gold nanorods with an atomic force microscope, Journal of Physical Chemistry B, vol.106, issue.2, p.78, 2002.

M. F. Vincent-juvé, A. Cardinal, A. Lombardi, P. Crut, J. Maioli et al., Size-dependent surface plasmon resonance broadening in nonspherical nanoparticles: Single gold nanorods, Nano Letters, vol.13, issue.5, p.80, 2013.

Z. Li, W. Mao, M. S. Devadas, and G. V. Hartland, Absorption Spectroscopy of Single Optically Trapped Gold Nanorods, Nano Letters, vol.15, issue.11, p.80, 2015.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment, The Journal of Physical Chemistry B, vol.107, issue.3, pp.668-677, 2003.

K. Prashant-k-jain, . Lee, H. Ivan, M. El-sayed, and . El-sayed, Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine, J. Phys. Chem. B, vol.110, issue.14, p.86, 2006.

J. T. Matthias-s-hofmann, J. Glückert, C. Noé, R. Bourjau, A. Dehmel et al., Bright, long-lived and coherent excitons in carbon nanotube quantum dots, Nature nanotechnology, vol.8, issue.7, p.109, 2013.

L. Cognet, D. A. Tsyboulski, J. Rocha, D. Condell, J. M. Doyle et al., Stepwise quenching of exciton fluorescence in carbon nanotubes by single-molecule reactions, Science, vol.108, issue.5830, p.154, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00164617

L. Luer, . Hoseinkhani, . Polli, . Crochet, G. Hertel et al., Size and mobility of excitons in (6, 5) carbon nanotubes, Nature Physics, vol.5, issue.1, p.116, 2009.

K. Yoshikawa, K. Matsuda, and Y. Kanemitsu, Exciton Transport in Suspended Single Carbon Nanotubes Studied by Photoluminescence Imaging Spectroscopy, The Journal of Physical Chemistry C, vol.114, issue.10, p.155, 0108.

J. J. Crochet, J. G. Duque, J. H. Werner, B. Lounis, L. Cognet et al., Disorder limited exciton transport in colloidal single-wall carbon nanotubes, Nano Letters, vol.12, issue.10, p.119, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00735016

J. J. Crochet, J. G. Duque, J. H. Werner, and S. K. Doorn, Photoluminescence imaging of electronic-impurity-induced exciton quenching in single-walled carbon nanotubes, Nature Nanotechnology, vol.7, issue.2, p.185, 2012.

A. Ishii, M. Yoshida, and Y. K. Kato, Exciton diffusion, end quenching, and exciton-exciton annihilation in individual air-suspended carbon nanotubes, Physical Review B, vol.91, issue.12, p.108, 2015.

Y. Murakami and J. Kono, Nonlinear Photoluminescence Excitation Spectroscopy of Carbon Nanotubes: Exploring the Upper Density Limit of One-Dimensional Excitons, Physical Review Letters, vol.102, issue.3, p.108, 2009.

Y. Miyauchi, R. Saito, K. Sato, Y. Ohno, S. Iwasaki et al., Dependence of exciton transition energy of single-walled carbon nanotubes on surrounding dielectric materials, Chemical Physics Letters, vol.442, issue.4-6, p.108, 2007.

T. Hertel, S. Himmelein, T. Ackermann, D. Stich, and J. J. Crochet, Diffusion Limited Photoluminescence Quantum Yields in 1-D Semiconductors, ACS nano, vol.4, issue.12, p.154, 2010.

H. Hirori, K. Matsuda, Y. Miyauchi, S. Maruyama, and Y. Kanemitsu, Exciton localization of single-walled carbon nanotubes revealed by femtosecond excitation correlation spectroscopy, Physical Review Letters, vol.97, issue.25, p.108, 2006.

Y. Miyauchi, M. Iwamura, S. Mouri, T. Kawazoe, M. Ohtsu et al., Brightening of excitons in carbon nanotubes on dimensionality modification, Nature Photonics, vol.7, issue.9, pp.715-719, 2013.

X. Ma, O. Roslyak, F. Wang, J. G. Duque, A. Piryatinski et al., Influence of exciton dimensionality on spectral diffusion of single-walled carbon nanotubes, ACS Nano, vol.8, issue.10, p.180, 2014.

A. Jeantet, Y. Chassagneux, T. Claude, J. S. Lauret, and C. Voisin, Interplay of spectral diffusion and phonon-broadening in single photo-emitters : The case of carbon nanotubes, Nanoscale, vol.10, issue.2, p.135, 2017.

W. Walden-newman, I. Sarpkaya, and S. Strauf, Quantum light signatures and nanosecond spectral diffusion from cavity-embedded carbon nanotubes, Nano Letters, vol.12, issue.4, p.135, 2012.

A. Jack, C. Alexander-webber, P. Faugeras, M. Kossacki, X. Potemski et al., Hyperspectral imaging of exciton photoluminescence in individual carbon nanotubes controlled by high magnetic fields, Nano Letters, vol.14, issue.9, p.110, 2014.

M. Chalfie, . Tu, . Euskirchen, D. C. Ward, and . Prasher, Green fluorescent protein as a marker for gene expression, Science, vol.263, issue.5148, p.110, 1994.

L. Cognet, D. A. Tsyboulski, and R. Bruce-weisman, Subdiffraction far-field imaging of luminescent single-walled carbon nanotubes, Nano Letters, vol.8, issue.2, p.113, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00746937

H. Htoon, M. J. O'connell, S. K. Doorn, and V. I. Klimov, Single Carbon Nanotubes Probed by Photoluminescence Excitation Spectroscopy: The Role of Phonon-Assisted Transitions, Physical Review Letters, vol.94, issue.12, p.112, 2005.

. Bibliographie,

K. Nagatsu, S. Chiashi, S. Konabe, and Y. Homma, Brightening of Triplet Dark Excitons by Atomic Hydrogen Adsorption in Single-Walled Carbon Nanotubes Observed by Photoluminescence Spectroscopy, Physical Review Letters, vol.105, issue.15, p.113, 2010.

S. Cambré, S. M. Santos, W. Wenseleers, R. Ahmad, R. Nugraha et al., Luminescence properties of individual empty and water-filled single-walled carbon nanotubes, ACS Nano, vol.6, issue.3, p.214, 2012.

J. Lefebvre, J. M. Fraser, Y. Homma, and P. Finnie, Photoluminescence from single-walled carbon nanotubes: A comparison between suspended and micelleencapsulated nanotubes, Applied Physics A, vol.78, issue.8, pp.1107-1110, 0113.

F. Vialla, E. Malic, B. Langlois, Y. Chassagneux, C. Diederichs et al., Universal nonresonant absorption in carbon nanotubes, Physical Review B, vol.90, issue.15, p.113, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01144986

R. Senga, T. Pichler, Y. Yomogida, T. Tanaka, H. Kataura et al., Direct Proof of a Defect-Modulated Gap Transition in Semiconducting Nanotubes, Nano Letters, vol.18, issue.6, p.113, 2018.

X. Ma, L. Adamska, H. Yamaguchi, S. E. Yalcin, S. Tretiak et al., Electronic structure and chemical nature of oxygen dopant states in carbon nanotubes, ACS Nano, vol.8, issue.10, p.113, 2014.

X. Ma, F. Nicolai, J. K. Hartmann, . Baldwin, H. Stephen-k-doorn et al., Room-temperature single-photon generation from solitary dopants of carbon nanotubes, Nature Nanotechnology, vol.10, issue.8, p.186, 2015.

X. Ma, J. K. Baldwin, N. F. Hartmann, S. K. Doorn, and H. Htoon, Solid-State Approach for Fabrication of Photostable, Oxygen-Doped Carbon Nanotubes, Advanced Functional Materials, vol.25, issue.39, p.113, 2015.

X. Ma, F. Nicolai, K. A. Hartmann, J. K. Velizhanin, L. Baldwin et al., Multiexciton emission from solitary dopant states of carbon nanotubes, Nanoscale, vol.9, issue.42, p.113, 2017.

X. Ma, A. R. James, N. F. Hartmann, J. K. Baldwin, J. Dominguez et al., Solitary Oxygen Dopant Emission from Carbon Nanotubes Modified by Dielectric Metasurfaces, ACS Nano, vol.11, issue.6, p.113, 2017.

. Bibliographie-;-mijin, L. Kim, . Adamska, F. Nicolai, H. Hartmann et al., Fluorescent Carbon Nanotube Defects Manifest Substantial Vibrational Reorganization, The Journal of Physical Chemistry C, vol.120, issue.20, p.113, 2016.

H. Kwon, M. Furmanchuk, B. Kim, Y. Meany, G. C. Guo et al., Molecularly Tunable Fluorescent Quantum Defects, Journal of the American Chemical Society, p.113, 2016.

M. S. Hofmann, J. Noé, M. Nutz, A. Kneer, R. Dehmel et al., Synthesis and cryogenic spectroscopy of narrow-diameter single-wall carbon nanotubes, Carbon, vol.105, p.114, 2016.

R. B. Capaz, C. D. Spataru, S. Ismail-beigi, and S. G. Louie, Diameter and chirality dependence of exciton properties in carbon nanotubes, Physical Review B, vol.74, issue.12, p.116, 2006.

D. T. Nguyen, C. Voisin, . Ph, C. Roussignol, J. S. Roquelet et al., Elastic Exciton-Exciton Scattering in Photoexcited Carbon Nanotubes, Physical Review Letters, vol.107, issue.12, p.116, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00623859

X. Ma, O. Roslyak, J. G. Duque, X. Pang, S. K. Doorn et al., Influences of Exciton Diffusion and Exciton-Exciton Annihilation on Photon Emission Statistics of Carbon Nanotubes, Physical Review Letters, vol.115, issue.1, p.185, 2015.

A. Nish, J. Hwang, J. Doig, and R. J. Nicholas, Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers, Nature Nanotechnology, vol.2, issue.10, p.118, 2007.

N. Danné, M. Kim, A. G. Godin, H. Kwon, Z. Gao et al., Ultrashort Carbon Nanotubes That Fluoresce Brightly in the Near-Infrared, ACS Nano, vol.12, issue.6, p.119, 2018.

T. Michel, M. Paillet, D. Nakabayashi, M. Picher, V. Jourdain et al., Indexing of individual single-walled carbon nanotubes from Raman spectroscopy, Physical Review B, vol.80, issue.24, p.119, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00496809

J. Liu, M. I. Davanço, L. Sapienza, K. Konthasinghe, J. Vinícius-de-miranda-cardoso et al., Cryogenic photoluminescence imaging system for nanoscale positioning of single quantum emitters, Review of Scientific Instruments, vol.88, issue.2, p.122, 2017.

J. Lefebvre, J. M. Fraser, P. Finnie, and Y. Homma, Photoluminescence from an individual single-walled carbon nanotube, Physical Review B, vol.69, issue.7, p.130, 2004.

H. Yang, B. Fu, D. Li, Y. Tian, Y. Chen et al., Broadband laser polarization control with aligned carbon nanotubes, Nanoscale, vol.7, issue.25, p.130, 2015.

N. Bobroff, Position measurement with a resolution and noise-limited instrument, Review of Scientific Instruments, vol.57, issue.6, pp.1152-1157, 0134.

. Russell-e-thompson, . Daniel-r-larson, W. Watt, and . Webb, Precise nanometer localization analysis for individual fluorescent probes, Biophysical journal, vol.82, issue.5, p.134, 2002.

. Kim-i-mortensen, . Stirling-churchman, A. James, H. Spudich, and . Flyvbjerg, Optimized localization analysis for single-molecule tracking and superresolution microscopy, Nature Methods, vol.7, issue.5, p.134, 2010.

N. Ai, W. Walden-newman, and Q. Song, Sokratis Kalliakos, and Stefan Strauf. Suppression of blinking and enhanced exciton emission from individual carbon nanotubes, ACS Nano, vol.5, issue.4, p.135, 2011.

P. H. Sher, J. M. Smith, P. A. Dalgarno, R. J. Warburton, X. Chen et al., Power law carrier dynamics in semiconductor nanocrystals at nanosecond timescales, Applied Physics Letters, vol.92, issue.10, p.137, 2008.

P. Frantsuzov, M. Kuno, B. Jankó, and R. A. Marcus, Universal emission intermittency in quantum dots, nanorods and nanowires, Nature Physics, vol.4, issue.7, pp.519-522, 0137.

M. Davanço, C. S. Hellberg, S. Ates, A. Badolato, and K. Srinivasan, Multiple time scale blinking in InAs quantum dot singlephoton sources, Physical Review B, vol.89, issue.16, p.137, 2014.

L. Novotny and B. Hecht, Principles of Nano-Optics, vol.140, p.145, 2006.

R. B. Capaz, C. D. Spataru, P. Tangney, M. L. Cohen, and S. G. Louie, Temperature Dependence of the Band Gap of Semiconducting Carbon Nanotubes, Physical Review Letters, vol.94, issue.3, p.152, 2005.

J. Vasili-perebeinos, P. Tersoff, and . Avouris, Effect of Exciton-Phonon Coupling in the Calculated Optical Absorption of Carbon Nanotubes, Physical Review Letters, vol.94, issue.2, p.163, 2005.

. Bibliographie,

O. N. Torrens, M. Zheng, and J. M. Kikkawa, Energy of K-momentum dark excitons in carbon nanotubes by optical spectroscopy, Physical Review Letters, vol.101, issue.15, p.213, 2008.

P. M. Vora, X. Tu, E. J. Mele, M. Zheng, and J. M. Kikkawa, Chirality dependence of the K -momentum dark excitons in carbon nanotubes, Physical Review B -Condensed Matter and Materials Physics, vol.81, issue.15, p.213, 2010.

T. Endo, J. Ishi-hayase, and H. Maki, Photon antibunching in single-walled carbon nanotubes at telecommunication wavelengths and room temperature, Applied Physics Letters, vol.106, issue.11, p.154, 2015.

V. Ardizzone, Y. Chassagneux, F. Vialla, G. Delport, C. Delcamp et al., Strong reduction of exciton-phonon coupling in single-wall carbon nanotubes of high crystalline quality: Insight into broadening mechanisms and exciton localization, Physical Review B, vol.91, issue.12, p.155, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01145028

X. Zhou, J. Park, S. Huang, J. Liu, and P. L. Mceuen, Band Structure, Phonon Scattering, and the Performance Limit of Single-Walled Carbon Nanotube Transistors, Physical Review Letters, vol.95, issue.14, p.155, 2005.

B. A. Ruzicka, R. Wang, J. Lohrman, S. Ren, and H. Zhao, Exciton diffusion in semiconducting single-walled carbon nanotubes studied by transient absorption microscopy, Physical Review B, vol.86, issue.20, p.155, 2012.

R. B. Weisman, S. M. Bachilo, and D. Tsyboulski, Fluorescence spectroscopy of single-walled carbon nanotubes in aqueous suspension, Applied Physics A, vol.78, issue.8, pp.1111-1116, 0158.

S. G. Chou, F. Plentz, J. Jiang, R. Saito, D. Nezich et al., Phonon-Assisted Excitonic Recombination Channels Observed in DNA-Wrapped Carbon Nanotubes Using Photoluminescence Spectroscopy, Physical Review Letters, vol.94, issue.12, p.160, 2005.

F. Plentz, H. B. Ribeiro, A. Jorio, M. S. Strano, and M. A. Pimenta, Direct Experimental Evidence of Exciton-Phonon Bound States in Carbon Nanotubes, Physical Review Letters, vol.95, issue.24, p.213, 0158.

Y. Miyauchi and S. Maruyama, Identification of an excitonic phonon sideband by photoluminescence spectroscopy of single-walled carbon-13 nanotubes, Physical Review B, vol.74, issue.3, p.163, 2006.

V. W. Brar, G. G. Samsonidze, M. S. Dresselhaus, G. Dresselhaus, R. Saito et al., BIBLIOGRAPHIE Second-order harmonic and combination modes in graphite, single-wall carbon nanotube bundles, and isolated single-wall carbon nanotubes, Physical Review B, vol.66, issue.15, p.160, 2002.

O. Kiowski, K. Arnold, S. Lebedkin, F. Hennrich, and M. M. Kappes, Direct Observation of Deep Excitonic States in the Photoluminescence Spectra of Single-Walled Carbon Nanotubes, Physical Review Letters, vol.99, issue.23, p.213, 0163.

S. Lebedkin, F. Hennrich, O. Kiowski, and M. M. Kappes, Photophysics of carbon nanotubes in organic polymer-toluene dispersions: Emission and excitation satellites and relaxation pathways, Physical Review B, vol.77, issue.16, p.163, 2008.

J. L. Blackburn, J. M. Holt, V. M. Irurzun, D. E. Resasco, and G. Rumbles, Confirmation of K-Momentum Dark Exciton Vibronic Sidebands Using 13 C-labeled, Highly Enriched (6,5) Single-walled Carbon Nanotubes, Nano Letters, vol.12, issue.3, p.166, 2012.

S. Berciaud, L. Cognet, P. Poulin, R. Bruce-weisman, and B. Lounis, Absorption spectroscopy of individual single-walled carbon nanotubes, Nano Letters, vol.7, issue.5, p.213, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00143899

A. R. Amori, J. E. Rossi, B. J. Landi, and T. D. Krauss, Defects Enable Dark Exciton Photoluminescence in Single-Walled Carbon Nanotubes, The Journal of Physical Chemistry C, vol.122, issue.6, p.214, 0165.

Y. Kadria-vili, S. M. Bachilo, J. L. Blackburn, and R. Bruce-weisman, Photoluminescence Side Band Spectroscopy of Individual Single-Walled Carbon Nanotubes, Journal of Physical Chemistry C, vol.120, issue.41, p.214, 2016.

A. Vierck, F. Gannott, M. Schweiger, J. Zaumseil, and J. Maultzsch, ZA-derived phonons in the Raman spectra of single-walled carbon nanotubes, Carbon, vol.117, p.166, 2017.

T. Inaba, Y. Tanaka, S. Konabe, and Y. Homma, Effects of Chirality and Defect Density on the Intermediate Frequency Raman Modes of Individually Suspended Single-Walled Carbon Nanotubes, The Journal of Physical Chemistry C, vol.122, issue.16, p.166, 2018.

B. Wang, L. Shen, S. Yang, J. Chen, J. Echternach et al., Defect-Induced Photoluminescence Enhancement and Corresponding Transport Degradation in Individual Suspended Carbon Nanotubes, Physical Review Applied, vol.9, issue.5, p.54022, 0166.

T. Jan and . Glückert, Optical Spectroscopy of Individual Single-Walled Carbon Nanotubes in an Electric Gate Structure : Tuning the Photoluminescence with Electric Fields, vol.166, p.213, 2014.

. Bibliographie,

W. K. Metzger, T. J. Mcdonald, C. Engtrakul, J. L. Blackburn, G. D. Scholes et al., Temperature-Dependent Excitonic Decay and Multiple States in Single-Wall Carbon Nanotubes, The Journal of Physical Chemistry C, vol.111, issue.9, p.213, 2007.

J. Müller, J. M. Lupton, A. L. Rogach, J. Feldmann, D. V. Talapin et al., Monitoring Surface Charge Movement in Single Elongated Semiconductor Nanocrystals, Physical Review Letters, vol.93, issue.16, p.180, 2004.

F. Nicolai, K. A. Hartmann, E. H. Velizhanin, M. Haroz, X. Kim et al., Photoluminescence Dynamics of Aryl sp3 Defect States in Single-Walled Carbon Nanotubes, ACS Nano, vol.10, issue.9, p.182, 2016.

X. He, F. Nicolai, X. Hartmann, Y. Ma, R. Kim et al., Tunable room-temperature single-photon emission at telecom wavelengths from sp3 defects in carbon nanotubes, Nature Photonics, vol.11, issue.9, p.182, 2017.

F. Yao, C. Liu, C. Chen, S. Zhang, Q. Zhao et al., Measurement of complex optical susceptibility for individual carbon nanotubes by elliptically polarized light excitation, Nature Communications, vol.9, issue.1, p.184, 2018.

J. T. Glückert, L. Adamska, W. Schinner, M. S. Hofmann, S. K. Doorn et al., Dipolar and charged localized excitons in carbon nanotubes, Physical Review B, vol.98, issue.19, p.186, 2018.

V. Perebeinos and P. Avouris, Exciton Ionization, Franz-Keldysh, and Stark Effects in Carbon Nanotubes, Nano Letters, vol.7, issue.3, p.186, 2007.

A. D. Mohite, P. Gopinath, M. Hemant, B. W. Shah, and . Alphenaar, Exciton Dissociation and Stark Effect in the Carbon Nanotube Photocurrent Spectrum, Nano Letters, vol.8, issue.1, p.186, 2008.

H. Navas, M. Picher, A. Andrieux-ledier, F. Fossard, T. Michel et al., Unveiling the Evolutions of Nanotube Diameter Distribution during the Growth of Single-Walled Carbon Nanotubes, ACS Nano, vol.11, issue.3, p.186, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01516691

V. Jourdain and C. Bichara, Current understanding of the growth of carbon nanotubes in catalytic chemical vapour deposition, Carbon, vol.58, pp.2-39, 0186.
URL : https://hal.archives-ouvertes.fr/hal-01067024

. Bibliographie,

A. Khurshed, B. A. Shah, and . Tali, Synthesis of carbon nanotubes by catalytic chemical vapour deposition: A review on carbon sources, catalysts and substrates, Materials Science in Semiconductor Processing, vol.41, p.186, 2016.

C. Roquelet, B. Langlois, F. Vialla, D. Garrot, J. S. Lauret et al., Light harvesting with non covalent carbon nanotube/porphyrin compounds, Chemical Physics, vol.413, p.186, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00829151

L. Orcin-chaix, G. Trippé-allard, C. Voisin, H. Okuno, V. Derycke et al., Single-walled carbon nanotube/polystyrene core-shell hybrids: Synthesis and photoluminescence properties, Journal of Materials Chemistry C, vol.6, issue.17, p.187, 2018.
URL : https://hal.archives-ouvertes.fr/cea-01770262

Y. Murakami, B. Lu, S. Kazaoui, N. Minami, T. Okubo et al., Photoluminescence sidebands of carbon nanotubes below the bright singlet excitonic levels, Physical Review B, vol.79, issue.19, p.214, 2009.

M. Gandil, Propriétés magnéto-optiques de nanotubes de carbone individuels suspendus, p.214, 2017.