E. Verbree and P. J. Van-oosterom, The STIN method: 3D surface reconstruction by observation lines and Delaunay TENs, Proceedings of ISPRS Workshop on 3D-reconstruction from airborne laserscanner and InSAR data, 2003.

A. A. Alesheikh, H. Helali, and H. A. Behroz, Web GIS: technologies and its applications, Symposium on geospatial theory, processing and applications, vol.15, 2002.

Q. Zhu, Towards semantic 3D city modeling and visual explorations, Advances in 3D Geo-Information Sciences, pp.275-294, 2011.

G. Gröger and L. Plümer, CityGML-Interoperable semantic 3D city models, ISPRS J. Photogramm. Remote Sens, vol.71, pp.12-33, 2012.

J. Döllner, K. Baumann, and H. Buchholz, Virtual 3D city models as foundation of complex urban information spaces. na, 2006.

T. H. Kolbe, Representing and exchanging 3D city models with CityGML, 3D geo-information sciences, pp.15-31, 2009.

E. Dimopoulou, D. Kitsakis, and E. Tsiliakou, Investigating correlation between legal and physical property: possibilities and constraints, Third International Conference on Remote Sensing and Geoinformation of the Environment, vol.9535, p.95350, 2015.

S. P. Singh, K. Jain, and V. R. Mandla, Virtual 3D city modeling: techniques and applications, ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci, issue.2, pp.73-91, 2013.

T. De-vries and S. Zlatanova, 3D intelligent cities, GeoInformatics, vol.14, issue.3, p.6, 2011.

T. H. Kolbe, G. Gröger, and L. Plümer, CityGML: Interoperable access to 3D city models, Geoinformation for disaster management, pp.883-899, 2005.

G. Gröger, T. Kolbe, and A. Czerwinski, Candidate OpenGIS CityGML Implementation Specification (City Geography Markup Language), Open Geospatial Consort. Inc OGC, 2007.

B. Mao, Y. Ban, and L. Harrie, A multiple representation data structure for dynamic visualisation of generalised 3D city models, ISPRS J. Photogramm. Remote Sens, vol.66, issue.2, pp.198-208, 2011.

A. Gospodini, Portraying, classifying and understanding the emerging landscapes in the postindustrial city, Cities, vol.23, issue.5, pp.311-330, 2006.

H. Schaffers, N. Komninos, M. Pallot, B. Trousse, M. Nilsson et al., Smart cities and the future internet: Towards cooperation frameworks for open innovation, The future internet assembly, pp.431-446, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00949037

H. Chourabi, Understanding smart cities: An integrative framework, 2012 45th Hawaii international conference on system sciences, pp.2289-2297, 2012.

N. Karacapilidis and D. Papadias, Computer supported argumentation and collaborative decision making: the HERMES system, Inf. Syst, vol.26, issue.4, pp.259-277, 2001.

J. Van-der-bent, J. Paauwe, and R. Williams, Organizational learning: an exploration of organizational memory and its role in organizational change processes, J. Organ. Change Manag, vol.12, issue.5, pp.377-404, 1999.

R. H. Bonczek, C. W. Holsapple, and A. B. Whinston, Foundations of decision support systems, 2014.

J. P. Shim, M. Warkentin, J. F. Courtney, D. J. Power, R. Sharda et al., Past, present, and future of decision support technology, Decis. Support Syst, vol.33, issue.2, pp.111-126, 2002.

M. S. Scott-morton and P. G. Keen, Decision support systems: an organizational perspective, 1978.

J. E. Aronson, T. Liang, and E. Turban, Decision support systems and intelligent systems, vol.4, 2005.

A. L. Golub, Decision analysis: an integrated approach, 1997.

H. A. Simon, The new science of management decision, 1960.

R. H. Sprague and E. D. Carlson, Building effective decision support systems, 1982.

C. and L. Stephen, Presumptive meanings. The theory of generalized conversational implicature, Camb. Mass. Inst. Technol, 2000.

N. Chomsky and D. W. Lightfoot, Syntactic structures, 2002.

T. Gruber, Ontology, Encyclopedia of Database Systems, pp.1963-1965, 2009.

W. Kuhn, Geospatial Semantics: Why, of What, and How?, Journal on Data Semantics III, pp.1-24, 2005.

K. Janowicz, S. Scheider, T. Pehle, and G. Hart, Geospatial semantics and linked spatiotemporal data-Past, present, and future, Semantic Web, vol.3, issue.4, pp.321-332, 2012.

K. Janowicz, M. Raubal, and W. Kuhn, The semantics of similarity in geographic information retrieval, J. Spat. Inf. Sci, vol.2011, issue.2, pp.29-57, 2011.

O. Ahlqvist and A. Shortridge, Characterizing Land Cover Structure with Semantic Variograms, Progress in Spatial Data Handling: 12th International Symposium on Spatial Data Handling, pp.401-415, 2006.

F. Probst and M. Lutz, Giving meaning to GI web service descriptions, Ontol.-Based Discov. Compos. Geogr. Inf. Serv, p.206, 2004.

, A.40 computational modeling algorithms and cyberinfrastructure, 2012.

C. Schlieder, Digital heritage: Semantic challenges of long-term preservation, Semantic Web, vol.1, issue.1, pp.143-147, 2010.

W. Kuhn, Modeling vs encoding for the Semantic Web, Semantic Web, vol.1, issue.1, pp.11-15, 2010.

A. U. Frank-;-t, M. Sellis, A. Koubarakis, S. Frank, R. H. Grumbach et al., Chapter 2: Ontology for Spatio-temporal Databases, Spatio-Temporal Databases: The CHOROCHRONOS Approach

T. Bittner, M. Donnelly, and B. Smith, A spatio-temporal ontology for geographic information integration, Int. J. Geogr. Inf. Sci, vol.23, issue.6, pp.765-798, 2009.

A. G. Cohn and S. M. Hazarika, Qualitative Spatial Representation and Reasoning: An Overview, Fundam. Informaticae, vol.46, issue.1-2, pp.1-29, 2001.

C. B. Jones, A. I. Abdelmoty, D. Finch, G. Fu, and S. Vaid, The SPIRIT Spatial Search Engine: Architecture, Ontologies and Spatial Indexing, Geographic Information Science, pp.125-139, 2004.

N. Chrisman, Exploring geographic information systems, 1997.

F. Harvey, W. Kuhn, H. Pundt, Y. Bishr, and C. Riedemann, Semantic interoperability: A central issue for sharing geographic information, Ann. Reg. Sci, vol.33, issue.2, pp.213-232, 1999.

A. Gangemi and P. Mika, Understanding the Semantic Web through Descriptions and Situations, On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE, pp.689-706, 2003.

K. A. Nedas and M. J. Egenhofer, Spatial-Scene Similarity Queries, Trans. GIS, vol.12, issue.6, pp.661-681, 2008.

S. Borgo, N. Guarino, and L. Vieu, Formal ontology for semanticists, Res. Inst. Comput. Sci. Toulouse-CNRS Lab. Appl. Ontol. Www Loa-Cnr It, 2005.

T. R. Gruber, A translation approach to portable ontology specifications, Knowl. Acquis, vol.5, issue.2, pp.199-220, 1993.

N. Drummond and M. Horridge, A practical introduction to ontologies & OWL, 2005.

N. Guarino, Semantic matching: Formal ontological distinctions for information organization, extraction, and integration, International Summer School on Information Extraction, pp.139-170, 1997.

C. Masolo, S. Borgo, A. Gangemi, N. Guarino, and A. Oltramari, Wonderweb deliverable d17, Comput. Sci. Prepr. Arch, vol.2002, issue.11, pp.74-110, 2002.

N. R. Chrisman, Beyond Stevens: A revised approach to measurement for geographic information, AUTOCARTO-CONFERENCE, pp.271-280, 1995.

D. Martin, OWL-S: Semantic markup for web services, W3C Memb. Submiss, vol.22, issue.4, 2004.

P. Mika, Social Networks and the Semantic Web, Proceedings of the 2004 IEEE/WIC/ACM International Conference on Web Intelligence, pp.285-291, 2004.

E. Bottou and V. Vapnik, Local Learning Algorithms, Neural Comput, vol.4, pp.888-900, 1992.

V. Vapnik, The Nature of Statistical Learning Theory, 2013.

L. Breiman, Random Forests, Mach. Learn, vol.45, issue.1, pp.5-32, 2001.

A. Liaw and M. Wiener, Classification and regression by randomForest, R News, vol.2, issue.3, pp.18-22, 2002.

P. Vincke, Multicriteria decision-aid, 1992.

M. R. Patel, M. P. Vashi, and B. V. Bhatt, SMART-Multi-criteria decision-making technique for use in planning activities

L. López and J. Carlos, Multicriteria decision aid application to a student selection problem, Pesqui. Oper, vol.25, issue.1, pp.45-68, 2005.

P. Vincke, Multicriteria decision-aid, 1992.

J. Brans and B. , Promethee Methods," in Multiple Criteria Decision Analysis: State of the Art Surveys, pp.163-186, 2005.

L. Liu, E. A. Silva, C. Wu, and H. Wang, A machine learning-based method for the large-scale evaluation of the qualities of the urban environment, Comput. Environ. Urban Syst, vol.65, pp.113-125, 2017.

S. Jiang, A. Alves, F. Rodrigues, J. Ferreira, and F. C. Pereira, Mining point-of-interest data from social networks for urban land use classification and disaggregation, Comput. Environ. Urban Syst, vol.53, pp.36-46, 2015.

M. M. Rathore, A. Ahmad, A. Paul, and S. Rho, Urban planning and building smart cities based on the Internet of Things using Big Data analytics, Comput. Netw, vol.101, pp.63-80, 2016.

S. Sarkar, Effective Urban Structure Inference from Traffic Flow Dynamics, IEEE Trans. Big Data, vol.3, issue.2, pp.181-193, 2017.

P. Frankhauser, C. Tannier, G. Vuidel, and H. Houot, An integrated multifractal modelling to urban and regional planning, Comput. Environ. Urban Syst, vol.67, pp.132-146, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01614652

, Fractalopolis, p.8, 2019.

B. Streich, Dynamic Visualization of Urban Sprawl Scenarios, p.26

T. Holzmann, M. Maurer, F. Fraundorfer, and H. Bischof, Semantically Aware Urban 3D Reconstruction with Plane-Based Regularization, Computer Vision -ECCV 2018, vol.11218, pp.487-503, 2018.

A. Zagarskikh, A. Karsakov, and A. Bezgodov, Efficient Visualization of Urban Simulation Data Using Modern GPUs, Procedia Comput. Sci, vol.51, pp.2928-2932, 2015.

R. Cabezas, J. Straub, and J. W. Fisher, Semantically-Aware Aerial Reconstruction From Multi-Modal Data, presented at the Proceedings of the IEEE International Conference on Computer Vision, pp.2156-2164, 2015.

S. Du, F. Zhang, and X. Zhang, Semantic classification of urban buildings combining VHR image and GIS data: An improved random forest approach, ISPRS J. Photogramm. Remote Sens, vol.105, pp.107-119, 2015.

M. Rouhani, F. Lafarge, and P. Alliez, Semantic segmentation of 3D textured meshes for urban scene analysis, ISPRS J. Photogramm. Remote Sens, vol.123, pp.124-139, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01469502

T. H. Kolbe, G. Gröger, and L. Plümer, CityGML: Interoperable Access to 3D City Models, Geoinformation for Disaster Management, pp.883-899, 2005.

P. D. Smart, J. A. Quinn, and C. B. Jones, City model enrichment, ISPRS J. Photogramm. Remote Sens, vol.66, issue.2, pp.223-234, 2011.

|. Datex-ii, , p.8, 2019.

, European Committee for Standardization, p.8, 2019.

M. Janssen, Y. Charalabidis, and A. Zuiderwijk, Benefits, adoption barriers and myths of open data and open government, Inf. Syst. Manag, vol.29, issue.4, pp.258-268, 2012.

M. Janssen, Y. Charalabidis, and A. Zuiderwijk, Benefits, adoption barriers and myths of open data and open government, Inf. Syst. Manag, vol.29, issue.4, pp.258-268, 2012.

H. Guo, J. Wang, Y. Gao, J. Li, and H. Lu, Multi-view 3D object retrieval with deep embedding network, IEEE Trans. Image Process, vol.25, issue.12, pp.5526-5537, 2016.

K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, Proceedings of the IEEE conference on computer vision and pattern recognition, pp.770-778, 2016.

S. Gu, E. Holly, T. Lillicrap, and S. Levine, Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates, 2017 IEEE international conference on robotics and automation (ICRA, pp.3389-3396, 2017.

O. Araque, I. Corcuera-platas, J. F. Sánchez-rada, and C. Iglesias, Enhancing Deep Learning Sentiment Analysis with Ensemble Techniques in Social Applications, Expert Syst. Appl, vol.77, 2017.

A. Severyn and A. Moschitti, Learning to rank short text pairs with convolutional deep neural networks, Proceedings of the 38th international ACM SIGIR conference on research and development in information retrieval, pp.373-382, 2015.

J. Korczak and M. Hemes, Deep learning for financial time series forecasting in A-Trader system, 2017 Federated Conference on Computer Science and Information Systems (FedCSIS, pp.905-912, 2017.

T. Fischer and C. Krauss, Deep learning with long short-term memory networks for financial market predictions, Eur. J. Oper. Res, vol.270, issue.2, pp.654-669, 2018.

C. Angermueller, T. Pärnamaa, L. Parts, and O. Stegle, Deep learning for computational biology, Mol. Syst. Biol, vol.12, issue.7, p.878, 2016.

R. Schirrmeister, L. Gemein, K. Eggensperger, F. Hutter, and T. Ball, Deep Learning with Convolutional Neural Networks for Decoding Visualization of EEG Pathology, 2018.

P. T. Komiske, E. M. Metodiev, and M. D. Schwartz, Deep learning in color: towards automated quark/gluon jet discrimination, J. High Energy Phys, vol.2017, issue.1, p.110, 2017.

K. T. Schütt, H. E. Sauceda, P. Kindermans, A. Tkatchenko, and K. Müller, SchNet -A deep learning architecture for molecules and materials, J. Chem. Phys, vol.148, issue.24, p.241722, 2018.

S. Zhang, L. Yao, A. Sun, and Y. Tay, Deep Learning Based Recommender System: A Survey and New Perspectives, ACM Comput Surv, vol.52, issue.1, pp.1-5, 2019.

S. S. Fainstein and J. Defilippis, Readings in Planning Theory, 2015.

V. Subramanian, Looking Ahead, Pro MERN Stack: Full Stack Web App Development with Mongo, Express, React, and Node, pp.529-534, 2019.

, Données métropolitaines de Grand Lyon, p.12, 2019.

, CesiumJS -Geospatial 3D Mapping and Virtual Globe Platform, p.12, 2019.

H. Butler, M. Daly, A. Doyle, S. Gillies, T. Schaub et al., The GeoJSON format specification, Rapp. Tech, vol.67, 2008.

J. Snoek, H. Larochelle, and R. P. Adams, Practical Bayesian Optimization of Machine Learning Algorithms, Advances in Neural Information Processing Systems, vol.25, pp.2951-2959, 2012.

I. Rish, An empirical study of the naive Bayes classifier, IJCAI 2001 workshop on empirical methods in artificial intelligence, vol.3, pp.41-46, 2001.