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Abstract

The lattice Boltzmann method (LBM) is a specific discrete formulation of the Boltzmann
equation. Since its first premises, thirty years ago, this method has gained some popularity
and is now applied to almost all standard problems encountered in fluid mechanics including
multi-component flows. In this work, we introduce the inter-molecular friction forces to take
into account the interaction between molecules of different kinds resulting primarily in diffusion
between components. Viscous dissipation (standard collision) and molecular diffusion (inter-
molecular friction forces) phenomena are split, and both can be tuned distinctively. The main
advantage of this strategy is optimizations of the collision and advanced collision operators
are readily compatible. Adapting an existing code from single component to multiple miscible
components is straightforward and required much less effort than the large modifications needed
from previously available lattice Boltzmann models. Besides, there is no mixture approximation :
each species has its own transport coefficients, which can be calculated from the kinetic theory
of gases. In general, diffusion and convection are dealt with two separate mechanisms : one
acting respectively on the species mass and the other acting on the mixture momentum. By
employing an inter-molecular friction force, the diffusion and convection are coupled through the
species momentum. Diffusion and convection mechanisms are closely related in several physical
phenomena such as in the viscous fingering instability.

A simulation of the viscous fingering instability is achieved by considering two species in
different proportions in a porous medium : a less viscous mixture displacing a more viscous mix-
ture. The core ingredients of the instability are the diffusion and the viscosity contrast between
the components. Two strategies are investigated to mimic the effects of the porous medium. The
gray lattice Boltzmann and Brinkman force models, although based on fundamentally different
approaches, give in our case equivalent results. For early times, comparisons with linear stability
analyses agree well with the growth rate calculated from the simulations. For intermediate times,
the evolution of the mixing length can be divided into two stages dominated first by diffusion
then by convection, as found in the literature. The whole physics of the viscous fingering is
thus accurately simulated. Nevertheless, multi-component diffusion effects are usually not ta-
ken into account in the case of viscous fingering with three and more species. These effects are
non-negligible as we showcase an initial stable configuration that becomes unstable. The reverse
diffusion induces fingering whose impact depends on the diffusion between species.

Keywords : lattice Boltzmann method, fluid mechanics, multi-component flows, mixture dyna-
mics, viscous fingering instability
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Résumé

La méthode de Boltzmann sur réseau est une formulation discrète particulière de l’équation
de Boltzmann. Depuis ses débuts, il y a trente ans, cette méthode a gagné une certaine popu-
larité, et elle est maintenant utilisée dans presque tous les problèmes habituellement rencontrés
en mécanique des fluides notamment pour les écoulements multi-espèces. Dans le cadre de ce
travail, une force de friction intermoléculaire est introduite pour modéliser les interactions entre
les molécules de différent types causant principalement la diffusion entre les espèces. Les phé-
nomènes de dissipation visqueuse (collision usuelle) et de diffusion moléculaire (force de friction
intermoléculaire) sont séparés et peuvent être ajustés indépendamment. Le principal avantage
de cette stratégie est sa compatibilité avec des optimisations de la collision et les opérateurs de
collision avancés. Adapter un code mono-espèce pour aboutir à un code multi-espèces est aisé
et demande beaucoup moins d’effort comparé aux précédentes tentatives. De plus, il n’ y a pas
d’approximation du mélange, chaque espèce a ses propres coefficients de transport pouvant être
calculés à l’aide de la théorie cinétique des gaz. En général, la diffusion et la convection sont vus
comme deux mécanismes séparés : l’un agissant sur la masse d’une espèce, l’autre sur la quantité
de mouvement du mélange. En utilisant une force de friction intermoléculaire, la diffusion et
la convection sont couplés par l’intermédiaire la quantité de mouvement de chaque espèce. Les
mécanismes de diffusion et de convection sont intimement liés dans de nombreux phénomènes
physique tel que la digitation visqueuse.

L’instabilité de digitation visqueuse est simulée en considérant dans un milieu poreux deux
espèces dans des proportions différentes soit un mélange moins visqueux déplaçant un mélange
plus visqueux. Les principaux moteurs de l’instabilité sont la diffusion et le contraste de viscosité
entre les espèces. Deux stratégies sont envisagées pour simuler les effets d’un milieu poreux. Les
méthodes de rebond partiel et de force de Brinkman bien que basées sur des approches fonda-
mentalement différentes donnent dans notre cas des résultats identiques. Les taux de croissance
de l’instabilité calculés à partir de la simulation coïncident avec ceux obtenus à partir d’analyses
de stabilité linéaire. L’évolution de la longueur de mélange peut être divisée en deux étapes do-
minées d’abord par la diffusion puis par la convection. La physique de la digitation visqueuse est
ainsi correctement simulée. Toutefois, les effets de diffusion multi-espèces ne sont généralement
pas pris en compte lors de la digitation visqueuse de trois espèces et plus. Ces derniers ne sont
pas négligeable puisque nous mettons en avant une configuration initialement stable qui se dé-
stabilise. La diffusion inverse entraîne la digitation dont l’impact dépend de la diffusion entre les
espèces.

Un résumé étendu des travaux de la thèse est disponible en annexe F.

Mots clés : méthode de Boltzmann sur réseau, mécanique des fluides,écoulements multi-espèces,
dynamique du mélange, instabilité de digitation visqueuse
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Introduction

Fluid mechanics is a branch of Physics dedicated to the study of gases and liquids
flows. Consider the air we breathe, to the human senses, air is continuum and uniform,
and we usually describe it by using terms such as density or velocity. However, if we
observe air at a sufficient scale (≈ 10−9m), we will see billions of molecules moving
around and colliding with each other. Tracking all these movements individually is
overwhelming and impractical in reality for a tangible amount of gas. Instead, the
evolution of the distribution of gas molecules is a more convenient quantity to follow.
This route is called the kinetic theory of gases, and the famous Boltzmann equation
governs the distribution of molecules. The collision effects are not trivial and are usually
approximated by defining an equilibrium state that the gas tends to reach. The time
required for the distribution of molecules to relax toward the equilibrium is mainly due to
the viscous dissipation caused by the collision of molecules. If we return to our elemental
material, air, we notice that air is predominantly composed of two components: nitrogen
(N2, ≈ 78%) and oxygen (O2, ≈ 21%). In fact in nature, species commonly mix each
other and, generally, pure compounds are a human creation. A natural approach in the
case of mixing components is then to consider the evolution of the distribution of each
type of molecules. The most complex part remains to appropriately take into account
the effect of collisions of different types of molecules.

An analytical solution of fluid flows is unfortunately only known for simple configu-
rations. We will seek for an approximated solution by limiting to only a small amount
of all possible molecules directions. In this way, space, time, and molecules velocities are
divided into discrete elements representing the continuum reality. This finite representa-
tion of the problem can be solved using numerical techniques on computers. The lattice
Boltzmann method (LBM) is a specific discrete formulation of the Boltzmann equation.
Since its first premises, thirty years ago, this method has gained some popularity and
is now applied to almost all standard problems encountered in fluid mechanics such as
multi-phase flows, thermal flows, turbulent flows, acoustics, flows in porous media, and
multi-component flows, to name a few. Its apparent simplicity and ease of implementa-
tion compared to traditional methods to solve fluid flows may explain its increasing use.
It should be noted, however, that these two last arguments are only partially true: apply-
ing even incredible simple procedures to a complex scenario will result in a complicated
end.

As we mentioned before, the way the distribution of molecules change after collisions
is critical. In LBM, there is no unique or generally accepted collision operator in the
case of mixing components. Different lattice Boltzmann models for miscible species have
been proposed depending on the underlying kinetic theory chosen. Some separate the
collision between similar and dissimilar molecules, others employ a global equilibrium
state. The collision step already crucial is then modified and becomes more complex. In
this work, we will circumvent this difficulty by introducing the inter-molecular friction
forces to take into account the interaction between molecules of different kinds resulting
primarily in diffusion between components. The usual collision namely the relaxation
of the distribution toward a species equilibrium state is used. Viscous dissipation (stan-
dard collision) and molecular diffusion (inter-molecular friction forces) phenomena are
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Introduction

split, and both can be tuned distinctively. The main advantage of this strategy is that
optimizations of the collision and advanced collision operators are readily compatible.
Adapting an existing code from single component to multiple miscible components is
straightforward and required much less effort than the large modifications needed from
previously available lattice Boltzmann models. The collision is the cornerstone of the
lattice Boltzmann method, and a revamp of the collision generally results in entirely
rewriting the code. Besides, there is no mixture approximation: each species has its
own transport coefficients, which can be calculated from the kinetic theory of gases.
In general, diffusion and convection are dealt with two separate mechanisms: one act-
ing respectively on the species mass and the other acting on the mixture momentum.
By employing an inter-molecular friction force, the diffusion and convection are coupled
through the species momentum. Diffusion and convection mechanisms are closely related
in several physical phenomena such as in the viscous fingering instability.

Viscous fingering is an ubiquitous instability that occurs when a less viscous fluid
displaces a more viscous fluid in a porous medium. The interface between the two
fluids starts to deform, and finger-like patterns emerge and grow. This phenomenon can
either increases the mixing in porous media, which is incredibly difficult because of the
absence of turbulence that can actively stir the flow or be dramatic to some processes.
The typical example is secondary oil recovery, for which fingering from the injected
aqueous solution pushing the more viscous oil in underground reservoirs of porous rocks
reduces the sweep efficiency severely. Similarly, one solution to decrease the carbon
dioxide emitted to the atmosphere is to capture it directly from the power plants and
gas production sites, and stores in available reservoirs. The interaction between the
supercritical CO2 and the interstitial fluids, usually brine, is of interest. The resulting
mixture from the carbon dioxide dissolution could undergo fingering and change radically
the distribution of CO2 in the reservoir. Viscous fingering is also detrimental in the case
of chromatography, a technique used to separate and identify chemical compounds in
a mixture flowing through a porous medium. The displacing fluid (the eluent) may be
less viscous than the sample mixture. The initial planar interface will deform because of
fingering, resulting in an inefficient separation. Last, viscous fingering can play a major
role in soil contamination by enlarging considerably the polluted area. Hence the study
of viscous fingering is essential in numbers of domains.
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Introduction

Thesis structure
The thesis structure is divided into three main parts. Part I contains the necessary

background materials to deal with the lattice Boltzmann method and miscible mixtures.
The first two chapters detail the basics of the lattice Boltzmann for single (and simple)
fluid. The third chapter presents independently the Maxwell-Stefan approach to mass
transfer from simple considerations. This is deliberate since a direct derivation from
the kinetic theory of gases would be lengthy, complicated, and paraphrases the seminal
book molecular theory of gases and liquids by Hirschfelder, Curtiss, and Bird [1]. Part
II is the main contribution of the thesis. We combine the approach of the third chapter
within the lattice Boltzmann framework. The proposed model is then validated against
analytical, experimental, and numerical results. Finally, part III presents an application.
The viscous fingering instability is simulated for two and three miscible components.
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Chapter 1

Kinetic theory of gases

A gas at rest is composed of billions of molecules flying around and colliding with
each other. Classical and quantum mechanics have been successfully used to describe
simple systems with a few degrees of freedom. However, these principles are impractical
to examine the behavior of a tangible amount of gas. A single gram of the air we
breathe consists of over 1022 molecules. Also, the knowledge of the microscopic state is
not particularly of interest when studying a gas flow.

Instead of tracking the motions of individuals molecules at the microscopic scale,
a statistical description of the gas is more appropriate. The gas is then described ac-
cording to the density of molecules. This corresponds to the mesoscopic scale. The
non-equilibrium behavior of dilute gases was investigated about two centuries ago by
Maxwell, Boltzmann, and others. This specific branch of statistical mechanics is called
the kinetic theory of gas.

A few assumptions have to be made concerning the gas. All of the molecules of
the gas are spherical, non-polar and identical. They spend a very little of their time
colliding meaning that the fraction of collisions involving more than two molecules is
negligible. This excludes dense gases and liquids although some developments exist [1].
Furthermore, we restrict the discussion to the kinetic theory of monatomic dilute gases.
Single atoms collide elastically and the translational energy is conserved during a col-
lision. For polyatomic gases, two internal degrees of freedom also exist: the molecules
can rotate and vibrate, and these phenomena should be treated with quantum mechan-
ics. Nonetheless, diffusion coefficient and shear viscosity are not very much affected by
the internal degrees of freedom. Therefore, the results are in practice more generally
applicable than these assumptions assert. It should be noted that the volume viscosity
and the coefficient of thermal conductivity are quite dependent on the internal degrees of
freedom but the influences of these transport coefficients are irrelevant for the isothermal
and low Mach number flows investigated in this thesis.

In the following sections, we provide an introduction to kinetic theory, which is the
cornerstone of the lattice Boltzmann method.
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CHAPTER 1. KINETIC THEORY OF GASES

1.1 Distribution function
The fundamental quantity in kinetic theory is the distribution function f(x, c, t).

The variable f describes the probability to find a particle (molecule) with velocity c at
position x and time t. The macroscopic quantities such as fluid density, fluid velocity,
and fluid internal energy can be found by means of the moments of the distribution
function. These moments link the mesoscopic and macroscopic scales. This excludes
the case of rarefied gases where the gas does not longer behave as a continuum, hence
macroscopic quantities are inadequate.

If we integrate over the entire (microscopic) velocity space, we obtain the fluid density
at a particular point and time,

ρ (x, t) =
∫
f(x, c, t)dc. (1.1)

The second moment corresponds to the integration weighted with c over the entire
velocity space and gives the fluid momentum density,

ρ (x, t) u (x, t) =
∫

cf(x, c, t)dc. (1.2)

Similarly, the fluid energy density is related to the third moment,

ρ (x, t)E (x, t) =
∫ 1

2c2f(x, c, t)dc. (1.3)

The fluid energy density can be split into two parts: the kinetic energy density due
to the fluid motion and the internal energy density, ρE = ρe + ρ1

2u2 or we can write
ρ (x, t) e (x, t) =

∫
1/2(c − u)2f(x, c, t)dc. Here, only the translational energy is consid-

ered.

1.2 Boltzmann equation
The distribution function depends on x, c, and t. The evolution of the distribution

function according to the time is given by the total derivative,

df

dt
=
(
∂f

∂xi

)
dxi

dt
+
(
∂f

∂ci

)
dci

dt
+
(
∂f

∂t

)
dt

dt
, (1.4)

where dxi/dt is equivalent to the particle velocity ci, dci/dt is the particle’s acceleration,
which according to the Newton’s second law is equal to the body force acting on the
particles dci/dt = FBi/ρ. The previous equation can be rewritten as

∂f

∂t
+ ci

(
∂f

∂xi

)
+ FBi

ρ

(
∂f

∂ci

)
= df

dt
. (1.5)

This equation is very similar to an advection equation where the distribution function is
advected with a velocity of ci. The third term represents the influence of the body force.

12



CHAPTER 1. KINETIC THEORY OF GASES

The right-hand side is similar to a source term and depicts the rate of change of the
distribution function df/dt due to collisions. The resulting equation is the Boltzmann
equation and the right-hand side is called the collision operator. Using vector formulation
yields to

∂f

∂t
+ c · ∇f + FB

ρ
· ∇cf =

(
df

dt

)
coll

, (1.6)

where ∇ is the gradient in the physical space and ∇c is the gradient in the velocity
space.

1.3 Collision operator
The collision conserves the mass, the momentum, and the energy of particles, which

is equivalent to ∫ (
df

dt

)
coll

dc = 0, (1.7)∫
c

(
df

dt

)
coll

dc = 0, (1.8)∫ 1
2c2

(
df

dt

)
coll

dc = 0; (1.9)

1, c, 1
2c2 are the collision invariants and results from the conservation laws of the system.

Using geometric considerations and assuming no correlations between particles prior
to the collision (also known as molecular chaos approximation), the rate of change due
to the binary collision of particles takes the following form(

df

dt

)
coll

=
∫

(f1′f2′ − f1f2) gb db dϵ dc2, (1.10)

where f1 and f1′ refer to the distribution function of the first particle before and after the
collision. g is the initial relative speed of the two particles, b and ϵ are some geometrical
quantities. More detailed explanations can be found in Ref. [1, 2] but for the sake of
simplicity are not given here and are not necessary for the next developments.

1.3.1 Equilibrium

Let us consider the case of uniform conditions and absence of external forces, Eq. (1.6)
becomes

∂f

∂t
=
∫

(f1′f2′ − f1f2) gb db dϵ dc2 (1.11)

A gas is at a local equilibrium state when the distribution function does not vary in
time. This does not mean that particles sit idle and no collision occur but rather that
the collisions do not change the distribution of gas particles. This leads to

feq
1′ f

eq
2′ = feq

1 feq
2 . (1.12)
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CHAPTER 1. KINETIC THEORY OF GASES

Taking the logarithm yields

ln(feq
1′ ) + ln(feq

2′ ) = ln(feq
1 ) + ln(feq

2 ). (1.13)

The logarithm of the distribution functions is a summational invariant of the collision.
Thus it can be shown that the summational invariant must be a linear combination of
the three collision invariants, so that

ln(feq) = A+ B · c − C
1
2c2, (1.14)

where A, C are scalars, and B is a vector. They are independent of x, t since the state
of the gas is steady and uniform. This can be rewritten as

ln(feq) = lnD + 1
2C(c − 1

C
B)2 (1.15)

feq = De
1
2 C(c− 1

C
B)2 (1.16)

feq = De− 1
2 Cc′2 (1.17)

where D is a new constant and c′ = c − 1
C B. The unknown constant can be computed

by using the moments of the equilibrium distribution function. For the first moment,
we have

ρ =
∫
feqdc = D

∫
e− 1

2 Cc′2
dc′. (1.18)

With the help of Gaussian integrals (
∫∞

−∞ e−a(x+b)2
dx =

√
π/a), we obtain

ρ = D

∫ ∞

−∞
e− 1

2 Cc′2
dc′ = D

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
e− 1

2 C(c′2
x +c′2

y +c′2
z )dc′

xdc
′
ydc

′
z (1.19)

ρ = D

(2π
C

)3/2
(1.20)

The second equilibrium moment is equivalent to

ρu =
∫

cfeqdc (1.21)

ρu =
∫ ∞

−∞
(B/C + c′)feqdc′ (1.22)

ρu = ρB/C +D

∫ ∞

−∞
c′e− 1

2 Cc′2
dc′ (1.23)

u = B/C. (1.24)

The second integral term vanishes because the integrand is an odd function. This results
to c′ = c − u. Using the definition of the internal energy of a monatomic gas at steady

14
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state gives,

ρe = 3
2
kBT

m
=
∫ 1

2(c − u)2feqdc (1.25)

3
2
kBT

m
= 1

2D
∫ ∞

−∞
c′2e− 1

2 Cc′2
dc′ (1.26)

3
2
kBT

m
= 1

2D
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
(c′2

x + c
′2
y + c

′2
z )e− 1

2 C(c′2
x +c

′2
y +c

′2
z )dc′

xdc
′
ydc

′
z (1.27)

3
2
kBT

m
= 1

2D
3
C

(2π
C

)3/2
(1.28)

kBT

m
= 1
C

(1.29)

with kB the Boltzmann constant, T the temperature, and m the mass of one particle
of gas. The following Gaussian integral

∫∞
−∞ x2e−ax2

dx =
√
π/a/(2a) has been used to

compute the integral. Finally, we recover the famous Maxwell-Boltzmann equilibrium
distribution for a d (d = 3 in the previous derivation) dimensional space:

feq = ρ

(
m

2πkBT

)d/2
e

− m
2kBT

(c−u)2
(1.30)

= ρ

(2πRsT )d/2 e
−(c−u)2/(2RsT ) (1.31)

where Rs = kB/m is the specific gas constant.

1.3.2 BGK collision operator

The complicated nonlinear integral collision operator Eq. (1.10) is often replaced
by a simpler expression avoiding the inherent mathematical difficulties but resulting in
correct macroscopic behavior. Bhatnagar, Gross, and Krook propose the so-called BGK
collision operator [3], (

df

dt

)
coll

= −1
τ

(f − feq) (1.32)

where they introduced the relaxation time τ . This operator obeys to Eqs. (1.7),(1.8),
(1.9) assuring the conservation of the mass, momentum and energy during the collision.
One drastic simplification associated is the use of a relaxation time independent of the
distribution function f .

As an example, if we consider a gas whose distribution function is uniform in space
f(x, c, t) = f(c, t) but the gas is not at the equilibrium state at t = 0,

∂f(c, t)
∂t

= −1
τ

[f(c, t) − feq(c)] (1.33)

f(c, t) = feq(c) + (f(c, 0) − feq(c)) e−t/τ (1.34)

The distribution function relaxes exponentially to the equilibrium according to the typ-
ical time-scale parameter τ .

15
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1.4 Macroscopic balance equations
The macroscopic conservation equations for the three invariants (mass, momentum,

and energy) can be derived from the Boltzmann equation Eq. (1.6).
First, we introduce the following notation for the moments of f :

Π0 =
∫
fdc = ρ, Πi =

∫
cifdc = ρui,

Πij =
∫
cicjfdc, Πijk =

∫
cicjckfdc,

(1.35)

and so forth. These moments are unchanged if their indices are reordered, e.g, Πxyz =
Πyxz. Concerning the force term, this next expression will be useful,∫

ψ
∂f

∂ci
dc =

∫ ∫
ψf dcjdck −

∫
f
∂ψ

∂ci
dc. (1.36)

The first term of this integration by parts, i.e., the surface integral, vanishes because
the product ψf is assumed to diminish rapidly for large c [1, 4]. Integrating Eq. (1.6)
multiplied by an arbitrary quantity ψ over c results in the Enskog’s general equation of
change. In particular, the fundamental hydrodynamic equations of mass, motion, and
energy balance are recovered for ψ = 1, ci, cici.

Before the following preliminary result will be needed: equation (1.36) yields

∫
∂f

∂ci
dc = 0, (1.37)∫

ci
∂f

∂cj
dc = −

∫
∂ci

∂cj
fdc = −ρδij , (1.38)∫

cici
∂f

∂cj
fdc = −

∫
∂(cici)
∂cj

dc = −2ρuj . (1.39)

Now, we now apply the moment "operator", i.e.,
∫

•dc,
∫
ci • dc, and 1/2

∫
cici • dc

(equivalent to ψ = 1, ci, 1/2cici) to the Boltzmann equation Eq. (1.6). If we integrate
the Boltzmann equation over the velocity space, we get,

∂

∂t

∫
fdc + ∂

∂xi

∫
cifdc + FBi

ρ

∫
∂f

∂ci
dc =

∫ (
df

dt

)
coll

dc. (1.40)

Note that the space and time derivatives have been moved out the integrals since t and x
are not function of c. In addition, since velocity and space coordinates are independent
variables, ci∂f/∂xi = ∂(cif)/∂xi. Using Eqs. (1.1), (1.2), (1.7), and (1.37) gives the
continuity equation,

∂ρ

∂t
+ ∂(ρui)

∂xi
= 0. (1.41)

If we multiply the Boltzmann equation Eq. (1.6) by ci and integrate over the velocity
space, we find,

∂

∂t

∫
cifdc + ∂

∂xj

∫
cicjfdc + FBj

ρ

∫
ci
∂f

∂cj
dc =

∫
ci

(
df

dt

)
coll

dc. (1.42)
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Using Eqs (1.2), (1.8), (1.35), and (1.38) results in
∂ρui

∂t
+ ∂Πij

∂xj
= FBi (1.43)

The second moment Πij can be rewritten as

Πij =
∫

(ci − ui)(cj − uj)fdc + ρuiuj (1.44)

Hence, the momentum equation in a conservation form is obtained,
∂(ρui)
∂t

+ ∂(ρuiuj)
∂xj

= ∂σij

∂xj
+ FBi, (1.45)

where σij = −
∫

(ci − ui)(cj − uj)fdc is the Cauchy stress tensor, which is naturally
symmetric by definition.

Finally, if we multiply the Boltzmann equation by 1/2cjcj and integrate over the
velocity space, Eq. (1.6) becomes,

1
2
∂

∂t

∫
cjcjfdc + 1

2
∂

∂xi

∫
cicjcjfdc + 1

2
FBi

ρ

∫
cjcj

∂f

∂ci
dc = 1

2

∫
cjcj

(
df

dt

)
coll

dc. (1.46)

Using Eqs. (1.3, (1.9), (1.35), and (1.39), this reduces to
∂(ρE)
∂t

+ 1
2
∂Πijj

∂xi
= uiFBi, (1.47)

The third moment Πijj can be written in an equivalent form using

qi = 1
2

∫
(ci − ui)(cj − uj)2fdc (1.48)

= 1
2
[
Πijj − 2ujΠij − uiρE + 2ρuiu

2
j

]
(1.49)

= 1
2Πijj + ujσij − uiρE, (1.50)

where we introduced the heat flux q and the equation of energy balance becomes
∂(ρE)
∂t

+ ∂(ρuiE)
∂xi

= ∂(ujσij)
∂xi

+ uiFBi − ∂qi

∂xi
, (1.51)

By multiplying 1.45 by 1/2ui and subtracting from the previous equation results in the
equation of internal energy balance,

∂(ρe)
∂t

+ ∂(ρuie)
∂xi

= σij
∂uj

∂xi
− ∂qi

∂xi
, (1.52)

We emphasize that in order to obtain the balance equations Eqs. (1.41), (1.45), and
(1.52), no other assumptions than the conservation of mass, momentum and energy
during the collision are made. Neither an explicit collision operator nor the form of the
distribution functions are required to derive these macroscopic conservation equations.
Nonetheless, the stress tensor σij and the heat flux qi depend on the distribution function.
Contrary to the continuity equation, the momentum and energy balance will be fully
determined when the expression of f is given.
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Chapter 2

Lattice Boltzmann method

Before presenting the lattice Boltzmann method (LBM), we recall that the classical
kinetic theory of gases is based on different assumptions, which can, to some extent,
limit its applicability. First, we consider only binary collisions, thus this theory is not
appropriate for dense gases and liquids where three-body collisions are significant. Nev-
ertheless, Enskog and Eyring approximate theories have been proposed to deal with
respectively dense gases and liquids [1]. Second, the use of classical mechanics excludes
low-temperature phenomena where quantum effects are no longer negligible. Third, we
impose that the mean free path, i.e., the average distance traversed by a particle between
collisions, is short compared to all macroscopic dimensions. Otherwise, the gas behaves
as a discontinuous medium and the concept of local density, velocity, and energy loses
meaning. Fourth, monatomic spherical molecules are considered. In practice, the results
can be also applied to polyatomic gases provided that a correction is added to take into
account the internal degrees of freedom and molecules are not too non-spherical.

What is the lattice Boltzmann method? The lattice Boltzmann method is a partic-
ular discretization of the Boltzmann equation with a BGK, or an equivalent, collision
operator. The lattice Boltzmann method can be derived in different ways. The first
route is based on the kinetic theory of dilute gases and the discretization of the Boltz-
mann equation (also called bottom-up or a posteriori approach). In the second route
the lattice Boltzmann method is constructed from a top-down or a priori strategy in
such a way that the Navier-Stokes equations are recovered using minimal mesoscopic
requirements. Both approaches are not equivalent but rather complementary. The first
way has a rigorous historical foundation from statistical mechanics. Due to its kinetic
representation, mesoscopic effects can be directly modeled and hydrodynamics beyond
the Navier-Stokes equations can also be obtained [5]. However, this involves the afore-
mentioned limitations, which seems to greatly restrict its applicability on hydrodynamic
flows. On the contrary, the second way requires less unnecessary assumptions consider-
ing a fluid parcel instead of a molecule of gas. The reader may have already noticed, we
follow the first route because of its fascinating physical insight and most importantly it
provides some expressions for the transport coefficients of gaseous mixtures as we will
show later. For the sake of brevity, we do not discuss the ancestor of the lattice Boltz-

19



CHAPTER 2. LATTICE BOLTZMANN METHOD

mann method: the lattice gas cellular automata. A concise presentation can be found
in Ref. [6]. Finally, a third noteworthy route begins directly from the discrete lattice
Boltzmann equation, which is solely seen as a mesoscopic scheme for any distribution
function with no relation with the Boltzmann equation. The number of discrete kinetic
velocities and the equilibrium state are tailored to solve a particular partial differen-
tial equation. This expands out the lattice Boltzmann method into a numerical solver.
Hence, the lattice Boltzmann method has been employed to solve, to name a few, the lin-
ear convection-diffusion equation [7] and nonlinear equations such as Ginzburg-Landau,
Burgers-Fisher, nonlinear heat conduction, and sine-Gordon equations [8], or Burgers,
Korteweg–de Vries, and Kuramoto–Sivashinsky equations [9], the wave equation [10],
the shallow water equations [11].

In the following sections, the lattice Boltzmann method is derived from the Boltz-
mann equation. The reader may ask why using the lattice Boltzmann method for solving
fluid flows instead of Navier-Stokes equations. Indeed for fluid dynamics, hydrodynamic
quantities depend on the physical space x and the time t, and the microscopic velocities
do not appear in the fluids equations. The kinetic representation seems unnecessary
involving the time, the velocity space, and the physical space; yet in addition to its ap-
pealing mesoscopic view of the flow, the lattice Boltzmann method has two other main
advantages compared to the traditional way of solving Navier-Stokes equations. First,
the advection in the Boltzmann equation, c · ∇f , is linear whereas the inertial term in
the Navier-Stokes equation is u · ∇u where u may be a complicated function of space
and time. Secondly, the momentum diffusion in the lattice Boltzmann method is mate-
rialized by the relaxation process of the BGK collision operator, which is non-linear but
local. Because of these two advantages, as we will see, the resulting discrete equation is
conceptually simple, efficient, and can easily be implemented on parallel architectures,
while still being rigorously based on the kinetic theory of gases. These reasons may
explain the rapid and growing interest in the lattice Boltzmann method for solving fluid
flows.

2.1 Non-dimensional formulation

It is often convenient to use non-dimensional quantities and equations during mathe-
matical manipulations. Let define a characteristic length l0, velocity v0, and density ρ0.
The characteristic time scale is given by t0 = l0/v0. We introduce the non-dimensional
derivatives

∂

∂t⋆
= l0
v0

∂

∂t
,

∂

∂x⋆
i

= l0
∂

∂xi
,

∂

∂c⋆
i

= v0
∂

∂ci
, (2.1)

where the stars denote non-dimensional quantities. The Boltzmann equation Eq. (1.6)
is written in a non-dimensional form

∂f⋆

∂t⋆
+ c⋆

i

(
∂f⋆

∂x⋆
i

)
+ F ⋆

Bi

ρ⋆

(
∂f⋆

∂c⋆
i

)
=
(
df

dt

)⋆

coll
, (2.2)
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with f⋆ = vd
0/ρ0f , ρ⋆ = ρ/ρ0, c⋆

i = ci/v0, F ⋆
Bi = l0/v

2
0/ρ0FBi, and (df/dt)⋆

coll =
vd

0/ρ0l0/v0 (df/dt)coll, and d is the number of spatial dimensions. Moreover, the equilib-
rium distribution function has the following non-dimensional form

feq⋆ = ρ⋆

(2πθ⋆)d/2 e
−(c⋆−u⋆)2/(2θ⋆), (2.3)

and θ∗ = RsT/v
2
0 is the non-dimensional temperature. Henceforth, the star notation

will be omitted and all quantities will be non-dimensional unless otherwise stated.

2.2 Discretization of the velocity space
Usually, there is no analytical solution of the continuum Boltzmann equation instead

the equation will be solved numerically. The distribution function spans over a seven-
dimensional space: t, x, c, which has to be discretized. We first address the velocity space
discretization. We point out that we are not interesting in the microscopic level of detail
but a correct macroscopic behavior of the flow. As we already saw, only the moments
of the distribution function appear in the macroscopic equations. As a result, we are
only looking for a discrete distribution function whose moments, weighted integrals, are
equivalent to the moments of the continuous distribution function.

2.2.1 Hermite series

The distribution function can be expanded as a series of Hermite polynomials in
velocity space c (see Appendix A and references [4, 5, 12] for more details)

f(x, c, t) = ω(c)
∞∑

n=0

1
n!a

(n)
i (x, t)H(n)

i (c), (2.4)

with the following expansion coefficients and weight function

a
(n)
i (x, t) =

∫
f(x, c, t)H(n)

i (c)dc, ω(c) = 1
(2π)d/2 e

−c2/2. (2.5)

One of the nice features of this formulation is that all the expansion coefficients are
linear combinations of the moments of f . Substituting the Hermite polynomials by their
expression Eqs. (A.16-A.19), we can identify the first few expansion coefficients with the
hydrodynamic quantities

a(0) =
∫
fdc = ρ, (2.6)

a
(1)
i =

∫
cifdc = ρui, (2.7)

a
(2)
ij =

∫
(cicj − δij)fdc = Πij − δijρ = −σij + ρ(uiuj − δij), (2.8)

a
(3)
ijk =

∫
(cicjck − ciδjk − cjδki − ckδij)fdc = Πijk − ρ(uiδjk + ujδki + ukδij). (2.9)
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We can limit the series Eq. (2.4) up to a certain order N . Also, the N -th expansion
coefficients are still valid by truncation of higher-order terms. Therefore, we consider
only the first N Hermite polynomials

fN (x, c, t) ≈ ω(c)
N∑

n=0

1
n!a

(n)
i (x, t)H(n)

i (c). (2.10)

This is one of the reasons why the Hermite expansion is ingenious to describe the distri-
bution function in the Boltzmann equation. Since the coefficients of the expansion are
related to or coincide with the moments of f , i.e., the hydrodynamic quantities; only
a few truncated Hermite polynomials are needed to recover the relevant macroscopic
physics. This is the key idea of the Grad 13th-moments equations.

As previously, the equilibrium distribution function is also expanded. Noticing that
Eq. (2.3) can be written in the following form

feq(x, c, t) = ρ

(
√
θ)d

ω

(
c − u√

θ

)
, (2.11)

and using the change of variable ζ = (c − u)/
√
θ yield

a
(n)eq
i (x, t) = ρ

∫
ω(ζ)H(n)

i (
√
θζ + u)dζ. (2.12)

The expression of the equilibrium expansion coefficients are known exactly and the first
few equilibrium expansion coefficients read

a(0)eq = ρ

∫
ω(ζ)dζ = ρ. (2.13)

Successive expressions are easily calculated using the orthogonality property of the Her-
mite polynomials (see Eq. (A.20)). For instance,

a
(1)eq
i = ρ

∫
ω(ζ)H(1)

i (
√
θζ + u)dζ (2.14)

= ρ

[√
θ

∫
ω(ζ)ζidζ + ui

∫
ω(ζ)dζ

]
(2.15)

= ρ

[√
θ

∫
ω(ζ)H(1)

i (ζ)dζ + ui

]
(2.16)

= ρ

[√
θ

∫
ω(ζ)H(0)(ζ)H(1)

i (ζ)dζ + ui

]
(2.17)

= ρui, (2.18)

Similarly,

a
(2)eq
ij = ρuiuj + ρ(θ − 1)δij , (2.19)

a
(3)eq
ijk = ρuiujuk + ρ(θ − 1)(uiδjk + ujδki + ukδij). (2.20)
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The last term to expand (up to the N -th order) is related to the body forces. If we
take the derivative related to the velocity of Eq. (2.4) and use Eq. (A.14) successively,
we have

∇cf(x, c, t) =
N∑

n=0

1
n!a

(n)
i (x, t)∇c

(
ω(c)H(n)

i (c)
)

(2.21)

=
N∑

n=0

(−1)n

n! a
(n)
i (x, t)∇+1

c (ω(c)) (2.22)

= −ω(c)
N∑

n=0

1
n!a

(n)
i (x, t)H(n+1)

i (c) (2.23)

= −ω(c)
N∑

n=1

1
(n− 1)!a

(n−1)
i (x, t)H(n)

i (c). (2.24)

2.2.2 Gauss-Hermite quadrature

The last step is to evaluate the integrals in the expansion coefficients. If we truncate
the expansion of the distribution function as in Eq. (2.10), the integrand of Eq. (2.5)
has the following form

fN (x, c, t)H(n)
i (c) = ω(c)P (x, c, t), (2.25)

where P is a multi-dimensional polynomial in c of a degree not greater than 2N . A
Gauss-Hermite quadrature (see Appendix A) is of course employed to compute the ex-
pansion coefficient

a
(n)
i (x, t) =

∫
ω(c)P (x, c, t)dc =

qd∑
α=0

ωαP (x, cα, t) =
qd∑

α=0

ωα

ω(cα)f
N (x, cα, t)H(n)

i (cα)

(2.26)
with 2q − 1 ≥ 2N . Finally we define

fα(x, t) = ωα

ω(cα)f
N (x, cα, t), (2.27)

and the moment of the distribution function are now

ρ =
qd∑

α=1
fα, (2.28)

ρui =
qd∑

α=1
cαifα, (2.29)

Πij =
qd∑

α=1
cαicαjfα, (2.30)

Πijk =
qd∑

α=1
cαicαjcαkfα. (2.31)
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The corresponding equation for fα is obtained by evaluating at cα the Boltzmann equa-
tion, Eq. (1.6) and multiplying by ωα/ω(c),

∂fα

∂t
+ cα · ∇f = −1

τ
(fα − feq

α ) + Sα, (2.32)

where the BGK collision operator is employed to model collisions. The discrete equilib-
rium feq

α is given by

feq
α (x, t) = ωα

N∑
n=0

1
n!a

(n)eq
i (x, t)H(n)

i (cα), (2.33)

and the effect of the body force is absorbed into the source term discrete Sα,

Sα(x, t) = FB
ρ

· ωα

N∑
n=1

1
(n− 1)!a

(n−1)
i (x, t)H(n)

i (cα). (2.34)

2.3 Discrete velocity sets
In practice, most lattice Boltzmann implementations employ a Gauss-Hermite quadra-

ture whose abscissas coincide with Cartesian coordinates. This corresponds to the ve-
locity sets called D1Q3, D2Q9, D3Q15, D3Q19, and D3Q27; following the standard
DdQq where d is the spatial dimension and q the number of velocities, i.e., abscissas.

All the previous quadratures are exact for a (multi-dimensional) polynomial of a
fifth-degree or less. That is why only the second-order Hermite terms have to be re-
tained (5 ≥ 2N =⇒ N = 2). The third-order expansion coefficient a

(3)
i is not conserved

by the truncation and the energy balance is no longer respected. Consequently, exclu-
sively isothermal flows will be considered. Higher-order Gauss-Hermite quadratures are
possible but they are out of the scope of this thesis (D2Q17 and D3Q39 for a Cartesian
uniform grid are exact quadratures for polynomials of a seventh-degree or less [5]).

If we set the non-dimensional temperature to θ = 1 and go back to the non-
dimensional formulation Eq. 2.2, the characteristic velocity is v0 =

√
RsT , which corre-

sponds to the speed of sound and the characteristic length is the distance traveled by a
sound wave in a unit of time. However, the abscissas in Appendix A contain a cumber-
some

√
3 factor so instead the characteristic length is scaled so as the lattice spacing is

equal to one. That is why a scaled abscissa eα is used in place of,

eα = cαcs, (2.35)

where the scaled factor is set to cs = c/
√

3 with usually c = 1 and, as we will show, is
related to the reference speed of sound. The resulting velocity sets are summarized in
Table 2.1 and are drawn in Fig. 2.1.

Therefore, the non-dimensional quantities u, FB, and ∇ have also to be appropriately
scaled by the factor cs and the resulting equations are

∂fα

∂t
+ eα · ∇fα = −1

τ
(fα − feq

α ) + Sα, (2.36)
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DdQq Velocities Weights

D1Q3 (0) 2/3
(±1) 1/6

D2Q9
(0, 0) 4/9

(±1, 0), (0,±1) 1/9
(±1,±1) 1/36

D3Q15
(0, 0, 0) 2/9

(±1, 0, 0), (0,±1, 0), (0, 0,±1) 1/9
(±1,±1,±1) 1/72

D3Q19
(0, 0, 0) 1/3

(±1, 0, 0), (0,±1, 0), (0, 0,±1) 1/18
(±1,±1, 0), (±1, 0,±1), (0,±1,±1) 1/36

D3Q27

(0, 0, 0) 8/27
(±1, 0, 0), (0,±1, 0), (0, 0,±1) 2/27

(±1,±1, 0), (±1, 0,±1), (0,±1,±1) 1/54
(±1,±1,±1) 1/216

Table 2.1 – Common velocity sets used in the lattice Boltzmann method for cs = 1/
√

3.
If c ̸= 1, velocities have to be multiplied by c.

where the equilibrium and the source terms are expanded up to the second-order

feq
α = ρωα

[
1 + u · eα

c2
s

+ (u · eα)2

2c4
s

− u · u

2c2
s

]
, (2.37)

Sα = ωα

[
eα − u

c2
s

+ (eα · u)eα

c4
s

]
· FB. (2.38)

One can show that the moment of the equilibrium and the source term are given by

Πeq
0 =

∑
α

feq
α = ρ,

∑
α

Sα = 0, (2.39)

Πeq
i =

∑
α

eαif
eq
α = ρui,

∑
α

eαiSα = FBi, (2.40)

and,

Πeq
ij =

∑
α

eαieαjf
eq
α = ρcs

2δij + ρuiuj , (2.41)∑
α

eαieαjSα = uiFBj + ujFBi, (2.42)

Πeq
ijk =

∑
α

eαieαjeαkf
eq
α = ρcs

2(uiδjk + ujδki + ukδij), (2.43)∑
α

eαieαjeαjSα = cs
2(Fiδjk + Fjδki + Fkδij), (2.44)
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(a) D2Q9 velocity set.
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(b) D3Q27 velocity set.

Figure 2.1 – Common velocity sets in the lattice Boltzmann method. D1Q3 is equivalent
to 1, 2, 4 velocities of D2Q9. Degenerate velocity sets can be obtained from D3Q27:
D3Q15 by considering the velocities 1−7 (green) and 20−27 (red), D3Q19 by considering
the velocities 1 − 7 (green) and 8 − 19 (blue).

where the following relations have been used∑
α

ωα = 1, (2.45)∑
α

ωαeαi = 0, (2.46)∑
α

ωαeαieαj = cs
2δij , (2.47)∑

α

ωαeαieαjeαk = 0, (2.48)∑
α

ωαeαieαjeαkeαl = cs
4(δijδkl + δikδjl + δilδjk), (2.49)∑

α

ωαeαieαjeαkeαleαm = 0. (2.50)

2.4 Discretization of physical space and time

The Boltzmann equation has been discretized in the velocity space however, we
still need to discretize the time and physical space in order to solve it numerically.
One can use any numerical schemes such as finite differences, finite volumes, or finite
elements but Eq. (2.36) is a hyperbolic partial differential equation. An efficient way
to solve this kind of partial differential equations is the method of characteristics. The
distribution function is rewritten as fα = fα (x(s), t(s)) where s is the position along
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the characteristic line (x(s), t(s)). Along these characteristics, the partial differential
equation reduces to an ordinary differential equation,

dfα

ds
= ∂fα

∂t

dt

ds
+ ∂fα

∂xi

dxi

ds
= −1

τ
(fα − feq

α ) + Sα. (2.51)

This previous equation is equivalent to the discrete velocity Boltzmann equation Eq. (2.36)
if

dt

ds
= 1, dxi

ds
= eαi. (2.52)

Letting t(0) = t and xi(0) = xi, we find t(s) = t+ s and xi(s) = x+ eαis. We integrate
Eq. (2.51) over a time step, from s = 0 to s = δt,

fα(x+eαδt, t+ δt) − fα(x, t) =∫ δt

0

{
−1
τ

[fα(x + eαs, t+ s) − feq
α (x + eαs, t+ s)] + Sα(x + eαs, t+ s)

}
ds

(2.53)

The integral is evaluated using the trapezoidal rule.

fα(x+eαδt, t+ δt) − fα(x, t) =

− δt

2τ [fα(x + eαδt, t+ δt) − feq
α (x + eαδt, t+ δt) + fα(x, t) − feq

α (x, t)]

+ δt

2 [Sα(x + eαδt, t+ δt) + Sα(x, t)] (+O(δt
3))

(2.54)

This is a second-order accurate discretization but the resulting equation is implicit. If
we introduce the change of variable

f̂α = (1 + δt

2τ )fα − δt

2τ f
eq
α − δt

2 Sα, (2.55)

the previous equation gives

f̂α(x + eαδt, t+ δt) = f̂α(x, t) − δt

τ̂

[
f̂α(x, t) − f̂eq

α (x, t)
]

+ δt(1 − δt

2τ̂ )Sα, (2.56)

with f̂eq
α = feq

α and τ̂ = τ + δt/2. Surprisingly, with this change of variable, the equa-
tion becomes explicit and is second-order accurate despite having a similar form as a
first-order discretization. This is another interesting property of the lattice Boltzmann
method. The macroscopic quantities are obtained by computing the moment of f̂α:∑

α

f̂α = ρ, (2.57)

∑
α

eαf̂α = ρu − δt

2 FB, (2.58)

and similarly, other quantities can be directly calculated from f̂α. Hence and from now,
the ˆ notation will be omitted, and fα and τ will refer to the transformed variables.
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In the lattice Boltzmann method, a convenient system of units called lattice units
(lu) is commonly employed. In this system, the time and space steps are set equal to
one. Conversion factors and non-dimensional numbers are then used to compare the
simulation with experimental or numerical results. For instance, in lattice units we
usually set δxLBM = 1, δtLBM = 1, and ρLBM = 1 whereas in physical system we have
δxphy, δtphy, and ρphy. The conversion factors from the lattice units to the physical
system are simply for the length Cl = δxphy, the time Ct = δtphy and density Cρ = ρphy.
We emphasize that whatever the system of units is considered all the dimensionless
numbers are equal. Let consider for example the Mach number

Ma = Uphy

cphy
= ULBM

cs
, (2.59)

= Uphy

ULBM
= Cl

Ct
= δxphy

δtphy
= cphy

cs
=

√
3 × cphy. (2.60)

In consequence, setting the Mach number gives a relationship between the physical space
and time steps of the simulation Ma = δxphy/δtphy = cphy

√
3.

Finally, the lattice Boltzmann method can be split into two main steps and is sum-
marized below:

f∗
α(x, t) = fα(x, t) − 1

τ
[fα(x, t) − feq

α (x, t)] + (1 − 1
2τ )Sα Collision, (2.61)

fα(x + eα, t+ 1) = f∗
α(x, t) Streaming, (2.62)

with

ρ =
∑

α

fα, feq
α = ρωα

[
1 + u · eα

c2
s

+ (u · eα)2

2c4
s

− u · u

2c2
s

]
, (2.63)

ρu =
∑

α

eαfα + 1
2FB, Sα = ωα

[
eα − u

c2
s

+ (eα · u)eα

c4
s

]
· FB. (2.64)

The first step is called collision and is purely local. The formulation of the source term
expressed up to the second-order is the same as Guo’s forcing scheme [13] obtained
a priori so as to derive the correct Force expression in the Navier-Stokes equations.
The second step is the streaming, which propagates the distribution functions to the
neighboring lattice points. The advantage of a quadrature whose abscissas coincide with
the Cartesian coordinates is evident. If x belongs to a lattice node, then x + eα is
also a lattice point. The streaming step is just a shift of the post-collision distribution
functions to the next lattice nodes. The advection is exact, there is no diffusion added
by the use of an interpolation scheme for instance. The implementation of the algorithm
is straightforward (see Algo. 1 and Fig. 2.2).

The final result is conceptually simple yet physically based on the kinetic theory of
gases. The algorithm is very efficient as all steps but the streaming are local and the
non-locality (propagation) is just a shift in the memory involving the next neighbored
lattice nodes. Moreover, the code can easily be parallelized and achieves high per-
formance on multi-core computers. For instance, using the Message-Passing Interface
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while t ≤ tmax do
collide;
do MPI communications;
stream;
apply boundary conditions;
compute moments and force, ρ, ρu, FB;
t = t+ δt;

end
Algorithm 1: Lattice Boltzmann algorithm

(MPI) paradigm, the computational domain is expanded with a layer of ghost nodes.
These ghost nodes store a copy of the neighboring node from the adjacent MPI process
and are updated just before the streaming step as shown in Algo. 1 since other steps are
local. More details concerning programming considerations can be found in Appendix B.

2.5 Chapman and Enskog expansion procedure
As we know, the order of expansion of the Hermite series predicts which moments

we can exactly recover from the truncation of higher orders. However, the macroscopic
equations are not completely closed and the expression of Πij , for instance, in terms of
hydrodynamic quantities is still required. We need a way to assess the level of accuracy
over the different scales of the physics. The Chapman and Enskog expansion estimates,
from the deviation of the equilibrium, the relevant physical scales that are solved. The
distribution functions are expanded in terms of powers of the Knudsen number [2]:

fα = f (0)
α + Kf (1)

α + K2f (2)
α + · · · , (2.65)

where K is the Knudsen number, i.e., the mean free path divided by the characteristic
length of the flow. The source term is often expanded as Sα = KS(1)

α , where higher-
order terms are not generally required to obtain the correct macroscopic equations.
For usual fluid flows with slow time and large spatial scales variations, the Knudsen
number is small. The fluid behaves like a continuum and the Navier-Stokes description
is valid. In other cases, such as in microfluidics, or rarefied gases, the Knudsen number
is large (K ≥ 0.1) and higher orders are required in the expansion of Eq. (2.65) to
describe phenomena beyond the Navier-Stokes level. Time and spatial variations are
also expanded in terms of powers of K [2] as follow:

∂

∂t
= ∂t = K∂(1)

t + K2∂
(2)
t + · · · , and ∂

∂xi
= ∂i = K∂(1)

i (2.66)

Using this appropriate division of the derivatives is necessary because fα is unknown and
so as the momentum flux Πij . The determination of fα by successive approximations
is difficult because, as we will see, the time derivative of the hydrodynamics variables
determines the time derivative of f (0)

α , on which the equation from which f (1)
α is inferred
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(a) Collision step. (b) Streaming step.

Figure 2.2 – Sketch of the collision and streaming step for the node B2 with the D2Q9
velocity set. Notice that f0 associated with the vector (0, 0) is not represented. The
collision involves all the distribution functions from the node, after the streaming step
propagates the distribution functions to the neighbor nodes according to the direction
eα.

depends. The expansion of the time derivative proposed by Enskog allows to circumvent
this difficulty [2].

We now apply the Chapman and Enskog expansion to the lattice Boltzmann equation
Eqs. (2.61) and (2.62), nevertheless the expansion can also be applied to the Boltzmann
equation [Eq. (1.6)] or its counterpart discretized in the velocity space [Eq. (2.36)].
Starting from

fα(x + eα, t+ δt) = fα(x, t) − δt

τ
[fα(x, t) − feq

α (x, t)] + δt(1 − δt

2τ )Sα (2.67)

The Taylor expansion up to the second-order of fα(x + eα, t+ δt) gives

fα(x + eα, t+ δt) − fα(x, t) = δt (∂t + eαi∂i) fα + δt
2

2 (∂t + eαi∂i)2 fα +O(δt
3) (2.68)

Applying this Taylor expansion to Eq. (2.67) and using the expansions of Eqs. (2.65)
and (2.66), the resulting equation can be separated according to the different order of
K:
O(K0) :

f (0)
α = feq

α , (2.69)

O(K1) : (
∂

(1)
t + eαi∂

(1)
i

)
f (0)

α = −1
τ
f (1)

α + (1 − δt

2τ )S(1)
α , (2.70)

30



CHAPTER 2. LATTICE BOLTZMANN METHOD

O(K2) :

∂
(2)
t f (0)

α +
(
∂

(1)
t + eαi∂

(1)
i

)
f (1)

α + δt

2
(
∂

(1)
t + eαi∂

(1)
i

)2
f (0)

α = −1
τ
f (2)

α . (2.71)

With the help of Eq. (2.70), the equation for the second-order O(K2) is rewritten as

∂
(2)
t f (0)

α +
(
∂

(1)
t + eαi∂

(1)
i

)(
1 − δt

2τ

)(
f (1)

α + δt

2 S
(1)
α

)
= −1

τ
f (2)

α . (2.72)

A very important remark from the observation of the equations of different orders of
K is the fact that we need the previous order f (k)

α to compute f (k+1)
α . If we discard the

source term for the sake of simplicity, we can write

f (k+1)
α = −τ

⎡⎣ k∑
β=0

∂
(k)
t f (β)

α + bkeα · ∇f (k)
α

⎤⎦ , (2.73)

where bk is an artefact due to the spatial and temporal discretization, e.g., b2 = (1−δt/2).
If we recall the Hermite series of f up to order N , the term eα ·∇f need an expansion of
order N+1 in order to be described appropriately (see the recurrence relation Eq. (A.7)).
That means if we want to correctly describe a flow at order O(Kk), the equilibrium and
the distribution function have to be expanded up to order N + k in the Hermite series.
For the aforementioned quadratures of fifth-degree, N = 2. Recalling that the Hermite
expansion coefficient of order N is a linear combination of the moment of the distribution
function up to the order N ; the zeroth, first, and second moments of f (k=0) are accurately
depicted and so as the zeroth, first moments of f (k=1). That is why we can expect an
error from the second moment of f (k=1) which is related to the pressure tensor in the
Navier-Stokes equation as we will show shortly.

As expected, the Chapman and Enskog expansion analyses the asymptotic behav-
ior of the (lattice) Boltzmann equation according to the deviation of the distribution
functions from the equilibrium. Since f (0)

α = feq
α , we have∑

α

fα = ρ =
∑

α

feq
α =

∑
α

f (0)
α =⇒

∑
α

f (n)
α = 0 ∀n ≥ 1, (2.74)

and ∑
α

eαifα = ρui − δt

2 FBi∑
α

eαif
eq
α =

∑
α

eαif
(0)
α = ρui

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

α

eαif
(1)
α = −δt

2 FBi∑
α

eαif
(n)
α = 0 ∀n ≥ 2

(2.75)

where the right-hand side is consequence of the expansion Sα = KS(1)
α .

Let focus now on the order O(K). Taking the zeroth, first, and second moments of
Eq. (2.70) yields

∂
(1)
t ρ+ ∂

(1)
i (ρui) = 0, (2.76)

∂
(1)
t (ρui) + ∂

(1)
j Πeq

ij = FBi, (2.77)

∂
(1)
t Πeq

ij + ∂
(1)
k Πeq

ijk = −1
τ

Π(1)
ij + (1 − δt

2τ )(uiFBj + ujFBi), (2.78)
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with Πeq
ij = ρuiuj + ρcs

2δij . The first two equations corresponds to the Euler equations
where the pressure is defined as p = ρcs

2. Similarly, computing the zeroth and first
moments of Eq. (2.72) gives

∂
(2)
t ρ = 0, (2.79)

∂
(2)
t (ρui) + ∂

(1)
j

{
(1 − δt

2τ )
[
Π(1)

ij + δt

2 (uiFBj + ujFBi)
]}

= 0. (2.80)

Π(1)
ij is still unknown but can be expressed using the equations at order O(K):

Π(1)
ij = −τ

[
∂

(1)
t Πeq

ij + ∂kΠeq
ijk − (1 − δt

2τ )(uiFBj + ujFBi)
]
. (2.81)

Recalling that ∂i(abc) = a∂i(bc) + b∂i(ac) − ab∂i(c), we have

∂
(1)
t Πeq

ij = ∂
(1)
t

[
ρuiuj + ρcs

2δij

]
= ui∂

(1)
t (ρuj) + uj∂

(1)
t (ρui) − uiuj∂

(1)
t ρ+ cs

2δij∂
(1)
t ρ

= −ui

[
∂

(1)
k (ρujuk + ρcs

2δjk) − FBj

]
− uj

[
∂

(1)
k (ρuiuk + ρcs

2δki) − FBi

]
+ uiuj∂

(1)
k (ρuk) − cs

2δij∂
(1)
k (ρuk)

= −
[
ui∂

(1)
k (ρujuk) + uj∂

(1)
k (ρuiuk) − uiuj∂

(1)
k (ρuk)

]
+ uiFBj + ujFBi

− cs
2
(
ui∂

(1)
j ρ+ uj∂

(1)
i ρ

)
− cs

2δij∂
(1)
k (ρuk)

= −∂(1)
k (ρuiujuk) + uiFBj + ujFBi

− cs
2
(
ui∂

(1)
j ρ+ uj∂

(1)
i ρ

)
− cs

2δij∂
(1)
k (ρuk),

and

∂
(1)
k Πeq

ijk = ∂k

[
ρcs

2(uiδjk + ujδki + ukδij)
]

= cs
2
[
∂

(1)
j (ρui) + ∂

(1)
i (ρuj)

]
+ cs

2δij∂
(1)
k (ρuk).

Finally, we get

Π(1)
ij = −τ

[
ρcs

2(∂(1)
j ui + ∂

(1)
i uj) − ∂

(1)
k (ρuiujuk) + δt

2τ (uiFBj + ujFBi)
]
. (2.82)

The equation Eq. (2.80) can now be written explicitly

∂
(2)
t (ρui) + ∂

(1)
j

{
−τ(1 − δt

2τ )
[
ρcs

2(∂(1)
j ui + ∂

(1)
i uj) − ∂

(1)
k (ρuiujuk)

]}
= 0. (2.83)
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By gathering the equations from the different orders of K [Eqs. (2.76), (2.77), (2.79),
and (2.83)] and using Eq. (2.66), the Navier-Stokes equations are recovered

∂ρ

∂t
+ ∂(ρui)

∂xi
= 0, (2.84)

∂(ρui)
∂t

+ ∂(ρuiuj)
∂xj

= −∂(ρcs
2)

∂xi
+ FBi

+ ∂j

[
(τ − δt

2 )ρcs
2
(
∂ui

∂xj
+ ∂uj

∂xi

)
− (τ − δt

2 )∂(ρuiujuk)
∂xk

]
. (2.85)

The pressure follows an ideal gas law and we can define

p = ρcs
2. (2.86)

That is the reason why the factor cs is called pseudo-speed of sound. As expected, the
term Π(1)

ij contains an error, which stems from the viscous stress tensor in the Navier-
Stokes equations. The error term ∂k(ρuiujuk) is negligible if cs

2 ≫ u2, which is equiv-
alent to Ma ≪ 1 where Ma = u/cs is the Mach number. Thus the lattice Boltzmann
method is only valid for weakly compressible flows. The dynamic viscosity is related to
the relaxation time and is identified as

µ = (τ − δt

2 )ρcs
2 (2.87)

Note that the factor τ − δt/2 is an artifact due to the discretization of space and time.
Applying the Chapman and Enskog expansion to the continuous equation will result
in µ = τρcs

2. The volume viscosity seems to not appear in the momentum balance
equation because the volume viscosity, also sometimes called bulk viscosity, is equal to
ζ = 2/3µ. This dependence could be removed by using advanced collision operators and
allowing different moments to relax to the equilibrium at different rates.

Last, it is possible to obtain explicitly the first order perturbation

f (1)
α = −τ

(
∂

(1)
t + eαi∂

(1)
i

)
feq

α + (τ − δt

2 )S(1)
α . (2.88)

where we recall the expression of the equilibrium distribution functions

feq
α = ωαρ

[
1 + eαiui

cs
2 + Qαijuiuj

2cs
4

]
, (2.89)

with the tensor Qαij = (eαieαj − cs
2δij), and the source term can also be rewritten as

Sα = ωα

[
eαi

cs
2 + Qαijuj

cs
4

]
FBi. (2.90)

After some algebra we have

∂
(1)
t feq

α = −ωα

{
∂

(1)
i (ρui) + eαi∂

(1)
i ρ+ eαi

cs
2

[
∂

(1)
j (ρuiuj) − FBi

]
+Qαij

2cs
4 ∂

(1)
k (ρuiujuk) − Qαij

cs
4 uiFBj + Qαij

cs
2 ui∂

(1)
j ρ

}
.
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The two last terms have been simplified by using the symmetry property of the ten-
sor, i.e., QαijRij = QαijRji for any tensor Rij . The spatial partial derivative of the
equilibrium reads

eαi∂
(1)
i feq

α = ωα

[
eαi∂

(1)
i ρ+ eαieαj

cs
2 ∂

(1)
i (ρuj) + eαi

Qαjk

2cs
4 ∂

(1)
i (ρujuk)

]
.

And if we combine the two previous equations, Eq. (2.88) becomes

f (1)
α = −τωα

cs
2

[
ρQαij∂

(1)
i uj − eαi∂

(1)
j (ρuiuj) + Qαij

2cs
2 eαk∂

(1)
k (ρuiuj)

−Qαij

2cs
2 ∂

(1)
k (ρuiujuk)

]
− δtωα

2cs
2

[
eαiFBi + Qαij

cs
2 ujFBi

] (2.91)

This is an important result, which highlights the fact that the non-equilibrium part of
the distribution function is mainly related to the gradient of u and u, FB in the case of
a flow subject to a body force.

To conclude, the Chapman and Enskog procedure is an asymptotic expansion in
terms of powers of the Knudsen number and allows us to identify the macroscopic balance
equations involved. Closed to the equilibrium at order O(K), the Euler equations are
recovered. At second-order O(K2), the Navier-Stokes equations are obtained. Due to
an insufficient quadrature, a small error appears in the viscous stress tensor and the
lattice Boltzmann method is usually used in the case of weakly (isothermal) compressible
flows. Of course, increasing the order of the quadrature is possible in order to solve
thermal flows and observe phenomena beyond the Navier-Stokes level (Burnett and
super-Burnett equations). The Chapman and Enskog expansion is an important tool to
link the mesoscopic and macroscopic scales. In our cases, this provides a relationship
between the relaxation time of the distribution function toward the equilibrium and the
viscosity. Other alternative multi-scales approaches [14, 15, 16] are also possible and
results in similar (compressible or incompressible) Navier-Stokes equations.

2.6 Advanced collision operators

The expression of the viscosity according to the relaxation time gives a necessary
condition for the stability of the lattice Boltzmann method: τ ≥ 1/2 in order to have a
positive viscosity. In fact, the lattice Boltzmann method is prone to numerical instabil-
ities when τ is close to 1/2. The BGK collision operator and the exact streaming make
the LBM very little dissipative [17]. Hence, numerical errors and small pressure waves
are not naturally damped causing stability issues, and simulating high Reynolds number
flows challenging. Notice that the error term in the stress tensor has a negative effect by
decreasing the viscous dissipation. However, this error seems to not be the major cause.
In fact, a von Neumann linear analysis suggests that the instability occurs when some
modes interact with each other [18]. That is why a higher-order quadrature (D2Q17) is
found to be theoretically more unstable even though there is no error in the stress tensor
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because the number of modes increases and consequently their possibility of interaction
too. Nonetheless, the roots of the instability of the Lattice Boltzmann method are not
completely understood and remain, as well as strategies to remedy these stability de-
fects, an active research topic. In the next paragraph, we will briefly present the most
common advanced collision operators used to improve the stability of the scheme.

2.6.1 Multiple relaxation time

As we learned from the Chapman and Enskog expansion, the viscous dissipation
is related to the relaxation process of the second moment Πij . In the BGK collision
operator, the distribution functions relax toward the equilibrium according to a single
relaxation time. A more sophisticated idea is to relax each moment according to a proper
relaxation time. This method is called multiple relaxation time (MRT). We introduce
the matrix M, which transforms the distribution functions into moments:

mα = Mfα. (2.92)

M is a square transformation matrix. If the first line of the matrix is filled only by
1, then the first moment is the density. The invert transformation from the moments
to distribution functions is simply fα = M−1mα. The main idea is to perform the
collision step in the moment space, namely relax each moment with individual relaxation
time, transformed back the relaxed moments to the population and stream as usual.
Eqs. (2.61) and (2.62) are rewritten as

m∗
α(x, t) = mα(x, t) − S [mα(x, t) −meq

α (x, t)] + (I − 1
2S)MSα (2.93)

fα(x + eα, t+ 1) = M−1m∗
α(x, t), (2.94)

where I is the identity, and S is the diagonal matrix corresponding to the inverse of
the relaxation time associated with each moment. Notice that the equilibrium moments
are obtained from meq

α = Mfeq
α and the source term is also expressed in the moment

space. Each line of the matrix M defines a moment. To construct the transformation
matrix, the only condition is the rows of the matrix should be linearly independent
(M has to be an invertible matrix). Hence there is no unique transformation matrix.
One can choose to construct the matrix according to the Hermite polynomials however
the common approach is based on a Gram-Schmidt procedure of a combination of the
velocity vector eα. In both cases, the rows of M are orthogonal with respect to the
weight ωα for the Hermite polynomials and with weight equal to unity for the Gram-
Schmidt procedure. In the case the D2Q9 velocity set, M is usually obtained from the
following nine polynomials

1 x y xy x2 + y2 x2 − y2 x(x2 + y2) y(x2 + y2) (x2 + y2)2. (2.95)

Let Mi− the i-th row of M and eαx, eαy are the component of the velocity vector eα.
The density, the momentum according to x and y-axes correspond respectively to ||e||0
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(M1−), eαx (M4−), and eαy (M6−). These three vectors constitute the eigenvectors of
the MRT collision operator. Then the second line M2− is obtained by using a Gram-
Schmidt procedure on ||eα||2. In the same way M5− and M7− are constructed by the
orthogonalization of respectively eαx||eα||2 and eαy||eα||2, M8− comes from e2

αx − e2
αy

and M9− is built from eαxeαy. Finally, M3− is obtained from ||eα||4. The matrix M
reads [19]

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2

4 2 2 2 2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.96)

The lines of the matrix are ordered by starting with the three scalars, then the four
vectors and finally the two tensors components. The vectors were multiplied by some
constants in order to have some handy integer expressions. The moments are related
to some macroscopic quantities. m1 is the fluid density ρ, m2 and m3 are proportional
to the kinetic energy and the square of the kinetic energy, respectively. m4 and m6
are equivalent to ρux and ρuy. m5 and m7 are proportional to x and y-components of
the heat flux. Finally, m8 and m9 are proportional respectively to the diagonal and
off-diagonal terms of the viscous stress tensor. The diagonal of S corresponds to the
inverse of the relaxation time, also called relaxation rate, associated with each moment

S = diag (0, sE , sζ , 0, sq, 0, sq, sµ, sµ) (2.97)

Note that using the polynomials x2 +y2, x2 −y2 instead of x2, y2 makes S to be diagonal
if one wants to decouple ζ and µ [20]. If the Chapman-Enksog expansion is applied to
the lattice Boltzmann equation with the MRT collision operator, one finds

µ = ( 1
sµ

− 1
2)ρcs

2 (2.98)

ζ = ( 1
sζ

− 1
2)ρcs

2 − µ

3 (2.99)

With a relaxation rate associated with each moment (some are equal to enforce isotropy),
the volume viscosity can now be independently set. For high Reynolds number flows, the
volume viscosity is generally artificially increased, which helps with the dissipation of
pressure waves being potential sources of instability. Since the density and momentum
are conserved by the collision, the value of their relaxation rate has no influence and is
set to zero. sµ is related to the dynamic viscosity. The other relaxation rates, sE and sq

for D2Q9, do not appear in the macroscopic equations. These two free parameters can
be tuned to improve the accuracy and the stability of the scheme. The BGK operator
is recovered if all the relaxation rates are the same.
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There is no systematic procedure to choose the relaxation rates that do not appear
in the macroscopic equations. It is often a compromise between accuracy and stability.
Notice that the application of the MRT collision operator for three-dimensional flows
(D3Q15, D3Q19, andD3Q27) is straightforward [21] and there are more free parameters,
relaxation rates, to adjust. We will now discuss on reduced MRT model with only
two relaxation time (TRT), one related to the dynamics viscosity corresponding to the
moments constructed with the even-order velocity polynomials (sE = sζ = sµ = s+)
and the other one is a free parameter corresponding to the moments constructed with
the odd-order velocity polynomials (sq = s−). In addition to providing a simple and a
fast way to choose the relaxations rates, the accuracy error becomes independent of the
viscosity if the so-called magic number Λ remains constant [22]

Λ+− =
( 1
s+

− 1
2

)( 1
s−

− 1
2

)
. (2.100)

The specific choice of Λ = 3/16 corresponds to sq = 82−s+

8−s+ . In the case of a Poiseuille
flow in a straight channel, the boundary implemented with the bounce-back condition
(explanations are given later at section 2.7.3) is located exactly in the middle between
a fluid node and a solid (wall) node. As a general rule, Λ ∈ [1/8, 3/8] allows reasonably
accurate results for flows in porous media [23, 24].

2.6.2 Central moments

The central moment method is an extension of the MRT collision model. As we
previously mentioned, in MRT the transformation matrix is not unique. In the central
moment collision operator, M is constructed using polynomials in (eα − u) instead of
eα. This enhances the Galilean invariance and stability. However the matrix M has to
be inverted at each time step, in each grid point since the matrix is no longer constant
and depends on the velocity of the fluid. This greatly increases the computational cost
of the algorithm. Two different algorithms can be found in the literature. The cascaded
operator refers to the use of an orthogonal basis for the construction of the transformation
matrix, and the moments relax to the continuous Maxwellian equilibrium. Otherwise,
central moments are generally based on a non-orthogonal basis and relax to the standard
discrete equilibrium. Since the choice of the polynomials sometimes differ and result
in different transformation matrices, the comparison between models is complicated.
Extensive details are available in Ref. [25] and recent advances in Ref. [26].

2.6.3 Cumulant

The cumulant collision operator follows the same main principle of relaxing some
quantities, cumulants instead of moments of the distribution functions. The cumulants
can be computed from a non-linear combination of central moments. This results in a
better Galilean invariance and more stable results [27] but the scheme becomes compli-
cated and especially more computationally intensive than the central moments collision
operator.
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2.6.4 Regularized

The regularized collision operator is based on a simple idea that the instabilities stem
from the high order terms in the Chapman-Enksog expansion. At each interation, before
collision, the distribution function is regularized as follow [28]

f reg
α = feq

α + f (1)
α (2.101)

Thus the distribution function does not contain any unnecessary high order terms at the
Navier-Stokes level which may worsen the stability of the scheme. From the Chapman
and Enskog expansion Eq. (2.91), one finds

f (1)
α ≈ − ωα

2cs
2

[
τρQαij(∂ui

∂xj
+ ∂uj

∂xi
) − τ

Qαij

cs
2
∂

xk
(ρuiujuk)

]
− δt

2 Sα. (2.102)

Notice that we could use directly Eq. (2.91) and evaluate the derivatives by finite dif-
ference however the regularized collision operator would not be local anymore and thus
becomes computationally very expensive. We recall Eq. (2.82)

Πneq
ij ≈ Π(1)

ij = −τ
[
ρcs

2(∂(1)
j ui + ∂

(1)
i uj) − ∂

(1)
k (ρuiujuk)

]
− δt

2 (uiFBj + ujFBi) (2.103)

with Πneq
ij =

∑
α eαieαj(fα −feq

α ). Using the two previous equations and Eq. (2.90) gives

f (1)
α ≈ ωα

2cs
4QαijΠneq

ij − δtωα

2cs
2 eαiFBi (2.104)

Therefore, f (1)
α can be approximated locally, and the collision step is performed with

the regularized distribution functions, then the post-collision distribution functions are
propagated and so forth. The method is later improved in Ref. [29] where an exact
Hermite polynomials formulation of the previous equation is found up to any arbitrary
order. Further details on the effect of the regularized operator based on linear stability
analysis can be found in Ref. [30].

2.6.5 Entropic

The entropic collision operator is based on the H-theorem. Boltzmann introduced
the quantity

H =
∫
f ln(f)dc, (2.105)

and showed that H can only decrease (similar to the second law of thermodynamic where
entropy can only increase in time) and reaches a minimum when the gas is in equilibrium
state. The discrete H-function has the following formulation:

H =
∑

α

fα ln
(
fα

ωα

)
. (2.106)
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The lattice Boltzmann equation without forces in entropic models is given by [31]

fα(x + eα, t+ 1) = fα(x, t) + ιξ [feq
α (x, t) − fα(x, t)] , (2.107)

where ξ ∈ [0, 1] is related to the viscosity and ι is the positive root of

H (fα + ι(feq
α − fα)) = H (fα) . (2.108)

The entropy of the post-collision state fα + ι(feq
α − fα) should be equal to the pre-

collision state fα whereas the appropriate dissipation is due to the viscosity (ξ ≤ 1).
Notice that if ι = 2 the standard BGK collision operator is recovered. The instability of
the scheme could be explain by the non-respect of the H-theorem. Thus ι is obtained
by solving the previous equation with a Newton-Raphson algorithm or approximating
with an analytical asymptotic expression. Several formulations of equilibrium can be
found in the literature. The standard polynomial is sometimes employed. In others
articles the equilibrium is the solution of the minimization problem Eq. (2.106) under
the constraints ρ =

∑
α f

eq
α and ρu =

∑
α eαf

eq
α .

We highlight that the entropic model is very different from the other mentioned
collision operators. Indeed in the entropic collision operator, the effective viscosity is
dynamically adjusted in order to enhance the stability. This is somewhat equivalent to
the use of a sub-grid scale model.

So, different possibilities exist so as to enhance the stability of the lattice Boltzmann
scheme. A comprehensive theoretical comparison is available in Ref. [20]. We will use the
MRT collision operator because the computational cost is less than the central moment,
cumulant, and entropic. The application of the MRT is straightforward for any discrete
and non-standard formulation of the collision through the direct multiplication of the
transformation matrix. In addition, the error becomes viscosity independent if equivalent
rules as in the TRT are used. Although the regularized collision operator has the lowest
computational cost, the two last properties are tricky. In addition, the MRT collision
operator can also be extended to central moment with minimal modifications in case of
strong instability issues.

2.7 Boundary conditions
In order to simulate a physical system and solve partial differential equations, one

needs to provide appropriate initial and boundary conditions. This topic should not be
overlooked since an error in the boundary condition will degrade the solution everywhere.
The main difficulty concerning the boundary conditions in the lattice Boltzmann method
is that we need to prescribe the boundary conditions at the mesoscopic level, whereas
the boundary condition are generally formulated according to macroscopic quantities. In
addition, if computing the moment from the distribution functions is simple, the inverse
is not unique because there are usually more distribution functions than moments to
be prescribed. From author’s experience, the treatment of the boundary conditions is
one of the main sources of instability. Various formulations of the boundary conditions
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exist in the lattice Boltzmann method. We will present simple boundary conditions that
have been used. We distinguish two types of nodes, the fluid nodes where normal LBM
algorithm applies and boundary nodes where some distribution functions are unknown
after the streaming step and have to be defined.

2.7.1 Periodic

Periodic boundary conditions are the most simple and mimic a bigger periodic do-
main by duplicating in the relevant direction the current domain. The incoming dis-
tribution functions from the boundary nodes are replaced by the outgoing distribution
functions from the opposite boundary nodes as shown by the sketch in Fig. 2.3 .

Figure 2.3 – Fully periodic two-dimensional domain. Only the distribution functions
from the node A1 are drawn. Green distribution functions stream as usual. Periodic
boundary condition implies to the blue distribution functions.

2.7.2 Equilibrium

In the equilibrium boundary condition, all the post-streaming distribution function
of a boundary node are set be equal to the equilibrium according to the prescribed
density and momentum:

fα(xb, t) = feq
α (ρw, uw) . (2.109)

where xb is the location of the boundary node where ρw and um are enforced. In spite
of being simple, this boundary condition is only exact when the relaxation time is equal
to one or when the non-equilibrium part of the distribution functions is null. The latter
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case has no practical interest since it corresponds to a spatially uniform solution. The
previous condition can be improved by using the first order perturbation

fα(xb, t) = feq
α (ρw, uw) + f (1)

α , (2.110)

and f
(1)
α is given by Eq. (2.91). The boundary solution has been enriched with veloc-

ity gradients, which are generally calculated from finite differences. Notice that this
condition is unable to reproduce an exact parabolic solution but only solutions with a
constant velocity gradient can be obtained.

The initialization of the simulation follows the same strategy. The distribution func-
tions are set to equilibrium and higher orders if needed according to the initial hydro-
dynamic quantities. In general, we are looking for the long time behavior of the flow. In
this case, an exact initialization of the flow is not mandatory. First a transient nonphys-
ical regime will decay and after some time, the system will progresses to the appropriate
physical state.

2.7.3 Bounce-back

The bounce-back is the most widely used boundary condition for simulating a non-
slip velocity boundary. Its astonishing simplicity explains its popularity. For a resting
wall, the distribution function that hits the wall (during the streaming step) is reflected
back in the opposite direction as depicted in Fig. 2.4. The missing distribution functions
are obtained from

fᾱ(xb, t) = fα(xb, t) with eᾱ = −eα. (2.111)

Note that if the distribution functions are specularly reflected then the free-slip boundary
is obtained.

Figure 2.4 – Streaming and bounce-back condition. The nodes are divided into three
types: • fluid nodes, ■ boundary nodes, + solid nodes. Focusing on node B2, some
distribution functions (in grey) are unknown after the standard streaming step. They
are given by the distribution functions which are reflected back from the solid nodes.
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The physical position of the interface between solid and fluid nodes is halfway between
the boundary and solid nodes. In addition the bounce-back conserves the mass exactly
and is straightforward to apply in three dimensions for any velocity sets. There are two
main drawbacks. The boundary is approximated via a stair-case description. The exact
location of the boundary depends on the viscosity. This non-physical behavior can be
cursed using the MRT or TRT collision operators which have more degrees of freedom,
i.e., relaxation rates.

2.7.4 Non-equilibrium bounce-back

As its name suggested, the bounce-back condition is applied on the non-equilibrium
part of the missing distribution functions. This boundary condition is also called Zou
and He from its authors’ name [32]. For instance, if we consider the left side of a
two-dimensional domain. f2, f6, and f9 are missing. This yields

fneq
2 = fneq

4 +Nx

fneq
6 = fneq

8 +Nx +Ny

fneq
9 = fneq

7 +Nx −Ny

⎫⎪⎪⎬⎪⎪⎭ =⇒
f2 = f4 + 2ρwuwx/3 +Nx

f6 = f8 + ρ(uwx + uwy)/6 +Nx +Ny

f9 = f7 + ρ(uwx − uwy)/6 +Nx −Ny

(2.112)

where Nx, Ny are correction terms. Using the definition of the momentum, the correc-
tions are calculated as

ρuwx = f2 − f4 + f6 − f8 + f9 − f7 + 1
2FBx =⇒ Nx = −1

6FBx, (2.113)

ρuwy = f3 − f5 + f6 − f8 + f7 − f9 + 1
2FBy =⇒ Ny = −1

2(f3 − f5) + 1
3ρwuwy − 1

4FBy.

(2.114)

The final expressions for the missing distribution functions at the left boundary read

f2 = f4 + 2
3ρwuwx − 1

6FBx, (2.115)

f6 = f8 − 1
2(f3 − f5) + 1

6ρwuwx + 1
2ρwuwy − 1

6FBx − 1
4FBy, (2.116)

f9 = f7 + 1
2(f3 − f5) + 1

6ρwuwx − 1
2ρwuwy − 1

6FBx + 1
4FBy. (2.117)

The non-equilibrium bounce back boundary condition can only enforce either the density
or the velocity otherwise the system will be over-constrained. Contrary to the equilib-
rium boundary condition, this non-equilibrium bounce-back is able to enforce exactly
a parabolic profile. The resulting density (respectively velocity) is computed from the
known distribution functions and the desired velocity (respectively density):

ρw − ρwuwx = f1 + 2(f7 + f4 + f8) − 1
2FBx (2.118)
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Similarly, if we apply the non-equilibrium bounce-back to the right boundary of the
domain, we find

f4 = f2 − 2
3ρwuwx + 1

6FBx, (2.119)

f7 = f9 − 1
2(f3 − f5) − 1

6ρwuwx + 1
2ρwuwy + 1

6FBx − 1
4FBy, (2.120)

f8 = f6 + 1
2(f3 − f5) − 1

6ρwuwx − 1
2ρwuwy + 1

6FBx + 1
4FBy. (2.121)

2.7.5 Open boundary

In some problems, both density and velocity at the boundary are unknown. When
the area of interest is far from the boundary, a simple first order interpolation of the
missing (post-streaming) distribution functions is enough. For the right boundary of a
two dimensional domain, we have

f7(xb, yb, t) = f7(xb − 1, yb, t) (2.122)
f4(xb, yb, t) = f4(xb − 1, yb, t) (2.123)
f8(xb, yb, t) = f8(xb − 1, yb, t) (2.124)

This brief overview of the boundary conditions describes simple boundary conditions
for different cases: periodic, prescribed density and velocity, no-slip, prescribed density
or velocity, and a null gradient for the distribution functions. There are plenty more
formulations for the boundary conditions in LBM. Especially, the previous boundary
conditions are expressed for straight walls. Boundary conditions for curved walls are
possible but often degrade the accuracy of the solution while being the only way to go
beyond "lego-land".

2.8 Synthesis

In the previous section, we attempted to cover the basics of the lattice Boltzmann
method. From the continuum Boltzmann equation, we discretize the velocity space
by means of truncation of Hermite series and Gauss-Hermite quadratures. The choice
of a small velocity set (truncation order) limits the application to isothermal flows.
Then, we use the method of characteristics, a trapezoidal integration rule, and a suitable
change of variable to obtain an explicit discrete equation in time and physical space.
This results in a strong coupling between the kinetic velocities, the space and time
steps. The equation is solved on a lattice and may be divided into two sub-steps:
collision and streaming. According to the deviation from the equilibrium, the Chapman-
Enskog expansion procedure predicts the macroscopic behavior of the lattice Boltzmann
equation. Thus if the Knudsen number is small enough, we recover the Navier-Stokes
equation and obtain a significant the relationship between the relaxation time of the
BGK collision operator and the macroscopic viscosity. We also address more advanced
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collision operators in order to remedy some stability defects of the BGK collision operator
and the formulation of boundary conditions in LBM. This rather complete overview, but
far from being exhaustive, only considers a single fluid. The main objective is now to
extend the lattice Boltzmann method to multiple species.
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Chapter 3

Mixture of gases

In this section, we first present a general approach of diffusion of gases by means of
the Maxwell-Stefan equations. We show the particularity of the mixture of three and
more species and the so-called multi-component effects especially regarding the intuitive
but unfortunately inadequate Fick’s law.

3.1 Multi-component diffusion theory

The diffusion of multiple components in fluids (gases or liquids) has been extensively
studied in chemical engineering. The diffusion theory can be obtained from different
ways. It is usually derived from the irreversible thermodynamics starting with the en-
tropy balance see for instance Ref. [33]. In the other hand, the diffusion theory can also
be derived rigorously from statistical mechanics and especially the kinetic theory of gases
(and liquids) and the Chapman-Enskog expansion [1, 34] (see also Appendix D and E
of Ref. [35] for a simpler introduction). Another approach called "theory of mixtures" is
based on the description of balance equations for each species [36]. All these routes are
rather complementary and lead to the Maxwell-Stefan equations when pure diffusion is
considered. We will present how these latter equations could be obtained from simple
considerations following the approach of Ref. [37].

Let consider the diffusion of two gases at ambient pressure and temperature, each
contained in bulbs that are joined by a capillary tube. The diameter of tube is large
enough to assume the gases behave as continuum media. Each gas moves through
each other with a local velocity u1 (respectively u2) for the gas contained in the first
(respectively second) bulb. The difference between velocities causes a friction force. We
focus on a small volume of the mixture in the capillary tube as depicted in Fig.3.1. In
this small volume, the friction force depends on the velocity differences and the number
of possible interactions, collisions, between the molecules of the two gases, which is
proportional to x1x2 where xm is the molar fraction of the m-th gas. In order to avoid
confusion the subscript i, j, k are used to represent spatial coordinates whereas m,n are
related to the mixture components.

The net force acting on the molecules of the first gas is the partial pressure p1 = x1p
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Figure 3.1 – Diffusion of two gases and a small control volume between z and z + dz
where A is the area normal to diffusion.

multiplied by the area A. We can write the net force acting on molecules of gas 1 per
unit of volume in the z-direction as

lim
dz→0

Ap1|z − Ap1|z+dz

Adz
= −dp1

dz
,

and adding the contribution from the other spatial direction gives ∇p1. So the net force
acting on a molecule of the first gas per unit of volume is proportional to

∇p1 ∝ (x1x2,u1 − u2) , (3.1)
∇p1 = −F12x1x2(u1 − u2). (3.2)

p1 is the force per unit of volume trying to move the molecules of the first gas at relative
velocities (u1 −u2) with a concentration weight factor x1x2 and a friction coefficient F12.
The diffusion coefficient is introduced as D12 = p/F12 and has a dimension of square
meter per second. In chemical engineering the term driving force is often employed for
dm = (1/p)∇pm = ∇xm despite not being a real mechanical force. We have for both
gases

d1 = ∇x1 = −x1x2(u1 − u2)
D12

, (3.3)

d2 = ∇x2 = −x1x2(u2 − u1)
D21

. (3.4)

Since ∇x1 + ∇x2 = 0, the diffusion coefficient is symmetric D12 = D21.
Expression for mixture of N gases can be obtained by considering the summation of
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friction forces for each pair of gases [37]:

dm = ∇xm = −
N∑

n=1

xmxn (um − un)
Dmn

for m = 1, · · · , N (3.5)

= −
N∑

n=1

1
ctDmn

(xnJm − xmJn) for m = 1, · · · , N. (3.6)

The last equation is a more conventional formulation used in chemical engineering where
the molar fluxes are given by Jm = cmum with cm, the molar concentration of the
component m and ct, the total molar concentration of the mixture. Equations (3.5) or
(3.6) are referred as the Maxwell-Stefan equations. These have been initially suggested
by Maxwell more than one hundred fifty years ago for binary mixtures of gases using
preliminaries of kinetic theory [38] and generalized by Stefan [39] for mixture of gases.
Later these equations have been rigorously derived for ideal gases by means of kinetic
theory [1, 34]. The binary or Maxwell-Stefan diffusion coefficients Dmn are positive
symmetric and do not depend on the composition of the mixture but on the temperature,
pressure, and the molecular properties of the considered pair of gases. They can be
calculated by means of molecular theories or from experimental data. The Maxwell-
Stefan equations are still valid for non-ideal mixtures, dense gases, liquids, and polymers
but the driving force, is replaced by the gradient of the chemical potential [37]:

dm = xm

RT
∇|p,Tµ

CH
m (3.7)

=
N−1∑
n=1

Γmn∇xn, Γmn = δmn + xm
∂ ln γm

∂xn
|p,T,xp ̸=n,xp=1,··· ,N−1 (3.8)

where µCH
m is the chemical potential of the species m, γm is the coefficient of activity,

and Γmn is the thermodynamic correction factor, which is equal to one for ideal mixtures.
For highly non-ideal mixtures, the thermodynamic correction factors strongly depends
on the mixture composition [37, 40].

3.2 Limitations of Fick’s law
In the case of a binary mixture, the molar flux from Eq. 3.6 can be rewritten as

J1 = −ctD12∇x1 = −ctD12d1, (3.9)

and the Maxwell-Stefan equations reduce to Fick’s law. This formulation seems easier to
manipulate and gives a direct relationship between the molar fluxes and the gradient of
the molar fraction, nonetheless its application to three and more components has severe
flaws and could lead to some misconceptions of mass transfer. To highlight the fact
that the formulation of the Fick’s law may be inadequate to simulate multi-component
flows, we focus on the diffusion of three gases. Let consider the following experimental
apparatus composed of two equal bulbs filled with different mixtures of gases and joined
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by a small capillarity tube (similar as Fig.3.1). The initial composition of nitrogen,
hydrogen, and carbon dioxide are stated in Table 3.1. This experiment has been proposed
in Ref. [41] and the results are shown in Fig.3.2.

left bulb (1) right bulb (2)
xN2 = 0.46 xN2 = 0.52
xH2 = 0.54 xH2 = 0
xCO2 = 0 xCO2 = 0.48

Does N2 transfer

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
from left to right?
from right to left?
not at all?
all the three above?

Table 3.1 – Initial composition of a "simple" diffusion of three gases and a question.

Figure 3.2 – Time evolution of the mixture in each bulb. Experimental data from
Ref. [41], with permission.
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As expected, the hydrogen and carbon dioxide diffuse in the opposite direction of
their concentration gradient but the nitrogen exhibits a non-standard behavior. First
the nitrogen diffuses from the high concentration to the low concentration (from left
to right). After approximately one hour, the concentration of nitrogen in both bulbs
becomes equal but the nitrogen continues to diffuse in the same direction, against its own
concentration gradient. After seven hours, the concentration of N2 reaches a plateau and
does not evolve even in the presence of a fairly large concentration gradient. These non-
standard phenomena are identified as osmotic diffusion, reverse diffusion, and diffusion
barrier. They are depicted in Fig. 3.3 and are specific to the mixing of three and more
components. Finally, the concentration in both bulbs slowly tends towards the same
value.

0 xm

Jm

osmotic
 diffusion

diffusion
 barrier

ternary diffusion
binary diffusion
"normal" diffusion
reverse diffusion

Figure 3.3 – Sketch of possible multi-component diffusion effects and their definition.

As shown in Fig.3.2, the evolution of the mixture composition in each bulb is well pre-
dicted by the Maxwell-Stefan equations but the tentative to explain it with conventional
Fick’s law Eq. (3.9) fails. The first remark is that contrary to the binary case where the
driving forces have to be equal in magnitude but opposite in sign ∇x1 = −∇x2, no such
requirement exists in a ternary mixture where only the summation of the driving forces
has to be zero. Thus we can expect a different dynamic compared to binary mixtures.
Forgetting about Fick’s law, it is easy to physically interpret what is happening. The
hydrogen diffuses to the other bulb because there is far more hydrogen in the left bulb
than in the right bulb, indeed the random thermal motions will on average cause the
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hydrogen to move to the less populated bulb. Carbon dioxide is also subject to the same
mechanism. On the contrary, at some points, the nitrogen seems to be dragged by the
carbon dioxide. There is actually more friction between the heavy molecules of carbon
dioxide and nitrogen than between the light molecules of hydrogen and nitrogen. In
consequence, the diffusion of nitrogen is at some point governed by the concentration
gradients of hydrogen and carbon dioxide, rather than its own concentration gradient,
which is relatively small. Note that using a different initial mixture composition, the
reverse diffusion phenomena could also occur with the carbon dioxide instead of nitrogen.

It is still possible to obtain a Fick-like expression for the fluxes by means of a matrix
formulation. First, we remark that there are N−1 independent fluxes since

∑N
m=1 Jm =

0. Eq. 3.6 can be recast to a N − 1 dimensional matrix problem

ctdm = −BmmJm −
N−1∑

n̸=m,n=1
BmnJn, (3.10)

where [Bmn] is aN−1 square matrix, with diagonal termsBmm = xm/DmN +
∑N

n̸=m,n=1 xn/Dmn

and off-diagonal terms Bmn = −xm(1/Dmn − 1/DmN ). Its inverted form gives the gen-
eralized Fick’s law: ⎛⎜⎝ J1

...
JN−1

⎞⎟⎠ = −ct [Bmn]−1

⎛⎜⎝ d1
...

dN−1

⎞⎟⎠ . (3.11)

Let [Bmn]−1 = [Dmn]. For an ideal ternary mixture this reduces to

J1 = −ctD11∇x1 − ctD12∇x2, (3.12)
J2 = −ctD21∇x1 − ctD22∇x2, (3.13)

and J3 = −J1 − J2. (3.14)

where Dmn is a multi-component Fick diffusion coefficients:

D11 = D13 (x1D23 + (1 − x1)D12) /D̂, (3.15)
D12 = x1D23 (D13 − D12) /D̂, (3.16)
D21 = x2D13 (D23 − D12) /D̂, (3.17)
D22 = D23 (x2D13 + (1 − x2)D12) /D̂, (3.18)

with D̂ = x1D23 + x2D13 + x3D23. (3.19)

We note that that the cross-coefficients Dmn are responsible for the multi-component
effects. These are significant when |Dmn∇xn| ≥ |Dmm∇xm|.

The multi-component Fick diffusion coefficient D should not be confused with the
Maxwell-Stefan (also called binary) diffusion coefficients D. For a mixture of two species,
both coefficients are equivalent. For three components and more, a Fick-like formulation
is still possible but it is often inadequate because the Fick diffusion coefficients are not
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as practical as the Maxwell-Stefan diffusion coefficients. First, four Fick diffusion coef-
ficients are needed to describe a ternary mixture. These coefficients may be positive or
negative, are usually non-symmetric, and vary according to the mixture composition. In
addition, Dmn has less physical meanings in that it does not reflect the m−n interactions
and their numerical values depend on the particular choice of component numbering. Fi-
nally, the multi-component Fick diffusion coefficients have to be manipulated with great
care since they depend on the choice of the associated fluxes. For instance, we can de-
fined four generalized Fick’s laws in matrix form with commonly used fluxes where the
uppercase J denotes the molar fluxes and the lowercase j stands for the mass fluxes:

(Jm) = −ct [Dmn] (∇xm) with respect to the molar fraction, (3.20)
(jm) = −ρt [Dy

mn] (∇ym) with respect to the mass fraction, (3.21)
(Jc

m) = − [Dc
mn] (∇cm) with respect to the molar concentration, (3.22)

(jρ
m) = − [Dρ

mn] (∇ρm) with respect to the density. (3.23)

All the four square N − 1 dimensional matrices of Fick diffusion coefficients above are
generally different and the transformation from one to another is not trivial. The use
of the species density or species molar concentration for the driving force is usually not
recommended since they are not convenient variables [37].

To conclude, the multi-component Fick formulation is not as adequate as the Maxwell-
Stefan approach which is based on the notion of friction forces. In fact, the difference
is much more profound in some way similar to the chicken and the egg dilemma, in
the sense that the Maxwell-Stefan formulation assumes that fluxes (velocities) difference
results in driving forces, and in the other hand the generalized Fick formulation deduces
the fluxes from the driving forces with the flaws we underlined. Only pure diffusion was
considered here without any thermal (Soret) diffusion, external forces, convection, and
viscous effects. We will show that in the lattice Boltzmann method the collision is in
general modified to take into account the interactions between multiple species similar
to the Maxwell-Stefan approach.
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LBM for miscible gases:
a forcing term approach
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Chapter 4

Lattice Boltzmann models for
mixtures

In the simplest case of the mixing not affecting the flow dynamics, as is the case of the
mixing of a dye or a tracing species, the Navier-Stokes or the lattice Boltzmann equations
are solved to describe the flow dynamics, while the dye or species concentrations are
modeled separately by simple convection-diffusion equations (passive scalar approach).
However, mixing is often much more complex. The flow dynamics and the mixing
process are heavily coupled and cannot be separated since mixing produces changes to
the fluid. Mixing dynamics are then incredibly complicated as the interactions between
various species need to be accounted for (e.g., collisions in the kinetic formulation).
Whereas a large number of studies about global mixing dynamics are available, a good
understanding of the microscopical processes involved in complex chemical mixing is still
lacking.

The classical approach for the simulation of mixtures is based on the single-fluid
approach that assumes as unknowns the species densities and the mixture velocity. The
Navier-Stokes equations are solved for the mixture using phenomenological laws such as
Fick’s law or the Maxwell-Stefan equations for the species mass fluxes. This approach
is often used in combustion with detailed chemistry, which involves a large number of
species (see Ref. [42] for a lattice Boltzmann single-fluid model).

However, the use of a mixture velocity as a unique unknown can lead to some errors
in the description of the flow dynamics. This is particularly true when the chemical
properties of each species differ greatly and in situations where the mixing process de-
pends on the chemical composition and the velocities of each species. For instance,
consider the case of two different coflowing gases separated by a splitter plate. On either
side of the plate, the dynamics is governed by Navier-Stokes equations and a velocity is
defined for each gas. Past the splitter plate, the two gases start mixing. In the case of
the single-fluid approach, only one velocity is specified for the mixture, which may be
defined in terms of either a mass, molar, volume, or any other averages. Instead, in order
to accurately depict the transient mixing dynamics, a more natural way is to consider
the species densities and the velocities of each species as unknowns (as prior to mixing).
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This is the so-called multi-fluid approach, which is comparable to the Maxwell-Stefan
approach to mass transfer.

The LBM provides an alternative and convenient way to model fluid flows compared
to conventional macroscopic approaches [4]. Indeed, the algorithm is simple, computa-
tionally efficient due to its explicit formulation and is easily adapted for parallel comput-
ing. The LBM is therefore particularly appealing for the simulation of miscible mixtures.
In the multi-fluid strategy, one introduces a distribution function for each species. In
single species flows, the collision of particles is approximated by the Bhatnagar-Gross-
Krook (BGK) collision operator [3] and the distributions relax to equilibrium values
at a rate that depends on the relaxation time. In the case of a mixture, there is no
unique BGK formulation. Hence, different LBMs for multi-component flows have been
developed depending on the underlying kinetic theory of the mixture being investigated.
One possible approach is to split collisions between molecules of the same species (self-
collision) and collisions between molecules of different species (cross-collision). Luo and
Girimaji [43] employ a linear collision based on Sirovich’s kinetic theory of mixtures [44].
This work is further extended from binary to multi-component flows in Refs. [45, 46].
In his early work, Asinari [47, 48] uses a model derived from Hamel’s kinetic theory
[49]. Other noticeable split collision models can be found in [50] and [51]. The latter
authors exploit a fast-slow decomposition (quasi-equilibrium to equilibrium), which is
further extended in reference [52] to thermal multi-component flows. Other approaches
are based on a single global collision term such as Asinari’s model [53], derived from
the AAP-BGK collision operator [54]. The equilibrium velocity for each species is given
by the conservation of species momenta. Diffusive and viscous effects are separated in
the momentum space. References [55, 56, 57] have slightly modified the formulation of
the equilibrium state and the definition of the equilibrium velocity, and applications to
electrolytes are reported in Ref. [58].

All the previous models have very different formulations, but it is worth pointing out
that for binary mixtures, they can be written as

∂fm
α

∂t
+ em

α · ∇fm
α = − 1

τm

(
fm

α −Gm(eq)
α

)
, for m = 1, 2. (4.1)

G
m(eq)
α is a local equilibrium which varies according to the considered model. Nonethe-

less, the right-hand side, the collision step, always obeys to

∑
α

1
τm

(fm
α −Gm(eq)

α ) = 0, (4.2)

∑
α

em
α

1
τm

(fm
α −Gm(eq)

α ) = Amn(um − un) = Amn
ρ

ρn
(um − u), (4.3)

where Amn may depend on the component density, pressure, diffusion coefficient, etc, but
not on the velocities. The first equation means that there is no source term for the mass
as expected. The second equation states that species momentum is no longer conserved
during the collision, and the momentum variation has a similar form as the friction force
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mentioned in the Maxwell-Stefan derivation. The other higher-order moments of the
collision differ according to the different models, and no other similitude can be found.

The different mesoscopic models lead to various macroscopic equations. The no-
tion of species momentum balance equations and species viscous stress are often not
highlighted. Instead, previous authors generally focus on recovering the total (mixture)
momentum equation. Consequently, even if a distribution function (and the related mo-
ments: density, momentum, etc) for each component of the mixture is defined, most
previous LBM models for multiple species flows employed the assumption of a mixture
viscosity for all species rather than using a viscous diffusion proper to each component
as we could expect. Besides, the collision is usually heavily modified compared to the
standard formulation to take into account the interactions between species. This in-
crease of complexity makes the algorithm more computationally expensive, and above
all, it can not be incorporated easily in existing LBM codes since the collision step has
to be rewritten. Finally, a more simple way may exist by introducing the friction forces
directly in the lattice Boltzmann formulation. This results in the separation of how to
handle two physical phenomena in LBM: viscous dissipation is related to the BGK col-
lision operator and (molecular) diffusion is associated with the inter-molecular friction
force. This idea will be developed in the next chapter.

This approach should not be seen as inferior compared to prior models that try
to implement the interaction from a purely collision-based point of view. Indeed, an
accurate description of the kinetic of mixtures of gases with the LBM is a pipe-dream
considering the over-simplified (BGK-like) collision operator, the use of average transport
coefficients (mixture viscosity and mixture average diffusion coefficient), and last the
limitation caused by the truncation of the velocity space which restricts us to gases not
too far from their equilibrium state, i.e., Navier-Stokes level of description.

In this chapter, we present a lattice Boltzmann model for the simulation of miscible
gases where the diffusion between species is taken to account by means of a friction force.
Furthermore, to be rather complete, we discuss the formulation of transport coefficients,
in the proposed approach no average assumption is required, and they are derived from
the kinetic theory of gases. We also address the problem of simulation species having
dissimilar molecular masses. This issue is specific to the LBM for mixtures because
of the fixed speed of sound on the lattice. This difficulty is circumvented by using
a forcing term to alter the species equation of state. This latter force, the friction
force, and the formulation of the transport coefficients constitute the three building
blocks of the present model. The model satisfies the indifferentiability principle, namely,
for a mixture of like gases, it reduces to a single species BGK model. In addition,
the macroscopic Maxwell-Stefan equations are recovered for purely diffusive flows when
convection is negligible. One major advantage of the proposed method is the easiness
of implementation. Since the collision is not modified, the method can be introduced
in any other lattice Boltzmann algorithm to take into account complex diffusion among
species.
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Chapter 5

A simplified kinetic model for
multi-component mixtures

5.1 Lattice Boltzmann algorithm
A mixture is composed of multiple species and each species is defined by its own

distribution function, which is governed by its own kinetic equation. For the sake of
simplicity we consider only a BGK-like collision operator. More advanced collisions
operators such as multiple relaxation time, entropic, regularized, or cumulant operators,
mostly developed to remedy some stability defects, could also be implemented [21, 27,
28, 31]. Let m and n denote different species (m,n = 1, 2, ..., N ; N being the total
number of species). The distribution function of species m, fm

α , obeys the following
discrete kinetic equation:

fm
α (x + eαδt, t+ δt) = fm

α (x, t) − δt

τm

[
fm

α (x, t) − fm(eq)
α (x, t)

]
+ (1 − δt

2τm
)δtS

m
α (x, t) (5.1)

where x, t, α, and τm are, respectively, the spatial coordinate, the time, the number of
discrete kinetic velocities eα, and the relaxation time of each species. The equilibrium
distribution functions, fm(eq)

α , are given by the standard polynomial formulation

fm(eq)
α = ρmωα

[
1 + um · eα

c2
s

+ (um · eα)2

2c4
s

− um · um

2c2
s

]
. (5.2)

Sm
α is the source term for each species similar to Guo’s forcing scheme [13], widely used

in order to include forces in the lattice Boltzmann algorithm,

Sm
α = ωα

[
eα − um

c2
s

+ (eα · um)eα

c4
s

]
· Fm, (5.3)

Fm being the force acting on the mth species which is derived in the following to take
into account the species interactions.
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In this study, we use the so-called D2Q9 isothermal, two-dimensional and nine-
velocity discretisation. Extension to the three-dimensional formulation (D3Q19 or D3Q27)
is straightforward. The pseudo sound velocity is c2

s = 1
3 , the kinetic velocities are ex-

pressed as

eα =
[
0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1

]T

1 ≤ α ≤ 9, (5.4)

and the lattice weights are equals to

ωα =
[

4
9

1
9

1
9

1
9

1
9

1
36

1
36

1
36

1
36

]T
1 ≤ α ≤ 9. (5.5)

The macroscopic quantities, namely the density and momentum of each species, are
obtained by computing the different moments of the distribution functions.

ρm =
∑

α

fm
α , ρmum =

∑
α

fm
α eα + δt

2 Fm. (5.6)

The resulting macroscopic equations are the conservation equations for low Mach
number flows subjected to a body force (for example, the gravity). In order to take into
account the interaction of miscible species, we introduce diffusion forces or friction forces
from the Maxwell-Stefan approach to mass transfer:

FD,m = −p
N∑

n=1

xmxn

Dmn
(um − un), (5.7)

and Fm becomes
Fm = FD,m + FB,m, (5.8)

where FB,m is a body force. As a result, the discrete kinetic equations (5.1) for the various
species are coupled through Fm. Since the diffusion force FD,m depends on the velocity,
total pressure p, molar fractions xm, and (Maxwell-Stefan) diffusion coefficients Dmn, a
linear system must be solved at each time step in order to compute the species momentum
by means of Eq. (5.6). This force also called inter-molecular friction force depends on the
relative velocity of species. Thus, when all species have the same velocity, no diffusion
occurs. Notice that the intra-molecular friction, related to the viscosity, is already taken
into consideration by the BGK collision similar to the case of a single component flow.
The attempt to include the diffusion effects as a force acting on particles dates back to the
early work on kinetic theory by Maxwell [38]. The same expression has been rigorously
derived later by Chapman and Cowling [2], a detailed discussion is given by Hirschfelder,
Curtiss, and Bird [1] (see also Ref. [34]) and Kerkhof and Geboers present a more recent
derivation in Ref. [59]. Extended mathematics have to be performed to obtain this inter-
molecular friction force from the kinetic theory, thus no derivation will be provided. The
main steps of the derivation involve the use of the Chapman and Enskog expansion, the
linearization of the collision integral Eq. (1.10) and its approximate solution by means of
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a series expansion of the velocity distributions in Sonine, also called Laguerre, (and not
Hermite) polynomials. An equivalent method using Hermite polynomials, Grad’s 13th
moment equations for mixtures, has been proposed by Zhdanov [60].

We return to the linear system involving the velocity, which can be written as

[Qmn](um) = (Rm), (5.9)

where [Qmn] is a square symmetric N -dimensional matrix equals to

Qmn = −pδt
xmxn

2Dmn
for m ̸= n, (5.10)

Qmm = ρm −
N∑

n=1,n ̸=m

Qmn, and (5.11)

Rm =
∑

α

eαf
m
α + δt

2 FB,m. (5.12)

This matrix has some nice properties, it is symmetric, diagonally dominant, and the
diagonal terms are strictly positive. In consequence, the matrix is invertible and definite
positive. The system can be solved efficiently by using Cholesky’s decomposition.

5.2 Species with different molecular masses
In the standard lattice Boltzmann equation, the pseudo (isothermal) speed of sound

(cs) is fixed by the lattice. For D2Q9 velocity set, cs is equal to cs
2 = 1/3 (in lattice

units for a reference temperature and molecular mass) for all species, which is not the
case for mixture of species having different molecular masses. Indeed, recalling that the
partial pressure obeys the ideal gas law, from the definition of the isothermal speed of
sound of a species (cs,m

2 = ∂pm

∂ρm
|T ), one defines cs,m

2 = RT/Mm and pm = ρmcs,m
2,

where R is the universal gas constant.
In order to account for the differences in the species pseudo speed of sound, one can

modify the equilibrium distribution functions [61]. However, as shown by those authors,
the maximum molecular mass ratio is limited to three. Furthermore, this approach adds
some errors in the viscous stress tensor which can be reduced by increasing the velocity
set from D2Q9 to D2Q13 [62]. Nonetheless, the molar mass ratio is still limited to three
because of stability issues, and expanding the number of velocities makes the algorithm
more complex and costly. Another strategy is to set the pseudo speed of sound in terms
of the minimum molecular mass [61]. Thus, in one time step, the lightest species streams
exactly to the next lattice point, while the heavier species stream between the original
lattice point and the next one. Populations for the heavier species are then interpolated
to the next lattice point. This process can simulate binary diffusion with molar mass
ratio up to nine before the accuracy decreases because of the interpolation that adds
numerical diffusion. This approach is very expensive. Indeed, it requires the use of an
interpolation scheme for each species populations in each kinetic velocity directions (i.e.,
8 in D2Q9).

63



CHAPTER 5. A SIMPLIFIED KINETIC MODEL FOR MULTI-COMPONENT
MIXTURES

In the present study, a variable pseudo speed of sound is introduced through a body
force [63]. This strategy is simple since neither interpolation, nor extended velocity set,
nor modified equilibrium is required. In particular, Guo’s forcing scheme [13] is used,
and the forcing term is calculated according to

FB,m = (1 − βm)cs
2∇ρm, (5.13)

where the gradient term is computed by means of a compact scheme

∇ρm(x) = 1
c2

s

∑
α

ωαeαρm(x + eα). (5.14)

The partial pressure then becomes

pm = βmcs
2ρm, (5.15)

where βm = cs,m
2/cs

2 is the ratio between the species and the standard LBM pseudo
speed of sound. This forcing strategy changes only the equation of state, and the relation
between the partial pressure and density is modified according to the molecular mass of
the species. This approach has also the advantage that the partial viscosity [Eq. (6.3)]
is always defined in terms of the standard LBM pseudo speed of sound cs. In practice,
we usually define a reference species n whose speed of sound is the same as cs equal to
1/3 in lattice units (βn = 1, pn = ρncs

2 = ρnRT/Mn) and βm = Mn/Mm are then the
ratio of molecular masses (pm = ρmcs,m

2 = ρmcs
2βm = ρmRT/Mm).
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Macroscopic limit

6.1 Macroscopic equations
In this section we present the macroscopic limit of the proposed model via the

Chapman-Enskog analysis. This multiple scale expansion provides a relation between
the mesoscopic scale of the Boltzmann equation and the macroscopic scale of the Navier-
Stokes equation. This derivation is straightforward and is similar to the standard lat-
tice Boltzmann model with a force arising from Guo’s forcing scheme (see Sec. 2.5 or
Ref. [13]). Therefore in the low Mach and continuum limit, the kinetic equation (5.1)
and its moments (5.6) are equivalent to the following macroscopic equations:

∂tρm + ∇ · (ρmum) = 0, (6.1)

∂t(ρmum) + ∇ · (ρmumum) = −∇pm + ∇ ·
[
µm

(
∇um + (∇um)T

)]
− p

N∑
n=1

xmxn

Dmn
(um − un) + FB,m (6.2)

where the partial pressure is equal to pm = ρmc
2
s, and the total pressure is given by

Dalton’s law p =
∑N

m=1 pm. The dynamic viscosity of species m is expressed in terms of
the relaxation time according to

µm = ρmc
2
s(τm − δt

2 ). (6.3)

6.2 Some variations on the equation formulation
Previous equations are expressed in the frame of reference of a given species m.

Equations for the whole mixture can be obtained by summation over all species. From
Eq. (6.1), the continuity equation for the mixture is recovered:

∂tρ+ ∇ · (ρu) = 0, (6.4)
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with ρ =
∑

m ρm and ρu =
∑

m ρmum. Similarly, the balance equation for the mixture
momentum reads

∂t(ρu) + ∇ · (ρuu) = −∇p+ ∇ ·
[
µ
(
∇u + (∇u)T

)]
+
∑
m

FB,m + Υ, (6.5)

where the mixture viscosity is µ =
∑

m µm, and Υ is the collected terms specific to the
species acting on the mixture momentum. Υ is composed of two contributions stemming
from the species stress tensor and the species convective term, which the derivations are
given below.

In order to avoid any confusion, the symbols ⊗ is employed to specify the outer-
product. This tensor operator is not commutative. The identity (αu) ⊗ v = u ⊗ (αv) =
α(u ⊗ v) will be useful as well as the distributive property over the vector addition:
u ⊗ (v + w) = u ⊗ v + u ⊗ w and (u + v) ⊗ w = u ⊗ w + v ⊗ w. Starting from
the mixture momentum ρu =

∑
m ρmum, one defines a species "diffusion" velocities:

vm = um − u.
Concerning the convective part, one can write

∑
m

(ρmvm ⊗ vm) =
∑
m

[ρm(um − u) ⊗ (um − u)] (6.6)

=
∑
m

[ρmum ⊗ um − ρmum ⊗ u − ρmu ⊗ um + ρmu ⊗ u] (6.7)

=
∑
m

(ρmum ⊗ um) −
∑
m

(ρmum ⊗ u) −
∑
m

(u ⊗ ρmum) +
∑
m

(ρmu ⊗ u)

(6.8)

=
∑
m

(ρmum ⊗ um) −
∑
m

⎡⎢⎣ρmum,xux ρmum,xuy ρmum,xuz

ρmum,yux ρmum,yuy ρmum,yuz

ρmum,zux ρmum,zuy ρmum,zuz

⎤⎥⎦
−
∑
m

⎡⎢⎣uxρmum,x uxρmum,y uxρmum,z

uyρmum,x uyρmum,y uyρmum,z

uzρmum,x uzρmum,y uzρmum,z

⎤⎥⎦+
∑
m

(ρmu ⊗ u) (6.9)

=
∑
m

(ρmum ⊗ um) − ρu ⊗ u − u ⊗ (ρu) + ρu ⊗ u (6.10)

=
∑
m

(ρmum ⊗ um) − ρu ⊗ u, (6.11)

where the scalar identify is used to obtain Eq. (6.8) from Eq. (6.7) and Eq. (6.11) from
Eq. (6.10), and the distributive property is used to obtain Eq. (6.10) from Eq. (6.8). In
consequence, one can find

∑
m

∇ · (ρmum ⊗ um) = ∇ · (ρu ⊗ u) +
∑
m

∇ · (ρmvm ⊗ vm). (6.12)
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In addition, the summation of the species stress tensor over all species gives∑
m

∇ ·
[
µm

(
∇um + (∇um)T

)]
=
∑
m

∇ ·
[
µm

(
∇(vm + u) + (∇vm + u)T

)]
(6.13)

=
∑
m

∇ ·
[
µm

(
∇vm + (∇vm)T

)]
+ ∇ ·

[∑
m

µm

(
∇u + (∇u)T

)]
(6.14)

=
∑
m

∇ ·
[
µm

(
∇vm + (∇vm)T

)]
+ ∇ ·

[
µ
(
∇u + (∇u)T

)]
(6.15)

The extra terms (compared to the single fluid theory) in the mixture momentum equation
are gathered in upsilon:

Υ = −
∑
m

∇ · (ρvmvm) +
∑
m

∇ ·
[
µm

(
∇vm + (∇vm)T

)]
. (6.16)

The first terms is reminiscent of the Reynolds’s stresses in turbulent flow and the second
term may be related to the Korteweg stresses observed experimentally with miscible
liquids in capillarity flows [64, 65]. These phenomena could have a non-negligible effect
on the interface between the fluids. In consequence, Υ is generally not zero.

6.3 Limit expressions

6.3.1 Pure diffusion

We now focus on the limit expressions of the previous equations. Using the dimen-
sionless formulations of Eqs (6.1) and (6.2), one can estimate, a priori, the order of
magnitude of each term. In the following, we will show that the Maxwell-Stefan equa-
tions are recovered in the case of pure diffusion. We first begin with the inter-molecular
friction force, which yields to the estimate

FD,m = −p
N∑

n=1

xmxn

Dmn
(um − un) = O (prefu∆/Dref ) , (6.17)

where u∆ is an appropriate velocity difference between species, and quantities with the
ref subscript represent an estimate of their order of magnitude. In a similar way, we
have

∂t(ρmum) =O (ρrefuref/tref ) , (6.18)

∇ · (ρmumum) =O
(
ρrefu

2
ref/Lref

)
, (6.19)

∇pm =O (pref/Lref ) , (6.20)

∇ ·
{
µm

[
∇um + (∇um)T

]}
=O

(
µrefuref/L

2
ref

)
. (6.21)
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The species momentum convection can be neglected compared to the diffusion if Eq. (6.19)≪
Eq. (6.17), i.e., Ma2 ≪ Pe∆, where the Mach number is defined as Ma = uref/cs,ref and
the Péclet number is Pe = Lrefu∆/Dref . Similarly, the shear forces are negligible if
Eq. (6.21)≪ Eq. (6.17), i.e., Ma2 ≪ Pe∆Re with Re = Lrefuref/νref . As u∆ may
change during the mixing, the influence of the different terms in Eq. (6.2) may vary in
time and space.

Let assume a low Mach flow whose dynamic is mostly diffusive. We can neglect
the contributions associated with convection (Ma2 ≪ Pe∆) and shear forces (Ma2 ≪
Pe∆Re). In addition, the characteristic time is given by tref = L2

ref/Dref and uref = u∆,
therefore the species acceleration can also be neglected, Eq. (6.18)≪ Eq. (6.17). Hence,
Eq. (6.2) reduces to

∇pm = p
N∑

n=1

xmxn

Dmn
(un − um). (6.22)

If we sum this equation over all species, we obtain

∇p = 0. (6.23)

As a result for this specific case, the process is isobaric. Using Dalton’s law, Maxwell-
Stefan’s equations are easily recovered from Eq. (6.22):

∇xm =
N∑

n=1

xmxn

Dmn
(un − um)

=
N∑

n=1

xmNn − xnNm

ctDmn
,

(6.24)

where we have introduced the species molar concentration cm = xmct and the species mo-
lar flux Nm = cmum, ct being the mixture molar concentration. In the case of an equimo-
lar binary mixture, Fick’s law is obtained N1 = −ctD12∇x1 or u1 = −x−1

1 D12∇x1.

6.3.2 Poiseuille flow

In order to investigate the influence of the inclusion of inter-molecular friction force,
we derive the solution of a two-dimensional planar Poiseuille flow for a spatially ho-
mogeneous binary mixture. We consider a flat channel of height 2h. The previous
momentum Eq. (6.2) is written in a dimensionless formulation using non-dimensional
quantities p∗ = p/(ρU2), u∗

m = um/U , x∗ = x/h, and y∗ = y/h with y∗ ∈ [−1, 1]. One
finds

−x1
dp∗

dx∗ + 1
Re1

∂2
y∗y∗(u∗

1) + Pep∗x1x2(u∗
2 − u∗

1) = 0, (6.25)

−x2
dp∗

dx∗ + 1
Re2

∂2
y∗y∗(u∗

2) + Pep∗x1x2(u∗
1 − u∗

2) = 0, (6.26)
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where we define the species Reynolds number Rem = ρUh/µm, which corresponds to
the Reynolds number if the species is alone. The mixture Reynolds number is given by
Re = ρUh/µ = Re1Re2/(Re1 + Re2), and the usual Péclet number is Pe = Uh/D12.
By differentiating two times the first equation along the y-direction and subsequently
eliminating u∗

2, a fourth order linear differential equation for u∗
1 is obtained

∂4
y∗y∗y∗y∗(u∗

1) − Pe(Re1 + Re2)p∗x1x2∂
2
y∗y∗(u∗

1) = −PeRe1Re2p
∗x1x2

dp∗

dx∗ (6.27)

We assume a non-slip velocity condition at the top and bottom boundaries such as

u∗
m(y∗ = −1) = 0, and u∗

m(y∗ = 1) = 0, m = 1, 2. (6.28)

It should be noted that a velocity slip boundary is usually used for mixture of gases in
micro-channels due to rarefaction effects. Here, we suppose that the Knudsen number
is small enough (< 10−3, continuum flow regime) to neglect this phenomenon. With the
help of the change of variable X = ∂2

y∗y∗(u∗
1), we get for m = 1, 2:

u∗
m(y∗) = Re

2
dp∗

dx∗ (y∗2 − 1)

+ (xmRem − Re)dp
∗

dx∗
2
λ2

sinh (λ)
sinh (2λ) [cosh (λy∗) − cosh (λ)] ,

(6.29)

with
λ =

√
Pe(Re1 + Re2)p∗x1x2 (6.30)

In Eq. (6.29), the first terms are the standard solution of a Poiseuille flow and the
terms displayed on the second line is specific to the mixture. We recall that the mixture
considered here is spatially homogeneous. Although the flow is caused by a pressure
gradient and not a concentration difference, the species velocity profile is influenced by
the presence of the other component. The maximal velocity of a standard Poiseuille
profile is U∗

max = −Re
2

dp∗

dx∗ where one generally sets dp∗

dx∗ < 0 and we can rewrite the
velocity profile as

u∗
m(y∗) = U∗

max(1 − y∗2)

− U∗
max[xm(1 + µn

µm
) − 1] 4

λ2
sinh (λ)
sinh (2λ) [cosh (λy∗) − cosh (λ)] ,

(6.31)

for m = 1, 2 and n ̸= m = 1, 2. The solution is well-defined for all values of λ and its
limits are

lim
λ→0

u∗
m(y∗) = U∗

max[xm(1 + µn

µm
)](1 − y∗2), m = 1, 2 and n ̸= m, (6.32)

lim
λ→∞

u∗
m(y∗) = U∗

max(1 − y∗2). (6.33)

In Figure 6.1, u∗
m(y∗ = 0)/U∗

max is plotted for the mixture composition x1 = 0.9 and
x2 = 0.1 for various species viscosity ratios and λ values. From Eqs. (6.32) and (6.33),
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one can deduce the influence of the molar fractions that mainly shifts up or down the
plot for given λ. When the component viscosities differ greatly for small λ values, the
species maximal velocity is larger than the usual maximal Poiseuille velocity for a given
pressure gradient for the less viscous component and vice versa the species maximal
velocity is smaller for the more viscous component.

Figure 6.1 – u∗
m(y∗ = 0)/U∗

max for x1 = 0.9, x2 = 0.1 for different viscosity ratios and
lambda values.

In reality, the component viscosity and λ are not independent parameters since they
are related to the mixture composition and the transport coefficients (viscosity, diffusion
coefficient) which depend on the molecular properties of the components. More details on
transport coefficients will be given in the next section. For simple gases at atmospheric
pressure, we can estimate the value of λ as

λ =
√

1
D12

( 1
µ1

+ 1
µ2

)h2px1x2 (6.34)

≈
√

105 × (105 + 105) × h2 × 105 × 0.9 × 0.1 (6.35)

≈ h× 107 (6.36)

In this case, the species velocity profile does not follow the usual Poiseuille profile only for
very small channels h < 0.01mm (λ < 100). We point out that for a non-homogeneous
mixture, we expect more deviations due to the diffusion. With this simple analytical
solution, we have presented the mutual influence of two species in a Poiseuille flow. The
species velocities may differ from the standard Poiseuille profile for a single fluid and,
consequently, so does the resulting mixture velocity.
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6.4 Transport coefficients

In the previous subsections, the equivalent macroscopic equations are presented.
However the transport coefficients, viscosities, and diffusion coefficients still have to be
defined.

The lattice Boltzmann scheme still retains a connection with the macroscopic scale
through the relation between the relaxation time and the viscosity stemming from the
Chapman-Enskog expansion [Eq. (6.3)]. Since each species has its own kinetic equation
[Eq. (5.1)], N relaxation times (i.e., viscosities) need to be defined, and a relation between
the mixture properties and species viscosity has to be specified. Some of the previous
lattice Boltzmann multi-component models disregard this issue ([43, 46]), and others set
the viscosities of each species equal to the mixture viscosity ([47, 48, 53, 55, 57]) or use
Wilke’s law ([51, 52]).

In the following, we present the submodel for the transport coefficients that we
derive in the framework of the multi-fluid approach that constitutes one of the main
features of our model. Fortunately, analytical expression for the transport coefficients
for a dilute gas can be obtained by kinetic theory [1] (see also the reference [34], which
is less detailed). By extending the works of Hirschfelder, Curtiss, and Bird to mixtures,
Kerkhof and Geboers [59] define diffusion coefficients and species partial viscosities in
terms of the molecular properties, temperature, and composition of the mixture.

In order to avoid confusion between pure viscosity and the viscosity of a species m
in the mixture, we refer to the latter as the partial viscosity. Following Kerkhof and
Geboers, the partial viscosities can be computed by solving the linear system

(µm) = [Pmn]−1

⎛⎜⎝1
...
1

⎞⎟⎠ (6.37)

with

Pmm = 2
kBT

[4
5Ω(2,2)

mm +
N∑

n̸=m

xn

xm

16
15

Mn

(Mm + Mn)2 ×
(

5MmΩ(1,1)
mn + 3

2MnΩ(2,2)
mn

)]
(6.38)

and for off-diagonal elements (n ̸= m),

Pmn = − 2
kBT

[16
15

MmMn

(Mm + Mn)2

(
5Ω(1,1)

mn − 3
2Ω(2,2)

mn

)]
, (6.39)

where kB is the Boltzmann constant, T the temperature, Mm the mass of a single
molecule for the species m, xm the mole fraction, and the Ω-integrals are defined as
in Ref. [1] and depend on the temperature and the molecular properties based on the
Lennard-Jones potential (see Appendix C.1 for details). We underline that the matrix
formulation of the partial viscosity can be found in Ref. [1] (§7.4.iii) if the summation
over all species is not performed.
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Combining some assumptions made in Ref. [1] (§8.2.iii) and additional approxima-
tions suggested in Ref. [66], the previous linear system can be simplified. This derivation
is provided in Appendix C.2 for completeness since previous references do not use the
same notation and thus is here available in a single consistent paragraph. Therefore,
the partial viscosities depend on the composition of the mixture and can be expressed
in terms of the molar fractions, the pure viscosities µ0,m, and the species molar masses,
and a similar formula to Wilke’s law is recovered yielding to

µm = xmµ0,m∑N
n xnΦmn

(6.40)

with

Φmn = 1
2
√

2

(
1 + Mm

Mn

)− 1
2

⎡⎣1 +
(
µ0,m

µ0,n

) 1
2 (Mn

Mm

) 1
4

⎤⎦2

, (6.41)

where Mm = Mm/Na, with Na the Avogadro number and Mm the molar mass of species
m. We point out that in kinetic theory, the pure viscosity has the following expression:

µ0,m = 5kBT

8Ω(2,2)
mm

, (6.42)

which is asymptotically consistent with Eqs. (6.38) and (6.39).
For the Maxwell-Stefan diffusion coefficients, we use the same expression obtained

from the classical kinetic theory of gases [1] (see also Appendix C.3):

Dmn = Dnm = 3(Mm + Mn)
16pMmMn

(kBT )2

Ω(1,1)
mn

. (6.43)

The diffusion coefficients are usually taken as constant at a given reference pressure
and temperature since the pressure variation is not significant. In practice, the transport
coefficients, pure viscosities and diffusion coefficients, can be set according to different
strategies. For instance, they can be directly chosen in lattice units (as in Secs.7.1
and 7.2) depending on a given dimensionless number (Reynolds number, Péclet number,
etc). In some cases, experimental values are available (as in Sec.7.3), or else the previous
equations can be employed (as in Sec.7.4).
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Numerical simulations

In order to validate the proposed model, we present four two-dimensional cases re-
ferred to as A, B, C, and D. In case A, the forcing term approach is applied to the
free decay of a density wave. In case B, two species having the same molecular mass
diffuse in each other. These two cases are selected to assess the numerical capabilities
of the proposed method, and the results are validated against analytical results. Then
Loschmidt’s tube experiment is reproduced in case C, which corresponds to the diffusion
of a ternary mixture with different molecular masses. In case D, we simulate the inter-
action of two multi-component opposed jets. In all cases, the simulation is initialized
with the equilibrium distribution Eq. (5.2).

7.1 A- Decay of a density wave

The accuracy of the forcing strategy to define the species pseudo speed of sound is
assessed by simulating a single species flow corresponding to the decay of a free density
wave damped by a low viscosity as proposed in Ref. [62]. By considering small pertur-
bations of density and velocity from the linearized Navier-Stokes equations, the density
and the velocity of the damped wave are given by

ρ = ρ0 + δρ exp(wit) cos(kx− wrt), (7.1)

u = δρ

k
exp(wit) [wr cos(kx− wrt) − wi sin(kx− wrt)] (7.2)

We perform simulations assuming two-dimensional periodic domain (nx, ny). In order
to compare our results with the analytical solution, we introduce the equivalent species
pseudo speed of sound ce =

√
βcs and ν the kinematic viscosity of the fluid, and set

ρ0 = 1 (average density), δρ = 10−3 (amplitude of the density perturbation wave) and
νk/ce = 10−2, k being the wave number k = 2π/nx. In the harmonic decomposition,
the dispersion relation yields a wave frequency that is split into a real and an imaginary
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part:

w = wr + iwi, (7.3)

wr = ±kce

√
1 − ν2k2/c2

e, (7.4)
wi = −kce(νk/ce). (7.5)

Simulations are carried out for different domain sizes nx at various speed of sound ratios
β while keeping ny = 5 constant. As an example, we plot in Fig. 7.1 the temporal
evolution of ρ and u at nx/4 for β = 0.05, 1, 4.3 and nx = 128. The dissipation error is
undetectable and a small dispersion error is visible only for β = 0.05.

0 10 20 30 40 50 60
0.99900

0.99925

0.99950

0.99975

1.00000

1.00025

1.00050

1.00075

1.00100(a)
= 0.05 = 1 = 4.3

0 10 20 30 40 50 60
kce × t

0.0010

0.0005

0.0000

0.0005

0.0010

u

(b)

Figure 7.1 – (a) Temporal evolution of ρ and u (b) at nx/4 for β = 0.05, 1, 4.3 and
nx = 128. Symbols and lines stand for simulation results and analytical solutions from
Eqs. (7.1-7.2), respectively.

The relative global error of the density and the velocity field is defined in terms of
the L2-norm

εϕ =

√∑nx
i (ϕi − ϕanalytical,i)2∑nx

i ϕ2
analytical,i

, (7.6)
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ϕ standing for either density or velocity. The results are compared at non dimensional
time ktce = 10 × 2π and reported in Fig. 7.2 for various β and nx. The model is found
to be stable in the range 0.05 ≤ β ≤ 4.3, indicating that our model is able to simulate
molar mass ratios up to 86 with small errors on the density and velocity depending on
the size of the grid and on the value of β.
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Figure 7.2 – (a) Relative errors of the density ερ and velocity εu (b).

In Fig. 7.3, the proposed method is compared against the method of Ref. [62] where
the equilibrium is modified and a larger velocity set is employed. The data are extracted
from Fig.6 of Ref.[62] and the exact same case is simulated. With the proposed method,
the relative errors are lower and the range of stable β values is greater. In Ref. [52],
interpolations are used to simulate molecular weight ratios up to 1000. No direct com-
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parison is possible since no relative errors of the density and velocity are plotted, and
both of these errors have different orders of magnitude. Nonetheless, the present method
is easier to implement compare to interpolations which can be cumbersome to code in
3D, especially on boundary nodes. The gain in CPU time is not the main reason of the
use of the proposed method. As a crude approximation, if we assume that the calculation
of the density gradient has the same CPU cost as an interpolation of one distribution
function, interpolations are 4 × (N − 1) times more expensive than using a force to alter
the equation of state in 2D where N is the number of species (one gradient calculation
for each physical dimension vs one interpolation for each distribution function). For
the D3Q19 velocity set, interpolations are approximately 6 × (N − 1) more expensive.
Anyway, the main CPU cost is as usual related to the collision operation.
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Figure 7.3 – Relative global errors for the decay of a density wave (nx = 256).

7.2 B- Equimolar counter-diffusion

In this test case, we study the mixing between two species of equal molecular masses
for which the mass transfer occurs only by diffusion, and governing equations are

∂tρm = D∇2ρm, for m = 1, 2. (7.7)

A particular solution of Eq. (7.7) is

ρm (x, t) = ρ0 + (−1)mδρ exp(−k2Dt) sin(kx). (7.8)
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We choose ρ0 = 1, δρ = 10−3, k = 2π/nx, and use a two-dimensional periodic domain
(nx = 200, ny = 5). As an example, we plot in Fig. 7.4 the temporal evolution of ρ2 for
D = 10−2 and τ = 1 for both species. Numerical results are indistinguishable from the
analytical solution Eq. (7.8).
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Figure 7.4 – Evolution of ρ2 for τ = 1 and D = 10−2 at different iterations. Symbols and
lines stand for simulation results and analytical solutions from Eq. (7.8), respectively.

For comparison, we have evaluated the error of the diffusion coefficient at various
D and relaxation times τ (which is assumed to be the same for the two species). The
relative error ||Dnum−D||/D is reported in Fig. 7.5 where Dnum is computed at x = nx/4
by linear fit of Eq. (7.8) and D is set using Eq. (5.7). The numerical solution is in good
agreement with the theoretical results for D < 0.1 and for all relaxation times. We note
that the relative error in density, ερ as defined in Eq. (7.6), is three orders of magnitude
smaller than the relative errors of the diffusion coefficient. The figure shows a discrepancy
between the numerical and theoretical results for D > 0.1. Having kept constant the size
of the domain for all D, this discrepancy is likely to be ascribed to a loss of spatial and
temporal resolution. Nonetheless the relative error of the diffusion coefficient is always
less than 0.4% for all τ . Different sizes of domain are used (not shown in the present
study) and we recover the classic second-order accuracy in space indicating that the
forcing approach does not deteriorate the accuracy of the LBM algorithm.

7.3 C- Loschmidt’s tube

Having validated the ability of the method to simulate the decay of a single species
density wave (at various different molar masses), and the counter-diffusion of species hav-
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Figure 7.5 – Relative errors of the diffusion coefficient.

ing equal molecular masses (at various diffusion coefficients), we simulate the Loschmidt’s
tube experiment [67]. The latter consists of the mixing of a ternary mixture of gases
having different molecular masses (argon, methane, and hydrogen). For such a process,
a diffusion reversal is observed depending on the initial species composition [41]. In
particular, we have considered two tubes of the same dimension filled with mixtures
of different composition in the left and right tubes that are joined at the beginning of
the experiment. In the experiment the left and right mean compositions are measured
in time during the mixing. In the experimental apparatus, the lengths of each tube is
Lref/2 ≈ 0.405 and the period of observation is approximately 1h. The initial molar
fractions are given in Table 7.1, and the other physical parameters are summarized in
Table 7.2.

tube xAr xCH4 xH2

left (0 < x < Lref/2) 0.509 − δ 2δ 0.491 − δ
right (Lref/2 < x < Lref ) 0.485 − δ 0.515 − δ 2δ

Table 7.1 – Initial molar fractions, in our simulation we take δ = 5 × 10−4 (in the
experiment, δ = 0).

The simulation is carried out on a domain size of (nx, ny) = (200, 25). Classical
bounce-back rules are used on the left and right boundaries, and periodic conditions are
applied on the top and bottom sides of the domain.

For computational purposes, we have rescaled the Maxwell-Stefan diffusion coeffi-
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Lref [m] 2
√

1/60π
p [Pa] 101325
T [K] 307.15

m Ar CH4 H2
Mm [g/mol] 39.948 16.0425 2.01588
DAr m [mm2/s] − 21.57 83.35
DCH4 m [mm2/s] 21.57 − 77.16
DH2 m [mm2/s] 83.35 77.16 −
µ0,m [µPa/s] 22.83 11.35 9.18

Table 7.2 – Physical parameters of the experiment.

cients by a factor 103, and the partial viscosities have been computed imposing the same
species Schmidt numbers, which we define in terms of the pure viscosity as in the ex-
periment. The aim of the rescaled factor is to increase the physical time step of the
simulation and obtain results with less computational resources. Indeed, a rather small
domain is used but Loschmidt’s experiment lasts 1h. Let us define the conversion factors
between physical and LBM quantities for the length and the time:

Cl = lphy

lLBM
, Ct = tphy

tLBM
. (7.9)

In practice, we use the concept of lattice units where the LBM quantities are defined by
space step δxLBM = 1 and time step δtLBM = 1. In physical units, the total length of the
two tubes is 0.8112m and the domain size is equal to nx = 200. This yields to a length
conversion factor Cl = 0.8112/200 = 4.056 × 10−3m. The diffusion coefficients, in lattice
units, are given by:

DLBM = Dphy
Ct

C2
l

(7.10)

Assuming the same diffusion coefficients in both LBM and physical systems results in
Ct = [s]

[m2]C
2
l = 1.6451 × 10−5s. The experience lasts about 1h which is approximately

equivalent to 218 × 106 time steps in the LBM simulation. Using a rescaled factor and
keeping the Schmidt number constant in both systems reproduce the same physics at
a lower computational cost. Note that simulations with different sizes of the domain
(nx = 200, 2000) and rescaled factors (103, 102) leads to identical results subject to the
standard LBM discretisation errors.

Figure 7.6 reports the evolution of the mean molar fractions for the left and right
tubes in non-dimensional time units t∗ = t×DArCH4/(Lref )2. The mean molar fractions
are in very good agreement with the experimental data. As expected, initially argon
diffuses in the same direction of the concentration gradient contrary to the behavior
predicted by using Fick’s law. This reverse diffusion occurs on a scale of approximately
0.04 non-dimensional time units, and the concentration of argon attains a plateau in
both tubes in spite of the presence of large concentration gradients. The other species
do not exhibit such diffusion barrier. At later times, Fick’s like diffusion takes place. It

79



CHAPTER 7. NUMERICAL SIMULATIONS

is important to point out that this complex diffusion dynamics can only be recovered by
the Maxwell-Stephan equations [37].
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Figure 7.6 – Comparison between simulation (lines) and experimental data (symbols)
extracted from Ref. [68]. Molar fraction of argon, blue; molar fraction of methane,
orange; molar fraction of hydrogen, green. Solid lines and filled symbols, left tube;
dashed lines and unfilled symbols, right tube.

7.4 D- Opposed jets flow

The model is finally validated for a flow whose dynamics is dominated by a convection-
diffusion competing mechanism. The test case that we investigate is the same proposed
in Ref. [51], which consists of two opposed jets of quaternary mixtures of gases hav-
ing different initial concentrations (see Fig. 7.7 and Table 7.3). The domain size is
(nx, ny) = (200, 400) and the widths of the left and right incoming streams are the same
and equal to 0.4ny. At left and right boundaries, equilibrium is assumed for the distri-
bution functions, and the velocity is set equal to zero. For the left and right incoming
streams, we assume that all species velocities are respectively equal to UL = U0 and
UR = −0.936U0 (as inferred from Fig. 3 of Ref. [51]), and we chose U0 = 0.04. At the
top and bottom boundaries, the outer incoming distribution functions are extrapolated
from the interior. The transport coefficients are evaluated by means of Eqs (6.40-6.43) at
atmospheric pressure and temperature T = 300K. The species kinetic constants needed
to evaluate the Ω-integrals are given in Table 7.4.

Figure 7.8 shows the distributions of the molar fractions and the mixture mass ve-

80



CHAPTER 7. NUMERICAL SIMULATIONS

0 100 200
x

0

50

100

150

200

250

300

350

400
y

0.00

0.01

0.02

0.03

0.04

0.05

Figure 7.7 – Molar fraction and velocity streamline plot of H2O.

locity at the symmetry plane (y = ny/2) and at steady state. The results are in close
agreement with Ref. [51] where the CHEMKIN package is used to calculate the transport
coefficients and mixture-averaged diffusion coefficients are employed for each species.
This is however only correct asymptotically when there is either only one bulk com-
ponent and trace species, or when all species but one have nearly the same diffusion
velocities, or when all the diffusion coefficients are the same. Despite using a simplifying
mixture-average diffusion, the results are similar since the multi-components diffusion
effects, which can not be captured with this assumption, are not significant. In addition,
these transitory complex diffusion phenomena as in the case of the Loschmidt’s tube
experiment (Sec. 7.3) would not be visible on this steady state comparison. Figure 7.8
confirms that our model correctly predicts the dynamics of the flow characterized by a
competing convection-diffusion mechanism.
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stream xH2 xN2 xO2 xH2O

left 0.10 0.85 − δ 0 + δ 0.05
right 0 + δ 0.9 − 2δ 0.10 0 + δ

Table 7.3 – Initial molar fractions, in our simulation we take δ = 10−5 (in the experiment,
δ = 0).

m H2 N2 O2 H2O

Mm [g/mol] 2.01588 28.0134 31.9988 18.0153
ϵm/kB [K] 36.7 47.6 113. 775.
σm [nm] 0.2959 0.385 0.433 0.252

Table 7.4 – Kinetic constants from Ref. [1].
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Figure 7.8 – Comparison between the present method (line) and LBM from Ref. [51]
(symbols) at y = ny/2.
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Chapter 8

Synthesis

In the present chapter, we derive, explain and validate a lattice Boltzmann model
for miscible gases. We show that the mixing dynamics of multi-species mixtures can be
simulated by a forcing term in the lattice Boltzmann algorithm [Eq. (5.7)] and the addi-
tion of a body force to account for species having different molecular masses [Eq. (5.13)].
Furthermore, the model also relies on the use of transport coefficients that are calculated
by an approximation of the relations obtained from kinetic theory [Eq. (6.40)].

The model is validated against analytical, experimental, and numerical results avail-
able in the literature. We have shown that the model can accurately simulate the decay
of a density wave for a variety of pseudo speed of sound corresponding to molar mass
ratios up to 86. The model adequately predicts the diffusion process in binary and
ternary mixtures of gases as shown in the case of the equimolar counter-diffusion and
Loschmidt’s tube experiment. Complex diffusion phenomena such as reverse diffusion
occur in ternary mixtures. These phenomena are well observed in our model, and the
dynamics predicted by the Maxwell-Stefan equations is correctly recovered. The present
model also adequately predicts the dynamics of flows where convection and diffusion
compete as in the case of two opposed jets of mixtures.

Finally, one of the advantages of the forcing approach is the easiness of implemen-
tation. Since the collision is not altered, the method that we propose can easily be
introduced in any other lattice Boltzmann algorithm in order to take into account com-
plex diffusion among species. Upcoming applications of the present model focus on
instabilities resulting from the transient mixing dynamics in porous media.
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Chapter 9

Viscous fingering instability

Fluid flows and mixing in porous media play a key role in number of real-world
engineering problems such as in chromatographic columns, in secondary and tertiary
oil recovery, in carbon dioxide sequestration , and in micro-fluidic devices. Interfacial
instabilities can be detrimental for the previous processes or on the contrary a way to
improve the mixing. High Reynolds number flows can be actively stirred by turbulence
but other mechanisms are needed in a porous medium. The generation of an interfacial
instability is one mechanism among others that can improve the mixing. This instability
can be driven by chemical reactions, density stratification (Rayleigh-Taylor instability),
or difference in viscosity. Here, we focus on the latter, which is called viscous fingering
or Saffman-Taylor instability. This interfacial instability occurs when a less viscous fluid
displaces a more viscous fluid in a porous medium [69]. Finger-like patterns as shown in
Fig. 9.1 emerge and grow, exhibiting complex dynamics. The influence of the instability
should not be underestimated. Using data from a CO2 sequestration project, the mixing
zone after a shutdown time of approximately 150 years is estimated around 50 km long
whereas if only pure diffusion is considered, the mixing zone would be roughly 5m [70].

(a) Viscous fingering in a gravity driven
miscible displacement in a Hele-Shaw cell.

(b) Viscous fingering in an opaque medium
visualized by X-ray absorption.

Figure 9.1 – Pictures from reference [69], with permission.

Porous media, such as natural soils or sedimentary rocks, are incredibly difficult to
model due to the heterogeneous structure and composition of the pores at many different
scales. Since they are opaque, most experimental investigations of the viscous fingering
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phenomena are carried out on Hele-Shaw cells. A Hele-Shaw cell is composed of two
parallel plates with a small gap. This flow configuration mimic the drag induced by
a porous medium when the gap is small enough. From a numerical point of view, the
simulation of a large-scale flow at the pore scale is often impractical because of long
CPU time and excessive memory consumption. Hence, a volume average approach is
usually used to overcome these difficulties. In this case, Darcy or Darcy-Brinkman semi-
empirical equations are solved and porosity, permeability, and other measurements are
defined. In the case of a single fluid, the Brinkman equation adds a drag force to the
Stokes equations,

∇p = − µ

K
u + ∇ ·

[
µe

(
∇u + (∇u)T

)]
(9.1)

where p is the pressure, K is the permeability of the medium, u is the fluid velocity, and
µe is the effective viscosity which may not be equal the fluid viscosity. The Brinkman
equations are a convenient transition model between Darcy regime (K ≪ L2µ/µe, with
L the macroscopic characteristic length) and Stokes regimes (K ≫ L2µ/µe). In a Hele-
Shaw cell, one can show that the flow is also governed by Darcy’s law with an equivalent
permeability of b2/12 in the limit of low Reynolds number flow and b/L → 0, where b is
the small gap width. It is to be noted that the dynamics of the viscous fingering is mainly
governed by the Darcy equation [69] therefore Stokes’ term is not of primary importance
and the effective viscosity is taken equal to the fluid viscosity unless otherwise stated.
Indeed, most of the literature (see previous and next references) only considers Darcy’s
equations. The latter equations correctly described flows in Hele-Shaw cells and in simple
porous media whereas Darcy-Brinkman’s equations are often used as a transition model
between porous flow and Stokes flow such as in the case of fractured porous media.

Now we consider a homogeneous porous medium and a zone where the viscosity
varies greatly. Under suitable assumptions, the flow follows a one-dimensional Darcy’s
law and the pressure differential from both sides of the fictional interface as a result of
a virtual displacement δx reads

δp = (pleft − pright) = (µright − µleft)U/Kδx (9.2)

If the net total pressure δp is positive, then any small displacement will amplify, resulting
in an instability. From this simple argument, the instability mechanism is driven by the
viscosity difference on either side of the interface. If the displaced fluid is more viscous
than the displacing (µright > µleft) then the configuration is unstable, in the contrary
(µright < µleft) any small interface perturbation will be damped and the configuration
is stable.

Since the pioneer work of Hill [71] in 1952 and Saffman and Taylor [72] in 1958,
extensive investigations has been performed on both immiscible and miscible fluids. A
distinctive characteristic of miscible fluids is the lack of a sharp interface and surface
tension. Mixing produces changes in the fluid since the properties of the mixture vary
continuously while diffusion occurs. Usually, the viscous fingering is modeled by using
Darcy’s law and a scalar transport equation for the concentration. A relation between
the viscosity and the concentration of the components must be defined. Most articles
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follow the standard literature rather than physical rigor and assume an exponential
dependence.

Studies of the viscous fingering instability can be divided into two categories: linear
stability analyses and non-linear simulations. The linear stability analysis is a classical
tool to study the evolution of small perturbations that leads to the instability. The
main mathematical challenge of the miscible viscous fingering is due to the unsteady
base (i.e. unperturbed) state caused by diffusion. In practice, the quasi-steady-state
approximation is employed and the linear stability analysis is applied on a frozen base
state at successive frozen times [73, 74]. Other methods such as initial value problem or
non-modal analysis (transient growth analysis) are possible. Excluding very short times,
the different approaches are in good agreement [73, 75]. As its name implies, the linear
stability analysis is restricted to early times. As the perturbation develops, non-linear
interactions occur and the linearized equations are no longer valid. This leads to the
second category: non-linear simulations where no approximation is made, thus the full
life cycle of fingers, from onset to shutdown, can be studied. In this case, equations
are solved with a stream-function formulation using spectral method [73, 74, 76, 77] or
finite-difference method [78, 70]. The former is very efficient whereas the latter can be
numerically stable for any viscosity ratios.

Lattice Boltzmann method was also used to study the viscous fingering phenomenon.
In 1992, Holme and Rothman [79] propose a LBM for miscible binary fluids where one
distribution function models an advection-diffusion equation and a second distribution
function is employed for the mixture density and momentum balance equations. Then,
they simulate the viscous fingering instability using their miscible model with a variable
mixture viscosity and a drag force that mimics the effect of a porous medium. With a
similar miscible LBM approach, Rokotomalala, Salin, and Watzky [80] study the miscible
displacement of two fluids with different viscosities between two parallel plates. In
the absence of porous medium, a single finger may appear depending on the diffusion
and the viscosity contrast. This can be seen as a limit case of the viscous fingering
instability. Contrary to the previous model where an advection-diffusion equation for
the concentration is solved, a more natural approach in order to deal with diffusion in
the frame of the lattice Boltzmann method is the use of an inter-molecular friction force.
Indeed, the distribution function for the diffusion equation lost its molecular meaning
and is no longer associated with the physical description of a species, i.e., collisions of
molecules. More specifically, the diffusion equation is postulated and a kinetic scheme
is tailored so as to solve it. Here, neither transport equation for the concentration, nor
Darcy equation with exponential viscosity dependency are solved. Each species dynamic
is governed by its own kinetic equation [Eq. (5.1)] where diffusion is taken into account by
means of an inter-molecular force and the viscosity of species stemmed from the kinetic
theory of gases [Eq. (6.40)]. Adopting a lattice Boltzmann approach, we investigate
two strategies to mimic the porous medium effects: the gray lattice Boltzmann model
assuming a partial reflection condition and the Brinkman force model adding a drag
force.

Viscous fingering is a fascinating and a pertinent phenomenon to showcase the possi-
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bilities of our miscible model. This instability exhibits complex dynamics depending on
both molecular diffusion and viscosity namely inter-molecular friction forces and partial
viscosities in our case. A few questions arise. Can we simulate the viscous fingering
instability with the present model? What is the influence of the viscosity law? How the
instability is modified when multi-component effects take place in ternary mixtures?
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Chapter 10

Porous medium in the lattice
Boltzmann method

In this chapter, we briefly present how to model the porous medium within a lat-
tice Boltzmann framework. As described earlier, we seek for an average view of the
porous medium and the equivalent target macroscopic equation is Darcy (-Brinkman) ’s
equation.

10.1 Gray lattice Boltzmann

Taking the advantage of the mesoscopic view of the lattice Boltzmann method, a
porous medium can be modeled by different means. We first present the so-called gray
lattice Boltzmann (GLBM) scheme where a special condition is applied on the whole
domain: in each cell during the streaming step, the distribution functions are bounced
back with a certain amount. Various schemes are proposed in the literature. In Ref. [81],
the local pre-collision distribution functions are reflected whereas in Ref. [82], the local
post-collision distribution functions are taken as reflected distribution functions. Yoshida
and Hayashi [83] also suggest a gray lattice Boltzmann model based on Ref. [84] but the
neighboring post-collision distribution functions are reflected. Despite some differences,
all the previous gray lattice Boltzmann schemes [81, 82, 83] recover the Darcy-Brinkman
equation [85]. In this study, the use of the model proposed in Ref. [83] is motivated by
two main reasons. First, a redefinition of the macroscopic velocity is not required in
this latter scheme. This redefinition would lead to complicated expressions especially
on the boundary nodes since in the present approach, velocity and forces are coupled
[Eqs. (5.6-5.7)]. Furthermore, the classical bounce-back boundary condition is obtained
as a limit expression. If we use the notation Γm

α to substitute for the right-hand side of
Eq. (5.1) (post-collision part), the following gray lattice Boltzmann scheme is obtained,

fm
α (x + eαδt, t+ δt) = (1 − θm)Γm

α (x, t) + θmΓm
α (x + eαδt, t) , (10.1)
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where Γm
α (x + eαδt, t) are the post-collision distribution functions from the opposite

direction of α velocity located at the neighboring node and θm is the amount of reflection.
The principle of the algorithm is depicted in Fig. 10.1

Figure 10.1 – Sketch of the gray lattice Boltzmann algorithm. The resulting streaming
step in GLBM is composed of a fraction of the standard propagated distribution function
and a reflected part from the opposite lattice direction.

When θm = 0, the usual streaming step occurs and θm = 1 is similar to the classical
bounce-back (no-slip) condition. For 0 < θm < 1, the scheme mimics the dynamics of
a porous medium and this approach should be related to a subgrid model for porous
medium. The parameter θm depends on the viscosity of the fluid and the permeability
of the considered porous medium and the following relation can be obtained [83, 85]

µm

Kρm
= 2θm

(1 − θm)δt
(10.2)

Here, θ is defined on the link between nodes instead of being a node based value. In
each direction α of the lattice, θ is computed by the means of an interpolation between
the two nodes. This ensures that the mass is conserved strictly by the scheme.

10.2 Brinkman drag force
In the second approach, referred as Brinkman force (BF) model, the porous medium

resistance is included explicitly through a drag force in the lattice Boltzmann equation,
e.g. [80, 86, 87, 88, 89, 90]. Here, we follow a similar approach and the forcing term is
written as

Fporous,m = −µm

K
um. (10.3)

Compared to the gray lattice Boltzmann, this strategy is local and has a negligible
computational cost since we already implement a source term because of the inter-
molecular friction forces. As mentioned in Refs.[23, 24, 91], the numerical permeability
depends lightly on the viscosity for both Brinkman force and gray lattice Boltzmann
models. This nonphysical variation can be alleviated by keeping the so-called magic
number Λ constant (see [22, 23, 24, 86, 91]). We use the multiple relaxation times
(MRT) collision model with Λ = 3/16 corresponding to sq = 82−1/τm

8−1/τm
.
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Numerical simulations

11.1 Darcy’s law

In order to show that Darcy’s law is recovered by both of the proposed schemes, a flow
composed of two identical species (m = 1, 2 and βm = 1) through a homogeneous porous
medium is simulated. Domain size is set to (nx = 101, ny = 20). Periodic conditions
are applied on top and bottom of the domain and a constant velocity profile (ux,m =
U, uy,m = 0) is imposed at left and right side of the domain via the non-equilibrium
bounce-back. Distribution functions are initialized at their equilibrium values with an
uniform initial density field ρ1 = ρ2. Simulation is stopped when steady state is achieved.
In Figure 11.1, the pressure drop between the left and right side of the domain is plotted
against the horizontal inlet velocity. Both gray lattice Boltzmann and Brinkman force
models give equivalent results and show the expected Darcy behavior of the simulated
system.

This first result shows that both porous modeling strategies are able to accurately
reproduce the standard behaviour of a porous medium for different values of K.

11.2 Viscous fingering

The viscous fingering instability occurs when a less viscous fluid invade a more viscous
fluid. In the case of miscible fluids, if the interface between fluids is sharp enough, finger-
like patterns emerge and grow, exhibiting complex dynamics. Following the literature,
dimensionless parameters are defined such as the log-viscosity ratio, the Péclet number
(ratio of the advective transport rate and the diffusive transport rate), and the Darcy
number:

R = ln
(
µ0,2
µ0,1

)
, Pe = ULref

D12
, Da = K

Lref
2 , (11.1)

where U is the injected velocity and Lref is the reference length. Here following Ref. [74],
the characteristic scales are based on the convective length: Lref is taken as the height of
the domain and the reference time is tref = Lref/U . If R < 0, the invading fluid is more
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Figure 11.1 – Pressure drop according to the velocity for different permeability at fixed
viscosity µ0,m = 2 × 10−1 lu. Values are given in lattice units (lu). Squares and stars
stand for numerical results obtained respectively with the gray lattice Boltzmann and
the Brinkman force schemes. Lines are the analytical solution −∇pm = µm/KU .

viscous than the resting fluid, and the interface is always stable. On the other hand, if
R > 0, the invading fluid is less viscous than the resting fluid, and the interface between
the two fluids may be unstable. The number of fingers increases with both the Péclet
number and the ratio R. We recall that the relation between the pure viscosity and the
species is given by Eq. (6.40). The influence of different parameters on the instability is
studied. First, we present the numerical configuration employed to simulate the viscous
fingering instability. The early times of the instability are compared with results from
linear stability analysis and for intermediate times, we focus the evolution of the mixing
length induced by the fingering. Effects of the Péclet number, and the porous model
(gray lattice Boltzmann or Brinkman force models) are highlighted.

11.2.1 Numerical configuration

In the following simulations, the fluid consists of two species having equal molar
masses (βm = 1 m = 1, 2). The resting mixture is composed of molar fractions x1 = 0.1
and x2 = 0.9 and these are swapped for the injected mixture (x1 = 0.9, x2 = 0.1). The
domain considered is two-dimensional and we impose periodicity at the top and bottom
boundaries. At the left and right boundaries, a constant velocity condition equal to U
is applied for both species. Each simulation is initialized by an almost sharp interface
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with a small perturbation so as to trigger the instability,

x1(x, y, t = 0) = 0.9 + (0.1 − 0.9)
[
0.5 + 0.5 × erf

(
x− 0.1√

t0

)
+r(y) × exp

(
−(x− 0.1)2

t0

)]
,

(11.2)

x2(x, y, t = 0) = 1 − x1(x, y, t = 0), (11.3)

where the function r returns a random number which is uniformly distributed in the
interval [0, 10−5], and the same seed is used for the pseudo-random generator in each
simulation. We set t0 = 10−6 to avoid strong gradients. The initial total pressure is
computed from Darcy’s law for the mixture

p(x, y, t = 0) = pref + (1 − x)µ1(x) + µ2(x)
K

U, (11.4)

with pref = 1 lu, and the distribution functions are initialized at their equilibrium values
plus the first order deviation from Eq. (2.91). A sketch of the numerical configuration
is displayed in Fig. 11.2.

Figure 11.2 – Sketch of the initial configuration and boundary conditions.

The viscous fingering instability is of course three-dimensional. However, according
to Homsy and Zimmerman [76], the non-linear mechanisms found in two-dimensional per-
sist in three dimensions and for long times the evolution of the fingers remains unchanged
from two dimensions (see also Ref. [77]). This suggests that two-dimensional simulations
are sufficient to capture much of the essential physical features of viscous fingering. We
also make a few additional assumptions. The porous medium is assumed to be isotropic
and the permeability is given by a scalar value. Viscous fingering in anisotropic media
is studied by means of a linear stability analysis for instance in Ref. [92]. The flow is
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more stabilized when the ratio of longitudinal to transverse anisotropic permeability is
increased. Similarly, we only consider molecular diffusion and do not take into account
the (anisotropic) dispersion caused in the flow at the pore scale since a general Taylor
dispersion model is not known. One can note that the previous authors find from the
linear stability analysis that the flow is more stable when the ratio of longitudinal to
transverse anisotropic dispersion is decreased. With these assumptions, we will be able
to compare our results with the classical literature.

A fine spatial discretization is required in order to resolve accurately all the length
scales of the instability, especially at high Péclet numbers. Preliminary simulations are
performed to find the appropriate grid spacing. Three square grids are considered with
different resolutions corresponding to ny = 1000, 2000, 4000 where Lref is kept constant.
The initial random perturbation is based on the grid where ny = 1000 and interpolations
are used for higher resolutions. Otherwise stated, we set

R = 3 (µ0,2 ≈ 20µ0,1), Pe = 5000, Da = 6.25 × 10−8, (11.5)

Re0,1 = ULrefρref

µ0,1
= 10, Ma = U

cs
=

√
3 × 10−3. (11.6)

With this specific value of Mach number, the inlet velocity is equal to 10−3 lu. This
corresponds to a low Reynolds flow in the Darcy regime at moderate Péclet number and
viscosity ratio. We recall that two different system of units are defined. On one hand
there is the lattice unit system where the time and space step are equal to one, and
on the other hand the physical system. Nonetheless, all the dimensionless numbers are
equal for either system of units.

For each resolution at different times, we carry out a fast Fourier transform (FFT) of
the fingers. In particular, we take a slice of the domain where the mean molar fraction
along the transverse direction is included in the interval [0.11, 0.89]. Afterwards, we
average along the longitudinal direction and apply a FFT to obtain the spectrum of the
interface deformation according to the y-axis spatial frequency as plotted in Fig.11.3.
Results for different resolutions are compared at the same non-dimensional time

t∗ = t

tref
= tU

Lref
. (11.7)

For short times, the lowest resolution corresponding to ny = 1000 is not able to
resolve the high frequencies of the instability. As the time progresses, larger structures
appear and are captured by three resolutions, but for ny = 1000 the amplitude of the
fingers is slightly over-predicted. Resolutions corresponding to ny = 2000 and ny =
4000 give equivalent results suggested that the main length scales of the instability are
sufficiently well resolved. Nonetheless, we point out that global quantities such as the
mean molar fraction or the mixing length are less sensitive to the resolution and can
be adequately captured even with a very coarse grid. Theses results are in agreement
with the linear stability analysis of a steep initial profile made in Ref. [74]. At initial
time t = 0, an analytical dispersion curve can be obtained and the cutoff wave number
is found equal to RPe/4 = 3750 corresponding to a wave length of 0.0016. With a
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Figure 11.3 – Power spectral density at different times t∗ for different resolutions equiv-
alent to blue, ny = 4000; orange, ny = 2000; green, ny = 1000. G = x̂x̂† where x̂† is the
conjugate of the Fourier coefficients x̂. G is normalized by its variance: σ(G).

resolution of 0.001, the grid ny = 1000 is inadequate for the present Péclet number.
We will use mainly two resolutions corresponding to ny = 4000 in order to accurately
capture all the small scales at early times and a lower resolution equivalent to ny = 2000
for simulations dedicated to intermediate times so as to reduce the computational cost.
Indeed, since the instability is convected at the injected velocity, a longer domain is
needed to observed the development of the instability. Unfortunately, a formulation of
the lattice Boltzmann scheme in the reference frame moving with the velocity of the
injected fluid is not trivial and requires the use of rectangular lattices which are beyond
the scope of this work (see for instance Refs. [93, 94, 95]).

The study will be divided into two parts: early times and intermediate times. For
early times, we will compare our results with the literature where the concentration goes
down to zero. With the present model this is not possible since a tangible amount of
species has to be modeled. The molar fractions of the invading mixture are therefore set
to x1 = 0.999, x2 = 0.001 and swap for the displaced mixture. For intermediate times,
molar fractions 0.9 and 0.1 are sufficient to obtain the global behavior of the instability
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with a coarse grid.

11.2.2 Early times

At early times, the interface between the two mixtures spreads because of diffusion
and start to deform. At the very beginning, the flow is linearly unstable and perturba-
tions grow exponentially. The onset of fingers is explored by many authors using linear
stability analysis [69, 73, 74, 75, 70, 92]. The Darcy’s equation, the continuity equa-
tion, and the transport equation for the concentration are linearized and a dispersion
equation is solved so as to compute the growth rate of the perturbation. An analytical
solution is only known for the initial time and numerical methods have then to be em-
ployed. Linear stability analysis can also be directly performed in the lattice Boltzmann
framework (see. [96, 97]) however this approach is still in its infancy and is only applied
to simple single fluid flows. In this study we carry out non-linear simulations with the
aforementioned lattice Boltzmann model and compute the growth rate of the perturba-
tion a posteriori. This present approach has the advantage to avoid the development of
another tool and is valid for the whole instability including the non-linear stage. The
molar fractions can be decomposed into a base state x0

m and a perturbative component
x′

m,
xm(x, t) = x0

m(x, t) + x′
m(x, t). (11.8)

We assume that the perturbation can be expressed in the form of

x′
m(x, t) = x′

m(x) exp (σt) (11.9)

where σ is the growth rate of the perturbation. The dispersion curves are obtained by
applying a fast Fourier transform (FFT):

x′
m(x, t) = x0

m(x, t) − xm(x, t) (11.10)
x̂(x, k, t) = FFTy

(
x′

m(x, t)
)

(11.11)

a(k, t) = ||x̂(x, k, t)||2 =
√∫

x̂ · x̂†dx (11.12)

σ(k, t) = d ln (a(k, t))
dt

(11.13)

where x̂† is the complex conjugate of x̂, k is the wave number and we choose a time
step sufficiently small such as the growth rate can be considered as constant between
two derivation steps. a represents a measure in the Fourier space of the amplification of
the perturbed molar fraction. Only relevant growth rates are of interest, consequently
the growth rate of perturbations whose amplitude is less than 10−4 × max∀k(a(k, t)) is
filtered out. The perturbative components are computed by subtracting the components
from the non-linear perturbed solution to the components from the base state. This base
state is obtained by simulating the exact same conditions with no initial perturbation.
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No finger emerges in this case. Therefore two simulations with and without initial
perturbations are performed for each case studied.

First, we compare in Fig. 11.4 the results obtained from the gray lattice Boltzmann
and the Brinkman force models. Both approaches lead to equivalent growth rates. Thus,
at early times, the linearly development of the instability is well captured by the two
models. The growth rate decreases in time. The most dangerous wave number (kmax)
corresponding to the largest growth rate as well as the threshold (first wave number at
which σ = 0) and the cutoff (kc) (last wave number at which σ = 0) wave numbers
are reduced as the instability progresses resulting in widening fingers. The rest of the
simulations are performed with the Brinkman force model otherwise stated.
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Figure 11.4 – Dispersion curve for Pe = 2000 at various times from t∗ = 0.005 to t∗ = 0.1
with a times step ∆t∗ = 0.05. Lines and symbols stand for the Brinkman force model
and gray lattice Boltzmann. The color gradient of the lines denotes the time evolution.
(nx = 4000, ny = 4000).

In figure 11.5, the growth rate for different Péclet numbers at t∗ = 0.01 and t∗ = 0.1
is compared with the results from Ref. [74] where a linear stability analysis using a
self-similar quasi-steady-state-approximation is employed. A close overall agreement
is found for the different Péclet numbers. The discrepancies between linear stability
analysis and non-linear simulations are more pronounced at early times (t∗ = 0.001) as
already pointed out by refs. [73, 75]. The previous authors mention that, for short times,
inverse value problem and non-modal analysis are closer to non-linear simulations results.
As expected, excellent agreement is found at latter times (t∗ = 0.1) for Pe < 5000. For
Pe = 5000, non-linear interactions occur and the perturbation can no longer be described
by Eq. (11.9). Note that the linear description of instability could be still valid at the
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time t∗ = 0.1 if the flow is initially perturbed by only one wave number instead of
being excited on the whole spectrum. This more accurate strategy required to run
a simulation (two precisely for the perturbed and non-perturbed cases) for each wave
number of interest. This becomes rapidly unpractical if one wants to study the time
evolution of the instability as the relevant wave numbers where σ > 0 depends on time
and shift toward smaller wave numbers as time progresses.
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Figure 11.5 – Dispersion curves for R = 3 at t∗ = 0.01, 0.1 with different Péclet values.
Lines stand for the simulation and the symbols are data obtained by a linear stability
analysis from Ref. [74]. (nx = 4000, ny = 4000).

Diffusion acts as a stabilization factor by smoothing perturbations and heading to
an homogeneous mixture. Hence, as shown in Fig. 11.5, the instability is more dominant
at higher Péclet numbers. A lower fluid dispersion expands the range of unstable wave
numbers and increases the growth rate. The cutoff wave number increases with the Péclet
number whereas it has a very limited influence on the threshold wave number. This can
be easily seen on neutral stability curves (contours of σ = 0) plotted in Fig. 11.6. The
differences from the bell-shaped curve is due to the non-linear interactions. The area
above the neutral curve defines the region of instability. As described earlier, this region
increases with the Péclet number. The minimum (t∗crit, kcrit) on the neutral curves is the
limit below the perturbation is stable. It is interesting to note that we can also define
a critical Péclet number Pecrit and its value depends on the time. For Pe = 500 and
Pe = 1000, the flow is initially stable then becomes unstable at latter times whereas
for Pe = 5000 at t∗ = 0 the flow seems already unstable. For very short times, the
growth of the interface caused by large diffusion (low Péclet numbers) surpasses the
exponential growth of the perturbation. This also implies that, as expected, there is
a minimal critical Péclet number such as the flow is always stable when the diffusion
is large enough. Nonetheless, more simulations with smaller time steps and various
Péclet numbers should be performed to quantity this phenomenon and dismiss numerical
transient artifacts especially for large Péclet numbers. The time variations of the most
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dangerous wave number and respectively the cutoff wave number follows the same trend.
In Appendix D.1, the most dangerous and the cutoff wave numbers are plotted in a
logarithm scale according to the time and straight lines are obtained for t∗ > 0.01. For
a log viscosity ratio R = 3, the most dangerous wave number decreases rapidly then
slower as kmax ∼ t∗−0.26 compared to the cutoff wave number where kc ∼ t∗−0.36. We
can also compute approximately the change with the Péclet number, kc ∼ Pe0.59 and
kmax ∼ Pe0.70. As seen in fig. 11.6, a higher Péclet number expands considerably the
range of unstable wave numbers. High Péclet number flows are difficult to simulate
because of limitations required on time and space resolutions if one wants to resolve all
the length scales of the instability.
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Figure 11.6 – Neutral stability curves (σ = 0) for different Péclet numbers at R = 3
according to the time and the wave number. Dashed lines represent the most dangerous
wave number kmax. For t∗ > 0.035 and Pe = 5000, non-linear interactions take place
and the most dangerous wave number is not plotted. (nx = 4000, ny = 4000).

11.2.3 Intermediate times

Figure 11.7 shows a sequence of snapshots of a simulation performed with the Brinkman
force model at R = 3, Pe = 2000. At early times (t∗ ≤ 0.1), the sharp interface diffuses
and begins to deform. This stage is called the linearly unstable regime and linear stabil-
ity analysis tools are suitable to describe the instability as shown previously. Many thin
fingers develop and strong linear interactions take place as seen at t∗ = 0.46, 1.07, 3.05.
These can be identified as spreading, shielding, fading, and coalescence. By spreading,
we refer to the process whereby one finger is slightly ahead of others. The finger grows
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very quick and the gradient steepens between the finger and the surrounding more vis-
cous fluid. The finger may then widens at the tip and shields the growth of the smaller
neighboring fingers. Few thin fingers fade and diffuse in the ambient fluid resulting in
a region of intermediate viscosity. Coalescence phenomenon describes the merging of
two or more fingers together. This mechanism is fundamental since it is the merging
of smaller fingers in the nearby dominant finger that keeps suppling the latter with less
viscous fluid as we can see from the third snapshot of Fig. 11.7. The present dynamics
of the simulation is rich displaying all major mechanisms. For higher Péclet numbers,
the flow exhibits also more complex behaviors such as tip splitting, when a finger splits
into two at the tip and side branching when a finger splits at its side [69, 70]. These
fascinating interaction mechanisms lead globally to a coarsening of the fingers in the
transverse direction and a growth of the fingers in the longitudinal direction. The num-
ber of fingers and the intensity of these interactions increase with the Péclet number and
the log-viscosity ratio. Finally for t∗ > 3, the few remaining fingers grows at constant
rate. At very late time (not observed here, see the discussion in ref.[70]), the fingers
should mix with the ambient fluid and are convected at a given speed close to the in-
jected velocity. The length of the fingers should stay roughly the same since the interface
is diffuse enough to smooth out the viscosity and concentration gradients.

Figure 11.7 – Instability development for R = 3, Pe = 2000 at t∗ ≈
0.15, 0.46, 1.07, 3.05, 6.10. The whole domain (nx = 8192, ny = 512) is plotted.
The color-map (black-red-yellow-white) represents the variation of the molar fraction
from x1 = 0.9 to x1 = 0.1. Same scaling is used for both x and y-axes.

A convenient way to describe the global dynamic is by observing the evolution of the
mixing length, which is defined here as the distance where the transverse molar fraction
is included between 0.89 and 0.11. In Figure 11.8a, the mixing length is represented in
logarithmic scale according to t∗ for various Péclet numbers at R = 3. Two different
regimes are clearly visible. In the first regime, the diffusion dominates the growth of
the mixing length, which is proportional to

√
t∗ as in the case of no viscosity contrast

(R = 0, pure diffusion). Afterward, a transition regime may occurs and depends on
the Péclet number. The second regime can be seen in Fig. 11.8b. The mixing length
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is represented in linear scale to better highlight the longtime behavior and the linear
evolution of the fingers. The growth of the mixing length is linear in time suggesting
that the advection now dominates. It is interesting to note that both regimes exist
even when the initial molar fractions are not perturbed and no finger emerges. In this
latter case, the development of the mixing length is reduced in the second regime. For
instance in Fig. 11.8b, the approximate slope is 1 with no finger, whereas the slope is
around 2.2 with fingering. Compared to the pure diffusive case, the mixing length is
heavily affected by the viscous fingering instability. The two regimes are not specific
to the viscous fingering but rather depends on the governing mechanism (diffusion or
advection dominated). As the instability is more intense, the transition time decreases
and the duration of this transition increases. During this transition, strong non-linear
interactions occur as it can be seen in Fig. 11.7 at t∗ ≈ 0.46, 1.07, 3.05.

We would like to make a few remarks concerning the mixing length. This quantity
is not appropriate if one wants to determine the time when fingers become visually
perceptible. Actually, when the perturbations start to interfere non-linearly such as
at t ≈ 0.1 for Pe = 2000, the deformation of the interface is imperceptible. Fingers
become noticeable later during the diffusion dominated regime. A better measurement
of the visible onset of the fingers is given by a sudden growth of the interfacial length
I(t) =

∫∫
[(∂x1/∂x)2+(∂x1/∂y)2]

1
2dxdy. In Appendix D.2, the contour map of the molar

fraction x1 at t∗ = 0.9 is plotted for different Péclet numbers.
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Figure 11.8 – Temporal evolution of the mixing length at R = 3.

Finally, Fig. 11.8b shows no significant difference between the gray lattice Boltzmann
and the Brinkman force model. The small deviation for t∗ > 6.5 is probably due to the
influence of the boundary condition close to the location of the fingers. Same dynamic
results independently on how the porous media is modeled. Both gray lattice Boltzmann
and the Brinkman force model adequately reproduce the viscous fingering instability
although based on a fundamentally different formulation.
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11.3 Viscous fingering caused by reverse diffusion

In the previous results, the relation between the viscosity and the concentration is
given by Eq. (6.40) and not the exponential dependence usually found in the literature
(see e.g. [69, 73, 74]). However, the calculated growth rates are in good agreement
with Ref. [74] as shown in Fig. 11.5. This could be expected as for binary mixture Fick
or Maxwell approach are equivalent and for species having the same molecular mass,
the mixture viscosity µ1 + µ2 has a similar shape as µ0,2e

−Rx1 . For a binary mixture
with species having different molecular masses, the variation of the mixture viscosity
according to the mixture composition is more complex and can be non-monotonic: the
maximum of the mixture viscosity can take place at intermediate molar fractions. The
behavior of the instability is much more complex. A linear stability analysis shows that
all non-monotonic viscosity profiles, irrespective of their end-point viscosities, become
unstable [98]. This means that viscous fingering effectively occurs provided only that
the Péclet number is sufficiently high. Significant differences in the (non-linear) develop-
ment of fingers between monotonic and non-monotonic viscosity profiles are explained in
Ref. [99]. Due to the stable barrier in the non-monotonic profile, fingers spread further in
displacing fluid than in the displaced fluid. More complicated configurations can happen
in the case of reacting mixture A + B → C depending the properties of the reactants
and the product. The viscosity profile can be monotonic or non-monotonic and changes
in time according to the diffusion and reaction rates. Some phenomena are identical to
those observed in the viscous fingering of a finite slice [100] because of the finite-size of
the chemical reaction zone. De Wit and other authors study numerically and experi-
mentally the influence of the reaction on the viscous fingering instability, see Refs. [101,
102, 103, 104], to name a few. Nonetheless, they do not focus on the diffusion involving
by the reactants and the product of the chemical reaction. Most of the analyses assumed
generalized Fick formulation with the same or a constant Fick diffusion coefficient for
all species, which is incorrect as already mentioned in Sec. 3.2 (see e.g. Eq. 3.15).

As we saw the viscous fingering instability is governed by diffusion and viscosity.
Contrary to binary mixtures where each species diffuses at an equal rate (D12 = D21), in
ternary mixtures the components can diffuse at different rates (D12 ̸= D13 ̸= D22). Also,
multi-component effects such as reverse diffusion, osmotic diffusion and diffusion barrier
may take place and the overall diffusion dynamics become more complex. While in
binary mixtures, we have x1 = 1 −x2 and ∇x1 = −∇x2, these constraints on the molar
fractions in ternary mixtures are less strict: x1 +x2 +x3 = 1 and ∇x1 +∇x2 +∇x3 = 0.
In consequence, since the viscosity depends on the mixture composition, the viscosity
evolution could change significantly compared to the binary case. The passage from a
mixture composed of two species to a mixture composed of three species modify the
dynamics of the core ingredients of the viscous fingering instability. In this section, we
will focus on a particular flow configuration in order to highlight the non-negligible effect
of ternary mixtures. The case where viscous fingering instability is induced by reverse
diffusion as, to our knowledge, has not been investigated yet and is presented.

We consider three species having equal molecular masses in different quantities. The
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composition of the invading and displaced mixtures is given in Table 11.1. The molar
fractions of the first and second components follow a similar step-like pattern as in the
case of the binary mixture. Note that here the first species is less present than the
second species in the invading mixture and vice versa in the displaced mixture. The
third species is in equal amounts in both invading and displaced fluids. Before defining
additional physical parameters, we would like to present how this ternary mixture will
be visualized. Each species is associated with a Red-Green-Blue (RGB) color channel.
With this strategy, one is able to get the mixture composition from one single color-map
similarly to the case of a binary mixture.

Molar fractions Invading fluid Displaced fluid
x1 (R) 0.1 0.45
x2 (G) 0.45 0.1
x3 (B) 0.45 0.45

RGB color

Table 11.1 – Composition of the invading and displaced mixtures.

We set the diffusion coefficients such as the third species will be subject to reverse
diffusion. This can be estimated by means of the generalized Fick formulation in the
case of pure diffusion (Sec. 3.2):

J2 = −ctD22∇x2 − ctD23∇x3, (11.14)
J3 = −ctD32∇x2 − ctD33∇x3, (11.15)

and J1 = −J2 − J3. (11.16)

We want J3 < 0 and since ∇x3 = 0 and ∇x2 = (< 0, 0)T , we should have D32 < 0. We
recall the definition of the Fick diffusion coefficients from Eqs. (3.15) and (3.16):

D33 = D13 (x3D12 + (1 − x3)D23) /D̂, (11.17)
D32 = x3D12 (D13 − D23) /D̂, (11.18)

with D̂ = x1D23 + x2D13 + x3D23. (11.19)

Hence, we should set D23 > D13. We choose the following diffusion matrix

Dmn = LrefU

Pe

⎛⎜⎝ 0 1 0.1
1 0 1

0.1 1 0

⎞⎟⎠ , (11.20)

with Pe = 5000, U = 2 × 10−3lu, the Darcy number is unchanged Da = 6.25 × 10−8

and the porous medium is simulated using the Brinkman force strategy. Pure viscosities
are set based on Re0,1 = 10 and R12 = ln(µ0,1/µ0,2) = 0, R13 = ln(µ0,1/µ0,3) = 3. The
first and second components which vary on either side of the miscible interface have
the same pure viscosity whereas the pure viscosity of the third species present in equal
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Figure 11.9 – Snapshot of the viscous fingering induced by reverse diffusion at t∗ = 1.8.
The whole domain (nx = 4000, ny = 2000) is plotted using the same aspect ratio for
both x and y-axes. Each species is associated with a RGB channel. An enlargement is
provided and contour-plots for x1 = x2 = 0.275 and x3 = 0.45 are drawn.

amount in the domain is approximately twenty times lower. Compare to the binary case,
the boundary conditions are modified. We still use the non-equilibrium bounce-back,
which prescribes for each species either a pressure or a velocity at boundary nodes. For
a mixture composed of two species, we impose a velocity and small changes of partial
pressure, mixture composition, occur. In the case of three components, the variation
of the mixture composition at boundaries compared to the initial target fluid becomes
important so we choose to impose the pressure at both boundaries using Eq. (11.4)
adapted for three species. However, this introduces a decrease of the inlet velocity as
time progresses which means that the Péclet number loses some of its meaning.

Both invading and displaced mixtures have the same viscosity. If the diffusion coef-
ficients have all the same value, no fingers appear. In this specific case, this reduces to
a binary mixture as the first and second species are identical and, as expected, the flow
is stable when both invading and displaced fluid viscosities are equal. However if we
set D13 = 0.1D12 = 0.1D23, fingers develop as pictured in Fig. 11.9 although the initial
configuration is stable. Small fingers develop at latter times compared with the binary
case and their blue color suggests that they are mainly composed of the third species.
From the enlargement, one can also notice that the interface of the first (red) species is
also perturbed.

The fingering is actually caused by the reverse diffusion as inferred by Fig. 11.10.
At the beginning of the simulation, the third and less viscous component is uniformly
present. However, the third (blue) species starts to diffuse from the displaced to the
invading mixtures (osmotic diffusion) and keeps diffusing against its concentration gra-
dient (reverse diffusion) and the main flow. In consequence, at t∗ = 0.1 a local increase
of the concentration of the third species is clearly visible and is followed by a local de-
crease. This change of the mixture composition affects significantly the properties of the
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Figure 11.10 – Evolution at different times of the mean molar fraction over the transverse
direction, continuous lines, and the mean partial viscosity over the transverse direction,
dashed lines. Viscosities are normalized by the pure viscosity µ0,1. Red, first species;
green, second species; blue, third species. Orange stand for the mean mixture viscosity
over the transverse direction.

mixture and results locally in a decrease followed by an increase of the mixture viscosity
that will trigger the instability. The effective viscosity ratio is lower and makes the in-
stability less intense compared to the binary case. We recall that the mixture viscosity
is computed a posteriori whereas only partial viscosities are employed in the model. At
t∗ = 1.8 the mean transverse molar fraction of the third species fluctuates because of
the presence of fingers as show in Fig. 11.9.

From the enlargement of Fig. 11.9, one can observe the variation of the interface
between the invading and the displaced mixtures. If the blue-colored fingers highlights
the displacement of the third species because of the instability, the contour-plots show
also some variations of the interface for the first (red) species. In figure 11.11, the molar
fraction of each species is plotted. The right figure shows that some fingers are composed
of a very high concentration of the third species. Counter-fingers, which moves from the
right to the left, have a minimal molar fractions of x3 = 0.33. We underline that reverse
diffusion should still occur and tends to reinforce the fingers of medium concentration and
limits the development of counter-propagating fingers of low concentration. However,
the third species is not the only one to be subject to fingering. The interface of the
first species is also significantly deformed. The invading fluid penetrates primarily the
displaced fluid through the low viscosity fingers caused by the third species and avoids
the zone of high viscosity. In consequence, small fingers of low concentration of the
first species develop. One can notice that in contrary almost no fingering for the second
species appears. The interface seems symmetrically diffuse. This phenomenon can be
explained by means of the diffusion matrix Eq. (11.20). Since D13 < D12, the first species
diffuses predominantly in the second species compared to the third species that is why
small fingers of low concentration of the first species are visible in fingering caused by
the third species. Concerning the second component, we have D12 = D23 and the second
species diffuses in both species equitably.

We emphasize the importance of the ternary diffusion on the instability onset. Diffu-
sion governs the reverse fingering, its strength, and its life span until the diffusion barrier
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Figure 11.11 – Color-map of the molar fraction at t∗ = 1.8 for each species. Portion of
the domain (nx = 4000, ny = 2000).

point. Diffusion also controls the growth of the perturbations and stabilizes the flow as
in the binary case. In the present configuration, we deliberately showcase the significant
influence of reverse diffusion on a flow, which is initially stable. With the numbers of
possible different configurations of viscosities and diffusion coefficients, a complete para-
metric study is out of the scope of the present work. Nonetheless, we expect to see more
subtle or on the contrary dramatic changes due to the multi-component effects compared
to the viscous fingering of two species.
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Synthesis

This last part is dedicated to the simulation of the viscous fingering instability. The
interaction between the two (or three) miscible components are described by the afore-
mentioned miscible lattice Boltzmann model. The core ingredients of the instability are
related to the molecular diffusion and the viscosity, or more specifically inter-molecular
friction forces and partial viscosities in our model. Generally, the instability occurs
when a less viscous fluid displaces a more viscous fluid in a porous medium. Thus we
investigate two strategies to mimic the effect of the porous medium: the gray lattice
Boltzmann and Brinkman force models.

The viscous fingering is first studied in the case of a binary mixture. At early times
in the linear regime, the growth rate of the perturbation is computed for different Péclet
numbers. The growth rate, as well as the most dangerous and the cutoff numbers,
increase with the Péclet number. A good agreement is found with a linear stability
analysis where a quasi-steady-state-approximation is used. For intermediate times where
strong linear interactions take place, the development of the instability is described
globally through the mixing length. A high Péclet number leads to a more intense
instability. Two regimes are visible. The growth of the mixing length is first dominated
by diffusion and then by convection.

For both early and intermediate times investigated here, the gray lattice Boltzmann
and Brinkman force models lead to equivalent results. The comparison with the lit-
erature, quantitatively for early times and qualitatively for intermediate times agrees
well. This is very encouraging and gives much credence to the proposed lattice Boltz-
mann model. Indeed with a different approach, we recover accurately the physics of the
viscous fingering.

Finally, the behavior of the instability can dramatically change for a mixture of three
and more species compared to the binary case. For instance, viscous fingering could be
induced by reverse diffusion despite having a stable initial flow configuration.
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Conclusion

The first part of this thesis covers the basics of the lattice Boltzmann method. Start-
ing from the kinetic theory of gas and the Boltzmann equation, a discrete formulation is
proposed. A major tool to obtain the resulting macroscopic equations is the Chapman
and Enskog expansion procedure. The relaxation time is thus related to the viscous dis-
sipation. Independently, we introduce the Maxwell-Stefan approach to deal with pure
diffusion between species. This approach is more convenient and has a more rigorous
physical meaning for three and more species compared to the traditional Fick formu-
lation. Besides, we showcase some non-trivial diffusion effects that may occur during
the diffusion of three and more components such as osmotic diffusion, reverse diffusion,
and diffusion barrier. The fundamental contribution of this thesis is to combine these
ideas and propose a lattice Boltzmann model for miscible gases in the second part of
this thesis.

Different lattice Boltzmann models for multi-component flows already exist. Since
there is no unique and generally accepted BGK-like collision operator, each model de-
pends on the underlying kinetic theory chosen. However, for all models in the case of
binary mixtures, the variation of momentum induced by the collision has a similar form
as the inter-molecular friction force, i.e., a coefficient multiplied by the velocity differ-
ence of the two species. Any previous model requires to heavily modified the collision
step compared to the standard formulation so as to take into account the interactions
between components. This increase of complexity makes the algorithm more compu-
tationally expensive, and above all, it cannot be easily incorporated in existing LBM
codes. The collision being the cornerstone of the LBM, changing the collision means
usually rewrite the code entirely. In the proposed approach, the standard equilibrium is
employed combined with the inter-molecular friction force. Much less effort is therefore
needed to upgrade a single-fluid code to take into account diffusion between multiple
species. The viscous dissipation is related to the relaxation toward the equilibrium
state, and the molecular diffusion is associated with the inter-molecular diffusion force.
To calculate the transport coefficients, we make use of the kinetic theory of gases. In
addition to the (Maxwell-Stefan) diffusion coefficient, a partial viscosity is also defined
for each species. The problem of a fixed lattice speed of sound peculiar to the LBM is
circumvented by using an artificial force to modify the species equation of state according
to the molecular mass of the component. Excellent agreements are found against ana-
lytical, experimental, and numerical results. The complex diffusion dynamics of three
and more species is recovered, and the proposed model is capable of simulating osmotic
diffusion, reverse diffusion, and diffusion barrier phenomena. After being validated the
basic features of our model, we apply it to the viscous fingering instability and discuss
the results obtained in the last part of the thesis.

The simulation of the viscous fingering instability is achieved by considering two
species in different proportions in a porous medium: a less viscous mixture displacing a
more viscous mixture. The core ingredients of the instability are the diffusion and the
viscosity contrast between the components. Two strategies are investigated to mimic the
effects of the porous medium. The gray lattice Boltzmann and Brinkman force models,
although based on fundamentally different approaches, give in our case equivalent results.
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For early times, we focus on the growth rate of the perturbation and the influence of the
Péclet number. Comparisons with linear stability analyses agree well with the growth
rate calculated from the simulations. For intermediate times, the evolution of the mixing
length can be divided into two stages dominated first by diffusion then by convection,
as found in the literature. The whole physics of the viscous fingering is thus accurately
simulated. Nevertheless, multi-component diffusion effects are usually not taken into
account in the case of viscous fingering with three and more species. These effects
are non-negligible as we showcase an initial stable configuration that becomes unstable.
The reverse diffusion induces fingering whose impact depends on the diffusion between
species. After a successful application of the proposed model on the viscous fingering,
we are longing to tackle other problems involving multi-species flows.

Perspectives
The derivation of the proposed model is rigorously correct only for dilute gases. We

could, to a certain extent, apply it to liquids and general gases. The Maxwell-Stefan
equations are also valid for low and high densities, liquids, and polymers, so we can
assume that the inter-molecular friction force still adequately describe the molecular
diffusion in these cases. The partial pressure is not well defined for a non-ideal gas,
and its gradient should be substituted by the gradient of chemical potential. Transport
coefficients should be calculated using the Eyring (liquids) or Enskog (dense gases) ki-
netic theories [1]. More fundamental studies are required on the model. For instance,
the simulation of a mixing layer between three species could point out some interesting
mechanisms. A comparison with a recent and well-documented experiment would be
beneficial. A starting point could be to quantify the influence of the partial viscosities
based on the experiments of variable viscosity jet flows carried out in Ref. [105].

Concerning the viscous fingering simulations, different configurations with the ternary
mixture should be considered. A parametric study could be performed and draw out
the first results obtained here. Another possibility is to model the pores at a global level
instead of mimicking the porous medium. In spite of being computationally expensive,
this simulation would highlight the different scale of the porous medium in play. Fi-
nally, we could notice that the porous drag force has a similar form as the Boussinesq’s
approximation made in double-diffusive convection problems in oceans, and opens new
perspectives for the proposed model.

The following publications are related to this work (see also Appendix E):
— Lucien Vienne, et al. “Lattice Boltzmann method for miscible gases: A forcing-

term approach”. In: Physical Review E. [106]
— Lucien Vienne, et al. “Viscous fingering simulation by the lattice Boltzmann

method”. Under preparation.
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Appendix A

Hermite polynomials and
Gauss-Hermite quadrature

A.1 Hermite polynomials 1-dimensional space
Hermite polynomials are an orthogonal polynomials sequence defined by the weight

function
ω(x) = 1√

2π
e−x2/2, (A.1)

which is normalised so that
∫∞

−∞ ω(x)dx = 1. The expression of the weight function may
slightly vary in the literature and accordingly the definition of the Hermite polynomials
could be a little different. The n-th order of Hermite polynomials are constructed from
the Rodrigues’ formula

H(n)(x) = (−1)n 1
ω(x)

dn

dxn
ω(x), (A.2)

and the first few polynomials are

H(0)(x) = 1, (A.3)
H(1)(x) = x, (A.4)
H(2)(x) = x2 − 1, (A.5)
H(3)(x) = x3 − 3x. (A.6)

One can find the recursion formula

H(n+1)(x) = xH(n)(x) − d

dx
H(n)(x) = xH(n)(x) − nH(n−1)(x) (A.7)

One of the interesting properties of the Hermite polynomials is their orthogonality with
respect to the weight function ω(x)∫ ∞

−∞
ω(x)H(m)(x)H(n)(x)dx = n!δmn, (A.8)
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where δmn is the Kronecker symbol, i.e., δmn = 1 if m = n and 0 otherwise.
Any function f that is square integrable can be expanded in terms of Hermite poly-

nomials as
f(x) =

∞∑
n=0

a(n)H(n)(x). (A.9)

The Hermite expansion coefficient a(n) can computed by multiplying the previous equa-
tion Eq. (A.9) by ω(x)Hm(x) and integrating∫ ∞

−∞
ω(x)Hm(x)f(x)dx =

∞∑
n=0

a(n)
∫ ∞

−∞
ω(x)Hm(x)H(n)(x)dx = m! a(m) (A.10)

a(m) =
∫ ∞

−∞

1
m!ω(x)Hm(x)f(x)dx (A.11)

where the orthogonal property of the Hermite polynomials has been used to simplify the
summation. Instead of using Eqs. (A.9) and (A.11), the following alternative expression
is preferred

f(x) = ω(x)
∞∑

n=0

1
n!a

(n)H(n)(x), (A.12)

where the expansion coefficient a(n) is given by

a(n) =
∫ ∞

−∞
Hm(x)f(x)dx. (A.13)

This (Gram-Charlier) series converges only if f approach zero faster than e−x2/4. In
practice, this assumption is correct for gases that are not too far from the equilibrium
state (at the equilibrium: f ∼ e−x2/2) [12].

A.2 Hermite polynomials in d-dimensional space
All of these previous expressions can be generalized to a d-dimensional space as shown

by Grad [107].

H
(n)
i (x) = (−1)n 1

ω(x)∇n
i ω(x), ω(x) = 1

(2π)d/2 e
−x2/2 (A.14)

where x2 = x · x and the operator ∇n
i is equivalent to

∇n
i = ∇n

(i1,··· ,in) = ∂

∂xi1
· · · ∂

∂xin

. (A.15)

With this definition, the first few polynomials are

H(0)(x) = 1, (A.16)

H
(1)
i (x) = xi, (A.17)

H
(2)
ij (x) = xixj − δij , (A.18)

H
(3)
ijk(x) = xixjxk − xiδjk − xjδki − xkδij . (A.19)
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The orthogonal relation becomes∫
ω(x)H(m)

i (x)H(n)
j (x)dx =

d∏
p=1

np! δmnδ
n
ij , (A.20)

where δn
ij is the generalization of the Kronecker symbol, which is equal to 1 if (i1, · · · , in)

is a permutation of (j1, · · · , jn) and 0 otherwise. For i = (i1, i2, i3, i1), n1 = 2, n2 = 1,
and n3 = 1.

Finally, a function f that is square integral can be expanded as

f(x) = ω(x)
∞∑

n=0

1
n!a

(n)
i H

(n)
i (x), with (A.21)

a
(n)
i =

∫
f(x)H(n)

i (x)dx (A.22)

We point out that both a
(n)
i and H

(n)
i are tensors of rank n and this leads to this

equivalent formulation

f(x) = ω(x)

⎛⎝a(0)H(0) +
d∑

i=1
a

(1)
i H

(1)
i +

d∑
i,j=1

a
(2)
ij H

(2)
ij +

d∑
i,j,k=1

a
(3)
ijkH

(3)
ijk + · · ·

⎞⎠ (A.23)

A.3 Gauss-Hermite quadrature
A Gaussian quadrature approximates the following integral with only q points,∫ b

a
ω(x)f(x)dx =

q∑
α=0

ωαf(xα), (A.24)

where ω(x) is an arbitrary weight function, ωα are the weight of the quadrature, and xα

are the abscissas of the quadrature, which are the roots of the orthogonal polynomials
for the scalar product

∫ b
a ω(x)g(x)h(x)dx. This quadrature is exact for any polynomials

f of degree 2q − 1 or less.
In particular if we choose the weight function as Eq. (A.1), the Gauss-Hermite

quadrature is obtained. We recall that the expression of the weight function may slightly
vary in the literature, and so as the weights and the abscissas. The abscissas are then
the roots of the Hermite polynomials and the corresponding weights are [5]

ωα = q![
qH(q−1)(xα)

]2 . (A.25)

Using Eqs. (A.3-A.6), the Gauss-Hermite quadrature up to q = 3 is constructed as shown
in Table A.1.

The Gauss-Hermite quadrature can be generalized into a d-dimensional space.∫
ω(x)f(x)dx =

qd∑
α=0

ωαf(xα) (A.26)
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Number of abscissas Polynomial degree Abscissas Weight
q 2q − 1 xα ωα

1 1 0 1
2 3 −1, 1 1/2, 1/2
3 5 −

√
3, 0,

√
3 1/6, 2/3, 1/6

Table A.1 – Gauss-Hermite quadrature up to q = 3, which is exact for polynomials of
degree 5 or less.

For instance, if we want to approximate a fifth-degree polynomial, the one-dimensional
quadrature for q = 3 is used repeatedly. For a two-dimensional space, we find a nine
points quadrature presented in Table A.2.

α 1 2 − 5 6 − 9

Abscissas (0, 0) (±
√

3, 0) (±
√

3,±
√

3)(0,±
√

3)
Weight 4/9 1/9 1/36

Table A.2 – Gauss-Hermite quadrature for a fifth-degree polynomial in two-dimensional
space.

Similarly for a 3-dimensional space, the quadrature is obtained by a production of the
1-dimensional formula (see Table A.3). From the 27 points quadrature, one can derive

α 1 2 − 7 8 − 19 20 − 27

Abscissas (0, 0, 0)
(±

√
3, 0, 0) (±

√
3,±

√
3, 0)

(±
√

3,±
√

3,±
√

3)(0,±
√

3, 0) (±
√

3, 0,±
√

3)
(0, 0,±

√
3) (0,±

√
3,±

√
3)

Weight 8/27 2/27 1/54 1/216

Table A.3 – Gauss-Hermite quadrature for a fifth-degree polynomial in three-dimensional
space.

equivalent quadratures with less points, 15 (Table A.4) and 19 (Table A.4) abscissas [5].
Other and high order quadratures are possible [5] but only a few, like those presented

here, coincide with normal Cartesian coordinates. The use of a quadrature compatible
with a uniform Cartesian grid results in a perfect streaming step.
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α 1 2 − 7 8 − 15

Abscissas (0, 0, 0)
(±

√
3, 0, 0)

(±
√

3,±
√

3,±
√

3)(0,±
√

3, 0)
(0, 0,±

√
3)

Weight 2/9 1/9 1/72

Table A.4 – Alternative Gauss-Hermite quadrature with 15 abscissas for a fifth-degree
polynomial in three-dimensional space.

α 1 2 − 7 8 − 19

Abscissas (0, 0, 0)
(±

√
3, 0, 0) (±

√
3,±

√
3, 0)

(0,±
√

3, 0) (±
√

3, 0,±
√

3)
(0, 0,±

√
3) (0,±

√
3,±

√
3)

Weight 1/3 1/18 1/36

Table A.5 – Alternative Gauss-Hermite quadrature with 19 abscissas for a fifth-degree
polynomial in three-dimensional space.
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Appendix B

Programming considerations

B.1 Code

The code employs in the present work is written from scratch using a combination of
FORTRAN and Python. All the computations are done in FORTRAN routines which
are wrapped in Python through the F2PY wrapper. Python is only used for the pre-
processing, the scheduler and the data tree. Therefore, we join the advantages of both
languages: the fast execution of FORTRAN and the ease of use and the plethora of
libraries of Python.

The lattice Boltzmann algorithm involves only a few numerical operations and is
mainly limited by the memory access speed. Most of the time spent in LBM is due to
the memory transfer and not computations. Different possibilities exist to store data
from slow to high-speed access: disk, memory, caches, and registers. Usually the pro-
gram stores variables in the main memory and when computations are required, data are
transferred from the memory to the registers. If the same data are reused again, a copy
may be made and store in the caches to speed-up further accesses. Most optimizations
of memory-bound programs are performed by reusing as much as possible the caches.
Indeed when a data is copied to the caches, nearby data are also copied too. Memory
layout has thus a significant impact on the performance. The lattice Boltzmann method
is primarily composed of two steps: collision and streaming. Unfortunately, the optimal
memory layout is different for both of these steps. In collision, the distribution functions
from all the directions α at a single node x are needed (f [α,x] is optimal in FORTRAN
column-major order) whereas the streaming steps requires all the neighboring node for
each direction (f [x, α] is optimal in FORTRAN column-major order). A wrong mem-
ory layout could be catastrophic and results in an algorithm at least two times slower.
No general rule exists and the most efficient memory layout depends strongly on the
computing architecture (caches sizes and other optimizations), and the domain size sim-
ulated and the number of velocities (9 in 2D, 15, 19, or 27 in 3D). We recommend to
test and adapt the memory layout specifically to the target machine.

We would like also to provide two recommendations. First, when using a MRT
collision operator, one should carry out the matrix-vector multiplication by hand and
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code the result. Second, when performing the streaming step, do not use two arrays
for the post-collision and post-steaming distribution functions. Only one array for the
distribution functions is needed. During the streaming, the array has simply to be
browsed in the standard way or in the reverse order depending on the memory layout
and velocities to update and avoid to overwrite the relevant distribution functions.

B.2 HPC
High-Performance Computing denotes strategies to improve and achieve a high level

of performance. As we mentioned before the limiting factor in the Lattice Boltzmann
method is data transfers. One possible way to improve the code is to use multiple
computational units, from hundreds to thousands, for the same problem and thereby
data transfers are carried out in parallel. In the current code (D2Q9 and D3D19), this
is accomplished by the means of the Message Passing Interface (MPI) paradigm. The
problem domain is divided into multiple sub-domains where calculations are performed
independently and synchronization is realized by sending-receiving messages. In practice,
the computational domain is expanded with a layer of ghost nodes, which store a copy
of the neighboring node from the adjacent MPI process and are updated just before
the non-local streaming step. Reading and writing data in a unique file is also done
in parallel using MPI dedicated functions and data-types. Other strategies have been
investigated and tested to improve the code performance such as vectorizations, openMP,
openACC (GPU), and cache blocking. Nonetheless, code optimization although being
important is very time-consuming and we decide to stay with a standard MPI domain
decomposition. We insist again that the memory layout impact is significant and may
change compared to the standard sequential case, especially for GPU architectures.

The author acknowledges the "Institut du Développement et des Ressources en In-
formatique Scientifique" (IDRIS) for their advanced training courses regarding MPI,
vectorization, openMP, and openACC.
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Appendix C

Kinetic theory for the calculation
of transport coefficients

C.1 Omega-integrals
We specify the expression of the Ω-integrals. We recall that the interactions of a

similar pair of molecules can be approximated by the Lennard-Jones potential.

φ(r) = 4ϵ
[(

σ

r

)12
−
(
σ

r

)6
]
, (C.1)

where r is the distance between the molecules, σ the collision diameter, and ϵ the depth
of the potential well. For a dissimilar (m,n) pair of molecules , we use the following
standard mixing rules:

σmn = (σm + σn)/2, (C.2)
ϵmn =

√
ϵmϵn, (C.3)

1
ψmn

= 1
Mm

+ 1
Mn

. (C.4)

Unlike the rigid sphere model, the Lennard-Jones potential is a physically realistic
potential, and the Ω-integrals can not be calculated analytically. However, we compute
the Ω-integrals for the rigid sphere and introduce the Ω⋆ ratio, which embodies the
deviation of the Ω-integrals between the Lennard-Jones and rigid sphere potentials.

Ω⋆(i,j)
mn = Ω(i,j)

mn /Ωrs(i,j)
mn (C.5)

with

Ωrs(i,j)
mn =

√
kBT

2πψmn

(j + 1)!
2

[
1 − 1

2
1 + (−1)i

1 + i

]
π(σmn)2. (C.6)

Ω⋆(i,j)
mn depends only on T ⋆ = TkB/ϵmn and its value is obtained from a fitted curve

computed from a numerical integration [59, 108]. For more details about the potentials,
we invite the reader to read the Chapter 8 of Ref. [1].
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Despite the derivation is rigorously correct only for dilute gases, we could to a certain
extent, apply these results to liquids and dense gases by means of the Eyring and Enskog
theories, respectively.

C.2 Wilke’s law
The partial viscosities are obtained by solving the linear system Eq. (6.37). This

approach is computationally expensive since this system has to be solved for each time
step on each grid point. In this section, we propose to derive a simpler expression for
partial viscosities. We will combine some assumptions made in Ref. [1] ( §8.2.iii) and
additional approximations suggested in Ref. [66]. Equations (6.38) and (6.39) can be
written as

Pmm = 1
µ0,m

+
N∑

n̸=m

1
kBT

xn

xm

32
3

MmMn

(Mm + Mn)2 Ω(1,1)
mn ×

(
1 + 3

5
Mn

Mm
A∗

mn

)
(C.7)

and for n ̸= m,

Pmn = −32
3

1
kBT

MmMn

(Mm + Mn)2 Ω(1,1)
mn

(
1 − 3

5A
∗
mn

)
(C.8)

where A∗
mn = Ω∗(2,2)/Ω∗(1,1) and µ0,m is the pure viscosity of species m

µ0,m = 5kBT/(8Ω(2,2)
mm ). (C.9)

In general, the off-diagonal terms are small in comparison with the diagonal elements. If
A∗

m,n = 5/3 ∀(m,n), the off-diagonal terms vanish exactly. This assumption is proposed
in Ref. [1] ( §8.2.iii). When this assumption is made, the diagonal elements become

Pmm = 1
µ0,m

+
N∑

n̸=m

1
kBT

xn

xm

32
3

Mn

(Mm + Mn)Ω(1,1)
mn . (C.10)

and for n ̸= m,
Pmn = 0 (C.11)

Using Eq. (6.43), we rewrite Eq. (C.10) as

Pmm = 1
µ0,m

+
N∑

n ̸=m

xn

xm

2kBT

pMmDmn
. (C.12)

This yield to our first approximation of the partial viscosity according to the diffusion
coefficients

µm =

⎡⎣ 1
µ0,m

+ 2RT
pxmMm

N∑
n ̸=m

xn

Dmn

⎤⎦−1

, (C.13)
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by definition, we have Mm = MmNa where Na is the Avogadro number and Mm is
the molar mass of species m and the universal gas constant R = kBNa. The numerical
constant 2 is often replaced by the empirical value 1.385 [109].

In the next paragraph, we make further assumptions result in an approximation of
the partial viscosity in terms of pure viscosities. From Eq. (C.5) and Eq. (C.6), we write

Ω(1,1)
mn = Ω∗(1,1)

mn ×

√
kBTπ

2
(Mm + Mn)

MmMn

1
4 [σm + σn]2 . (C.14)

For collisions between particles of the same species, we can invert Eq. (C.6),

σm = σmm =
[
Ωrs(1,1)

mm ×
√

Mm

kBTπ

] 1
2

(C.15)

but the expression of Ωrs(1,1)
mm can be computed from the pure viscosity

Ωrs(1,1)
mm = Ω(2,2)

mm

2A∗
mmΩ∗(1,1)

mm

= 3
16kBT

1
Ω∗(1,1)

mm µ0,m

. (C.16)

Thus by combining Eqs. (C.15) and (C.16) into Eq. (C.14), we get

Ω(1,1)
mn = Ω∗(1,1)

mn × 3
64

√
2
kBT

√
Mm + Mn

MmMn

×
[(

Ω∗(1,1)
mm µ0,m

)− 1
2 (Mm)

1
4 +

(
Ω∗(1,1)

nn µ0,n

)− 1
2 (Mn)

1
4

]2
.

(C.17)

Let also assume as suggested in Ref. [66]

Ω∗(1,1)
mn

Ω∗(1,1)
mm

≈ 1 and Ω∗(1,1)
mn

Ω∗(1,1)
nn

≈ 1. (C.18)

These previous expressions do not necessary need to be viewed as equal. Therefore, the
error caused by both assumptions may fortuitously cancel in Eq. (C.17). If we factorize,
Ω(1,1)

mn becomes

Ω(1,1)
mn = 3

64
√

2
kBT

√
Mm + Mn

Mn
× 1
µ0,m

⎡⎣1 +
(
µ0,m

µ0,n

) 1
2 (Mn

Mm

) 1
4

⎤⎦2

. (C.19)

Finally the diagonal elements Pmm Eq. (C.10) can be computed as

Pmm = 1
µ0,m

+
N∑

n̸=m

1
2
√

2
xn

xm

( Mn

Mm + Mn

) 1
2

× 1
µ0,m

⎡⎣1 +
(
µ0,m

µ0,n

) 1
2 (Mn

Mm

) 1
4

⎤⎦2

.

(C.20)
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The partial viscosities are then equal to

µm = µ0,m

1 +
∑N

n̸=m
xn
xm

Φmn

= xmµ0,m∑N
n xnΦmn

(C.21)

with

Φmn = 1
2
√

2

(
1 + Mm

Mn

)− 1
2

⎡⎣1 +
(
µ0,m

µ0,n

) 1
2 (Mn

Mm

) 1
4

⎤⎦2

. (C.22)

This formulation of the partial viscosities is much simpler than solving the linear system
Eq. (6.37) since the former only involves the molar fractions, and the pure viscosity and
the molar mass of each species. If one defines the mixture viscosity as

µmixture =
N∑
m

µm, (C.23)

Wilke’s law for the viscosity of a gas mixture is then recovered [66]. The summation
of partial viscosities over all species results in Wilke’s law. Therefore, Wilke’s law is
a consequence and not the origin of the derivation of the partial viscosities. Indeed
recovering Wilke’s law is consistent with the mixture momentum equation.

In figure C.1, viscosities of binary mixtures He-Ar and CO2-C3H8 calculated by
inversion of the matrix are plotted as well as the approximated solution. Concerning
the system inversion, the Ω-integrals are first computed for the rigid sphere model using
Table. C.1 and the deviation between the Lennard-Jones and rigid sphere potentials Ω∗

is obtained by a fitting curve from a numerical integration [59, 108].

m Ar He CO2 C3H8
Mm [g/mol] 39.948 4.0026 44.0095 44.0956
ϵm/kB [K] 124. 35.70 190. 206.
σm [nm] 0.3418 0.2576 0.3996 0.5240

Table C.1 – Kinetic constants from Ref. [1].

C.3 A more common formulation of the diffusion coeffi-
cient

The notation used here is based on Molecular theory of gases and liquids by Hirschfelder,
Curtiss, and Bird [1]. A more common formulation for the diffusion coefficient is given
by Hirschfelder-Bird-Spotz or in chapter 11 of Ref. [108] and can be obtained following
the definitions given in Appendix C.1.

Dmn = Dnm = 3(Mm + Mn)
16pMmMn

(kBT )2

Ω(1,1)
mn

. (C.24)
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Figure C.1 – Viscosity of a binary mixture. Lines stand for viscosity calculated by
inversion of the matrix. Markers represent the approximated solutions.

Using Eq. (C.5) and Eq. (C.6) yield

Ω(1,1)
mn = Ωrs(1,1)

mn × Ω∗(1,1)
mn , (C.25)

Ω(1,1)
mn =

√
kBT

2π
Mm + Mn

MmMn
πσ2

mnΩ∗(1,1)
mn . (C.26)

Dmn = 3
16

( 2π
Mmn

)1/2 (kBT )5/2

pπσ2
mnΩ∗(1,1)

mn

(C.27)

Dmn = 3
16

( 2π
Mmn

)1/2 (kBT )3/2

nπσ2
mnΩ∗(1,1)

mn

(C.28)

where we introduce the reduced mass Mmn = MmMn/(Mm + Mn) and use the ideal
gas law p = nkBT with n the number density of molecules. The diffusion coefficient
is formulated this way (in terms of Ω(1,1)

mn instead of Ω∗(1,1)
mn ) in order to be consistent

with the formulation of Eqs. (6.38) and (6.39). In addition, this formulation does not
postulate any form of the interaction potential. The expression from Hirschfelder-Bird-
Spotz assumes that the Ω-integrals are calculated from the rigid sphere model multiplied
by the deviation between the Lennard-Jones and rigid sphere potentials (Eq. C.5).
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Viscous fingering

D.1 Most dangerous and cutoff wave numbers
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Figure D.1 – Most dangerous (kmax) and cutoff wave numbers according to times for
different Péclet numbers. For t∗ > 0.035 and Pe = 5000, non-linear interactions take
place and corresponding points are not plotted. kc ∼ t∗−0.36 and kmax ∼ t∗−0.26.

D.2 Color maps of the molar fraction for different Péclet
numbers
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Figure D.2 – Most dangerous (kmax) and cutoff wave numbers according to the Péclet
numbers for different times. The color gradient of lines denotes the time evolution from
t∗ = 0.005 to 0.1 with ∆t∗ = 0.05. For t∗ > 0.035 and Pe = 5000, non-linear interactions
take place and corresponding points are not plotted. kc ∼ Pe0.59 and kmax ∼ Pe0.70.

Figure D.3 – Instability development for R = 3 and different Péclet values at t∗ = 0.9.
The whole domain (nx = 4000, ny = 2000) is plotted. The color-map (black-red-yellow-
white) represents the variation of the molar fraction from x1 = 0.9 to x1 = 0.1. Same
scaling is used for both x and y-axes.
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Appendix E

Parallel activities

E.1 Conferences and discussions

In the course of the three years of this thesis, I have the opportunity to attend some
conferences. In chronological order, they are

— ICMMES 2017, Nantes (FR), poster
— DSFD 2018, Worcester (US), poster
— AIAA aviation 2019, Dallas (US), talk & proceeding [110]
— ICMMES 2019, Edinburgh (UK), talk
Also I acknowledge Prof. Dubois for the organization of monthly meetings as part

of the Groupe de travail "Schémas de Boltzmann sur réseau".

E.2 Ercoftac Montestigliano spring-school

In April 2018, I attended the Ercoftac Montestigliano spring-school. This one week-
long workshop includes lectures and a group project. The main topic was the lattice
Boltzmann method and our group project was dedicated to moving curved boundaries.
I provide below some extracts of the report.

Fluid-Solid interactions in the lattice Boltzmann method

Maximilian Eggl1 , Lucien Vienne2

1 Imperial College London, England
2 Conservatoire National des Arts et Métiers, France

E.2.1 Abstract

This short report is a summary of our work during our stay at the ERCOFTAC
Montestigliano Workshop. The topic covered in this workshop was the lattice Boltz-
mann method, introducing this numerical method to those who had not encountered it
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previously as well as allowing those familiar with it to broaden their knowledge. Af-
ter several introductory lectures, we were tasked with studying the implementation of
curved and moving boundaries in the framework of the lattice Boltzmann method. We
present here the method used and a few results obtained.

E.2.2 Acknowledgements

We would like to acknowledge and thank Ilya Karlin and Fabian Bösch for their
significant work in running this workshop. They prepared several outstanding lectures
to demonstrate the power of the lattice Boltzmann method, as well as guiding us in the
implementation thereof by providing an excellent skeleton code for us to begin with.
Furthermore, they provided invaluable advice during the group project stage and helped
us achieve an in-depth understanding of the features of the lattice Boltzmann method.
This report would not have been possible in its present form without their considerable
help. We would also like to thank the organizers of the workshop, Peter Schmid and
Shervin Bagheri, who worked tirelessly in the background to give us a platform to work
and learn during our stay. Lastly, we would like to thank ERCOFTAC for funding this
workshop and providing us with an opportunity to experience techniques which may not
be within our own research areas. To conclude, we would both like to emphasize that
we very much enjoyed our stay at the ERCOFTAC Montestigliano Workshop, and were
able to come away with much more than we had ever anticipated.

E.2.3 Introduction

The lattice Boltzmann method (LBM) is a method for simulating fluid flows by
solving a simplified kinetic model. Distribution functions (populations) are governed
by the Boltzmann equation where collisions are approximated by a Bhatnagar-Gross-
Krook (BGK) collision operator. More advanced collision operators have been developed,
including the multiple relaxation time, cumulant, regularized or entropic LBM, which
are usually introduced to remedy stability defects.

It can be shown that the Navier-Stokes equations are recovered through the Chap-
man and Enskog expansion procedure in the hydrodynamic limit and the macroscopic
quantities can be computed through population moments. Due to the discretisation of
the kinetic velocity space, the LBM is mostly limited to weakly compressible flows (small
Mach number Ma ≤ 0.3). Nonetheless, the LBM has successfully been applied to several
different fields such as acoustics, thermal flows, multiphase flows, flows through porous
media, and multi-species flows. Thanks to its mesoscopic features, easily understandable
and implementable algorithm and great performance in parallel computing, the LBM
can be a powerful tool for the simulation of complex flows.

One area of particular interest is fluid-solid interactions, due to its pervasiveness in
so many industrial applications. By extension this implies that the study of bound-
ary conditions within the LBM framework can be of significant interest. The unique
feature of the lattice Boltzmann method is the fact, that it operates by streaming and
colliding populations, which means that imposing macroscopic variables like density or
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momentum require the introduction of a kinetic representation to mimic this macro-
scopic picture. The most popular and easiest LBM fluid-structure interaction is called
bounce-back. Bounce-back imposes a no-slip condition on the solid surface by reflecting
the populations going into the solid back into the opposite direction. Its advantages
like mass conservation, ease of implementation and locality explain why it is a widely
used boundary condition. However, in most practical problems, boundaries in fluid dy-
namics can not be considered as a flat, resting, rigid interface. The curved wall of a
car or a plane can not be correctly modelled by the crude staircase approximation and
when considering moving boundaries the bounce-back is unfit to deal with these complex
fluid-solid interactions.

To model more complex solids, two main approaches are used in the literature to
simulate moving curved boundaries: immersed boundary methods and Cartesian inter-
polation grid methods. Immersed boundary methods are based on the combination of
the lattice (Eulerian grid) and Lagrangian markers which depict the solid frontiers. A
force is then included at the Navier-Stokes level, according to a chosen kernel function,
to mimic the influence of the solid on the fluid. This method was not used during our
stay at Montestigliano, so we shall not present this method here and will solely focus on
Cartesian interpolation grid methods which act on the populations, and are described
in more details later.

This report is organized as follows: we first introduce the lattice Boltzmann method
and the Grad’s approximation for curved and moving boundaries followed by validations
obtained for a stationary cylinder, an oscillating cylinder and multiple shapes. Results
are quite satisfactory and prove that this boundary condition is applicable to the simu-
lation of moving and curved boundaries in the lattice Boltzmann method. This report
is based on the article [111] where the latter method is firstly introduced.
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E.2.4 Some results
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Figure E.1 – Drag coefficient comparison of a 2D-stationary cylinder with the imple-
mented method and results found in the literature.

Figure E.2 – Velocity field of three moving (up and down) fishes.
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E.2.5 Conclusion

The simplicity, efficiency and power of the LB method is demonstrated by the fact
that we were able to implement a LB solver which was able to effectively simulate moving
solids within a moving fluid. The theory underlining the computation is instinctive and
simple to understand, while still remaining impressive in its ability to accurately simulate
flowfields.

There were several extensions that we attempted to complete during our stay at the
workshop, namely the effect of gravity and drag on a falling solid, where the velocity and
acceleration are directly reliant thereupon. The force computations practically fall out
for free from the LB solver, however the velocity implementation was not completed in
time. Furthermore, a rudimentary passive-scalar field was introduced, however we were
unable to verify the accuracy of it. However, this are not the only extensions that could
have been implemented, only the ones that we decided to focus on. Other topics we may
have explored are springs between solids, deforming shapes and multi-phase flows.

In conclusion, when the LB method is compared to other numerical methods, it is
hard to understand why this method is not more popular. It is able to avoid any expen-
sive meshing (and with moving solids re-meshing) and expensive derivative calculations
while staying second-order accurate in time and space. The introduction of LB variables
and the normalization thereof to unity, further adds to the simplicity of the method and
its easy understanding.

While we were not able to achieve anything scientifically meaningful within our short
stay at the Workshop, the power and capability of the LB method have definitely left
an impression and we will aim to incorporate this numerical method in future research
undertakings.
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Annexe F

Résumé étendu des travaux de la
thèse en français

Introduction

La mécanique des fluides est une branche de la physique dédiée à l’étude des écoule-
ments de gaz et liquides. Prenons l’exemple de l’air que nous respirons, à notre échelle,
cet air est continu et uniforme, et nous utilisons généralement les termes tels que sa
densité ou sa vitesse pour le décrire. Toutefois, si on observe l’air à échelle suffisante
(≈ 10−9m), nous pourrions voir des milliards de molécules bougeant dans les sens et
entrant en collision entre elles. Suivre tout ces mouvements individuellement demande
un incroyable effort et n’est pas réaliste pour une quantité de gaz significative. L’évo-
lution de la distribution des molécules de gaz est une quantité plus appropriée. C’est
la voie choisie par la théorie cinétique des gaz dont la loi d’évolution est donnée par
la célèbre équation de Boltzmann. Les effets des collisions ne sont pas triviaux et sont
habituellement approximés en définissant un état d’équilibre vers lequel le gaz tend à
atteindre. Le temps requis pour que la distribution des molécules tend vers l’équilibre
est principalement dû à la dissipation visqueuse causée par la collision des molécules. Si
nous revenons à notre élément fondamental, l’air, nous notons qu’il est majoritairement
composé de deux espèces : l’azote (N2, ≈ 78% ) et l’oxygène (O2, ≈ 21%). En fait dans
la nature, le mélange de différent composants est très courant et une espèce pure est
généralement issue d’un procédé d’origine humaine. Dans le cas de mélange de com-
posants, une approche évidente est alors de considérer l’évolution de la distribution de
chaque type de molécules. La principale difficulté reste de prendre en compte de manière
appropriée les effets des collisions entre les différents types de molécules.

Une solution analytique des écoulements d’un fluide est malheureusement connue
uniquement pour des configurations simples. Nous rechercherons une solution approchée
en considérant uniquement un certain nombre de trajectoires des molécules parmi l’en-
semble des trajectoires possibles. De cette manière, le temps, l’espace, et la vitesse des
molécules sont divisés en des éléments discrets représentant une réalité continue. Cette
modélisation discrète du problème peut être résolu sur ordinateur à l’aide de techniques
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numériques. La méthode de Boltzmann sur réseau (Lattice Boltzmann Method, LBM)
est une formulation discrète particulière de l’équation de Boltzmann. Depuis ses débuts,
il y a trente ans, cette méthode a gagné une certaine popularité, et elle est maintenant
utilisée dans presque tous les problèmes habituellement rencontrés en mécanique des
fluides notamment pour les écoulements multi-espèces. Son apparente simplicité et sa
facilité d’implémentation par rapport aux méthodes traditionnelles pour résoudre des
écoulements de fluides peut expliquer son utilisation croissante. Il faut cependant noter
que ces deux précédents arguments sont seulement partiellement vrais : appliquer des
démarches incroyables simples à un scénario complexe mènera à une fin compliquée.

Comme nous l’avions mentionner avant, la manière dont la distribution des molécules
évolue après collision est décisive. Dans la méthode de Boltzmann sur réseau, il n’y a
pas vraiment de concensus sur l’utilisation d’un unique opérateur de collision dans le
cas de mélange de composants. Différent modèles pour des espèces miscibles ont été pro-
posés selon la théorie cinétique sous-jacente choisie. Certains séparent la collision entre
les molécules de même espèce et les molécules d’espèces différentes, d’autres emploient
un équilibre global. L’étape de collision, déjà crucial, est alors modifiée et devient plus
complexe. Dans le cadre de ce travail, une force de friction intermoléculaire est introduite
pour modéliser les interactions entre les molécules de différent types causant principa-
lement la diffusion entre les espèces. La collision habituelle, c’est à dire la relaxation
vers l’état d’équilibre est utilisée. Les phénomènes de dissipation visqueuse (collision
classique) et de diffusion moléculaire (force de friction intermoléculaire) sont séparés
et peuvent être ajuster indépendamment. Le principal avantage de cette stratégie est
sa compatibilité avec les opérateurs de collision existant qui font souvent l’objet d’op-
timisations en temps de calcul. Adapter un code mono-espèce pour aboutir à un code
multi-espèces est aisé et demande beaucoup moins d’effort comparé aux précédentes ten-
tatives. La collision étant la pierre angulaire de la méthode de Boltzmann sur réseau,
un changement de collision aboutit généralement à la réécriture complète du code. De
plus, il n’ y a pas d’approximation du mélange, chaque espèce a ses propres coefficients
de transport pouvant être calculés à l’aide de la théorie cinétique des gaz. En général, la
diffusion et la convection sont vus comme deux mécanismes séparés : l’un agissant sur
la masse d’une espèce, l’autre sur la quantité de mouvement du mélange. En utilisant
une force de friction intermoléculaire, la diffusion et la convection sont couplés par l’in-
termédiaire la quantité de mouvement de chaque espèce. Les mécanismes de diffusion et
de convection sont intimement liés dans de nombreux phénomènes physique tel que la
digitation visqueuse.

La digitation visqueuse est une instabilité très répandue qui se développe lorsque
un fluide moins visqueux déplace un fluide plus visqueux dans un milieu poreux. L’in-
terface entre les deux fluides commence par se déformer et des arrangements en forme
de doigt émergent et grossissent. Ce phénomène peut soit améliorer le mélange dans le
milieux poreux ce qui est très difficile à cause de l’absence de turbulence pour activement
mélanger l’écoulement ou avoir des répercussions dramatiques pour certains procédés.
L’exemple typique est la récupération secondaire du pétrole pour lequel la digitation de
la solution aqueuse moins visqueuse poussant le pétrole plus visqueux dans les réservoirs
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souterrains poreux réduit fortement l’efficacité de la récupération. De manière similaire,
une solution possible pour réduire le dioxyde de carbone présent dans l’atmosphère est
de le capturer directement sur les sites de productions d’énergie et de gaz, et de le sto-
cker dans les réservoirs poreux disponibles. L’étude de l’interaction entre le dioxyde de
carbone supercritique et les fluides interstitiels, généralement de la saumure, est impor-
tant. Le mélange résultant de la dissolution du dioxyde de carbone peut être sujet à la
digitation et changer radicalement la distribution de dioxyde de carbone dans le réser-
voir. La digitation visqueuse est aussi néfaste dans le cas de la chromatographie, une
technique utilisée pour séparer et identifier les constituants d’un mélange en le faisant
s’écouler dans un milieu poreux. Le fluide déplaçant (l’éluant) peut être moins visqueux
que le mélange à tester. L’interface initialement plane se déforme à cause de la digitation
aboutissant une séparation infructueuse ou inefficace. Finalement, la digitation visqueuse
joue un rôle majeur dans la contamination des sols en augmentant considérablement la
zone polluée. L’étude de la digitation visqueuse est donc essentielle dans de nombreux
domaines.

La thèse est structurée en trois principales parties. La première partie contient le
contexte nécessaire pour aborder la méthode de Boltzmann sur réseau et les mélanges
miscibles. Les deux premiers chapitres détaille les fondamentaux de la méthode de Boltz-
mann sur réseau pour un fluide simple composé d’un seul composant. Le troisième cha-
pitre présente indépendamment l’approche de Maxwell et Stefan pour le transferts de
masse à partir de considérations simples. Cela est fait délibérément car une dérivation
directe à partir de la cinétique des gaz serait longue, compliquée, et paraphrasait le
livre séminal molecular theory of gases and liquids par Hirschfelder, Curtiss et Bird [1].
La seconde partie est la principale contribution de la thèse. Nous combinons l’approche
du troisième chapitre et la méthode de Boltzmann sur réseau. Le modèle proposé est
ensuite validé à partir de résultats analytiques, expérimentaux et numériques. Finale-
ment, la troisième partie présente une application. L’instabilité de digitation visqueuse
est simulée pour deux et trois composants miscibles.

Principaux résultats

Un mélange est composé de plusieurs espèces et chaque espèce est définie par sa
propre fonction de distribution qui est gouvernée par sa propre équation cinétique. Pour
des raisons de simplicité, on considère uniquement un opérateur de collision de type
BGK. Les opérateurs de collision avancés tel que le modèle à temps de relaxation mul-
tiples, le modèle entropique, le modèle régularisé, le modèle basé sur les cumulants,
principalement développé pour remédier à des problèmes de stabilité numérique peuvent
aussi être implémenter [21, 27, 28, 31]. Soit les indices m et n correspondant aux dif-
férentes espèces (m,n = 1, 2, ..., N ; N étant le nombre total d’espèces). La fonction de
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distribution de l’espèce m, fm
α , obéit à l’équation cinétique discrète suivante :

fm
α (x + eαδt, t+ δt) = fm

α (x, t) − δt

τm

[
fm

α (x, t) − fm(eq)
α (x, t)

]
+ (1 − δt

2τm
)δtS

m
α (x, t) (F.1)

où x, t, α, et τm sont, respectivement, les coordonnées spatiale, le temps, le nombre
de vitesses cinétiques eα, et le temps de relaxation de chaque espèce. La fonction de
distribution à l’équilibre, fm(eq)

α , est donnée par la formulation polynomiale usuelle

fm(eq)
α = ρmωα

[
1 + um · eα

c2
s

+ (um · eα)2

2c4
s

− um · um

2c2
s

]
. (F.2)

Sm
α est le terme source pour chaque espèce similaire au terme de forçage de Guo [13],

couramment utilisé pour inclure des forces dans l’algorithme de Boltzmann sur réseau,

Sm
α = ωα

[eα − um

c2
s

+ (eα · um)eα

c4
s

]
· Fm, (F.3)

Fm étant la force agissant sur la m-ième espèce qui est dérivée dans la suite pour prendre
en compte les interactions entre les espèces.

Dans cette étude, nous utilisons la discrétisation isotherme D2Q9 (bi-dimensionnel
et 9 vitesses). Une extension à une formulation tri-dimensionnel (D3Q19 ou D3Q27) est
trivial. La pseudo-vitesse du son est c2

s = 1
3 , les vitesses cinétiques peuvent s’exprimer

comme

eα =
[
0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1

]T

1 ≤ α ≤ 9, (F.4)

et les poids du réseau sont égaux à

ωα =
[

4
9

1
9

1
9

1
9

1
9

1
36

1
36

1
36

1
36

]T
1 ≤ α ≤ 9. (F.5)

Les quantités macroscopique, notamment la densité et la quantité de chaque espèce, sont
obtenues en calculant les différents moments des fonctions de distribution.

ρm =
∑

α

fm
α , ρmum =

∑
α

fm
α eα + δt

2 Fm. (F.6)

Les équations macroscopiques résultantes sont les équations de conservation pour des
écoulements à faible nombre de Mach soumis à une force volumique (par exemple, la gra-
vité). Afin de prendre en compte l’interaction entre les différentes espèces miscibles, nous
introduisons les forces de diffusions ou forces de friction selon l’approche de Maxwell-
Stefan au transfert de masse :

FD,m = −p
N∑

n=1

xmxn

Dmn
(um − un), (F.7)
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et Fm devient
Fm = FD,m + FB,m, (F.8)

où FB,m est une force volumique. Ainsi les équations cinétiques discrètes (F.1) pour les
différentes espèces sont couplées par l’intermédiaire de Fm. Puisque les force de diffusion
FD,m dépendent de la vitesse, de la pression totale p, des fraction molaires xm, et des
coefficients de diffusion (Maxwell-Stefan) Dmn, un système linéaire doit être résolu à
chaque pas de temps afin de calculer la quantité de mouvement de chaque espèce grâce à
l’équation (F.6). Cette force également appelée force de friction intermoléculaire dépend
de la vitesse relative de chaque espèce. Ainsi, lorsque toutes les espèces ont la même
vitesse, il n’y a pas de diffusion. Notons que la force de friction intramoléculaire liée à la
viscosité est déjà pris en compte par l’opérateur de collision BGK de manière similaire au
cas des écoulements mono-espèce. L’idée d’inclure les effets de diffusion comme une force
agissant sur les molécules date des premiers travaux de la théorie cinétique des gaz par
Maxwell [38]. La même expression a été rigoureusement dérivée plus tard par Chapman
et Cowling [2], une discussion détaillée est donnée par Hirschfelder, Curtiss, et Bird [1]
et Kerkhof et Geboers présentent une dérivation plus récente dans la référence [59]. De
longs et compliqués développements mathématiques sont nécessaires pour obtenir cette
force de friction intermoléculaire à partir de la théorie cinétique des gaz, elle ne donc
pas présenté. Les principales étapes de la dérivation font appel au développement de
Chapman et Enskog, à la linéarisation, de l’intégrale de collision (1.10) et à sa solution
approchée par l’intermédiaire d’un développement en série des vitesses à partir des po-
lynômes de Sonine (ou Laguerre) et non d’Hermite. Une méthode équivalente utilisant
les polynômes d’Hermite, les équations des treize moments de Grad, a été proposée par
Zhdanov [60].

Conclusion

La première partie de cette thèse couvre les fondamentaux de la méthode de Boltz-
mann sur réseau. Partant de la théorie cinétique des gaz et de l’équation de Boltzmann,
une formulation discrète est proposé. Un outil majeur pour obtenir les équations macro-
scopiques en jeu est le développement de Chapman et Enskog. Le temps de relaxation
est ainsi lié à la dissipation visqueuse. Indépendamment, nous introduisons l’approche
proposée par Maxwell et Stefan pour modéliser la diffusion pure entre les espèces. Cette
approche est plus commode et possède une interprétation plus physique dans le cas de
trois ou plus espèces comparée à la formulation de Fick traditionnelle. De plus, nous
mettons en avant les effets non-triviaux de diffusion multi-espèces qui peuvent appa-
raître lors de la diffusion de trois ou plus composants tel que la diffusion osmotique, la
diffusion inverse et la barrière de diffusion. La contribution fondamentale de cette thèse
est de combiner ces idées et de proposer une méthode de Boltzmann sur réseau pour les
gaz miscibles dans la seconde partie de la thèse.

Différentes méthodes de Boltzmann sur réseau pour les écoulements multi-espèces
existent déjà. Il n’y a pas un unique ou communément admis opérateur de collision de
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type BGK, chaque modèle dépend de la théorie cinétique sous-jacente choisie. Cepen-
dant, pour tout les modèles dans le cas d’un mélange binaire, la variation de la quantité
de mouvement induite par la collision a une forme similaire à la force intermoléculaire
de friction, c’est à dire un coefficient multiplié par la différence de vitesse des deux es-
pèces. Les précédents modèles nécessitent de fortement modifier l’étape de collision par
rapport à la formulation standard afin de prendre en compte l’interaction entre les com-
posants. L’algorithme est alors plus complexe, coûteux en temps de calcul, et par dessus
tout, ne peut être facilement implémenter dans des codes existant. Le point central de
la méthode de Boltzmann sur réseau est la collision, la modifier signifie généralement
réécrire entièrement le code. Dans l’approche proposée, l’équilibre usuel est utilisé com-
biné avec la force de friction intermoléculaire. Beaucoup moins d’effort est alors requis
pour transformer un code mono-espèce pour qu’il prenne en compte la diffusion entre de
multiple espèces. La dissipation visqueuse est liée à la relaxation vers l’état d’équilibre
tandis que la diffusion moléculaire est associée avec la force de friction intermoléculaire.
Le calcul des coefficients de transport est possible à l’aide de la cinétique des gaz. En
plus du coefficient de diffusion (Maxwell-Stefan), une viscosité partielle est également
définie pour chaque composant. Le problème de la vitesse du son fixé par le réseau est
propre à la méthode de Boltzmann sur réseau. Ce problème est évité en utilisant une
force artificielle pour modifier l’équation d’état de chaque espèce en fonction de sa masse
moléculaire. Les résultats obtenus sont en excellent accord avec des solutions analytiques,
expérimentales, et numériques. La dynamique complexe de diffusion de trois espèces ou
plus est retrouvée, et le modèle proposé est capable de simuler les phénomènes de dif-
fusion osmotique, de diffusion inverse, et de barrière de diffusion. Après avoir validé les
caractéristiques de notre modèle, nous l’appliquons à l’instabilité de digitation visqueuse
et discutons des résultats obtenus dans la dernière partie de la thèse.

L’instabilité de digitation visqueuse est simulée en considérant dans un milieu poreux
deux espèces dans des proportions différentes soit un mélange moins visqueux déplaçant
un mélange plus visqueux. Les principaux moteurs de l’instabilité sont la diffusion et
le contraste de viscosité entre les espèces. Deux stratégies sont envisagées pour simuler
les effets d’un milieu poreux. Les méthodes de rebond partiel et de force de Brinkman
bien que basées sur des approches fondamentalement différentes donnent dans notre cas
des résultats identiques. Les taux de croissance de l’instabilité calculés à partir de la
simulation coïncident avec ceux obtenus à partir d’analyses de stabilité linéaire. L’évo-
lution de la longueur de mélange peut être divisée en deux étapes dominées d’abord par
la diffusion puis par la convection. La physique de la digitation visqueuse est ainsi cor-
rectement simulée. Toutefois, les effets de diffusion multi-espèces ne sont généralement
pas pris en compte lors de la digitation visqueuse de trois espèces et plus. Ces derniers
ne sont pas négligeable puisque nous mettons en avant une configuration initialement
stable qui se déstabilise. La diffusion inverse entraîne la digitation dont l’impact dépend
de la diffusion entre les espèces. Après avoir appliqué avec succès notre modèle au cas
de la digitation visqueuse, il nous tarde de nous nous attaquer à d’autres problèmes
impliquant des écoulements multi-espèces.
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Perspectives
La dérivation du modèle proposé est rigoureusement exacte seulement pour les gaz

dilués. Nous pouvons, dans une certaine mesure, l’appliquer aux liquides et gaz généraux.
Les équation de Maxwell-Stefan sont aussi valides pour les gaz de faible et grande densité,
les liquides et les polymères. On peut supposer que la force de friction intermoléculaire
est toujours adéquate pour décrire la diffusion moléculaire dans ces cas. La pression
partielle n’est bien définie dans le cas des gaz non-idéaux et ses gradients doivent ête
remplacés par les gradient du potentiel chimique. Les coefficients de transport doivent
être calculés à partir de la théorie cinétique d’Eyring (liquides) ou d’Enskog (gaz denses)
[1]. Des études plus fondamentales sont nécessaires pour approfondir notre modèle. Par
exemple, la simulation d’une couche de mélange entre trois espèces pourrait mettre en
avant des mécanismes intéressants. Une comparaison avec une expérience récente et bien
documentée serait bénéfique. Un point de départ pour mesurer l’influence des viscosités
partielles peut se baser sur les expériences d’écoulements de jets à viscosité variable
effectuées dans la référence [105].

Concernant les simulations de digitation visqueuse, d’autres configurations du mé-
lange à trois espèces pourraient être considérées. Une étude paramétrique peut être
envisagée et prolongerait les premiers résultats obtenus ici. Une autre possibilité est de
modéliser les pores à la place de simuler leur effets. Bien qu’étant plus coûteux, cette si-
mulation soulignera les différentes échelles du milieu poreux en jeu. Finalement, on peut
noter que la force de friction du milieu poreux a une forme similaire à l’approximation
de Boussinesq fait dans le cas des problèmes de double diffusion convection rencontrés
dans les océans et cela ouvre de nouvelles perspectives pour le modèle proposé.

Les publications suivantes sont liées à ce travail (voir aussi l’annexe E) :
— Lucien Vienne, et al. “Lattice Boltzmann method for miscible gases : A forcing-

term approach”. In : Physical Review E. [106]
— Lucien Vienne, et al. “Viscous fingering simulation by the lattice Boltzmann me-

thod”. Under preparation.
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Lucien VIENNE

Simulation of multi-component flows by the lattice
Boltzmann method and application to the viscous

fingering instability

Résumé : La méthode de Boltzmann sur réseau est une formulation discrète particulière de l’équation de Boltz-
mann. Depuis ses débuts, il y a trente ans, cette méthode a gagné une certaine popularité et elle est maintenant
utilisée dans presque tous les problèmes habituellement rencontrés en mécanique des fluides notamment pour les
écoulements multi-espèces. Dans le cadre de ce travail, une force de friction intermoléculaire est introduite pour
modéliser les interactions entre les molécules de différent types causant principalement la diffusion entre les es-
pèces. Les phénomènes de dissipation visqueuse (collision usuelle) et de diffusion moléculaire (force de friction
intermoléculaire) sont séparés et peuvent être ajustés indépendamment. Le principal avantage de cette stratégie
est sa compatibilité avec des optimisations de la collision usuelle et les opérateurs de collision avancés. Adapter un
code mono-espèce pour aboutir à un code multi-espèces est aisé et demande beaucoup moins d’effort comparé aux
précédentes tentatives. De plus, il n’ y a pas d’approximation du mélange, chaque espèce a ses propres coefficients
de transport pouvant être calculés à l’aide de la théorie cinétique des gaz. En général, la diffusion et la convection
sont vus comme deux mécanismes séparés : l’un agissant sur la masse d’une espèce, l’autre sur la quantité de mou-
vement du mélange. En utilisant une force de friction intermoléculaire, la diffusion et la convection sont couplés
par l’intermédiaire la quantité de mouvement de chaque espèce. Les mécanismes de diffusion et de convection sont
intimement liés dans de nombreux phénomènes physique tel que la digitation visqueuse.
L’instabilité de digitation visqueuse est simulée en considérant dans un milieu poreux deux espèces dans des
proportions différentes soit un mélange moins visqueux déplaçant un mélange plus visqueux. Les principaux
moteurs de l’instabilité sont la diffusion et le contraste de viscosité entre les espèces. Deux stratégies sont envisagées
pour simuler les effets d’un milieu poreux. Les méthodes de rebond partiel et de force de Brinkman bien que
basées sur des approches fondamentalement différentes donnent dans notre cas des résultats identiques. Les taux
de croissance de l’instabilité calculés à partir de la simulation coïncident avec ceux obtenus à partir d’analyses de
stabilité linéaire. L’évolution de la longueur de mélange peut être divisée en deux étapes dominées d’abord par la
diffusion puis par la convection. La physique de la digitation visqueuse est ainsi correctement simulée. Toutefois,
les effets de diffusion multi-espèces ne sont généralement pas pris en compte lors de la digitation visqueuse de trois
espèces et plus. Ces derniers ne sont pas négligeable puisque nous mettons en avant une configuration initialement
stable qui se déstabilise. La diffusion inverse entraîne la digitation dont l’impact dépend de la diffusion entre les
espèces.

Mots clés : méthode de Boltzmann sur réseau, mécanique des fluides, écoulements multi-espèces, dynamique du
mélange, instabilité de digitation visqueuse

Abstract: The lattice Boltzmann method (LBM) is a specific discrete formulation of the Boltzmann equation.
Since its first premises, thirty years ago, this method has gained some popularity and is now applied to almost all
standard problems encountered in fluid mechanics including multi-component flows. In this work, we introduce the
inter-molecular friction forces to take into account the interaction between molecules of different kinds resulting
primarily in diffusion between components. Viscous dissipation (standard collision) and molecular diffusion (inter-
molecular friction forces) phenomena are split, and both can be tuned distinctively. The main advantage of this
strategy is optimizations of the collision and advanced collision operators are readily compatible. Adapting an
existing code from single component to multiple miscible components is straightforward and required much less
effort than the large modifications needed from previously available lattice Boltzmann models. Besides, there
is no mixture approximation: each species has its own transport coefficients, which can be calculated from the
kinetic theory of gases. In general, diffusion and convection are dealt with two separate mechanisms: one acting
respectively on the species mass and the other acting on the mixture momentum. By employing an inter-molecular
friction force, the diffusion and convection are coupled through the species momentum. Diffusion and convection
mechanisms are closely related in several physical phenomena such as in the viscous fingering instability.
A simulation of the viscous fingering instability is achieved by considering two species in different proportions in a
porous medium: a less viscous mixture displacing a more viscous mixture. The core ingredients of the instability
are the diffusion and the viscosity contrast between the components. Two strategies are investigated to mimic
the effects of the porous medium. The gray lattice Boltzmann and Brinkman force models, although based on
fundamentally different approaches, give in our case equivalent results. For early times, comparisons with linear
stability analyses agree well with the growth rate calculated from the simulations. For intermediate times, the
evolution of the mixing length can be divided into two stages dominated first by diffusion then by convection,
as found in the literature. The whole physics of the viscous fingering is thus accurately simulated. Nevertheless,
multi-component diffusion effects are usually not taken into account in the case of viscous fingering with three
and more species. These effects are non-negligible as we showcase an initial stable configuration that becomes
unstable. The reverse diffusion induces fingering whose impact depends on the diffusion between species.

Keywords: lattice Boltzmann method, fluid mechanics, multi-component flows, mixture dynamics, viscous
fingering instability
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