P. Garra, C. Dietlin, F. Morlet-savary, F. Dumur, D. Gigmes et al., Mechanics of composite materials, J. P. & Références, vol.1, 1999.

J. Berthelot, Matériaux composites Comportement mécanique et analyse des structures, 2012.

T. P. Sathishkumar, S. Satheeshkumar, and J. Naveen, Glass fiber-reinforced polymer composites -A review, J. Reinf. Plast. Compos, vol.33, pp.1258-1275, 2014.

L. Gornet, Généralités sur les matériaux composites, 2011.

S. S. Yao, F. L. Jin, K. Y. Rhee, D. Hui, and S. J. Park, Recent advances in carbon-fiberreinforced thermoplastic composites: A review, Compos. Part B Eng, vol.142, pp.241-250, 2018.

M. R. Sanjay, G. R. Arpitha, L. L. Naik, K. Gopalakrishna, and B. Yogesha, Applications of Natural Fibers and Its Composites: An Overview, Nat. Resour, 2016.

J. Cook, Handbook of Textile Fibre and Natural Fibres 4th eddition, 1968.

S. Ahmed and &. Jones, A review of particulate reinforcement theories for polymer composites, J. Mater. Sci, vol.25, pp.4933-4942, 1990.

R. Peila, G. Malucelli, M. Lazzari, and A. Priola, Thermomechanical and Barrier Properties of UV-Cured Epoxy/O-Montmorillonite Nanocomposites, Polym. Eng. Sci, pp.1400-1407, 2010.

S. Ray and A. J. Easteal, Advances in polymer-filler composites: Macro to nano, Mater. Manuf. Process, vol.22, pp.741-749, 2007.

Q. Tian and D. Yu, Preparation and properties of polymer microspheres filled epoxy composite films by UV-curable polymerization, Mater. Des, vol.107, pp.221-229, 2016.

E. M. Wouterson, F. Y. Boey, X. Hu, and S. C. Wong, Specific properties and fracture toughness of syntactic foam: Effect of foam microstructures, Compos. Sci. Technol, vol.65, pp.1840-1850, 2005.

F. Wang, L. T. Drzal, Y. Qin, Z. Huang, Y. Jian et al., Size effect of graphene nanoplatelets on the morphology and mechanical behavior of glass fiber/epoxy composites, J. Mater. Chem. C, vol.51, p.4481, 2013.

H. Salmi, X. Allonas, C. Ley, A. Defoin, and A. Ak, Quaternary ammonium salts of phenylglyoxylic acid as photobase generators for thiol-promoted epoxide photopolymerization, Polym. Chem, vol.5, pp.6577-6583, 2014.

Y. H. Zhao, D. Vuluga, L. Lecamp, and F. Burel, Photoinitiated thiol-epoxy addition for the preparation of photoinduced self-healing fatty coatings, RSC Adv, vol.6, pp.32098-32105, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02326075

P. Garra, C. Dietlin, F. Morlet-savary, F. Dumur, D. Gigmes et al., Photopolymerization of thick films and in shadow areas: A review for the access to composites, Polym. Chem, vol.8, pp.7088-7101, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01774192

G. A. Miller, L. Gou, V. Narayanan, and A. B. Scranton, Modeling of photobleaching for the photoinitiation of thick polymerization systems, J. Polym. Sci. Part A Polym. Chem, vol.40, pp.793-808, 2002.

N. Hayki, L. Lecamp, N. Désilles, and P. Lebaudy, Kinetic study of photoinitiated frontal polymerization. Influence of UV light intensity variations on the conversion profiles, Macromolecules, vol.43, pp.177-184, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02298827

J. V. Crivello and M. Sangermano, Visible and Long-Wavelength Photoinitiated Cationic Polymerization, J. Polym. Sci. Part A Polym. Chem, vol.39, pp.343-356, 2001.

P. Garra, B. Graff, F. Morlet-savary, C. Dietlin, J. M. Becht et al., Charge Transfer Complexes as Pan-Scaled Photoinitiating Systems, p.50

, ?m 3D Printed Polymers at 405 nm to Extremely Deep Photopolymerization (31 cm)

, Macromolecules, vol.51, pp.57-70, 2018.

C. C. Hoppe, B. A. Ficek, H. S. Eom, and A. B. Scranton, Cationic photopolymerization of epoxides containing carbon black nanoparticles, Polymer, vol.51, pp.6151-6160, 2010.

R. Bongiovanni and M. Sangermano, UV-curing science and technology, Encycl. Polym. Sci. Technol, vol.1, issue.20, 2014.

E. W. Nelson, J. L. Jacobs, A. B. Scranton, K. S. Anseth, and C. N. Bowman, Photodifferential scanning calorimetry studies of cationic polymerizations of divinyl ethers. Références 1. Sangermano, M., Roppolo, I. & Chiappone, A. New horizons in cationic photopolymerization, Polymers, vol.10, pp.1-8, 2018.

M. Sangermano, N. Razza, J. V. Crivello, and . Cationic, UV-curing: Technology and applications, Macromol. Mater. Eng, vol.299, pp.775-793, 2014.

R. Bongiovanni and M. Sangermano, UV-curing science and technology, Encycl. Polym. Sci. Technol, vol.1, issue.20, 2014.

B. A. Ficek, A. M. Thiesen, and A. B. Scranton, Cationic photopolymerizations of thick polymer systems: Active center lifetime and mobility, Eur. Polym. J, vol.44, pp.98-105, 2008.

M. Furutani, A. Kakinuma, and K. Arimitsu, A dismantlable photoadhesion system fabricated by an anionic UV curing of epoxy resins with a base amplifier having a disulfide bond, J. Polym. Sci. Part A Polym. Chem, vol.56, pp.237-241, 2018.

H. Salmi, X. Allonas, C. Ley, A. Defoin, and A. Ak, Quaternary ammonium salts of phenylglyoxylic acid as photobase generators for thiol-promoted epoxide photopolymerization, Polym. Chem, vol.5, pp.6577-6583, 2014.

J. A. Dean, Lange's Hendbook of CHEMISTRY, 1999.

T. Matsuda, Y. Funae, M. Yoshida, T. Yamamoto, and T. Takaya, Optical material of high refractive index resin composed of sulfur-containing aliphatic and alicyclic methacrylates, J. Appl. Polym. Sci, vol.76, pp.45-49, 2000.

T. Rodima, I. Kaljurand, A. Pihl, V. Mäemets, I. Leito et al., Acid-base equilibria in nonpolar media. 2. Self-consistent basicity scale in THF solution ranging from 2-methoxypyridine to EtP1(pyrr) phosphazene, J. Org. Chem, vol.67, pp.1873-1881, 2002.

J. Hu, J. Wang, T. H. Nguyen, and N. Zheng, The chemistry of amine radical cations produced by visible light photoredox catalysis, Beilstein J. Org. Chem, vol.9, 1977.

A. O. Konuray, F. Andez-francos, X. Ramis, and X. , Latent curing of epoxy-thiol thermosets, Polymer, vol.116, pp.191-203, 2017.

Z. Li, W. Shen, X. Liu, and R. Liu, Efficient unimolecular photoinitiators for simultaneous hybrid thiol-yne-epoxy photopolymerization under visible LED light irradiation, Polym. Chem, vol.8, pp.1579-1588, 2017.

N. Baird, The stabilization of alkoxide anions, Can. J. Chem, vol.47, pp.2306-2307, 1969.

K. Dietliker, T. Jung, J. Benkhoff, H. Kura, A. Matsumoto et al., New developments in photoinitiators, Macromol. Symp, vol.217, pp.77-97, 2004.

. Kirk-othmer, Encyclopedia of chemical technology, 1983.

H. Salmi, X. Allonas, C. Ley, A. Defoin, and A. Ak, Quaternary ammonium salts of phenylglyoxylic acid as photobase generators for thiol-promoted epoxide photopolymerization, Polym. Chem, vol.5, pp.6577-6583, 2014.

J. Chen and M. D. Soucek, Ultraviolet curing kinetics of cycloaliphatic epoxide with realtime fourier transform infrared spectroscopy, J. Appl. Polym. Sci, vol.90, pp.2485-2499, 2003.

U. Bulut and J. V. Crivello, Investigation of the Reactivity of Epoxide Monomers in Photoinitiated Cationic Polymerization, J. Polym. Sci. Part A Polym. Chem, vol.43, pp.3205-3220, 2005.

E. W. Nelson, J. L. Jacobs, A. B. Scranton, K. S. Anseth, and C. N. Bowman, Photodifferential scanning calorimetry studies of cationic polymerizations of divinyl ethers, Polymer, vol.36, pp.4651-4656, 1995.

V. Sipani and A. B. Scranton, Kinetic studies of cationic photopolymerizations of phenyl glycidyl ether: Termination/trapping rate constants for iodonium photoinitiators, J. Photochem. Photobiol. A Chem, vol.159, pp.189-195, 2003.

L. Geelhand-de-merxem, Nouveaux matériaux photo-réparables à base d'huile végétale, 2019.

M. J. Abadie, N. K. Chia, and F. Boey, Cure kinetics for the ultraviolet cationic polymerization of cycloliphatic and diglycidyl ether of bisphenol-A (DGEBA) epoxy systems with sulfonium salt using an auto catalytic model, J. Appl. Polym. Sci, vol.86, pp.1587-1591, 2002.

Y. Voytekunas, V. Ng, F. Abadie, and M. J. , Kinetics study of the UV-initiated cationic Chapitre, vol.3

É. Optimisation,

F. Aloui, Photopolymérisation de formulations composites : étude de l ' évolution des propriétés optiques, 2015.

F. Aloui, L. Lecamp, P. Lebaudy, and F. Burel, Photopolymerization of an Epoxy Resin: Conversion and Temperature Dependence of its Refractive Index, Macromol. Chem. Phys, vol.217, pp.2063-2067, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02298809

M. Philipp, U. Müller, P. C. Gervais, C. Wehlack, W. Possart et al.,

E. Krüger and J. K. , Influence of nanoparticles on the coupling between optical dipoles in epoxy-silica nanocomposites during network formation, J. Adhes, vol.88, pp.566-588, 2012.

S. Kongparakul, S. Kornprasert, P. Suriya, D. Le, C. Samart et al., Progress in Organic Coatings Self-healing hybrid nanocomposite anticorrosive coating from epoxy/modified nanosilica/perfluorooctyl triethoxysilane, Prog. Org. Coatings, vol.104, pp.173-179, 2017.

H. Xu, T. Yu, and M. Li, Process optimization on reaction between 3-mercaptopropyl trimethoxysilane (MPTMS) and mesoporous silica using response surface methodology

, J. Chem. Pharm. Res, vol.5, pp.1462-1466, 2013.

D. Isin, N. Kayaman-apohan, and A. Güngör, Preparation and characterization of UVcurable epoxy/silica nanocomposite coatings, Prog. Org. Coatings, vol.65, pp.477-483, 2009.

K. Banjanac, M. Mihailovi?, N. Prlainovi?, M. ?orovi?, M. Carevi? et al., Epoxy-silanization -tool for improvement of silica nanoparticles as support for lipase immobilization with respect to esterification activity, J. Chem

, Technol. Biotechnol, vol.91, pp.2654-2663, 2016.

M. Mohammadi, Z. Habibi, S. Dezvarei, M. Yousefi, and M. Ashjari, Selective enrichment of polyunsaturated fatty acids by hydrolysis of fish oil using immobilized and stabilized Rhizomucor miehei lipase preparations, Food Bioprod. Process, vol.94, pp.414-421, 2015.

M. Babaki, M. Yousefi, Z. Habibi, J. Brask, and M. Mohammadi, Preparation of highly reusable biocatalysts by immobilization of lipases on epoxy-functionalized silica for production of biodiesel from canola oil, Biochem. Eng. J, vol.101, pp.23-31, 2015.

A. Perro, Synthèse et valorisation de particules colloïdales de morphologie et de fonctionnalité de surface contrôlées, pp.1-192, 2006.

D. Nowak, J. Ortyl, I. Kami?ska-borek, K. Kuku?a, M. Topa et al., Photopolymerization of hybrid monomers: Part I: Comparison of the performance of selected photoinitiators in cationic and free-radical polymerization of hybrid monomers, Polym. Test, vol.64, pp.313-320, 2017.

J. Brandrup and E. Immergut, Polymer Handbook, 1975.

E. Guth, Theory of filler reinforcement, J. Appl. Phys, vol.16, pp.20-25, 1945.

M. Idicula, S. K. Malhotra, K. Joseph, and S. Thomas, Dynamic mechanical analysis of randomly oriented intimately mixed short banana/sisal hybrid fibre reinforced polyester composites, Compos. Sci. Technol, vol.65, pp.1077-1087, 2005.

A. Vasudevan, S. Senthil-kumaran, K. Naresh, and R. Velmurugan, Experimental and analytical investigation of thermo-mechanical responses of pure epoxy and carbon/Kevlar/S-glass/E-glass/epoxy interply hybrid laminated composites for aerospace applications, Int. J. Polym. Anal. Charact, vol.23, pp.591-605, 2018.

P. Knaack, N. Klikovits, A. D. Tran, D. Bomze, and R. Liska, Radical induced cationic frontal polymerization in thin layers, J. Polym. Sci. Part A Polym. Chem, vol.57, pp.1155-1159, 2019.

M. G. Hennessy, A. Vitale, O. K. Matar, and J. T. Cabral, Controlling frontal photopolymerization with optical attenuation and mass diffusion, Phys. Rev. E -Stat

. Nonlinear, Soft Matter Phys, vol.91, pp.14-18, 2015.

D. Bomze, P. Knaack, T. Koch, H. Jin, and R. Liska, Radical induced cationic frontal polymerization as a versatile tool for epoxy curing and composite production, J. Polym

, Sci. Part A Polym. Chem, vol.54, pp.3751-3759, 2016.

D. Bomze, P. Knaack, and R. Liska, Successful radical induced cationic frontal polymerization of epoxy-based monomers by C-C labile compounds, Polym. Chem, vol.6, pp.8161-8167, 2015.

M. Birkner, A. Seifert, and S. Spange, Radical induced cationic frontal twin polymerization of Si-spiro compound in combination with bisphenol-A-diglycidylether, Polymer), vol.160, pp.19-23, 2019.

J. Zhou, S. Jia, W. Fu, Z. Liu, and Z. Tan, Fast curing of thick components of epoxy via modified UV-triggered frontal polymerization propagating horizontally, Mater. Lett, vol.176, pp.228-231, 2016.

A. Mariani, S. Bidali, S. Fiori, M. Sangermano, G. Malucelli et al., UV-ignited frontal polymerization of an epoxy resin, J. Polym. Sci. Part A Polym. Chem, vol.42, pp.2066-2072, 2004.

N. Klikovits, R. Liska, A. D'anna, and M. Sangermano, Successful UV-Induced RICFP of Epoxy-Composites, Macromol. Chem. Phys, vol.218, pp.5-8, 2017.

M. Sangermano, A. D'anna, C. Marro, N. Klikovits, and R. Liska, UV-activated frontal polymerization of glass fibre reinforced epoxy composites, Compos. Part B Eng, vol.143, pp.168-171, 2018.

, Calorimétrie différentielle à balayage (DSC)

, Le principe de mesure de la DSC à flux de chaleur est basé sur la mesure de différence des flux de chaleur échangés entre l'échantillon et la référence. Le refroidissement du bloc est assuré par un système permettant d'atteindre -60 °C. L'étalonnage en température et en énergie a été effectué avec de l'indium (Tf = 156,6 °C et ?Hf = 28,45 J/g). Les analyses ont été effectuées sous azote (50 mL.min -1 ), de -25 à 330 °C avec une vitesse de 10 °C/min, Les analyses DSC ont été effectuées sur un appareil TA Instruments DSC Q2000

U. V. Spectroscopie and . Visible,

, Les spectres UV-visible ont été effectués sur un spectromètre UV-visible VARIAN CARY 50

, équipé d'un détecteur à double diode silicone, d'un système optique monochromateur (réseau holographique de diffraction CZERNY-TURNER de 1200 lignes/mm) permettant de réaliser des spectres d'absorbance dans la gamme 190-1100 nm grâce à un balayage par pas de 1,5 nm avec une correction possible de la ligne de base entre 200-850 nm. Les spectres ont été réalisés avec une vitesse d'acquisition de 600 nm.min -1 . Les cuves utilisées sont en quartz d'une capacité de 3,5 mL

, Mesure de transmission

, Le rayonnement à analyser est transmis au spectromètre par l'intermédiaire d'une fibre optique, puis collimaté, diffracté par un réseau plan, et focalisé vers une barrette CCD sur laquelle se forme le spectre. Un logiciel permet ensuite de convertir ces signaux électriques et d'obtenir la courbe d

A. Réfractomètre,

, Les mesures d'indice de réfraction ont été effectuées sur le réfractomètre « ARAGO

. Le, Connaissant l'indice de réfraction n1 du prisme, l'indice de réfraction n2 de l'échantillon peut être calculé comme suit : Figure 1: Principe de mesure de l

, Les spectres RMN 1 H ont été enregistrés à l'aide d'un spectromètre Brüker (300 MHz) dans le

. Cd2cl2, Les déplacements chimiques (?) sont exprimés en parties par millions (ppm)

, Sources d'irradiation et mesures d'intensité

, La source d'irradiation polychromatique et d'intensité modulable est une lampe Hg-Xe (Hamamatsu LC8 500W). L'intensité du rayonnement a été mesurée à l'aide d'un radiomètre (Vilber -Intraspec Oriel VLX-3W) muni d'une cellule de mesure à 254 nm