K. Shin, Y. Park, M. H. Baik, and S. Chang, Nat. Chem, p.218, 2018.

G. N. Hermann, M. T. Unruh, S. H. Jung, M. Krings, and C. Bolm, Angew. Chem. Int. Ed, vol.57, p.10723, 2018.

S. Bag, D. Maiti, and . Synth, , vol.48, p.804, 2016.

R. Manikandan and M. Jeganmohan, Chem. Commun, vol.53, p.8931, 2017.

J. Yang, Org. Biomol. Chem, p.13, 1930.

M. T. Mihai, G. R. Genov, and R. J. Phipps, Chem. Soc. Rev, vol.47, p.149, 2018.

Y. Wei, P. Hu, M. Zhang, and W. Su, Chem. Rev, vol.117, p.8864, 2017.

H. W. Wang, Y. Lu, B. Zhang, J. He, H. J. Xu et al., Angew. Chem. Int. Ed, vol.56, p.7449, 2017.

Q. Yang, X. Wang, J. Lu, L. Zhang, P. Fang et al., J. Am. Chem. Soc, p.11487, 2018.

K. A. Margrey, A. Levens, and D. A. Nicewicz, Angew. Chem. Int. Ed, vol.56, p.15644, 2017.

G. N. Hermann, P. Becker, and C. Bolm, Angew. Chem. Int. Ed, vol.55, p.3781, 2016.

B. Vinayak and M. Chandrasekharam, Org. Lett, p.3528, 2017.

Y. Park, Y. Kim, and S. Chang, Chem. Rev, vol.117, p.9247, 2017.

G. Broggini, T. Borelli, S. Giofré, A. Mazza, and S. , , p.2803, 2017.

Y. Zhang, Y. Zhao, Y. Luo, L. Xiao, Y. Huang et al., Org. Lett, p.6470, 2017.

Z. Peng, Z. Yu, T. Li, N. Li, Y. Wang et al., Organometallics, vol.36, p.2826, 2017.

L. Yang, S. Li, L. Cai, Y. Ding, L. Fu et al., Org. Lett, p.2746, 2017.

S. S. Shah, A. Paul, M. Bera, Y. Venkatesh, and N. D. Singh, Org. Lett, p.5533, 2018.

P. Das and J. Guin, ChemCatChem, vol.10, p.2370, 2018.

X. Chen, S. Ozturk, and E. J. Sorensen, Org. Lett, p.6280, 2017.

Y. Wu and B. Zhou, Org. Lett, p.3532, 2017.

R. Ueno, S. Natsui, and N. Chatani, Org. Lett, 1062.

N. Sauermann, T. H. Meyer, C. Tian, and L. Ackermann, J. Am. Chem. Soc, p.18452, 2017.

N. Sauermann, T. H. Meyer, and L. Ackermann, Chem. -Eur. J, vol.24, p.16209, 2018.

W. Ma, Z. Weng, T. Rogge, L. Gu, J. Lin et al., Adv. Synth. Catal, vol.360, p.704, 2018.

W. Ma, Z. Weng, X. Fang, L. Gu, Y. Song et al., Eur. J. Org. Chem, p.41, 2019.

L. Gu, X. Fang, Z. Weng, Y. Song, and W. Ma, Eur. J. Org. Chem, 2019.

L. Huang, Q. Li, C. Wang, and C. Qi, J. Org. Chem, p.3030, 2013.

Z. Li, S. Sun, H. Qiao, F. Yang, Y. Zhu et al., Org. Lett, vol.18, p.4594, 2016.

L. Huang, X. Sun, Q. Li, and C. Qi, J. Org. Chem, p.6720, 2014.

M. Iwasaki, W. Kaneshika, Y. Tsuchiya, K. Nakajima, and Y. Nishihara, J. Org. Chem, p.11330, 2014.

S. Roy, S. Pradhan, and T. Punniyamurthy, Chem. Commun, vol.54, p.3899, 2018.

R. Shang, L. Ilies, and E. Nakamura, J. Am. Chem. Soc, vol.137, p.7660, 2015.

J. Lan, H. Xie, X. Lu, Y. Deng, H. Jiang et al., Org. Lett, p.4279, 2017.

S. Moon, Y. Nishii, and M. Miura, Org. Lett, p.233, 2019.

B. Su and J. F. Hartwig, Angew. Chem. Int. Ed, vol.57, p.10163, 2018.

J. M. Li, Y. H. Wang, Y. Yu, R. B. Wu, J. Weng et al., , 2017.

M. Catellani, F. Frignani, and A. Rangoni, Angew. Chemie Int. Ed. English, vol.36, p.119, 1997.

H. Cheng, S. Chen, R. Chen, and Q. Zhou, Angew. Chem. Int. Ed, vol.58, p.5832, 2019.

Z. Liu, Q. Gao, H. Cheng, and Q. Zhou, Chem. -Eur. J, vol.24, p.15461, 2018.

G. C. Li, P. Wang, M. E. Farmer, and J. Q. Yu, Angew. Chem. Int. Ed, vol.56, p.6874, 2017.

P. Wang, M. E. Farmer, X. Huo, P. Jain, P. X. Shen et al., J. Am. Chem. Soc, vol.138, p.9269, 2016.

X. C. Wang, W. Gong, L. Z. Fang, R. Y. Zhu, S. Li et al., Nature, vol.519, p.334, 2015.

P. X. Shen, X. C. Wang, P. Wang, R. Y. Zhu, and J. Q. Yu, J. Am. Chem. Soc, vol.137, p.11574, 2015.

P. Wang, M. E. Farmer, and J. Q. Yu, Angew. Chem. Int. Ed, vol.56, p.5125, 2017.

K. Schneider, G. Nicholson, M. Ströbele, S. Baur, J. Niehaus et al., J. Antibiot, p.105, 2006.

M. Yu and S. J. Danishefsky, J. Am. Chem. Soc, vol.130, p.2783, 2008.

Z. Feng, J. H. Kim, and S. F. Brady, J. Am. Chem. Soc, p.11902, 2010.

W. Zhang, Z. Liu, S. Li, Y. Lu, Y. Chen et al., J. Nat. Prod, vol.75, 1937.

M. L. Greenlee, J. B. Laub, G. P. Rouen, F. Dininno, M. L. Hammond et al., Bioorg. Med. Chem. Lett, p.3225, 1999.

E. González-cantalapiedra, Ó. De-frutos, C. Atienza, C. Mateo, and A. M. Echavarren, Eur. J. Org. Chem, 1430.

M. C. Cone, C. R. Melville, M. P. Gore, and S. J. Gould, J. Org. Chem, p.1058, 1993.

S. J. Gould, J. Chen, M. C. Cone, M. P. Gore, C. R. Melville et al., J. Org. Chem, p.5720, 1996.

S. J. Gould, C. R. Melville, M. C. Cone, J. Chen, and J. R. Carney, J. Org. Chem, vol.62, p.320, 1997.

S. J. Gould and C. R. Melville, Tetrahedron Lett, vol.38, p.1473, 1997.

P. J. Perry, M. A. Read, R. T. Davies, S. M. Gowan, A. P. Reszka et al., J. Med. Chem, p.2679, 1999.

M. T. Tierney and M. W. Grinstaff, J. Org. Chem, p.5355, 2000.

A. L. Capodilupo, V. Vergaro, E. Fabiano, M. De-giorgi, F. Baldassarre et al., J. Mater. Chem. B, p.3315, 2015.

G. A. Olah, T. Mathew, M. Farnia, and G. K. Prakash, Synlett, p.1067, 1999.

Z. Yu and D. Velasco, Tetrahedron Lett, p.3229, 1999.

K. Kim, S. Kim, K. Lee, and J. Kim, Bull. Korean Chem. Soc, 1387.

J. Gruber, R. W. Li, L. H. Aguiar, A. R. Benvenho, R. Lessmann et al., J. Mater. Chem, p.517, 2005.

W. Wang and V. Snieckus, J. Org. Chem, p.424, 1992.

F. L. Ciske, Synthesis (Stuttg), 1998.

E. González-cantalapiedra, Ó. De-frutos, C. Atienza, C. Mateo, and A. M. Echavarren, Eur. J. Org. Chem, 1430.

J. Tan, Z. Wang, J. Yuan, Y. Peng, and Z. Chen, Adv. Synth. Catal, p.1295, 2019.

M. Yu and S. J. Danishefsky, J. Am. Chem. Soc, vol.130, p.2783, 2008.

F. Ye, M. Haddad, V. Michelet, and V. Ratovelomanana-vidal, Org. Lett, vol.18, p.5612, 2016.

A. Aldinucci, G. Gerlini, S. Fossati, G. Cipriani, C. Ballerini et al., J. Immunol, vol.179, p.305, 2014.

G. Abdelkarim, K. Gertz, C. Harms, J. Katchanov, U. Dirnagl et al., Int. J. Mol. Med, p.255, 2001.

D. Weltin, V. Picard, K. Aupeix, M. Varin, D. Oth et al., Int. J. Immunopharmacol, vol.17, p.265, 1995.

A. L. Ruchelman, P. J. Houghton, N. Zhou, A. Liu, L. F. Liu et al., J. Med. Chem, p.792, 2005.

S. Patil, S. Kamath, T. Sanchez, N. Neamati, R. F. Schinazi et al., Bioorganic Med. Chem, p.1212, 2007.

M. Nakamura, A. Aoyama, M. T. Salim, M. Okamoto, M. Baba et al., Bioorganic Med. Chem, p.2402, 2010.

R. M. Beteck, L. J. Legoabe, M. Isaacs, S. D. Khanye, D. Laming et al., Medicina (B. Aires), p.206, 2019.

L. J. Legoabe, M. M. Van-der-walt, and G. Terre'blanche, Chem. Biol. Drug Des, p.234, 2018.

H. D. Janse-van-rensburg, G. Terre'blanche, M. M. Van-der-walt, and L. J. Legoabe, Bioorg. Chem, p.251, 2017.

J. Leng, H. Qin, K. Zhu, I. Jantan, M. A. Hussain et al., Chem. Biol. Drug Des, vol.88, p.889, 2016.

D. Manvar, T. D. Fernandes, J. L. Domingos, E. Baljinnyam, A. Basu et al., Eur. J. Med. Chem, p.51, 2015.

L. M. Deck, Q. Mgani, A. Martinez, A. Martinic, L. J. Whalen et al., Tetrahedron Lett, p.373, 2012.

L. M. Deck, J. A. Greenberg, T. S. Busby, E. R. Bright, L. J. Whalen et al., Tetrahedron Lett, p.6015, 2013.

M. Sutter, R. Lafon, Y. Raoul, E. Métay, and M. Lemaire, Eur. J. Org. Chem, p.5902, 2013.

M. Sutter, N. Sotto, Y. Raoul, E. Métay, M. Lemaire et al., , p.347, 2013.

B. El-asaad, B. Guicheret, E. Métay, I. Karamé, and M. Lemaire, J. Mol. Catal. A Chem, p.411, 0196.

D. Kim, M. Min, and S. Hong, Chem. Commun, p.4021, 2013.

D. Lee, K. Kwon, and C. S. Yi, J. Am. Chem. Soc, vol.134, p.7325, 2012.

J. Kim, N. Pannilawithana, and C. S. Yi, , vol.6, 2016.

J. Zhao, H. Huang, W. Wu, H. Chen, and H. Jiang, Org. Lett, 2013.

A. M. Bender, N. W. Griggs, C. Gao, T. J. Trask, J. R. Traynor et al., ACS Med. Chem. Lett, vol.6, p.1199, 2015.

S. J. Gould, X. Cheng, and C. Melville, J. Am. Chem. Soc, vol.116, p.1800, 1994.

A. K. Macharla, R. Nappunni, M. R. Marri, S. Peraka, and N. Nama, Tetrahedron Lett, p.191, 2012.

M. Wetzel, S. Marchais-oberwinkler, and R. W. Hartmann, Bioorg. Med. Chem, 2011.

D. Prim, D. Joseph, G. Kirsch, and L. Ann, , p.239, 1996.

J. Xu, Y. Liu, Y. Wang, Y. Li, X. Xu et al., Org. Lett, p.1562, 2017.

X. Y. Chen, S. Ozturk, and E. J. Sorensen, Org. Lett, p.1140, 2017.

D. Wang, S. Guo, G. Pan, X. Zhu, Y. Gao et al., Org. Lett, p.1794, 2018.

X. Y. Chen and E. J. Sorensen, J. Am. Chem. Soc, p.2789, 2018.

F. Li, Y. Zhou, H. Yang, Z. Wang, Q. Yu et al., Org. Lett, p.3692, 2019.

B. Li, K. Seth, B. Niu, L. Pan, H. Yang et al., Angew. Chem. Int. Ed, vol.57, p.3401, 2018.

X. Zhang, H. Zheng, J. Li, F. Xu, J. Zhao et al., J. Am. Chem. Soc, p.14511, 2017.

F. Zhang, K. Hong, T. Li, H. Park, and J. Yu, Science, p.252, 2016.

K. Yang, Q. Li, Y. Liu, G. Li, and H. Ge, J. Am. Chem. Soc, vol.138, p.12775, 2016.

C. Dong, L. Wu, J. Yao, and K. Wei, Org. Lett, 2019.

F. Ma, M. Lei, and L. Hu, Org. Lett, vol.18, p.2708, 2016.

X. Zhang, G. Pan, X. Zhu, R. Guo, Y. Gao et al., Org. Lett, 2019.

M. Tang, Q. Yu, Z. Wang, C. Zhang, B. Sun et al., Org. Lett, p.7620, 2018.

Z. Wang, B. J. Reinus, and G. Dong, J. Am. Chem. Soc, vol.134, p.13954, 2012.

F. Mo and G. Dong, Science, p.68, 2014.

R. B. Bedford and M. E. Limmert, J. Org. Chem, vol.68, p.8669, 2003.

S. Oi, S. Watanabe, S. Fukita, and Y. Inoue, Tetrahedron Lett, vol.44, p.8665, 2003.

R. B. Bedford, M. Betham, A. J. Caffyn, J. P. Charmant, L. C. Lewis-alleyne et al., Chem. Commun, p.990, 2008.

R. B. Bedford, M. F. Haddow, R. L. Webster, and C. J. Mitchell, Org. Biomol. Chem, vol.7, p.3119, 2009.

Q. Liu, D. Wang, J. Yang, Z. Ma, and M. Ye, Tetrahedron, vol.73, p.3591, 2017.

M. C. Carrión and D. J. Cole-hamilton, Chem. Commun, p.4527, 2006.

J. Yang, R. Wang, Y. Wang, W. Yao, Q. Liu et al., Angew. Chem. Int. Ed, vol.55, p.14116, 2016.

M. C. Carrión and D. J. Cole-hamilton, Chem. Commun, p.4527, 2006.

J. Luo, S. Preciado, and I. Larrosa, J. Am. Chem. Soc, vol.136, p.4109, 2014.

M. Font, A. R. Spencer, and I. Larrosa, Chem. Sci, vol.9, 2018.

E. ,

, Hartree/Particle) Thermal correction to Energy= 0.282218 Thermal correction to Enthalpy= 0.283162 Thermal correction to Gibbs Free Energy= 0.213008 Sum of electronic and zero-point Energies= -956.622678 Sum of electronic and thermal Energies= -956.603038 Sum of electronic and thermal Enthalpies= -956.602093 Sum of electronic and thermal Free Energies=

H. ,

H. ,

E. ,

, Hartree/Particle) Thermal correction to Energy= 0.290546 Thermal correction to Enthalpy= 0.291490 Thermal correction to Gibbs Free Energy= 0.227813 Sum of electronic and zero-point Energies= -823.725738 Sum of electronic and thermal Energies= -823.708993 Sum of electronic and thermal Enthalpies= -823.708049 Sum of electronic and thermal Free

. E(rb3lyp,

, Hartree/Particle) Thermal correction to Energy= 0.320172 Thermal correction to Enthalpy= 0.321116 Thermal correction to Gibbs Free Energy= 0.244657 Sum of electronic and zero-point Energies= -1038.657980 Sum of electronic and thermal Energies= -1038.636731 Sum of electronic and thermal Enthalpies= -1038, vol.635787

C. ,

C. ,

C. ,

. E(rb3lyp,

, Hartree/Particle) Thermal correction to Energy= 0.319976 Thermal correction to Enthalpy= 0.320920 Thermal correction to Gibbs Free Energy= 0.246648 Sum of electronic and zero-point Energies= -1038.639564 Sum of electronic and thermal Energies= -1038.618482 Sum of electronic and thermal Enthalpies= -1038.617538 Sum of electronic and thermal Free Energies=

C. ,

C. ,

H. , , 19241400.

. Prodtet-e,

, Hartree/Particle) Thermal correction to Energy= 0.268339 Thermal correction to Enthalpy= 0.269283 Thermal correction to Gibbs Free Energy= 0.213871 Sum of electronic and zero-point Energies= -693.160067 Sum of electronic and thermal Energies= -693.146702 Sum of electronic and thermal Enthalpies= -693.145758 Sum of electronic and thermal Free Energies= -693, 201170.

. Mpind-e,

, Hartree/Particle) Thermal correction to Energy= 0.152902 Thermal correction to Enthalpy= 0.153846 Thermal correction to Gibbs Free Energy= 0.112666 Sum of electronic and zero-point Energies= -422.891382 Sum of electronic and thermal Energies= -422.883781 Sum of electronic and thermal Enthalpies= -422.882837 Sum of electronic and thermal Free

, E(RB3LYP) = -1214, vol.833145

, Hartree/Particle) Thermal correction to Energy= 0.329673 Thermal correction to Enthalpy= 0.330617 Thermal correction to Gibbs Free Energy= 0.248575 Sum of electronic and zero-point Energies= -1214.527310 Sum of electronic and thermal Energies= -1214.503472 Sum of electronic and thermal Enthalpies= -1214.502528 Sum of electronic and thermal Free Energies=, vol.305835

H. ,

H. , , 15061700.

H. ,

H. ,

H. ,

. Int2e,

E. ,

, Hartree/Particle) Thermal correction to Energy= 0.260710 Thermal correction to Enthalpy= 0.261654 Thermal correction to Gibbs Free Energy= 0.193717 Sum of electronic and zero-point Energies= -985.467561 Sum of electronic and thermal Energies= -985.449510 Sum of electronic and thermal Enthalpies= -985.448565 Sum of electronic and thermal Free

E. ,

, Hartree/Particle) Thermal correction to Energy= 0.254522 Thermal correction to Enthalpy= 0.255466 Thermal correction to Gibbs Free Energy= 0.189818 Sum of electronic and zero-point Energies= -985.429116 Sum of electronic and thermal Energies= -985.411518 Sum of electronic and thermal Enthalpies= -985.410573 Sum of electronic and thermal Free

C. ,

C. ,

E. ,

, Hartree/Particle) Thermal correction to Energy= 0.259924 Thermal correction to Enthalpy= 0.260868 Thermal correction to Gibbs Free Energy= 0.194608 Sum of electronic and zero-point Energies= -985.469948 Sum of electronic and thermal Energies= -985.452124 Sum of electronic and thermal Enthalpies= -985.451180 Sum of electronic and thermal Free

E. ,

, Hartree/Particle) Thermal correction to Energy= 0.289800 Thermal correction to Enthalpy= 0.290744 Thermal correction to Gibbs Free Energy= 0.215898 Sum of electronic and zero-point Energies= -999.355341 Sum of electronic and thermal Energies= -999.334996 Sum of electronic and thermal Enthalpies= -999, vol.334052

H. , , 19221400.

E. ,

, Hartree/Particle) Thermal correction to Energy= 0.297609 Thermal correction to Enthalpy= 0.298553 Thermal correction to Gibbs Free Energy= 0.233893 Sum of electronic and zero-point Energies= -861.834811 Sum of electronic and thermal Energies= -861.818077 Sum of electronic and thermal Enthalpies= -861.817133 Sum of electronic and thermal Free

. Mpsub-e,

, Hartree/Particle) Thermal correction to Energy= 0.213264 Thermal correction to Enthalpy= 0.214208 Thermal correction to Gibbs Free Energy= 0.168634 Sum of electronic and zero-point Energies= -501.459957 Sum of electronic and thermal Energies= -501.450325 Sum of electronic and thermal Enthalpies= -501.449381 Sum of electronic and thermal Free

H. ,

H. ,

H. ,

H. ,

E. ,

, Hartree/Particle) Thermal correction to Energy= 0.272668 Thermal correction to Enthalpy= 0.273613 Thermal correction to Gibbs Free Energy= 0.217285 Sum of electronic and zero-point Energies= -709.418654 Sum of electronic and thermal Energies= -709.404827 Sum of electronic and thermal Enthalpies= -709.403883 Sum of electronic and thermal Free

. E(rb3lyp,

, Hartree/Particle) Thermal correction to Energy= 0.389725 Thermal correction to Enthalpy= 0.390670 Thermal correction to Gibbs Free Energy= 0.304614 Sum of electronic and zero-point Energies= -1293.094611 Sum of electronic and thermal Energies= -1293.068619 Sum of electronic and thermal Enthalpies= -1293.067675 Sum of electronic and thermal Free Energies=, vol.363733

. Int2e,

. E(rb3lyp,

, Hartree/Particle) Thermal correction to Energy= 0.320513 Thermal correction to Enthalpy= 0.321457 Thermal correction to Gibbs Free Energy= 0.248759 Sum of electronic and zero-point Energies= -1064.035735 Sum of electronic and thermal Energies= -1064.015458 Sum of electronic and thermal Enthalpies= -1064.014514 Sum of electronic and thermal Free Energies=, vol.300236

C. ,

. E(rb3lyp,

, Hartree/Particle) Thermal correction to Energy= 0.314859 Thermal correction to Enthalpy= 0.315803 Thermal correction to Gibbs Free Energy= 0.246707 Sum of electronic and zero-point Energies= -1064.002185 Sum of electronic and thermal Energies= -1063.982670 Sum of electronic and thermal Enthalpies= -1063.981726 Sum of electronic and thermal Free Energies=

. O--2,

C. ,

. E(rb3lyp,

, Hartree/Particle) Thermal correction to Energy= 0.320413 Thermal correction to Enthalpy= 0.321358 Thermal correction to Gibbs Free Energy= 0.249968 Sum of electronic and zero-point Energies= -1064.047413 Sum of electronic and thermal Energies= -1064.027377 Sum of electronic and thermal Enthalpies= -1064.026433 Sum of electronic and thermal Free Energies=, vol.300377

. Int4e,

. E(rb3lyp,

, Hartree/Particle) Thermal correction to Energy= 0.419754 Thermal correction to Enthalpy= 0.420699 Thermal correction to Gibbs Free Energy= 0.324355 Sum of electronic and zero-point Energies= -1306.984192 Sum of electronic and thermal Energies= -1306.955408 Sum of electronic and thermal Enthalpies= -1306, vol.954464

. Int4e,

. E(rb3lyp,

, Hartree/Particle) Thermal correction to Energy= 0.350394 Thermal correction to Enthalpy= 0.351338 Thermal correction to Gibbs Free Energy= 0.271557 Sum of electronic and zero-point Energies= -1077.929542 Sum of electronic and thermal Energies= -1077.907026 Sum of electronic and thermal Enthalpies= -1077, vol.906082

. E(rb3lyp,

, Hartree/Particle) Thermal correction to Energy= 0.348780 Thermal correction to Enthalpy= 0.349724 Thermal correction to Gibbs Free Energy= 0.273931 Sum of electronic and zero-point Energies= -1077.899349 Sum of electronic and thermal Energies= -1077.877552 Sum of electronic and thermal Enthalpies= -1077, vol.876608

. Int5e,

. E(rb3lyp,

, Hartree/Particle) Thermal correction to Energy= 0.350287 Thermal correction to Enthalpy= 0.351231 Thermal correction to Gibbs Free Energy= 0.273773 Sum of electronic and zero-point Energies= -1077.909816 Sum of electronic and thermal Energies= -1077.887481 Sum of electronic and thermal Enthalpies= -1077, vol.886536

C. ,

C. ,

C. ,

H. ,

H. ,

H. ,

. Int5e,

. E(rb3lyp,

, Hartree/Particle) Thermal correction to Energy= 0.419688 Thermal correction to Enthalpy= 0.420632 Thermal correction to Gibbs Free Energy= 0.329608 Sum of electronic and zero-point Energies= -1306.979080 Sum of electronic and thermal Energies= -1306.951191 Sum of electronic and thermal Enthalpies= -1306.950246 Sum of electronic and thermal Free Energies=

. E(rb3lyp,

, Hartree/Particle) Thermal correction to Energy= 0.349202 Thermal correction to Enthalpy= 0.350146 Thermal correction to Gibbs Free Energy= 0.274913 Sum of electronic and zero-point Energies= -1077.897967 Sum of electronic and thermal Energies= -1077.876340 Sum of electronic and thermal Enthalpies= -1077, vol.875396

. Int6e,

. E(rb3lyp,

, Hartree/Particle) Thermal correction to Energy= 0.352203 Thermal correction to Enthalpy= 0.353147 Thermal correction to Gibbs Free Energy= 0.277804 Sum of electronic and zero-point Energies= -1077.966808 Sum of electronic and thermal Energies= -1077.945077 Sum of electronic and thermal Enthalpies= -1077.944133 Sum of electronic and thermal Free Energies=

C. ,

C. ,

C. ,

C. ,

C. ,

. E(rb3lyp,

, Hartree/Particle) Thermal correction to Energy= 0.421466 Thermal correction to Enthalpy= 0.422411 Thermal correction to Gibbs Free Energy= 0.332687 Sum of electronic and zero-point Energies= -1307.043218 Sum of electronic and thermal Energies= -1307.015849 Sum of electronic and thermal Enthalpies= -1307.014905 Sum of electronic and thermal Free Energies=, vol.394098

. Prodsub-e,

, Hartree/Particle) Thermal correction to Energy= 0.298472 Thermal correction to Enthalpy= 0.299416 Thermal correction to Gibbs Free Energy= 0.242095 Sum of electronic and zero-point Energies= -732.438590 Sum of electronic and thermal Energies= -732.424124 Sum of electronic and thermal Enthalpies= -732.423180 Sum of electronic and thermal Free

, mg, 1.02 mmol) and phenyl hydrazine (101.4 µL, 1.02 mmol) in EtOH (2.0 mL) following the General procedure for the synthesis of hydrazone derivatives. The crude mixture was purified on preparative TLC (DCM) and the desired product was obtained as a white powder

H. Nmr, 300 MHz, CDCl3) ?

, .73 (m, 1H), 7.45 -7.25 (m, 5H), vol.7, pp.0-7

, HRMS (ESI): m/z: Calcd for C15H15N2, p.114

, 0 eq) was added to a solution of mCPBA (1010 mg, 2.0 eq) in CHCl3 (20 mL, 0.1 M) and stirred at room temperature for 3 days. The resulting mixture was washed with NaCO3,sat and with water and dried over MgSO4. The desired product was retrieved from the crude after purification by chromatography on silica gel

H. Nmr, 300 MHz, CDCl3) ?

, .11 (m, 3H), 7.05 (dd, J = 7.7, 1.3 Hz, 1H), vol.2, pp.32-39

M. Amézquita-valencia and H. Alper, Org. Lett, vol.16, issue.119, p.119, 2014.

, 0 eq) was added to a solution of CuBr2 (466.0 mg, 2.0 eq) in AcOH (1 mL, 0.1 M) then stirred for 1h30 at 90°C. The crude mixture was filtered through a pad of celite, washed with water and the organic layer was dried over MgSO4. 2-bromo-3,4-dihydronaphthalen-1(2H)-one (119) was obtained as a yellow oil

H. Nmr, 300 MHz, CDCl3) ?

D. and J. =. , Hz, 1H), 7.56 (t, J = 7.4 Hz, 1H), vol.7

. Hz,

T. Mei, D. Leow, H. Xiao, B. N. Laforteza, and J. Yu, Org. Lett, vol.15, 2013.

, 4 mg, 1 eq) was added to a mixture of LiBr (1552 mg, 20 eq) and Li2CO3 (1223 mg, 20 eq) in DMF (10 mL, 0.1 M) and stirred at 135°C for 1h. The resulting mixture was filtered through a pad of celite

H. Nmr, 300 MHz, CDCl3) ?

, 35 -8.18 (m, 1H), 7.94 -7.81 (m, 1H), 7.57 -7.51 (m, 2H), vol.7

T. Schulz, C. Torborg, B. Schäffner, J. Huang, A. Zapf et al., Angew. Chem. Int. Ed, vol.48, p.122, 2009.

, mg, 1 eq) was added to a mixture of LiBr (1.013 g, 20 eq) and Li2CO3 (862.8 mg, 20 eq) in DMF (5.8 mL, 0.1 M) and stirred at 135°C for 1h. The resulting mixture was filtered through a pad of celite fritted glass

H. Nmr, 300 MHz, CDCl3) ?

. Hz,

F. Nmr,

M. Yamaguchi, M. Higuchi, K. Tazawa, and K. Manabe, J. Org. Chem, vol.81, issue.1, p.123, 2016.

, 53 mg, 0.72 mmol), Pd2dba3 (16.5 mg, 0.06 mmol), caesium carbonate (170 mg, 1.8 mmol) and Xantphos (24.4 mg, 0.14 mmol) and p-iodoanisole (23 µL, 0.6 mmol) in anhydrous toluene (250 µL) following the General procedure for the synthesis of dihydronaphthobenzofuranes derivatives. The crude mixture was, vol.3

H. Nmr, 300 MHz, CDCl3) ?

, 57 -7.49 (m, 1H), 7.36 (d, J = 8.7 Hz, 2H), 7.33 -7.13 (m, 6H), vol.6

C. Nmr, 75 MHz, CDCl3) ?

, HRMS (ESI): m/z: Calcd for C23H18O2Na