, II Chapitre 2 : techniques expérimentales II.1 L'épitaxie par jets moléculaires (MBE)

, Mesure de la mosaïcité : balayage ? ou rocking curve

. .. , Diffraction des électrons de haute énergie en incidence rasante (RHEED), p.40

, Analyse de la qualité cristalline et de la morphologie de surface

, Reconstructions de surface et contrôle de la stoechiométrie

, Taux de couverture de surface et vitesse de croissance des films minces, p.44

.. .. L'ellipsométrie-spectroscopique,

, Détermination de la dispersion de l'indice optique

, Cas d'un milieu massif et isotrope (milieu semi-infini)

, 2 Cas d'une couche mince isotrope déposée sur un substrat isotrope

, Cas d'une couche mince anisotrope déposée sur un substrat isotrope, p.53

, Modèles d'oscillateurs utilisés pour la simulation de la permittivité diélectrique

, Méthode à 4 pointes pour la mesure de la conductivité électrique

. Bibliographie,

. Intel-news-release, Intel's Fundamental Advance in Transistor Design Extends Moore's Law, Computing Performance: Sixteen Eco-Friendly, Faster and 'Cooler' Chips Incorporate 45nm

, Hafnium-Based High-k Metal Gate Transistors, 2007.

Y. A. Vlasov, Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G, IEEE Communications Magazine, vol.50, 2012.

D. Pasquariello and K. Hjort, Plasma-assisted InP-to-Si low temperature wafer bonding, IEEE J. Sel. Top. Quantum. Electron, vol.8, 2002.

B. Kunert, Monolithic integration of Ga(NAsP)/(BGa)P multi-quantum well structures on (0 0 1) silicon substrate by MOVPE, J. Cryst. Growth, vol.310, 2008.

L. Malier and . Ceo, Cea Leti day, Leti's vision for CMOS roadmap, 2013.

H. Wenk,

A. Bulakh, Minerals: Their Constitution and Origin, p.413, 2004.

D. G. Schlom, A Thin Film Approach to Engineering Functionality into Oxides, J. Am. Ceram

. Soc, , vol.91, p.2429, 2008.

C. J. Bartel, New tolerance factor to predict the stability of perovskite oxides and halides, Sci. Adv, vol.5, issue.2, 2019.

M. Ghasdi and H. Alamdari, CO sensitive nanocrystalline LaCoO3 perovskite sensor prepared by high energy ball milling, Sens. Actuator. B. Chem, vol.148, p.478, 2010.

J. W. Fergus, Perovskite oxides for semiconductor-based gas sensors, Sens. Actuator. B. Chem, vol.123, p.1169, 2007.

F. Jia, A novel nonenzymatic ECL glucose sensor based on perovskite LaTiO3-Ag0.1 nanomaterials, Sens. Actuator. B. Chem, vol.212, 2015.

K. W. Song and K. T. Lee, Characterization of Ba0.5Sr0.5M1?xFexO3?? (M = Co and Cu) perovskite oxide cathode materials for intermediate temperature solid oxide fuel cells, Ceram. Int, vol.38, 2012.

A. , Investigation of the catalytic activity of LaBO3 (B = Ni, Co, Fe or Mn) prepared by the microwave-assisted method for hydrogen evolution in acidic medium, Electrochim. Acta, vol.56, 2011.

Y. Watanabe, Current-driven insulator-conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals, Appl. Phys. Lett, vol.78, p.3738, 2001.

C. Xiong, Active Silicon Integrated Nanophotonics: Ferroelectric BaTiO3 Devices, Nano. Lett, vol.14, p.1419, 2019.

R. Beyers, Crystallography and microstructure of Y1Ba2Cu3O9?x, a perovskite-based superconducting oxide, Appl. Phys. Lett, vol.50, 1918.

K. Koumoto, Thermoelectric Ceramics for Energy Harvesting, J. Am. Ceram. Soc, 96, issue.1, 2012.

H. Zhou, Interface engineering of highly efficient perovskite solar cells, Science, vol.345, 2014.

M. Tyunina and J. Levoska, Coexistence of ferroelectric and relaxor properties in epitaxial films of Ba1?xSrxTiO3, Phys. Rev. B, vol.70, p.132105, 2004.

B. Jalan and S. Stemmer, Large Seebeck coefficients and thermoelectric power factor of La-doped SrTiO3 thin films, Appl. Phys. Lett, vol.97, p.42106, 2010.

D. G. Schlom, Strain Tuning of Ferroelectric Thin Films, Annu. Rev. Mater. Res, vol.37, 2007.

E. E. Narimanov and A. V. Kildishev, Naturally hyperbolic, Nat. Photonics, vol.9, 2015.

T. Motohashi, Enhancement of giant magnetoresistance effect in the Ruddlesden-Popper phase Sr3Fe2?xCoxO7??: predominant role of oxygen nonstoichiometry and magnetic phase separation, J. Phys. Condens. Matter, vol.18, p.2157, 2006.

A. Yamada, Ruddlesden-Popper-Type Epitaxial Film as Oxygen Electrode for Solid-Oxide Fuel Cells, Adv. Mater, vol.20, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00340713

E. Bousquet, Improper ferroelectricity in perovskite oxide artificial superlattices, Nature, vol.452, 2008.

C. H. Lee, Exploiting dimensionality and defect mitigation to create tunable microwave dielectrics, Nature, vol.502, 2013.

Y. S. Oh, Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in (Ca,Sr)3Ti2O7 crystals, Nat, Mater, vol.14, p.407, 2015.

K. H. Lee, Ruddlesden-Popper phases as thermoelectric oxides: Nb-doped SrO(SrTiO3)n (n=1,2), Appl. Phys. Lett, vol.100, p.63717, 2006.

T. Li, Characteristics of highly (001) oriented (K,Na)NbO3 films grown on LaNiO3 bottom electrodes by RF magnetron sputtering, Ceram. Int, vol.39, p.1359, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00796459

D. Pergolesi, High proton conduction in grain-boundary-free yttrium-doped barium zirconate films grown by pulsed laser deposition, Nat. Mater, vol.9, 2010.

S. Fuentes, Structural characterisation of slightly Fe-doped SrTiO3 grown via sol-gel hydrothermal synthesis, JSST, vol.75, 2015.

T. , Ferroelectricity in thin perovskite films, Appl. Phys. Lett, vol.75, p.856, 1999.

D. G. Schlom, Oxide nano-engineering using MBE, Mater. Sci. Eng. B, vol.87, 2001.

R. Droopad, Development of integrated heterostructures on silicon by MBE, J. Cryst. Growth, vol.638, p.251, 2003.

F. Arrouy, Growth, microstructure, and electrochemical oxidation of MBE-grown c-axis La2CuO4 thin films, Phy. Rev. B, vol.54, 1996.

O. Bierwagen and J. S. Speck, Plasma-assisted molecular beam epitaxy of Sn-doped In2O3: Sn incorporation, structural changes, doping limits, and compensation, Phys. Status. Solidi. A, vol.211, 2013.

R. A. Mckee, Crystalline Oxides on Silicon: The First Five Monolayers, Phys. Rev. Lett, vol.81, 1998.

Z. P. Wu, Structural and dielectric properties of epitaxial SrTiO3 films grown directly on GaAs substrates by laser molecular beam epitaxy, J. Appl. Phys, vol.104, p.54103, 2008.

R. A. Mckee, Molecular beam epitaxy growth of epitaxial barium silicide, barium oxide, and barium titanate on silicon, Appl. Phys. Lett, vol.59, p.782, 1991.

C. Xiong, Active Silicon Integrated Nanophotonics: Ferroelectric BaTiO3 Devices, Nano. Lett, vol.14, p.1419, 2014.

W. Huang, Electrical properties of ferroelectric BaTiO3 thin film on SrTiO3 buffered GaAs by laser molecular beam epitaxy, Appl. Phys. Lett, vol.94, p.32905, 2009.

G. Y. Gao, Heteroepitaxial growth and multiferroic properties of Mn-doped BiFeO3 films on SrTiO3 buffered III-V semiconductor GaAs, J. Appl. Phys, vol.114, p.94106, 2013.

G. Delhaye, Structural properties of epitaxial SrTiO3 thin films grown by molecular beam epitaxy on Si(001), J. Appl. Phys, vol.100, p.124109, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01939569

G. Saint-girons, Epitaxy of SrTiO3 on Silicon: The Knitting Machine Strategy, Chem. Mater, vol.28, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01848688

G. Niu, Molecular beam epitaxy of SrTiO3 on Si (001): Early stages of the growth and strain relaxation, vol.95, p.62902, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00663481

L. Louahadj, Molecular beam epitaxy of SrTiO3 on GaAs(001): GaAs surface treatment and structural characterization of the oxide layer, Thin. Solid. Films, vol.563, issue.2, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01848757

B. Meunier, The role of titanium at the SrTiO3/GaAs epitaxial interface, J. Cryst. Growth, vol.433, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01848713

, Basics of measuring the dielectric properties of materials, 1992.

W. L. Barnes, Surface plasmon subwavelength optics, Nature, vol.424, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00472360

S. , Nano-optics from sensing to waveguiding, Nat. Photonics, vol.1, 2007.

R. Kirchain and L. Kimerling, A roadmap for nanophotonics, Nat. Photonics, vol.1, 2007.

S. A. Maier and H. A. Atwater, Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures, J. Appl. Phys, vol.98, p.11101, 2005.

S. A. Maier, Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides, Nat. Mater, vol.2, p.229, 2003.

S. I. Bozhevolnyi, Channel plasmon subwavelength waveguide components including interferometers and ring resonators, Nature, vol.440, 2006.

J. Takahara, Guiding of a one-dimensional optical beam with nanometer diameter, Opt. Lett, vol.22, p.475, 1997.

L. Novotny and C. Hafner, Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function, Phys. Rev. E, vol.50, 1994.

D. F. Pile and D. K. Gramotnev, Channel plasmon-polariton in a triangular groove on a metal surface, Opt. Lett, vol.29, p.1069, 2004.

W. Rechberger, Optical properties of two interacting gold nanoparticles, Opt. Commun, vol.220, 2003.

R. M. Bakker, Enhanced localized fluorescence in plasmonic nanoantennae, Appl. Phys. Lett, vol.92, p.43101, 2008.

A. Poddubny, Hyperbolic metamaterials, Nat. Photonics, vol.7, p.958, 2013.

G. V. Naik, Titanium nitride as a plasmonic material for visible and near-infrared wavelengths, Opt. Mater. Express, vol.2, p.478, 2012.

J. Kim, Improving the radiative decay rate for dye molecules with hyperbolic metamaterials, Opt. Express, vol.20, 2012.

J. Kanungo and J. Schilling, Experimental determination of the principal dielectric functions in silver nanowire metamaterials, Appl. Phys. Lett, vol.97, p.21903, 2010.

B. Saha, Rocksalt nitride metal/semiconductor superlattices: A new class of artificially structured materials, Appl. Phys. Rev, vol.5, p.21101, 2018.

G. Naik and A. Botasseva, Semiconductors for plasmonics and metamaterials, Phys. Status. Solidi, 4, vol.295, 2010.

P. West, Searching for better plasmonic materials, Laser. Photonics. Rev, 4, vol.795, 2010.

M. Noginov, Transparent conductive oxides: Plasmonic materials for telecom wavelengths, Appl. Phys. Lett, vol.99, p.21101, 2011.

A. Frolich and M. Wegener, Spectroscopic characterization of highly doped ZnO films grown by atomic-layer deposition for three-dimensional infrared metamaterials, Opt. Mater. Express, vol.1, 2011.

G. Naik, Oxides and nitrides as alternative plasmonic materials in the optical range, Opt. Mater. Express, 1090.

G. V. Naik, Titanium nitride as a plasmonic material for visible and near-infrared wavelengths, Opt. Mater. Express, vol.2, p.478, 2012.

G. V. Naik, Alternative Plasmonic Materials: Beyond Gold and Silver, Adv. Mater, vol.25, 2013.

P. Johnson and R. Christy, Optical Constants of the Noble Metals, Phys. Rev. B, vol.6, 1972.

I. I. Smolyaninov, Hyperbolic metamaterial interfaces: Hawking radiation from Rindler horizons and spacetime signature transitions, Phys. Rev. B, vol.85, p.235122, 2012.

Y. He, Optical field enhancement in nanoscale slot waveguides of hyperbolic metamaterials, Opt. Lett, vol.37, p.2907, 2012.

Z. J. Wong, Optical and acoustic metamaterials: superlens, negative refractive index and invisibility cloak, J. Opt, vol.19, p.84007, 2017.

A. J. Hoffman, Negative refraction in semiconductor metamaterials, Nat. Mater, vol.6, 2007.

J. Yao, Optical Negative Refraction in Bulk Metamaterials of Nanowires, Science, vol.321, 2008.

Z. Liu, Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects, vol.315, 2007.

J. Rho, Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies, Nature. Commun, vol.1, issue.143, 2010.

X. Zhang and Z. Liu, Superlenses to overcome the diffraction limit, Nat. Mater, vol.7, p.435, 2008.

J. B. Pendry, Negative Refraction Makes a Perfect Lens, Phys. Rev. Lett, vol.85, p.3966, 2000.

S. Ishii, Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium, Laser. Photonics. Rev, vol.7, 2013.

D. Lu and Z. Liu, Hyperlenses and metalenses for far-field super-resolution imaging, Nat. Commun, vol.3, p.1205, 2012.

C. Ma, Extraordinary light focusing and Fourier transform properties of gradient-index metalenses, Phys. Rev. B, vol.84, 2011.

Z. Jacob, Broadband Purcell effect: Radiative decay engineering with metamaterials, Appl. Phys. Lett, vol.100, p.181105, 2012.

M. Y. Shalaginov, Hyperbolic Metamaterials for Single-Photon Sources and Nanolasers, Quntum. Photonics, vol.185, 2017.

M. A. Noginov, Controlling spontaneous emission with metamaterials, Opt. Lett, vol.35, p.1863, 2010.

Y. Guo, Broadband super-Planckian thermal emission from hyperbolic metamaterials, Appl. Phys. Lett, vol.101, p.131106, 2012.

J. Sun, Indefinite permittivity and negative refraction in natural material: Graphite, Appl. Phys. Lett, vol.98, p.101901, 2011.

K. Korzeb, Compendium of natural hyperbolic materials, Opt. Express, vol.23, p.25406, 2015.

Y. Guo, Applications of Hyperbolic Metamaterial Substrates, Adv. Optoelectron, 2012.

V. M. Agranovich and V. E. Kravtsov, Notes on crystal optics of superlattices, Solid. State. Commun, vol.55, 1985.

T. Xu, All-angle negative refraction and active flat lensing of ultraviolet light, Nature, vol.497, 2013.

J. Liu, Optical absorption of hyperbolic metamaterial with stochastic surfaces, Opt. Express, vol.22, 2014.

A. Cho, Film Deposition by Molecular-Beam Techniques, J. Vac. Sci. Tech, vol.8, issue.S31, 1971.

A. Cho and J. Arthur, Molecular beam epitaxy, Prog. Solid. State. Chem, vol.10, p.157, 1975.
URL : https://hal.archives-ouvertes.fr/hal-01492483

D. G. Schlom, Oxide nano-engineering using MBE, Prog. Mater. Sci. Eng, vol.87, 2001.

A. A. Demkov and A. B. Posadas, Integration of Functional Oxides with Semiconductors, 2014.

Z. Dauter, Data-collection stratergies, Acta. Cryst. D, vol.55, p.1703, 1999.

J. Klein, , 2001.

. Thèse-de-benjamin-caracan, Super-réseaux à base de BiFeO3 et de LaFeO3 : Croissance, étude structurale et transitions de phases, 2016.

J. H. Neave, Dynamics of film growth of GaAs by MBE from Rheed observations, Appl. Phys. A, vol.31, issue.1, 1983.

K. Dorywalski, Spectroscopic ellipsometry technique as a materials characterization tool for mechatronic systems-The case of composition and doping concentration monitoring in SBN crystals, Mechatronics, vol.37, 2016.

H. G. Tompkins and E. A. Irene, , 2005.

J. A. Woollam, Ellipsometry solutions, Ellipsometry data analysis

M. Schubert, Polarization-dependent optical parameters of arbitrarily anisotropic homogeneous layered systems, Phys. Rev. B, vol.53, 1996.

F. M. Smits, Measurement of Sheet Resistivities with the Four-Point Probe, Syst. Tech. J, vol.37, 1958.

L. B. Valdes, Resistivity Measurements on Germanium for Transistors, Proc. IRE, vol.42, 1954.

Q. Ma, Y-substituted SrTiO3-YSZ composites as anode materials for solid oxide fuel cells: Interaction between SYT and YSZ, J. Power. Sources, 1920.

J. Gerblinger and H. Meixner, Fast oxygen sensors based on sputtered strontium titanate, Sens. Actuator. B, vol.4, p.99, 1991.

J. G. Mavroides, Photoelectrolysis of water in cells with SrTiO3 anodes, Appl. Phys. Lett, vol.28, p.241, 1976.

F. T. Wagner and G. A. Somorjai, Photocatalytic and photoelectrochemical hydrogen production on strontium titanate single crystals, J. Am. Chem. Soc, vol.102, 1980.

A. Janotti, Controlling the density of the two-dimensional electron gas at the SrTiO3/LaAlO3 interface, Phys. Rev. B, vol.86, p.241108, 2012.

Y. S. Ham and J. H. Koh, Ferroelectrics, vol.382, 2009.

C. , High performance metal-insulator-metal capacitor using a SrTiO3/ZrO2 bilayer, Appl. Phys. Lett, vol.94, p.253502, 2009.

Y. Nakano and N. Ichinose, Oxygen adsorption and VDR effect in (Sr,Ca)TiO3?x based ceramics, J. Mater. Res, vol.5, p.2910, 1990.

T. Menke, Impact of the electroforming process on the device stability of epitaxial Fe-doped SrTiO3 resistive switching cells, Appl. Phys. Lett, vol.106, p.11407, 2009.

S. A. Hayward and E. K. Salje, Cubic-tetragonal phase transition in SrTiO3 revisited: Landau theory and transition mechanism, Phase. Transit, vol.68, 1999.

Y. Liang, Hetero-epitaxy of perovskite oxides on GaAs(001) by molecular beam epitaxy, Appl. Phys. Lett, vol.85, p.1217, 2004.

L. Louahadj, Appl. Phys. Lett, vol.103, p.212901, 2013.

R. A. Mckee, Ferroelectric Pb(Zr,Ti)O3 epitaxial layers on GaAs, Phy. Rev. Lett, vol.81, p.782, 1991.

W. Huang, Electrical properties of ferroelectric BaTiO3 thin film on SrTiO3 buffered GaAs by laser molecular beam epitaxy, Appl. Phys. Lett, vol.94, p.32905, 2009.

G. Y. Gao, Heteroepitaxial growth and multiferroic properties of Mn-doped BiFeO3 films on SrTiO3 buffered III-V semiconductor GaAs, J. Appl. Phys, vol.114, p.94106, 2013.

M. A. Saifi and L. E. Cross, Dielectric Properties of Strontium Titanate at Low Temperature, Phys. Rev. B, vol.2, p.677, 1970.

S. A. Hayward and E. K. Salje, Cubic-tetragonal phase transition in SrTiO3 revisited: Landau theory and transition mechanism, Phase Transitions, vol.68, 1999.

A. D. Hilton and B. W. Ricketts, Dielectric properties of Ba1-xSrxTiO3 ceramics, J. Phys. D: Appl. Phys, vol.29, 1996.

J. H. Haeni, Room-temperature ferroelectricity in strained SrTiO3, Nature, vol.430, 2004.

N. Shanthi and D. D. Sarma, Electronic structure of electron doped SrTiO3: SrTiO3?? and Sr1?xLaxTiO3, Phys Rev. B, vol.57, p.2153, 1998.

J. Ravichandran, An Epitaxial Transparent Conducting Perovskite Oxide: Double-Doped SrTiO3, Chem. Mater, vol.22, 2010.

T. Tomio and H. Miki, Control of electrical conductivity in laser deposited SrTiO3 thin films with Nb doping, J. Appl. Phys, vol.76, 1994.

S. Zollner, Optical properties of bulk and thin-film SrTiO3 on Si and Pt, J. Vac. Sci. Technol. B, vol.18, p.2242, 2000.

K. V. Benthem and C. Elsasser, Bulk electronic structure of SrTiO3 Experiment and theory, J. Appl. Phys, vol.90, p.6156, 2001.

C. Zhang, Substitutional position and insulator-to-metal transition in Nb-doped SrTiO3, Mater. Chem. Phys, vol.107, p.215, 2008.

M. Cardona, Optical Properties and Band Structure of SrTiO3 and BaTiO3, Phys. Rev, vol.140, 1965.

A. H. Kahn and A. J. Leyendecker, Electronic Energy Bands in Strontium Titanate, Phys. Rev, vol.135, p.1321, 1964.

T. Fix, Influence of the dopant concentration in In-doped SrTiO3 on the structural and transport properties, Solid. State. Commun, vol.146, 2008.

Y. Tokura, Filling dependence of electronic properties on the verge of metal-Mott-insulator transition in Sr1?xLaxTiO3, Phys. Rev. Lett, vol.70, p.2126, 1993.

J. Son, Epitaxial SrTiO3 films with electron mobilities exceeding 30,000 cm 2 V ?1 s ?1, Nat. Mater, vol.9, 2010.

M. Apreutesei, Thermoelectric La-doped SrTiO3 epitaxial layers with single-crystal quality: from nano to micrometers, Sci. Technol. Avd. Mater, vol.18, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01628269

T. Okuda, Large thermoelectric response of metallic perovskites: Sr1?xLaxTiO3(0<~x<~0.1), Phys. Rev. B, vol.63, p.113104, 2001.

M. Choi, Structural, optical, and electrical properties of strained La-doped SrTiO3 films, J. Appl. Phys, vol.116, p.43705, 2014.

W. Choi, Polaron Transport and Thermoelectric Behavior in La-Doped SrTiO3 Thin Films with Elemental Vacancies, Adv. Funct. Mater, vol.25, 2015.

T. Cain, La-doped SrTiO3 films with large cryogenic thermoelectric power factors, Appl. Phys. Lett, vol.102, p.182101, 2013.

K. Ahadi, Enhancing superconductivity in SrTiO3 films with strain, Sci. Adv, vol.5, p.120, 2019.

M. Bouras, Perovskite-Oxide Based Hyperbolic Metamaterials, ASC photonics, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02325498

V. S. Oudovenko, Calculations of optical properties in strongly correlated materials, Phys. Rev. B, vol.70, p.125112, 2004.

B. Vilquin, Effect of Sr doping on LaTiO3 thin films, Appl. Surf. Sci, vol.244, 2005.

T. Arima, Variation of optical gaps in perovskite-type 3d transition-metal oxides, Phys. Rev. B, vol.48, p.17006, 1993.

D. A. Maclean and J. E. Greedan, Crystal growth, electrical resistivity, and magnetic properties of lanthanum titanate and cerium titanate. Evidence for a metal-semiconductor transition, Inorg. Chem, 4, p.1025, 1981.

Y. Taguchi, Critical behavior in LaTiO3+?/2 in the vicinity of antiferromagnetic instability, Phys. Rev. B, vol.59, 1999.

M. Bradha, Synthesis, structure and total conductivity of A-site doped LaTiO3?? perovskites, J. Alloy. Compd, vol.626, 2015.

L. Hu, Point Defect Engineering of High-Performance Bismuth-Telluride-Based Thermoelectric Materials, Adv. Funct. Mater, vol.24, 2014.

D. Wu, Origin of the High Performance in GeTe-Based Thermoelectric Materials upon Bi2Te3 Doping, J. Am. Chem. Soc, vol.136, p.11412, 2014.

P. Vaqueiro and A. V. Powell, Recent developments in nanostructured materials for highperformance thermoelectrics, J. Mater. Chem, vol.20, p.9577, 2010.

J. He, Oxide thermoelectrics: The challenges, progress, and outlook, J. Mater. Res, vol.26, p.1762, 2011.

W. S. Choi, Thermopower Enhancement by Fractional Layer Control in 2D Oxide Superlattices, Adv. Mater, vol.26, 2014.

J. P. , Thermal properties of high quality single crystals of bismuth telluride-Part I: Experimental characterization, J. Phys. Chem. Solids, vol.49, p.1237, 1988.

T. De and L. Louahaj, Développement de l'épitaxie par jets moléculaires d'oxydes fonctionnls sur silicium, 2014.

Y. S. Kim, Sr flux stability against oxidation in oxide-molecular-beam-epitaxy environment: Flux, geometry, and pressure dependence, J. Vac. Sci. Technol. A, vol.28, 2010.

E. S. Hellman and E. H. Hartford, Effects of oxygen on the sublimation of alkaline earths from effusion cells, J. Vac. Sci. Techol. B, vol.12, p.1178, 1994.

D. J. Rogers, Critical parameters in the molecular beam epitaxy growth of Bi2Sr2Can-1CunOy and (Sr, Ca)mCunOy superconductor thin films, Supercond. Sci. Techol, vol.12, 1999.

T. De and D. Ferrah, Etude des propriétés physico-chimiques d'interfaces par photoémission, université de Lyon, 2013.

T. De and B. Meunier, Epitaxie d'hétérostructures en combinant oxydes fonctionnels et semiconducteurs III-V pour la réalisation de nouvelles fonctions photoniques, 2016.

C. M. Brooks, Growth of homoepitaxial SrTiO3 thin films by molecular-beam epitaxy, Appl. Phys. Lett, vol.94, p.162905, 2009.

T. Ohnishi, Defects and transport in complex oxide thin films, J. Appl. Phys, vol.103, p.103703, 2008.

J. E. Sunstrom, Synthesis, structure, and properties of lanthanum strontium titanate (La1-xSrxTiO3), vol.346, 1992.

J. Ranvichandran, Tuning the electronic effective mass in double-doped SrTiO3, Phys. Rev

B. , , vol.83, p.35101, 2011.

T. A. Cain, La-doped SrTiO3 films with large cryogenic thermoelectric power factors, Appl. Phys. Lett, vol.102, p.182101, 2013.

G. Bouzerar, Unified modelling of the thermoelectric properties in SrTiO3, EPL, vol.118, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02289389

H. W. Eng, Investigations of the electronic structure of d 0 transition metal oxides belonging to the perovskite family, J. Solid. State. Chem, vol.175, p.94, 2003.

I. F. Almog, M. S. Bradley, and V. Bulovic, The Lorentz Oscillator and its applications, MITOpenCourseWare, 2011.

Y. Fujishima, Optical-conductivity spectra of Sr1?xLaxTiO3: Filling-dependent effect of the electron correlation, Phys. Rev. B, vol.46, 1992.

V. P. Drachev, The Ag dielectric function in plasmonic metamaterials, Opt. Express, vol.16, p.1186, 2008.

G. V. Naik and A. Boltasseva, A comparative study of semiconductor-based plasmonic metamaterials, Metamaterials, vol.5, issue.1, 2011.

E. E. Fullerton, Structural refinement of superlattices from x-ray diffraction, Phys. Rev. B, vol.45, 1992.

A. Boltasseva, Low-Loss Plasmonic Metamaterials, Science, vol.331, 2011.

R. E. Camley, Collective excitations of semi-infinite superlattice structures: Surface plasmons, bulk plasmons, and the electron-energy-loss spectrum, Phys. Rev. B, vol.29, p.1695, 1984.

M. Yoshida, Resonant photon transport through metal-insulator-metal multilayers consisting of Ag and SiO2, Phys. Rev, vol.82, p.45410, 2010.

G. V. Naik, Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials, Proc. Natl. Acad. Sci, vol.109, 2012.

M. Desouky, Silicon based mid-IR super absorber using hyperbolic metamaterial, Sci. Rep, 2018.

S. M. Rytov, Electromagnetic properties of a finely stratified medium, Sov. Phys. JETP, vol.2, p.466, 1956.

P. , Superlattice Optics, Physica Scripta, vol.34, 1986.

B. Wood, Directed subwavelength imaging using a layered metal-dielectric system, Phy. Rev. B, vol.74, p.115116, 2006.

V. P. Drachev, Hyperbolic metamaterials: new physics behind a classical problem, vol.21, p.15048, 2013.

M. Born and E. Wolf, Principle of Optics, 1999.

R. Wangberg, Nonmagnetic nanocomposites for optical and infrared negative-refractiveindex media, J. Opt. Soc. Am. B, vol.23, 2006.

M. Eich, Gold-silicon metamaterial with hyperbolic transition in near infrared, Appl. Phys. Lett, vol.103, p.21905, 2013.

B. Saha, TiN/(Al,Sc)N metal/dielectric superlattices and multilayers as hyperbolic metamaterials in the visible spectral range, Phys. Rev. B, vol.90, p.125420, 2014.

S. Kalusniak, Demonstration of hyperbolic metamaterials at telecommunication wavelength using Ga-doped ZnO, Opt. Express, vol.23, p.32555, 2015.

Y. C. Chang, Realization of mid-infrared graphene hyperbolic metamaterials, Nat. Commun, vol.7, p.10568, 2016.

R. M. Mihalcea, Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 ?m, Appl. Phys. B, vol.67, 1998.

L. Glasser, Systematic Thermodynamics of Layered Perovskites: Ruddlesden-Popper Phases, ACS. Inorg. Chem, vol.56, 2017.

S. N. Ruddlesden and P. Popper, New compounds of the K2NIF4 type, Acta. Cryst, vol.10, 1957.

S. N. Ruddlesden and P. Popper, The compound Sr3Ti2O7 and its structure, Acta. Cryst, vol.11, 1958.

G. J. Mccathy, Phase Equilibria in the 1375°C Isotherm of the System Sr-Ti-O, J. Am. Ceram. Soc, vol.52, 1969.

J. H. Haeni, Epitaxial growth of the first five members of the Srn+1TinO3n+1 Ruddlesden-Popper homologous series, Appl. Phys. Lett, vol.78, p.3292, 2001.

J. H. Lee, Dynamic layer rearrangement during growth of layered oxide films by molecular beam epitaxy, Nat. Mater, vol.13, 2014.

Y. Yasuno, Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography, Opt. Lett, vol.27, p.1803, 2002.

M. F. Weber, Giant Birefringent Optics in Multilayer Polymer Mirrors, Science, vol.287, p.2451, 2000.

S. Ghosh, Enhancement of spin coherence using Q-factor engineering in semiconductor microdisc lasers, Nat. Mater, vol.5, 2006.

K. Aoki, Microassembly of semiconductor three-dimensional photonic crystals, Nat. Mater, vol.2, p.117, 2003.

J. Gomis-bresco, Anisotropy-induced photonic bound states in the continuum, Nat. Photonics, vol.11, 2017.

L. H. Nicholls, Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials, Nat. Photonics, vol.11, 2017.

O. Takayama, Lossless directional guiding of light in dielectric nanosheets using Dyakonov surface waves, Nat. Nanotechnol, vol.9, p.419, 2014.

S. Jahani, Transparent subdiffraction optics: nanoscale light confinement without metal, 2014.

S. Ghosh, Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals, Opt. Commun, vol.163, 1999.

W. M. Sinton, Birefringence of Rutile in the Infrared, JOSA, vol.51, p.1309, 1961.

H. T. Luo, High birefringence of the yttrium vanadate crystal in the middle wavelength infrared, Opt. Lett, vol.31, p.616, 2006.

D. B. Chenault and R. A. Chipman, Infrared birefringence spectra for cadmium sulfide and cadmium selenide, Appl. Opt, vol.32, 1993.

M. J. Dodge, Refractive properties of magnesium fluoride, Appl. Opt, vol.23, 1980.

N. Mao, Optical Anisotropy of Black Phosphorus in the Visible Regime, JACS, vol.138, 2016.

S. Niu, Giant optical anisotropy in a quasi-one-dimensional crystal, Nat. Photonics, vol.12, 2018.

Z. Guoqing, Growth and spectrum of a novel birefringent ?-BaB2O4 crystal, J. Cryst. Growth, vol.517, 1998.

D. Cyranoski, Materials science: China's crystal cache, Nature, vol.457, 2009.

H. Zhang, Na3Ba2(B3O6)2F: Next Generation of Deep-Ultraviolet Birefringent Materials, Cryst. Growth. Des, vol.15, 2014.

Z. Jia, Top-Seeded Solution Growth and Optical Properties of Deep-UV Birefringent Crystal Ba2Ca(B3O6)2, Cryst. Growth. Des, vol.17, 2017.

J. Sun, Indefinite by Nature: From Ultraviolet to Terahertz, ACS. Photonics, vol.1, p.293, 2014.

K. Wang, Thermally evaporated Cu2ZnSnS4 solar cells, Appl. Phys. Lett, vol.97, p.143508, 2010.

S. Dai, Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material, Nat. Commun, vol.6, 2015.

J. D. Caldwell, Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride, Nat. Commun, vol.5, 2014.

Y. Zhang, Total negative refraction in real crystals for ballistic electrons and light, Phys. Rev. Lett, vol.91, p.157404, 2003.

E. Gerlach, Dynamical conductivity and plasmon excitation in Bi, Phys. Status Solidi, vol.75, 1976.

L. V. Alekseyev, Homogeneous hyperbolic systems for terahertz and far-infrared frequencies, Adv. Optoelectron, 2012.

M. Esslinger, Tetradymites as Natural Hyperbolic Materials for the Near-Infrared to Visible, ACS. Photonics, vol.1, p.1285, 2014.

J. Kortus, Superconductivity of Metallic Boron in MgB2, Phys. Rev. Lett, vol.86, p.4656, 2001.