
HAL Id: tel-02448116
https://theses.hal.science/tel-02448116

Submitted on 22 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Concurrency, references and linear logic
Yann Hamdaoui

To cite this version:
Yann Hamdaoui. Concurrency, references and linear logic. Logic in Computer Science [cs.LO]. Uni-
versité Sorbonne Paris Cité, 2018. English. �NNT : 2018USPCC190�. �tel-02448116�

https://theses.hal.science/tel-02448116
https://hal.archives-ouvertes.fr


THÈSE DE DOCTORAT DE

L’UNIVERSITÉ SORBONNE PARIS CITÉ

Préparée à l’Université Paris Diderot

École Doctorale 386 – Sciences Mathématiques Paris-Centre

Institut de Recherche en Informatique / Équipe PPS

Concurrency, References and Linear Logic

Préparée et présentée par Yann HAMDAOUI

Thèse de doctorat d’Informatique

Dirigée par Claudia Faggian

Présentée et soutenue publiquement à l’IRIF le 25 septembre 2018

Président du Jury
Laurent Regnier Professeur Univ. Aix-Marseille

Rapporteurs
Lorenzo Tortora de Falco Professeur Univ. Roma 3 (Italie)
Ian Mackie Professeur (Reader) Univ. of Sussex (UK)

Examinateurs
Christine Tasson Maitre de conférence Univ. Paris Diderot
M. Thomas Ehrhard Directeur de recherche CNRS – Univ. Paris Diderot
Daniele Varacca Professeur Univ. Paris Est Créteil

Directrice de thèse
Claudia Faggian Chargée de recherche Univ. Paris Diderot

Co-directeur
M. Benoit Valiron Maitre de conférence Univ. Paris-Saclay



Titre: Concurrence, Références et Logique Linéaire

Résumé

Le sujet de cette thèse est l’étude de l’encodage des références et de la
concurrence dans la Logique Linéaire. Notre motivation est de montrer que la
Logique Linéaire est capable d’encoder des effets de bords, et pourrait ainsi
servir comme une cible de compilation pour des langages fonctionnels qui soit à
la fois viable, formalisée et largement étudiée. La notion clé développée dans
cette thèse est celle de zone de routage. C’est une famille de réseaux de preuve
qui correspond à un fragment de la logique linéaire différentielle, et permet
d’implémenter différentes primitives de communication. Nous les définissons et
étudions leur théorie. Nous illustrons ensuite leur expressivité en traduisant un
λ-calcul avec concurrence, références et réplication dans un fragment des réseaux
différentiels. Pour ce faire, nous introduisons un langage semblable au λ-calcul
concurrent d’Amadio, mais avec des substitutions explicites à la fois pour les
variables et pour les références. Nous munissons ce langage d’un système de
types et d’effets, et prouvons la normalisation forte des termes bien typés avec
une technique qui combine la réductibilité et une nouvelle technique interactive.
Ce langage nous permet de prouver un théorème de simulation, et un théorème
d’adéquation pour la traduction proposée.

Mots-clés: logique linéaire, sémantique, concurrence, références, parallélisme,
réseaux de preuve, programmation fonctionnelle

2



Title: Concurrency, References and Linear Logic

Abstract

The topic of this thesis is the study of the encoding of references and concur-
rency in Linear Logic. Our perspective is to demonstrate the capability of Linear
Logic to encode side-effects to make it a viable, formalized and well studied
compilation target for functional languages in the future. The key notion we
develop is that of routing areas: a family of proof nets which correspond to
a fragment of differential linear logic and which implements communication
primitives. We develop routing areas as a parametrizable device and study
their theory. We then illustrate their expressivity by translating a concurrent
λ-calculus featuring concurrency, references and replication to a fragment of
differential nets. To this purpose, we introduce a language akin to Amadio’s
concurrent λ-calculus, but with explicit substitutions for both variables and
references. We endow this language with a type and effect system and we prove
termination of well-typed terms by a mix of reducibility and a new interactive
technique. This intermediate language allows us to prove a simulation and an
adequacy theorem for the translation.

Keywords: linear logic, semantics, concurrency, references, parallelism,
proof nets, functional programming

3



À mon grand père.



Acknowledgements

Je remercie en premier lieu mes parents, sans qui je n’aurais pas pu être
là aujourd’hui, ni même les jours précédents d’ailleurs. Ils m’ont soutenu
psychologiquement et matériellement plus que je ne pourrais probablement
jamais leur rendre. Pour cela, je leur suis infiniment reconnaissant. Je remercie
également mes soeurs, Anna et Neijma, dont l’amour et l’humour caustique (
juste l’humour) ont été un soutient constant.

Je suis profondément reconnaissant à Claudia d’avoir pris en thèse il y a 4 ans
maintenant cet étudiant ignare et dans la lune que j’étais et de l’avoir supporté
jusque là. Je remercie Benôıt de l’avoir rejointe un peu plus tard. J’ai toujours
pu compter sur votre suivi et votre soutient, même dans les moments difficiles.
C’est probablement une formule convenue, mais qui n’en reste pas moins valide:
je n’en serais pas là aujourd’hui sans vous.

Je remercie Lorenzo Tortora de Falco et Ian Mackie, d’avoir accepté d’être les
rapporteurs de ma thèse, et ce malgré des contraintes matérielles et temporelles
difficiles.

Je remercie les chercheurs qui m’ont acceuilli de près ou de loin, en Angleterre,
en Italie ou au Japon au cours de cette thèse: Dan, Ugo, Ichiro et Kazushige
notamment.

PPS aura été un cadre de travail exceptionnel et stimulant: je connais peu de
lieux concentrant autant de gens brillants et passionnés. Je remercie également
tous ceux avec qui j’ai pu avoir des discussions éclairantes, ou simplement de
qui j’ai beaucoup appris, Beniamino, Paolo, Michele, Paul-André, Thomas, Ugo,
Ichiro, et bien d’autres. Je remercie particulièrement Alexis, psychotérapeute
attitré des thésards, dont l’écoute et les conseils dans des périodes difficiles ont
été d’un grand secours.

Je remercie également Odile, qui outre son efficacité irréelle qui a longtemps
fait peser sur elle des soupçons de dopage, est également l’une des personnes
plus adorables que je connaisse.

Je suis fier d’avoir appartenu à l’institution millénaire du bureau des autistes,
établissement médical rassemblant divers transfuges linéaires et catégoriques.
Clément, chef à ses heures perdues et qui m’aura accompagné dans nos mésaventures
thésardesques variées. Charles, partenaire de dégustation de vins et bières de
prédilection et grand amateur de pipe. Marie, consoeur bretonne. Amina,
partenaire de double master de qualité, merci pour tes cours de running et de
danse lors de cet ETAPS mythique à Londres. Un jour nous serons traders

5



ou gérerons notre narco-empire en Colombie, comme promis, Patròn. Gabriel,
encyclopédie vivante d’oeuvres de science-fiction et de jeux vidéos, merci pour
tes lumières sur OCaml et la programmation en général. Pierre, grimpeur de
son état, merci pour tes calembours intempestifs et surtout d’avoir téléchargé
l’intégralité de ncatlab dans ton cortex, ce qui s’est révélé très pratique pour
tes cobureaux. Léo, merci pour rien. Entre les pauses thés, la dénigration
systématique des Danois, de LaTeX, de la blockchain et du monde en général,
j’apprécie bien trop ta compagnie pour avoir eu la moindre minute de travail
à moi. Rémi, merci pour ton enthousiasme débordant et ta bienveillance, et
pour l’exegèse collaborative de l’oeuvre de Girard. J’espère sincèremet que tu
parviendra un jour à surmonter ton addiction à l’installateur Debian. Paulina,
je te souhaite bien du courage pour la suite avec de tels énergumènes.

Dans l’étrange contrée de thésardie, je remercie le peuple autochtone qui a
été aujourd’hui (presque) remplacé par une nouvelle génération: Etienne, PM et
notre goût partagé pour les bons thés et les détournements scabreux, Gabriel
S., Matthieu B., Pierre et Cyril pour leurs culture impressionante et dans des
domaines parfois déroutants, Raphaëlle, Hadrien, Thibaut, et probablement une
foultitude d’autres que ma mémoire défaillante n’est pas capable de se rappeler
dans l’instant.

Je remercie aussi la nouvelle génération dont la compagnie aura été tout
autant agréable: l’équipe gâteau, Victor et Cédric dirigés par le Général de
Brigade Zeinab, pour votre gestion efficace de cette cérémonie et votre créativité
sans limite dans les annoncements. Merci à Théo, Antoine, Léonard, Nicolas,
Tommaso, Jules, Axel et les autres.

Vient le tour de mes autres amis, que je coremercie plutôt que remercie, au
sens où j’aurais probablement pu finir ma thèse en 6 mois s’ils n’avaient pas été
là. Mais ces 6 mois auraient été bien ternes et ennuyeux.

Les irréductibles de l’Essonne pour commencer, Geoffroy, Thib, Fabze, Jerem,
Adeline et Rémy, dont certains m’ont supporté depuis si longtemps que j’ai
arrêté de compter. Je pense que j’ai tellement de remerciements à vous faire
qu’il me faudrait probablement écrire une seconde thèse pour qu’ils puissent y
tenir. Ne changez rien.

Merci à Marianne, de m’avoir soutenu et encouragé, et de toujours avoir prêté
une oreille à mes problèmes. Merci à Julie, de m’avoir supporté, voire porté
parfois, et d’avoir été aussi présente pour moi. Vous avez été indispensables.

Merci à Quentin, que j’ai trâıné dans les bas-fonds parisiens, et qui a toujours
représenté avec dignité le clan familial.

Les GGs ensuite, pour avoir partagé l’antre du bonheur pendant presque

6



un an. C’est dans cette ambiance d’émulation intellectuelle intense que j’ai
établi ma toute première équation mathématique : ”deux fois plus de cours
= deux fois plus de temps libre”. Gerblé, mon GG attitré et compère de
toujours, homme-cheval-poisson, avec qui j’ai traversé des déserts de servitude
et des champs de soleil. T,tjb. No12, co-anniversereux et déclaré meilleur
rampeur d’anniversaires 2016, dit le Jawad de Strasbourg-Saint-Denis et adoré
de tous ses voisins, merci de m’avoir accueilli comme je suis d’innombrable
fois et pour ces diverses projections cinématographiques de qualité. Tu es une
source d’inspiration inépuisable pour l’ensemble d’entre nous. Pie XII, vénérable
catholique et milliardaire, grand gardien de la feuille de présence, tu m’as
appris qu’il ne faut jamais cesser de se remettre en question dans la vie, et en
particulier se demander: qui suis-je ? (rires). Jules, the defusable man, jamais
aussi splendide qu’échoué en peignoir sur le canapé, merci d’avoir écouté mes
élucubrations mathématiques et informatiques avec grand intérêt.

Puis l’équipée de Bois-Colombes et la nébuleuse qui gravite autour. La
Meum’s, depuis cette aventure du Dekmantel au tout début de ma thèse, on ne
s’est plus vraiment quittés. Grand mâıtre des afters squares et du n’importe
quoi en général, srab d’escalade et soudé dans l’adversité capillaire, merci pour
tout. Poupours, douce comme un ageneau (sic), Agatha-chan rockstar et artiste
martial à ses heures perdues, la Mache, le meilleur protostagiaire que j’ai eu
l’occasion de former, la Valj ou la nonchalance, Goldyboy le champion de course
de brouettes, la Franche, Amiral de la Narine et Capitaine de chaloupe inégalé
dans toute la mer d’Iroise, Eliott et sa fine connaissance du rap et des belles
tapisseries, la couls, la Glache, Coralie, Sarah, Bap, la Basse, la Masse, et tous
les autres que j’ai pu oublier.

Merci aux Michels, Lulu d’am a.k.a Lucifer, petite Margot, Léa mon su-
jet préféré de toute la Rabzouzie, Tangouze no limit, Fedi la plus belle des
princesses Niglo, Fourmarie, femme de goût aussi bien vestimentairement que
gastronomiquement parlant, Beber, Marie, Hélo, Blondie car qu’est-ce qu’un
Picon sans Ducon, Tinmar, Felix, Thibax, et tous les autres pour avoir égayé
ces années de vos picons chouffe. Merci d’être vous.

Merci aux faisands et assimilés, nouveaux ou anciens, Jonath, Jess, Jerem
& Jerem, Nico, Hélène, Tom, Marion, Jim, Romain, Ben, Baddri, Eliot, Mike,
Chloé, Léo, Paula, Adriana, Morgane, Jaimito, Clara, Charlie et tous les autres.
Merci pour votre bonne humeur et vos talens musicaux. Je suis toujours ressorti
ressourcé de votre belle maison.

Merci aux Centraliens, Doc d’amoume, Baza l’affreux, Foox le fooxien, La
Croute, Sancho, Manus, Denver, Passpass, Gob, Billou, Babass, et tous les
autres que je n’ai pas la place de citer, pour ces repas odieux au japonais.

7



Enfin, merci aux Originaux, Anti, Adri, Mariche, Eugé, Ben, Louis et toutes
les autres belles personnes qui gravitent autour de vous pour avoir rendue
un peu plus douce ma période de rédaction et de préparation de soutenance.
Paradoxalement, le FOMO qui a découlé de l’Origine s’est transformée en un
puissant moteur pour la rédaction de mon manuscrit.

8



Contents

1 Introduction 12

1.1 Goals and motivations . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5 Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Nets 26

2.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.1 Base reduction → . . . . . . . . . . . . . . . . . . . . . . 31

2.2.2 Lifting reduction to nets . . . . . . . . . . . . . . . . . . 34

2.2.3 About closed and surface reduction . . . . . . . . . . . . 35

2.3 Confluence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Normalizing and non-normalizing nets . . . . . . . . . . . . . . 37

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Routing Areas 46

3.1 Routing Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.1 Multirelations . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.2 (Co)contraction trees . . . . . . . . . . . . . . . . . . . . 50

3.1.3 Correctness criterion . . . . . . . . . . . . . . . . . . . . 51

3.1.4 Routing areas . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Operations on Routing Areas . . . . . . . . . . . . . . . . . . . 54

3.3 Routing Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.1 Paths in Routing Nets . . . . . . . . . . . . . . . . . . . 58

3.3.2 Normal forms . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3.3 The Routing Semantics . . . . . . . . . . . . . . . . . . . 63

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

9



4 The concurrent λ-calculus with explicit substitutions λcES 67

4.1 A Concurrent λ-calculus with Explicit Substitutions . . . . . . . 70

4.1.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1.2 Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1.3 Weak confluence . . . . . . . . . . . . . . . . . . . . . . 77

4.1.4 Preorder on terms . . . . . . . . . . . . . . . . . . . . . . 82

4.2 Stratification and Type System . . . . . . . . . . . . . . . . . . 86

4.2.1 The Type System of λcES . . . . . . . . . . . . . . . . . . 86

4.2.2 Subject reduction . . . . . . . . . . . . . . . . . . . . . . 89

4.2.3 Progress . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3 Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3.1 Technical Definitions . . . . . . . . . . . . . . . . . . . . 99

4.3.2 Strong Normalization for λcES . . . . . . . . . . . . . . . 101

4.3.3 Proof of Proposition 4.3.9 . . . . . . . . . . . . . . . . . 104

4.4 λC and λcES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.4.1 The concurrent λ-calculus λC . . . . . . . . . . . . . . . 110

4.4.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.4.3 Adequacy . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5 Encoding a concurrent λ-calculus in nets 122

5.1 The Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.1.1 Translating types and effects . . . . . . . . . . . . . . . . 123

5.1.2 Combining effects . . . . . . . . . . . . . . . . . . . . . . 124

5.1.3 Translating terms . . . . . . . . . . . . . . . . . . . . . . 125

5.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.2.1 Nets contexts . . . . . . . . . . . . . . . . . . . . . . . . 129

5.2.2 Variable substitutions reductions . . . . . . . . . . . . . 131

5.2.3 Downward reference substitutions reductions . . . . . . . 133

5.2.4 Upward reference substitutions reduction . . . . . . . . . 135

5.3 Termination and Adequacy . . . . . . . . . . . . . . . . . . . . . 136

5.3.1 Termination . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.3.2 Proof of Proposition 5.3.1 . . . . . . . . . . . . . . . . . 137

5.3.3 Adequacy . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.6 Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

10



Bibliography 153

11



Chapter 1

Introduction

Computer science is no more about
computers than astronomy is about
telescopes, biology is about microscopes
or chemistry is about beakers and test
tubes.

Michael R. Fellow, Ian Parberry

Computations have existed long before computers and computer science.
Babylonians had, for example, precise descriptions of algorithms to compute
the solutions to various geometric problems more than one millennium before
the beginning of formal algebra. What is maybe less intuitive, partly because
of the English conflation of the word computer in “computer science” with
modern electronic computers, is that computer science was also born before
computers as we know them today, roughly in the 1930’s. Alan Turing may be
considered as the father of modern computer science. He proposed the concept
of a Turing machine [58], a mathematical model that answers the question
“What is a computation ?” and the not less fundamental question of what
can be computed, and what can not be. While his work is a cornerstone of
computer science, mathematicians - or rather computer scientists - have found
that Turing machines are very far from being the only answer to this question.
On the contrary, an astonishing number of different systems are able to express
computations in different forms, from λ-calculus to graph rewriting systems.
A lot of these models have exactly the same computing power: they can do
as much as a Turing machine, and no more, that is they are Turing-complete.
The Church-Turing thesis precisely claims that the notion of computation is
captured by Turing machines. This is illustrated nowadays by the large zoology
of general purpose programming languages available to developers which are all
capable of expressing the same algorithms, but not in the same way, not with
the same performance, or not as easily, depending on the task to be performed
and the language considered.

12



The Curry-Howard Isomorphism In the 50s and 80s, Curry and Howard made
the fundamental observation that there is a deep connection between mathemat-
ical proofs and computer programs [29]. Basically, the mathematical activity of
proving a theorem is analogous to the one of programming. Programmers split
their programs into small independent and reusable blocks, called functions.
They take arguments, their input, and return a result, the output. One can
take for example a function that takes a list of textual data as an argument and
returns the same list but sorted alphabetically. Then, whenever needed, this
function is applied to given arguments and produces the desired output. This
function may then be used in diverse softwares, such as the contacts manager of
a smartphone or an online dictionary. The implementation is independent from
the usage: all this function has to know is the list it takes as an argument to
provide a result. Mathematicians proceed exactly in the same way. Due to the
complexity and the breadth of the mathematical knowledge, results are often
broken down into multiple pieces: lemmas, theorems, definitions, propositions,
properties, etc.. They share the same purpose and characteristics as functions in
programs. Application then corresponds to a cut, or its more intuitive emanation
modus ponens : from a proof of A =⇒ B – or rather, in our new interpretation,
a function from A to B – and a proof of A (a data of type A), one deduces B
(one gets a data of type B by applying the function to the argument). This
intuition can be framed in a very precise framework, both on the logic side
and the programming side: proofs in propositional intuitionistic logic are in
correspondence with programs of the simply typed λ-calculus, associating the
following objects [29]:

Logic Programming

Propositions Types
Proofs Programs
Cut-elimination Execution

This realization has spawned a substantial corpus of research and results.
People started to import concepts of logic inside computer science, and concepts
of computer science inside logic. The fact that proofs carry a computational
result led to program extraction, a technique that synthesizes a program from a
proof, for example a program implementing an algorithm from the proof of its
termination. Type theory has led to the development of proof assistants, giving
an unified environment to write both a program, properties about this program,
and proofs of these properties all in the same language. Girard [22] (and
independently from a purely programming approach, Reynolds [49]) extended
the Curry-Howard isomorphism by introducing polymorphic λ-calculus System

13



F, which corresponds to second order intuitionistic logic. System F is the
foundation of many modern functional programming languages such as Haskell
or OCaml. In general, the Curry-Howard isomorphism gave a totally new status
to types in programs. From a simple tag addressed to the compiler specifying
how generic binary data should be handled, as are types in C for example, they
have become first class entities expressed in their own language, which are able
to attach a logical specification to a piece of code, to drive optimization, static
analysis, etc.

Linear Logic Girard introduced Linear Logic (LL) in his seminal paper [23].
The distinctive feature of LL is to be a resource-aware logic, which explains its
success as a tool to study computational processes. Indeed, in LL, the usage of
resources is controlled and explicit: using an hypothesis once is not the same
as using it twice. The native language for LL proofs - or rather, programs -
are proof nets, a graph representation endowed with a local and asynchronous
cut-elimination procedure. The fine-grained computations and the explicit
management of resources in LL make it an expressive target to translate various
computational primitives. Girard provided two translations of the λ-calculus
to LL in its original paper, later clarified as respectively a call-by-value and
call-by-name translation of the λ-calculus [42].

Parallelism An important feature of languages based on the λ-calculus, i.e.
functional languages, is that they tend to expose the intrinsic parallelism of
programs. This has been responsible in part for the dramatic increase in interest
in functional languages and functional paradigms over the last years, which
have percolated through mainstream programming languages: lambdas, closures,
monads, algebraic effects, immutability, type inference, etc.. And for a very
good reason: processor technology have bumped into physical limits that prevent
any further increase in frequency or transistor density. To continue to improve
performances, manufacturers resort to rather delivering more and more cores
that all run in parallel on a single CPU. On a different scale, the development
of cloud computing, coupled with a high internet speed, gives the possibility of
performing computations on huge grids of thousands and thousands of processing
units. This has caused a total paradigm shift in program development: to take
advantage of this new speed up capability, classical imperative programs must
often be totally rethought and rewritten. Indeed, mutability, encouraged in
imperative programming, affect the whole state of the computer. There is no
obvious way to automatically parallelize such programs written with the mental
model that they would be executed sequentially and alone on a CPU. Even

14



when one wants to write parallel programs in such languages, one must resort
to specific and error prone mechanisms of synchronization to avoid data races
and deadlocks. On the other hand, writing a program which assures the same
functionality in a pure functional language forces, by design, to write code that
is easily parallelizable. This property is shared by programs expressed in LL,
thanks to the local and asynchronous graph-reduction of proof nets.

Concurrency and Effects Automatic parallelization is not the only challenge of
modern programming. Either via the internet, or even on a single computer, to-
day programs live in a concurrent world. They are exchanging information with
other programs and in the same time competing for resources. Programming
models must incorporate this dimension and offer primitives to perform and
control this kind of interactions. While λ-calculus is a fundamental tool in the
study and design of functional programming languages, mainstream program-
ming languages are pervaded with features that enable productive development
such as support for parallelism and concurrency, communication primitives, im-
perative references, etc. Most of them imply side-effects, which are challenging
to model, to compose, and to reason about. Some effects, such as imperative
references, are non commutative: the order of evaluation matters and may
change the result of a computation. Together with parallelism, this induces a
typical consequence of concurrency: non-determinism. Non determinism means
that the same program, executed in the same environment, may give different
and incompatible results. One simple example to illustrate this is a program
composed of three threads in parallel accessing the same memory cell which
holds an integer value. The first one tries to read the memory cell, the second
one tries to write the value 0 in it, while the third one tries to write the value 1
in it. Depending on which of the writers is executed first, the reader may end
up getting either 0 or 1.

Concurrent Curry-Howard The Curry-Howard isomorphism has been extended
in many ways since its inception. As already mentioned, Girard extended it
to second order with System F. Surprisingly, Curry-Howard is not restricted
to constructive logics: Griffin discovered that Pierce’s law, whose addition to
intuitionistic logic gives back classical logic, corresponds to a construction known
long before by Scheme programmers, call-with-current-continuation [26]. Krivine
extends the computational interpretation to non-logical axioms, such as axioms
of set theory in his classical realizability [33]. A long standing research direction
has been the extension of Curry-Howard to concurrency, that is, find what
could be the logical counter part of concurrent constructions of programming

15



languages. Since the first similarities between processes calculi and proof nets
have been observed, a lot of effort have been put in founding a concurrent
version of the Curry-Howard isomorphism, but with limited success. To quote
Damiano Mazza, “linear logic proofs are processes, but processes are far from
being linear logic proofs and, what is more important, it is unclear at this time
whether what is missing has any natural proof-theoretic counterpart” [44].

1.1 Goals and motivations

This thesis motivation is the belief that functional programming languages, and
in particular LL - when seen as a programming language through the lens of
the Curry-Howard isomorphism - are particularly amenable to parallelization
and distributed computing. Moreover, the strong theoretical foundations of
LL and the consequent research effort made since its inception also brings
various extensions, semantics, abstract machines, complexity analysis techniques,
implementation schemes, etc. Even when the settings does not exactly match the
standard framework of LL, many ideas and notions are still usable or adaptable.

We think that the fine-grained and asynchronous dynamic of LL and its
ability to express many computational paradigms make it a good candidate to
serve as a common target for compiling languages, i.e. a backend. In this regard,
one may consider LL and derived systems as “functional assembly languages”.
Various translations of calculi to LL have already been investigated. Yet, they
are often limited to a very austere setting (pure λ-calculus), do not necessarily
accommodate side effects or concern rather modeling languages than actual
programming language (cf Section 1.3). Our goal is to go one step further by
modeling a language featuring at the same time concurrency, references and
replication in LL. Our long-term intent is to exploit the ability of nets to enable
independent computations to be done in parallel without breaking the original
operational semantics. Concurrency and references are challenging as they lead
to non-determinism and non commutativity which are two phenomena alien to
standard LL. The approach to translate a concurrent calculus in nets that we
propose in Chapter 5 can be seen as a compilation from a global shared memory
model to a local message passing one, in line with proof nets philosophy.

To do so, we introduce a net system that is able to express concurrent
behaviors. We develop a key tool for implementing communication primitives
in this net system, routing areas, which are flexible and compositional. We
illustrate their use through the encoding of a concurrent λ-calculus in nets, but
we believe that they may be used in various future translations.

We tried to give a picture of what this thesis is about. Let us briefly mention

16



what it is not. While the language we use to illustrate our tools through the
translation features side-effects, a type system, and a usual λ-calculus syntax,
it does not come close to something a developer would use in a day-to-day
job. It lacks fundamental practical features. But it contains core constructs of
concurrency, references, and function calls. We believe it is a convincing proof
of concept for the ideas we develop.

We do not claim to propose something like a concurrent Curry-Howard
isomorphism either. Our nets are not correct, and as such do not correspond to
a clear notion of proof. The dynamics is not the same in the source language
and in nets, as a reduction step in the source language may be reflected by either
zero or several steps in nets. However, given our goals and motivations, we do
not require a correspondence as tight as one would expect from a variant of the
Curry-Howard isomorphism. What is important is rather the preservation of
the operational semantics of the source language.

1.2 Context

Linear Logic The creation of LL by Girard in [23] is a foundational work for
this thesis. The idea of proof nets as a graphical parallel representation for
proofs is already present in [23], and developed in [25, 10], the latter introducing
the Danos-Regnier criterion discriminating correct nets. Ehrhard and Regnier
introduced Differential Linear Logic in [15], from which we borrow some rules to
handle non-determinism. In his thesis, Tranquilli studies the rewriting system
of differential proof nets with exponential boxes [55].

Geometry of Interaction and applications Together with Linear Logic, Girard
initiated a program named Geometry of Interaction (GoI), which aims at giving
a syntax-free representation of algorithms as independent mathematical ob-
jects [24]. He gives an interpretation of proofs of linear logic as endomorphisms
on an Hilbert space, and an operator on these endomorphisms, the execution for-
mula, which corresponds to the process of cut-elimination. Although this seems
to be far away from practical considerations, GoI was later understood in a more
concrete manner, as being about interaction paths in proof nets [7]. This gave a
very operational presentation of GoI, as a reversible abstract machine which runs
by moving a token along a proof net. Mackie saw in GoI a promising and novel
approach for compilation [39]. Ghica also uses GoI to enable programming in a
high level functional language for integrated circuits [18, 19, 20, 21]. Ghica also
demonstrates how, with GoI-style machine, it is trivial to split and distribute
computations over multiple processing units [16]. In [51], Schöpp shows that

17



execution through GoI-like interactive semantics corresponds to well known
compiler transformations: CPS-translation and defunctionalization. In [36], Dal
Lago and al. introduce a multi-token version of the GoI abstract machine for
PCF. Multi-tokens do not only enable massive parallelism, but enable the same
machine to support both call-by-value and call-by-name depending on the trans-
lation of terms, while single token GoI seems to be irremediably call-by-name
without extension (Mackie gives a single-token call-by-value GoI compilation
for λ-calculus, by allowing jumps). In [46], Ghica and Muroya present a mixed
graph rewriting/token machine that achieve call-by-need evaluation. In [28, 47],
the authors use categorical constructions to automatically derive GoI machines
for various algebraic effects, such as first-order references or non deterministic
choice. While we do not give a GoI abstract machine for the nets used in this
thesis, these works - and especially the ambition of extending [36] to a richer
source language - were a strong motivation for extending known translations in
linear logic to new computational paradigms.

Interaction nets and parallelism The research on interactions nets and parallel
evaluation is strongly linked to proof nets and geometry of interaction, although
it was somehow led in parallel. In [34], Lafont abstracts away the key features
of proof nets from the particular setting of LL: what he get is the generic
graph rewriting system of Interaction Nets (INs). INs share the same locality
and asynchronicity properties as proof nets, which naturally leads to parallel
implementation. In [48], Pinto gives a parallel abstract machine for interaction
nets. In [30], Jiresch proposes to exploit the massive parallelism of modern GPUs
to execute interaction nets, while Kahl gives another parallel implementation
in Haskell [31]. In his thesis, Mazza studies the semantics of interaction nets
and propose a non-deterministic variant, multiport interaction nets, able to
encode concurrent calculi [43]. Dal Lago, Tanaka and Yoshimizu gives a GoI for
multiport interaction nets in [35].

Encoding of references and concurrency in proof nets A part of this thesis (Chap-
ter 4 and Chapter 5) is dedicated to the translation of a concurrent calculus to
nets. This illustrates the expressivity of routing areas and the nets system. Our
work is built on a series of previous works. Girard provided two translations of
the simply typed λ-calculus in its original paper [23], later clarified as respec-
tively a call-by-value and call-by-name translation of the λ-calculus [42]. Other
works have tackled the intricate question of modeling side-effects. State has
been considered in a λ-calculus with references [56]. Another direction which
has been explored is concurrency and non-determinism. In [27], Honda and

18



Laurent gives an exact correspondence between a typed π-calculus polarized
proof nets. Ehrhard and Laurent then gives a translation of a fragment of π-
calculus, and of acyclic solos (both without replication) in differential interaction
nets [14, 13]. In [40], Mackie give an encoding of Kahn process networks to
interaction nets. Kahn process networks are a model of computation based on a
collection of sequential, deterministic processes that communicate by sending
messages through unbounded channels.

Explicit substitutions A specially useful tool in the design of such abstract
machines is the notion of explicit substitution, a refinement over β-reduction.
The β-reduction of the λ-calculus is a meta-rule where substitution is defined
inductively and performed all at once on the term. But its implementation
is a whole different story: to avoid size explosion in presence of duplication,
mechanisms such as sharing are usually deployed. Abstract machines implement
various specific strategies that may either be representable in pure λ-calculus
(call-by-value or call-by-name) or for which the syntax needs to be augmented
with new objects (e.g. call-by-need or linear head reduction). The mismatch
between β-reduction and actual implementations can make the proof of soundness
for an evaluator or a compiler a highly nontrivial task. The heart of the theory of
explicit substitutions, introduced in [1], is to give substitutions a first class status
as objects of the syntax to better understand the dynamics and implementation
of β-reduction. It consists in decomposing a substitution into explicit atomic
steps. The main ingredient is to modify the β rule so that (λx.M)N reduces to
M [N/x], where [N/x] is now part of the syntax. Additional reduction rules are
then provided to propagate the substitution [N/x] to atoms.

Studied for the last thirty years [1, 2, 3, 5, 4, 17, 32, 38, 50, 52], explicit
substitution turns out to be a crucial device when transitioning from a formal
higher-order calculus to a concrete implementation. It has been considered
in the context of sharing of mutual recursive definitions [50], higher-order
unification [38], algebraic data-types [17], efficient abstract machines [2, 52],
cost-model analysis [5], etc. The use of explicit substitutions however comes
at a price [32]. Calculi with such a feature are sensitive to the definition of
reduction rules. If one is too liberal in how substitutions can be composed
then a strongly normalizing λ-term may diverge in a calculus with explicit
substitutions [45]. If one is too restrictive, confluence on metaterms is lost [9].
The challenge is to carefully design the language to implement desirable features
without losing fundamental properties. Several solutions have been proposed to
fix these defects [4, 32] for explicit substitutions of term variables.

19



1.3 Related works

We discuss more in detail work that is closely related to this thesis and has
similar objectives. As a matter of fact, our thesis builds on the following papers:

1. In [14], Ehrhard and Laurent proposes a translation of a fragment of π-
calculus in differential nets. The π-calculus is designed to be a model of
concurrent processes. As such, it features non-determinism, and the authors
show that a possible answer to the problem of encoding it in nets is to switch
to differential linear logic. The limit of their work is that they interpret a
π-calculus without sums nor replication. Correspondingly, they consider a
promotion free version of differential nets. The authors introduce the notion
of communication area, a device introduced to implement communication
in nets. Communication areas are specific nets that enable communication
between the processes (actually, their encoding as nets) that are plugged
in it. In this thesis, we present and study a generalization: routing areas
(Chapter 3). We discuss how routing areas extend communication areas
in Section 3.5. Our approach allows the interpretation of a calculus with
replication.

2. In [56], Tranquilli introduces an encoding of a λ-calculus with higher order
references and a types and effects system to multiplicative exponential
linear logic proof nets. He observes that the translation make explicit the
independence of subprograms that operate on distinct references and allow
their evaluation to potentially happen in parallel. In order to do so, he uses
a monadic translation that allows to encode references inside a pure calculus,
which is then translated through the usual call by value translation [42].
This is what Haskellers do, for example, when they use the state monad
to emulate references. We build on the ideas of Tranquilli and propose
the translation of a calculus with references and parallelism. However the
combination of parallelism and references leads to non-determinism and
possibly complex interleaved executions. It is not clear at all that this has
a natural monadic encoding.

Let us clarify how we relate to these work.

• [56] interprets a deterministic sequential calculus with references inside
proof nets. We present a translation of a concurrent and non-deterministic
calculus.

• [14] gives a translation from a replication-free π-calculus to differential nets,
and introduces communication areas. We generalize communication areas

20



and introduce routing areas. The calculus we propose features replication.
More generally, while π-calculus is a fundamental tool adapted to the study
of concurrent processes, it abstracts away too much detail of processes to
resemble a programming language. It is rather a modelling tool. On the
other hand, the calculus we use is based on the λ-calculus which, with few
additions, is arguably a concrete programming language.

We use the concurrent calculus introduced by Amadio in [6] (actually the
version described in [41]). It is a λ-calculus enriched with a parallel operator
and references that can be read or modified through get and set operations.
It is endowed with a types and effects system which ensures termination of
well-typed terms. There is a lot of concurrent languages in the literature to
chose from. This one is simple yet support core concurrent constructs.

1.4 Contributions

Routing areas In a concurrent imperative language, references are a means to
exchange information between threads. In order to implement communication
primitives in proof nets, we use and extend the concept of communication
areas introduced in [14]. A communication area is a particular proof net whose
external interface, composed of wires, is split between an equal number of inputs
and outputs. Inputs and outputs are grouped by pairs representing a plug on
which other nets can be connected. They are simple yet elegant devices, whose
role is similar to the one of a network switch which connects several agents.
Connecting two communication areas yields a communication area again: this
key feature enables their use as modular blocks that can be combined into
complex assemblies. In this paper, we introduce routing areas, which allows
a finer control on the wiring diagram. They are parametrized by a relation
which specifies which inputs and outputs are connected. Extending our network
analogy, communication areas are rather hubs: they simply broadcast every
incoming message to any connected agent. On the other hand, routing areas are
more like switches: they are able to choose selectively the recipients of messages
depending on their origin. Routing areas are subject to atomic operations that
decompose the operation of connecting communication areas. These operations
also have pure algeabric counterparts directly on relations.

We show that routing areas are sufficient to actually describe all the normal
forms of the fragment of proof nets composed solely of structural rules. The
algebraic description of routing areas then provides a semantic for this fragment.

21



Computational content of nets We define and study a system of nets, derived
from differential interaction nets, that is powerful enough to express concurrent
primitives. However the translation of concurrent processes seems to unavoidably
produce nets that do not respect the correctness criterion (as this was already the
case in [14]). Without a correctness criterion, the standard full-fledged reduction
is neither confluent nor terminating. We observe however that imposing some
constraints on this reduction allows to recover interesting properties. Notably, we
argue that we may make up for abandoning global properties like termination by
proving that particular nets are well-behaved: for example, we prove that if a net
is weakly normalizing (without erasing reduction), then it is strongly normalizing.
It suffices then to show that nets of interest are weakly normalizing to obtain
strong normalization for them, even if general, there are non terminating nets.
In the paper introducing differential nets [15], a foot notes precises that “[. . . ]
incorrect nets might be interesting from a purely computational point of view”.
However, to our knowledge, the study of such systems in the literature is very
limited.

Expressivity of routing areas : a translation of a concurrent λ-calculus to nets We
illustrate the use of routing areas and our nets system by encoding the concur-
rent λ-calculus with explicit substitutions that we introduce. This translation
combines the approach of [56] to accommodate references and [14] to accom-
modate concurrency. The first one only considers state, and the second one a
π-calculus without replication: we propose a translation of a language featuring
higher-order references, concurrency and replication. We prove a simulation and
an adequacy theorem.

Explicit substitutions for a concurrent λ-calculus In order to define and study the
translation from a concurrent λ-calculus to nets, we introduce an intermediate
language between the calculus and the nets. While the syntax and the structure
of terms are still close to the original language, the dynamic is rather the one
of nets, with a local and small-step reduction which distills the information
through the whole term step by step. Our contributions are:

1. The definition of a system of explicit substitutions for a concurrent λ-calculus
with references, both for variables and references.

The problem we address is the bidirectional property of assignment of
references within a term. An assignment for a term variable in a redex only
diffuses inward: in (λx.M)V , the assignment x 7→ V only concerns the

22



subterm M . Instead, a reference assignment set(r, V ) is potentially global:
it concerns all the occurrences of the subterm get(r).

Our first contribution is to propose an explicit substitution mechanism to
be able to express reference assignment step-wise, as for term-variables.

2. A proof of strong normalization for a typed fragment using a novel interac-
tive property.

Akin to [6], the language we propose is typed and the type-system is
enforcing strong-normalization. In the proof of [6] the infinitary structure
of terms is restricted to top-level stores. In our setting, this would require
infinite explicit substitutions which are subject to duplication, erasure,
composition, etc.

Our proof only uses finite terms. It has a Game Semantics flavor which
we find of interest on its own. Indeed, we use the idea of abstracting the
context in which a subterm is executed as an opponent able to interact
by sending and receiving explicit substitutions. Moreover, we believe that
the finite, interactive technique we develop in this second contribution may
be well-suited for different settings such as proof nets or other concurrent
calculi.

1.5 Plan

Chapter 2 In Chapter 2, we introduce a graph programming language which is
a fragment of differential nets. Our goal is to have a language which is both
well-behaved and expressive enough to encode concurrent constructs. We do
not impose any correctness criterion. We prove confluence of the reduction,
and a conservation theorem, that is if we exclude erasing reduction steps (the
one reducing to 0), then weakly normalizing nets are strongly normalizing.
Section 2.1 defines of simple nets and nets. Section 2.2 defines the reduction
rules on simple nets and show how to lift the reduction to formal sums of simple
nets, that is nets. The next sections are dedicated to study various properties
that the reduction satisfies. Section 2.3 shows confluence via the definition of a
parallel reduction inspired by the proof of confluence of the λ-calculus. At last,
Section 2.4 studies the zoology of terminating and non terminating nets. While
the reduction we define is not terminating in general, we show that removing

the erasing rule
0→ allows to show a property which imposes a strong condition

on nets to be non terminating, limiting this possibility.

23



Chapter 3 In Chapter 3, we introduce routing areas, an extension of communi-
cation areas [14]. In order to do so, various technical tools are introduced first.
Section 3.1.1 introduces the notion of multirelation, a quantitative extension of
relations between sets, which will be used to give an algebraic description of a
routing area. Section 3.1.2 defines (co)contraction trees, which can be seen as
generalized n-ary (co)contractions, and derives corresponding reduction rules.
(Co)contraction trees will be the basic ingredients for building routing areas.
Section 3.1.3 briefly reviews the correctness criterion which has been mentioned
in Chapter 2. It will be used for various proofs of this chapter, as routing areas
does satisfy the correctness criterion. Then, everything is in place to construct
routing areas, which is done in Section 3.1.4.

Section 3.2 describes constructions that allow to combine simple routing areas
into more complex ones. We give two fundamental operations, juxtaposition
and trace, and define the composition of routing areas from these two.

In Section 3.3, we observe that the interpretation of routing areas as commu-
nication devices extends to a larger class of nets, routing nets, which include
routing areas. The necessity of recasting the notion of connection between end-
points in this setting leads us to give a formal treatment of path in Section 3.3.1.
This tool allows to prove in Section 3.3.2 that the normal form of a routing net
is a routing area. This provides a semantics that associates the multirelation
describing its normal form to a routing nets. We study the properties of this
semantics in Section 3.3.3, and show that it is closely related to paths.

Chapter 4 In Chapter 4, we introduce the concurrent λ-calculus with explicit
substitutions λcES, with both substitutions for variable and references. The
syntax and the operational semantics are given in Section 4.1. In Section 4.2,
we introduce a type and effect system for λcES, adapted from the one of λC [6].
In presence of higher-order references, simple types does not suffice to entail
strong normalization. On must use additional constraints: we use the idea of
stratification, proposed by Boudol [8]. It is nonetheless not trivial to extend the
proof of strong normalization of well typed terms to the calculus with explicit
substitutions. This is done in Section 4.3, where we use an interactive technique
that is reminiscent of Game Semantics. At last, Section 4.4 focuses on the
relation between λcES and the language that inspired it, λC. While λcES should
be thought of as a version of λC with explicit substitutions, the latter is not a
proper sublanguage of the former. We can however define an embedding of λC in
λcES. We prove a simulation for this embedding in Section 4.4.2. In Section 4.4.3,
we give an adequacy theorem, which is complementary to the simulation result.
It states that the values than can be computed by a term of λC and the ones

24



that can be computed by its translation in λcES are essentially the same.

Chapter 5 In Chapter 5, we illustrate the ideas we set up in previous chapter
and propose an encoding of our concurrent calculus with explicit substitutions
λcES to nets. In Section 5.1, we give the definition of the translation. Section 5.1.1
reviews the monadic translation of [56] and explain how we adapt it to our
setting. In Section 5.1.2, we detail how and why routing areas are used to design
the translation. Then, Section 5.1.3 gives the encoding of λcES terms in nets.

Section 5.2 is dedicated to the proof of simulation. It introduces some
practical tools in Section 5.2.1, while the three following sections, Section 5.2.2,
Section 5.2.3 and Section 5.2.4 treat the all the different cases.

Section 5.3 shows that the translation of a normal form is a strongly normal-
izing net. This is almost enough to show that the translation of any well-typed
term is strongly normalizing, but we still miss an intermediate result to prove
this claim (cf Section 5.5). We also show an adequacy property akin to the one
between λcES and λC given in Chapter 4.

25



Chapter 2

Nets

In this chapter, we introduce a graph language which is a fragment of differ-
ential nets. Our goal is to define a fragment which is both well-behaved and
expressive enough to encode concurrent constructs. By well-behaved, we mean
that it satisfies a set of properties one would reasonably expect from a nets
system. Concurrency, here in the form of the coexistence of both references and
parallelism, leads to non-determinism. State is a non-commutative effect, as
the order of evaluation matters and may change the result of a computation.
On the other hand, parallelism allows multiple subprograms - in the form of
threads - to be executed in an arbitrary order, whence the non-determinism.
One simple example to illustrate this is a program composed of three threads in
parallel accessing the same memory cell which holds an integer value. The first
one tries to read the memory cell, the second one tries to write the value 0 in it,
while the third one tries to write the value 1 in it. Depending on which of the
writer is executed first, the reader may end up getting either 0 or 1. However,
non-determinism seems to be outside of the realm of traditional LL: confluence
enforces that the final outcome of a computation is unique and independent
from the path of reduction. Fortunately, there is a well defined extension of
LL, Differential LL, which supports non-determinism by operating not on terms
but rather on formal sums of terms, where summands represent different and
incompatible outcomes.

Correctness We will not require nets to verify the correctness criterion of
Differential LL here: it turns out that the translation of concurrent calculi seems
to naturally produce nets that do not respect the correctness criterion, which was
already the case in [14] for example (cf Section 2.6 for an extended discussion).
A world without correctness is a wild world: in this setting, the full fledged
reduction of (differential) LL is neither confluent (Figure 2.1) nor terminating (
Figure 2.3, Figure 2.2). The goal of this chapter is the definition and the study

26



Figure 2.1: Example of non-confluence

Figure 2.2: Self replicating pattern using a cocontraction

of a manageable system in this context.

Overview Section 2.1 defines simple nets and nets. Section 2.2 defines the
reduction rules on simple nets and shows how to lift the reduction to formal
sums of simple nets, that is nets. The next sections are dedicated to study the
various properties that the reduction satisfies. Section 2.3 shows confluence
via the definition of a parallel reduction inspired by the proof of confluence
of the λ-calculus. At last, Section 2.4 studies the zoology of terminating and
non terminating nets. While the reduction we define is not terminating in
general, we show that removing one problematic rule allows to show a property
which imposes a strong condition on nets to be non-terminating, limiting this
possibility.

2.1 Syntax

We can decompose our system into three layers (fragments):

Multiplicative The multiplicative fragment is composed of the conjunction
⊗ and the dual disjunction `. These connectors can express the linear
implication A( B as A⊥ `B and this fragment is sufficient to encode a

Figure 2.3: Self replicating pattern using a box

27



linear λ-calculus, where all bound variables must occur exactly once in the
body of an abstraction.

Exponential The exponential fragment enables structural rules to be applied
on particular formulas distinguished by the ! modality. Structural rules
correspond to duplication (contraction) and erasure (weakening) : the
multiplicative exponential fragment regain the power to use an argument
an arbitrary number of times. This is the setting of LL to interpret the
λ-calculus.

Differential Non-determinism is expressed by using two rules from Differential
LL: cocontraction and coweakening. Semantically, contraction is thought of
as a family of diagonal morphisms cntrA : !A→ !A⊗ !A, where cntrA takes
a resource !A and duplicates it into a pair !A⊗ !A. Dually, cocontraction
is a morphism going in the opposite direction, packing two resources of
the same type into one : cocntrA : !A ⊗ !A → !A. What happens when
the resulting resource is to be consumed ? There are two incompatible
possibilities : either the left one is used and the right one is erased, or

vice-versa. This corresponds to the following rule
nd→ of Table 2.2:

? !
nd→

?

?
+

?

?

Here, the reduction produces the non-deterministic sum of the two outcomes.
Cocontraction will be used as an internalized non-deterministic choice.
While weakening weakA : !A→ 1 erases a resource, the dual coweakening
produces a resource ex nihilo: coweakA : 1 → !A. This is like a Pandora
box: it can be duplicated or erased, but any attempt to consume it will
turn the whole summand to 0, the neutral element of the non-deterministic
sum. Coweakening is the neutral element of cocontraction.

Notation 2.1.1. We recall here some vocabulary of rewriting theory. An
abstract rewriting system (ARS) is a pair (A,→) where A is a set and→ ⊆ A×A
is a binary relation on A, called a rewriting relation or a reduction. For an
ARS (A,→), we write →+ for the transitive closure and →∗ for the reflexive
transitive closure.

Let t ∈ A, a reduction sequence of t is a finite or infinite sequence (t0, t1, . . . , ti, . . .)i<N
(where N ∈ N ∪ {∞}) of elements of A such that:

• t0 = t

• ti → ti+1

28



Let t ∈ A, we say that t is:

• a normal form if there exists no t′ ∈ A such that t→ t′.

• weakly normalizing if there exists a normal form n such that t→∗ n

• strongly normalizing if there exists no infinite reduction sequence of t. Note
that a strongly normalizing element is in particular weakly normalizing.

• confluent if for all u, u′ such that u ∗← t →∗ u′, there exists v such that
u→∗ v ∗← u′

A rewriting relation is confluent (resp. weakly normalizing, strongly normalizing)
if all elements t ∈ A are.

Definition 2.1.2. Simple nets
Given a countable set, whose elements are called ports, a simple net is given by

1. A finite set of ports

2. A finite set of cells. A cell is a finite non-empty sequence of pairwise distinct
ports, and two cells have pairwise distinct ports. The first port of a cell
c is called the principal port and written p(c), and the (i + 1)th the ith
auxiliary port, noted pi(c). The number of auxiliary ports is called the
arity of the cell. A port is free if it does not occur in a cell.

3. A labelling of cells by symbols amongst {1,⊗,`, ?, !, !p} where p is a strictly
positive integer. We ask moreover that the arity respects the following
table:

Symbol 1 ` ⊗ ? ! !p
Arity 0 2 2 0, 1 or 2 0, 1 or 2 p

4. A partition of the set of ports into pairs called w ires. A wire with one (resp.
two) free port is a free (resp. floating) wire.

5. A labelling of wires, which is a map from wires to the following fragment
of LL: F ::= 1 | ⊥ | F ` F | F ⊗ F | !F | ?F . A wire (p1, p2) labelled by F
is identified with the reversed wire (p2, p1) labelled by F⊥.

6. To each !p nodes - called an exponential box - is associated a simple net
in an inductive manner. Let !p+1 be a box where the wires attached to its
ports (oriented outwards) are labelled by !A, ?B1, . . . , ?Bp. The associated
simple net S must have no floating wires and precisely n ≥ 1 free wires
w1, . . . , wp. Assuming the orientation to be toward their free port, w1 is
labelled by A and for 1 < i ≤ p, wi is labelled by ?Bi.

29



one tensor par dereliction

contraction cocontraction weakening coweakening

exponential box (!p)

Table 2.1: Cells and box

The set of simple nets is written SN .

Definition 2.1.3. Depth
Let S be a simple net. The depth of a port p in S is defined to be:

• 0 if p is a port of S

• n+ 1 if it is at depth n in a simple net associated to a box of S

Similarly, we define the depth of a cell or a wire as the depth of its ports. A
port, cell or wire occurring at depth 0 is said to be at the surface.

Remark 2.1.4. As the simple nets are defined inductively, the depth of a port
is a well defined positive integer.

The different kind of cells are illustrated in Table 2.1. We directly represent
!p cells as their associated simple net delimited by a rectangular shape. The
well-founding condition ensure that such a representation is always possible. We
impose that labels of wires connected to a cell respect the one given in Table 2.1,
i.e that nets are well-typed.

We define the set of nets PN as the set of finite formal sums of simple nets,
where each summand represents a different outcome in a non-deterministic
context.

Definition 2.1.5. Nets
The set PN of nets is defined as formal sums of simple nets:

PN = {
n∑
i=1

Si | n ≥ 0, Si is a simple net}

The empty sum is denoted by 0.

Let us now give the reduction on nets.

30



2.2 Reduction

In this section, we define the rewriting system (PN ,⇒) on nets. To do so, we
proceed in two stages:

1. We define (Section 2.2.1) a base reduction from simple nets to nets id est
a relation → ⊆ SN × PN . We start from atomic rules describing how an
elementary pattern may be rewritten , and then extend the reduction by
allowing patterns to be reduced in an arbitrary context (Definition 2.2.1).

2. In Section 2.2.2, we lift → to reduction on nets, id est a relation ⇒ ⊆
PN × PN (Definition 2.2.3).

2.2.1 Base reduction →

We define the atomic rules as relations between SN and PN . By convention, we
write them as one or several symbols over an arrow, such as

er→ for example.
These are the base cases that describe how an atomic pattern can be rewritten in
a simple net. In a non-deterministic context, it can produces several outcomes,
hence the result is a net and not just a simple net. Atomic rules are illustrated
in Table 2.2. They have the following general form:

where the interface of α and each βi are the same. The pattern on the left hand
side of an atomic rule is called a reducible expression, or a redex. The right
hand side of a rule is a reduct.

From these atomic rules, the reduction is then extended - still as a relation
between SN and PN - by allowing redexes to be reduced inside an arbitrary
context, that is a larger simple net that contains the redex. Reduction inside
boxes is also permitted but only for a few rules (see Section 2.2.3).

We explain and detail the rules hereafter.

Multiplicative rules We have the standard multiplicative rule of LL

• m→: eliminate a tensor facing a par.

Exponential rules There are four rules operating on boxes:

• e→ : open a box facing a dereliction

• d→ : duplicate a box facing a contraction

31



• er→ : erase a box facing a weakening

• c→ : compose a box linked to the auxiliary door of another one, by putting
it inside

They are like the standard exponential rules of LL, but the difference is that
the box that is opened, duplicated, erased or put inside another one is required
to be closed, meaning that it must not have auxiliary ports. The reason for this
restriction is motivated in Section 2.2.3.

Differential rules The last group of rules concerns the differential part: cocon-

traction and coweakening. The main rule is the non-deterministic rule
nd→. The

others specify how the differential part interacts with the other cells.

• nd→: this is the non-deterministic reduction, which is the only one (beside
the degenerate case of the 0) to produce an actual sum. When a dereliction
tries to consume a resource composed of two resources packed through a
cocontraction, two different outcome are produced. In the first summand,
the left resource in consumed and the other is erased by a weakening. In
the second summand, the inverse choise is made.

• ba→: the bialgebra rule express a commutation property between contraction
and cocontraction. An operationnal interpretation is that gathering two
resources non-deterministically through a cocontraction, and then copying
this pack, is the same as first copying the resources individually and then
packing the copy.

• s1→: this reduction expresses the interaction between coweakening and
contraction. Coweakening is copied by a contraction just as a regular
resource.

• s2→: this is the dual rule that expresses the interaction between weakening
and cocontraction. It says that erasing a non-deterministic packing amount
to individually erases each component.

• ε→: this rules says that coweakening is erased by a weakening, as a regular
resource.

• 0→: finally, this rules states than trying to consume a resource produced by
a coweakening turns the whole simple net to 0.

Atomic rules only allow to reduce specific redexes. We want to be able to
reduce these redexes whenever they appear in a larger simple net, by allowing

32



the reduction to be performed up to an arbitrary context. We treat differently
the extension of the reduction at surface and inside boxes, where only

e→ and
er→ may be performed.

Definition 2.2.1. Reduction →
We define the reduction relation → ⊆ SN × PN by:

• (Surface) If

by an atomic rule, then

Note that R may be empty, which implies that atomic rules are included
in →.

• (Inner) If

by the
e→ or

er→ rule, then

When one translates a type derivation of an intuitionistic system (take simply-
typed λ-calculus for example) to nets, the explicit appearance of structural rules
involves arbitrary choices. Indeed, there are many possbilities for the order of
contractions of variables, the location of weakenings, etc. Not only these choices
are irrelevant (the different representations behave the same way), but they
are often not stable by reduction as the simulation of a reduction step in nets
may end up with a different representation of the result. To avoid these issues,
we quotient the nets by associativity and commutativity of (co)contraction
(Table 2.3). The fact that this quotient is compatible with reduction confirms
the irrelevance of these differences.

33



`⊗ m→ ?!π
e→ π

?!π
d→

!π

!π
?!π

er→ ε

!π

!σ

c→ !π

!σ

? !
nd→

?

?
+

?

?

! ?
ba→

!

!

?

?

! ?
s1→

!

!
! ?

s2→
?

?

! ?
ε→ ε ? !

0→ 0

Table 2.2: Reduction rules

? ≡ ? ?
?
≡ ?

?

! ≡ ! !
!
≡ !

!

Table 2.3: Equivalence relation

2.2.2 Lifting reduction to nets

The reduction is lifted to nets by allowing the reduction of an arbitrary number
of summands at once (Definition 2.2.2). As we consider different summands
as different results living in parallel universes, this make sense to be able to
reduces several of them at once.

Definition 2.2.2. Sum reduction
Let →a ⊆ SN ×PN be a reduction from simple nets to nets. We define the ARS
(PN ,⇒a) by: R ⇒a

∑n
i Ti if

1. Either Si = Ti or Si →a Ti

2. There is at least one i such that Si →a Ti

Definition 2.2.3. The ⇒ reduction on nets
The reduction (PN ,⇒) on nets is defined as the sum lifting of →.

We define a second notion of reduction on sums, which requires all summands
that are not a normal form to perform a reduction step. This will prove useful
when discussing properties about termination.

34



Definition 2.2.4. Total reduction
Let →a ⊆ SN × PN be a reduction from simple nets to nets. We define the
rewriting system (PN ,⇒tot

a ) by: R ⇒tot
a

∑n
i Ti if either Si is a normal form and

Si = Ti, or Si →a Ti.

The total reduction corresponding to → is (PN ,⇒tot).

2.2.3 About closed and surface reduction

Most of the rules are only allowed at the surface, meaning that they can not be
performed inside boxes. This constraint is necessary to be able to encode weak
reduction strategies of the λ-calculus.

e→ and
er→ are however allowed as they are

harmless and do not correspond to any real computational step important inside
λ-calculus. The closeness constraint, requiring boxes to not have auxiliary ports,
fixes the non confluence of Figure 2.1 and the non-termination of Figure 2.3. But
it does not change the fact that Figure 2.2 is looping, which seems harder to avoid
without a correctness criterion. We will see in the section about termination
that the closeness constraint still allows to recover termination properties weaker
than strong normalization for some fragments, but sufficient for our purposes.

2.3 Confluence

In this section we prove that ⇒ is confluent (Theorem 2.3.5). We use the
same approach as in the proof of confluence of λ-calculus: we define a parallel
reduction ⇒�, which allows to perform an arbitrary number of steps in parallel.
Parallel means that we can reduce several redexes at once, but only those that
were originally present, as opposed to those that are created during the reduction.
We have to treat separately reductions that are allowed anywhere, and those
that are only allowed at the surface. This the reason why we first have to define
a parallel reduction system only for the reductions allowed everywhere, (SN ,→�B).
From this, we extend this system to a reduction from SN to PN , →�. We finally
lift it to sums of net to define the complete parallel reduction (PN ,⇒�.

Definition 2.3.1. →�B

Let (SN ,→B) be the reduction system on SN defined by the atomic rules that are
allowed inside and outside boxes, that is →B =

e→ ∪ er→. We define the reduction
system (SN ,→�B) by:

• R→�BR

• If R→BS, then R→�BS.

35



• If R→�BS, then

• If R→�BT and S→�BU , then

We can now define the complete parallel reduction on simple nets.

Definition 2.3.2. →�
We define the reduction →� from simple nets to nets by:

• R→� R

• If R→ S, then R→� S

• If R→�BS, then

• If R→�
∑

i Ti and S →�
∑

j Uj, then

Definition 2.3.3. Parallel reduction
(PN ,⇒�) is defined as the sum lifting of →�.

Proposition 2.3.4. Properties of parallel reduction
The parallel reduction (PN ,⇒�) verifies:

1. ⇒ ⊆⇒� ⊆ ⇒∗

2. ⇒� has the diamond property

Proof. The proof is performed by induction on the size of simple nets for →�.
The main point is that there is no actual critical pair. Thanks to the reflexivity
of →�, the diamond property is preserved when lifting the reduction to PN .

Theorem 2.3.5 is an immediate corollary of Proposition 2.3.4. After confluence,
we treat the issue of termination.

Theorem 2.3.5. Confluence
The system (PN ,⇒) is confluent.

36



Figure 2.4: Counter example for (T1)

2.4 Normalizing and non-normalizing nets

Since we do not enforce any correctness criterion, we lose the guarantee of strong
normalization (cf Figure 2.2 and Figure 2.3). Nonetheless some fragments of nets
obtained by removing some reduction rules verify strong normalization. Others
verify the (T1) property (see Definition 2.4.3) which is not per se a termination
property but which seriously limits the candidates for non-normalizing nets.
This properties states that either a net is strongly normalizing, or it does not
have a normal form at all. In this case, the mere existence of a normal form of
a net is sufficient to deduce the finiteness of all reduction sequences of this net.

There is no hope for the full system (PN ,⇒) to satisfy (T1), because the
0→

rule may erase a looping summand. See Figure 2.4 for a counter-example to
(T1) which is a slight modification of the looping example: at any moment, this
net can either duplicate the looping pattern or reduce in one step to 0. However,

Theorem 2.4.5 shows that removing the
0→ rule is sufficient to recover (T1).

The proof is carried out in three steps:

1. We first consider the subsystem of (PN ,⇒tot) composed only of reduction
rules applied at the surface: (PN ,⇀). We show that (PN ,⇀) has the
diamond property (Proposition 2.4.11), from which we deduce that it
verifies (T1) (Corollary 2.4.12).

2. We consider the remaining rules performed only inside boxes gathered in
the subsystem (PN , ). We show that it is strongly normalizing (Propo-
sition 2.4.10) and has a commutation property with (PN ,⇀) (Proposi-
tion 2.4.7)

3. This commutation property allows us to show that (T1) can be transported
from (PN ,⇀) to (PN ,⇀ ∪ ), which is nothing but (PN ,⇒tot).

4. Finally, we show that the fact that (PN ,⇒tot) is (T1) implies that (PN ,⇒)
is (T1).

Let us lay out the definitions of the reductions and the properties we use.

37



Definition 2.4.1. (PN ,⇀)

Let
surf→ be the union of all atomic reduction rules. Then (PN ,⇀) is the total

lifting (PN ,⇒tot ) of the surface extension of
surf→ up to context. By surface

extension, we mean that we ignore the second point of the definition of the
extension up to context and do not allow any reduction inside boxes.

Definition 2.4.2. (SN , )

Let
inner→ =

e→ ∪ er→. Then (PN , ) is the total lifting (PN ,⇒tot ) of the inner

extension of
inner→ up to context. By inner extension, we mean that we ignore

the first point of the definition of the extension up to context and only allow
reductions inside boxes.

Definition 2.4.3. (T1)
A rewriting system (PN , ↪→) on nets verifies (T1) if, whenever a net R is ↪→-
weakly normalizing, then R is ↪→-strongly normalizing.

Definition 2.4.4. Diamond
A rewriting system (PN , ↪→) is said to be diamond if whenever R1 ←↩ R ↪→ R2,
then either R1 = R2, or there exists T such that R1 ↪→ T ←↩ R2.

We can state the main theorem of this section:

Theorem 2.4.5. (PN ,⇒) verifies (T1).

The next proposition states the commutation property between (PN ,⇀)
and (PN , ). The proposition actually defines a transformation of reduction
sequences: given a reduction composed of two consecutive blocks of respectively
⇀ and  reductions, we can produce a new reduction sequence with two new
blocks in the reverse order ( followed by ⇀). Moreover, if there is at least
one step in the ⇀ block, then the transformed sequence will also have at least
one step in the ⇀ block. This last point is fundamental for the lifting of the
(T1) property from ⇀ to ⇀ ∪ : it would not work anymore without it.

Remark 2.4.6. In principle, the different properties that we show about ⇀
and  should be proved on arbitrary sums of simple nets in regard to the
definition of these reductions. This would however unnecessarily make for
verbose proofs, which are already rather technical. This is why we will implicitly
restrict ourselves in the proofs to the base case where the starting nets are
simple nets (for example, S and R in the proof of Proposition 2.4.7). Thanks
to the definition of the total reduction on sums, the base case is sufficient to
extends all these properties to the total sum reduction.

38



Proposition 2.4.7. Commutation
Let S  ∗ R and R⇀+ R′. Then there exists S ′ such that

R R′

S S ′

⇀+

⇀+

 
∗

 
∗

Proof. Proposition 2.4.7
We proceed by induction on both the length of the reduction S  ∗ R and
R →+ R′. We consider first the following diagram where both reductions are
one-step :

R R′

S

⇀

 

We observe that the ⇀-redexes ofR and S are in a one-to-one correspondence.
Indeed, as  reduction happens inside boxes, it can not create nor erase any
⇀-redex. We refer to the redex involved in S  R (resp. R ⇀ R′) as red 

(resp. red⇀), and to the rule applied as rule (resp. rule⇀). We consider
different cases:

(a) If rule⇀ does not involve a box (it is a
e→,

c→,
er→ or

d→ step), then the diagram
can be closed as a square with a one step reduction in both directions. This
is because in this case, rule⇀ and rule do not interact.

(b) If rule⇀ is
er→ (box erasing), we can erase the corresponding one in S:

S ⇀ S ′. If red was located in this precise box, it is deleted, and S ′ = R′.
Otherwise, the two reductions are independent and commute. In any case
we can reduce S to S ′ in one step by erasing this box and S ′ to R′ by at
most one  step.

(c) If rule⇀ is
e→ (box opening), we can open the corresponding box in S. We

have three different situation for red :

1. It is in in a different box

2. It is at depth 1 in the opened box

3. It is at depth d > 1 in the opened box

39



In cases 1 and 3, the two reduction do not interact and thus commute in
one step. In case 2, if we open first the box through the step rule⇀, then
it turns red into a ⇀-redex. We close the diagram by performing this
additional step, in which case S ⇀2 S ′ = R′.

In cases (a),(b) and (c), the length of the reduction between R′ and S ′ never
exceeds one, hence we can always fill the diagram as as in Figure 2.5, where the
bottom line does not involve duplication. S ′  R′ means S ′ = R′ or S ′  R′.

R R′

S S ′

⇀

⇀+

  

Figure 2.5: Cases (a),(b), and (c)

(d) If rule⇀ is
d→ (box duplication), performing the duplication on the corre-

sponding box in S may also duplicate red if it is located in the same box.
In this case, we have to perform two  step to recover R′ : S ⇀ S ′  2 R′.
If it is in a different box, the two reductions commute in one step. In any
case, we can fill the diagram as in Figure Figure 2.6.

R R′

S S ′

⇀

⇀

  
∗

Figure 2.6: Case (d)

Let us now prove the lemma. We will fill the following diagram by induction
on k:

R R′

S

⇀

 
k

We can do the same case analysis on R⇀ R′ as previously. We consider the
case (d) separately.

40



Case 1: situation (a),(b) or (c) We perform an induction on the length of the
reduction S  k R. The induction hypothesis (IH) is that we can fill the diagram
in the following way

R R′

S S ′

⇀

⇀+

 
k

 
k
′

such that k′ ≤ k, and the bottom reduction does not contain any duplication.

The base case k = 0 is trivially true. Now, assume S  k T  R. The upper
square of the figure below is obtained by filling the diagram T  R⇀ R′ as
in Figure 2.5 to get the middle line T ⇀∗ Tp. We apply the IH on each step
Ti ⇀ Ti+1, which we can do precisely because the IH states that the length ki of
the reduction Si  ki Ti decreases with i. Pasting all the diagrams, we get:

R R′

T T1 . . . Tp

S S1 . . . Sp

⇀

⇀ ⇀ ⇀

⇀+ ⇀+ ⇀+

  

 
∗

 
∗

 
∗

Case 2: situation (d) The case of duplication is simpler as the step R⇀ R′ is
reflected by just one step S ⇀ S ′ in the diagram of Figure 2.6. The IH is that
we can fill the following diagram:

R R′

S S ′

⇀

⇀

 
k

 
∗

We use the diagram of Figure 2.6 to get the upper square in the figure below.
Then we apply the IH to get the bottom part S ′ :

41



R R′

T T ′

S S ′

⇀

⇀

⇀

 
 

k

 
∗

 
∗

Once this statement is proved, we perform a second induction on the length
of the reduction R →+ R′ to obtain the desired result.

Writing a reduction R →∗ S as blocks R  ∗ R1 ⇀
∗ R2  ∗ . . . ⇀∗ Rn, we

can iterate Proposition 2.4.7 to form a new reduction sequence with only two
distinct blocks:

Proposition 2.4.8. Postponement
Let R →∗ S. Then R⇀∗ R′  ∗ S. Moreover, if the original reduction contains
at least one ⇀ step, then R⇀+ R′.

Proof. Proposition 2.4.8. By induction
We decompose the reduction R →∗ S as alternating blocks R ∗ R1 ⇀

∗ R2  ∗

. . . ⇀∗ Rn, and iterate Proposition 2.4.7 to gather the reductions into only two
distinct blocks.

Lemma 2.4.9 states that  reduction steps preserve and reflect the fact of
being a ⇀-normal form. As ⇀ only acts on surface and  inside boxes, the
latter can neither create nor destruct redexes of the former.

Lemma 2.4.9. Neutrality of  
Let R ∗ R′. Then R is ⇀-normal if and only if R′ is.

Proof. Lemma 2.4.9
 can not create nor erase ⇀-redexes.

We state the termination properties of the two reductions ⇀ and  . ⇀
verifies (T1) while  is strongly normalizing.

Proposition 2.4.10. Strong normalization for  
 is strongly normalizing.

Proof. Opening or deleting a box strictly decreases the total number of boxes in
the net.

Proposition 2.4.11. Diamond for ⇀
(PN ,⇀) has the diamond property.

42



Proof. Proposition 2.4.11
This can be checked that the surfaceness and closeness constraints enforces the
diamond property. The choice of taking the total lifting ⇒tot is necessary for
this proposition to be true, as well as the exclusion of the 0 rule, which would
allow counter examples (“triangles”) to exist.

Corollary 2.4.12. (PN ,⇀) verifies (T1).

Proof. Corollary 2.4.12
The surface reduction satisfies the diamond property, which precludes the
existence of a term with both a normal form and an infinite reduction.

We can finally now prove Theorem 2.4.5. The fact that we prove is that
(PN ,⇀ ∪  ) = (PN ,⇒tot) is (T1). The last step consist in showing that
(PN ,⇒) and (PN ,⇒tot) have the same class of weakly and strongly terminating
terms.

Proof. Theorem 2.4.5
We prove two auxiliary properties:

(a) →-weak normalization implies ⇀-weak normalization
Let R be →-weakly normalizing and R →∗ N a reduction to its normal
form. By Proposition 2.4.8, we can write R ⇀∗ S  ∗ N . N being a
→-normal form, it is also a ⇀-normal form, and by Lemma 2.4.9 so is S.
R is thus ⇀-weakly normalizing.

(b) an infinite →-reduction gives an infinite ⇀-reduction
Let R be a net with an infinite →-reduction, written R → ∞. We will
build by induction a reduction sequence R = R0 ⇀ R1 . . . ⇀ Rn ⇀ . . .

such that for any n, Rn →∞.

Base case We just take R0 = R
Inductive case If R ⇀n Rn → ∞, we take an infinite →-reduction

starting from Rn. If the first step is Rn ⇀ S, then we take Rn+1 = S.
Otherwise, the first step is a step, and we take the maximal block of
 reductions starting from Rn. By Proposition 2.4.10, this block must
be finite and we can write Rn  ∗ S ⇀ S ′ →∞. By Proposition 2.4.7,
we can swap the two blocks such that Rn ⇀ R′ ⇀∗ R′′  ∗ S ′ → ∞,
and we take Rn+1 = R′.

From these two points, it follows that →-weak normalization implies →-strong
normalization. If a net is →-weakly normalizing, then by (a) it is ⇀-weakly
normalizing. By Corollary 2.4.12, it is also ⇀-strongly normalizing. But by (b)
it must be also →-strongly normalizing.

43



2.5 Summary

In this chapter, we gave a definition of a non-deterministic nets system, a
reduction on this system, and studied the properties of this reduction.

We first introduced simple nets that are defined as graph-like structures,
whose cells - the analog of vertices - corresponds to rules of LL and wires to LL
formulas. The rules we use are those of the multiplicative exponential fragment
of LL, enriched with two rules coming from Differential LL, cocontraction and
coweakening. The differential rules enable the expression of non-determinism.
The non-determinism of the reduction is then accommodated by defining nets as
formal sums of simple nets, where each summand represent a different outcome
of the current computation. We then proceed to study some properties of this
system.

We show that, although our system handles non-determinism, the introduction
of formal sums allows to have confluence. In order to prove this, we constructed
a parallel reduction ⇒� which we showed to be confluent in a very strong sense:
it verifies a diamond property. Then we show that its transitive reflexive closure
coincide with the one of the initially defined reduction on nets. This show the
latter reduction is also confluent.

We then studied normalization in our system. Since we dropped the correct-
ness criterion, all nets are not strongly normalizing, as illustrated by an example
of a looping pattern (Figure 2.2). However we prove that in the fragment without

the
0→ rule, nets that are not strongly normalizing are constrained: they can

not reduce to any normal form. To prove this, we split the reduction in two:
an inner reduction (which happens inside boxes) and a surface reduction. We
studied these fragments independently, and how they interact. This allows us to

prove that their union, which is the full reduction on nets (except the
0→ rule)

verifies the property mentioned above.

2.6 Discussion

A distinctive feature of our system is that we do not require a correctness criterion.
This has important consequences, as the traditional reduction of Differential
LL for our fragment is neither confluent nor terminating, as demonstrated by
counter examples. This motivated us to this restrict this reduction in two ways.

Reduction is close Only boxes without auxiliary ports may be subject to
reduction

44



Reduction is surface A very limited set of rules may be performed inside
boxes

The close constraint allows us to recover confluence, by a technique inspired
by the standard proof of confluence for the λ-calculus. On the other hand, being
close and surface is not sufficient to ensure strong normalization. This is why

we rather prove the property that if we exclude the
0→ rule, then any weakly

normalizing net is strongly normalizing. This ensure that as long as a net have a

normal form in this
0→-free fragment, then any path of reduction will eventually

lead to this normal form.
This completes the study of the abstract rewriting system of nets that has

been carried in this chapter. The next chapter focuses on a specific family of
nets that plays a key role in the expression of concurrency-related features.

45



Chapter 3

Routing Areas

Concurrency involves threads and a means of communication between them, be
it a shared memory (references), messages (channels) or something else. Such a
means of communication, take for example a memory cell in a shared memory,
may both have multiple sources (threads writing in this cell) and multiple targets
(threads reading this cell). The expected behavior in case of concurrent accesses
is dictated by the operational semantic of the source language. In the case of a
message channel for example, a read operation could retrieve at random one
value amongst all sent messages, or rather the last message sent if channels act
as a stack.

To interpret a fragment of π-calculus in nets, [14] introduces communication
areas. For an integer n, the n-communication area is a simple net with 2n+ 2
free ports, corresponding to inputs and outputs grouped in pairs, that enables a
bidirectional communication between the n+ 1 processes - or rather, their repre-
sentation as a net - that are plugged on each input/output pair. In this chapter,
we introduce routing areas, which generalize the design of communication areas.
The motivation is similar: we aim at crafting special nets to be used as building
blocks for implementing communication primitives. While a communication
area connects (by default) all processes, a routing area is parametrized by an
algebraic object (a multirelation) that allows a finer control over the imple-
mented communication scheme (cf Section 2.6 for a detailed comparison). For
example, take three processes P,Q and R communicating through a channel.
With a routing area, we can statically enforce various restrictions, such as
banning P from sending messages to Q, or banning R from receiving messages
from P , depending on the chosen multirelation. One can imagine implementing
ownership constraints, in the style of the Rust programming language, where
only one process - say P - is able to send messages and every other ones can only
listen. Routing areas allow to connect multiple agents with a parametrizable
behavior.

46



Overview Section 3.1 introduces routing areas. In order to do so, various
technical tools are introduced first. Section 3.1.1 introduces the notion of
multirelation, a quantitative extension of relations between sets, which will be
used to give an algebraic description of a routing area. Section 3.1.2 defines
(co)contraction trees, which can be seen as generalized n-ary (co)contractions,
and derives a corresponding reduction rule. Co(contraction) trees will be the
basic ingredients for building routing areas. Section 3.1.3 briefly reviews the
correctness criterion which has been mentioned in Chapter 2. It will be used
for various proofs of this chapter, as routing areas does satisfy the correctness
criterion. Then, everything is in place to construct routing areas, which is done
in Section 3.1.4.

Section 3.2 describes constructions that allow to combine simple routing areas
into more complex ones. We give two fundamental operations, juxtaposition
and trace, and define the composition of routing areas from these two.

Section 3.3 observe that the interpretation of routing areas as communication
devices extends to a larger class of nets, routing nets, which include routing
areas. The necessity of recasting the notion of connection between endpoints in
this setting leads us to give a formal treatment of path in Section 3.3.1. This
tool allows to prove in Section 3.3.2 that the normal form of a routing net
is a routing area. This provides a semantics that associates the multirelation
describing its normal form to a routing nets. We study the properties of this
semantics in Section 3.3.3, and show that it is closely related to paths.

3.1 Routing Areas

Contraction, weakening, cocontraction and coweakening act as resource dispatch-
ers (a resource designates a closed exponential box in the following). Structural
rules are a natural choice for the basic components of routing areas.

•
A wire acts as the identity. It passively forwards a resource that is connected
on the input (the left port) to the output (the right port).

• ?

A contraction is a broadcaster with one input and two outputs. A resource
connected on the left will be copied to both outputs on the right. A
weakening is a degenerate case of a broadcaster with zero outputs as
broadcasting something to no one is the same as erasing it.

• !

Dually, a cocontraction is a packer with two inputs and one output. A packer

47



aggregates its two inputs non deterministically. When a dereliction is con-
nected to the output to consume two packed resources, a non-deterministic
sum of the two possible choices for the resource to be provided is produced.
Similarly, coweakening is seen as a degenerate packer with no inputs.

A routing area can be seen as a wiring between inputs and outputs. Inputs
are connected to contractions which broadcast the resources they receive to
cocontractions. Cocontractions may gather resources from multiple such sources.
The conclusions of these cocontractions form the outputs.

3.1.1 Multirelations

In order to describe a routing area, we rely on a natural generalization of a
relation between sets, a multirelation. Its role is to define the wiring diagram,
which specifies which inputs and outputs will be connected in the routing area.
A multirelation between two sets is a relation with multiplicity. Instead of just
indicating if two elements x and y are related or not, a multirelation associates
an integer n ∈ N to the couple (x, y). If the value at (x, y) is 0, then x and y
are not in relation. Otherwise, the value n ≥ 1 quantifies how much, or rather
how many times, x and y are in relation.

Definition 3.1.1. Multirelation
Let A and B be two sets, a multirelation R between A and B is a map R :
A×B → N.

Remark 3.1.2. Relations and multirelations
A relation between A and B can be seen as a multirelation whose value at a pair
(x, y) is either 0, meaning “not in relation”, or 1, meaning “in relation”. Formally,
the map that takes a relation R and returns its characteristic function ρ : R 7→ 1R

is an injection from relations between A and B to multirelations between A and
B. Conversely, we can forget the multiplicity of a multirelation S and simply take
0 to mean not in relation and n ≥ 1 to mean in relation. Doing so, we recover
a relation from a S through the map ν : S 7→ {(x, y) ∈ A × B | S(x, y) ≥ 1}.
Note that ν is the left inverse of ρ : ν ◦ ρ = id .

From now on, we only consider multirelations between finite sets.

Definition 3.1.3. Arity
Let R be a multirelation between (finite) sets E and F . We define the arity
of e ∈ E as the total number of times it is in relation with an element of
F , with multiplicity: ar(e) =

∑
f∈F R(e, f). Similarly, the arity of f ∈ F is

defined by ar(f) =
∑

e∈E R(e, f). The set of elements of F (resp. E) connected

48



to e ∈ E (resp. f ∈ F ) is defined by co(e) = {f ∈ F | R(i, o) > 0} (resp.
co(f) = {e ∈ E | R(e, f) > 0}).

Remark 3.1.4. For x ∈ E ∪ F , ar(x) ≥ |co(x)|. ar(x) = |co(x)| for all
x ∈ E ∪ F if and only if R is a relation.

A composition operation can be defined on multrelations, which computes
all the ways to go from an element to another with multiplicities.

Definition 3.1.5. Composition of multirelations
Let R, S be multirelations respectively between A and B, and B and C, we
define the multirelation S ◦R by

(S ◦R)(x, z) =
∑
y∈B

R(x, y)S(y, z)

This composition is associative, coincides with the usual one for relations, and
has the identity relation (seen as a multirelation) for neutral. One can view
a multirelation as a |B| × |A| matrix with integers coefficients. Lines (resp.
columns) are indexed by elements of B (resp. A). For (a, b) ∈ A × B, the
coordinate Rb,a is equals to R(a, b). Under this interpretation, the composition
previously defined on multirelations corresponds to the matrix multiplication.

Proposition 3.1.6. The FMRel category
Finite sets and multirelations between them form a category FMRel with the
composition defined above, which contains the category FRel of finite sets and
relations as a subcategory. FMRel has finite coproducts.

Proof. Proposition 3.1.6
This can be showed directly from the defintions, but under the interpretation
of multirelations between finite set as finite matrices with positive integer
coefficients, one realizes that FMRel is actually the category of integer matrices,
which has direct sums as coproducts.

Multirelations are used to describe routing areas. In order to build a routing
area from this description, we need to build dispatchers (resp. packers) with
an arbitrary number of outputs (resp. inputs). The notion of contraction (resp.
cocontraction) tree - consisting in several contraction (resp. cocontraction)
stacked together - is the natural construction for this role. We define them and
give the laws governing their reduction.

49



3.1.2 (Co)contraction trees

Remark 3.1.7. In this whole chapter, we consider two additional atomic
rules for the reduction accounting for the neutrality of (co)weakening for
(co)contraction:

!
! n→ ?

? n→

As discussed in the coming Section 3.1.3, all the nets considered in this
chapter satisfy a correctness criterion. In this context, confluence and strong
normalization of nets is ensured and remains true when one also include the
n→ rules [55, 57]. Without these rules, one would have to consider a notion of

(co)contraction trees, and consequently of routing areas, with infinitely many
distinct representatives. While these rules are not strictly necessary to our
developments, it surely comes in handy by forcing the uniqueness of several
objects introduced in the following.

A n-ary (co)contraction tree is a stack of (co)contraction defined by induction,
represented in the following way:

We will sometimes omit the arity, but always represent the dots between
auxiliary ports to differentiate from (co)contraction and (co)weakening cells.

Definition 3.1.8. (Co)contraction tree
Let n ∈ N, we define an n-ary (co)contraction tree as a simple net with n+1 free
ports, split between a principal port and auxiliary ports. All wires are labelled
by the same formula !A (or ?A⊥ depending on the orientation). (Co)contraction
trees are defined by induction:

• n = 0: a 0-ary tree is a (co)weakening, the principal port being the principal
port of this (co)weakening.

• n = 1: a unary tree is a wire. If it has ports p1 and p2, the principal port
is set to be the pj such that the label of (pj, p2−j) is ?A⊥ (resp. !A in the
case of cocontraction tree).

50



• n > 1: a n-ary tree for n > 1 is built from a (n− 1)-ary tree by connecting
one of its auxiliary port to a (co)contraction. Commutativity and associa-
tivity of (co)contractions ensure that the result does not depend on the
choice of the auxiliary port.

On (co)contraction trees, we define merging and reduction, as follows:

Proposition 3.1.9. Tree merging
Let n ≥ 0 and m ≥ 1. Connecting the main port of a (co)contraction tree
of arity n to an auxiliary port of a (co)contraction tree of arity m yields a
(co)contraction tree of arity p = n+m− 1:

Proof. By easy induction on n.

When a contraction tree and cocontraction tree are connected through their
principal port, one can derive the following generalized reduction rule:

Proposition 3.1.10. Tree reduction
Let n ≥ 0, m ≥ 0. We have:

Proof. Proposition 3.1.10

By double induction on n and m, using
s1→,

s2→,
ε→ and

ba→.

The last tool we introduce is the correctness criterion.

3.1.3 Correctness criterion

The correctness criterion is a property of simple nets which, when verified,
ensures strong normalization. In Chapter 2, we studied nets that may not satisfy
this correctness criterion. Instead, the communication devices that we define in
this chapter are correct nets. Let us review the correctness criterion, which we
have adapted for our case of nets only composed of contraction, cocontraction,
weakening and coweakening.

51



Definition 3.1.11. G(R) and switching graphs
Let R be a simple net, we define the graph G(R) = (V,E) by:

• The set of vertices V is the disjoint union of the set of cells of and the set
of free ports of R.

• For each wire w of S, we add an edge {v1, v2} in E where v1 (resp. v2) is
either the cell containing src(w) (resp. tgt(w)), or simply src(w) itself
(resp. tgt(w)) if it is a free port.

A switching graph S = (V,Es) is a graph obtained from G(R) by removing,
for each contraction, exactly one of the two wires (formally one of the two
corresponding edges in E) connected to its two auxiliary ports.

Definition 3.1.12. Correctness criterion
A simple net R verifies the correctness criterion if all its switching graphs are
acyclic. In this case, R is said to be correct.

Theorem 3.1.13. [14, Ehrhard-Regnier] Strong normalization of correct nets
A correct net is strongly normalizing.

We are finally ready to introduce routing areas.

3.1.4 Routing areas

A routing area is a simple net which is described by a multirelation between
its inputs and outputs, which are a partition of its free port. The value of the
multirelation at the pair (i, o) indicates how many times the input i is connected
to the output o.

Definition 3.1.14. Routing area
Let Li and Lo be two finite sets called the input labels and the output labels.
Let R be a multirelation between Li and Lo. The routing area described by the
triplet (Li,Lo, R) is a pair (R, σ) where R is a simple net R and σ - the labelling
map - is a bijection from the set of free ports of R to Li + Lo, partitioning the
free ports between inputs - whose labels are in Li - and outputs, whose label
are in Lo. R is constructed in the following way:

• Each input i is connected by a wire to the principal port of a contraction
tree of arity ar(σ(i)).

• Each output o is connected by a wire to the principal port of a cocontraction
tree of arity ar(σ(o)).

52



• Let (i, o) ∈ Li×Lo and n = R(i, o) (remember that n is an integer). Then
there are exactly n distinct wires (pi, p

′
i) connecting auxiliary ports of the

contraction tree of i to auxiliary ports of the cocontraction tree of o.

Remark 3.1.15. Notations
For a routing area (R, σ) described by (Li,Lo, R), σ is a bijection between the
free ports of R and Li + Lo. We will freely assume that the free ports of R are
actually Li + Lo, and do not bother with σ anymore. Up to isomorphism and
equivalence, the net R is uniquely defined by its description. When unambiguous,
we will abuse the notation and write R = (Li,Lo, R) to mean that there exists
σ such that (R, σ) is the routing area described by (Li,Lo, R).

Remark 3.1.16. Communication Areas
The communication areas defined in [14] are a special case of routing areas: for
n ≤ 1, the n-communication area is the routing area ({1, . . . , n}, {1, . . . , n}, R)
where x R y ⇐⇒ x 6= y.

Remark 3.1.17. Canonicity of the description of a routing area
The multirelation defining an area is not unique from a set-theoretic point of
view: indeed, for R = (Li,Lo, R), then the class of multirelations describing R
is {τ−1 ◦ R ◦ σ : E → F | σ : E → Li, τ : F → Lo, σ and τ bijective }. Even
though this is a proper class, all these multirelations are isomorphic (for example,
in the arrow category of FMRel). Finite deterministic automata also suffer
this kind of subtlety for example, which is not relevant in practice.

We can make the following basic observations about routing areas:

Proposition 3.1.18. Let R be a routing area, then:

• R is a normal form.

• R is correct.

Proof. Proposition 3.1.18
The fact that a routing area is a normal form is immediate from its shape :
contraction and cocontraction trees are only connected through auxiliary ports.
For correctness, observe that in switching graphs, only one branch of each
contraction tree may survive. Switching graphs have the following shape:

53



We represented trees as just one multi-ary node, and long branches corresponding
to contraction trees as just one node. We see that this is a forest, a disjoint
union of trees, which is acyclic.

We represent routing areas as rectangular boxes, with the inputs appearing
on the left and the outputs on the right.

Example 3.1.19. Let R be the multi relation between Li = {i, i′} and Lo =
{o, o′} defined by :

R(i, o) = 2 R(i, o′) = 1
R(i′, o) = 0 R(i′, o′) = 1

Then the routing area described by (Li,Lo, R) is:

3.2 Operations on Routing Areas

In this section, we introduce elementary operations on routing areas which allow
to combine them:

1. Juxtaposition

2. Trace

These two operations allows to implement composition, in a way which is
similar to the composition of Game Semantic or Geometry of Interaction whose
motto is “composition = parallel composition plus hiding”.

Juxtaposition The first operation, juxtaposition, amounts to put side by side
two routing areas. The result is immediately seen as a routing area itself,
described by the coproduct of the two multirelations:

Definition 3.2.1. Juxtaposition
Let R = (Li,Lo, R) and S = (L′i,L′o, S), we define the juxtaposition R + S by
(Li +L′i,Lo +L′o, R+ S). The corresponding net is obtained by juxtaposing the
nets of R and S:

R

S

= R + S

54



Trace The second operation, trace, consists in connecting an input to an output
under the condition We ask that the given input and output are not connected,
to avoid the creation of a cycle. Doing so, we remove this output and input from
the external interface, and create new connections between remaining inputs
and outputs. The resulting net reduces to a routing area whose multirelation is
defined by Equation (3.1).

Definition 3.2.2. Pretrace
Let R be a routing area and (i, o) ∈ Li×Lo such that R(i, o) = 0. The pretrace
of R at (i, o), PreTr(i,o)(R), is the simple net obtained from R by connecting
the input i to the output o.

Proposition 3.2.3. Let R be a routing area and (i, o) ∈ Li × Lo such that
R(i, o) = 0. Then:

• PreTr(i,o)(R) satisfies the correctness criterion

• PreTr(i,o)(R) →∗ S where S is a routing area defined by (Li − {i},Lo −
{o}, S) and

S(x, y) = S(x, y) + S(x, o)R(i, y) (3.1)

Definition 3.2.4. Trace
Let R = (Li,Lo, R) be a routing area, and (i, o) ∈ Li×Lo such that R(i, o) = 0.
We define the trace at (i, o) of R, Tr(i→o)(R), by the routing area obtained by
reducing PreTr(i,o)(R) to a normal form.

The consistence of Definition 3.2.4 is ensured by Proposition 3.2.3. As routing
areas are normal forms, when one forms PreTr(i,o)(R), there can only be one
potential redex, created by the connection of i to o. This redex is composed of a
contraction tree facing a cocontraction tree, that we know how to reduce thanks
to Proposition 3.1.10. We then check that the resulting net is a routing area
whose multirelation verifies the equation (Equation (3.1)).

Proof. Proposition 3.2.3
The fact that the pretrace is a correct net is easily deduced from the shape
of switching graphs as forests illustrated in the proof of Proposition 3.1.18. It
suffices to note that the condition R(i, o) = 0 entails that in any switching graph,
the input i and the output o are in distinct trees. The connection of i and o
then amounts to connect a leaf of one of those trees to the root of another one,

55



which preserves the forest structure of the switching graph. Thus the switching
graphs of the pretrace at (i, o) are also ayclic.

By forming the pretrace at (i, o), we connect the contraction tree of i to the
cocontraction tree of o. We apply Proposition 3.1.10 on the introduced redex to
get:

where the ports i1, . . . , ip are connected to auxiliary ports of trees of the inputs
in co(o) and o1, . . . , oq to the trees of the outputs in co(i). By Proposition 3.1.9,
we can merge all these trees with the one they are connected to such that the
reduced net has the shape of a routing area S = (L′i,L′o, S).

To explicit the multirelation S, we have to determine the number of con-
nections between any input x ∈ L′i and output y ∈ L′o. The free ports of S
are inherited from R, excepted that i and o are now gone: thus L′i = Li \ {i}
and L′o = Lo \ {o}. The direct connections between x and y in R when x 6= i
and y 6= o are inherited by S, as they are left unchanged by the reduction.
But any pair of connections in R between x and o arriving at some ik, and
between i and y arriving at some ol, yields exactly one new connection between
x and y in S after the tree reduction. By definition, there are R(x, o) con-
nections between x and o and R(i, y) connection between i and y : there are
R(x, o)R(i, y) such couples. The total number of connections between x and y

is then S(x, y) = R(x, y) +R(x, o)R(i, y).

Composition Composition consists in connecting the output of an area to an
input of another area and reducing the result to a routing area. Let (Li,Lo, R)
and (L′i,L′o, S) be two routing areas, o ∈ Lo, i ∈ L′i, the composition of R and S
at (i, o) is defined as the routing area obtained by first taking the juxtaposition
of R and S, and then the trace at (i, o).

R S →∗ T

Definition 3.2.5. Composition
Let R = (Li,Lo, R) and S = (L′i,L′o, S) be two routing areas, o ∈ Lo and
i ∈ L′i. The composition of R and S at (i, o) is the routing area R ◦i→o S =
(Li + L′i \ {i},Lo + L′o \ {o}, T ) defined by R ◦i→o S = Tr(i→o)(R + S).

56



Remark 3.2.6. This operation can be generalized to the connection of n outputs
of R to n inputs of S. When n = |Lo| = |L′i|, the multirelation T describing the
resulting routing area is the composed S ◦R.

Juxtaposition, trace and composition are fundamental features of routing
areas. This is what makes them modular, allowing to build complex routing
areas by connecting simple blocks.

Transit We conclude this section with a property that reflects the high level
operational behavior of a routing area. It supports our interpretation of routing
areas as resource dispatchers. Given a closed exponential box, we connect it
to the auxiliary port of a cocontraction to obtain a module which can then
be connected to an input i. Through reduction, the box will traverse the area
and be duplicated R(i, o) times to each output o. The role of the additional
cocontraction is to preserve the area and allow future connections to the same
input. We would get a similar transit property by connecting directly the
exponential box to i, but this process is destructive as it would erase the input
wire of i and prevents any future usage.

Proposition 3.2.7. Transit
Let σ be a closed exponential box, R = (Li,Lo, R) a routing area, i ∈ Li. Let
{o1, . . . , op} = co(i) and for 1 ≤ k ≤ p, ck = R(i, ok). Then :

Proof. Proposition 3.2.7
If we consider the added cocontraction as a 2-ary tree, we can apply Proposi-
tion 3.1.10. We aggregate them with the cocontraction trees of outputs using
Proposition 3.1.9. Then we duplicate the exponential boxes now facing cocon-
traction tree several times using

The last section of this chapter is dedicated to generalize the ideas and the
approach developed for routing areas to a larger class of nets, routing nets.

57



3.3 Routing Nets

Routing areas are specific normal forms of nets composed of structural cells,
which are contraction, cocontraction, weakening and coweakening. We saw (in
Section 3.1) that these cells have an interpretation as simple communication
devices. We also proposed ways of combining these simple devices into more
involved ones, and that the communication interpretation - practically, the
description as a multirelation between inputs and outputs - apply to these
combinations. This leads us to wonder if this interpretation can be extended to
more general assemblies of structural cells: can any net constituted of structural
cells, not necessarily in normal form and not necessarily a combination of
routing areas, be seen as a communication device and described as such by a
multirelation in the same way as a routing area ? The answer given in this
section is yes, as long as nets are correct. More precisely, we show that correct
nets composed of structural cells, routing nets, reduce to a routing area. We can
thus associate to any such net the multirelation describing its normal forms.

Section 3.3.1 does a formal treatment of paths in simple net, an ubiquitous
concept in the section. They allow us to speak and quantify connections between
free ports in the more general setting of routing nets, instead of just routing
areas. We show that the correctness of routing nets exclude the existence of a
cyclic path, which is a cornerstone of the proof that the normal form of a routing
net is a routing area (Theorem 3.3.7). This theorem is proved in Section 3.3.2.
Section 3.3.3 ends the section by exploring the consequence of the fact that
routing nets reduce to routing area, which is that we can define a semantics
that associate the multirelation describing its normal form to a routing net. Its
properties are studied, and we give an alternative formulation in terms of paths
that is independent from routing areas.

Definition 3.3.1. Routing nets
A routing net R is a net whose cells are weakenings, coweakenings, contractions
or cocontractions that satisfies the correctness criterion. Moreover, we ask that
all wires are labelled with the same formula !A, fixing de facto their orientation.

Note that routing area are a special case of routing nets.

3.3.1 Paths in Routing Nets

Simple nets can be seen as graphs where vertices are cells and edges are wires:
this is the graph G(R) introduced in Definition 3.1.11. The notion of path
defined below corresponds the standard notion of a path in this graph, with
the additional restriction that paths can not “bounce back” on a cell through

58



the principal port or through two auxiliary ports. When a path enters a node
through an auxiliary port, it must exit through the principal port, and vice-versa.
Similarly, it can not bounce back on a free port.

Let R be a simple net. We recall a few notations. For a cell c of R, we write
pi(c) for its i-th auxiliary port if it exists and p(c) for its principal port. For a
wire w = (p, p′), src(w) = p designates the source port of w while tgt(w) = p′ is
its target port. The undirected graph G(R) = (V,E) is constructed as follows:

• The set of vertices V is the disjoint union of the set of cells of and the set
of free ports of R.

• For each wire w of S, we add an edge (v1, v2) where v1 (resp. v2) is either
the cell containing src(w) (resp. tgt(w)), or src(w) (resp. tgt(w)) directly
if it is free.

We remind that cells, ports, wires, etc. are defined in Definition 2.1.2.

Definition 3.3.2. Non bouncing path
Let R be a simple net. Let π be a finite sequence (v1, e1, v2, e2, . . . , vn, en, vn+1)
where vi is a vertice of G(R) and ei is an edge between vi and vi+1. We can
associate to π a corresponding sequence (w1, . . . , wn) of wires of R oriented such
that src(wi) = vi and tgt(wi) = vi+1. A non bouncing path, or just path in the
following, is such a sequence π such that for i < n, tgt(wi) and src(wi+1) must
not be either:

• Both auxiliary ports of the same cell.

• Both principal ports of the same cell.

• Both free ports.

We define src(π) = v1 and tgt(π) = vn+1. For two free ports p1 and p2,
Pathsp1→p2(R) = {π | π path , src(π) = p1, tgt(π) = p2} is the set of paths
starting at p1 and ending at p2.

There is a relation between correctness and the paths we have defined. We
show that a routing net, because it is correct, does not contain cyclic paths.

Proposition 3.3.3. Acyclicity of correct nets
A routing net is acyclic, that is there is no path π such that src(p) = tgt(p).

The proof requires the following lemma:

Lemma 3.3.4. Path invariant
Let R be a simple net, G(R) = (V,E) be the associated graph, σ = (v1, e, v2) a
path, w = (p1, p2) the corresponding wire in R and F its label. We define the
polarity pol(σ) by:

59



• If F = ?A, pol(σ) = −.

• If F = !A, pol(σ) = +.

Then, for a path π = (v1, e1, . . . , en, vn+1), the polarity is constant along π,
meaning that for 1 ≤ i, j ≤ n, pol((vi, ei, vi+1)) = pol((vj, ej, vj+1)).

Proof. Lemma 3.3.4
The non bouncing condition enforces that two consecutive subpaths (vi, ei, vi+1)
and (vi+1, ei+1, vi+2) must have the same polarity. We conclude by induction on
the length of the path.

Proof. Proposition 3.3.3
We prove that the existence of a cycle implies the existence of a cycle in a
switching graph. More precisely, we show that a minimal cycle never visits
the two auxiliary ports of a contraction and that it is thus contained in some
switching graph.

Assume the existence of a cycle and select one of minimal length, σ. We
will rather work on the associated sequence of oriented wires (w1, . . . , wn).
Assume that the two wires connected to the auxiliary ports of some contraction
c, f and f ′, are both visited by σ. There must be two indices i0 and i1
such that wi0 = f and wi1 = f ′. We can assume i0 < i1, such that σ =
(w1, . . . , wi0−1, f, wi0+1, . . . , wi1−1, f

′, wi1+1, . . . , wn). By the invariance of polarity
along a path (Lemma 3.3.4), f and f ′ are visited in the same direction, either
both exiting c or both entering c. Moreover, they can not be consecutive
in σ by definition of a non bouncing path. Let us extract from the subpath
(f, wi0+1, . . . , wi1−1, f

′) a cycle strictly smaller than σ. If both f and f ′ are exiting
c, then the path must enter c by the principal port, thus wi1−1 must correspond to
the wire that contains the principal port of c. But then (f, wi0+1, . . . , wi1−1) is a
cycle strictly smaller than σ. Similarly, if both are entering c, then (wi0+1, . . . , f

′)
is a cycle strictly smaller than σ. Hence, a minimal cycle σ does not visit both
auxiliary ports of a contraction cell, and is contained in at least one switching
graph.

We now give an important property relating reduction to paths. It states
that paths that are long enough - here paths that start and end at a free port -
are preserved by the reduction.

Proposition 3.3.5. Path preservation
Let R be a routing net, p1 and p2 be free ports, and assume R → R′. Then
Pathsp1→p2(R) and Pathsp1→p2(R

′) are in bijection, which we write Pathsp1→p2(R) '
Pathsp1→p2(R

′).

60



Proof. Proposition 3.3.5
For a path π, the principal port p of a weakening or a coweakening constitute a
dead end: if π visits p, p must be either the source or the target of π. As a path
in Pathsp1→p2(R) starts and ends at a free port, it can not visit a (co)weakening.
The reductions implying (co)weakenings thus leave such paths unchanged. The

only reduction affecting paths in Pathsp1→p2(R) is the
ba→ rule:

1 1

2 2

1

2

1

2

1

2

3

4

Let us build the bijection τ : Pathsp1→p2(R) → Pathsp2→p2(R
′). Let π ∈

Pathsp1→p2(R) be a path that does not visit the contraction or the cocontraction,
it is left unchanged and we set τ(π) = π. Otherwise, we replace any subsequence
of π appearing in the left column by the corresponding one in the right column:

Subsequence Image by τ

i1, c, o1 i1, c1, o1

i1, c, o2 i1, c2, o2

i2, c, o1 i2, c3, o1

i2, c, o2 i2, c4, o2

We omitted the four dual possibilities which can be deduced from this table
by reversing both the subsequence and its image. It is easily seen that τ is
bijective.

We can now reformulate the link between a routing area R and its defining
relation R in terms of paths: R(i, o) is the number of distinct paths linking i to
o.

Proposition 3.3.6. Paths in routing areas
Let R = (Li,Lo, R) be a routing area and (i, o) ∈ Li × Lo. Then R(i, o) =
|Pathsi→o(R)|.

Paths allow to generalize the notion of an input and an output being connected
in a routing area. We can replace it by the existence of a path between any two
free ports in a routing net. This allows us to prove in the next subsection that
routing nets are actually, up to normalization, routing areas.

3.3.2 Normal forms

In this section, we show that routing areas are the normal forms of routing
nets. That means that an arbitrary routing net always reduces to a routing area.
Observe that the basic components of routing nets, (co)contractions, wires and

61



(co)weakenings are all routing areas. From there, we show that we can combine
them into an arbitrary routing net using pretrace and juxtaposition. Thanks
to Proposition 3.2.3, this implies that the resulting net reduces to a routing
area that can be expressed as trace and juxtaposition of basic cells. One of the
key ingredient of the proof is to justify that the trace operations are legal, as
Tr(i→o)(.) is defined only when i and o are not connected: this is where we make
use of paths, which enable to speak about connection formally.

Theorem 3.3.7. Routing area characterization
The normal form of a routing net S is a routing area R = (Li,Lo, R).

Proof. Theorem 3.3.7
We prove the result by induction on the number n of cells of R.

• (n = 0) R is only composed of free ports and wires. We take Li =
{src(w) | w wire }, Lo = {tgt(w) | w wire } and R is the relation defined
by i R o ⇐⇒ ∃w, i = src(w), o = tgt(w).

• (induction step) Let take any cell c of R. We call R′ the subnet obtained
by removing c from the set of cells of R.

By induction, R′ can be reduced to a routing area R′. Then, depending on
the nature of c:

(co)weakening If c is a weakening or a coweakening, it is a routing area
and can be composed with R′, and reduced to a new routing area R
according to Definition 3.2.5. Thus the whole net reduces to R.

(co)contraction If c is a contraction or a cocontraction, it is also a routing
area and we juxtapose it to R′. If we then perform thee traces operations
to reconnect the ports of c one by one, we obtain a routing area which
is a reduct of the original net R. What we need to check is that trace
operations are legal, as they are only defined when the input and the
output at which we perform the operation at are not connected - or, put
differently, that there is no path between them - in the corresponding
intermediate routing areas. The first operation is always legal, as it is

62



actually a composition of disjoint areas. For the remaining two, if a
path existed between two ports in an intermediate routing area, this
path already existed in R by Proposition 3.3.5. But this would result
in a cycle in R, which is excluded by Proposition 3.3.3. Thus the trace
operations are legal.

We can thus associate to a routing net the routing area that is its normal
form. This area being described by a multirelation, we derive from our study of
routing areas a semantics for routing nets.

3.3.3 The Routing Semantics

For a routing net S, we define the application J.K : S 7→ R that maps S to the
multirelation R describing its normal form. By unicity of normal forms, the
application is invariant by reduction and is thus a semantics for routing nets,
with the following properties:

Sound The multirelation only depends on the normal form. As the reduction
is confluent, the normal form of a routing net is unique, and J.K is invariant
by reduction.

Adequate Two routing nets with the same denotation have the same normal
form, as a multirelation defines a routing area uniquely up to isomorphism.

Fully complete Any multirelation on finite sets is realised by the associated
routing area.

Compositionnal We can compute the semantics of a net in a compositional
way from the semantics of its smaller parts, and combine them through
juxtaposition, trace and composition.

Proposition 3.3.6 formalizes the idea that the multirelation describing a
routing area is determined by paths between free ports: the value on a pair (i, o)
is the number of paths between them. This interpretation extends to routing
nets: for a routing net R, its normal form have the same free ports as S. They
can be seen as inputs and outputs, and JRK can be computed by counting the
paths between the free ports directly in R:

Theorem 3.3.8. Path semantic
Let S be a routing net. Let Li be the set of free ports of S which are the source
of a wire, and Lo the ones that are the target. For (i, o) ∈ Li × Lo, we write

63



N(i, o) = |Pathsi→o(S)| the number of paths between i and o. Then JSK is the
multirelation between Li and Lo given by

JSK(i, o) = N(i, o)

Proof. Theorem 3.3.8

• If S is a normal forms, then it is a routing area, and this was already noted
for routing areas in Proposition 3.3.6.

• Otherwise, by path preservation (Proposition 3.3.5), N(i, o) is invariant by
reduction. We conclude by induction on the length of a reduction of S to
its normal form.

Taking a step back, the routing semantics relies on the fundamental observa-
tion that specific sets of paths are preserved by reduction and totally determines
the normal form of a net. The equivalence we set on simple nets, namely
associativity and commutativity of (co)contraction, makes two paths from a free
port to another one indistinguishable in the normal forms. This is why we can
ignore the structure of these paths and simply count them.

3.4 Summary

This chapter introduced and studied routing areas, which are simple nets
designed to implement communication primitives. Routing areas are inspired
by communication areas introduced in [14]. We show that routing areas are
modular, as they can be composed in different ways such that the result still
reduce to a routing area. The chapter ends by showing that routing areas are
actually the language of normal forms of more general nets, routing nets. Any
correct net, composed of contraction, cocontraction, weakening and coweakening
is in fact a routing area up to normalization. From this result, we derive a
semantics for routing nets, the routing semantics. It associates to any routing
net a multirelation describing it. This semantics can be defined solely in terms
of paths: computing the denotation of a routing nets amount to count specific
paths in this net.

3.5 Discussion

Communication areas vs routing areas For an integer n, the n-communication
area is a simple net with 2n+ 2 free ports, corresponding to inputs and outputs

64



grouped in pairs. The n-communication area enables a bidirectional and indis-
criminate communication between the n processes which plugged in. For a given
n, the associated communication area is unique, and allow any process to com-
municate with any other one. If we connect several process by a communication
area, then each one of them is able to send messages to or receive messages from
the others indiscriminately. On the other hand, there exists many routing areas
that connect n processes: thanks to the parametrization by a multirelation,
we can configure the read/write permissions on process by process basis. For
example, we can require that sending messages is forbidden for all processes
but one, or rather give the send/receive capabilities on a process-by-process
basis. This gives the ability to statically encode various communication scheme
of concurrents languages.

This capacity is put to use in Chapter 5, where we propose a translation of a
concurrent calculus inside nets. We give an adequacy theorem that formalizes
the fact that the translation of a term can not produce “more result” that the
original term. If a term either reduces to 1 or 2, then adequacy guarantee that
its translation will not reduces to (the translation of) 3 for example. Adequacy
relies on the specialization of routing areas to match the calculus semantics: if
we used communication areas instead, due to them being more permissive, the
translation in nets would be able to compute more than the initial term.

Modularity An important feature of routing areas is their modularity. They
can be assembled and connected, as the electric component of a circuit, in
various ways such that the result is still a routing area, up to normalization.
Modularity is illustrated by the operations defined on them, juxtaposition,
trace and composition. This allows to build compositional translations without
requiring the knowledge of a whole source program at once to perform the
transformation. In other words, this gives routing areas the capability of
supporting separate compilation.

Paths in routing nets The chapter ends by showing that routing areas are
actually the language of normal forms of more general nets, routing nets. Any
correct net, composed of contraction, cocontraction, weakening and coweakening
is a routing area up to normalization. The proof of this fact exposes that routing
nets are somehow the “free structure” generated by structural cells as constants
and juxtaposition and pretrace as operations. This instills the idea that an
arbitrary piece of proof composed only of structural rules is all about wiring.
This is reflected by the fact that the routing semantics can be defined directly in
terms of paths. Paths are known to be a central notion in nets - and λ-calculus

65



- both dynamically and semantically. They unifies Levy’s optimal reduction,
Lamping’s graph-reduction algorithm and Girard’s Geometry of Interaction [7].
While multirelations and routing areas are designed with practical goal in minds,
we have seen paths naturally emerging as one tries to extend these ideas to
routing nets.

We are now armed to encode various communication primitives inside proof
nets. This is illustrated in Chapter 5 by the translation of the λcES calculus,
described in Chapter 4.

66



Chapter 4

The concurrent λ-calculus with explicit
substitutions λcES

The λ-calculus is a versatile framework in the study and design of higher-order
functional programming languages. One of the reasons of its widespread usage is
the fact that it can easily be extended to model various computational side-effects.
Another reason comes from its theoretical ground and the fine granularity it
allows in the design of abstract machines to express various reduction strategies.
These abstract-machines can then serve as foundation for the design of efficient
interpreters and compilers.

A specially useful tool in the design of such abstract machines is the notion
of explicit substitution, a refinement over β-reduction. The β-reduction of the
λ-calculus is a meta-rule where substitution is defined inductively and performed
all at once on the term. But its implementation is a whole different story: to
avoid size explosion in presence of duplication, mechanisms such as sharing
are usually deployed. Abstract machines implement various specific strategies
that may either be representable in pure λ-calculus (call-by-value or call-by-
name) or for which the syntax needs to be augmented with new objects (e.g.
call-by-need or linear head reduction). The mismatch between β-reduction
and actual implementations can make the proof of soundness for an evaluator
or a compiler a highly nontrivial task. The heart of the theory of explicit
substitutions, introduced in [1], is to give substitutions a first class status as
objects of the syntax to better understand the dynamics and implementation
of β-reduction. It consists in decomposing a substitution into explicit atomic
steps. The main ingredient is to modify the β rule so that (λx.M)N reduces to
M [N/x], where [N/x] is now part of the syntax. Additional reduction rules are
then provided to propagate the substitution [N/x] to atoms.

Studied for the last thirty years [1, 2, 3, 5, 4, 17, 32, 38, 50, 52], explicit
substitution turns out to be a crucial device when transitioning from a formal
higher-order calculus to a concrete implementation. It has been considered

67



in the context of sharing of mutual recursive definitions [50], higher-order
unification [38], algebraic data-types [17], efficient abstract machines [2, 52],
cost-model analysis [5], etc. The use of explicit substitutions however comes
at a price [32]. Calculi with such a feature are sensitive to the definition of
reduction rules. If one is too liberal in how substitutions can be composed
then a strongly normalizing λ-term may diverge in a calculus with explicit
substitutions [45]. If one is too restrictive, confluence on metaterms is lost [9].
The challenge is to carefully design the language to implement desirable features
without losing fundamental properties. Several solutions have been proposed to
fix these defects [4, 32] for explicit substitutions of term variables.

This chapter introduces an extension of explicit substitutions to a novel case:
a lambda-calculus augmented with concurrency and references. Such a calculus
forms a natural model for shared memory and message passing. We aim at
proving that a translation of a shared memory model to a message passing one
is sound.

Strong Normalization in a Concurrent Calculus with References A concurrent
lambda-calculus with references – referred as λC below – has been introduced
by Amadio in [6]. It is a call-by-value λ-calculus extended with:

• a notion of threads and an operator ‖ for parallel composition of threads,

• two terms set(r, V ) and get(r), to respectively assign a value to and read
from a reference,

• special threads r ⇐ V , called stores, accounting for assignments.

When set(r, V ) is reduced, it turns to the unit value ∗ and produces a store
r ⇐ V making the value available to all the other threads. A corresponding
construct get(r) is reduced by choosing non deterministically a value among all
the available stores. For example, assuming some support for basic arithmetic
consider the program (λx.x + 1) get(r) ‖ set(r, 0) ‖ set(r, 1). It consists of 3
threads: two concurrent assignments set(r, 0) and set(r, 1), and an application
(λx.x+ 1) get(r). This programs admits two normal forms depending on which
assignment “wins”: the term 1 ‖ ∗ ‖ ∗ ‖ r ⇐ 0 ‖ r ⇐ 1 and the term
2 ‖ ∗ ‖ ∗ ‖ r ⇐ 0 ‖ r ⇐ 1. Despite the ‖ operator being a static constructor, it
can be embedded in abstractions and thus dynamically liberated or duplicated.
For example, the term (λf.f ∗ ‖ f ∗) act like a fork operation: if applied to
M , it generates two copies of its argument in two parallel threads M ∗ ‖M ∗.
Coupled with the Landin’s fixpoint introduced below one can even write a fork

68



bomb, that is a non terminating term which spans an unbounded number of
threads.

In this language, the stores are global and cumulative: their scope is the
whole program, and each assignment adds a new binding that does not erase the
previous one. Reading from a store is a non deterministic process that chooses
a value among the available ones. References are able to handle an unlimited
number of values and are understood as a typed abstraction of possibly several
concrete memory cells. This feature allows λC to simulate various other calculi
with references such as variants with dynamic references or communication [41].

While a simple type system for usual λ-calculus ensures termination, the
situation is quite different in a language with higher-order references. The so
called Landin’s trick [37] allows to encode a fixpoint in the simply typed version
of a calculus with references. The problem lies in the fact that one can store in
a reference r values that can themselves read from the reference r, leading to
a circularity. For example, the term get(r) ∗ ‖ r ⇐ (λx.get(r) ∗) loops while
involving only simple types Unit and Unit→ Unit.

In order to address this issue, type and effects systems have been introduced
to track the potential effects produced by a term during its evaluation. Together
with stratification on references [8], one can recast termination in such an im-
perative context. Intuitively, stratification imposes an order between references:
a reference can only store terms that access smaller ones, ruling out Landin’s
fixpoint. Formally, this allows to apply the usual reducibility argument to a
calculus with references: stratification ensures that the inductive definition of
reducibility sets on types with effects is well-founded.

While scheduling is explicitly handled through language constructs in [8],
λC’s liberal reduction allows to chose a different thread to operate on at any
time. This cause additional difficulty, as from a single thread’s point of view,
arbitrary new assignments may become available between two reduction steps.
For λC, the proof of termination in [6] resorts to what amounts to infinite terms
with the notion of saturated stores.

In this chapter, we introduce a concurrent λ-calculus with explicit substitution,
based on the λC calculus. We provide a stratified type and effect system for this
calculus, and show that typing ensures strong normalization.

Overview In Section 4.1, we introduce the concurrent λ-calculus with explicit
substitutions λcES, with both substitutions for variable and references. The
syntax of terms is spelled out in Section 4.1.1, while the reduction is given in
Section 4.1.2. In Section 4.1.4, we define a partial preorder on terms, which
will be used to compare the behaviors and the normalization of terms in the

69



following sections.

In Section 4.2, we introduce a stratified type and effect system for λcES,
adapted from the one of λC. We show basic properties of the typed fragment,
such as subject reduction and progress, in Section 4.2.2.

In Section 4.3, we prove an important result of this chapter, which is that well
typed terms are strongly normalizing. To do so, we adapt a reducibility proof
to our setting by incorporating an interactive properties. In Section 4.3.1, we
lay out some necessary technical definitions, such as sets of strongly computable
terms and our interactive condition of being a well-behaved term. We give a high
level explanation of the proof in Section 4.3.2, and detail two representative
cases. In Section 4.3.3, we give a more detailed proof of the strong normalization
theorem and other intermediate results.

At last, Section 4.4 focuses on the relation between λcES and λC. While λcES

should be thought of as a version of λC with explicit substitutions, the latter is
not a proper sublanguage of the former. We can however define a translation, or
rather an embedding, of λC in λcES. We prove a simulation for this embedding in
Section 4.4.2. We explain why a simulation result in a non-deterministic setting
is only half satisfying when one ought to relate the computational behaviors
of two languages. In Section 4.4.3, we give an adequacy theorem, which is
complementary to the simulation result. It states that the values than can be
computed by a term of λC and the ones that can be computed by its translation
in λcES are essentially the same.

4.1 A Concurrent λ-calculus with Explicit Substitutions

In standard presentations of the lambda-calculus and its extensions such as [6],
substitutions are applied globally. This hides the implementation details of
the procedure. Exposing such an implementation is one of the reasons for the
introduction of explicit substitutions. In the literature, explicit substitutions
have only been used for term variables and not for references.

In this section, we introduce the language λcES, a call-by-value, concurrent
λ-calculus with explicit substitutions for both term variables and references.

4.1.1 Syntax

The language λcES has two kinds of variables: term variables (simply named
variables) represented with x, y, . . ., and references, represented with r, r′, . . ..
Substitutions are represented by partial functions with finite support. Variable
substitutions, denoted with Greek letters σ, τ, . . ., map variables to values.

70



Reference substitutions, denoted with calligraphic uppercase letters V ,U , . . .,
map references to finite multisets of values. Multisets reflect the non-determinism,
as multiple writes may have been performed on the same reference. They are
represented with the symbol E . The language consists of values, terms and sums
of terms, representing non-determinism.

-values V ::= x | ∗ | λx.M
-terms M ::= V |M [σ] | (MM)[V ]λ | get(r) |M [V ]↓ |M [V ]↑ |M ‖M
-sums M ::= 0 |M |M + M

The construct M [σ] stands for the explicit substitutions of variables in M

under the substitution σ. There are three constructs for explicit substitutions
for references: M [V]↓ and M [V]↑ are respectively the downward and upward
references substitutions, while (MM)[V]λ is the λ-substitution. The reason
for which the language needs three distinct notations is explained in the next
section while presenting the reduction rules. Finally, the role of the sum-terms
M is to capture and keep all non-deterministic behaviours.

Terms are considered modulo an equivalence relation presented in Table 4.1.
The sum is idempotent, associative and commutative, while the parallel compo-
sition is associative and commutative.

Definition 4.1.1. Free variables
The set of free variables FV(M) of a term M is defined as follow:

• FV(x) = {x}

• FV(∗) = ∅

• FV(λx.M) = FV(M) \ {x}

• FV(M [σ]) = FV(M) \ dom(σ) ∪ FV(σ)

• FV(M N [V ]λ) = FV(M) ∪ FV(N) ∪ FV(V)

• FV(get(r)) = ∅

• FV(M [V ]↓) = FV(M [V ]↑) = FV(M) ∪ FV(V)

• FV(M ‖ N) = FV(M) ∪ FV(N)

• FV(σ) =
⋃
x∈dom(σ) FV(σ(x))

• FV(V) =
⋃
r∈dom(V)

⋃
V ∈V(r) FV(V )

A closed term is a term M such that FV(M) = ∅.

71



M ‖M ′ = M ′ ‖M
(M ‖M ′) ‖M ′′ = M ‖ (M ′ ‖M ′′)

M + M′ = M′ + M
(M + M′) + M′′ = M + (M′ + M′′)

M + M = M + 0 = M

Table 4.1: Structural Rules

E ::= [.] | (E M)[V ]λ | (M E)[V ]λ |
E[V ]↓ | E[V ]↑

C ::= [.] | (C ‖M) | (M ‖ C)
S ::= [.] | S + M |M + S

Table 4.2: Evaluation Contexts

Remark 4.1.2. The three constructs [V ]↓, [V ]↑ and [V ]λ encapsulate the assign-
ments in terms and in stores presented in the introduction of Chapter 4: there
is no need anymore for set(r, V ) and r ⇐ V . See Section 4.6 for a discussion of
this aspect.

Notation 4.1.3. Reference substitutions will be sometimes written with the
notation [r ⇐ V ] to mean [V ] with V : r 7→ [V ]. Explicit variables substitutions
are written M [{x1 7→ V1, . . . , xn 7→ Vn}]. Finally, by abuse of notation we write
(M N) for (M N)[⊥], where ⊥ is the nowhere defined function.

4.1.2 Reduction

We adopt a weak call-by-value reduction where the reduction order of an
application is not specified. It is weak in the sense that no reduction occurs
under abstractions.

Although in a general setting non-determinism and call-by-value taken to-
gether may break confluence even when collecting all possible outcomes [12],
this phenomenon does not happen here. Indeed, we cannot reduce under ab-
stractions, and the only non-deterministic construct get(r) must be reduced
before being duplicated, avoiding problematic interactions between β-reduction
and non-deterministic choice.

The language λcES is equipped with the reduction defined in Table 4.3. The
rules presented are closed under the structural rules of Table 4.1. We assume the
usual conventions on alpha-equivalence of term, and as customary substitutions
are considered modulo this alpha-equivalence. They make use of several notations
that we lay out below. Rules devoted to dispatching substitutions are referred
as structural rules. The variable (resp. downward, upward) structural rules
consist in (subst) (resp. (subst-r), (subst-r’)) rules excluding (substvar)
(resp. (subst-rget), (subst-r>)). An in-depth discussion about these rules
follows.

Notation 4.1.4. the contexts E, C and S are defined in Table 4.2. The context
E stands for a usual call-by-value applicative context, C picks a thread, while

72



(a) β-reduction
(βv) ((λx.M)V )[U ]λ → (M [{x 7→ V }])[U ]↓

If M →M ′ with rule (βv), then S[C[E[M ]]]→ S[C[E[M ′]]]

(b) Variable Substitutions
(substvar) x[σ] → σ(x) if defined, or x otherwise
(substunit) ∗[σ] → ∗
(substapp) (M N)[V ]λ[σ] → ((M [σ]) (N [σ]))[V [σ]]λ
(substλ) (λy.M)[σ] → λy.(M [σ])
(substget) get(r)[σ] → get(r)
(subst‖) (M ‖M ′)[σ] → (M [σ]) ‖ (M ′[σ])
(substsubst-r) (M [V ]↓)[σ] → M [σ][V{σ}]↓
(substsubst-r’) (M [V ]↑)[σ] → M [σ][V{σ}]↑
(substmerge) M [σ][τ ] → M [σ, τ ]

Congruence case:
If M →M ′ by any of the previous rules, then S[C[E[M ]]→ S[C[E[M ′]]]

(c) Downward Reference Substitutions
(subst-rval) V [V ]↓ → V
(subst-r‖) (M ‖M ′)[V ]↓ → (M [V ]↓) ‖ (M ′[V ]↓)
(subst-rsubst-r’) M [U ]↑[V ]↓ → M [V ]↓[U ]↑

(subst-rmerge) M [U ]↓[V ]↓ → M [U ,V ]↓
(subst-rapp) (M N)[U ]λ[V ]↓ → (M [V ]↓) (N [V ]↓)[U ,V ]λ

Congruence cases:
If M →M ′ by any of the previous rules, then S[C[E[M ]]→ S[C[E[M ′]]]

Finally:
(subst-rget) S[C[E[get(r)[V ]↓]]] → S[C[E[get(r)]]] +

∑
V ∈V(r)C[E[V ]]

(d) Upward Reference Substitutions
(subst-r’‖) (M [V ]↑) ‖ N → (M ‖ (N [V ]↓))[V ]↑

(subst-r’lapp) ((M [V ]↑)N)[U ]λ → (M (N [V ]↓))[U ,V ]λ[V ]↑
(subst-r’rapp) (M (N [V ]↑))[U ]λ → ((M [V ]↓)N)[U ,V ]λ[V ]↑

Congruence case:
If M →M ′ by any of the previous rules, then S[C[E[M ]]→ S[C[E[M ′]]]

Finally:
(subst-r’>) S[M [V ]↑] → S[M ]

Table 4.3: Reduction Rules. These are closed under the structural rules of Table 4.1

73



S picks a term in a non-deterministic sum. Note how E does not enforce any
reduction order on an application.

Notation 4.1.5. Given a variable substitution σ and a value V , we define the
value V {σ} as follows: (λx.M){σ} = λx.(M [σ]), (x){σ} = σ(x) if σ is defined
at x or (x){σ} = x if not, and (∗){σ} = ∗.

Notation 4.1.6. We use the notation X = V ,W for the juxtaposition of
references substitutions. It is defined by X (r) = V(r) +W(r) if both are defined
and where + is the union of multisets, V(r) if only V is defined, and W(r) if
only W is defined. We use the same notation for the composition of variable
substitutions, defined by (σ, τ)(x) = σ(x){τ} if both are defined, σ(x) if only σ
is defined τ(x) if only τ is defined. Finally, we define V{σ} : r 7→ [Vi{σ} | Vi ∈
V(r)].

We now give some explanations on the rules of Table 4.3.

(a) β-reduction If one forgets the λ-substitution explained below in (d), this set
of rules encapsulates the call-by-value behavior of the language: only values can
be substituted in the body of abstractions, and this happens within a thread in
a call-by-value applicative context.

(b) Variable Substitutions A variable substitution can be seen as a message
emitted by a β-redex and dispatched through the term seen as a tree. The
substitution flows from the redex downward the term-tree until it reaches the
occurrence of a variable. The occurrence is then replaced, or not, depending
on the variable to be substituted. The rules in Table 4.3(a) are an operational
formalization of this step-by-step procedure. Consider for example the reduction
of the term (λx.x y z) (λx.x). The redex triggers with (βv) the substitution
of all occurrences of x in what was the body of the lambda-abstraction. The
substitution goes down the corresponding sub-term and performs the substitution
when it reaches an occurrence of x.

(λx.x y z) (λx.x)

λx.x y z

. . .

x

(λx.x) x y z[x 7→ (λx.x)]

. . .

x

x y z

. . .[x 7→ (λx.x)]

x

x y z

. . .

x[x 7→ (λx.x)]

(λx.x) y z

. . .

λx.x

Remark 4.1.7. On rules (substsubst-r) and (substsubst-r’). When composing
or swapping substitutions, non-values may appear in unfortunate places: take
for example (∗[V ]↑)[σ], its reduction should be (∗[σ])[V ′]↑ where V ′(r) = [V [σ] |

74



V ∈ V(r)] when V(r) is defined. But V [σ] are not necessarily values and should
then be able to be reduced inside substitutions. However, note that V [σ] always
reduces in one step to the value V {σ}. To avoid additional complexity, we
perform this reduction at the same time, whence the use of V {σ} instead of
V [σ] in the actual rules.

(c) Downward Reference Substitutions An assignment can occur anywhere
within a term and it must be able to reach a read located in an arbitrary
position. In a language such as [6], the solution is to keep all assignments in a
global store. When a read gets evaluated, the value for the reference is taken
from the store. This approach is very global in nature: the store is “visible” by
every subterm.

The language λcES features a step-by-step decomposition of reference assign-
ments akin to term variable substitutions: an assignment follows the branches
of the term-tree, actively seeking a read. We therefore introduce two sorts of
reference substitutions: one that goes downward (indicated by ↓), similar to
variable substitutions, and one that goes upward (indicated by ↑). Starting
from an assignment, the latter climbs up the tree up to the root. The rules in
Table 4.3(c) describe the former while the rules in Table 4.3(d) describe the
latter.

Remark 4.1.8. In Table 4.3, the rule (subst-rget) is the central case of the
reduction of reference substitutions. It says that whenever a downward sub-
stitution reaches a get(r), then it generates a non deterministic sum of all the
available values for the reference r (if V is undefined at r, then this sum is
understood as a neutral element 0) plus a term where the substitution was
discarded but the get(r) is left unreduced. To see why this “remainder” is
necessary, consider the term get(r)[r ⇐ V1]↓[r ⇐ V2]↓. If we omit the remainder,
the term could reduce to V1[r ⇐ V2]↓ and finally to V1. But another reduction
is possible: one can first reduce the term to get(r)[r ⇐ V1, r ⇐ V2]↓ and then to
V1 + V2. The get(r) must not be greedy: when it meets a substitution, it has
to consider the possibility that other substitutions will be available later. This
aspect will be crucial when considering the proof of strong normalization of the
language in Section 4.3.

(d) Upward Reference Substitutions Each time an upward reference substitution
goes through a multi-ary constructor – as an application or a parallel composition
– it propagates downward substitutions in all the children of the constructor
except the one it comes from, while continuing its ascension. Eventually, all

75



the leafs are reached by a corresponding downward substitution. To illustrate
the idea, consider a term M N where M contains a get(r) somewhere and N

an assignment ∗[r ⇐ V ]↑. The reduction of explicit substitutions would go as
follows.

M N

M

. . .

get(r)

N

. . .

∗[r ⇐ V ]↑

M N

M

. . .

get(r)

N

. . .[r ⇐ V ]↑

∗

M N

M

. . .

get(r)

N [r ⇐ V ]↑
. . .

∗

(M N)[r ⇐ V ]↑

M [r ⇐ V ]↓
. . .

get(r)

N

. . .

∗

(M N)[r ⇐ V ]↑

M

. . .[r ⇐ V ]↓

get(r)

N

. . .

∗

(M N)[r ⇐ V ]↑

M

. . .

get(r)[r ⇐ V ]↓

N

. . .

∗

(M N)[r ⇐ V ]↑

M

. . .

V

N

. . .

∗

One last subtlety in the movement of reference substitutions concerns λ-
abstractions. As made explicit in Table 4.3(a), the language is call-by-value:
reduction does not happen under λ-abstractions. In particular, a read within
the body of a λ-abstraction should only be accessible by an assignment when
the λ-abstraction is opened: we have a natural notion of pure and impure terms.
Pure terms are terms that will not produce any effect when reduced, and in
particular, all values are expected to be pure terms since they cannot reduce
further. This is highlighted by rule (subst-rval): when encountering a pure
term, a reference substitution vanishes. But the case of abstraction is more
subtle: computational effects frozen in its body are freed when the abstraction is
applied. If one implements naively the reduction rules of reference substitutions,
then the following example does not behave as expected: ((λx.get(r)) ∗)[V ]↓ →
((λx.get(r))[V ]↓) (∗[V ]↓)→ (λx.get(r)) ∗ → get(r). We end up with an orphan
get(r) despite the fact that a substitution was available at the beginning. The
problem is that the substitution diffuses through the application, then encounters
two pure terms and vanishes.

In an application, the left term eventually exposes the body of an abstraction,
and this body should be able to use any substitution that was in its scope. The
λ-substitution [−]λ is a special stationary reference substitution attached to an
application. Its goal is precisely to record all the substitutions that went down
through it with Rules (subst-r’lapp) and (subst-r’rapp). When the application
is finally reduced with a βv-rule, this substitution will turn to a downward one
and feed the get(r)’s that were hidden in the abstraction’s body.

Non-deterministic reduction In the following, we will sometimes not want to
deal with the clumsiness of handling sums of terms everywhere. We thus define

76



an alternative non-deterministic reduction, denoted by →nd. If a reduction
sequence is seen as a tree, where branching points correspond to (subst-rget)
and the children to all the summands produced by this rule, then a sequence of
reductions →nd corresponds to a branch in this tree.

Definition 4.1.9. Non-deterministic reduction of λcES

We define →nd by replacing the (subst-rget) reduction by the following two
rules:

get(r)[V ]↓ →nd V if V ∈ V(r)
get(r)[V ]↓ →nd get(r)

Remark 4.1.10. An alternative approach to λ-substitution would be to make
downward substitutions not vanish (i.e. getting rid of Rule (subst-rval)). In
this situation, values would be handled with their whole context of references
assignment. Apart from the heavy syntactical cost of carrying around a lot
of similar and possibly useless substitutions, the idea that hidden effects are
released at application appears more natural regarding type and effect systems,
as the one we introduce in Section 4.2.

Remark 4.1.11. Rule (subst-r’>) acts as a garbage collection to eliminate
top-level upward substitutions. While not necessary, this will greatly ease the
statement and proof of lemmas and theorems (such as Lemma 4.2.7).

4.1.3 Weak confluence

As opposed to calculus with implicit substitution, such as the λ-calculus, λcES

may have numerous overlapping redexes, that are often called critical pairs in
the literature. Confluence then becomes painful to establish. We prove a weaker
property, weak confluence: an ARS (A,→) is weakly confluent if, for any term
t ∈ A such that u← t→ u′, then there exists v such that u→∗ v ∗← u′. The
difference with confluence is that in the hypothesis, t is assumed to reduce to u
and u′ in only one step, instead of an arbitrary number of steps. Thanks to the
termination theorem proved in Section 4.3, the Newman’s lemma will allow us
to deduce that the typed fragment is confluent.

Proposition 4.1.12. Weak confluence
Let M be a term such that M→M1 and M→M2. Then

∃M′,M1 →∗ M′ and M2 →∗ M′

To show weak confluence, we just examine all the possible critical pairs of the
language. The following lemma classifies the different kind of possible critical
pairs:

77



Lemma 4.1.13. Critical pairs
We write E1#E2 for two contexts E1, E2 if E1 6= E2, and each one is not a prefix
of the other, i.e. ∀E,E1 6= E2[E] and E2 6= E1[E]. In the following, we write
the reduction rules as S[N ]→ S[N ′] + M′, where M′ is equals to 0 unless when
(subst-rget) occurs, where it may correspond to additional terms.

If M→M1 and M→M2 with M1 6= M2, then one of the assertion holds :

1. The two rules are of the form Si[Ni] → Si[N
′
i ] + M′

i with S1#S2,M =
Si[Ni] =

∑
iNi

2. The two rules are of the form S[Ci[Ni]]→ Si[Ci[N
′
i ]]+M′

i with C1 #C2, Ci[Ni] =
‖i Ni

3. The two rules are of the form S[C[N1]] → S[C[N ′1]] and S[C[C2[N2]]] →
S2[C[C2[N

′
2]]] + M′

2, the first rule being (subst-r’‖).

4. The two rules are of the form S[C[E[Ei[Ni]]]]→ Si[C[E[Ei[N
′
i ]]]]+M′

i with
E1 = E ′1[.] E

′
2[N2][V ]λ and E2 = E ′1[N1] E

′
2[.][V ]λ, Ni → N ′i

5. The two rules are of the form S[C[E[N1]]]]→ S[C[E[N ′1]] and S[C[E[E2[N2]]]]→
S2[C[E[E2[N

′
2]]]] + M′

2, with one of the following :

(a) N1 = M ′[V ]↓ and the applied rule is (subst-rapp), (subst-rsubst−r′) or
(subst-rmerge)

(b) N1 = (P [U ]↑) E
′
2[N2][V ]λ or N1 = E ′2[N2] (P [U ]↑)[V ]λ

(c) N1 = (E ′2[N2][U ]↑) P [V ]λ or N1 = P (E ′2[N2][U ]↑)[V ]λ

(d) C = E = [.], N1 = E2[N2][V ]↑ and the first rule used is (subst-r’>)

Proof. Lemma 4.1.13
We can write M in a unique way (modulo structual rules) as a sum of parallel
of simple terms :

M =
∑
k

Mk, Mk = ‖i M i
k

• The two reductions rules have a premise of the form S[Ni]. Identifying
the terms of both sums, we can write S1 = [.] +

∑
k 6=k1 Mk and S2 =

[.] +
∑

k 6=k2 Mk. If k1 6= k2 we are in the case (1), or S1 = S2.

• If one of the rule used (let say the first one) is (subst-r’>), then Mk1 =
M ′

k1
[V ]↑. Since M1 6= M2, the second rule can’t be the same and is of the

form E[T ]→ E[T ′]. This is the case (5d) of the lemma.

78



• Otherwise, the premises of the two rules have the form S[C1[E1[P1]]] →
S[C1[E1[P

′
1]]] + M′

1 and S[C2[E2[P2]]] → S[C2[E2[P
′
2]]] + M′

2. If C1#C2,
we are in case (2). If not, then either C1 = C2 or C2 = C1[C

′
2], C

′
2 6= [.]

but the only rule that matches a parallel is (subst-r’‖), and this is case
(3). We assume from now on that C1 = C2. We decompose E1 and E2

by their greatest common prefix, such that E1 = E[E ′1] and E2 = E[E ′2]
with either E ′1 = E ′2 = [.], or E ′1 = [.], E ′2 6= [.], or E1#E2. The former is
excluded since the reducts N1 and N2 are assumed differents, and no rule
have overlapping redex on base cases (when C and E are empty).

• If E ′1#E
′
2, since E ′1[P1] = E ′2[P2], then E1 must be of the form E ′′1 R[V]λ,

E2 = L E ′′2 [V ]λ with L = E ′′1 [P1] and R = E ′′2 [P2]. This is case (4).

• Assume now that one of the two (let say E ′1) is [.]. Then P1 and E ′2
have a common prefix. If P1 is an application, it can’t be the premise
of the (βv) rule with P1 = (λx.M) V [U ]λ, because then E ′2 = E ′′2 V [U ]λ
or E ′2 = (λx.M) E ′′2 [U ]λ but no non-empty context verifies E ′′2 [P2] = V
for a value V . Thus it must be the premise of (subst-r’app), and this
corresponds to cases (5b) and (5c).

• If P1 is not an application, since it must be both the premise of a rule
and prefix of the context E ′2, the only remaining possibility is P1 = P̃1[V ]↓.

Then P̃1 can’t be a value y, ∗, λy. or get(r), ‖ , [U ]↑, because these
constructors can’t be in E ′2 : we are in case (5a).

We can then proceed by case analysis to show weak confluence.

Proof. Proposition 4.1.12
We can write M,M1 and M2 in a unique way (modulo structual rules) as a
sum of parallel of simple terms :

M =
∑
k

Mk, M1 =
∑
k

M 1
k , M2 =

∑
k

M 2
k

Let us examine all the possible cases of Lemma 4.1.13, assuming that N1 6= N2:

1. We have S1#S2, by identifying each terms, ∃k1 6= k2, Si = [.] +
∑

k 6=ki, and
we have

M1 =
∑

k 6=k1 Mk +N ′1 + M′
1

→
∑

k 6=k1,k2 Mk +N ′1 +N ′2 + M′
1 + M′

2

79



as well as M2.

2. Let write Ci[Ni] = ‖l∈L Pl. Then there exists L1,L2 ⊆ L. Since C1#C2,
we have L1 6= L2 and L1 6⊆ L2 and L2 6⊆ L1, such that Ci = [.] ‖ (‖l∈Li

Pl)
and Ni = ‖l /∈Li

Pl. The only rule that has a parallel of terms as premise is
(subst-r’‖). Thus Li are either singletons (if the corresponding rule is not
(subst-r’‖)) or have size two. If they are disjoint, then L2 ⊆ L \ L1 and :

M1 = S[N ′1 ‖ (‖l /∈L1
Pl)] + M′

1

= S[N ′1 ‖ N2 ‖ (‖l /∈L1∪L2
Pl)] + M′

1

→ S[N ′1 ‖ N ′2 ‖ (‖l /∈L1∪L2
Pl)] + M′

1 + M′
2

as do M2.
The only remaining case is if both rules are (subst-r’‖) and L1∩L2 = {l0}.
We write L1 = {l1, l0},L2 = {l2, l0} and L3 = L\ {l0, l1, l2}. If Pl0 = P ′[V ]↑
is the “active” upward substitution in both reduction, we have

C1[N
′
1] = (Pl1[V ]↓ ‖ P ′)[V ]↑ ‖ Pl2 ‖ (‖l 6=L3

Pl)
→ (Pl1[V ]↓ ‖ P ′ ‖ Pl2[V ]↓)[V ]↑ ‖ (‖l 6=L3

Pl)

If Pl0 is the “passive” term in both reductions, with Pl1 = P ′l1[V]↑ and
Pl2 = P ′l2[U ]↑, then

C1[N
′
1] = (P ′l1 ‖ Pl0[V ]↓)[V ]↑ ‖ P ′l2[U ]↑ ‖ (‖l 6=L3

Pl)

→∗ Pl1 ‖ (Pl0[V ]↓) ‖ (P ′l2[U ]↑[V ]↓)

‖ (‖l 6=L3
Pl[V ]↓)

→ Pl1 ‖ (Pl0[V ]↓) ‖ (P ′l2[V ]↓[U ]↑)

‖ (‖l 6=L3
Pl[V ]↓)

→∗ (Pl1[U ]↓) ‖ (Pl0[W ]↓) ‖ (P ′l2[V ]↓)

‖ (‖l 6=L3
Pl[W ]↓)

using repeated (subst-r’‖), (subst-r’>), (subst-rsubst-r’) and (subst-rmerge).
Finally, if Pl0 is active in of the two (let say the first) and passive in the
other, meaning that Pl0 = P ′l0[V ]↑, Pl2 = P ′l2[U ]↑, then

C1[N
′
1] = (Pl1[V ]↓ ‖ P ′l0)[V ]↑ ‖ (Pl2[U ]↑) ‖ (‖l 6=L3

Pl)

→ (Pl1[V ]↓ ‖ P ′ ‖ Pl2[V ]↓)[V ]↑ ‖ (‖l 6=L3
Pl)

80



C1[N
′
1] = (Pl1[V ]↓ ‖ P ′l0)[V ]↑ ‖ P ′l2[U ]↑ ‖ (‖l 6=L3

Pl)

→∗ (Pl1[V ]↓) ‖ P ′l0 ‖ (P ′l2[U ]↑[V ]↓)

‖ (‖l 6=L3
Pl[V ]↓)

→ (Pl1[V ]↓) ‖ P ′l0 ‖ (Pl2[V ]↓[U ]↑)

‖ (‖l 6=L3
Pl[V ]↓)

→∗ (Pl1[W ]↓) ‖ (Pl0[U ]↓) ‖ (Pl2[V ]↓)
‖ (‖l 6=L3

Pl[W ]↓)

On the other side,

C2[N
′
2] = Pl1 ‖ ((P ′l0[V ]↑[U ]↓) ‖ P ′l2)[U ]↑ ‖ (‖l 6=L3

Pl)

→∗ (Pl1[U ]↓) ‖ (P ′l0[V ]↑[U ]↓) ‖ P ′l2
‖ (‖l 6=L3

Pl[U ]↓)
→ (Pl1[U ]↓) ‖ (P ′l0[U ]↓[V ]↑) ‖ P ′l2

‖ (‖l 6=L3
Pl[U ]↓)

→∗ (Pl1[W ]↓) ‖ (P ′l0[U ]↓) ‖ (P ′l2[V ]↓)

‖ (‖l 6=L3
Pl[W ]↓)

3. C2 = Q[V]↑ ‖ C ′2. Let write C = ‖l Pl and C2 = [.] ‖ P ′. then C[N ′1] =
(Q ‖ (N2 ‖ P ′)[V ]↓)[V ]↑.

• Either N2 = N ′2[U ]↑ ‖ Q′ and

C[N ′1] →∗ Q ‖ ((N ′2[U ]↑) ‖ Q′)[V ]↓ ‖ (‖l Pl[V ]↓)
→∗ Q ‖ (N ′2[V ]↓[U ]↑) ‖ (Q′[V ]↓) ‖ (‖l Pl[V ]↓)
→∗ (Q[U ]↓) ‖ (N ′2[V ]↓) ‖ (Q′[W ]↓) ‖ (‖l Pl[W ]↓)

and

C[C2[N
′
2]] = (Q[V ]↑) ‖ (N ′2 ‖ Q′[U ]↓)[U ]↑ ‖ (‖l Pl)
→∗ (Q[V ]↑[U ]↓) ‖ N ′2 ‖ (Q′[U ]↓) ‖ (‖l Pl[U ]↓)
→∗ (Q[U ]↓) ‖ (N ′2[V ]↓)

‖ (Q′[W ]↓) ‖ (‖l Pl[W ]↓)

• Otherwise, N2 is a premise of the form E[Q′] and S[C[C2[E[Q′]]] →
S[C[C2[E[Q′′]]]] + M′

2. Then

M1 →∗ S[Q ‖ E[Q′][V ]↓ ‖ (‖l Pl[V ]↓)]
→ S[Q ‖ E[Q′][V ]↓ ‖ (‖l Pl[V ]↓)] + M2

′

On the other side,

M2 = S[(Q[V ]↑) ‖ E[Q′′] ‖ (‖l Pl)] + M2
′

→∗ S[Q ‖ (E[Q′′][V ]↓) ‖ (‖l Pl[V ]↓)] + M2
′

81



4.
S[C[E[E1[N

′
1]]]] + M′

1 = S[C[E[E ′1[N
′
1] E

′
2[N2][V ]λ]]] + M′

1

→ S[C[E[E ′1[N
′
1] E

′
2[N

′
2][V ]λ]]] + M′

1 + M′
2

5. (a) The applied rule is either :

• (subst-rapp) and E2 = E ′2 Q[U ]λ or E2 = Q E ′2[U ]λ

• (subst-rsubst-r’) and E2 = E ′2[U ]↑

• (subst-rmerge) and E2 = E ′2[V ]↓

In the three cases, it is clear that the reductions are independant :
the first one can be performed in M2 and vice-versa to get a common
reduct.

The same argument applies to the other four cases.

4.1.4 Preorder on terms

In the coming Section 4.4 and Section 4.3, we will need to compare the possible
behaviors of similar terms. For example, take a term M [U ,V ]↓ that is strongly
normalizing. Intuitively, if we remove available reference bindings to form M [U ]↓
or M [V]↓, the result should also be strongly normalizing: removing available
substitutions may only restrict the possible behaviors. The aim of this subsection
is formalize this relation between terms of “being similar but able to do more”,
and to prove the kind of statement about termination we just made above.

To do so, we introduce thev preorder (and an indexed familyvV of preorders),
where M v N means that the two terms are essentially the same, but N may
have more available reference substitutions and possibly in different positions.
For example, this is typically the case if N is a reduct of M [V]↓ using only
downward structural rules. This preorder encompasses the notion of possible
behaviors: M v N means that everything that can be done by M can be done
by N . This is the substance of Proposition 4.1.18.

Definition 4.1.14. Reachability and Associated Preorder
Let M be a term, and N an occurrence of a subterm in M that is not under
an abstraction. We define Reach(N,M), a reference substitution, as the merge
of all substitutions that are in scope of this subterm in M , as follows. Recall
Notation 4.1.5.

• If M = N then Reach(N,M) is nowhere defined.

• If M = M ′[U ]↓ then Reach(N,M) = U ,Reach(N,M ′), the juxtaposition of
U and Reach(N,M ′).

• If M = M ′[σ] then Reach(N,M) = Reach(N,M ′){σ}.

82



• If M = M ′[U ]↑ then Reach(N,M) = Reach(N,M ′).

• If M = M1 M2[U ]λ or M = M1 ‖M2, let i be the index such that N occurs
in Mi, then Reach(N,M) = Reach(N,Mi).

We define the skeleton of a term Sk(M) by removing all downward reference
substitutions that are not under an abstraction.

Definition 4.1.15. Skeleton
Let M be a term of λcES. We define the term Sk(M) as:

Sk(V ) = V
Sk(M [V ]↓) = Sk(M)
Sk(M [V ]↑) = Sk(M)[V ]↑
Sk(M ‖ N) = Sk(M) ‖ Sk(N)
Sk(M N [V ]λ) = Sk(M) Sk(N)
Sk(M [σ]) = Sk(M)[σ]

Definition 4.1.16. Preorder
We say that M v N if:

• Sk(M) = Sk(N), and thus we can put in a one-to-one correspondence the
occurrences of get(r) and (M1M2)[V ]λ subterms of M and N

• For all such get(r) occurrences, Reach(get(r),M) ⊆ Reach(get(r), N)

• For all such M ′ = (M1M2)[V]λ corresponding to N ′ = (N1N2)[U ]λ, then
Reach(M ′,M),V ⊆ Reach(N ′, N),U

Similarly, we say that M vV N if the difference between reachability sets
involved in the definition is somehow “bounded” by V :

• Sk(M) = Sk(N)

• For all such occurrences of get(r), Reach(get(r),M) ⊆ Reach(get(r), N) ⊆
Reach(get(r),M),V

• For all such M ′ = M1 M2[U ]λ corresponding to N ′ = N1 N2[W]λ, then
Reach(M ′,M),W ⊆ Reach(N ′, N),U ⊆ Reach(M ′,M),W ,V

The relations v and vV are partial preorders on terms. We write M w N when
M v N and N vM .

M vM ′ if M and M ′ have the same structure but the available substitutions
in scope of each get(r) in M are contained in M ′ ones. Thus, M ′ can do at
least everything M can do. The second preorder vV controls precisely what the
difference between reachability sets can be. The following properties make these
explanations formal:

83



Lemma 4.1.17. Invariance by (subst-r) reductions
Let M v N (resp. M vV N).

• If M → M ′ by a (subst-r) rule except (subst-rget) then M ′ v N (resp.
M ′ vV N)

• If N → N ′ by a (subst-r) by a (subst-r) rule except (subst-rget) then
M v N ′ (resp. M vV N ′).

Proof. Lemma 4.1.17
Clearly, a (subst-r) rule does not modify the skeleton, so Sk(M) = Sk(M ′) =
Sk(N). It is also almost immediate to see that the rules that propagate reference
substitutions, or the (subst-rval) rule that erases a substitution that is only
in the scope of a value, do not modify the reachability sets of an occurrence of
get(r) or M ′ = M1 M2[V ]λ in M .

This is the main technical result on the preorders:

Proposition 4.1.18. Simulation preorder
Let M v N (resp. M vV N). If M →M ′ then ∃n ≥ 0, N →n N ′ with M ′ v N ′

(resp. M ′ vV N ′). If the applied rule is not a (subst-r) or is (subst-rget),
then n > 0.

From this, we deduce the important properties of the preorders:

Corollary 4.1.19. Let M v N or M vV N .

1. If M v N , then if N is strongly normalizing, so is M .

2. If M w N , then M is strongly normalizing if and only if N is.

Proof. Corollary 4.1.19 Let M v N , assume that M has an infinite reduction
sequence. We can map this sequence to (finite or infinite) sequence N →∗ N1 →∗
N2 . . . by 4.1.18. As (subst-r) rules alone without (subst-rget) are strongly
normalizing, this means that the infinite reduction sequence of M must contain
an infinite number of steps that are not (subst-r) rules or are a (subst-rget).
But then, as such steps are simulated by at least one step in the sequence
N →∗ N1 →∗ . . ., the latter must be infinite. This contradicts the fact that N
is strongly normalizing. Thus M has no infinite reduction sequence.

Proof. Proposition 4.1.18
Before simulating the reduction of M in N , we may have to carry around
reference substitutions that are at a different level in the two terms. Let us first
prove that if M = C[E[P ]], then N →∗ C[E ′[P ′]], that is we can reduce M to a
term with the same prefix C[.] by pushing down pending reference substitutions.

84



To do so, we just apply the rule (subst-r‖) until it is not possible anymore
to get N →∗ C[N ′]. Then, E[P ] and N ′ having the same skeleton, N ′ can
be written as E ′[P ′] where E ′ is E with additional references substitutions,
and P and P ′ have the same skeleton and the same head constructor. Indeed,
if P ′ would have additional substitutions in head position we could always
include them in E ′: in fact we take the maximal E ′ that satisfies the previous
decomposition.

Note that the reachability sets of subterms in C (respectively E,E ′) only
depends on C (resp. C,E and C,E ′). On the other side, the reachability sets
of subterms in P (resp. P ′) are unions of substitutions occurring in P,E (resp.
P ′, E ′) and C.

• If the reduction rule is one of the (subst-r) except (subst-rget), by
Lemma 4.1.17, n = 0 works.

• (subst-rget) : P = get(r)[V]↓ → V ∈ V(r) and P ′ = get(r)[V ′]↓. V(r) is
in Reach(get(r), N), so by iterated application of (subst-r) rules except
(subst-rget) and (subst-rval), we can push (without modifying the skele-
ton nor the reachability sets) the corresponding substitutions down until it
reaches get(r) in P ′. Then, we can perform a (subst-rget) reduction. All
the other reachability sets of gets or application are left unmodified.

• (βv) : P = (λx.Q) V [V]λ → T = Q[x/V ][V]↓. Up to (subst-rval) re-
ductions, P ′ = (λx.Q) V [V ′]λ → T ′ = Q[x/V ][V ′]↓. The condition on
reachabiliy sets for application in the defintion of v precisely ensures that
all the gets and applications in Q have the same reachability in C[E[T ]]
and in C[E ′[T ′]].

(subst) rules

• (substvar) : P = x[σ]→ x or σ(x), and P ′ = x[V ]↓[σ]→ x[σ]→ x or σ(x).

• (substapp) : P = Q1 Q2[V ]λ[σ] → T = (Q1[σ]) (Q2[σ])[(V [σ])]λ. We have
P ′ = (Q′1[U ]λ) (Q′2[W ]λ)[V ′]λ[σ] →∗ (Q1[σ][U [σ]]↓) (Q2[σ][V [t]W ]↓)[V

′[σ]]λ.
By definition of reachability sets, they are invariant by all the rule applied.

• We proceed the same way for other cases : the var substitution just go
through the additionnal references substitutions, and by design, reachability
sets are not modified.

(subst-r’) rules

85



• Upward substitutions commute with downward ones without interacting.
On the other hand, they can span new downward substitutions but in this
case, they do it in the same way for both P and P ′ and thus do not modify
the inclusion relation on reachability sets.

4.2 Stratification and Type System

We present in this section a stratified type and effect system for λcES inspired
from [6, 41]. A type and effect system aims at statically track the potential
effects that a term can produce when reduced. Here, the considered effects are
read from or write to references.

4.2.1 The Type System of λcES

Formally, the type and effect system is defined as follows.

-effects e, e′ ⊂ {r1, r2, . . .}
-types α ::= B | A
-value types A ::= Unit | A e→ α | RefrA

The type Unit is the type of ∗. The function type A
e→ α is annotated with

an effect e: the set of references the function is allowed to use. Finally, the
type RefrA states that the reference r can only be substituted with values of
type A. Since thread cannot be fed as an argument to a function, the type of
the parallel components of a program is irrelevant. They are given the opaque
behavior type B. We separate α-types and A-types to ensure that B cannot be
in the domain of a function.

In the typing rules we use two distinct contexts: variable contexts Γ of the
form x1 : A1, . . . , xn : An and reference contexts R of the form r1 : A1, . . . , rn : An.
The latter indicates the type of the values that a reference r appearing in M
can hold. If the order of variables in Γ is irrelevant, the order of references in R
is important.

In order to ensure termination, the type and effect system is stratified: this
stratification induces an order forbidding circularity in reference assignments. It
is presented as a set of rules to build the reference context and can be found
in Figure 4.1. It states that when a new reference is added to the context,
all references appearing in its type must already be in R. In Figure 4.1 the
entailment symbol (`) is overloaded with several meanings:

86



∅ `
R ` A r /∈ dom(R)

R, r : A `
R `

R ` Unit
R `
R ` B

R ` A R ` α e ⊆ dom(R)

R ` A e→ α
R ` r : A ∈ R

R ` RefrA

Figure 4.1: Stratification of the type system

• R is well formed, written R `, means that the references appearing in R
are stratified.

• A type α is well formed under R, written R ` (α, e), means that all
references appearing in e and α are in R.

• A variable context Γ is well formed under R, written R ` Γ, means that all
the types appearing in Γ are well formed under R.

The type and effect system features a subtyping relation whose definition
rules are presented in Figure 4.2. It formalizes the idea that a function of type

A
{r}→ α is not obliged to use the reference r.

Typing judgments overload once more the symbol (`) and take the form
R; Γ `M : (α, e) where R is the reference context, Γ the variable context, α the
type of M and e the references that M may affect. Using the stratification and
the subtyping relation, the typing rules for the language λcES are presented in
Figure 4.3. For succinctness, the application rule has been factorized into two
rules, (APP) and (SUBST) for ξ = λ. Thus (APP) is not a legitimate rule but
an abuse of notation, and must be followed by an appropriate (SUBST) in any
type derivation.

Remark 4.2.1. In Rule (lam), when abstracting over a variable in a term
R; Γ, x : A `M : (α, e), the resulting value λx.M is pure and hence its effects
should be the empty set. However one must remember that the body of this
abstraction is potentially effectful: this is denoted by annotating the functional
arrow “→” with a superscript indicating these effects. Also note that in general,
the order of references in R is capital: it is the order induced by stratification.

Let (α, e) be a type and effect well-formed under a reference context R,
i.e. R ` (α, e). We give two definitions that allow to refer to the effects
contained implicitly or explicitly in (α, e). EffR(α, e) represents the effects of
e together with the effects placed on the arrows of α. RegR(α, e), includes not
only EffR(α, e) but also all the effects involved in the judgement R ` (α, e).

87



R ` α ≤ α
(ref)

e ⊂ e′ ⊂ dom(R) R ` α ≤ α′

R ` (α, e) ≤ (α′, e′)
(cont)

R ` A′ ≤ A R ` (α, e) ≤ (α′, e′)

R ` A e→ α ≤ A′
e′→ α′

(arrow)

Figure 4.2: Subtyping relation

R ` Γ, x : A

R; Γ, x : A ` x : (A, ∅) (var) R ` Γ
R; Γ ` ∗ : (Unit, ∅) (unit) R ` Γ r : A ∈ R

R; Γ ` r : RefrA
(reg)

R; Γ, x : A `M : (α, e)

R; Γ ` λx.M : (A
e→ α, ∅)

(lam) R; Γ `M : (A
e1→ α, e2) R; Γ ` N : (A, e3)

R; Γ `M N : (α, e1 ∪ e2 ∪ e3)
(app)

R; Γ ` r : RefrA

R; Γ ` get(r) : (A, {r}) (get)
R; Γ `M : (α, e) R ` (α, e) ≤ (α′, e′)

R; Γ `M : (α′, e′)
(sub)

R; Γ, x1 : A1, . . . , xn : An `M : (α, e) ∀i : R; Γ ` Vi : (Ai, ∅)
R; Γ `M [∀i : xi 7→ Vi] : (α, e)

(subst)

∀i : R; Γ ` ri : RefriAi R; Γ `M : (α, e) ∀i : ri ∈ e ∀i : V ∈ Ei =⇒ R; Γ ` V : (Ai, ∅)
R; Γ `M [∀i : ri 7→ Ei]ξ : (α, e) for ξ ∈ {↑, ↓, λ} (subst-r)

i = 1, 2 R; Γ `Mi : (αi, ei)

R; Γ `M1 ‖M2 : (B, e1 ∪ e2)
(par)

i = 1, 2 R; Γ `Mi : (α, e)

R; Γ `M1 + M2 : (α, e)
(sum)

Figure 4.3: Typing rules for λcES

For example, take R = r : Refr Unit, s : Refs (Unit
{r}→ Unit) and α =

Unit
{s}→ Unit. Then EffR(α, ∅) = {s} while RegR(α, ∅) = {r, s}.

Definition 4.2.2. Effect of a type and effect
Let R ` (α, e). We define the effect EffR(α) as:

EffR(Unit) = ∅
EffR(B) = ∅
EffR(A

e→ α) = EffR(A) ∪ EffR(α) ∪ e

We define EffR(α, e) = EffR(α) ∪ e.

Definition 4.2.3. Region of a type and effect
Let R ` (α, e). We define the set RegR(α) as:

88



RegR(Unit) = ∅
RegR(B) = ∅
RegR(A

e→ α) = RegR(A) ∪ RegR(e) ∪ RegR(α)

Where RegR(r) for a reference r is defined by RegR(r) = {r} ∪ RegR(R(r), ∅),
and is naturally extended to an effect e by RegR(e) =

⋃
r∈e RegR(r). Finally, the

region of a type and effect (α, e) is defined as RegR(α, e) = RegR(α) ∪ RegR(e).

Remark 4.2.4. Note that we always have EffR(α, e) ⊆ RegR(α, e) ⊆ dom(R).

4.2.2 Subject reduction

The language λcES satisfies the usual safety properties of a typed calculus: subjet
reduction and progress.

Lemma 4.2.5. Subject reduction
Let R; Γ `M : (α, e) be a typing judgment, and assume that M →M ′. Then
R; Γ `M ′ : (α, e).

Remark 4.2.6. The fact that an effectful term may become pure after reduction
is reflected by the subtyping relation. For example, consider P = get(r)[V]↓
where R ` P : (A, {r}) and P → (V + . . .). Since V is a value it can only be
given the type R ` V : (A, ∅). Subject reduction would however require that V
has the same type (A, {r}) as P . The subtyping relation corresponds to effect
containment, meaning that the effects appearing in types are an upper bound
of the actual effects produced by a term, so that (A, ∅) is a subtype of (A, {r}).

Proof. Lemma 4.2.5
Case analysis on the reduction rule used :

Main reduction rules

• (βv) Then the typing derivation of M is of the form :

R; Γ ` RegrB ∀U ∈ U : R; Γ ` U : (B, ∅)

R; Γ, x : A `M : (α, e)

R; Γ ` (λx.M) : (A
e→, ∅)

(lam)
R; Γ ` V : (A, ∅)

R; Γ ` (λx.M) V : (α, e)
(app)

R; Γ ` (λx.M) V [U ]λ : (α, e)
(subst-r)

Then one can form the derivation

R; Γ ` RegrB ∀U ∈ U : R; Γ ` U : (B, ∅)
R; Γ ` V : (A, ∅) R; Γ, x : A `M : (α, e)

R; Γ `M [x/V ] : (α, e)
(subst)

R; Γ `M [x/V ][U ]↓ : (α, e)
(subst-r)

using the admissibility of generalized weakening.

89



Variables substitutions

• (substvar) We have

R; Γ ` σ(xi) : (Ai, ∅) R; Γ′ ` y : (B, ∅)
(var)

R; Γ ` y[σ] : (B, ∅)
(subst)

with Γ′ = Γ, x1 : A1, . . . , xn : An if i ranges over 1 . . . n. We have
R; Γ ` y : (B, ∅)

(var)

if σ is undefined at y or
R; Γ ` σ(y) : (Ai0, ∅)

if ∃i0, xi0 = y and thus Ai0 = B.

• (substunit) : just apply the (unit) typing rule.

• (substapp)

R; Γ′ ` ri : RegriAi ∀V ∈ V(ri) : R; Γ′ ` V : (Ai, ∅)
R; Γ′ `M : (C

e1→ α, e2) R; Γ′ ` N : (C, e3)

R; Γ′ `M N : (α, e)
(app)

R; Γ′ `M N [V ]λ
(subst-r)

(subst)
R; Γ′ ` σ(xj) : (Bj, ∅) R; Γ′ `M N [V ]λ

R; Γ `M N [V ]λ[σ] : (α, e)

With Γ′ = Γ, x1 : A1, . . . , xn : An and e1 ∪ e2 ∪ e3 = e. We can derive

(subst)
R; Γ ` σ(xj) : (Bj, ∅) R; Γ′ `M : (C

e1→ α, e2)

R; Γ `M [σ] : (C
e1→ α, e2)

R; Γ ` σ(xj) : (Bj, ∅) R; Γ′ ` N : (C, e3)

R; Γ ` N [σ] : (C, e3)
(subst)

R; Γ ` (M [σ]) (N [σ]) : (α, e)
(app)

For any V ∈ V(ri), one has
R; Γ ` σ(xj) : (Bj, ∅) R; Γ′ ` V : (Ai, ∅)

R; Γ ` V [σ] : (Ai, ∅)
(subst)

And finally
R; Γ ` P : (α, e) R; Γ ` ri : RegriAi ∀V ∈ V(ri) : R; Γ ` V [σ] : (Ai, ∅)

R; Γ ` (M [σ]) (N [σ])[V [σ]]λ
(subst-r)

• (substλ) :

R; Γ ` σ(xi) : (Ai, ∅)
R; Γ′, y : A `M : (α, e)

R; Γ′ ` λy.M : (A
e→ α, ∅)

(lam)

R; Γ ` λy.M [σ] : (A
e→ α, ∅)

(subst)

then we just swap the two rules :

90



(weak)
R; Γ ` σ(xi) : (Ai, ∅)

R; Γ, y : A ` σ(xi) : (Ai, ∅) R; Γ′, y : A `M : (α, e)

R; Γ, y : A `M [σ] : (α, ∅)
(subst)

R; Γ ` λy.(M [σ]) : (A
e→ α, ∅)

(lam)

• (substget) :

R; Γ ` σ(xi) : (Ai, ∅)
R; Γ′ ` r : RegrB

R; Γ′ ` get(r) : (B, {r})
(get)

R; Γ ` get(r)[σ] : (B, {r})
(subst)

We can juste recast the get rule without the weakened xis :
R; Γ ` r : RegrB

R; Γ ` get(r) : (B, {r})
(get)

• (subst‖) :

R; Γ ` σ(xj) : (Aj, ∅)
i = 1, 2 R; Γ′ `Mi : (αi, ei)

R; Γ′ `M1 ‖M2 : (B, e)
(par)

R; Γ `M1 ‖M2[σ] : (B, e)
(subst)

Then

i = 1, 2

R; Γ ` σ(xj) : (Aj, ∅) R; Γ′ `Mi : (αi, ei)

R; Γ `Mi[σ] : (αi, ei)
(subst)

R; Γ ` (M1[σ]) ‖ (M2[σ]) : (B, e)
(par)

• (substsubst−r) :

R; Γ ` σ(xj) : (Aj, ∅)
R; Γ′ ` ri : RegriAi ∀U ∈ U(ri) : R; Γ′ ` U : (Ai, ∅) R; Γ′ `M : (α, e)

R; Γ′ `M [U ]↓ : (α, e)
(subst-r)

R; Γ `M [U ]↓[σ] : (α, e)
(subst)

Then for any U ∈ U(ri)
R; Γ′ ` U : (Ai, ∅)
R; Γ ` U [σ] : (Ai, ∅)

(subst)

It follows

R; Γ ` ri : RegriAi ∀U ∈ U(ri) : R; Γ ` U : (Ai, ∅)
R; Γ ` σ(xj) : (Aj, ∅) R; Γ′ `M : (α, e)

R; Γ ` :[σ/M ](α, e)
(subst)

R; Γ `M [σ][U [σ]]↓ : (α, e)
(subst-r)

91



• (substsubst−r′) : exactly as the previous case (the typing rules and reduction
rules being similar)

• (substmerge) We need a simple substitution lemma to handle this case of
the meta substitution. Let ΓI = •i∈Ixi : Ai and ΓJ = •j∈Jxj : Aj where •
is the list concatenation.

∀U ∈ U(rj) : R; Γ ` U : (Aj, ∅)
∀V ∈ V(ri) : R; Γ,ΓJ ` V : (Ai, ∅) R; Γ,ΓJ ,ΓI `M : (α, e)

R; ΓJ `M [(xi)/(Vi)] : (α, e)
(subst)

R; Γ `M [(xi)/(Ui)][(yj)/(Uj)] : (α, e)
(subst)

Then we have
∀V ∈ Vi : R; Γ ` V {(Uj)/(yj)} : (Ai, ∅) ∀U ∈ Uj : R; Γ ` U : (Aj, ∅) R; Γ,ΓJ ,ΓI `M : (α, e)

R; Γ `M [(zi)/(Wi)] : (α, e)
(subst)

Downward references substitutions

• (subst-rval)

R; Γ ` ri : RegriAi ∀U ∈ U(ri) : R; Γ ` U : (Ai, ∅)
R; Γ ` V : (A, ∅)
R; Γ ` V : (A, {r})

(sub)

R; Γ ` V [U ]↓ : (A, e)
(subst-r)

Then we just reuse the typing derivation of
R; Γ ` V : (A, ∅)
R; Γ ` V : (A, {r})

(sub)

• (subst-r‖)

R; Γ ` ri : RegriAi ∀U ∈ U(ri) : R; Γ ` U : (Ai, ∅)
R; Γ `Mi : (αi, ei)

R; Γ `M1 ‖M2 : (B, e)
(par)

R; Γ `M1 ‖M2[U ]↓ : (B, e)
(subst-r)

Then we commute the two rules
R; Γ ` ri : RegriAi ∀U ∈ U(ri) : R; Γ ` U : (Ai, ∅) R; Γ `Mi : (αi, e)

R; Γ `Mi[U ]↓ : (αi, e)
(subst-r)

R; Γ ` (M1[U ]↓) ‖ (M2[U ]↓) : (B, e)
(par)

• (subst-rsubst-r’)

92



R; Γ ` ri : RegriAi ∀V ∈ V(ri) : R; Γ ` V : (Ai, ∅) R; Γ `M : (α, e)

R; Γ `M [V ]↑ : (α, e)
(subst-r)

R; Γ ` rj : RegrjBj ∀U ∈ U(rj) : R; Γ ` U : (Bj, ∅) R; Γ `M [V ]↓ : (α, e)

R; Γ `M [V ]↑[U ]↓ : (α, e)
(subst-r)

We just swap the two rules
R; Γ ` rj : RegrjBj ∀U ∈ U(rj) : R; Γ ` U : (Bj, ∅) R; Γ `M : (α, e)

R; Γ `M [U ]↓ : (α, e)
(subst-r)

R; Γ ` ri : RegriAi ∀V ∈ V(ri) : R; Γ ` V : (Ai, ∅) R; Γ `M [U ]↓ : (α, e)

R; Γ `M [U ]↓[V ]↑ : (α, e)
(subst-r)

• (subst-r-merge)
R; Γ ` ri : RegriAi ∀V ∈ V(ri) : R; Γ ` V : (Ai, ∅) R; Γ `M : (α, e)

R; Γ `M [V ]↓ : (α, e)
(subst-r)

R; Γ ` rj : RegrjBj ∀U ∈ U(rj) : R; Γ ` U : (Bj, ∅) R; Γ `M [V ]↓ : (α, e)

R; Γ `M [V ]↓[U ]↓ : (α, e)
(subst-r)

Then we have
R; Γ ` rk : RegrkAk ∀W ∈ (U + V)(xk) : R; Γ ` W : (Ak, ∅) R; Γ `M : (α, e)

R; Γ `M [V ,U ]↓ : (α, e)
(subst-r)

• (subst-r-app)

R; Γ ` ri : RegriAi ∀V ∈ V(ri) : R; Γ ` V : (Ai, ∅)
R; Γ `M : (A

e1→ α, e2) R; Γ ` N : (A, e3)

R; Γ `M N : (α, e)
(app)

R; Γ `M N [V ]λ : (α, e)
(subst-r)

R; Γ ` rj : RegrjBj ∀U ∈ U(rj) : R; Γ ` U : (Bj, ∅) R; Γ `M N [V ]λ : (α, e)

R; Γ `M N [V ]λ[U ]↓ : (α, e)
(subst-r)

That we can turn into

93



R; Γ ` rj : RegrjBj ∀U ∈ U(rj) : R; Γ ` U : (Bj, ∅) R; Γ `M : (A
e1→ α, e2)

R; Γ `M [U ]↓ : (A
e1→ α, e2)

(subst-r)

R; Γ ` rj : RegrjBj ∀U ∈ U(rj) : R; Γ ` U : (Bj, ∅) R; Γ ` N : (A, e3)

R; Γ ` N [U ]↓ : (A, e3)
(subst-r)

R; Γ `M [U ]↓ : (A
e1→ α, e2) R; Γ ` N [U ]↓ : (A, e3)

R; Γ ` (M [U ]↓) (N [U ]↓) : (α, e)
(app)

R; Γ ` rk : RegrkAk ∀W ∈ (V + U)(ri) : R; Γ ` W : (Ci, ∅) R; Γ ` (M [U ]↓) (N [U ]↓) : (α, e)

R; Γ ` (M [U ]↓) (N [U ]↓)[W ]λ
(subst-r)

• (subst-rget) Write S = M1 + . . . + Mn + [], with n ≥ 0. The derivation
tree of P = C[E[get(r)[V ]↓]] is of the form
R; Γ ` ri : RegriAi ∀V ∈ V(ri) : R; Γ ` V : (Ai, ∅) R; Γ ` get(r) : (A, e)

R; Γ ` get(r)[V ]↓ : (A, e)
(subst)

[. . .]

R; Γ′ ` P : (α, e′)

And of the full term :
(∀i : 1 ≤ i ≤ n) R; Γ `Mi : (α, e′) R; Γ ` P : (α, e′)

R; Γ ` S[P ] : (α, e′)
(sum)

To get the first term of the reduct, we just remove the subst rule :

(∀i : 1 ≤ i ≤ n) R; Γ `Mi : (α, e′)

R; Γ ` get(r) : (A, e)

[. . .]

R; Γ′ ` C[E[get(r)]] : (α, e′)

R; Γ′ ` S[C[E[get(r)]]] : (α, e′)
(sum)

Now if V is undefined at r we are done. Otherwise, we substitute get(r) by
a value V ∈ V(r) :

R; Γ ` V : (A, ∅)
R; Γ ` V : (A, e)

(sub)

[. . .]

R; Γ′ ` C[E[V ]] : (α, e′)

And we can finally derive
∀V ∈ Vi0 : R; Γ′ ` C[E[V ]] : (α, e′) R; Γ′ ` S[C[E[get(r)]]] : (α, e′)

R; Γ′ ` S[C[E[get(r)]]] +
∑

V ∈V(r)

C[E[V ]] : (α, e′)
(sum)

Upward references substitutions

94



• (subst-r’‖)

R; Γ `M : (α1, e1)

R; Γ ` ri : RegriAi ∀V ∈ V(ri) : R; Γ ` V : (Ai, ∅) R; Γ ` N : (α2, e2)

R; Γ ` N [V ]↑ : (α2, e2)
(subst-r)

R; Γ `M ‖ (N [V ]↑) : (B, e)
(par)

Then we have
(subst-r)

R; Γ ` ri : RegriAi ∀V ∈ V(ri) : R; Γ ` V : (Ai, ∅) R; Γ `M : (α1, e1)

R; Γ ` (M [V ]↓) : (α1, e2) R; Γ ` N : (α2, e2)

R; Γ ` (M [V ]↓) ‖ N : (B, e)
(par)

R; Γ ` ri : RegriAi ∀V ∈ V(ri) : R; Γ ` Vi : (Ai, ∅) R; Γ ` (M [V ]↓) ‖ N : (B, e)

R; Γ ` (M [V ]↓) ‖ N [V ]↑ : (B, e)
(subst-r)

• (subst-r’app-left)
R; Γ ` ri : RegriAi ∀V ∈ V(ri) : R; Γ ` V : (Ai, ∅) R; Γ `M : (A

e2→ α, e3)

R; Γ `M [V ]↑ : (A
e2→ α, e3)

(subst-r)

R; Γ ` (M [V ]↑) : (B
e1→ α, e2) R; Γ ` N : (A, e3)

R; Γ ` (M [V ]↑) N : (α, e)
(app)

R; Γ ` rj : RegrjBj ∀U ∈ U(rj) : R; Γ ` U : (Bj, ∅) R; Γ ` (M [V ]↑) N : (α, e)

R; Γ ` (M [V ]↑) N [U ]λ : (α, e)
(subst-r)

That we turn to

R; Γ `M : (A
e1→ α, e2)

R; Γ ` ri : RegriAi ∀V ∈ V(ri) : R; Γ ` V : (Ai, ∅) R; Γ ` N : (A, e3)

R; Γ ` N [V ]↓ : (A, e3)
(subst-r)

R; Γ `M (N [V ]↓) : (α, e)
(app)

R; Γ ` rk : RegrkCk ∀W ∈ (V + U)(rk) : R; Γ ` W : (Ck, ∅) R; Γ `M (N [U ,V ]↓) : (α, e)

R; Γ `M (N [V ]↓)[U ,V ]λ : (α, e)
(subt-r)

R; Γ ` rk : RegrkCk ∀W ∈ (U + V)(rk) : R; Γ ` W : (Ck, ∅) R; Γ `M (N [V ]↓)[U ,V ]λ : (α, e)

R; Γ `M (N [V ]↓)[U ,V ]λ[V ]↑ : (α, e)
(subst-r)

• (subst-r’app-right) : same as (subst-r’app-left)

• (subst-r’>) Assume that S = M1 + . . . + Mn + [], with n ≥ 0, then we
have
R; Γ ` rj : RegrjAj ∀V ∈ V(rj) : R; Γ ` V : (Aj, ∅) R; Γ `M : (α, e)

R; Γ `M [V ]↑ : (α, e)
(subst-r)

(∀i : 1 ≤ i ≤ n) R; Γ `Mi : (α, e) R; Γ `M [V ]↑ : (α, e)

R; Γ ` S[M [V ]↑] : (α, e)
(sum)

95



We just have to remove the (subst-r) rule to get the result :
(∀i : 1 ≤ i ≤ n) R; Γ `Mi : (α, e) R; Γ `M : (α, e)

R; Γ ` S[M ] : (α, e)
(sum)

4.2.3 Progress

Well-typed normal forms of λcES may not be a parallel composition of values.
Indeed, get(r) itself is an example of a typable normal form which is not a value.
The progress theorem states that the only reason for which a term may get stuck
is the presence of an orphan read with no corresponding assignment. Normal
forms are thus either values, or some application of values together with at least
one such stuck read.

Lemma 4.2.7. Progress
Let R ` M : (A, e) be a well-typed term that does not reduce further. Then
M is of the form

∑n
i=1(M

i
1 ‖ . . . ‖ M i

li
) where the M i

j are either values or
terms of the grammar Mnorm ::= get(r) | (Mnorm V )[V]λ | (V Mnorm)[V]λ |
(Mnorm Mnorm)[V ]λ.

Proof. Lemma 4.2.7
By recurrence on M. First assume that M is a simple term M :

• If M is a value or M = get(r), this is true

• If M = M ′[σ], then there is always a (subst) rule that can be applied
whatever M ′ is.

• If M = M ′[V ]↓, we can use a (subst-r) rule unless M ′ = M ′′[σ]. But then
we are back to the previous case. Hence M ′ reduces, and so does M .

• If M = P Q[V ]λ, we have the type derivation

R;` P Q[V ]λ : (α, e)

R;` P Q : (α, e)

R;` P : (A
e1→ α, e2) R;` Q : (A, e3)

(app)

(subst− r)

If P → P ′ by any rule excepted (subst-r’>), M = E[P ] with E = [.] Q[V ]λ
and thus M also reduces. The same applies if Q reduces. Assume now
that P → P ′ by (subst-r’>), meaning that P = P ′[V]↑. Then we can
apply (subst-r’app-left) to M . Similarly, we can apply (subst-r’app-right)

96



if Q = Q′[V ]↑. Thus by induction P and Q are themselves either values, of
the form Mnorm, or a parallel of values and Mnorm forms. It is immediate
that neither P or Q can be of the form M1 ‖ M2 (they would have to be
typed by B and coudn’t be applied or applied to), thus P and Q are either
values or of the form Mnorm.
Now, if both are values (note that P and Q must be closed terms), the only
way for P to have type A

e1→ α is to be an abstraction, but then M would
reduce by (βv). Thus one of them is of the form Mnorm and so is M .

• if M = M ′[V ]↑ then it reduces by (subst-r’>).

• if M = P ‖ Q, assume that P → P ′ by any rule excepted (subst-r’>),
then so would M , taking E = [.] and C = [.] ‖ Q. The same holds for Q.

Now, if P or Q is of the form P ′[V ]↑, then M reduces by (subst-r’‖). Thus
P and Q does not reduce, and by induction, are of the form ‖i Mi with Mi

a value or of the form Mnorm, hence so is M .

Finally, if M =
∑
Mi, then M is normal if and only if each Mi is and the

induction hypothesis immediately gives the result.

4.3 Termination

Our main result is a finitary, interactive proof of strong normalization for λcES.
This section is devoted to the presentation of the problem in the context of
references, the explanation of why the existing solutions do not apply to our
setting and what we propose instead.

Shortcoming of Existing Solutions Introduced by Tait in 1967 [53], reducibility
is a widely used, versatile technique for proving strong normalization of lambda-
calculi. The core of this technique is to define inductively on types τ a set
SC(τ) of well typed terms, called strongly computable terms, satisfying a series of
properties. One proves that terms in SC(τ) are strongly normalizing (Adequacy)
and (the most difficult part) that all well typed terms of a type τ are actually
in SC(τ).

When adapting this technique to a type and effect system, the main difficulty
is that the definition is not obviously inductive anymore. To define SC(A

e→ α),
we need to have defined the types of references appearing in e. But e can itself
contain a reference of type A

e→ α: in the Landin’s fixpoint example shown in

the introduction of this chapter, the looping term has the type Unit
{r}→ Unit

97



while r has the same type. The role of stratification is to induce a well-founded
ordering on types so that the definition becomes consistent.

The solution offered by stratification of the type system is however not
enough for λcES. In Boudol [8], where the technique is introduced, concurrency
is explicitly controlled by threads themselves that are guaranteed to be the only
process in execution during each slice of execution. In λcES, reduction steps
are performed in arbitrary threads such that stores may be affected by others
between two atomic steps in a particular thread.

To overcome this issue, for the language presented in Section 4.4.1, Amadio [6]
strengthens the condition defining SC sets by asking that they also terminate
under infinite stores of the form (r ⇐ V1 ‖ . . . ‖ r ⇐ Vn ‖ . . .) with (Vi) an
enumeration of all the elements of SC(α). In this setting, infinite stores are
static top-level constructions: once saturated, they are invariant by any new
assignment. In a term (M1 ‖M2 ‖ S) with S being such a store, any memory
operation of M2 is completely invisible to M1 and one can prove separately the
termination of each thread.

However, this solution is not easily transposable to λcES. First of all, the
rule (subst-rget) produces all the possible values associated to a store. The
corresponding get(r)[V ]↓ would reduce to an infinite sum get(r) +

∑
i Vi where,

even if each summand terminates, there is also for any positive integer n a
summand that takes at least n steps to reach normal form. The total sum
is not terminating anymore. Secondly, unlike static top-level stores, reference
substitutions are duplicated, erased and exchanged in an interactive way between
threads.

Our Solution To prove strong normalization of λcES, we change gears. With
explicit substitutions, assignments and reads are a way of exchanging messages
between threads or subterms. Apart from the termination of each term in
isolation, the key property we need is that threads cannot exchange an infinite
amount of messages.

We formalize this condition by strengthening the definition of strongly com-
putable terms. We force them to also be well-behaved. A well-behaved term
must only emit a finite number of upward substitutions containing strongly com-
putable terms when placed in a “fair” context. A fair context is a context that
would only send strongly computable reference substitutions (albeit potentially
infinitely many).

These notions are defined in Section 4.3.1, while the strong normalization
result is spelled out in Section 4.3.2.

98



4.3.1 Technical Definitions

Remark 4.3.1. In the following, we do not want to deal with the clumsiness
of handling sums of terms everywhere. If a reduction sequence is seen as a
tree, where branching points correspond to (subst-rget) and the children to
all the summands produced by this rule, then by König’s lemma it is finite
if and only if all its branches are finite. We will thus use the alternative
non-deterministic reduction →nd (Definition 4.1.9), such that a sequence of
reductions→nd corresponds to a branch in the original reduction system. Proving
the termination of →nd is then sufficient, thanks to the König’s lemma. In the
rest of the chapter, we only consider simple terms (non-sums) and the →nd

reduction, that we will just write →.

The purpose of the following Definition 4.3.2 is to formalize the interac-
tion of a subterm with its context as a play against an opponent that can
non-deterministically drop downward substitutions at the top level or absorb
upcoming substitutions. This is summarized in the condition (WB) of Defini-
tion 4.3.5.

Definition 4.3.2. Environment Reduction
Let ` M : (α, e) be a well typed term. Let (Vi) be a sequence of reference
substitutions such that M [Vi]↓ is well typed that we write ` (M, (Vi)). We call
a (M, (Vi))-reduction a finite or infinite reduction sequence starting from M
where each step is either a →nd, or an interaction with the environment defined
by the additional rules M [V ]↑ →↑ M and M →↓ M [Vi]↓.

The sets of strongly computable terms are defined by induction on a pair
(α, e) of type and effect, with respect to the following well-founded ordering
introduced in [8]:

Definition 4.3.3. Type and effect ordering

We define the size of a type |α| by:

|Unit| = 1
|B| = 1

|A e→ α| = |A|+ |α|+ 1

For two types and effect (α1, e1) and (α2, e2) such that R ` (α1, e1) and
R ` (α2, e2), (α1, e1) ≺R (α2, e2) if and only if:

1. RegR(α1, e1) ( RegR(α2, e2), or

99



2. RegR(α1, e1) = RegR(α2, e2) and |α1| < |α2|

Proposition 4.3.4. [8, Boudol] Well-ordering of type and effect
The ≺R order is well-founded, that is there is no infinite sequence (αi, ei)i∈N
with ∀i ∈ N, (αi+1, ei+1) ≺R (αi, ei).

We can now define the notion of strongly computable terms as follows, by
induction with respect to the ≺R order.

Definition 4.3.5. Strongly Computable Terms
The set SCR(α, e) of strongly computable terms of type (α, e) is defined as
follows:

Base type. Assume that α = Unit | B. Then M ∈ SCR(α, e) if it is

well-typed R `M : (α, e)

(SN) Strongly normalizing under reference substitutions: For all V verifying
∀r,V(r) defined =⇒ r ∈ e, V(r) ⊆ SCR(R(r), ∅), the term M [V]↓ is
strongly normalizing.

(WB) Well Behaved: For any (Vi) such that ` (M, (Vi)) and verifying ∀i,∀r,Vi(r) defined =⇒
r ∈ e,Vi(r) ⊆ SCR(R(r), ∅) , for any (M, (Vi))-reduction M = M0 → . . .→
Mn → . . ., there exists n0 ≥ 1 such that for all k ≥ 1:

1. IfMk−1 is of the formN [U ]↑ withMk−1 →↑ Mk then ∀r,U(r) defined =⇒
U ⊆ SCR(R(r), ∅),

2. If k ≥ n0 then Mk−1 →Mk is not a (→↑) step.

Inductive case. M belongs to SCR(A
e1→ α, e) provided that R `M : (A

e1→ α, e).
Then for all V ∈ SCR(A, ∅), we have M V ∈ SCR(α, e ∪ e1).

Notation 4.3.6. By abuse of notation, we shall omit in the following one or
more of the R,α, e when it is obvious from the context and just write M ∈ SC.
Moreover, we also write V ⊆ SC to mean that for all r for which V is defined,
we have V(r) ⊆ SCR(R(r), ∅).

Remark 4.3.7. The condition (SN) requires terms to be strongly normalizing
when put under any finite reference substitution of strongly computable terms.
The finiteness is sufficient, thanks to the presence of condition (WB). This
rather technical condition is the well-behaved requirement: it says that there
are at most n0 (→↑) steps.

100



4.3.2 Strong Normalization for λcES

We are now ready to state and sketch the proof of strong-normalization for λcES.
The easy part is the adequacy result, stated as follows.

Lemma 4.3.8. Adequacy If M ∈ SC(α, e) then M is strongly normalizable.

Proof. Lemma 4.3.8
We will prove additionally by induction on types that for any value type A,
there exists Vα ∈ SC(A, ∅).

• For α = Unit | B, if M ∈ SC(α, f) did not terminate, then neither would
M [V ]↓. If α = Unit, then ∗ ∈ SC(Unit, ∅) is a value populating SC(α, ∅).

• For α = A
e1→ α′, if M ∈ SC(α, e′) did not terminate, neither would M V

for V ∈ SC(A, ∅), which exists since the latter set is not empty by induction
hypothesis. For Vα′ ∈ SC(α′, ∅), then λx.Vα′ is a value populating SC(α, ∅)

The heart of our result is the opposite result, the soundness:

Proposition 4.3.9. Soundness
Let R;x1 : A1, . . . , xn : An ` P : (α, e). Let σ be a variable substitution
with dom(σ) ⊆ {x1, . . . , xn} and ∀x ∈ dom(σ), σ(x) ∈ SCR(Ai, ∅). Then
P [σ] ∈ SCR(α, e).

The proof of Proposition 4.3.9 is rather technical and require the introduction
of auxiliary lemmas to be worked out. We first give a high-level sketch of some
representative cases first, to focus on the important ideas and intuitions. The
reader may refer to Section 4.3.3 for a complete proof.

Sketch of the proof of Proposition 4.3.9.
The proof is performed by induction on the structure of the term P . To show
how the proof works, we focus on two representative cases, the abstraction and
the parallel composition.

Abstraction Let us treat the case P = λx.M with R, x : A1 ` λx.M : (α, e1).
By induction, for any V ∈ SCR(A1, ∅), e′ ⊇ e1, M [x 7→ V ] ∈ SCR(α, e′). For

e ⊆ dom(R), we want to show that P ∈ SCR(A1
e1→ α, e). Let α = A2

e2→ . . .
en−1→

An
en→ β be the expansion of the type of P , where β is either Unit or B. If we

unfold the recursive definition of SC sets, proving that P ∈ SC(α) amounts
to check that Λ(P,U , (Ni)) := P V1 . . . Vn[U ]↓ satisfies (SN) and (WB) for all
strongly computable V1, . . . , Vn and U with suitable types.

101



The only possible reduction in Λ are either (subst-r) ones (excluding
(subst-rget)), or the reduction P → λx.(M [σ]). Assume that Λ has an in-
finite reduction sequence. As (subst-r) rules alone are strongly normalizing,
then the reduction P → (λx.M [σ]) must happen at some point. Similarly,
after this reduction, the only possible reductions excluding (subst-r) rules
are the βV -reduction (λx.M [σ]) V1 → M [σ][x 7→ V1], followed by the merging
M [σ, x 7→ V1].

To sum up, an infinite reduction sequence starting from Λ must have the
form

Λ →1 Λ1 →2 . . .
→i1 (λx.M [σ]) V1 . . . Vn →i1+1 . . .
→i2 M [σ][x 7→ V1] V2 . . . Vn →i2+1 . . .
→i3 M [σ, x 7→ V1] V2 . . . Vn →i3+1 . . .

We omitted a possible bunch of floating reference substitutions for the sake
of readability. Reduction steps verify (∀i : 1 ≤ i ≤ i3), i 6∈ {i1, i2, i3} =⇒
→i is a (subst-r) rule. We can bound Λi3: Λi3 = M [σ, x 7→ V1] V2 . . . Vn v
M [σ, x 7→ V1] V2 . . . Vn[V ]↓, but by induction hypothesisM [σ, x 7→ V1] ∈ SC(α, e1∪
e), thus Λi3 is strongly normalizing. This contradicts the fact that the reduction
sequence (Λi) is infinite. Hence, Λ is strongly normalizing. The (WB) is proved
similarly: before producing any upward substitution, Λ must perform the reduc-
tion step →i1,→i2 and →i3. From there it is bounded by a (WB) term, which
implies that it is itself (WB).

Parallel We now treat a case that shows the usage of the (WB) condition.
Assume that P = M1 ‖M2. Let Γ = x : A1, . . . , xn : An. Since R; Γ ` P : (B, e),
there exists α1, α2, e1, e2 such that R; Γ ` (α1, e1), R; Γ `M2 : (α2, e2), e1∪e2 ⊆ e.
Take e′ ⊇ e. By induction, Mi ∈ SCR(αi, e

′). We will show that M1 ‖ M2 is
strongly normalizing: as in the previous case, the proof that it is well-behaved
follows the same technique, and we focus on strong normalization. Note that
for some appropriate V i

1 , . . . , V
i
n, Mi V

i
1 . . . V i

n is strongly normalizing. This
entails in particular that Mi itself is strongly normalizing (see the proof of
Lemma 4.3.8).

Let V be a reference substitution of strongly computable terms (whose
domain is included in e′), we have to prove that Λ = M1 ‖M2[V]↓ is strongly
normalizing. Assume that Λ has an infinite reduction. The reducts of Λ have
the forms Λ = M1 ‖M2[V ]↓ → . . .→M 1

1 ‖M 1
2 → . . .→Mn

1 ‖Mn
2 → . . . where

we omitted possible reference substitutions at the top level.

102



While each Mi do terminate in isolation as strongly computable terms, the
possibility of an infinite exchange of substitutions prevent us from using (SN)
directly to deduce the strong normalization of P . This is the precise role of
(WB): the sequence of reductions from Mk

i to Mk+1
i inside its context can be

mapped to an environment reduction of Mi. The environment abstracts the
role of the adverse thread M1−i which can generate new downward reference
substitutions at the top level. We adopt the following strategy :

1. Use (WB) to show that the exchange of substitutions between the two
threads M1 and M2 must come to an end, and that all the exchanged
substitutions are strongly computable.

2. For each Mi, gather all the substitutions (a finite number according the
previous step) it receives during the reduction of Λ and merge them into
one substitution Xi

3. Show that after a finite number k of steps, when the two threads do not
exchange reference substitutions anymore, we can bound each reduct Mk

i

inside Λ by a reduct of Mi[X ]↓.

Since the bounding terms are strongly normalizing by (SN), so are the Mk
i s by

Proposition 4.1.18, and the reduction of Λ must be finite from this point.

Putting together Proposition 4.3.9 (with n = 0) and Lemma 4.3.8, we can
easily prove the strong normalization result for λcES.

Theorem 4.3.10. Termination
Let R `M : (α, e) be a well-typed closed term. Then M is strongly normalizing.

Proof. Theorem 4.3.10
Let R `M : (α, e). By Proposition 4.3.9, M ∈ SC(α, e). By Lemma 4.3.8, M
is strongly normalizing.

Since the reduction is locally confluent, we deduce the confluence of the
language.

Corollary 4.3.11. Confluence
The reduction is confluent on typed terms.

Proof. Corollary 4.3.11
By Newman’s lemma.

103



4.3.3 Proof of Proposition 4.3.9

We start by giving an explicit (non inductive) characterization of strongly
computable terms:

Lemma 4.3.12. Characterization
Let

• α = A1
e1→ . . .

en−1→ An
en→ β with β = Unit | B

• `M : (α, e)

• Vi ∈ SC(Ai, ∅)

• U ⊆ SC

• f = e ∪ e1 ∪ . . . ∪ en

with dom(U) ⊆ f . We define

Λ(M,U , (Vi)) = M V1 . . . Vn[U ]↓

Then M ∈ SC(α, e) if and only if Λ(M,U , (Vi)) is (SN) and Λ(M,⊥, (Vi)) is
(WB) for all U , (Vi) satisfying the above conditions. In the following, we may
conveniently omit some of the parameters (M,U , (Vi)) of Λ.

Proof. By induction on types.

Then next series of lemmas aims to prove an inclusion relation between
strongly computable terms, namely that e ⊆ e′ =⇒ SCR(α, e) ⊆ SCR(α, e′).
This result is stated in Lemma 4.3.16. The idea behind is that adding possible
reference substitutions in Λ(M) for a term M ∈ SCR(α, e) does not change
the normalization (or well-behaving), as either these references are already
accounted for by some effect in α, or they do not belong to EffR(α, e) and the
corresponding substitutions can not be used at all by M .

The following lemma shows that the effects appearing in the type of a term
determine which reference the term may act on.

Lemma 4.3.13. Let R; Γ ` M : (α, e), then any occurrence get(r) inside M
verifies r ∈ Eff(α, e).

Proof. By induction on the typing derivation.

The following lemma holds the technical content of the proof of Lemma 4.3.16.
In Section 4.1.4, we introduced preorders v,vV for comparing the possible
behaviors on terms. We showed in Proposition 4.1.18 that if M v N , then

104



everything that can be done by M can be mimicked in N . Here, we prove a
converse result in a very specific case. We take a term M vV N , and make the
additional assumption that for any get(r) in M , r 6∈ dom(V ). In others words,
V is composed of reference assignments that can never be used by M . In this
case, then the converse assertion about behaviors also holds, that is everything
that can be done by N can also be done by M , as the additional substitutions
in N can not be used for at all.

Lemma 4.3.14. Let R `M : (β, e) a well-typed term of λcES with β = Unit | B.
Let V be a reference substitution such that dom(V) ∩ e = ∅. Assume that
M vV N . Then if N → N ′, there exists M ′ such that M →n M ′ with
M ′ vV N ′. If → is not a (subst-r) rule, or is a (subst-rget) rule, then n ≥ 1.

Proof. The proof is similar to Proposition 4.1.18: most of the developments
are totally symmetric in M and N . The only different case is the case of the
(subst-rget). This means that a get(r)[V ,W]↓ is reduced in N , while only
get(r)[W]↓ can be formed in M . However, by Lemma 4.3.13, r ∈ e, thus the
value substitution the first get is V ∈ (V ,W)(r) =W(r) by the hypothesis on
the domain of V . Then this substitution may also be performed on get(r)[W ]↓
in M .

Corollary 4.3.15. Let R ` M : (β, e) a well-typed term of λcES with β =
Unit | B. Let V be a reference substitutions such that dom(V)∩ e = ∅. Assume
that M vV N . Then M is strongly normalizing if and only if N is. Moreover,
M is (WB) if and only if N is.

Proof. The proof is identical to the proof of Corollary 4.1.19.

We can now states our monotonicity property about strongly computable
sets.

Lemma 4.3.16. Let M ∈ SCR(α, e), then for any e′, e ⊆ e′ ⊆ dom(R), M ∈
SCR(α, e′).

Proof. Using the characterization of Lemma 4.3.12, we must show that any
Λ(M,V , (Vi)) with V and (Vi) adapted to SCR(α, e′) is (SN) (and (WB) for
V = ⊥). Let f = dom(V) \ e, by projecting V on e, we have that Λ(M,V �e
, (Vi)) vV�{ Λ(M,V , (Vi)). But Λ(M,V �e, (Vi)) is (SN) because M ∈ SCR(α, e).
By Corollary 4.3.15, so is Λ(M,V , (Vi)). The (WB) condition is treated similarly.

The following lemma gives a list of technical properties:

105



Lemma 4.3.17. Auxiliary results for soundness
Let M ∈ SCR(α, e) and V with r ∈ dom(V ) =⇒ V ⊆ SCR(R(r), ∅.

1. Consider Λ(M,U , (Ui)) for appropriate U and (Ui) (as given in Lemma 4.3.12).
The possible immediate reducts of Λ may have the following form:

(a) M V1 . . . Vn−1[V ]λ (Vn[V ]↓) if the substitution is pushed down

(b) M ′ V1 . . . Vn[V ]↓ with M →M ′ if a reduction happens inside M

(c) N V2 . . . Vn[V ]↓ if M = λx.M ′ interacts with V1 by a βV reduction.

As each Vi is inert, and propagating of reference substitutions is a terminat-
ing process, an infinite reduction sequence of Λ must at some point either
reduce inside M as in (b), propagate the substitution V in M or perform a
βV reduction as in (c).

2. Let R, x1 : A1, . . . , xn : An ` N : (α, e), σ be a variable substitution with
dom(σ) ⊆ {x1, . . . , xn} and assume N [σ]→M . Then N [σ]↓ ∈ SCR(α, e).

3. M [V ]↓ ∈ SC

4. M [V ]↑ ∈ SC

5. If M →M ′, then M ′ ∈ SC

6. V{σ} ⊆ SC

Proof. 1. The Vi are inert, and if one does not perform a reduction involving M
by either reducing inside, propagating reference substitutions or performing
a βV reduction, then the only possible reduction are the propagation of V ,
which terminates.

2. Consider an infinite reduction of Λ(N [σ]). By the previous point, the sub-
term M ′ must be reduced in at some point. Since the variable substitution
forbids any other reduction than propagating itself first, M is the only
possible reduct. Then, then term we obtain after reducing N [σ] to M in
head position is bounded by a reduct of Λ(M) which is (SN) by hypothesis
on MM. Thus Λ(M ′) has no infinite reduction sequence and Λ(M ′) is (SN).

Similarly, consider (for suitable (Vi)) a (M ′, (Vi)) reduction. If N [σ] is never
reduced, then no upward substitution is ever produced. If N [σ] is reduced
at some point, it is reduced to M and thus produces a finite amount of SC
upward substitutions from here since M is (WB). Hence N [σ] is (WB).

106



3. We have the following relation: Λ(M [V ]↓,U , (Ni)) v Λ(M, (U ,V), (Ni)) (for
appropriate U , (Ni)). As the latter is (SN) since M is SC, so is the former.
For (WB), we can easily map a (M ′, (W ′i)) reduction to a (M, (Wi)) by
just appending V to (Wi) and start with a →i reduction. Since M ∈ SC,
M ′ is (WB).

4. Let M ′ = M [V]↑. We proceed by induction on the length of the type α.
For base type, it is clear that M ′ is (WB) if and only if M is (it either
produces the same upward substitutions as M , or V) and M ′[U ]↓ has exactly
the same reductions as M [U ]↓ excepted for commutations of upward and
downward substitutions, and a possible (subst>). Since M is (SN), so is
M ′.

Now, for α = A
e1→ α′, consider an infinite reduction of Λ(M ′,U , (Vi)). If

the upward substitution is never moved upward, we can map this to an
infinite reduction of Λ(M,U , (Ni)) for the same reasons as above, but the
latter is (SN). Thus at some point the upward substitution must go up, so
that the head term becomes M ′′ (V ′1 [V ]↓)[W ]λ[V]↑ where W is either V ,U
or V , M ′′ is either a reduct of M [U ]↓ or a reduct of M , and V ′1 is either V
or V1[U ]↓.

By hypothesis, M ∈ SCR(A
e1→ α′, e), thus P = M ′′ V1 ∈ SCR(α′, e ∪ e1).

By induction hypothesis, P [V ]↑ ∈ SCR(α′, e ∪ e1). We can then bound the
considered reduct of Λ by a reduct of Λ(P [V]↑, (U ,V), (V2, . . . , Vn)) which
is strongly normalizing.

5. This is straightforward from the definition of SC sets.

6. Combining 2. and 4., as for r ∈ dom(U), V ∈ U(r), V {σ} is the immediate
reduct of U [σ] using a (subst) rules.

We can finally give a complete proof of soundness:

Proof. Proposition 4.3.9
Assume that R;x1 : A1, . . . , xn : An ` M : (α, e). We have to prove that for
any substitution σ with dom(σ) = {x1, . . . , xn} and (∀i : 1 ≤ i ≤ n), σ(xi) ∈
SCR(Ai, ∅), then M [σ] ∈ SCR(α, e). We perform the proof by induction on the
structure of M , and use the characterization of Lemma 4.3.12 to prove that
terms are strongly computable.

• M = x : x[σ] reduces to σ(x) ∈ SCR(Ai, ∅) ⊆ SCR(Ai, e) (by hypothesis
and), and we apply 2. of Lemma 4.3.17.

107



• M = ∗ : ∗[σ] → ∗, and we also apply 2. of Lemma 4.3.17. ∗ is trivially
(WB) and (SN).

• M = λy.M ′ : M [σ] → λx.(M ′[σ]). We have α = B
e1→ α′. By 2. of

Lemma 4.3.17, it suffices to prove that λx.(M ′[σ]) is strongly computable.
By 1. of Lemma 4.3.17, for a reduction of a corresponding Λ to be infinite, a
βV reduction between λx.M ′[σ] and V1 must occur. The head term has then
the form M ′[σ][x 7→ V ][W ]↓ with W being either ⊥ or V . M ′[σ][x 7→ V ]→
M ′[σ, x 7→ V ] which is in SCR(B, e1 ∪ e) by induction hypothesis.

• M = get(r) : get(r)[σ]→ get(r). By 2. of Lemma 4.3.17, it suffices to show
that get(r) ∈ SCR(α, e). Consider an infinite reduction of Λ(get(r)). By 1.
of Lemma 4.3.17, the get(r) must be reduced at some point and from this
point it is either replaced by V ∈ V(r) ∈ SCR(R(ri) = α, ∅) ⊆ SCR(α, e)
and from this point the reduct is bounded by a reduct of a strongly
normalizing Λ(V,V , (Vii)), or it just get rid of the downward substitution
V and from this point the only possible reductions left are propagation of
the initial V which must terminates.

• M = M ′[τ ], then M [σ] → M ′[τ, σ]. M ′ has a typing judgement of the
form x1 : A1, . . . , xn : An, y1 : B1, . . . , ym : Bm ` M ′ : (α, e). By induction,
τ(yk)[σ] ∈ SCR(Bi, ∅). As τ(yk)[σ] → τ(yk){σ}, By 5. of Lemma 4.3.17,
the latter is in SCR(Bi, ∅). Thus we can apply the induction hypothesis on
M ′: M ′[τ, σ] ∈ SCR(α, e).

• M = M ′[U ]↓ : M [σ] → M ′[σ][U{σ}]↓. By induction, M ′[σ] ∈ SCR(α, e)
and by 6. of Lemma 4.3.17 , r ∈ dom(V) =⇒ V ∈ U{σ}(r) ∈
SCR(R(ri), ∅). We conclude by parts 3. and 2. of Lemma 4.3.17.

• M = M ′[V]↑ : We proceed in the same way, by parts 2., 3., and 4. of
Lemma 4.3.17.

• M = M1 M2[V]λ : M [σ] → M ′ = (M1[σ]) (M2[σ])[V{σ}]λ. By inversion
of typing rules, R; Γ ` M1 : (A

e1→ α, f1) and R; Γ ` M2 : (A, f2) with
f1 ∪ e1 ∪ f2 ⊆ e. By induction and 6. of Lemma 4.3.17, M1[σ] ∈ SCR(A

e1→
α, f1) ⊆ SCR(A

e1→ α, e), M2[σ] ∈ SCR(A, f2) ⊆ SCR(A, e), and r ∈
dom(V) =⇒ V{σ} ⊆ SCR(R(r), ∅).
Assume the existence of an infinite reduction of sequence Λ(M ′,U , (Vi))
for appropriate U and (Vi). Assume that no βV reduction between a
reduct of M1[σ] and M2[σ] happens. That is, the reducts of Λ(M ′) are
of the form Mk

1 Mk
2 [Wk]λ V1 . . . Vn. Notes that the Mk

i are not exactly
reducts of Mi[σ]: indeed, the two subterms may freely exchange reference

108



substitutions. This is where the (WB) comes into play: if we abstract
the context of the Mk

1 s, that is [.] Mk[Wk]λ V1 . . . Vn, which can drop
some downward substitutions coming from the reduction of Mk

2 at any
time, this precisely corresponds to an environment reduction. That is, the
sequence M1[σ],M1

1 , . . . ,M
k
1 , . . . is precisely an environment reduction for

some sequence of substitution X k
1 . This is also the case form the point of

view of M2[σ]. As the downward reference substitutions dropped on Mk
i

corresponds either to U or to a substitution previously generated by Mk
1−i,

they are all strongly computable. Thus the environment reduction satisfies
the required hypothesis to apply (WB), and we deduce that only a finite
number of substitutions is exchanged between the Mk

1 s and the Mk
2 s. After

k ≥ n steps of reduction for some n, the Mk
1 s reduces in isolation. If we

take the trace of all the substitutions it received from the environment
before this point, and merge them into one big substitution X1, then we
can see that Mn

1 is bounded by a reduct of M1[σ][X1]↓. Since M1[σ] is
strongly computable, in particular M1[σ][X1]↓ is strongly normalizing (cf
Lemma 4.3.8). Thus at some point, Mk

1 can not reduce anymore. We can
do the same for M2[σ], and we see that for the reduction of Λ to be infinite,
a βv reduction must eventually happens between a Mk

1 and Mk
2 .

Hence there is a k0 such that Mk0
1 = (λx.P ) and Mk0

2 = U , and the
reduct of Λ is of the form (λx.P ) U [Y]λ V1 . . . Vn where Y is composed
of substitutions of X1, X2 and U , which are all strongly computable. The
βV reduction leads to the term (P [x 7→ U ][Y]↓) V1 . . . Vn. This term
is bounded by a reduct of M1[σ] U V1 . . . Vn[X1,X∈,U ]↓. But the latter

term is strongly normalizing, because M1[σ] ∈ SCR(A
e1→ α, e) and U ∈

SCR(A, e) by 3. and 4. of Lemma 4.3.17. Hence Λ has no infinite sequence
reduction, and is (SN).

We apply a similar reasoning to prove that it is (WB).

• M = M1 ‖M2 : this is handled as in the previous case (this case is simpler
as there is not βV reduction involved).

4.4 λC and λcES

In this section, we study the relation between λC and λcES. Although they are
close one to another, λC is not a proper sub-language of λcES because of the
disappearance of stores and of the set(r, V ) construct in λcES. We can however

109



give a straightforward translation of λC in λcES (Definition 4.4.2). We prove a
simulation theorem for this translation, with respect to the non-deterministic
version of the reduction of λcES (cf Definition 4.1.9). Since λcES features explicit
non-deterministic sums and a confluent reduction on sums, while λC has a
non-deterministic reduction defined on simple terms, switching to the non-
deterministic version of the reduction of λcES seems to be the natural way to
relate the two languages through a simulation.

A simulation between non-deterministic languages is however weaker, in some
sense, than in a setting where both languages are confluent. To explain why,
take two ARS (X,→a) and (X,→b) with the same set of terms (to simplify,
we take a special case of a translation where both languages are the same
and the translation is the identity). We also assume that the normal forms
in the two ARS are the same, and that they are integers, representing the
result of a computation. Assume there is a simulation between the two: if
x→∗a x′, then x→∗b x′. In particular, this simulation ensures that if x reduces
by →a to a normal form, x →∗a n ∈ N, then x reduces by →b to the same
normal form: x→∗b n. If both ARS are confluent, by unicity of normal forms,
this is in particular the only possible normal form that x can reach by →b

reductions: if x→∗b n′ ∈ N, this implies n = n′. On the other hand, if (X,→b)
is not confluent, then nothing prevents x to reduces to many other integers in
addition to n. The simulation is then not completely satisfying anymore, as it
does not strongly support the claim that the two systems are behaving in the
same way. If one chose a meaningless but permissive reduction (for example
→b= X2 \ {(n, t) | (n, t) ∈ N×X}) then the ARS (X,→b) vacuously simulates
(X,→a) for any choice of →a. Simulation states that →b can do as much as →a,
but it does not prevent it from doing much more.

To strengthen the claim that the two languages do behave similarly, we show
an adequacy theorem for typed terms, which role is precisely to show that
λcES can not do much more than λC. If one looks at the possible results of a
computation and discards pathological terms to only keep (parallel of) values,
these values are essentially the same in for a term of λC and its translation in
λcES.

We start with a presentation of λC based on [41].

4.4.1 The concurrent λ-calculus λC

λC is a call-by-value λ-calculus extended with:

• a notion of threads and an operator ‖ for parallel composition of threads,

110



• two terms set(r, V ) and get(r), to respectively assign a value to and read
from a reference,

• special threads r ⇐ V , called stores, accounting for assignments.

When set(r, V ) is reduced, it turns to the unit value ∗ and produces a store
r ⇐ V making the value available to all the other threads. A corresponding
construct get(r) is reduced by choosing non deterministically a value among all
the available stores. For example, assuming some support for basic arithmetics
consider the program (λx.x + 1) get(r) ‖ set(r, 0) ‖ set(r, 1). It consists of 3
threads: two concurrent assignments set(r, 0) and set(r, 1), and an application
(λx.x+ 1) get(r). This programs admits two normal forms depending on which
assignment “wins”: the term 1 ‖ ∗ ‖ ∗ ‖ r ⇐ 0 ‖ r ⇐ 1 and the term
2 ‖ ∗ ‖ ∗ ‖ r ⇐ 0 ‖ r ⇐ 1. In this language, the stores are global and
cumulative: their scope is the whole program, and each assignment adds a new
binding that does not erase the previous ones. Reading from a store is a non
deterministic process that chooses a value among the available ones. References
are able to handle an unlimited number of values and are understood as a typed
abstraction of possibly several concrete memory cells. This feature allows λC

to simulate various other calculi with references such as variants with dynamic
references or communication [41]. The language is endowed with an appropriate
type and effects system ensuring termination.

Terms

-values V ::= x | ∗ | λx.M
-terms M ::= V |M M | get(r) | set(r, V ) |M ‖M
-stores S ::= r ⇐ V | (S ‖ S)
-programs P ::= M | S | (P ‖ P )

Reduction

As in λcES, the ‖ operator is subject to structural rules, namely associativity
and commutativity, given in Table 4.4. Once again, contexts are similar to the
ones of λcES: we can reduce in any thread at top-level, and the reduction is
an usual call-by-value one, excepted that we chose a version which is neither
left-to-right nor right-to-left Table 4.5. Reductions rule are given in Table 4.6.
There are three of them:

• βv is a call-by-value β-reduction rule

• (get) replaces a get(r) occurrence by V , where r ⇐ V is an available
assignment at top-level

111



• (set) generates a new assignment r ⇐ V at top-level

Notation 4.4.1. For terms M,V of λC, we denote by M{x/V } the usual
implicit substitution:

• x{x/V } = V

• y{x/V } = y when y 6= x

• λy.M{x/V } = λy.(M{x/V })

• (M N){x/V } = (M{x/V }) (N{x/V })

• get(r){x/V } = get(r)

• set(r, U){x/V } = set(r, U{x/V })

P ‖ P ′ = P ‖ P ′
(P ‖ P ′) ‖ P ′′ = P ‖ (P ′ ‖ P ′′)

Table 4.4: Structural Rules of λC

E ::= [.] | E M |M E
C ::= [.] | (C ‖ P ) | (P ‖ C)

Table 4.5: Evaluation Contexts of λC

Reduction rules
(βv) C[E[(λx.M) V ] → C[E[M{x/V }]]
(get) C[E[get(r)]] ‖ r ⇐ V → C[E[V ]] ‖ r ⇐ V
(set) C[E[set(r, V )]] → C[E[∗]] ‖ r ⇐ V

Table 4.6: Reduction rules of λC

Typing rules

The stratification conditions and subtyping rules are exactly the same as for
λcES. We only give the typing rules of terms in Figure 4.4.

4.4.2 Simulation

We start by defining a translation of a term of λC in λcES. set(r, V ), which is
not a construct of λcES, is translated to ∗[V]↑ where V = {r 7→ [V ]}. Stores
should be converted to reference substitutions. However, they may be placed at
many intermediate locations in the structure of a term. We chose a canonical
representation, where the downward reference substitutions corresponding to
stores are pushed down to the maximum. Then, as reference substitutions
vanishes on values, the only remaining ones are the λ-substitutions at application,
and the one that are followed by a get(r).

112



R ` Γ, x : A

R; Γ, x : A ` x : (A, ∅) (var) R ` Γ
R; Γ ` ∗ : (Unit, ∅) (unit) R ` Γ r : A ∈ R

R; Γ ` r : RegrA
(reg)

R; Γ, x : A `M : (α, e)

R; Γ ` λx.M : (A
e→ α, ∅)

(lam) R; Γ `M : (A
e1→ α, e2) R; Γ ` N : (A, e3)

R; Γ `M N : (α, e1 ∪ e2 ∪ e3)
(app)

R; Γ ` RegrA

R; Γ ` get(r) : (A, {r}) (get)
R; Γ ` r : RegrA R; Γ ` V : (A, ∅)

R; Γ ` set(r, V ) : (Unit, {r}) (set)

r : A ∈ R R; Γ ` V : (A, ∅)
R; Γ ` r ⇐ V : (B, ∅) (store)

R; Γ ` P : (α, e) R; Γ ` S : (B, ∅)
R; Γ ` P ‖ S : (α, ∅) (par1)

i = 1, 2 R; Γ ` Pi : (αi, ei)

R; Γ ` P1 ‖ P2 : (B, e1 ∪ e2)
(par2)

Figure 4.4: Typing rules for λC

Definition 4.4.2. Translation of λC in λcES

Let M be a term and S be a store of λC. S can be written as

S = r1 ⇐ V 1
1 ‖ . . . ‖ r1 ⇐ V 1

k1
‖ . . . ‖ rn ⇐ V n

1 ‖ . . . ‖ rn ⇐ V n
kn

Let VS : ri 7→ [V i
1 , . . . , V

i
ki

]. We allow S to be the empty store ε, in which case
VS is the nowhere defined function. We define the translation of M under S by

• ∗S = ∗

• λx.M ′S = λx.M ′S

• set(s, V )
S

= ∗[s 7→ [V
S
]]↑

• N N ′
S

= N
S
N ′

S
[VS ]λ

• get(s)
S

= get(s)[VS ]↓ or just get(s) if S = ε

• N ‖ N ′S = N
S ‖ N ′S

In fact, M
S

is the normal form reached from M [VS]↓ using only downward
structural rules (that is, all (subst-r) rules excepted (subst-rget)). For any

program P = M ‖ S, we define P = M
S
. The case where P does not contain

any store is considered as if S = ε.

Since the type systems of λcES and λC are very close, the translation preserves
the fact of being well-typed:

113



Proposition 4.4.3. Preservation of typing
Let P be a well-typed program of λC. Then P is a well-typed program of λcES.

The reduction of λcES has the limitation of not being able to reduce under
abstractions, even to propagate explicit substitutions. The variable substitutions
propagation under abstractions will thus be delayed until the corresponding
lambda will be applied. To cope with this subtlety, we introduce a relation on
terms of λcES that expresses that a term M is related to N if M is the same as
N up to the propagation of pending substitutions frozen under lambdas. If we
would allow substitutions to be reduced under lambdas, M would reduces to N .

Definition 4.4.4. Substitution relation
We define  s as :

• x s x, get(r) s get(r), ∗ s ∗

• M ‖ N  s M
′ ‖ N ′ iff M  s M

′ and N  s N
′

• λx.M  s λx.M
′ if M = N [σn][. . .][σ1] such that N{σ1, . . . , σn} = M .

• M [V ]↓  s M
′[V ′]↓ or M [V ]↑  s M

′[V ′]↑ iff M  s M
′ and V  s V ′

• M N [V ]λ  s M
′ N ′[V ′]λ iff M  s M

′, N  s N
′ and V  s V ′

• M [σ] s M
′[σ′] iff M  s M

′ and σ  s σ
′

Where we extended point-wise the definition of  s to functions and multisets.

We can now state the simulation result modulo  s:

Theorem 4.4.5. Simulation
Let P,Q be λC programs such that P →∗ Q. Then

P →∗nd M  s Q

The following subsection proves Theorem 4.4.5 with the help of auxiliary
lemmas.

Proof of Simulation

Lemma 4.4.6 indicates that a reduction may be recasted in a larger context.

Lemma 4.4.6. Context reduction
Let M,N be terms of λcES such that M →∗nd N without using (subst-r>), then
for any context C and E, C[E[M ]]→∗nd C[E[N ]] using the same reduction rules.

114



Lemma 4.4.7 states that the translation is modular with respect to contexts.
Lemma 4.4.8 shows that the translation commutes with implicit substitutions.

Lemma 4.4.7. Context decomposition
Let P be a program of λC,

• If P = C[E[M ]] with C = [.] or C = [.] ‖ N , then P = P

• If P = C[E[M ]] with C = [.] ‖ N ‖ S, then P = E
S
[M

S
] ‖ NS

Proof. Lemma 4.4.7

This is an easy induction following the definition of
S
.

Lemma 4.4.8. Substitution for
S

Let M,M ′ be terms, V a value and S a store of λC. Then

M{x/V }S = M
S{x/V }

Proof. Lemma 4.4.8
By induction

The absorption lemma (Lemma 4.4.9) (resp. diffusion lemma (Lemma 4.4.10))
studies how the translation of a term interacts with new downward reference
substitutions (resp. upward reference substitutions).

Lemma 4.4.9. Absorption
Let M be a term and S = S ′ ‖ r ⇐ V be a store of λC, C and E be context of
λcES, and V = {r 7→ [V ]}. Then

C[E[M
S′

[V ]↓]]→∗nd C[E[M
S
]]

Proof. Lemma 4.4.9

By induction on M , using the definition of
S
and the (subst-r) reductions.

Lemma 4.4.10. Diffusion
Let N be a term, E a context, S = S ′ ‖ r ⇐ V a store of λCand V : r 7→ [V ].
Let M be a term of λcES. Then

E
S′

[M [V ]↑]→∗nd E
S
[M ][V ]↑ (4.1)

M [V ]↑ ‖ N
S′ →∗nd (M ‖ NS

)[V ]↑ (4.2)

E
S′

[M [V ]↑] ‖ N
S′ →∗nd E

S
[M ] ‖ NS

[V ]↑ (4.3)

using only rules (subst-r) or (subst-r’).

115



Proof. Lemma 4.4.10

• For (Equation (4.1)), we work by induction on E. As we will need
Lemma 4.4.6, we add the induction hypothesis that the rule (subst-r’>)
is not used.

– E
S′

= [.] nothing to do

– E
S′

= E ′
S′
M ′S

′

[U ]λ

By IH, E ′
S′

[M [V]↑] →∗nd E ′
S
[M ][V]↑ using no (subst-r’>) rules. We

use Lemma 4.4.6 and get

E
S′

[M [V ]↑]→∗nd (E ′
S
[M ][V ]↑) M ′S

′

[U ]λ

We then apply (subst-r’lapp) to get

E
S′

[M [V ]↑]→∗nd (E ′
S
[M ]) (M ′S

′

[V ]↓)[W ]λ[V ]↑

Using Lemma 4.4.9, we get that the right part of the application reduces

to M ′S. Finally, by definition of
S
, the right hand side is E

S
[M ][V ]↑.

– Other cases are treated alike

• To prove (Equation (4.2)), we apply (subst-r’‖). We then use Lemma 4.4.9

on N
S′

[V ]↓ to get N
S

and Lemma 4.4.6 with C = M ‖ [.] to get the desired
result.

• Finally, we prove (Equation (4.3)) by combining the two results. We first use
the strengthened version of (Equation (4.1)), so we can apply Lemma 4.4.6
and get

E
S′

[M [V ]↑] ‖ N
S′ →∗nd M [V ]↑E

S
[M ] ‖ NS′

We use (Equation (4.2)) with M ′ = E[M ] to get the result.

Lemma 4.4.11 states that explicit substitutions implement implicit substitu-
tions, up to the substitution order.

Lemma 4.4.11. Explicit substitution
Let P = C[E[M [σ]]] with M containing no explicit substitutions nor upward
reference substitution. Then

P →∗nd P ′  s C[E[M{V/x}]]

116



Proof. Lemma 4.4.11 By induction on M .

• Neutral
If M = ∗, M = get(r) or M = y with y 6= x, then M{V/x} = M . If we
apply (substunit) (resp. (substget),(substvar)) we also get that

C[E[M [σ]]]→nd C[E[M ]]

• M = x
M{V/x} = V . By (substvar),

C[E[x[σ]]]→nd C[E[V ]]

• M = λy.M ′

M{V/x} = λy.(M ′{V/x}). By (substλ),

C[E[λy.M ′[σ]]]→nd C[E[λy.(M ′[σ])]] s C[E[λy.(M ′{σ})]]

• . . .
The remaining cases are treated similarly, the reduction rules being designed
to make this lemma work.

We prove now the main technical result from which the simulation theorem
follows easily:

Proposition 4.4.12. One-step simulation
Let P,Q be λC programs such that P → Q. Then

P →∗nd M  s Q

Proof. Proposition 4.4.12
By case analysis on the reduction rule applied :

βv We have P = E[(λx.M) V ] ‖ N ‖ S and Q = E[M{V/x}] ‖ N ‖ S. Let

By Lemma 4.4.7, P = E
S
[λx.M V [VS]λ] ‖ N

S
and Q = E

S
[M{V/x}S] ‖

N
S
. Then, by one application of βv in λcES, we have P →aux Q0 =

E
S
[M [VS]↓[σ]] ‖ NS

. We apply Lemma 4.4.9 with to deduce Q0 →∗

Q1 = E
S
[M

S
[σ]] ‖ NS

. Using Lemma 4.4.11 and Lemma 4.4.8, we get

Q1 →∗ Q2  s E
S
[M{V/x}S] ‖ NS

= Q.

get We have P = E[get(r)] ‖ N ‖ S with S = S ′ ‖ r ⇐ V , and Q = E[V ] ‖
N ‖ S. By Lemma 4.4.7, P = E

S
[get(r)[V]↓] ‖ N

S
and Q = E

S
[V ] ‖ NS

.

The rule (subst-rget) gives P →nd E
S
[V ] ‖ NS

= Q.

117



set We have P = E[set(r, V )] ‖ N ‖ S ′ and Q = E[∗] ‖ N ‖ S with S = S ′ ‖
r ⇐ V . By Lemma 4.4.7, P = E

S′
[∗[V]↑] ‖ N

S′
and Q = E

S
[∗] ‖ NS

=

E[∗] ‖ NS
. We apply Lemma 4.4.10 to get P →∗ (E

S
[∗] ‖ NS

)[V ]↑ and then
use the rule (subst-r>) to get rid of the toplevel reference substitution.

The only missing part is the following lemma allowing us to extend the result
of Proposition 4.4.12. It shows that the substitution order is a relation that is
compatible with reduction.

Lemma 4.4.13. Subsitution order is compatible with reduction
 s is compatible with reduction, meaning that if M  s N and M →nd M

′,
then N →nd N

′ with M ′  s N
′

Proof. Lemma 4.4.13
By case analysis on the reduction rule applied in M →nd M

′. As s only relates
to subterms that are under an abstraction, and the reduction do not reduce
under abstractions, the reduction and the substitution order do not interact.

Proof. Simulation(Theorem 4.4.5)
By induction on the length of the reduction P →∗ Q, using Proposition 4.4.12
and Lemma 4.4.13.

4.4.3 Adequacy

The adequacy theorem states that the summands of the normal form of M are
either the translation of a normal form T = V1 ‖ . . . ‖ Vn that is a reduct of the
original M , or garbage, that is a non-value term that corresponds to execution
paths which deadlocked. We can recognize this garbage, thus eliminate it: with
this additional operation, the summands of the normal form of M coincide with
the values that are reachable by M .

Theorem 4.4.14. Adequacy
Let P be a well-typed term of λC. If P →∗

∑
iMi such that

∑
iMi is a normal

form, then for any i, P →∗ Pi with Mi  s M
′
i v Pi. That is, any term appearing

in the normal form of the translation of P is v-bounded (up to the substitution
order) by the translation of a reduct of P .

In particular, applied to values, this gives the sought property for λcES:

Corollary 4.4.15. Let P be a well-typed term of λC. Assume that P →∗
M ′ + M′′ where M ′ is a normal form.

118



• If M ′ = V ‖ N , then P →∗ U ‖ Q with V  s U .

• In particular, if M ′ = ‖i Vi, then P →∗ ‖i Ui with Vi  s U i

The only problematic case is the non deterministic reduction (subst-rget)
which creates new summands. The proof consist in showing that these summands
are actually limited in what they can do. Formally, they are bounded by the
initial term that is being reduced, in the sense of the v preorder . The following
lemma states that indeed the case of deterministic reduction is trivial:

Lemma 4.4.16. Values preservation
Let M be a term of λcES, and M →∗nd M ′ without using (subst-rget). We define
NF(M) = {T | T normal and M →∗nd T}. Then NF(M) = NF(M ′)

Proof. Lemma 4.4.16
If we do not use (subst-rget), the two reduction (the standard → and the non-
deterministic →nd) coincide: we have in particular M →∗ M ′ by the standard
reduction. Assume that M →∗nd T where T is a normal form. Then M →∗ T+. . .
through the standard reduction. By confluence, M ′ →∗ T + . . .. This precisely
means that M ′ →∗nd T .

The following lemma states the adequacy result for a one-step reduction. The
general theorem is then deduced by induction.

Lemma 4.4.17. Let M = P be the translation of a well-typed λC term such
that M →nd M

′. Then there exists M ′′, N ′, such that M ′ →∗nd M ′′  s M
′′
s v N ′

and N →{0,1} N ′, with all reductions from M ′ to M ′′ not being (subst-rget).

Proof. Lemma 4.4.17
Given the form of a term which is the translation of a λC term, the only redexes
in M are either premises of a (subst-r’) rule, the (βv) rule or the (subst-rget)
rule. In the first case, it corresponds to a reducible set whose reduction can be
carried on in M ′ by pushing the upward substitution to the top and pushing down
the corresponding generated downward substitutions, to obtain the translation
of N ′ (as in the simulation of a (set) reduction). We can proceed the same
way with (βv) : this corresponds to a β-redex in N , where N ′ is the result of
reducing it, and M ′′ is obtained by pushing down the generated substitutions
(variable and references). As we saw in simulation, this gives the desired result
but up to  s.

Finally, if the reduction rule is (subst-rget), then either it chose one of the
available values and it corresponds exactly to a get reduction N → N ′, or it
threw away available values, in which case N = N ′, M ′ = M ′′ and clearly
M ′′ v N ′.

119



Proof. Theorem 4.4.14
Since P is well-typed, M is well-typed by Proposition 4.4.3. By Theorem 4.3.10,
M is strongly normalizing. We can thus proceed by induction on η(M), the
length of the longest reduction starting from M . If η(M) = 0, i.e. M is a normal
form, this is trivially true.
To prove the induction step, consider a reduct M ′ of M . We use Lemma 4.4.17
to get M ′ →∗ M ′′ v P ′ for some reduct P ′ of P , such that the reduction to
M ′′ doesn’t use (subst-rget). Thus, by Lemma 4.4.16, NF(M ′′) = NF(M ′). By
induction on M ′′, ∀T ∈ NF(M ′′),∃Q,P →∗ Q and T v Q. But this is true for
any reduct M ′, and we have NF(M) =

⋃
M→M ′ NF(M ′), hence this is true for

M .

4.5 Summary

In this chapter, we presented a lambda-calculus with concurrence and references,
featuring explicit substitutions for both variables and references. We discussed
the issues explicit substitutions raise with respect to termination and explained
how standard techniques fail to address them.

The main contribution of the chapter is a solution to this problem. Remi-
niscent of Game Semantics, the proof technique we apply is interesting in its
own right. Based on an interactive point of view, it is reasonable to expect that
the general methodology we present can be extended to other settings, such as
proof nets or concurrent calculi.

This work we open the way to the encoding of a calculus with references into
differential proof nets, which is done is Chapter 5.

4.6 Discussion

Comparison with Other Languages One may wonder how λcES compares to other
concurrent calculi and especially the language λC presented in Section 4.4.1.
In particular, λcES is almost an explicit substitution version of λC. Indeed, it
turns out that we can define a translation of λC to λcES. The weak reduction
of λcES prevents variable substitutions from percolating under abstractions,
and translated terms may evaluate to closures as λx.(M [σ]) instead of the
expected λx.(M{x1/σ(x1), . . . , xn/σ(xn)}) if dom(σ) = {x1, . . . , xn}. Up to this
difference there is a simulation of λC in λcES (Theorem 4.4.5).

More generally, we followed the design choice of adopting cumulative stores,
while many languages in the literature and in practice follow an erase-on-write
semantics. Remarkably, our choice makes the version with explicit substitutions

120



asynchronous, as various upward and downward substitutions may be reduced
arbitrarily without the need of any scheduling. Another point that justifies
its introduction is that such calculi simulate a lot of other paradigms, such as
erase-on-write or communication channels for example, as mentioned in [41].
This means that the termination of the cumulative store version implies the
termination of the aforementioned variants. To illustrate our point, let us quickly
sketch how a calculus with explicit substitutions with an erase-on-write semantics
could be devised. First, encode set(r, V ) as ((λx.∗[r 7→ [V ]]↑) ∗). Then, when an
upward substitution becomes reducible, apply all possible downward and upward
structural rules until it is not possible anymore. Finally, instead of merging
reference substitutions, the upper one erases the lower one. Its termination
follows immediately from the one of λcES.

Explicit substitutions and Linear Logic Proof nets are strongly connected to
systems with explicit substitutions (see e.g. [2]). λcES anticipates the translation
presented in Chapter 5: its constructs are already inspired by the approach
of [14] and [56]. λcES can be seen as a calculus-side version of the nets we will be
translating to. The translation and simulation of λC in λcES could be described
as a compilation from a global shared memory model to a local message passing
one. The correctness of this compilation requires that a well-typed strongly
normalizing term in the initial language is also strongly normalizing in the target
language, and this is what this chapter achieves.

121



Chapter 5

Encoding a concurrent λ-calculus in
nets

In this chapter, we put the devices developed in Chapter 3 to use by presenting a
translation of λcES - the language introduced in Chapter 4 - in the nets described
in Chapter 2. The translation builds on ideas from [56] for the encoding of
references, and from [14] for concurrency, which inspired the routing areas.

We build on the standard call-by-value translation of the λ-calculus in proof
nets [42]. In this translation, terms are interpreted as nets, where the interface
of the resulting net corresponds to its output (the result of the whole term) as
well as free variables. This embodies the different ways a term can interact with
an environment, such as a when it is put inside a context. Free variables, that
may be substituted by values, are the inputs. The eventual result that the term
returns is the output.

In λcES, references add new possibilities of interaction. Each reference r
on which a well-typed term may act, appearing in the effect e of its typing
judgement, adds a new input and output capability. The input corresponds to
reads from the reference r through a get(r), that can substituted by a downward
reference substitutions. The output corresponds to assignments, implemented
by the upward reference substitutions generated by the term. Thus for each
such reference, the translation of a term M of λcES will have a new pair of
input/output free wires in addition to the wires of free variables and the output.
These are the wires that are combined using routing areas. After the presentation
of the translation, we give a simulation, a termination and an adequacy theorem.

In order to translate well-typed terms of λcES in nets, we must also translate
types and effects: this is where the monadic translation of [56] comes into
play. It gives a technique to encode stratified type and effects to formulas of
multiplicative linear logic. This allows us to label the input and output wire of
a reference r by a standard LL formula.

122



Overview In Section 5.1, we explain the translation in detail. We start by
translating type and effects in Section 5.1.1. We explain how effects are combined
using routing areas in Section 5.1.2. Then, Section 5.1.3 explain how terms of
λcES are translated to nets.

The following sections are dedicated to the study of the properties of the
translation. In Section 5.2, we state and prove a simulation theorem .

In Section 5.3 shows a termination and adequacy theorem. In Section 5.3.1,
we prove that the translation of a term is weakly normalizing. In Section 5.3.3,
we prove that the values we obtain by normalizing a term and the ones obtained
by normalizing its translation are essentially the same.

After discussing the chapter in Section 5.5, Section 5.6 finally concludes with
perspective of future work.

5.1 The Translation

5.1.1 Translating types and effects

Before translating terms, we need to translate the types from the type and
effects system of λcES to plain LL formulas. We use the approach of [56], a
monadic translation, explained in the following. Before translating to LL, let us
first try to take a type with effects and translate it to a pure simple type. Let
e = {r1, . . . , rn} be an effect (a finite set of references), assume we can assign a
simple type Ri to each reference ri. The type a store representing the current
state of the memory would be Se = R1 × . . . × Rn. We transform a term M
of type A producing effects to a pure term which takes the initial state of the
store, and returns the value it computes together with the new state of the store
after this computation. Using curryfication for the arrow type, we define the
following translation:

Te(α) = S → S × α
Te(A

e→ α) = A→ (S → (S × α)) ∼= A× S → S × α

From there, we go to LL types by implementing the pair type A × B as
!A ⊗ !B, and the usual call-by-value translation for the arrow (A → B)• =
!(A•( B•) [42]. We still have to determine each Ri first. Using the previous
formula, we may associate an LL type variable Xri to each reference and plug
everything in to obtain the following equations (where Ai is the type given to ri
by the reference context):

123



Unit• = !1

(A
{s1,...,sm}→ α)• = !((A• ⊗Xs1 . . .⊗Xsm)( (Xs1 ⊗ . . .⊗Xsm ⊗ α•))

Xri = Ai
•

This system is solvable precisely because the type system is stratified [56],
and we can thus translates all the types of λC to plain LL types. The behavior
type B will be translated to types of the form A1 ` . . .` An, as the translation
indeed remembers the types of each threads.

5.1.2 Combining effects

The monadic translation allows to translate a type and effect to a plain LL type.
Each reference appearing in the effects e of the type of a term will have two
corresponding wires in the translation, one for the input and the other for the
output. When the effects of two subterms must be combined, mainly in the
application case and the parallel case, these wires are connected through routing
areas. More precisely, we use two specific routing areas which we introduce
below: the γ area and the δ area. In the following, Ei = {1, . . . , i} and Ri is
the binary relation defined on Ei by k Ri l ⇐⇒ k 6= l.

The γ area is defined by (E3, E3, Rγ = R3). It is composed of 3 pairs of input
and outputs grouped by label. Each such pair represents a plug to which
translated terms will be connected. The definition of Rγ expresses that
the input and the output of a plug are not connected, as a component
should not receive the data it sent himself: this would be the analog of a
short-circuit. All others inputs and output are connected.

The δ area is an analog structure with 4 plugs: (E4, E4, Rδ). It is designed
to handle the application M N which includes three potential sources of
effects :

1. The effects e1 produced by reducing M to λx.M ′

2. The effects e2 produced by reducing N to value VN

3. The effects e3 produced by reducing M ′[VN/x] to the final result V

The reduction of λC imposes that e1 and e2 happen before e3, while e1 and
e2 may happen concurrently. For 1 ≤ i ≤ 3, the plug (i, i) of δ corresponds
to the effects ei. The last one is the external interface for future connections.
We easily accommodate δ to implements the sequentiality constraint by
removing the couples (3, 1) and (3, 2) from R4 to form Rδ. Indeed e1 and e2

happens before e3 thus cannot observe any assignment made by the latter.

124



To implement it, we just cut the corresponding wires. We see that the
formalism of routing areas allows us to easily encode the order of effects.

We are now ready to give the translation of terms.

5.1.3 Translating terms

The general form of the translation of a term x1 : A1, . . . , xn : An ` M :
(α, {r1, . . . , rk}) is given by

M • α•

!Xrk
rk

!Xrk
r1

!Xrk

rk
!Xr1

r1

A•1x1

A•n
xn

We distinguish three different types of free wires:

Output wire The right wire, labelled by α•, corresponds to the result of the
whole term.

Variable wires Each wire on the left corresponds to a variable of the context.
The explicit substitution of a variable x for a term V • is obtained by
connecting the output wire of V • to the wire of x.

References wires The wires positioned at the top are input wires correspond-
ing to references and have a similar role as variable wires, while the wires
at the bottom corresponds dually to the output. References wires will be
connected by routing areas.

We give the different cases of the translation above. get(r) and reference
substitutions demonstrate how reference wires interact with the rest. The
abstraction shows how effects are thunked in a function’s body following the
monadic translation. Application and parallel use the routing areas to handle
effects scheduling. Variable substitutions are handled in a traditional way, using
a cut (or, in nets, just a connection).

In all constructions, the different variable wires corresponding to multiple
occurrences in subterms of a variable appearing in the context are unified through
a contraction.

125



R; Γ, x : A `M : (α, e) R; Γ ` V : (A, ∅)
R; Γ `M [σ] : (α, e)

(subst)

Figure 5.1: Translation of variable reference substitutions

Γ, x : A ` x : (A, ∅) (var)
Γ ` ∗ : (Unit, ∅) (unit)

Figure 5.2: Translation of variable and ∗

Var and Unit (Figure 5.2) The var rule is encoded as an axiom, while the
constant ∗ is encoded as a !1. The axiom is eta expanded, hence it is surrounded
by an exponential box. The wires corresponding to variables that are not free
in the term but appear in the context are provided by weakenings. Note that
the weakenings are willingly put inside the exponential boxes: thanks to the
closed box constraint of the reduction, this reflects the sequentiality of the term
as it requires that all free variables are effectively substituted before a variable
or a ∗ may be itself moved around. This is required for both adequacy and
termination.

Variable substitution (Figure 5.1) A variable explicit substitution is naturally
built by connecting the output wire of a substituted value to the corresponding
variable wire.

Get and reference substitutions (Figures 5.3 to 5.5) An upward reference substi-
tutions M [V ]↑ packs the output of the translation of V with the output reference
wire corresponding to r of M using a cocontraction.

One important remark is that in the translation of a reference substitution
V, an additional exponential layer is added around the translation of V . In
a call-by-value language, the non determinism is strict in the sense that non-
deterministic terms must be evaluated before any copy. For example, the term
(λx.f x x) get(r)[r 7→ [V1, V2]]↓ can reduce either to f V1 V1 or f V2 V2 but not
to f V1 V2. Differential LL rather implements call-by-name semantics of the

R ` Γ
R; Γ ` get(r) : (A, {r}) (get)

Figure 5.3: Translation of get(r)

126



R; Γ `M : (α, e) R; Γ ` V ∈ V(r) : (R(r), ∅)
R; Γ `M [V ]↓ : (α, e)

(subst-r ↓)

Figure 5.4: Translation of downward reference substitutions

R; Γ `M : (α, e) R; Γ ` V ∈ V(r) : (R(r), ∅)
R; Γ `M [V ]↑ : (α, e)

(subst-r ↑)

Figure 5.5: Translation of upward reference substitutions

latter example as hinted at by the
ba→ rule which expresses that duplication and

non-determinism should commute. The mismatch is due to two different usages
we want to make of the ! modality:

• The first one allows to discriminate what nets can be the target of structural
rules, which implements substitution. In call-by-value, the only terms that
can be substituted are values. The ! is introduced by the translations of
values, using !p, and eliminated at usage - when applied to another term -
for each copy by a dereliction.

• The second usage relates to the differential part. The bang denotes resources
that may be packed non deterministically by a cocontraction. The choice
is made when a dereliction is met.

But as we noted, these two usages are in contradiction: a non-deterministic
packing should not be allowed to be substituted. Technically, the dereliction
corresponding to the place of usage and the dereliction corresponding to the non-
deterministic choice should not be the same. This is the reason of the additional !
layer introduced by an exponential box around V •. The corresponding dereliction
is found in the translation of get(r). The get(r), dual of the set, takes a resource
from the corresponding input reference wire and redirects it to the output wire.
It outputs a coweakening on the reference wire as it does not produce any
assignment. As mentioned in the previous case, a dereliction is added on the
input wire to force the non-deterministic choice and strip the exponential layer
added by the set.

Abstraction (Figure 5.6) The abstraction thunks the potential effects of the
body M in the pure term λx.M . Following the monadic translation, the input
effects are tensorized with the bound variable, and the output effects with the

127



R;x : A,Γ `M : (α, e)

R; Γ ` λx.M : (A
e→ α, ∅)

(lam)

Figure 5.6: Translation of λx.M

R; Γ `M : (A
e1→ α, e2) R; Γ ` N : (A, e3) R; Γ ` V ∈ V(r) : (R(ri), ∅)

R; Γ `M N [V ]λ : (α, e = e1 ∪ e2 ∪ e3)
(app)

Figure 5.7: Translation of M N

output of M . Finally the whole term is put in an exponential box as it is a
value.

Application and parallel (Figure 5.7) The application puts the routing area at
use. Using the same terminology as in the introduction of this section, we see
the effects e1 and e2 coming respectively from the evaluation of M and N , and
e3, liberated by the body of the function being applied, plugged accordingly on
the δ area. The parallel operator is similar to the application, but simpler. The
two outputs of the terms are connected using a `. Unlike application, there is
no constraint on the order of effects, thus reference wires are connected through
a symmetric γ area.

Note that the translation of a value V is an exponential box. This box is

i = 1, 2 R; Γ ` Pi : αi
R; Γ ` P1 ‖ P2 : B

(par)

Figure 5.8: Translation of parallel

128



closed if and only if the corresponding value has no free variables.
We now study the properties of this the translation, starting with simulation.

5.2 Simulation

The simulation theorem states that a reduction step in the source language is
reproduced by zero or more reduction in nets.

Theorem 5.2.1. Simulation for λcES

Let ` M : (α, e) be a closed well-typed term of λcES. If M →∗ N , then
M • ⇒∗ N •.

To derive this result, we define a notion of typed context and a translation of
contexts to nets.

5.2.1 Nets contexts

Reduction rules of λcES are defined up to contexts (see Table 4.3). To prove
simulation, it is natural and convenient to give contexts a proper treatment, by
providing a notion of typed context and a translation of these contexts to nets.
In both cases, this boils down to add a special treatment for the hole, and use
the material already developed for terms otherwise. We first extend typing to
context: the only additional rule we need is the one for the hole [.]. The other
constructors of contexts are the same as the constructors of standard terms,
hence we can the same typing rules of terms.

Definition 5.2.2. Hole typing rule

R ` (α, e)

R, [.] : (α, e) ` [.] : (α, e)
(hole)

[.] can be seen as a special kind of variable in the typing derivation. But
unlike variables, it can be substituted by something else than a value. Using
the standard typing rules of λcES, we can build type derivations of contexts.
A context can then be translated to a net, with an interface determined by α
and e, labelling free ports. This is what we call net contexts. The substitution
of a net in a net context consists in plugging the translation of a term with a
compatible type in this interface.

Definition 5.2.3. Hole translation
We define the translation of a typed hole R ` [.] : (α, e) as

129



R ` (α, e)

R, [.] : (α, e) ` [.] : (α, e)
(hole)

We just extend the translation with a case for the hole. We can then carry on
and use the usual term translation to build the translation of a context (C[E])•,
which is a net of the form

The substitution of M •, or of any net with a compatible interface for that
matter, in (C[E])• is defined by just connecting the free wires of the substituted
net to the corresponding free wires of the context hole :

The fundamental property of net contexts and net substitutions is that the
substitution commutes with the translation, in the following sense :

Proposition 5.2.4. Nets substitution
Let ` [.] : (α, e) be a typed hole, [.] : (α, e) ` C[E] : (β, e′) a typed context, and
`M : (α, e) a term. Then :

(C[E[M ]])• = (C[E])•[M •]

The very definition of net reduction immediately entails that if M • ⇒∗ N •
then (C[E])•[M •]⇒∗ (C[E])•[N •]. Together with Proposition 5.2.4, this ensures
that we can focus on the case where C = E = [.], as the general case follows
seamlessly.

From here, we check that each reduction rule of λcES can be simulated on the
net side, relying on the definition of the reduction and the behavior of routing
areas. We will prove the following one-step simulation lemma:

130



Lemma 5.2.5. One-step simulation
Let `M : (α, e) be a closed well-typed term of λcES. If M → N , then M • ⇒∗ N •.

To do so, we proceed by case analysis on the reduction rule applied in the
reduction M → N .

5.2.2 Variable substitutions reductions

Let us show the case of a (subst) rule. Thanks to the previous theorem, we can
assume that contexts are empty without loss of generality. We consider only
closed terms. Indeed, since reduction contexts S,C,E do not bind variables,
all the terms appearing in the premise of a rule are thus closed terms, and we
can omit their context. For each rule, we write the translation of the premise
followed by its reduction in nets, which matches the conclusion.

The fundamental rule that performs the substitution is (susbtvar).

(substvar) (σ(x) undefined) →∗

(substvar) (σ(x) defined) →∗

When reaching a get(r) or a ∗, the substitution simply vanishes.

(substunit) →∗

The (substapp), (substsubst-r) and (substsubst-r’) perform a duplication and
propagate the substitution inside reference substitutions.

131



(substapp)

⇒∗

(substsubst-r) ⇒∗

(substsubst-r’) ⇒∗

The (subst‖) just duplicate the variable substitution to the two threads

(subst‖) ⇒∗

132



Finally, the (substmerge) distributes the outer substitution to both the term
and the inner substitution.

(substmerge) ⇒∗

5.2.3 Downward reference substitutions reductions

The propagation of references substitutions relies on the behavior of routing area,
and especially Proposition 3.2.7. The fundamental case is the non deterministic
reduction happening when reducing a get(r) whose redex is

(subst-rget)

Then for each V in the image of V, there will be exactly one summand of
the following form

⇒∗

The remaining term reduces to the translation of get(r):

133



⇒∗

(subst-rval), (subst-r‖) and (subst-rapp) are just direct application of the
Proposition 3.2.7.

(subst-rval) ⇒∗

(subst-r‖) ⇒∗

(subst-rapp)

134



⇒∗

(subst-rmerge) and (subst-rsubst-r’) amount to nothing in nets, as the trans-
lation already identifies the redex and the reduct of these rules.

(subst-rsubst-r’) (subst-rmerge)

5.2.4 Upward reference substitutions reduction

As for downward substitutions, the main ingredient is the Transit lemma, applied
to our specific routing area δ and γ.

(subst-r’‖) ⇒∗

135



(subst-r’lapp) ⇒∗

(subst-r’rapp) ⇒∗

5.3 Termination and Adequacy

5.3.1 Termination

In this section we show that the nets that are the translation of a well-typed
terms of λcES are weakly normalizing. Nets are indeed more liberal in their
reduction: for example, they reduce an expression corresponding to a β-redex
(λx.M) N even if N is not a value (take a get(r)) for example. There also
administrative reductions, corresponding to merging of routing areas, which are
invisible on the calculus side. As a result, the translation of a normal form of
λcES my not be a normal net. The goal of this section is to show that however,
the translation of a normal form of λcES can be reduced in a few steps to a
normal net that can be related to the original term.

136



Proposition 5.3.1. Let ` N : (α, e) be a closed well-typed term of λcES which
is a normal form. Then N • is strongly normalizing.

Together with simulation, this gives the following theorem:

Theorem 5.3.2. Weak normalization
Let ` M : (α, e) be a closed well-typed term of λcES. Then M • is weakly
normalizing.

Proof. Theorem 5.3.2
Let ` M : (α, e) be a closed well-typed term of λcES. By Theorem 4.3.10,
it is strongly normalizing, hence M →∗ N where is normal. By simulation,
M • ⇒∗ N •. By Proposition 5.3.1, N • is strongly normalizing, and in particular
M • ⇒∗ N • ⇒∗ N where N is a normal form.

The next section gives the detailed proof of Proposition 5.3.1.

5.3.2 Proof of Proposition 5.3.1

To prove Proposition 5.3.1, we proceed in two stages: first, we extend λcES to
a language λcES+ that is able to perform more reductions than λcES, precisely
the kind of generalized β reduction mentioned above. The extension of the
translation and the simulation theorem for λcES+ are straightforward. Then, we
show that λcES+ also terminates, give an explicit grammar for its normal forms,
and show that the translation of these normal forms are strongly normalizing
nets.

Working on the calculus

We add a labelled reference substitution variable substitution to λcES : M [|V|]↓ |
M [|x/N |]. The first one, M [|V|]↓, corresponds to a downward reference substi-
tution where V has no free variables. The second one corresponds to a variable
substitution of a term that is not a value. Both can appear during the reduction
in nets but are not accounted for in λcES. M [|x/N |] cannot be reduced, either
in N or by (subst) rules (whether N is a value or not). The labelled variable
substitution forbids any reduction under it, except for the labelled reference
substitutions. We extend the reduction rules (subst-r) to the labelled sub-
stitution [|V|]↓. They can be performed anywhere (included under a variable
substitution) except under abstraction, as defined by the following reduction
contexts: J ::= [.] | J M |M J | J [V ]↓ | J [σ] | J [|x/N |].

We add a generalized β-rule which fires such labelled substitution :

(β′) (λx.M) N [V ]λ → M [|V|]↓[|x/N |]

137



This corresponds to the additional reduction nets can do. A β redex can
always be fired in nets even if the argument is not a value. But then, the
corresponding term do need to be reduced before any duplication, erasure or
substitution. Let us now show termination and describe the normal forms of
λcES+:

Definition 5.3.1. F -normal forms
Let M be a normal form of the form of λcES. It belongs to the grammar Mnorm

(cf Lemma 4.2.7). Then M reduces to a sum of terms in λcES+, where each
summand belongs to the following grammar of F -normal forms :

Fnorm ::= get(r) | Fnorm V [V ]λ | Fnorm Fnorm[V ]λ |M [|x/Fnorm|]
where the M is in λcES (contains no labelled substitution).

Proof. By induction on the structure of M , with the additional hypothesis that
only the additional rules are performed (no upward substitution) :

• M = get(r) : ok

• M = Mnorm V [V]λ : by induction, Mnorm reduces to a sum of Fnorm.
Take one such summand N , then M →∗ Nnorm V [V]λ (because no rule
(subst-r’>) was used)

• M = Mnorm M ′
norm[V ]λ : we proceed as in the previous case

• M = V Mnorm[V]λ : by induction, Mnorm reduces to some N in Fnorm

grammar, so M →∗ V N [V]λ. Then, by inversion of typing rules, V is of
the form λx.P and we can apply the new β-reduction to get P [|V|]↓[|x/N |].
By pushing down [|V|]↓ in P , we can reduce it to a sum of Pis where each
Pi do not contain labelled substitutions. Then M →∗

∑
i Pi[x/N ]

Lemma 5.3.3. F -normal forms are normal.

Proof. By induction :

• M = get(r) : ok

• M = Fnorm V [V]λ : by induction, Fnorm is normal, and values are not
F -normal form, so the application cannot create any β-redex.

• M = Mnorm M ′
norm[V ]λ : same as the previous case

• M = M [|x/Fnormal|] : the explicit substitution prevents any reduction
except (subst-r) ones for labelled reference substitution, but by definition,
M does not contain any.

138



Working on the nets

We will see in the following that the translation of a F -normal form has not
many possible reductions left. However, a few steps may remain to eventually
reach a normal form. The first step is to collect and merge all the routing areas
that are created and connected during the translation. Doing so, we separate
the net between a part that closely follows the translated term structure, and
a big routing area which connects various subterms to enable communication
through references between them. Once this is done, a few starving get(r) may
interact with the routing area by generating sums, but without being actually
substituting. The following definition give the shape obtained after the merging
of routing:

Definition 5.3.4. Separability
Let R be the translation of a λcES+ term, then R is say to be separable if it
can be reduced to the following form :

where R is a routing area and S a net with free wires labelled by i1, . . . , in, o1, . . . , om, O,
satisfying :

(a) There is no redex in S

(b) i1, . . . , in are either connected to the auxiliary port of a ⊗ cell, to the
auxiliary port of a cocontraction or to the principal port of a dereliction

(c) o1, . . . , om, O are either connected to a ` cell, or to the principal door of an
open box

The translation of term with at least one free variable is separable. The reason
is that constructors such as application, substitution, parallel composition, etc.
preserve separability. Moreover, the translation of values with free variables
are obviously separable. The weakenings, which correspond to free variables,
materializes as auxiliary doors of exponential boxes, and block further reduction.

Lemma 5.3.5. Open terms separability
Let Γ, x : A ` M : (α, e) a λcES well-typed term, then its translation M • is
separable.

Proof. Lemma 5.3.5
We proceed by induction on terms.

139



Values As stated above, we can first observe that the translation of ∗, of a
variable x and an abstraction all satisfy the separability conditions. Indeed,
they are composed of a box with at least one auxiliary door, and the inside
of the box is a normal form (by induction for abstraction and trivially for
others). As they are pure terms, m = n = 0.

Get It is almost the same as values, except that the output o corresponding
to the reference of get(r) is connected to a dereliction, which is allowed in
(b).

Application By induction, M • and N • are separable, thus can be decomposed
in the following way :

We can merge the 3 routing areas R,R1 and δ. All the inputs or outputs
previously connected to one of the small areas immediately satisfy the
conditions (b,c) by IH. The two remaining wires i and o are respectively
connected to the auxiliary port of a par and the auxiliary port of a cocon-
traction, thus satisfy (b,c). S and S1 are normal by IH, and the translation
of V is easily seen as normal. O is the conclusion of a par, hence satisfies
(b,c). It only remains to see that the whole net excepted the routing areas
is normal, but the only redex that could appear is the connection of a
dereliction to M •. By (c), the output of M • is either the conclusion of an
open box or a par which do not form a redex. The condition (a) is verified.

Parallel Similar to application

Variable substitution As for application, we apply the IH on M • and V •,
merge the routing areas, and just check that the connection of V • to M •

cannot create new redexes using (b) on the output wire of V •.

Reference substitutions Again, the same technique is applied.

140



Finally, we can state the separability of normal forms:

Lemma 5.3.6. Normal form separability
The translation of a F -normal form is separable

It is proved as Lemma 5.3.5, by induction on the syntax of F -normal forms.
We can eventually prove from this last lemma:

Lemma 5.3.7. Termination of λcES+
The translation of a F -normal form is strongly normalizing.

Proof. Lemma 5.3.7
We apply Lemma 5.3.6 to reduce the translation of a F -normal form F to a
routing area R connected to S satisfying separability conditions. S and R are
normal. The potential redexes must involve a wire at the interface of R and S.
The inputs of R are connected to S, either to a par or to the conclusion of an open
box and thus can’t form any redex with (co)weakenings and (co)contractions of
R.

The outputs of R are either connected to the auxiliary port of a tensor, the
auxiliary port of a cocontraction or to a dereliction. Only the latter may form
a new redex. If the output of R is a coweakening, then everything reduces to
0. If it is just a wire, then the dereliction is connected through this wire to
an input of R which again can’t be part of any redex. The only remaining
case is when the output of R is a cocontraction tree. Then we can perform the

non-deterministic
ba→ reductions, and we go back to exactly the two previous

cases as the dereliction is finally connected to a leaf of the tree of an input.

Hence, after we performed finitely many
ba→ reductions, we finally get a normal

form, which is either 0, or a sum of the previous net S connected to simpler
routing areas Ri.

From this last lemma follows Proposition 5.3.1.

5.3.3 Adequacy

The adequacy theorem states that the summands of the normal form of M •

are either the translation of a normal form T = V1 ‖ . . . ‖ Vn (where V1, . . . , Vn
are values of λcES) that is a reduct of the original M , or garbage, that is a
non correct net that corresponds to execution paths which deadlocked. We can
recognize this garbage, thus eliminate it. With this additional operation, the
summands of the normal form of M • coincide with the translation of (parallel

141



of) values that are reachable by M . We stated a similar adequacy theorem
between λC and λcES (Theorem 4.4.14) in Section 4.4.3.

Theorem 5.3.8. Adequacy
Let M be well-typed term of λcES. We write Val(M) := {T = ‖i Vi | M →∗
T +M ′}. Similarly, for a net R with normal form N , we define Val(R) = {S |
N = S + S ′, S is the normal form of some (‖i Vi)•}. Then

Val(M)• = Val(M •)

where Val(M)• = {N | V ∈ Val(M), N is the normal form of V •}.

Proof. By simulation, we know that if M →∗
∑

iMi where the Mis are normal
forms, then M • →∗

∑
iM

•
i . As parallel of values are translated to normal forms

in nets, we have in particular Val(M)• ⊆ Val(M •).
To check the converse, we have to check that the translations of the remaining

Mis (the ones that are not parallel of values) cannot be reduced (as simple nets)
to value nets, or do not generate new summands that themselves reduce to value
nets. We can extract this fact from the proof of termination (cf Section 5.3.2)
that shows that in the translation of a term which is not a value, the only
remaining reduction are either the merging of routing areas, a reduction to 0, or

a sequence of
ba→ which conserve the overall structure of a term. In particular,

this does not produce any value during its reduction to a normal form in nets.

5.4 Summary

In this chapter, we illustrated the use of the tools introduced in Chapter 2
and Chapter 3, a differential net system (Chapter 2) and routing areas (Chap-
ter 3), by constructing an encoding from the concurrent λ-calculus with explicit
substitutions λcES introduced in Chapter 4 in nets.

We use the monadic translation of Tranquilli [56] to encode types from the
stratified type and effect system to standard formulas of multiplicative LL. We
then translate terms as nets, with free wires corresponding both to variables and
effect (references). We combine the “pure λ-calculus” part following the standard
call-by-value translation in LL [42], and combine the wires corresponding to
references through routing areas. These areas are specifically designed to encode
the order of the evaluation of effects in λcES. This provides a modular translation
of well-typed term of λcES in nets.

We then prove a simulation theorem, showing that nets implements the
reduction of λcES. We show that the translation of a term is weakly normalizing.
In the section on adequacy, we prove that the values in the normal form of the

142



translation of a term (which exists thanks to weak normalization and is unique
by confluence) corresponds to the value in the normal form of the term in λcES:
if we discard terms that deadlocked, the term and its translation computes the
same values.

5.5 Discussion

Termination We believe that the result of weak normalization for the translation
of well-typed terms of λcES may extend to a strong normalization result. This
was the idea behind the (T1) of Section 2.4: it ensures that weak normalization
is actually sufficient to get strong normalization. The problem we encountered

is that we use the
0→ reduction (or at least on of its avatar

n→, mentioned in
Remark 3.1.7) in the reduction concerning routing areas such as application of
the transit lemma , which potentially breaks the (T1) property (Definition 2.4.3).
However we use it in a restricted manner: we use it just to implement the
neutrality of coweakening with respect to cocontraction (as does

n→). In practice,
we always erase a summand that was produced by the previous duplication of

an initial term as two summands, by a
ba→ reduction. This kind of reduction

should not break the (T1) property, as any potential looping subnets that is
erased is still present in other summands.

Concurrency and correctness We mentioned from Chapter 2 that the translation
of concurrent program may produce nets that do not respect the correctness
criterion of differentials LL. A simple example is the following well-typed term
of λC:

P = (λx.set(r, x)) get(r) ‖ (λx.set(r, x)) get(r)

This term does not reduce further, but it can be modified easily to normalize to
a parallel of values: P ‖ set(r, ∗), for example, reduces to ∗ ‖ ∗ ‖ r ⇐ ∗ ‖ r ⇐
∗ ‖ r ⇐ ∗. This is a core example of a program that is translated to a net which
has a cycle in one of its switching graphs (cf Section 3.1.3 for a review of the
correctness criterion). The cycle correspond to a seemingly cyclic dependency
in the term P : in the left thread, the x depends to the value get(r) for which it
will be substituted. Then, the set(r, x) depends on this x. From the outside,
the fact that the set is executed after the get is not visible. Thus, the right
thread just see a term that is likely both read from and write to the reference
r. Because of this, there is a dependence between the right get(r) and the left
set(r, x). As the program is totally symmetric, we can see the emergence of
a cycle: from the left get(r), to the left set(r, x), to the right get(r), to the

143



right set(r, x), to the left get(r). This is not an actual cyclic dependency it the
languages between some of the junctions are in fact mutually exclusives: the
first get(r) being reduced must feed on an external assignment (as the program
P alone can not reduce further), breaking the dependency with the adverse
set(r, V ). But this kind of dynamic property is hard to accounted in nets. This
seems not to be specific to the languages we choose, as this example can be
transposed to the π-calculus process P ′ = a(x).a〈x〉 | a(x).a〈x〉 and thus already
affect the translation presented in [14].

5.6 Perspective

Typed and untyped terms The stratification constraint of the type system
seems rather restrictive, especially from a practical point of view. It enforces
strong normalization, which is a questionable feature for a realistic programming
language. Tranquilli [56] showed that the stratification constraint precisely
corresponds to the solvability of the equation given by the monadic translation,
without resorting to recursive types. If one allows recursive types in nets, we can
encode non stratified programs, and even untyped programs. The simulation
result should also holds in this setting as it mainly relies on the operational
semantic of nets, which does not depend on typing nor correctness. On the
other hand, it is not obvious that an adequacy result would be achievable,
and if it is, how. For this reason, we restricted ourselves to a fragment where
these kind of properties may still be established. Concerning termination, a
desirable extension of the termination theorem to the untyped case would be the
preservation of strong normalization. This property, especially studied in explicit
substitutions systems, ensures that the translation of a strongly normalizing
term is itself strongly normalizing.

Synchronous and asynchronous effects In the design of the λcES language, we
made some choices in order to get a more asynchronous system. This make the
translation in nets easier. The two main such features are the cumulative stores
(an assignment do not erase the previous ones, but rather add up), and the
fact that the reduction is neither left-to-right nor right-to-left in the reduction
of applications. The latter point is not really limiting, as one can encode a
specific order of evaluation. Since the reduction is weak (no reduction under
abstraction), it suffices to change an application M N to (λx.x N) M to force
a function to be fully evaluated before the argument, and get a left-to-right
operational semantics.

144



The cumulative stores are a more profound design choice. Usual program-
ming languages with imperative references rather implement an erase-on-write
semantics: in λC (cf Section 4.4.1), this would correspond to have exactly one
store r ⇐ V for each reference r, and to replace the (set) reduction rule by the
following one :

(set’) C[E[set(r, V )] ‖ r ⇐ U → C[E[∗]] ‖ r ⇐ V

Implementing this kind of behavior in nets requires a form of synchronization.
Tranquilli has sketched some ideas about it [54]. He proposes the use of an
additional wire for each references that represent a locking signal. get(r) and
set(r, V ) must acquire this lock before reading or writing values. While he resorts
to second-order constructs (the idea of a transistor already used by Ehrhard
and Laurent to encode prefixing in π-calculus [14]) to implement the lock, we
could implement it directly in our nets thanks to our reduction operating only
on closed boxes. Here is a proposal of a lock mechanism in nets. This lock
has two input wires (top) and two output wires (bottom), where the left input
and output correspond to the locking signal while the right input and output
correspond to the data we want to tie with the locking signal:

The locking signal does not carry any information, but only encode the
precedence of memory operations: this is why it is typed by Unit• = !1. The
lock multiplexes the locking signal with the data with a tensor, and this pair is
then enclosed by an exponential box. This box only serve as a synchronization
device, and is directly connected to a dereliction in order to open it, followed by
a par which demultiplexes the two inputs. It the reduction were not restricted
to closed boxes, then the lock could be instantly reduced to two wires and would
just act as the identity on both its inputs, independently of what it is connected
to. However, with a reduction restricted to closed boxes, the lock’s box must
be closed (id est being without auxiliary ports) before being opened. This
means that as long as both the inputs are not connected to a closed exponential
box, then the lock prevent any interaction between what is connected to its
inputs and what is connected to its outputs. When both its inputs are closed
exponential boxes, the lock can be removed through the following reduction:

145



Here is a sketch of how set(r, V ) and get(r) would be encoded using this lock
in an erase-on-white setting:

Figure 5.9: Encoding of get(r)

Figure 5.10: Encoding of set(r, V )

The left part corresponds of each encoding to the locking signal, while the right
part correspond to the data being effectively exchanged through references. Both
encoding start with a dereliction connected to the incoming data, stripping away
the additional exponential layer of values stored in references (cf the paragraph
on get and reference substitutions in Section 5.1.3). Then, in both case, the lock
imposes that the get(r) or the set(r, V ) acquire the locking signal, meaning that
they must receive a !1 on the left input, before anything else can happen. For
set(r, V ), a second lock prevent V • from being emitted asynchronously, as the
first lock have not control on it. When this condition is met, the lock can be
removed and the reductions corresponding to copying/sending data may take
place. As long as the lock vanishes, the locking signal is consequently re-emitted
through the appropriate wire, making it available for the next memory operation
to acquire it.

Note that in our current setting of cumulative stores, get(r) and set(r, V )
sends messages asynchronously: a get(r) produces a dummy output through a
coweakening, while a set(r, V ) ignore the input through a weakening. Here, a
term really takes the current state of the whole store as an argument, and return
the new state of the store. In particular, get(r) duplicate the input data, but
also re-emits it through the reference output wire. The set(r, V ), by replacing
the output with its own data, effectively erases any previous assignment. In this
hypothetical system, the additional exponential layer introduced by an exponen-
tial box in the translation of reference substitutions is rather introduced here by

146



a codereliction instead, as in the translation of the finitary π-calculus of [15].
The wire corresponding to data would be all connected through communication
areas, that is routing areas that allow everyone to communicate with everyone.
On the other side, the connection of signals must be done using specific routing
areas that precisely implement the ordering of effects, as our δ area, for example.
We believe that λcES would also be adaptable to such a setting, by mimicking
the mechanisms we sketched for nets on the calculus side.

Expressivity of the type system Another direction for future work is to enrich
the type system of λcES and λC. LL can indeed accommodate a lot of possible
extensions: second order (polymorphism), sum types (the additive fragment),
recursive types (by adding fixpoint operators), etc. One can also add ad-hoc cells
and reduction rules in nets to implement additional constants and primitives
for the languages, such as integer or floating point arithmetic for example.
Depending on the feature, it is not clear yet how it interact with the current
setting and if it has a natural representation in nets.

A parallel abstract machine We stressed that we hope to benefit from the ability
of nets to enable independent computations to be done in parallel. We think of
the GoI abstract machine for PCF introduced in [36] in particular. An extension
of GoI for differential nets can be found in [11]. Taking inspiration from it, we
could adapt the multi-token machine of [36] to work on nets. This would provide
an interesting basis for a prototype implementation. Automatic parallelism,
sometimes referred as implicit parallelism, is not the only benefit of a such
abstract machine. The natural message-passing style of execution makes it very
easy to slice a program into arbitrary components and execute them on different
computing unit. This is demonstrated for example in [16], which introduces a
PCF-like language enriched with an explicit construct to defer the computation
of subterms on different nodes. The corresponding machine is GoI-based one.

147



Bibliography

[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Levy. Explicit substitutions. In
Proceedings of the 17th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’90, pages 31–46, New York, NY, USA,
1990. ACM.

[2] Beniamino Accattoli. Proof nets and the call-by-value λ-calculus. Theor.
Comput. Sci., 606(C):2–24, November 2015.

[3] Beniamino Accattoli, Eduardo Bonelli, Delia Kesner, and Carlos Lombardi.
A nonstandard standardization theorem. In Proceedings of the 41st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’14, pages 659–670, New York, NY, USA, 2014. ACM.

[4] Beniamino Accattoli and Delia Kesner. The structural λ-calculus. In
Anuj Dawar and Helmut Veith, editors, Computer Science Logic: 24th
International Workshop, CSL 2010, 19th Annual Conference of the EACSL,
Brno, Czech Republic, August 23-27, 2010. Proceedings, pages 381–395,
Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[5] Beniamino Accattoli and Ugo Dal Lago. (leftmost-outermost) beta reduction
is invariant, indeed. Logical Methods in Computer Science, 12(1), 2016.

[6] Roberto M. Amadio. On stratified regions. In Zhenjiang Hu, editor,
Programming Languages and Systems: 7th Asian Symposium, APLAS 2009,
Seoul, Korea, December 14-16, 2009. Proceedings, pages 210–225, Berlin,
Heidelberg, 2009. Springer Berlin Heidelberg.

[7] A. Asperti, V. Danos, C. Laneve, and L. Regnier. Paths in the lambda-
calculus. three years of communications without understanding. In Proceed-
ings Ninth Annual IEEE Symposium on Logic in Computer Science, pages
426–436, Jul 1994.

[8] Gérard Boudol. Typing termination in a higher-order concurrent imperative
language. Information and Computation, 208(6):716 – 736, 2010. Special

148



Issue: 18th International Conference on Concurrency Theory (CONCUR
2007).

[9] Pierre-Louis Curien, Thérèse Hardin, and Jean-Jacques Lévy. Confluence
properties of weak and strong calculi of explicit substitutions. J. ACM,
43(2):362–397, March 1996.

[10] Vincent Danos and Laurent Regnier. The structure of multiplicatives.
Archive for Mathematical Logic, 28(3):181–203, Oct 1989.

[11] Marc De Falco. The Geometry of Interaction of Differential Interaction
Nets. In Logic In Computer Science (LICS), pages 465–475, Pittsburgh,
United States, June 2008. 20 pagee, to be published in the proceedings of
LICS08.

[12] Ugo de’Liguoro and Adolfo Piperno. Non deterministic extensions of untyped
lambda-calculus. Inf. Comput., 122(2):149–177, 1995.

[13] Thomas Ehrhard and Olivier Laurent. Acyclic solos and differential inter-
action nets. Logical Methods in Computer Science, 6(3):11, 2010.

[14] Thomas Ehrhard and Olivier Laurent. Interpreting a finitary pi-calculus
in differential interaction nets. Information and Computation, 208(6):606
– 633, 2010. Special Issue: 18th International Conference on Concurrency
Theory (CONCUR 2007).

[15] Thomas Ehrhard and Laurent Regnier. Differential interaction nets. Theo-
retical Computer Science, 364(2):166–195, November 2006. 30 pages.

[16] Olle Fredriksson and Dan R. Ghica. Seamless distributed computing from
the geometry of interaction. In Catuscia Palamidessi and Mark D. Ryan,
editors, Trustworthy Global Computing, pages 34–48, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg.

[17] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax involving
binders. In Logic in Computer Science, pages 214–224. IEEE Computer
Society Press, 1999.

[18] Dan R Ghica. Geometry of synthesis: a structured approach to vlsi design.
In ACM SIGPLAN Notices, volume 42, pages 363–375. ACM, 2007.

[19] Dan R Ghica and Alex Smith. Geometry of synthesis ii: From games to
delay-insensitive circuits. Electronic Notes in Theoretical Computer Science,
265:301–324, 2010.

149



[20] Dan R Ghica and Alex Smith. Geometry of synthesis iii: resource manage-
ment through type inference. In ACM SIGPLAN Notices, volume 46, pages
345–356. ACM, 2011.

[21] Dan R Ghica, Alex Smith, and Satnam Singh. Geometry of synthesis iv:
compiling affine recursion into static hardware. In ACM SIGPLAN Notices,
volume 46, pages 221–233. ACM, 2011.

[22] Jean-Yves Girard. Interprétation fonctionnelle et élimination des coupures
de l’arithmétique d’ordre supérieur. PhD thesis, Univ. Paris 7, 1972.

[23] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1 –
101, 1987.

[24] Jean-Yves Girard. Towards a geometry of interaction. Contemporary
Mathematics, 92(69-108):6, 1989.

[25] Jean-yves Girard. Proof-nets: The parallel syntax for proof-theory. In Logic
and Algebra. Citeseer, 1996.

[26] Timothy G Griffin. A formulae-as-type notion of control. In Proceedings of
the 17th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 47–58. ACM, 1989.

[27] Kohei Honda and Olivier Laurent. An exact correspondence between a
typed pi-calculus and polarised proof-nets. Theor. Comput. Sci., 411(22-
24):2223–2238, 2010.

[28] Naohiko Hoshino, Koko Muroya, and Ichiro Hasuo. Memoryful geometry of
interaction: from coalgebraic components to algebraic effects. In Proceedings
of the Joint Meeting of the Twenty-Third EACSL Annual Conference on
Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), page 52. ACM, 2014.

[29] William A Howard. The formulae-as-types notion of construction. 1980.

[30] Eugen Jiresch. Towards a gpu-based implementation of interaction nets.
arXiv preprint arXiv:1404.0076, 2014.

[31] Wolfram Kahl. A simple parallel implementation of interaction nets in
haskell. arXiv preprint arXiv:1504.02603, 2015.

[32] Delia Kesner. A theory of explicit substitutions with safe and full composi-
tion. Logical Methods in Computer Science, 5, 2009.

150



[33] Jean-Louis Krivine. Typed lambda-calculus in classical zermelo-fraenkel
set theory. Archive for Mathematical Logic, 40(3):189–205, 2001.

[34] Yves Lafont. Interaction nets. In Proceedings of the 17th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 95–108.
ACM, 1989.

[35] U. D. Lago, R. Tanaka, and A. Yoshimizu. The geometry of concurrent
interaction: Handling multiple ports by way of multiple tokens. In 2017
32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
pages 1–12, June 2017.

[36] Ugo Dal Lago, Claudia Faggian, Benoit Valiron, and Akira Yoshimizu.
Parallelism and synchronization in an infinitary context. In Proceedings
of the 2015 30th Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS), LICS ’15, pages 559–572, Washington, DC, USA, 2015.
IEEE Computer Society.

[37] Peter J. Landin. The mechanical evaluation of expressions. The Computer
Journal, 6(4):308–320, January 1964.

[38] Pierre Lescanne and Jocelyne Rouyer-degli. Explicit substitutions with de
bruijn’s levels. In in Rewriting Techniques and Applications, 6th Interna-
tional Conference, Lecture Notes in Computer Science 914, pages 294–308.
Springer, 1995.

[39] Ian Mackie. Applications of the Geometry of Interaction to language imple-
mentation. PhD thesis, Univ. of London, 1994.

[40] Ian Mackie. Compiling process networks to interaction nets. In Proceedings
9th International Workshop on Computing with Terms and Graphs, TER-
MGRAPH 2016, Eindhoven, The Netherlands, April 8, 2016., pages 5–14,
2016.

[41] Antoine Madet. Complexité Implicite de Lambda-Calculs Concurrents.
Theses, Université Paris-Diderot - Paris VII, December 2012.

[42] John Maraist, Martin Odersky, David N. Turner, and Philip Wadler. Call-by-
name, call-by-value, call-by-need, and the linear lambda calculus. Electronic
Notes in Theoretical Computer Science, 1(Supplement C):370 – 392, 1995.
MFPS XI, Mathematical Foundations of Programming Semantics, Eleventh
Annual Conference.

151



[43] Damiano Mazza. Interaction nets : semantics and concurrent exten-
sions. PhD thesis, 2006. Thèse de doctorat dirigée par Régnier, Laurent
Mathématiques discrètes et fondements de l’informatique Aix Marseille 2
2006.

[44] Damiano Mazza. The true concurrency of differential interaction nets.
Mathematical Structures in Computer Science, FirstView:1–29, 11 2016.

[45] Paul-André Mellies. Typed λ-calculi with explicit substitutions may not
terminate. In Mariangiola Dezani-Ciancaglini and Gordon Plotkin, editors,
Typed Lambda Calculi and Applications: Second International Conference
on Typed Lambda Calculi and Applications, TLCA ’95 Edinburgh, United
Kingdom, April 10–12, 1995 Proceedings, pages 328–334, Berlin, Heidelberg,
1995. Springer Berlin Heidelberg.

[46] Koko Muroya and Dan R Ghica. The dynamic geometry of interaction
machine: a call-by-need graph rewriter. arXiv preprint arXiv:1703.10027,
2017.

[47] Koko Muroya, Naohiko Hoshino, and Ichiro Hasuo. Memoryful geometry
of interaction ii: recursion and adequacy. In ACM SIGPLAN Notices,
volume 51, pages 748–760. ACM, 2016.

[48] Jorge Sousa Pinto. Sequential and concurrent abstract machines for interac-
tion nets. In International Conference on Foundations of Software Science
and Computation Structures, pages 267–282. Springer, 2000.

[49] John C. Reynolds. Towards a theory of type structure. In Programming
Symposium, Proceedings Colloque Sur La Programmation, pages 408–423,
Berlin, Heidelberg, 1974. Springer-Verlag.

[50] Kristoffer Høgsbro Rose. Explicit cyclic substitutions. In Michaël Rusi-
nowitch and Jean-Luc Rémy, editors, Conditional Term Rewriting Systems:
Third International Workshop, CTRS-92 Point-à-Mousson, France, July
8–10 1992 Proceedings, pages 36–50, Berlin, Heidelberg, 1993. Springer
Berlin Heidelberg.

[51] Ulrich Schöpp. On interaction, continuations and defunctionalization. In
International Conference on Typed Lambda Calculi and Applications, pages
205–220. Springer, 2013.

[52] François-Régis Sinot, Maribel Fernández, and Ian Mackie. Efficient re-
ductions with director strings. In Robert Nieuwenhuis, editor, Rewriting

152



Techniques and Applications: 14th International Conference, RTA 2003 Va-
lencia, Spain, June 9–11, 2003 Proceedings, pages 46–60, Berlin, Heidelberg,
2003. Springer Berlin Heidelberg.

[53] W. W. Tait. Intensional interpretations of functionals of finite type. Journal
of Symbolic Logic, 32(2):198–212, 1967.

[54] Paolo Tranquilli. References, Multithreading and Differential Nets.

[55] Paolo Tranquilli. Nets between determinism and nondeterminism. PhD
thesis, 2009. Thèse de doctorat dirigée par Tortora de Falco, Lorenzo et
Bucciarelli, Antonio Informatique Paris 7 2009.

[56] Paolo Tranquilli. Translating types and effects with state monads and linear
logic. 14 pages, January 2010.

[57] Paolo Tranquilli. Intuitionistic differential nets and lambda-calculus. Theo-
retical Computer Science, 412(20):1979 – 1997, 2011. Girard’s Festschrift.

[58] Alan Mathison Turing. On computable numbers, with an application to
the entscheidungsproblem. Proceedings of the London mathematical society,
2(1):230–265, 1937.

153


	Introduction
	Goals and motivations
	Context
	Related works
	Contributions
	Plan

	Nets
	Syntax
	Reduction
	Base reduction 
	Lifting reduction to nets
	About closed and surface reduction

	Confluence
	Normalizing and non-normalizing nets
	Summary
	Discussion

	Routing Areas
	Routing Areas
	Multirelations
	(Co)contraction trees
	Correctness criterion
	Routing areas

	Operations on Routing Areas
	Routing Nets
	Paths in Routing Nets
	Normal forms
	The Routing Semantics

	Summary
	Discussion

	The concurrent lambda-calculus with explicit substitutions lambda-cES
	A Concurrent lambda-calculus with Explicit Substitutions
	Syntax
	Reduction
	Weak confluence
	Preorder on terms

	Stratification and Type System
	The Type System of lambda-cES
	Subject reduction
	Progress

	Termination
	Technical Definitions
	Strong Normalization for lambda-cES
	Proof of lemma-soundness

	lambda-C and lambda-cES
	The concurrent lambda-calculus lambda-C
	Simulation
	Adequacy

	Summary
	Discussion

	Encoding a concurrent lambda-calculus in nets
	The Translation
	Translating types and effects
	Combining effects
	Translating terms

	Simulation
	Nets contexts
	Variable substitutions reductions
	Downward reference substitutions reductions
	Upward reference substitutions reduction

	Termination and Adequacy
	Termination
	Proof of theorem-termination-lthis
	Adequacy

	Summary
	Discussion
	Perspective

	Bibliography

