R. Holzinger, W. J. Acton, W. J. Bloss, M. Breitenlechner, L. R. Crilley et al., «Validity and limitations of simple reaction kinetics to calculate concentrations of organic compounds from ion counts in ptr-ms, Atmospheric Measurement Techniques, vol.12, p.59, 2019.

R. Holzinger, R. Tillmann, M. Breitenlechner, B. Languille, S. Dusanter et al.,

S. Schallhart, J. Acton, K. Xu, L. Quéléver, A. Zaytsev et al., «PTR-MS inter-calibration study at Cabauw», dans EGU General Assembly Conference Abstracts, EGU General Assembly Conference Abstracts, vol.20, p.58, 2018.

W. ,

. Figure-v, SIRTA. The shaded area represents two standard deviations, hours are in UTC. Panel A : cumulated traffic jams length across Île-de-France. Panel B : BC wb and BC traffic . Panel C : toluene, benzene and methanol. Panel D : VOC associated with a wood burning pattern (formaldehyde, methanol, acetonitrile, propene+, acetaldehyde, acetic acid, furan, butenal, methylacetate, methylfuran, methylbutenone, butandione, furfural, furandione, benzenediol and chlorobenzene), Diurnal cycles for the whole studied period, 2017.

A. , Bilan des émissions atmosphériques en Île-de-france, année de référence, vol.164, p.171, 2015.

W. Ait-helal, A. Borbon, S. Sauvage, J. A. De-gouw, A. Colomb et al., Volatile and intermediate volatility organic compounds in suburban paris : variability, origin and importance for soa formation, Atmospheric Chemistry and Physics, vol.14, p.172, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01119963

L. Ammoura, I. Xueref-remy, V. Gros, A. Baudic, B. Bonsang et al., Atmospheric measurements of ratios between CO 2 and co-emitted species from traffic : a tunnel study in the Paris megacity, Atmospheric Chemistry and Physics, vol.14, p.23, 2014.
URL : https://hal.archives-ouvertes.fr/ineris-01862512

R. Atkinson, Gas-phase tropospheric chemistry of organic compounds : A review, Atmospheric Environment. Part A. General Topics, vol.24, pp.1-41, 1990.

R. Atkinson, Atmospheric chemistry of VOCs and NOx.», Atmospheric Environment, vol.34, pp.2063-2101, 2000.

M. A. Bari and W. B. Kindzierski, «Ambient volatile organic compounds (VOCs) in Calgary, Alberta : Sources and screening health risk assessment, Science of The Total Environment, pp.627-640, 2018.

G. Barrefors and G. Petersson, «Assessment by gas chromatography and gas chromatography-mass spectrometry of volatile hydrocarbons from biomass burning», Journal of Chromatography A, vol.710, issue.1, pp.71-77, 1995.

G. Barrefors and G. Petersson, Volatile hydrocarbons from domestic wood burning, vol.30, 1995.

C. ,

. -d, , pp.1551-1556

A. Baudic, V. Gros, S. Sauvage, N. Locoge, O. Sanchez et al., Seasonal variability and source apportionment of volatile organic compounds (VOCs) in the Paris megacity (France)», Atmospheric Chemistry and Physics, vol.16, p.18, 2016.

M. Beekmann, A. S. Prévôt, F. Drewnick, J. Sciare, S. N. Pandis et al.,

A. Jaffrezo, A. Schwarzenboeck, A. Colomb, S. Wiedensohler, M. Borrmann et al., «In situ, satellite measurement and model evidence on the dominant regional contribution to fine particulate matter levels in the Paris megacity, Atmospheric Chemistry and Physics, vol.15, pp.9577-9591, 2015.

R. S. Blake, P. S. Monks, and A. M. Ellis, «Proton-transfer reaction mass spectrometry, Chemical Reviews, vol.109, pp.861-896, 2009.

A. K. Bølling, J. Pagels, K. E. Yttri, L. Barregard, G. Sallsten et al., «Health effects of residential wood smoke particles : the importance of combustion conditions and physicochemical particle properties, Particle and Fibre Toxicology, vol.6, issue.1, p.29, 2009.

M. Bressi, J. Sciare, V. Ghersi, N. Mihalopoulos, J. Petit et al., Atmospheric Chemistry and Physics, vol.14, p.168, 2014.

E. Bruns, I. E. Haddad, J. G. Slowik, D. Kilic, F. Klein et al., «Identification of significant precursor gases of secondary organic aerosols from residential wood combustion, vol.6, p.202, 2016.

R. Bibliographiques and . Chapitre,

E. A. Bruns, J. G. Slowik, I. E. Haddad, D. Kilic, F. Klein et al., «Characterization of gas-phase organics using proton transfer reaction time-of-flight mass spectrometry : fresh and aged residential wood combustion emissions, Atmospheric Chemistry and Physics, vol.17, p.186, 2017.

B. Buzcu-guven and M. P. Fraser, Comparison of VOC emissions inventory data with source apportionment results for Houston, Atmospheric Environment, vol.42, pp.5032-5043, 2008.

D. C. Carslaw and K. R. , Openair -An R package for air quality data analysis, Environmental Modelling & Software, pp.52-61, 2012.

M. M. Coggon, P. Veres, B. Yuan, A. Koss, C. Warneke et al., «Emissions of nitrogen-containing organic compounds from the burning of herbaceous and arboraceous biomass : Fuel composition dependence and the variability of commonly used nitrile tracers, Geographical Research Letters, vol.43, pp.9903-9912, 2016.

M. Crippa, P. F. Decarlo, J. G. Slowik, C. Mohr, M. F. Heringa et al.,

N. Nicolas, E. Marchand, A. Abidi, F. Wiedensohler, J. Drewnick et al., «Wintertime aerosol chemical composition and source apportionment of the organic fraction in the metropolitan area of Paris, Atmospheric Chemistry and Physics, vol.13, issue.2, pp.961-981, 2013.

C. Debevec, S. Sauvage, V. Gros, J. Sciare, M. Pikridas et al., Origin and variability in volatile organic compounds observed at an Eastern Mediterranean background site (Cyprus)», Atmospheric Chemistry and Physics, vol.17, pp.11-355, 2017.

C. ,

E. Dons, L. I. Panis, M. V. Poppel, J. Theunis, and G. Wets, «Personal exposure to black carbon in transport microenvironments, Atmospheric Environment, vol.55, pp.392-398, 2012.

L. Drinovec, G. Mo?nik, P. Zotter, A. S. Prévôt, C. Ruckstuhl et al., «The "dual-spot" aethalometer : an improved measurement of aerosol black carbon with real-time loading compensation, Atmospheric Measurement Techniques, vol.8, issue.5, pp.1965-1979, 2015.

W. Du, Y. Chen, X. Zhu, Q. Zhong, S. Zhuo et al., «Wintertime air pollution and health risk assessment of inhalation exposure to polycyclic aromatic hydrocarbons in rural China, Atmospheric Environment, vol.191, pp.1-8, 2018.

M. Evtyugina, C. Alves, A. Calvo, T. Nunes, L. Tarelho et al., «VOC emissions from residential combustion of southern and mid-european woods, Atmospheric Environment, vol.83, p.192, 2014.

O. Favez and T. Amodeo, Épisodes de pollution particulaire de début décembre, vol.164, pp.1-9, 2016.

O. Favez, H. Cachier, J. Sciare, and Y. L. Moullec, «Characterization and contribution to PM 2.5 of semi-volatile aerosols in Paris (France)», Atmospheric Environment, vol.41, pp.7969-7976, 2007.

O. Favez, H. Cachier, J. Sciare, R. Sarda-estève, and L. Martinon, «Evidence for a significant contribution of wood burning aerosols to PM 2.5 during the winter season, Atmospheric Environment, vol.43, p.167, 2009.

R. Bibliographiques and . Chapitre,

L. Fourtziou, E. Liakakou, I. Stavroulas, C. Theodosi, P. Zarmpas et al., Multi-tracer approach to characterize domestic wood burning in Athens (Greece) during wintertime, Atmospheric Environment, vol.148, pp.89-101, 2017.

F. Freutel, J. Schneider, F. Drewnick, S. Von-der-weiden-reinmüller, M. Crippa et al.,

M. Beekmann and S. Borrmann, Aerosol particle measurements at three stationary sites in the megacity of Paris during summer 2009 : meteorology and air mass origin dominate aerosol particle composition and size distribution, Atmospheric Chemistry and Physics, vol.13, issue.2, pp.933-959, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01089505

K. Gaeggeler, A. S. Prevot, J. Dommen, G. Legreid, S. Reimann et al., «Residential wood burning in an alpine valley as a source for oxygenated volatile organic compounds, hydrocarbons and organic acids, Atmospheric Environment, vol.42, p.185, 2008.

C. Gaimoz, S. Sauvage, V. Gros, F. Herrmann, J. Williams et al., Volatile organic compounds sources in Paris in spring 2007. part ii : source apportionment using positive matrix factorisation, Environmental chemistry, vol.8, p.185, 2011.

J. De-gouw, C. W. Mass, and C. Benzene, «Measurements of volatile organic compounds in the earth's atmosphere using proton-transfer-reaction mass spectrometry, J. Environ. Monit, vol.9, pp.23-32, 2007.

M. Haeffelin, L. Barthès, O. Bock, C. Boitel, S. Bony et al., SIRTA, vol.23, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01942964

L. Hazan, J. Tarniewicz, M. Ramonet, O. Laurent, and A. Abbaris, Automatic processing of atmospheric CO 2 and CH 4 mole fractions at the ICOS atmosphere thematic centre, Atmospheric Measurement Techniques, vol.9, p.9, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01587531

E. Hedberg, A. Kristensson, M. Ohlsson, C. Johansson, P. Johansson et al., The record was previously connected to the following departments : Nuclear Physics (Faculty of Technology, vol.36, p.183, 2002.

H. Hellén, H. Hakola, S. Haaparanta, H. Pietarila, and M. Kauhaniemi, «Influence of residential wood combustion on local air quality, Science of The Total Environment, vol.393, issue.2, pp.283-290, 2008.

R. Holzinger, W. J. Acton, W. J. Bloss, M. Breitenlechner, L. R. Crilley et al., «Validity and limitations of simple reaction kinetics to calculate concentrations of organic compounds from ion counts in ptr-ms, Atmospheric Measurement Techniques, vol.12, pp.6193-6208, 2019.

R. Bibliographiques and . Chapitre,

R. Holzinger, C. Warneke, A. Hansel, A. Jordan, W. Lindinger et al., «Biomass burning as a source of formaldehyde, acetaldehyde, methanol, acetone, acetonitrile, and hydrogen cyanide, Geophysical Research Letters, vol.26, issue.8, pp.1161-1164, 1999.

Y. Iinuma, G. Engling, H. Puxbaum, and H. Herrmann, «A highly resolved anion-exchange chromatographic method for determination of saccharidic tracers for biomass combustion and primary bio-particles in atmospheric aerosol, Atmospheric Environment, vol.43, p.168, 2009.

K. Ito, N. Xue, and G. Thurston, «Spatial variation of PM 2.5 chemical species and source-apportioned mass concentrations, particulate Matter : Atmospheric Sciences, Exposure and the Fourth Colloquium on PM and Human Health -Papers from the AAAR, vol.38, pp.5269-5282, 2004.

A. Kalogridis, S. Vratolis, E. Liakakou, E. Gerasopoulos, N. Mihalopou-los et al., «Assessment of wood burning versus fossil fuel contribution to wintertime black carbon and carbon monoxide concentrations in, 2018.

G. ». Athens, Atmospheric Chemistry and Physics, vol.18, pp.10-219

M. Khalil and R. Rasmussen, Tracers of wood smoke», vol.37, pp.1211-1222, 2003.

S. Kotthaus and C. S. Grimmond, Atmospheric boundary-layer characteristics from ceilometer measurements. part 1 : A new method to track mixed layer height and classify clouds, Quarterly Journal of the Royal Meteorological Society, vol.144, pp.1525-1538, 2018.

S. Kotthaus, E. O'connor, C. Münkel, C. Charlton-perez, M. Haeffelin et al., «Recommendations for processing atmospheric, p.207, 2016.

C. , backscatter profiles from vaisala CL31 ceilometers», Atmospheric Measurement Techniques, vol.9, pp.3769-3791

V. A. Lanz, C. Hueglin, B. Buchmann, M. Hill, R. Locher et al., «Receptor modeling of C 2 -C 7 hydrocarbon sources at an urban background site in, Atmospheric Chemistry and Physics, vol.8, issue.9, pp.2313-2332, 1993.

W. Lindinger, A. Hansel, and A. J. , On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research», International Journal of Mass Spectrometry and Ion Processes, vol.173, p.3, 1998.

, , pp.191-241

W. Maenhaut, Source apportionment revisited for long-term measurements of fine aerosol trace elements at two locations in southern Norway, Nuclear Instruments and Methods in Physics Research Section B : Beam Interactions with Materials and Atoms, vol.417, p.171, 2018.

A. Merritt, A. Georgellis, N. Andersson, G. B. Bedada, T. Bellander et al., «Personal exposure to black carbon in Stockholm, using different intra-urban transport modes, Science of The Total Environment, vol.674, 2019.

, , pp.279-287

F. Nalin, B. Golly, J. Besombes, C. Pelletier, R. Aujay-plouzeau et al., «Fast oxidation processes from emission to ambient air introduction of aerosol emitted by residential log wood stoves, vol.143, p.192, 2016.

D. Nádudvari, M. J. Fabia?ska, L. Marynowski, B. Kozielska, J. Konieczy?ski et al., «Distribution of coal and coal combustion related organic pollutants in the environment of the upper silesian industrial region, Science of The Total Environment, pp.1462-1488, 2018.

R. Bibliographiques and . Chapitre,

P. Paatero and U. Tapper, «Positive matrix factorization : A non-negative factor model with optimal utilization of error estimates of data values», dans Environmetrics, pp.111-126, 1994.

A. Panopoulou, E. Liakakou, V. Gros, S. Sauvage, N. Locoge et al., «Non-methane hydrocarbon variability in athens during wintertime : the role of traffic and heating, Atmospheric Chemistry and Physics, vol.18, p.186, 2018.

P. Pant, G. Habib, J. D. Marshall, and R. E. Peltier, PM 2.5 exposure in highly polluted cities : A case study from, vol.156, pp.167-174, 2017.

J. Petit, O. Favez, J. Sciare, F. Canonaco, P. Croteau et al., «Submicron aerosol source apportionment of wintertime pollution in Paris, France by double positive matrix factorization (PMF 2 ) using an aerosol chemical speciation monitor (ACSM) and a multi-wavelength aethalometer, Atmospheric Chemistry and Physics, vol.14, p.173, 2014.

J. Petit, O. Favez, J. Sciare, V. Crenn, R. Sarda-estève et al., «Two years of near real-time chemical composition of submicron aerosols in the region of Paris using an aerosol chemical speciation monitor (ACSM) and a multi-wavelength aethalometer, Atmospheric Chemistry and Physics, vol.15, issue.6, p.173, 2015.

H. Puxbaum, A. Caseiro, A. Sánchez-ochoa, A. Kasper-giebl, M. Claeys et al., Levoglucosan levels at background sites in Europe for assessing the impact of biomass combustion on the European aerosol background, vol.112, p.23, 2007.
URL : https://hal.archives-ouvertes.fr/insu-00377253

R. Core-team, R : A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, 2018.

R. ,

C. ,

G. Rolph, «Real-time environmental applications and display system (READY)», NOAA Air Resources Laboratory, p.170, 2016.

J. Sandradewi, A. S. Prévôt, S. Szidat, N. Perron, M. R. Alfarra et al., Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter, Environmental Science & Technology, vol.42, issue.9, pp.3316-3323, 2008.

S. Sauvage, H. Plaisance, N. Locoge, A. Wroblewski, P. Coddeville et al., «Long term measurement and source apportionment of nonmethane hydrocarbons in three French rural areas, Atmospheric Environment, vol.43, pp.2430-2441, 2009.

J. J. Schauer, M. J. Kleeman, G. R. Cass, and B. R. Simoneit, «Measurement of emissions from air pollution sources. 3. C1-C29 organic compounds from fireplace combustion of wood, Environmental Science and Technology, vol.35, pp.1716-1728, 2001.

J. Schwartz, D. W. Dockery, and L. M. Neas, «Is daily mortality associated specifically with fine particles ?, Journal of the Air & Waste Management Association, vol.46, pp.927-939, 1996.

,

J. Sciare, R. O.-d'argouges, C. Sarda-esteve, C. Gaimoz, N. Dolgorouky et al., Large contribution of waterinsoluble secondary organic aerosols in the region of Paris (France) during wintertime», Journal of Geophysical Research : Atmospheres, vol.116, p.167, 2011.
URL : https://hal.archives-ouvertes.fr/ineris-00963327

R. Seco, J. Peñuelas, I. Filella, J. Llusia, S. Schallhart et al., Volatile organic compounds in the western mediterranean basin : urban and rural winter measurements during the DAURE campaign», Atmospheric Chemistry and Physics, vol.13, p.173, 2013.

G. Sällsten, P. Gustafson, L. Johansson, S. Johannesson, P. Molnár et al., , p.210, 2006.

R. Bibliographiques and . Chapitre, Inhalation Toxicology, vol.18, pp.855-864

A. Stein, R. Draxler, G. Rolph, B. Stunder, M. Cohen et al., NOAA's HYSPLIT atmospheric transport and dispersion modeling system, Bull. Amer. Meteor. So, vol.96, pp.2059-2077, 2015.

R. Taipale, T. M. Ruuskanen, J. Rinne, M. K. Kajos, H. Hakola et al., «Technical note : Quantitative long-term measurements of VOC concentrations by PTR-MS measurement, calibration, and volume mixing ratio calculation methods, Atmospheric Chemistry and Physics, vol.8, p.22, 2008.

A. Valach, B. Langford, E. Nemitz, A. Mackenzie, and C. Hewitt, «Concentrations of selected volatile organic compounds at kerbside and background sites in central london, Atmospheric Environment, vol.95, 2014.

R. D. Williams and L. D. Knibbs, «Daily personal exposure to black carbon : A pilot study, Atmospheric Environment, vol.132, 2016.

Y. Zhang, O. Favez, F. Canonaco, D. Liu, G. Mo?nik et al., «Evidence of major secondary organic aerosol contribution to lensing effect black carbon absorption enhancement, Climate and Atmospheric Science, vol.1, 2018.

J. Zhao and R. Zhang, «Proton transfer reaction rate constants between hydronium ion (H 3 O + ) and volatile organic compounds (VOCs)», Atmospheric Environment, vol.38, pp.2177-2185, 2004.

, Références bibliographiques

J. L. Adgate, T. R. Church, A. D. Ryan, G. Ramachandran, A. L. Fredrickson et al., «Outdoor, indoor, and personal exposure to VOCs in children, Environmental Health Perspectives, vol.112, pp.1386-1392, 2004.

D. Aguiari, G. Delnevo, L. Monti, V. Ghini, S. Mirri et al., «Canarin ii : Designing a smart e-bike eco-system, pp.1-6, 2018.

A. , Bilan 2016 de la pollution de l'air en Île-de-france : une situation en amélioration mais encore insatisfaisante, 2017.

, «Bilan de la qualité de l'air 2017 -surveillance et information en Île-defrance, AIRPARIF, issue.1, 2018.

A. , «Bilan de la qualité de l'air 2018 -surveillance et information en Îlede-france, 2019.

A. , Bilan des émissions atmosphériques en Île-de-france, année de référence, pp.1-87, 2015.

W. Ait-helal, A. Borbon, S. Sauvage, J. A. De-gouw, A. Colomb et al., Volatile and intermediate volatility organic compounds in suburban paris : variability, origin and importance for soa formation, Atmospheric Chemistry and Physics, vol.14, p.19, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01119963

L. Ammoura, I. Xueref-remy, V. Gros, A. Baudic, B. Bonsang et al., Atmospheric measurements of ratios between CO 2 and co-emitted species from traffic : a tunnel study in the Paris megacity, Atmospheric Chemistry and Physics, vol.14, p.23, 2014.
URL : https://hal.archives-ouvertes.fr/ineris-01862512

R. Atkinson, Gas-phase tropospheric chemistry of organic compounds : A review, Atmospheric Environment. Part A. General Topics, vol.24, pp.1-41, 1990.

R. Atkinson, Atmospheric chemistry of VOCs and NOx.», Atmospheric Environment, vol.34, pp.2063-2101, 2000.

R. Atkinson and J. A. , «Gas-phase tropospheric chemistry of biogenic volatile organic compounds : a review», vol.37, p.197, 2003.

M. Baasandorj, D. B. Millet, L. Hu, D. Mitroo, and B. J. Williams, «Measuring acetic and formic acid by proton-transfer-reaction mass spectrometry : sensitivity, humidity dependence, and quantifying interferences, Atmospheric Measurement Techniques, vol.8, pp.1303-1321, 2015.

M. A. Bari and W. B. Kindzierski, «Ambient volatile organic compounds (VOCs) in Calgary, Alberta : Sources and screening health risk assessment, Science of The Total Environment, pp.627-640, 2018.

G. Barrefors and G. Petersson, «Assessment by gas chromatography and gas chromatography-mass spectrometry of volatile hydrocarbons from biomass burning», Journal of Chromatography A, vol.710, issue.1, pp.71-77, 1995.

G. Barrefors and G. Petersson, Volatile hydrocarbons from domestic wood burning, vol.30, pp.1551-1556, 1995.

A. Baudic, Caractérisation expérimentale et statistique des sources de Composés Organiques Volatils (COV) en région Île-de-France, 2016.

, Valérie et Bonsang, Bernard Météorologie, océanographie, physique de l'environnement Paris Saclay, 2016.

R. Bibliographiques,

A. Baudic, V. Gros, S. Sauvage, N. Locoge, O. Sanchez et al., Seasonal variability and source apportionment of volatile organic compounds (VOCs) in the Paris megacity (France)», Atmospheric Chemistry and Physics, vol.16, pp.11-961, 2016.

M. Beekmann, A. S. Prévôt, F. Drewnick, J. Sciare, S. N. Pandis et al.,

A. Jaffrezo, A. Schwarzenboeck, A. Colomb, S. Wiedensohler, M. Borrmann et al., «In situ, satellite measurement and model evidence on the dominant regional contribution to fine particulate matter levels in the Paris megacity, Atmospheric Chemistry and Physics, vol.15, pp.9577-9591, 2015.

R. S. Blake, P. S. Monks, and A. M. Ellis, «Proton-transfer reaction mass spectrometry, Chemical Reviews, vol.109, pp.861-896, 2009.

S. J. Blanksby and G. B. Ellison, «Bond dissociation energies of organic molecules, Accounts of Chemical Research, vol.36, p.12693923, 2003.

A. K. Bølling, J. Pagels, K. E. Yttri, L. Barregard, G. Sallsten et al., «Health effects of residential wood smoke particles : the importance of combustion conditions and physicochemical particle properties, Particle and Fibre Toxicology, vol.6, issue.1, p.29, 2009.

F. Borghi, A. Cattaneo, A. Spinazzè, A. Manno, S. Rovelli et al., «Evaluation of the inhaled dose across different microenvironments, IOP Conference Series : Earth and Environmental Science, vol.296, issue.2, p.12007, 2019.

F. Borghi, A. Spinazzè, S. Rovelli, D. Campagnolo, L. Del et al., «Miniaturized monitors for assessment of exposure to air pollutants : A review, International Journal of Environmental Research and Public Health, vol.14, issue.8, 2017.

. Den, J. V. Bossche, J. Peters, J. Verwaeren, D. Botteldooren et al., «Mobile monitoring for mapping spatial variation in urban air quality : Development and validation of a methodology based on an extensive dataset, Atmospheric Environment, vol.105, pp.148-161, 2015.

M. Bressi, J. Sciare, V. Ghersi, N. Mihalopoulos, J. Petit et al., Atmospheric Chemistry and Physics, vol.14, pp.8813-8839, 2014.

N. L. Briggs and C. M. Long, «Critical review of black carbon and elemental carbon source apportionment in Europe and the United States, Atmospheric Environment, vol.144, pp.409-427, 2016.

D. M. Broday, . Citi-sense-project, and . Collaborators, «Wireless distributed environmental sensor networks for air pollution measurement-the promise and the current reality, Sensors, vol.17, p.10, 2017.

E. Bruns, I. E. Haddad, J. G. Slowik, D. Kilic, F. Klein et al., «Identification of significant precursor gases of secondary organic aerosols from residential wood combustion, vol.6, p.27, 2016.

E. A. Bruns, J. G. Slowik, I. E. Haddad, D. Kilic, F. Klein et al., «Characterization of gas-phase organics using proton transfer reaction time-of-flight mass spectrometry : fresh and aged residential wood combustion emissions, Atmospheric Chemistry and Physics, vol.17, pp.705-720, 2017.

J. Burkart, G. Steiner, G. Reischl, H. Moshammer, M. Neuberger et al., «Characterizing the performance of two optical particle counters (Grimm OPC1.108 and OPC1.109) under urban aerosol conditions, Journal of Aerosol Science, vol.41, pp.953-962, 2010.

B. Buzcu-guven and M. P. Fraser, «Comparison of VOC emissions inventory data with source apportionment results for Houston, Atmospheric Environment, vol.42, p.5032, 2008.

J. Cai, B. Yan, J. M. Ross, D. Zhang, P. L. Kinney et al., «Validation of microaeth® as a black carbon monitor for fixed-site measurement and optimization for personal exposure characterization.», Aerosol and air quality research, vol.14, pp.1-9, 2014.

D. C. Carslaw and K. R. , «Openair -An R package for air quality data analysis, Environmental Modelling & Software, pp.52-61, 2012.

J. Castell and D. L. Thiec, «Impacts de l'ozone sur l'agriculture et les forêts et estimation des coûts économiques, pp.2268-3798, 2017.

N. Castell, F. R. Dauge, P. Schneider, M. Vogt, U. Lerner et al., «Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates ?», Environment International, vol.99, pp.293-302, 2017.

N. Castell, M. Kobernus, H. Liu, P. Schneider, W. Lahoz et al., «Mobile technologies and services for environmental monitoring : The citi-sense-mob approach, S2212095514000601, new Sensing Technologies and Methods for Air Pollution Monitoring, vol.14, pp.370-382, 2015.

L. Chambers, J. Finch, K. Edwards, A. Jeanjean, R. Leigh et al., «Effects of personal air pollution exposure on asthma symptoms, lung function and airway inflammation, Clinical & Experimental Allergy, vol.48, pp.798-805, 2018.

A. Chauhan, H. Inskip, C. Linaker, S. Smith, J. Schreiber et al., «Personal exposure to nitrogen dioxide (NO 2 ) and the severity of virus-induced asthma in children, Lancet, vol.361, pp.1939-1983, 2003.

. Citepa, «Inventaire des émissions de polluants atmosphériques et de gaz à effet de serre en france -format SECTEN, pp.1-450, 2019.

R. Bibliographiques,

M. M. Coggon, P. Veres, B. Yuan, A. Koss, C. Warneke et al., «Emissions of nitrogen-containing organic compounds from the burning of herbaceous and arboraceous biomass : Fuel composition dependence and the variability of commonly used nitrile tracers, Geographical Research Letters, vol.43, pp.9903-9912, 2016.

M. Crippa, P. F. Decarlo, J. G. Slowik, C. Mohr, M. F. Heringa et al.,

N. Nicolas, E. Marchand, A. Abidi, F. Wiedensohler, J. Drewnick et al., «Wintertime aerosol chemical composition and source apportionment of the organic fraction in the metropolitan area of Paris, Atmospheric Chemistry and Physics, vol.13, pp.961-981, 2013.

D. L. Crouse, P. A. Peters, P. Hystad, J. R. Brook, A. Van-donkelaar et al., «Ambient PM 2.5 , O 3 , and NO 2 exposures and associations with mortality over 16 years of follow-up in the Canadian Census Health and Environment Cohort (canchec)», Environmental health perspectives, vol.123, pp.1180-1186, 2015.

L. A. Currie, Detection and quantification limits : origins and historical overview adapted from the proceedings of the 1996 joint statistical meetings (american statistical association, 1997). original title : "Foundations and future of detection and quantification limits". contribution of the national institute of standards and technology, Analytica Chimica Acta, vol.391, issue.2, pp.127-134, 1999.

C. Debevec, S. Sauvage, V. Gros, J. Sciare, M. Pikridas et al., Origin and variability in volatile organic compounds observed at an Eastern Mediterranean background site (Cyprus)», Atmospheric Chemistry and Physics, vol.17, pp.11-355, 2017.

J. M. Delgado-saborit, Use of real-time sensors to characterise human exposures to combustion related pollutants, J. Environ. Monit, vol.14, pp.1824-1837, 2012.

L. Deville-cavellin, S. Weichenthal, R. Tack, M. S. Ragettli, A. Smargiassi et al., «Investigating the use of portable air pollution sensors to capture the spatial variability of traffic-related air pollution, Environmental Science & Technology, vol.50, issue.1, p.26606504, 2016.

M. Dodge, Combined use of modeling techniques and smog chamber data to derive ozone-precursor relationships, dans International conference on photochemical oxidant pollution and its control : Proceedings, vol.2, pp.881-889, 1977.

E. Dons, L. I. Panis, M. V. Poppel, J. Theunis, and G. Wets, «Personal exposure to black carbon in transport microenvironments, Atmospheric Environment, vol.55, pp.392-398, 2012.

E. Dons, L. I. Panis, M. V. Poppel, J. Theunis, H. Willems et al., Impact of time-activity patterns on personal exposure to black carbon, Atmospheric Environment, vol.45, pp.3594-3602, 2011.

L. Drinovec, G. Mo?nik, P. Zotter, A. S. Prévôt, C. Ruckstuhl et al., «The "dual-spot" aethalometer : an improved measurement of aerosol black carbon with real-time loading compensation, Atmospheric Measurement Techniques, vol.8, issue.5, pp.1965-1979, 2015.

W. Du, Y. Chen, X. Zhu, Q. Zhong, S. Zhuo et al., «Wintertime air pollution and health risk assessment of inhalation exposure to polycyclic aromatic hydrocarbons in rural China, Atmospheric Environment, vol.191, pp.1-8, 2018.

X. Du, Q. Kong, W. Ge, S. Zhang, and L. Fu, «Characterization of personal exposure concentration of fine particles for adults and children exposed to high ambient concentrations in Beijing, China», Journal of Environmental Sciences, vol.22, pp.1757-1764, 2010.

R. M. Duvall, R. W. Long, M. R. Beaver, K. G. Kronmiller, M. L. Wheeler et al., «Performance Evaluation and Community Application of Low-Cost Sensors for Ozone and Nitrogen Dioxide, SENSORS, vol.16, p.10, 2016.

D. Ehhalt and A. Wahner, Tropospheric chemistry and composition | oxidizing capacity», dans Encyclopedia of Atmospheric Sciences, édité par, pp.2415-2424, 2003.

A. M. Ellis and C. A. Mayhew, Proton transfer reaction mass spectrometry : principles and applications, pp.978-979, 2013.

. European-environment-agency, Air quality in europe -2017 report, 2017.

M. Evtyugina, C. Alves, A. Calvo, T. Nunes, L. Tarelho et al., «VOC emissions from residential combustion of southern and mid-european woods, Atmospheric Environment, vol.83, pp.90-98, 2014.

E. Ezani, N. Masey, J. Gillespie, T. K. Beattie, Z. K. Shipton et al., «Measurement of diesel combustion-related air pollution downwind of an experimental unconventional natural gas operations site, Atmospheric Environment, vol.189, pp.30-40, 2018.

O. Favez and T. Amodeo, Épisodes de pollution particulaire de début décembre, pp.1-9, 2016.

O. Favez, H. Cachier, J. Sciare, and Y. L. Moullec, «Characterization and contribution to PM 2.5 of semi-volatile aerosols in Paris (France)», Atmospheric Environment, vol.41, pp.7969-7976, 2007.

R. Bibliographiques,

O. Favez, H. Cachier, J. Sciare, R. Sarda-estève, and L. Martinon, «Evidence for a significant contribution of wood burning aerosols to PM 2.5 during the winter season, Atmospheric Environment, vol.43, pp.3640-3644, 2009.

B. Fishbain, U. Lerner, N. Castell, T. Cole-hunter, O. Popoola et al., «An evaluation tool kit of air quality microsensing units, Science of The Total Environment, vol.575, pp.639-648, 2017.

L. Fourtziou, E. Liakakou, I. Stavroulas, C. Theodosi, P. Zarmpas et al., Multi-tracer approach to characterize domestic wood burning in Athens (Greece) during wintertime, Atmospheric Environment, vol.148, pp.89-101, 2017.

F. Freutel, J. Schneider, F. Drewnick, S. Von-der-weiden-reinmüller, M. Crippa et al.,

M. Beekmann and S. Borrmann, Aerosol particle measurements at three stationary sites in the megacity of Paris during summer 2009 : meteorology and air mass origin dominate aerosol particle composition and size distribution, Atmospheric Chemistry and Physics, vol.13, issue.2, pp.933-959, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01089505

K. Gaeggeler, A. S. Prevot, J. Dommen, G. Legreid, S. Reimann et al., «Residential wood burning in an alpine valley as a source for oxygenated volatile organic compounds, hydrocarbons and organic acids, Atmospheric Environment, vol.42, pp.8278-8287, 2008.

C. Gaimoz, S. Sauvage, V. Gros, F. Herrmann, J. Williams et al., Volatile RÉFÉRENCES BIBLIOGRAPHIQUES organic compounds sources in Paris in spring 2007. part ii : source apportionment using positive matrix factorisation, Environmental chemistry, vol.8, issue.2, pp.91-103, 2011.

M. Gao, J. Cao, and E. Seto, «A distributed network of low-cost continuous reading sensors to measure spatiotemporal variations of PM 2.5 in Xi'an, China, Environmental Pollution, vol.199, pp.56-65, 2015.

S. D. Ghude, D. M. Chate, C. Jena, G. Beig, R. Kumar et al., Premature mortality in India due to PM 2.5 and ozone exposure, vol.43, pp.4650-4658, 2016.

J. Gillespie, N. Masey, M. R. Heal, S. Hamilton, and I. J. Beverland, «Estimation of spatial patterns of urban air pollution over a 4-week period from repeated 5-min measurements, Atmospheric Environment, vol.150, pp.295-302, 2017.

A. Goldstein and I. Galbally, «Known and unexplored organic constituents in the earth atmosphere, Environmental science and technology, vol.41, pp.1515-1521, 2007.

J. De-gouw and C. Warneke, «Measurements of volatile organic compounds in the earth's atmosphere using proton-transfer-reaction mass spectrometry, Mass Spectrometry Reviews, vol.26, issue.2, pp.223-257, 2007.

J. A. Gouw, C. A. Brock, E. L. Atlas, T. S. Bates, F. C. Fehsenfeld et al., «Sources of particulate matter in the northeastern United States in summer : 1. Direct emissions and secondary formation of organic matter in urban plumes, Journal of Geophysical Research : Atmospheres, vol.113, p.8, 1984.

V. Gros, C. Gaimoz, F. Herrmann, T. Custer, J. Williams et al., Volatile organic compounds sources in Paris in spring, vol.8, pp.74-90, 2007.

B. D. Grover, M. Kleinman, N. L. Eatough, D. J. Eatough, P. K. Hopke et al., «Measurement of total RÉFÉRENCES BIBLIOGRAPHIQUES, 2005.

, mass (nonvolatile plus semivolatile) with the filter dynamic measurement system tapered element oscillating microbalance monitor, Journal of Geophysical Research : Atmospheres, vol.110, p.7

,

P. Gustafson, L. Barregard, B. Strandberg, and G. Sallsten, «The impact of domestic wood burning on personal, indoor and outdoor levels of 1,3-butadiene, benzene, formaldehyde and acetaldehyde, J. Environ. Monit, vol.9, pp.23-32, 2007.

M. Haeffelin, L. Barthès, O. Bock, C. Boitel, S. Bony et al., SIRTA, vol.23, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01942964

A. Hansel, A. Jordan, R. Holzinger, P. Prazeller, W. Vogel et al., «Proton transfer reaction mass spectrometry : on-line trace gas analysis at the ppb level, International Journal of Mass Spectrometry and Ion Processes, pp.609-619, 1995.

R. Harrison, C. Thornton, R. Lawrence, D. Mark, R. Kinnersley et al., «Personal exposure monitoring of particulate matter, nitrogen dioxide, and carbon monoxide, including susceptible groups, Occup Environ Med, vol.59, issue.10, pp.671-679, 2002.

D. Hasenfratz, O. Saukh, C. Walser, C. Hueglin, M. Fierz et al., «Deriving high-resolution urban air pollution maps using mobile sensor nodes, Pervasive and Mobile Computing, vol.16, 2015.

, , pp.268-285

, selected Papers from the Twelfth Annual {IEEE} International Conference on Pervasive Computing and Communications, 2014.

L. Hazan, J. Tarniewicz, M. Ramonet, O. Laurent, and A. Abbaris, Automatic processing of atmospheric CO 2 and CH 4 mole fractions at the ICOS atmosphere thematic centre, Atmospheric Measurement Techniques, vol.9, p.9, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01587531

E. Hedberg, A. Kristensson, M. Ohlsson, C. Johansson, P. Johansson et al., The record was previously connected to the following departments : Nuclear Physics (Faculty of Technology, vol.36, pp.4823-4837, 2002.

H. Hellén, H. Hakola, S. Haaparanta, H. Pietarila, and M. Kauhaniemi, «Influence of residential wood combustion on local air quality, Science of The Total Environment, vol.393, issue.2, pp.283-290, 2008.

H. Herich, C. Hueglin, and B. Buchmann, A 2.5 year's source apportionment study of black carbon from wood burning and fossil fuel combustion at urban and rural sites in Switzerland, Atmospheric Measurement Techniques, vol.4, issue.7, p.10, 2011.

D. M. Holstius, A. Pillarisetti, K. R. Smith, and E. Seto, «Field calibrations of a low-cost aerosol sensor at a regulatory monitoring site in California, ATMOSPHE-RIC MEASUREMENT TECHNIQUES, vol.7, pp.1121-1131, 2014.

R. Holzinger, W. J. Acton, W. J. Bloss, M. Breitenlechner, L. R. Crilley et al., «Validity and limitations of simple reaction kinetics to calculate concentrations of organic compounds from ion counts in ptr-ms, Atmospheric Measurement Techniques, vol.12, pp.6193-6208, 2019.

R. Holzinger, R. Tillmann, M. Breitenlechner, B. Languille, S. Dusanter et al.,

S. Schallhart, J. Acton, K. Xu, L. Quéléver, A. Zaytsev et al., «PTR-MS inter-calibration study at Cabauw», dans EGU General Assembly Conference Abstracts, EGU General Assembly Conference Abstracts, vol.20, p.14875, 2018.

R. Holzinger, C. Warneke, A. Hansel, A. Jordan, W. Lindinger et al., «Biomass burning as a source of formaldehyde, acetaldehyde, methanol, acetone, acetonitrile, and hydrogen cyanide, Geophysical Research Letters, vol.26, issue.8, pp.1161-1164, 1999.

S. Hsu, K. Ito, M. Kendall, and M. Lippmann, «Factors affecting personal exposure to thoracic and fine particles and their components», Journal of Exposure Science and Environmental Epidemiology, vol.22, issue.5, p.439, 2012.

K. Hu, V. Sivaraman, B. G. Luxan, and A. Rahman, Design and evaluation of a metropolitan air pollution sensing system, IEEE Sensors Journal, vol.16, issue.5, pp.1448-1459, 2016.

K. Hu, Y. Wang, A. Rahman, and V. Sivaraman, «Personalising pollution exposure estimates using wearable activity sensors, IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks and Information Processing, pp.1-6, 2014.

, Air pollution and cancer, 2013.

Y. Iinuma, G. Engling, H. Puxbaum, and H. Herrmann, «A highly resolved anion-exchange chromatographic method for determination of saccharidic tracers for biomass combustion and primary bio-particles in atmospheric aerosol, Atmospheric Environment, vol.43, pp.1367-1371, 2009.

K. Ito, N. Xue, and G. Thurston, «Spatial variation of PM 2.5 chemical species and source-apportioned mass concentrations, particulate Matter : Atmospheric Sciences, Exposure and the Fourth Colloquium on PM and Human Health -Papers from the AAAR PM Meeting, vol.38, pp.5269-5282, 2004.

N. A. Janssen, G. Hoek, M. Simic-lawson, P. Fischer, L. Van-bree et al., Black carbon as an additional indicator of the adverse health effects of airborne particles compared with PM 10 and PM 2.5 », Environmental Health Perspectives, vol.119, pp.1691-1699, 2011.

S. Jarjour, M. Jerrett, D. Westerdahl, A. De, C. Nazelle et al., «Cyclist route choice, traffic-related air pollution, and lung function : a scripted exposure study, Environmental Health, vol.12, issue.1, p.14, 2013.

M. E. Jenkin and K. C. Clemitshaw, Ozone and other secondary photochemical pollutants : chemical processes governing their formation in the planetary boundary layer, Atmospheric Environment, vol.34, pp.2499-2527, 2000.

M. Jerrett, D. Donaire-gonzalez, O. Popoola, R. Jones, R. C. Cohen et al.,

M. Triguero-mas, E. Seto, and M. Nieuwenhuijsen, «Validating novel air pollution sensors to improve exposure estimates for epidemiological analyses and citizen science, vol.158, pp.286-294, 2017.

W. Jiao, G. Hagler, R. Williams, R. Sharpe, R. Brown et al.,

K. Buckley, «Community air sensor network (cairsense) project : evaluation of low-cost sensor performance in a suburban environment in the southeastern united states, Atmospheric Measurement Techniques, vol.9, p.11, 2016.

S. Johannesson, P. Gustafson, P. Molnár, L. Barregard, and G. Sällsten, «Exposure to fine particles (PM 2.5 and PM 10 ) and black smoke in the general population : Personal, indoor, and outdoor levels, Journal of exposure science & environmental epidemiology, vol.17, pp.613-637, 2007.

A. Kalogridis, S. Vratolis, E. Liakakou, E. Gerasopoulos, N. Mihalopou-los et al., «Assessment of wood burning versus fossil fuel contribution to wintertime black carbon and carbon monoxide concentrations in, 2018.

G. ». Athens, Atmospheric Chemistry and Physics, vol.18, pp.10-219

M. A. Kamboures, P. L. Rieger, S. Zhang, S. B. Sardar, M. O. Chang et al.,

M. Huang, I. Dzhema, M. Fuentes, M. T. Benjamin, A. Hebert et al., «Evaluation of a method for measuring vehicular PM with a composite filter and a real-time BC instrument, Atmospheric Environment, vol.123, 2015.

, , pp.63-71

M. Khalil and R. Rasmussen, Tracers of wood smoke», vol.37, pp.1211-1222, 2003.

D. Kim, A. Sass-kortsak, J. Purdham, R. Dales, and J. R. Brook, «Associations between personal exposures and fixed-site ambient measurements of fine particulate matter, nitrogen dioxide, and carbon monoxide in Toronto, Journal of exposure science & environmental epidemiology, vol.16, pp.172-83, 2006.

S. Kim, T. Karl, D. Helmig, R. Daly, R. Rasmussen et al., «Measurement of atmospheric sesquiterpenes by proton transfer reaction-mass spectrometry (PTR-MS), Atmospheric Measurement Techniques, vol.2, p.1, 2009.

T. Kirchstetter, T. Novakov, and P. V. Hobbs, «Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon, Journal of Geophysical Research (Atmospheres), vol.109, pp.21-208, 2004.

N. E. Klepeis, W. C. Nelson, W. R. Ott, J. P. Robinson, A. M. Tsang et al., «The national human activity pattern survey (NHAPS) : A resource for assessing exposure to environmental pollutants, Journal of Exposure Analysis and Environmental Epidemiology, vol.11, p.3, 2001.

S. Kotthaus and C. S. Grimmond, Atmospheric boundary-layer characteristics from ceilometer measurements. part 1 : A new method to track mixed layer height and classify clouds, Quarterly Journal of the Royal Meteorological Society, vol.144, pp.1525-1538, 2018.

S. Kotthaus, E. O'connor, C. Münkel, C. Charlton-perez, M. Haeffelin et al., «Recommendations for processing atmospheric attenuated backscatter profiles from vaisala CL31 ceilometers, Atmospheric Measurement Techniques, vol.9, pp.3769-3791, 2016.

R. Bibliographiques,

H. Lai, M. Kendall, H. Ferrier, I. Lindup, S. Alm et al., «Personal exposures and microenvironment concentrations of PM 2.5 , VOC, NO 2 and CO in Oxford, Atmospheric Environment, vol.38, pp.6399-6410, 2004.

V. A. Lanz, C. Hueglin, B. Buchmann, M. Hill, R. Locher et al., «Receptor modeling of C 2 -C 7 hydrocarbon sources at an urban background site in, Atmospheric Chemistry and Physics, vol.8, issue.9, pp.2313-2332, 1993.

J. Lelieveld, F. Dentener, W. Peters, and M. Krol, On the role of hydroxyl radicals in the self-cleansing capacity of the troposphere», Atmospheric Chemistry and Physics, vol.4, pp.2337-2344, 2004.

J. Lelieveld and F. J. Dentener, «What controls tropospheric ozone ?», Journal of Geophysical Research : Atmospheres, vol.105, pp.3531-3551, 2000.

A. C. Lewis, E. Von-schneidemesser, and R. E. Peltier, «Low-cost sensors for the measurement of atmospheric composition : overview of topic and future applications, World Meteorological Organization, vol.1215, 2018.

C. Lin, J. Gillespie, M. Schuder, W. Duberstein, I. Beverland et al., «Evaluation and calibration of aeroqual series 500 portable gas sensors for accurate measurement of ambient ozone and nitrogen dioxide, Atmospheric Environment, vol.100, pp.111-116, 2015.

C. Lin, N. Masey, H. Wu, M. Jackson, D. J. Carruthers et al., «Practical field calibration of portable monitors for mobile measurements of multiple air pollutants, vol.8, p.12, 2017.

W. Lindinger, A. Hansel, and A. J. , On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, International Journal of Mass Spectrometry and Ion Processes, vol.173, pp.191-241, 1998.

R. Bibliographiques,

J. C. Liu and R. D. Peng, «Health effect of mixtures of ozone, nitrogen dioxide, and fine particulates in 85 US counties, Air Quality, Atmosphere & Health, 2018.

W. Maenhaut, Source apportionment revisited for long-term measurements of fine aerosol trace elements at two locations in southern Norway, Nuclear Instruments and Methods in Physics Research Section B : Beam Interactions with Materials and Atoms, vol.417, pp.133-138, 2018.

A. Manikonda, N. Zíková, P. K. Hopke, and A. R. Ferro, «Laboratory assessment of low-cost PM monitors, Journal of Aerosol Science, vol.102, 2016.

, , pp.29-40

K. Markowicz, C. Ritter, J. Lisok, P. Makuch, I. Stachlewska et al., «Vertical variability of aerosol single-scattering albedo and equivalent black carbon concentration based on in-situ and remote sensing techniques during the iarea campaigns in, Atmospheric Environment, vol.164, pp.431-447, 2017.

M. Mead, O. Popoola, G. Stewart, P. Landshoff, M. Calleja et al., «The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks, Atmospheric Environment, vol.70, 2013.

, , pp.186-203

G. Megie, J. Bonte, P. Carlier, J. Chavaudra, P. Dizengremel et al.,

, Rapport n 30», Ozone et propriétés oxydantes de la troposphère, 1993.

A. Merritt, A. Georgellis, N. Andersson, G. B. Bedada, T. Bellander et al., «Personal exposure to black carbon in Stockholm, using different intra-urban transport modes, Science of The Total Environment, vol.674, 2019.

, , pp.279-287

R. Bibliographiques,

C. Milà, M. Salmon, M. Sanchez, A. Ambrós, S. Bhogadi et al., «When, where, and what ? characterizing personal PM 2.5 exposure in periurban India by integrating GPS, wearable camera, and ambient and personal monitoring data, Environmental Science & Technology, vol.52, pp.13-481, 2018.

L. Morawska, P. K. Thai, X. Liu, A. Asumadu-sakyi, G. Ayoko et al.,

D. Westerdahl and R. Williams, «Applications of low-cost sensing technologies for air quality monitoring and exposure assessment : How far have they gone ?, Environment International, vol.116, pp.286-299, 2018.

L. Mosqueron, I. Momas, and Y. Le-moullec, «Personal exposure of Paris office workers to nitrogen dioxide and fine particles, Occupational and Environmental Medicine, vol.59, pp.550-555, 2002.

E. Mounier-geyssant, J. Barthélemy, L. Mouchot, C. Paris, and D. Zmirou-navier, Exposure of bakery and pastry apprentices to airborne flour dust using PM 2.5 and PM 10 personal samplers, BMC public health, vol.7, issue.1, p.311, 2007.

F. Nalin, B. Golly, J. Besombes, C. Pelletier, R. Aujay-plouzeau et al., «Fast oxidation processes from emission to ambient air introduction of aerosol emitted by residential log wood stoves, vol.143, 2016.

D. Nádudvari, M. J. Fabia?ska, L. Marynowski, B. Kozielska, J. Konieczy?ski et al., «Distribution of coal and coal combustion related organic pollutants in the environment of the upper silesian industrial region, Science of The Total Environment, pp.1462-1488, 2018.

C. Ng, F. Kai, M. Tee, N. Tan, and H. F. Hemond, «A prototype sensor for in situ sensing of fine particulate matter and volatile organic compounds, Sensors, vol.18, p.1, 2018.

R. Niranjan and A. K. Thakur, «The toxicological mechanisms of environmental soot (black carbon) and carbon black : Focus on oxidative stress and inflammatory RÉFÉRENCES BIBLIOGRAPHIQUES pathways», Frontiers in Immunology, vol.8, p.763, 2017.

B. Ostro, J. Hu, D. Goldberg, P. Reynolds, A. G. Hertz et al.,

. Kleeman, «Associations of mortality with long-term exposures to fine and ultrafine particles, species and sources : Results from the california teachers study cohort, pp.549-556, 2015.

P. Paatero and U. Tapper, «Positive matrix factorization : A non-negative factor model with optimal utilization of error estimates of data values», dans Environmetrics, pp.111-126, 1994.

A. Panopoulou, E. Liakakou, V. Gros, S. Sauvage, N. Locoge et al., «Non-methane hydrocarbon variability in athens during wintertime : the role of traffic and heating, Atmospheric Chemistry and Physics, vol.18, pp.16-139, 2018.

P. Pant, G. Habib, J. D. Marshall, and R. E. Peltier, PM 2.5 exposure in highly polluted cities : A case study from, vol.156, pp.167-174, 2017.

A. Paunescu, M. Attoui, S. Bouallala, J. Sunyer, and I. Momas, «Personal measurement of exposure to black carbon and ultrafine particles in schoolchildren from PARIS cohort, )», Indoor Air, vol.27, pp.766-779, 2017.

I. H. Peng, Y. Y. Chu, C. Y. Kong, and Y. S. Su, «Implementation of indoor VOC air pollution monitoring system with sensor network, pp.639-643, 2013.

J. Petit, T. Amodeo, F. Meleux, B. Bessagnet, L. Menut et al., Characterising an intense PM pollution episode in March 2015 in France from multi-site approach and near real time data : Climatology, variabilities, geographical origins and model evaluation, Atmospheric Environment, vol.155, pp.68-84, 2017.
URL : https://hal.archives-ouvertes.fr/ineris-01854712

R. Bibliographiques,

J. Petit, O. Favez, J. Sciare, F. Canonaco, P. Croteau et al., «Submicron aerosol source apportionment of wintertime pollution in Paris, France by double positive matrix factorization (PMF 2 ) using an aerosol chemical speciation monitor (ACSM) and a multi-wavelength aethalometer, Atmospheric Chemistry and Physics, vol.14, pp.13-773, 2014.

J. Petit, O. Favez, J. Sciare, V. Crenn, R. Sarda-estève et al., «Two years of near real-time chemical composition of submicron aerosols in the region of Paris using an aerosol chemical speciation monitor (ACSM) and a multi-wavelength aethalometer, Atmospheric Chemistry and Physics, vol.15, issue.6, pp.2985-3005, 2015.

F. Pilla and B. Broderick, A GIS model for personal exposure to PM 10 for Dublin commuters, Sustainable Cities and Society, vol.15, pp.1-10, 2015.

H. Puxbaum, A. Caseiro, A. Sánchez-ochoa, A. Kasper-giebl, M. Claeys et al., Levoglucosan levels at background sites in Europe for assessing the impact of biomass combustion on the European aerosol background, vol.112, p.23, 2007.
URL : https://hal.archives-ouvertes.fr/insu-00377253

R. Core-team, R : A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, 2018.

R. ,

A. Ravishankara, J. R. Édité-par, and . Holton, Ozone | photochemistry of ozone», dans Encyclopedia of Atmospheric Sciences, pp.1642-1649, 2003.

A. Reff, S. I. Eberly, and P. V. Bhave, «Receptor modeling of ambient particulate matter data using positive matrix factorization : review of existing methods.», Journal of the Air & Waste Management Association, vol.57, issue.2, pp.146-54, 2007.

B. Reid, «A quantitative analysis of the cairclip O 3 /NO 2 sensor, 2015.

G. Rolph, Real-time environmental applications and display system (READY), 2016.

J. Sandradewi, A. S. Prévôt, S. Szidat, N. Perron, M. R. Alfarra et al., Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter, Environmental Science & Technology, vol.42, issue.9, pp.3316-3323, 2008.

. Santepubliquefrance, «Impacts sanitaires de la pollution de l'air en France : nouvelles données et perspectives, 2016.

S. Sauvage, H. Plaisance, N. Locoge, A. Wroblewski, P. Coddeville et al., «Long term measurement and source apportionment of nonmethane hydrocarbons in three French rural areas, Atmospheric Environment, vol.43, pp.2430-2441, 2009.

J. J. Schauer, M. J. Kleeman, G. R. Cass, and B. R. Simoneit, «Measurement of emissions from air pollution sources. 3. C1-C29 organic compounds from fireplace combustion of wood, Environmental Science and Technology, vol.35, issue.9, pp.1716-1728, 2001.

P. Schneider, N. Castell, M. Vogt, F. R. Dauge, W. A. Lahoz et al., «Mapping urban air quality in near real-time using observations from lowcost sensors and model information, Environment International, vol.106, pp.234-247, 2017.

J. Schwartz, D. W. Dockery, and L. M. Neas, «Is daily mortality associated specifically with fine particles ?, Journal of the Air & Waste Management Association, vol.46, pp.927-939, 1996.

/. Doi, , p.28065142

J. Sciare, R. O.-d'argouges, C. Sarda-esteve, C. Gaimoz, N. Dolgorouky et al., Large contribution of waterinsoluble secondary organic aerosols in the region of Paris (France) during win-RÉFÉRENCES BIBLIOGRAPHIQUES, 2011.

, Journal of Geophysical Research : Atmospheres, vol.116, pp.22-203

R. Seco, J. Peñuelas, I. Filella, J. Llusia, S. Schallhart et al., Volatile organic compounds in the western mediterranean basin : urban and rural winter measurements during the DAURE campaign», Atmospheric Chemistry and Physics, vol.13, pp.4291-4306, 2013.

J. H. Seinfeld and S. N. Pandis, Atmospheric chemistry and physics : from air pollution to climate change, 2006.

G. Sällsten, P. Gustafson, L. Johansson, S. Johannesson, P. Molnár et al., Inhalation Toxicology, vol.18, p.16864403, 2006.

E. G. Snyder, T. H. Watkins, P. A. Solomon, E. D. Thoma, R. W. Williams et al.,

D. Hagler, D. A. Shelow, V. J. Hindin, P. W. Kilaru, and . Preuss, «The Changing Paradigm of Air Pollution Monitoring, ENVIRONMENTAL SCIENCE & TECH-NOLOGY, vol.47, pp.13-936, 2013.

S. Sousan, K. Koehler, G. Thomas, J. H. Park, M. Hillman et al., «Inter-comparison of low-cost sensors for measuring the mass concentration of occupational aerosols, SCIENCE AND TECHNOLOGY, vol.50, issue.5, pp.278-6826, 2016.

L. Spinelle, M. Gerboles, M. G. Villani, M. Aleixandre, and F. Bonavitacola, «Field calibration of a cluster of low-cost available sensors for air quality monitoring, Sensors and Actuators B : Chemical, vol.215, pp.249-257, 2015.

A. Stein, R. Draxler, G. Rolph, B. Stunder, M. Cohen et al., NOAA's HYSPLIT atmospheric transport and dispersion modeling system, Bull. Amer. Meteor. So, vol.96, pp.2059-2077, 2015.

R. B. Stull, An introduction to boundary layer meteorology, vol.13, 2012.

R. Taipale, T. M. Ruuskanen, J. Rinne, M. K. Kajos, H. Hakola et al., «Technical note : Quantitative long-term measurements of RÉFÉRENCES BIBLIOGRAPHIQUES VOC concentrations by PTR-MS measurement, calibration, and volume mixing ratio calculation methods, Atmospheric Chemistry and Physics, vol.8, p.22, 2008.

R. Tse, D. Aguiari, K. Chou, S. Tang, D. Giusto et al., «Monitoring cultural heritage buildings via low-cost edge computing/sensing platforms : The biblioteca joanina de coimbra case study, dans Proceedings of the 4 th EAI International Conference on Smart Objects and Technologies for Social Good, Goodtechs '18, pp.148-152, 2018.

R. Tse, L. Monti, C. Prandi, D. Aguiari, G. Pau et al., «On assessing the accuracy of air pollution models exploiting a strategic sensors deployment, dans Proceedings of the 4th EAI International Conference on Smart Objects and Technologies for Social Good, Goodtechs '18, pp.55-58, 2018.

A. Valach, B. Langford, E. Nemitz, A. Mackenzie, and C. Hewitt, «Concentrations of selected volatile organic compounds at kerbside and background sites in central london, Atmospheric Environment, vol.95, 2014.

A. Velasco, R. Ferrero, F. Gandino, B. Montrucchio, and M. Rebaudengo, «A mobile and low-cost system for environmental monitoring : A case study, Sensors, vol.16, p.710, 2016.

E. Velasco and S. H. Tan, «Particles exposure while sitting at bus stops of hot and humid Singapore, Atmospheric Environment, vol.142, pp.251-263, 2016.

R. Vet, R. S. Artz, S. Carou, M. Shaw, C. Ro et al., «A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and ph, and phosphorus, Atmospheric Environment, vol.93, pp.3-100, 2014.

M. Viana, I. Rivas, C. Reche, A. Fonseca, N. Pérez et al., «Field comparison of portable and stationary instruments for outdoor urban air exposure assessments, Atmospheric Environment, vol.123, pp.220-228, 2015.

A. Waked, S. Sauvage, A. Borbon, J. Gauduin, C. Pallares et al., «Multi-year levels and trends of non-methane hydrocarbon concentrations observed in ambient air in France, Atmospheric Environment, vol.141, pp.263-275, 2016.

E. Weingartner, H. Saathoff, M. Schnaiter, N. Streit, B. Bitnar et al., «Absorption of light by soot particles : determination of the absorption coefficient by means of aethalometers, Journal of Aerosol Science, vol.34, pp.1445-1463, 2003.

R. D. Williams and L. D. Knibbs, «Daily personal exposure to black carbon : A pilot study, Atmospheric Environment, vol.132, 2016.

. World-health and . Organization, «Health aspects of air pollution with particulate matter, ozone and nitrogen dioxide», World Health Organization, Regional Office for Europe, 2003.

. World-health and . Organization, «7 million premature deaths annually linked to air pollution, 2012.

E. Zagury, Y. Le-moullec, and I. Momas, Exposure of Paris taxi drivers to automobile air pollutants within their vehicles, Occupational and Environmental Medicine, vol.57, issue.6, pp.406-410, 2000.

Y. Zhang, Estimation multi-annuelle des sources d'aérosols organiques et de leurs propriétés d'absorption de la lumière en région parisienne, thèse de doctorat, URL RÉFÉRENCES BIBLIOGRAPHIQUES, 2019.

, thèse de doctorat dirigée par Gros, Valérie and Albinet, Alexandre and Favez, 2019.

Y. Zhang, O. Favez, F. Canonaco, D. Liu, G. Mo?nik et al., «Evidence of major secondary organic aerosol contribution to lensing effect black carbon absorption enhancement, Climate and Atmospheric Science, vol.1, 2018.

J. Zhao and R. Zhang, «Proton transfer reaction rate constants between hydronium ion (H 3 O + ) and volatile organic compounds (VOCs)», Atmospheric Environment, vol.38, pp.2177-2185, 2004.

, Quelques formules de COV dérivés du benzène

, Quelques formules de COV oxygénés

, Évolution des émissions annuelles des COV en France métropolitaine depuis 1990

, Évolution des émissions annuelles de différents gaz en France métropolitaine depuis 1990

, et BC) en France métropolitaine depuis 1990, Évolution des émissions annuelles de particules

, Couches de l'atmosphère

I. , Diagramme de concentration d'ozone en fonction des proportions du mélange de COV et de NO x

. .. De-france, 14 Carte des concentrations annuelles de NO 2 en Île, p.27

, PM 2.5 , COV, SO 2 et NH 3 ) en Île-de-France, Répartition sectorielle des émissions de différents polluants

, Répartition sectorielle des émissions de PM 2.5 en Île-de-France en été et en hiver

. .. De-france, Le positionnement de la station du SIRTA en Île, vol.46

, Principe de mesure du BC par l'AE33

. .. Ptr-ms, , p.56

P. .. Ptr-ms-ayant-participé-À-la, 58 III LISTE DES FIGURES II.7 Transmissions des PTR-MS ayant participé à la PICAB pour l'acétone (m/z 59), Sensibilités mesurées des

. Ptr-ms, , p.60, 2018.

, Points de blanc considérés et interpolation correspondante, p.63

, Courbe de transmission interpolée à partir des points calculés pour les COV du mélange étalon, II.13

, Comparaison entre les concentrations obtenues avec l'étalonnage et avec la courbe de transmission

, II.15 Position des stations d'Airparif et du

L. Cairclip and . .. Le-canarin, II.16 Trois capteurs utilisés : l'AE51, p.78

, Routes for the mobility tests

, BC and NO 2 time series in static measurements

, Mobility tests for NO 2 sensors

, Mobility tests for PM 10 sensors

, Reproducibility tests for sensors A, C and F with reference instruments, p.109

, Chamber controlled tests for BC sensor A, PM sensor F and NO 2 sensor C, p.110

, Exemple d'invalidation pour le cas 1

, Exemple d'invalidation pour le cas 2

, Exemple de données suspectes pour le cas 3

, Carte des positions des volontaires tout au long des campagnes, p.137

, Distribution des données pour les campagnes de printemps et d'automne, p.138

. .. , Cycle diurne des polluants pour les deux campagnes, p.141

, Exposition individuelle en fonction des concentrations ambiantes, p.143

, Série temporelle avec identification des environnements pour les trois capteurs

, IV.10Temps passé dans les différents environnements et contribution de ces environnements à l'exposition totale pour chaque volontaire de la campagne de printemps

, 12Temps passé dans les différents environnements et contribution de ces environnements à l'exposition totale (moyenne sur tous les volontaires) pour les campagnes de printemps et d'automne respectivement, IV.11Temps passé dans les différents environnements et contribution de ces environnements à l'exposition totale pour chaque volontaire de la campagne d'automne, p.148

, Distribution of BC (ng.m -3 ) and VOC (µg.m -3 ) measurements during the campaign

. .. Sirta, Diurnal cycles for the whole studied period, 2017.

, Diurnal cycle of the 3 PMF factors, identified as wood burning, traffic and solvent use + background

, Factors contribution to each VOC and sources contribution from the Airparif emission inventory to VOC also present in the database for PMF analysis

, ) study, the emissions inventory from Airparif and this work, Sources contributions to the measured VOCs : comparison between the BAUDIC, 2016.

, Box plot for VOCs measurements from the three VOCs stations : SIRTA

P. .. , Polar plot of the temperature and a selection of compound and PMF factor concentrations as a function of wind at SIRTA, LISA, p.190

, Carte des positions des volontaires tout au long de la campagne, p.193

V. Aperçu-d'une-série-temporelle-pour-le-volontaire and B. .. , , p.195

V. , Temps passé dans les différents environnements et contribution de ces environnements à l'exposition totale

V. , Exposition individuelle en fonction des concentrations ambiantes

V. , Aperçu d'un épisode marqué par le feu de bois pour le volontaire BH, p.199

B. , Cycles diurnes des polluants mesurés dans une station urbaine de fond (moyenne sur la période des deux campagnes)

, Cycles diurnes des capteurs portés par chaque volontaire durant la campagne de printemps

, Cycles diurnes des capteurs portés par chaque volontaire durant la campagne d'automne, p.13

, Temps de vie d'une sélection de COV

, Situation et tendances d'une sélection de polluants réglementés, p.28

S. Acquises-au and .. .. ,

, Valeurs des sections d'absorption massique (ou MAC) pour chaque longueur d'onde de l'aethalomètre AE33

, 25 COV considérés durant la campagne de mesures de l, 2017.

, Coefficients d'étalonnage pour les sept étalonnages conduits durant la campagne

. .. , Nombre de mesures inférieures à la limite de détection, p.69

. .. , Nombre de mesures inférieures à la limite de détection, p.69

, II.11 Principales caractéristiques des trois capteurs : AE51, Cairclip et Canarin. 78

, Comparaison des incertitudes ACTRIS et des incertitudes PMF, p.80

, Main expected specifications of the sensors

, SET results for every sensor

, Bilan des performances des capteurs (campagne de caractérisation printemps)

, Bilan des performances des capteurs (campagne de caractérisation automne)

, Bilan des performances du Cairclip (campagne de caractérisation septembre)

, Premières informations sur les deux campagnes exploitées, p.130

. .. , Bilan des données de la campagne de printemps, p.134

. .. , Bilan des données de la campagne d'automne, p.135

, Moyenne des concentrations mesurées dans une station urbaine de fond durant les deux campagnes

, IV.10Niveaux d'exposition moyens (écarts-types) mesurés dans différentes études, p.140

, IV.11Expositions moyennes (écarts-types) par environnement pour chaque campagne

. .. , 25 considered VOCs during the field campaign at SIRTA, p.168

, Parameters thresholds for VOC classification

, 14 VOCs classified as wood burning related

, 3 VOCs classified as traffic-related

, Bilan des capteurs portés par les volontaires et des périodes associées, p.192

, Bilan des données de la campagne feu de bois

, Niveaux d'exposition moyens (écarts-types)

. Bd, . Be, and . .. Bi, Measuring number, mass, and size of exhaust particles with diffusion chargers : The dual pegasor particle sensor, Expositions moyennes par environnement pour les volontaires, 2016.

. Borghi, , 2017.

, Miniaturized Monitors for Assessment of Exposure to Air Pollutants, p.17

. Fig and . S3, Chamber controlled tests for NO2 sensor C

, b : sum of ethylbenzene, m-p-xylene and o-xylene. c : hourly averages minimum -hourly averages maximum

. Ait-helal, respectively), both including a co mparison between two 155 contrasting locations. Seco et al. (2013) analysed measurements taken at a central urban location in Barcelona and a rural site (Montseny) in winter, Paris city centre in 2010. Two other studies used for comparison, 2009.

, Measurements from our study were below the levels at the London background site for all VOCs. SIRTA showed levels very close to the observations at Montseny (rural area)

, These contrasts in air mass origin and meteorological parameters highlight that weather conditions are important drivers for 195

, amb ient concentrations, in addition to the emissions' variability impact on concentration dynamics. Strong winds and vertical d ilut ion within the mixed layer enhance pollutant dispersion. Furthermore, low temperatures are favourable conditions for pollutant accumulation while enhancing wood burning activities