. .. Fréchet-pondéré, 94 6.2.1 Formulation de la fonction d'appariements, p.94

. .. Expériences-synthétiques, , p.96

. .. Choix-du-paramètre-?, , p.97

. .. Expériences-sur-la-phase, , p.98

. .. Expériences, , p.98

. .. Expériences-sur-la-période, , p.99

. .. Paramètres-de-déformation, 102 6.4.3 Préservation de la longueur de la spline

. .. Arbre-spline,

, Les expériences portent, dans un premier temps, sur la technique d'appariements, dite de Fréchet pondéré (section 6.2), soit l'étape 4 si l'on se réfère au schéma 4.1 qui résume lesétapes de l'algorithme. Dans un deuxième temps, les expériences portent sur le choix des paramètres liésà la modélisation de la spline età sa transformation, chapitre nous allons présenter les expériences complémentaires qui nous ont aidéesàélaborer notre algorithme de recalage, présenté dans les chapitres 4 et 5

, A.1 Construction arbre 3D

, angioscanner est essentiellement effectuée grâceà un produit GE Healthcare appelé Auto-Coronary-Analysis. Celui-ci, forme un volume par empilement des coupes (figure A.1a) et effectue une première segmentation du coeur et des artères coronaires (figure A.1b). A l'aide d'un simple seuillage, cetteétape permet d'enlever les os, tissus mous et d'autres anatomies périphériques. Ensuite, un filtre basé hessien est appliqué. Un algorithme de croissance de région basé intensité est appliqué au volume obtenu. Les graines seront placées sur les zones détectées comme des coronaires (plus hautes intensités)

, Pour identifier ces deux structures, il suffit pour l'aorte d'utiliser des informations a priori concernant sa taille et sa position dans l'image. Pour les extrémités, une carte de distance estétablie sur l'arbre coronaire segmenté. A chaque voxel est associé sa distance géodésiqueà l'aorte. Les extrémités seront alors les maxima locaux. Enfin, pour obtenir les lignes centrales, un algorithme de plus court chemin est appliqué, celui-ci va chercher les plus courts chemins en terme de distance mais il va aussi chercher a maximiser l'intensité des voxels choisis de manièreà favoriser le centre des vaisseaux, L'étape suivante consiste en l'extraction d'un ensemble de lignes centrales allant de l'aorte aux extrémités des vaisseaux

G. Agam and C. Wu, Probabilistic modeling based vessel enhancement in thoracic ct scans, IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), vol.2, p.28, 2005.

T. Aksoy, G. Unal, S. Demirci, N. Navab, and M. Degertekin, Templatebased CTA to x-ray angio rigid registration of coronary arteries in frequency domain with automatic x-ray segmentation, Medical physics, issue.10, p.64, 2013.

H. Alt and M. Godau, Measuring the resemblance of polygonal curves, Proceedings of the eighth annual Symposium on Computational Geometry, pp.102-109, 1992.

M. Amiel, A. Maseri, H. Petitier, and N. Vasile, Coronary artery diseases : diagnostic and therapeutic imaging approaches, 2012.

K. Bacchuwar, Image processing for semantic analysis of the coronary interventions in cardiology, p.117, 2018.
URL : https://hal.archives-ouvertes.fr/tel-01981918

N. Baka, C. Metz, C. Schultz, L. Neefjes, R. Van-geuns et al., Statistical coronary motion models for 2D+ t/3D registration of x-ray coronary angiography and CTA, Medical Image Analysis, vol.17, issue.6, pp.698-709, 2013.

N. Baka, C. Metz, C. Schultz, L. Neefjes, R. J. Van-geuns et al., Statistical coronary motion models for 2D+ t/3D registration of x-ray coronary angiography and CTA, Medical Image Analysis, vol.17, issue.6, pp.698-709, 2013.

N. Baka, C. Metz, C. Schultz, R. Van-geuns, W. J. Niessen et al., Oriented gaussian mixture models for nonrigid 2d/3d coronary artery registration, IEEE Transactions on Medical Imaging, vol.33, issue.5, p.35, 2014.

. Bibliographie,

C. Bauer and H. Bischof, A novel approach for detection of tubular objects and its application to medical image analysis, Joint pattern recognition symposium, p.28, 2008.

T. Benseghir, Recalage préservant la topologie des vaisseaux, p.28, 2015.

T. Benseghir, G. Malandain, and R. Vaillant, A tree-topology preserving pairing for 3D/2D registration, Consulté sur http, vol.10, p.123, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01183573

T. Benseghir, G. Malandain, and R. Vaillant, A tree-topology preserving pairing for 3D/2D registration, Int J Comput Assist Radiol Surg, vol.10, issue.6, pp.913-923, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01183573

P. J. Besl and N. D. Mckay, Method for registration of 3d shapes, Robotics-dl tentative, p.79, 1992.

C. Blondel, Modélisation 3d et 3d+ t des artères coronairesà partir de séquences rotationnelles de projections rayons x (Thèse de doctorat non publiée), p.28, 2004.

C. Blondel, G. Malandain, R. Vaillant, and N. Ayache, Reconstruction of coronary arteries from a single rotational X-ray projection sequence, IEEE Transactions on Medical Imaging, vol.25, issue.5, pp.653-663, 2006.
URL : https://hal.archives-ouvertes.fr/inria-00614993

C. Boldak, Y. Rolland, C. Toumoulin, and J. Coatrieux, An improved model-based vessel tracking algorithm with application to computed tomography angiography, Biocybernetics And Biomedical Engineering, vol.23, issue.1, p.23, 2003.

T. Boskamp, D. Rinck, F. Link, B. Kummerlen, G. Stamm et al., New vessel analysis tool for morphometric quantification and visualization of vessels in ct and mr imaging data sets, Radiographics, vol.24, issue.1, p.23, 2004.

L. G. Brown, A survey of image registration techniques, ACM computing surveys (CSUR), vol.24, issue.4, p.29, 1992.

K. Bühler, P. Felkel, and A. Cruz, Geometric methods for vessel visualization and quantification-a survey, Geometric modeling for scientific visualization, p.25, 2004.

J. Canny, A computational approach to edge detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.8, issue.6, p.51, 1986.

S. Ç-imen, A. Gooya, M. Grass, and A. Frangi, Reconstruction of coronary arteries from X-ray angiography. A review, Medical image analysis, vol.32, pp.22-38, 2016.

L. D. Cohen and R. Kimmel, Global minimum for active contour models : A minimal path approach, International journal of computer vision, vol.24, issue.1, pp.57-78, 1997.

G. Dibildox, N. Baka, M. Punt, J. Aben, C. Schultz et al., 3D/3D registration of coronary CTA and biplane XA reconstructions for improved image guidance, Medical physics, issue.9, p.31, 2014.

L. Duong, R. Liao, H. Sundar, B. Tailhades, A. Meyer et al., Curve-based 2D-3D registration of coronary vessels for image guided procedure, Medical imaging 2009 : Visualization, image-guided procedures, and modeling, vol.7261, p.32, 2009.

T. Eiter and H. Mannila, Computing discrete fréchet distance, p.94, 1994.

M. Erdt, M. Raspe, and M. Suehling, Automatic hepatic vessel segmentation using graphics hardware, International workshop on medical imaging and virtual reality, p.27, 2008.

J. Fan, J. Yang, Y. Wang, S. Yang, D. Ai et al.,

Y. Wang, Multichannel fully convolutional network for coronary artery segmentation in x-ray angiograms, IEEE Access, vol.6, p.40, 2018.

C. Florin, N. Paragios, and J. Williams, Particle filters, a quasi-monte carlo solution for segmentation of coronaries, International conference on medical image computing and computer-assisted intervention, p.23, 2005.

A. Frangi, W. Niessen, K. Vincken, and M. Viergever, Multiscale vessel enhancement filtering, In Med image comput comput assist interv, vol.1496, p.110, 1998.

A. F. Frangi, W. J. Niessen, R. M. Hoogeveen, T. Van-walsum, and M. A. Viergever, Model-based quantitation of 3-d magnetic resonance angiographic images, IEEE Transactions on medical imaging, vol.18, issue.10, pp.946-956, 1999.

O. Friman, M. Hindennach, and H. Peitgen, Template-based multiple hypotheses tracking of small vessels, IEEE International Symposium on Biomedical Imaging : From Nano to Macro, p.23, 2008.

C. Gatta, S. Balocco, V. Martin-yuste, R. Leta, and P. Radeva, Nonrigid multi-modal registration of coronary arteries using siftflow, Iberian conference on pattern recognition and image analysis, pp.159-166, 2011.

J. Georges, Z. Boueri, B. Mailler, O. Nallet, D. Millischer et al., Reduction of radiation exposure associated with renewal of the radiologic systems in coronary interventions, Annales de cardiologie et d'angeiologie, p.39, 2018.

G. Giraudon, A efficient edge following algorithm, 5th scandinavian conference on image analysis (scia), vol.2, pp.547-554, 1987.

G. Giraudon, A efficient edge following algorithm, 5th scandinavian conference on image analysis (scia), vol.2, p.122, 1987.

M. Groher, D. Zikic, and N. Navab, Deformable 2d-3d registration of vascular structures in a one view scenario, IEEE Transactions on Medical Imaging, vol.28, issue.6, p.77, 2009.

M. Groher, D. Zikic, and N. Navab, Deformable 2D-3D registration of vascular structures in a one view scenario, IEEE Transactions on Medical Imaging, vol.28, issue.6, pp.113-114, 2009.

T. H. Heibel, B. Glocker, M. Groher, N. Paragios, N. Komodakis et al., Discrete tracking of parametrized curves, Ieee conference on computer vision and pattern recognition (cvpr). Cited on pages, pp.65-79, 2009.

M. Hernández-hoyos, Segmentation anisotrope 3d pour la quantification en imagerie vasculaire par résonance magnétique, p.23, 2002.

A. Hernandez-vela, C. Gatta, S. Escalera, L. Igual, V. Martin-yuste et al., Accurate coronary centerline extraction, caliber estimation, and catheter detection in angiographies, IEEE Transactions on Information Technology in Biomedicine, vol.16, issue.6, p.40, 2012.

. Inserm, , p.12, 2014.

T. Jerman, F. Pernus, B. Likar, and Z. Spiclin, Enhancement of vascular structures in 3D and 2D angiographic images, IEEE Transactions on Medical Imaging, vol.35, issue.9, pp.2107-2118, 2016.

M. Jiang, Q. Ji, and B. F. Mcewen, Model-based automated extraction of microtubules from electron tomography volume, IEEE Transactions on Information Technology in Biomedicine, vol.10, issue.3, p.40, 2006.

C. Kirbas and F. Quek, A review of vessel extraction techniques and algorithms, ACM Computing Surveys (CSUR), vol.36, issue.2, p.39, 2004.

T. Koller, G. Gerig, G. Székely, and D. Dettwiler, Multiscale detection of curvilinear structures in 2D and 3D image data, Ieee international conference on computer vision (ICCV'95, p.39, 1995.

K. Krissian, G. Malandain, N. Ayache, R. Vaillant, and Y. Trousset, Model-Based Detection of Tubular Structures in 3D Images, Computer Vision and Image Understanding, vol.80, issue.2, pp.130-171, 2000.
URL : https://hal.archives-ouvertes.fr/inria-00615029

D. Lesage, E. D. Angelini, I. Bloch, and G. Funka-lea, A review of 3d vessel lumen segmentation techniques : models, features and extraction schemes, Medical image analysis, vol.13, issue.6, p.22, 2009.

Q. Li, S. Sone, and K. Doi, Selective enhancement filters for nodules, vessels, and airway walls in two-and three-dimensional ct scans, Medical physics, vol.30, issue.8, p.27, 2003.

T. Lindeberg, Detecting salient blob-like image structures and their scales with a scale-space primal sketch : A method for focus-of-attention, International Journal of Computer Vision, vol.11, issue.3, pp.283-318, 1993.

T. Lindeberg, Scale-space theory. a basic tool for analyzing structures at different scales, Journal of applied statistics, vol.21, issue.1-2, p.43, 1994.

S. Liu, P. Liu, Z. Li, Y. Zhang, W. Li et al., A 3d/2d registration of the coronary arteries based on tree topology consistency matching, Biomedical Signal Processing and Control, vol.38, p.35, 2017.

C. Lorenz, I. Carlsen, T. Buzug, C. Fassnacht, and J. Weese, , 1997.

, Multi-scale line segmentation with automatic estimation of width, contrast and tangential direction in 2D and 3D medical images, CVRMed-MRCAS'97, vol.1205, p.39

J. A. Maintz and M. A. Viergever, A survey of medical image registration, Medical image analysis, vol.2, issue.1, p.30, 1998.

P. Markelj, D. Tomazevic, B. Likar, and F. Pernus, A review of 3D/2D registration methods for image-guided interventions, Medical image analysis, vol.16, issue.3, p.30, 2012.

S. Matl, R. Brosig, M. Baust, N. Navab, and S. Demirci, Vascular image registration techniques : a living review, Medical Image Analysis, vol.35, p.31, 2017.

C. Metz, M. Schaap, S. Klein, N. Baka, L. Neefjes et al., Registration of coronary cta and monoplane x-ray angiography, IEEE Transactions on Medical Imaging, vol.32, issue.5, p.32, 2013.

C. Metz, M. Schaap, S. Klein, A. C. Weustink, N. Mollet et al.,

W. J. Niessen, GPU accelerated alignment of 3-D CTA with 2-D X-ray data for improved guidance in coronary interventions, 2009 ieee international symposium on biomedical imaging : From nano to macro, p.31, 2009.

S. Moccia, E. De-momi, S. El-hadji, and L. S. Mattos, Blood vessel segmentation algorithms-review of methods, datasets and evaluation metrics, Computer Methods and Programs in Biomedicine, vol.158, pp.71-91, 2018.

. Moses, A 3d ct vessel roadmap over live fluoroscopy for chronic total occlusion, p.117, 2008.

D. Nain, A. Yezzi, and G. Turk, Vessel segmentation using a shape driven flow, International conference on medical image computing and computer-assisted intervention, p.24, 2004.

, Maladies cardiovasculaires, OMS, pp.1-9, 2017.

K. Bibliographie-piayda, L. Kleinebrecht, S. Afzal, R. Bullens, I. Ter-horst et al.,

T. Zeu, Dynamic coronary roadmapping during percutaneous coronary intervention. a feasibility study, European journal of medical research, vol.23, issue.1, pp.22-38, 2018.

L. Piegl and W. Tiller, The nurbs book, vol.80, p.106, 2012.

S. M. Pizer, D. Eberly, D. S. Fritsch, and B. S. Morse, Zoom-invariant vision of figural shape. the mathematics of cores, Computer Vision and Image Understanding, vol.69, issue.1, p.47, 1998.

E. Poulain, G. Malandain, and R. Vaillant, 3D coronary vessel tracking in x-ray projections, Functional imaging and modeling of the heart, vol.10263, pp.61-113, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02153710

E. Poulain, G. Malandain, and R. Vaillant, Suivi temporel 3d de vaisseaux coronaires dans les projections rayons x, Gretsi, p.61, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01544989

A. Reshef, Dual-rotation c-arm cone-beam tomographic acquisition and reconstruction frameworks for low-contrast detection in brain soft-tissue imaging (Thèse de doctorat non publiée). Télécom ParisTech, p.15, 2018.

D. Rivest-henault, H. Sundar, and M. Cheriet, Nonrigid 2d/3d registration of coronary artery models with live fluoroscopy for guidance of cardiac interventions, IEEE Transactions on Medical Imaging, vol.31, issue.8, p.31, 2012.

D. Ruijters, B. M. Ter-haar-romeny, and P. Suetens, Vesselness-based 2D-3D registration of the coronary arteries, International Journal of Computer Assisted Radiology and Surgery, vol.4, issue.4, pp.32-64, 2009.

Y. Sato, S. Nakajima, H. Atsumi, T. Koller, G. Gerig et al., 3D multi-scale line filter for segmentation and visualization of curvilinear structures in medical images, Cvrmed-mrcas'97, vol.1205, p.39, 1997.

M. Schneider and H. Sundar, Automatic global vessel segmentation and catheter removal using local geometry information and vector field integration, Biomedical imaging. from nano to macro, ieee international symposium on, p.39, 2010.

E. Serradell, M. A. Pinheiro, R. Sznitman, J. Kybic, F. Moreno-noguer et al., Non-rigid graph registration using active testing search, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.37, issue.3, p.33, 2015.

E. Serradell, A. Romero, R. Leta, C. Gatta, and F. Moreno-noguer, Simultaneous correspondence and non-rigid 3D reconstruction of the coronary tree from single x-ray images, Ieee international conference on computer vision (iccv), p.66, 2011.

G. Shechter, F. Devernay, E. Coste-maniere, and E. R. Mcveigh, Temporal tracking of 3D coronary arteries in projection angiograms, Medical imaging 2002, 2002.
URL : https://hal.archives-ouvertes.fr/inria-00262390

, Bibliographie Siemens Healthineers, 2017.

A. 3d-ct, Vessel Roadmap Over Live Fluoroscopy for Chronic Total Occlusion

A. Sotiras, C. Davatzikos, and N. Paragios, Deformable medical image registration : A survey, IEEE transactions on medical imaging, vol.32, issue.7, p.30, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00684715

R. Tayebi, P. Sulaiman, R. Wirza, M. Dimon, S. Kadiman et al., A fast and accurate method for automatic coronary arterial tree extraction in angiograms, Journal of Computer Science, vol.10, issue.10, p.39, 2014.

G. Touma, D. Ramsay, and J. Weaver, Chronic total occlusions-current techniques and future directions, IJC Heart & Vasculature, vol.7, pp.28-39, 2015.

S. Tu, J. Westra, J. Yang, C. Von-birgelen, A. Ferrara et al., Diagnostic accuracy of fast computational approaches to derive fractional flow reserve from diagnostic coronary angiography. the international multicenter favor pilot study, JACC. cardiovascular interventions, vol.9, issue.19, pp.22-38, 2016.

W. C. Wong and A. C. Chung, Augmented vessels for quantitative analysis of vascular abnormalities and endovascular treatment planning, IEEE transactions on medical imaging, vol.25, issue.6, pp.665-684, 2006.

S. Wörz and K. Rohr, Cramèr-rao bounds for estimating the position and width of 3d tubular structures and analysis of thin structures with application to vascular images, Journal of Mathematical Imaging and Vision, vol.30, issue.2, p.24, 2008.

F. Zana and J. Klein, Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation, IEEE transactions on image processing, vol.10, issue.7, pp.1010-1019, 2001.

B. Zhang, L. Zhang, L. Zhang, and F. Karray, Retinal vessel extraction by matched filter with first-order derivative of gaussian, Computers in biology and medicine, vol.40, issue.4, p.39, 2010.

Y. Zhao, Y. Zheng, Y. Liu, Y. Zhao, L. Luo et al.,

J. Liu, , 2018.

, Automatic 2D/3D vessel enhancement in multiple modality images using a weighted symmetry filter, IEEE Transactions on Medical Imaging, vol.37, issue.2, p.39

C. Zhou, H. Chan, B. Sahiner, M. Hadjiiski, L. Chughtai et al.,

A. Kazerooni and E. , Automatic multiscale enhancement and segmentation of pulmonary vessels in CT pulmonary angiography images for CAD applications, Medical physics, vol.34, issue.12, p.39, 2007.