, Using the union bound over all good words u of size m, of which there are at most 2 m , we get: ? for i > 0 and c ? 0, let m = max(i, m) and v = x j [0..m ? 1]1 l . Then: 1. uv cannot be completely included in a regular block

, ? if the gadget is g c 0 (j), then v would contain a m+1 for some a ? {0, 1}, ? if the gadget is g c b (j) for b > 0

M. Aboy, R. Hornero, D. E. Abásolo, and D. Álvarez, Interpretation of the Lempel-Ziv complexity measure in the context of biomedical signal analysis, IEEE Trans. Biomed. Engineering, vol.53, issue.11, pp.2282-2288, 2006.

E. Allender, J. Jiao, M. Mahajan, and V. Vinay, Non-commutative arithmetic circuits: Depth reduction and size lower bounds, Theor. Comput. Sci, vol.209, issue.1-2, pp.47-86, 1998.

S. Arora and B. Barak, Computational Complexity: A Modern Approach, 2009.

V. Arvind, P. S. Joglekar, and S. Srinivasan, Arithmetic circuits and the Hadamard product of polynomials, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2009, pp.25-36, 2009.

V. Arvind, P. Mukhopadhyay, and S. Srinivasan, New results on noncommutative and commutative polynomial identity testing, Computational Complexity, vol.19, issue.4, pp.521-558, 2010.

J. Berstel and C. Reutenauer, Noncommutative Rational Series with Applications, Original title: Les séries rationnelles et leurs langages, 1984.
URL : https://hal.archives-ouvertes.fr/hal-00620617

S. Bozapalidis and O. Louscou-bozapalidou, The rank of a formal tree power series, Theoretical Computer Science, vol.27, pp.211-215, 1983.

W. Jack, A. Carlyle, and . Paz, Realizations by stochastic nite automata, Journal of Computer System Science, vol.5, issue.1, pp.26-40, 1971.

S. Chien, L. E. Rasmussen, and A. Sinclair, Cli ord algebras and approximating the permanent, J. Comput. Syst. Sci, vol.67, issue.2, pp.263-290, 2003.

S. Chien and A. Sinclair, Algebras with polynomial identities and computing the determinant, 45th Symposium on Foundations of Computer Science (FOCS, pp.352-361, 2004.

K. Church and R. Patil, Coping with syntactic ambiguity or how to put the block in the box on the table, Comput. Linguist, vol.8, issue.3-4, pp.139-149, 1982.

N. Fijalkow, G. Lagarde, and P. Ohlmann, Tight bounds using hankel matrix for arithmetic circuits with unique parse trees, Electronic Colloquium on Computational Complexity (ECCC), vol.25, p.38, 2018.

M. Fliess, Matrices de Hankel, Journal de Mathématiques Pures et Appliquées, vol.53, pp.197-222, 1974.

A. Gupta, P. Kamath, N. Kayal, and R. Saptharishi, Approaching the chasm at depth four, J. ACM, vol.61, issue.6, 2014.

R. Gurjar, A. Korwar, N. Saxena, and T. Thierauf, Deterministic identity testing for sum of read-once oblivious arithmetic branching programs, 30th Conference on Computational Complexity, pp.323-346, 2015.

C. Hoobin, S. J. Puglisi, and J. Zobel, Relative Lempel-Ziv factorization for e cient storage and retrieval of web collections, Proc. VLDB Endow, vol.5, issue.3, pp.265-273, 2011.

P. Hrube?, A. Wigderson, and A. Yehudayo, Non-commutative circuits and the sum-of-squares problem, Journal of the American Mathematical Society, vol.24, issue.3, pp.871-898, 2011.

M. Jerrum and M. Snir, Some exact complexity results for straight-line computations over semirings, J. ACM, vol.29, issue.3, pp.874-897, 1982.

V. Kabanets and R. Impagliazzo, Derandomizing polynomial identity tests means proving circuit lower bounds, Proceedings of the 35th

, Annual ACM Symposium on Theory of Computing, pp.355-364, 2003.

J. Kärkkäinen, D. Kempa, Y. Nakashima, S. J. Puglisi, and A. M. Shur, On the size of Lempel-Ziv and Lyndon factorizations, 34th Symposium on Theoretical Aspects of Computer Science, vol.45, pp.1-45, 2017.

N. Kayal, N. Limaye, C. Saha, and S. Srinivasan, An exponential lower bound for homogeneous depth four arithmetic formulas, 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS, pp.61-70, 2014.

M. Kumar and S. Saraf, On the power of homogeneous depth 4 arithmetic circuits, 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS, pp.364-373, 2014.

G. Lagarde, N. Limaye, and S. Srinivasan, Lower bounds and PIT for non-commutative arithmetic circuits with restricted parse trees (extended version)

G. Lagarde, N. Limaye, and S. Srinivasan, Lower bounds and PIT for non-commutative arithmetic circuits with restricted parse trees, 42nd International Symposium on Mathematical Foundations of Computer Science, vol.41, pp.1-41, 2017.

G. Lagarde, G. Malod, and S. Perifel, Non-commutative computations: lower bounds and polynomial identity testing, Electronic Colloquium on Computational Complexity (ECCC), vol.23, p.94, 2016.

G. Lagarde and S. Perifel, Lempel-ziv: a "one-bit catastrophe" but not a tragedy, Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pp.1478-1495, 2018.

J. Lathrop and M. Strauss, A universal upper bound on the performance of the Lempel-Ziv algorithm on maliciously-constructed data, Proceedings of the Compression and Complexity of Sequences 1997, SEQUENCES '97, pp.123-135, 1997.

A. Lempel and J. Ziv, On the complexity of nite sequences, IEEE Trans. Information Theory, vol.22, issue.1, pp.75-81, 1976.

N. Limaye, G. Malod, and S. Srinivasan, Lower bounds for non-commutative skew circuits, Electronic Colloquium on Computational Complexity (ECCC), vol.22, p.22, 2015.

N. Limaye, G. Malod, and S. Srinivasan, Lower bounds for non-commutative skew circuits, Theory of Computing, vol.12, issue.1, pp.1-38, 2016.

M. Lopéz-valdés, Lempel-Ziv dimension for Lempel-Ziv compression, Proceedings of the 31st International Conference on Mathematical Foundations of Computer Science, MFCS'06, pp.693-703, 2006.

M. López, -. Valdés, and E. Mayordomo, Dimension is compression. Theory Comput. Syst, vol.52, issue.1, pp.95-112, 2013.

H. Jack and . Lutz, Dimension in complexity classes, SIAM J. Comput, vol.32, issue.5, pp.1236-1259, 2003.

H. Jack, E. Lutz, and . Mayordomo, Computing absolutely normal numbers in nearly linear time, 2016.

G. Malod, Polynômes et coe cients. (Polynomials and coe cients), 2003.

G. Malod and N. Portier, Characterizing valiant's algebraic complexity classes, J. Complexity, vol.24, issue.1, pp.16-38, 2008.

E. Mayordomo, P. Moser, and S. Perifel, Polylog space compression, pushdown compression, and Lempel-Ziv are incomparable, Theory Comput. Syst, vol.48, issue.4, pp.731-766, 2011.

N. Nisan, Lower bounds for non-commutative computation (extended abstract), STOC, pp.410-418, 1991.

N. Nisan and A. Wigderson, Lower bounds on arithmetic circuits via partial derivatives, Computational Complexity, vol.6, issue.3, pp.217-234, 1997.

S. Perifel, Complexité algorithmique. Ellipses, 2014.

A. Larry, P. C. Pierce, and . Shields, Sequences Incompressible by SLZ (LZW), Yet Fully Compressible by ULZ, pp.385-390, 2000.

R. Raz and A. Shpilka, Deterministic polynomial identity testing in non-commutative models, Computational Complexity, vol.14, issue.1, pp.1-19, 2005.

J. Sakarovitch, Elements of Automata Theory, 2009.

A. Shpilka and A. Wigderson, Depth-3 arithmetic circuits over elds of characteristic zero, Computational Complexity, vol.10, issue.1, pp.1-27, 2001.

Y. Zhang, J. Hao, C. Zhou, and K. Chang, Normalized Lempel-Ziv complexity and its application in bio-sequence analysis, Journal of Mathematical Chemistry, vol.46, issue.4, pp.1203-1212, 2009.

J. Ziv and A. Lempel, A universal algorithm for sequential data compression, IEEE Trans. Inf. Theor, vol.23, issue.3, pp.337-343, 1977.

J. Ziv and A. Lempel, Compression of individual sequences via variable-rate coding, IEEE Trans. Inf. Theor, vol.24, issue.5, pp.530-536, 1978.