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Introduction

With the advent of gravitational wave astronomy a new chapter in physics has begun.
Prior to this new era, gravitational laws were primarily tested in the weakly-gravitating,
mildly relativistic regime of the Einstein equations. This early phase has enabled us to
establish some firm grounds upon which gravitational theory must be built, culminating
with the prediction and detection of gravitational waves. Our modern view of gravity as
a dynamical spacetime phenomena started with Einstein’s general relativity, which is still
today, after more than a century of reign, the leading theory for gravitation. Indeed, general
relativity has successfully passed a wild variety of tests contributing to our confidence on
it. On the one hand, both of its foundational principles, the Einstein equivalence principle
and the principle of special relativity, have strong experimental grounds. On the other hand,
general relativity’s predictions have been confirmed in the lab and in astrophysics within a
broad range of phenomena. Yet, there are hints both coming from theory and observation
that suggest that general relativity might not be the last word in gravitational theory.

In the first place, some inconsistencies appear when trying to apply general relativity in
regimes where it has not been properly tested. When applying general relativity at cosmolo-
gical scales (i.e., considering the low energy regime of the Einstein equations) we are forced
to admit the existence of new matter fields which have not been found otherwise. Namely,
there’s the controversial existence of a cosmological constant as well as the more accepted
existence of dark matter. In the former case, there is a huge discrepancy between the es-
timated value coming from our knowledge of particle physics and the measured value (the
cosmological constant problem) while for the latter there has been no direct detection ever.
On the high energy regime, general relativity cannot avoid the appearance of mathematical
singularities through gravitational collapse as stated by the well known singularity theorems.

Secondly, one could expect that a quantum theory of gravity should exist whose classical
limit would lead to a metric theory, and particularly to general relativity. But this statement
is far from being proved, and the classical limit of quantum gravity might turn to be ano-
ther metric theory. Furthermore, general relativity is incompatible with quantum mechanics
for it is a non-renormalizable theory. Moreover, even if general relativity turned out to be
the correct theory of classical gravity there’s no best way to understand its strengths and
weaknesses than comparing it to other metric theories of gravity.

Thirdly, from a purely logical point of view, what the foundational principles of gravita-
tion can strictly assure us is that gravitational phenomena must be of geometrical character,
yet not necessarily general relativity. Indeed, high energy physics suggests the existence of
one and only one spin-2 field coupling in a Lorentz invariant way to matter, the metric,

iii



iv INTRODUCTION

which should therefore extend everywhere in the universe. Experiments show that this ten-
sor field is the only field coupling directly to matter (this property is commonly referred to
as the universal coupling of the metric). But in order to get from this experimental result
to the theory of general relativity, we need to assume that the metric is the only existing
gravitational field. Otherwise said, experiments suggest that classical gravitation belongs to
a category of theories which we call metric theories of gravitation, and among these, general
relativity is its favorite exponent. But this last conclusion is not yet thoroughly proved, and
in particular the existence of other gravitational fields has not yet been totally ruled out.
One of the cornerstones of modern physics is Lorentz Invariance (LI), and it’s a funda-
mental part both of general relativity and the Standard Model of particle physics. Among the
metric theories that break LI and still survive to experimental tests we find Einstein-sether
theory and khronometric theory. One of the landmarks of these theories is the violation of
the strong equivalence principle (SEP), which is the extension of the EEP to self-gravitating
bodies. The importance of this statement comes from the fact that general relativity does
satisfy SEP. Thus, as a theory satisfying the SEP, general relativity verifies the “principle of
effacement”, allowing us to neglect the internal structure of gravitating objects while descri-
bing their orbital dynamics. Once SEP is given up however, the orbital dynamics of a binary
system can depend upon internal structure of its components. As an example, the effective
gravitational mass can be a function of the state of motion of the body (thus violating Lo-
rentz Invariance), leading to modified dynamics. This change in the orbital dynamics would
in turn lead to a modification of the gravitational wave flux. One of the most noticeable
changes then is the apparition of dipolar radiation, which is absent in general relativity and
detectable in principle by current gravitational wave detectors.
The leading corrections to the orbital dynamics of a self-gravitating object are encoded into
the so-called sensitivities. This is precisely what we look for in this work in the particular case
of the motion of binary black holes. As a consequence of the arguments previously develo-
ped, the sensitivities can be linked to modifications of the flux emitted, and most remarkably
to the dipolar emission. Since dipolar emission can be constrained from gravitational wave
signals, thus the theory can be constrained as well.
The structure of this thesis will be as follows.

— In chapter 1, we begin by giving a quick introduction to gravitational astronomy and
how we use it to test gravitational theory.

— In chapter 2, we will discuss the role of Lorentz symmetry in nature, and in particular
in gravity, and we will present the equations and general features of two Lorentz-
violating theories : khronometric and Einstein-asether theory. We conclude that chapter
by discussing black holes in these Lorentz-violating theories.

— In chapter 3, we show how we can link Lorentz-violations to dipolar emission. In order
to do so, we will first show how the sensitivities naturally arise when violating the
strong equivalence principle and we will given them a physical definition. Then we will
show how the sensitivities can be obtained from a slowly moving solution and how they
can be linked to dipolar radiation. The core results of this work are presented in the
second part of chapter 4.

— Finally, a discussion on the consequences of this work will be presented as a conclusion
in chapter 5.



0.1 LIST OF PUBLICATIONS v

0.1 List of publications

The work exposed in this manuscript led to the following publication :

O. Ramos and E. Barausse, “Constraints on Hofava gravity from binary black hole ob-
servations”, in preparation. See Appendix A.

0.2 Notations

Constants and units.
We use units in which the speed of light ¢ is set to 1, although it will sometimes be expli-
citly written for power-counting purposes. The gravitational constant G is always explicitly
written.

Indices and metric signature.
Greek indices a, 3,...,u, v, ... take the values 0,1,2,3 while the Latin indices 1, j,... are
used for spatial indices and take the values 1,2,3. The metric signature is +, —, —, —, so
that the flat metric is 7,, = diag(1,-1,—-1, —1).
We adopt the Einstein convention for repeated indices, e.g., A# ... stands for Z AR

©n=0,1,2,3
unless the contrary is explicitly stated. In the same way, B%; and B;; both stand for Z Bii,
i=1,2,3

where the sum is carried over spatial indices, unless explicitly stated.

Figures were done using the python library matplotlib, unless explicit mention is given in
the caption.
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1 — Introduction to gravitational wave
astronomy

This introductory chapter aims at giving a flavor of gravitational wave astronomy, its
foundational principles, status and difficulties. We begin by recalling succinctly the principles
and core equations of general relativity in section 1.1, and we then specialize them to the
linearized regime in section 1.2. We show how we can find gravitational wave modes within
linearized theory, and then describe the interaction between an idealized detector and a
gravitational wave passing through in section 1.3. Next, we explain how to describe the energy
carried by the gravitational degrees of freedom in section 1.4. Finally, we describe how these
principles have been used to study gravitational theory in section 1.6. Of particular interest
are gravitational wave interferometers which are described in 1.6.2. Indeed, the applicability
of the results of this thesis is based upon the potential of the LIGO-Virgo detectors, as well
as to the future LISA mission, to test the fundamental principles of gravitational theory.
The following is based on the review articles and books [1, 2, 3, 4].

1.1 General relativity

In brief, general relativity states that the geometry of spacetime itself acquires a dyna-
mical status as it is determined by the matter fields. From the spacetime metric g one can
construct the Riemann tensor R, given by

R = 8,155 — 0,0%; + % a7, (1.1)

uo l/ﬁ Vo u

where the Christoffel symbols I'},, are defined in terms of the metric and its derivatives as

1
qu = iga)\ (aug)\l/ + aug,u)\ - a)\g;u/> . (12)

From the Riemann tensor we can construct the Ricci tensor as
Ry, = R, (1.3)

and then the scalar curvature as
R=g¢"R,, . (1.4)

Then the gravitational dynamics can be deduced from the action

4
16 G/d er+Smatter[ga ]7 (15)

1



2 CHAPITRE 1. INTRODUCTION TO GRAVITATIONAL WAVE ASTRONOMY

where Spatter is the action of the matter fields, which are collectively denoted by W. Variation
with respect to the metric g leads to the Einstein field equations

G =8nG 1T, , (1.6)
where G is the Einstein tensor
1
Guy = R/.Ll/ - §R Juv s (17)

and the stress energy tensor T is defined as

5 Smatter = % / Atay/=g T bg, . (1.8)
From diffeomorphism invariance we deduce the Bianchi identity
V,.G" =0, (1.9)
which, together with the Einstein equations implies

V. T" =0. (1.10)

1.2 Linearized theory

In 1916, one year after publishing his field equations, Einstein found that the theory
predicted the existence of gravitational waves. Indeed, this can be readily seen by linearizing
the Einstein equations; that is, by expanding the field equations around a flat background
metric. Let us assume that, for the physical system of interest, it is possible to find a reference
frame where we can express the metric as the sum of the Minkowski metric 7,, and a
perturbation hy, as

I = Npw + (1.11)

where the components of the perturbation h,, are such that \hW| < 1. We will assume that
this relation holds in a sufficiently large region of spacetime. Since we work only up to linear
order in the perturbation h,, and neglect higher orders, indices are raised or lowered using
the flat metric 7,,. In order to describe the metric by equation (1.11), we are implicitly
assuming that our coordinates are approximately Cartesian. Under an infinitesimal gauge
transformation (i.e., an infinitesimal coordinate change)

ot — oM = ot M (x), where [¢4(z)] < |2t (1.12)

one has
hyw(x) — h:w(x') = huw(z) — (0.6 + 0,E,) - (1.13)

Note that, since [£#(z)| < |z#| implies |0,&,| < 1, then |hy,| is still much smaller than 1.
Also, under a Lorentz transformation given by z# — 2/ = A*, ¥ we have, by definition,
AP A npe = M, so the metric transforms as

g;w(x) - g;w(l',) = Ayp Auagpo(l') = Nuv + Aup Auahpo(x) ) (1.14)



1.2 LINEARIZED THEORY 3

from which we deduce that h,, transforms as a tensor under Lorentz transformations (note
that we must restrict boosts to those satisfying |A,” A,7hpo(x)] < 1). It is clear as well that
hyw is invariant under translations z# — x# 4 a*, where a is a constant vector.

In the linearized regime, the Riemann tensor takes the form

Ruar = 5 (00Bphso + Oudohgy — 0udphue — 0udohyy) (1.15)

This expression is invariant under the gauge transformations (1.12). From the Riemann tensor
we can find the Einstein equations in linearized theory in terms of h,, and its derivatives.
To express them, it is convenient to define

1
h;w = h,uu - §h Nuv » (1'16)

where h = n*"h,,. Note that from the definition (1.16) it follows that h = hun™ = —h.
Thus, we can invert the relation (1.16) and express hy, in terms of h,, simply as hy,, =
hyw — %h Nuv- In terms of h,,, the Einstein field equations become

- - - - 167G

O + 1y 00 T — Dy — POy = — 2T, (1.17)
c

where O = 0,,0* is the d’Alembert operator associated to the Minkowski metric 7,,,. We can

further simplify this expression by making use of the gauge freedom (1.12), so as to work in

the Lorenz gauge defined by

0"hu, =0, (1.18)
in which case the Einstein equations take the form

- 167G

O = =T (1.19)

This equation relates the perturbations of the background flat metric to the stress energy-
momentum tensor of the source, and the wave-like character of the equation is visible from
the d’Alembertian operator .

It is readily seen from equation (1.19) and the Lorenz gauge (1.18) that in the linearized
theory we have the energy-momentum conservation law

8, T" = 0. (1.20)

1.2.1 The TT-gauge

Outside the source, equations (1.18) and (1.19) reduce to
Ohyw =0;  0"hy, =0. (1.21)

Solutions to this system can be expressed as a superposition of plane waves :

T (t, ©) = Re / Bl Ay (Rl Fi—en) (1.22)
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where the complex coefficients AW(E) depend only on the wave-vector k and w = |k|. The
Lorenz gauge imposes the condition k*A,, = 0, for k* = (w, k). We observe that, outside
the source, there still remains a residual gauge freedom given by

ot — /M =2t + ¢* with O =0, (1.23)

as the new metric perturbation }_‘L;W(CC/) = (@) — (0u&y + vy — 1w 0,EP) still satisfies the
Lorenz gauge condition (1.18). We can make use of this residual gauge to impose further
conditions on ?LW. A common choice is the transverse-traceless gauge, or “TT-gauge” for
short.
The traceless condition is imposed by choosing &* such that the new trace h/ vanishes,
that is, such that
W =h+20,8"=0, (1.24)

that is, . )
Ot =——h=-h. 1.25
uf 9 92 ( )

Note that this condition is indeed compatible with J¢# = 0. In fact, we can set &* such
that it satisfies the initial condition 0,&" = —%ﬁ, then &* will be everywhere determined
by the equation [J§#* = 0. Then the evolution equations (1.21) imply that the quantity
h=h+2 0, &M satisfies the equation OR = 0, with null initial conditions. We can therefore
conclude that A’ = 0 everywhere else. Thus, choosing some initial data for &* within a
given Cauchy surface, such that (1.24) is satisfied, then the evolution equations ensure that
equation (1.23) and (1.24) be satisfied at all points.

Dropping the primes, this condition implies that B/w = hyu, so we can drop the over bar
of ltLW as well. The transverse condition is achieved by choosing & such that b’ % — 0, that is,
satisfying 0°¢¢ 4+ 0°¢° = —hY. The general solution to the equation (JE# = 0 can be written
as

§(x) =Re [ d% O (R)eFEen (1.26)
The coefficients A#V(E) of equation (1.22) transform as
AL, = Ay — 2il,Cpy + i1k C (1.27)
where I# = (w, —k). Therefore the TT-conditions can be expressed in terms of C*(k) as
0=n"" A, =" A + 2ikHC), (1.28a)
0 =Ap, = Ao, — iCy ko — iCok, + 62 (k*Cy) , (1.28Db)
for which an explicit solution can be given by

3A,,1P1° L 7P Apo N 1
Qiwt M 4iwt * T 24w?

Cu= Al (1.29)
In particular, the 4 = 0 component of the Lorenz gauge condition reads now

°hoo + 0'hg; = 3°hgo = 0, (1.30)

which implies that hgg becomes constant in time. For instance, hgg can correspond to the
static Newtonian potential of the source. Since we are interested in the variable part of the
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gravitational field, which as we will show is the only part carrying energy, we can set hgg to
zero for simplicity. Together with the transverse gauge condition this means that we can set
huo = 0. The spatial components of the Lorenz gauge now read

hio + ¥ hij = dhij = 0. (1.31)
Thus, the transverse-traceless gauge is defined by the conditions
huo=0; h'y=0; &hij=0. (1.32)

A plane-wave solution to the linearized equations can be described in the TT-gauge by
hij(x) = e;j(k)et K%, where k* = (w, k) is the wave four-vector and e;;(k) is the amplitude
associated with the mode k. Choosing the axis of propagation to be the z axis, then we can
write

h+ h>< 0
hij(t,2) = | hx —hs 0 | cosfw(t— 2)], (1.33)
0 0 O

or equivalently,
ds? = dt? — da? — dy? — d2* + (d:z2 - dyz) hy cos|w(t — z)] + 2h« cos|w(t — z)|dzdy . (1.34)

Any gravitational wave propagating in the direction given by the unitary vector 7 can thus
be decomposed into a sum of plane waves in the TT-gauge :

hy(td) = 30 e(@) [ dfha(pe i, (1.35)

A=+,%x

where ha(f) is the Fourier transform of the A = 4 or x polarization mode, and ef‘j are
polarization tensors defined as

6(ﬁ) :ﬁzﬂj—f}l’f)], e;;(ﬁ) :al’f)]—’f}zﬂj, (136)
where @ and ¢ are unitary vectors such that 7, & and © form an orthonormal basis of the
Euclidean space.

1.3 Interaction of a gravitational wave with a detector

In general, a gravitational wave passing through a detector will be composed of a su-
perposition of different plane waves as given by equation (1.33). The linearized formalism is
ideal to study the propagation of gravitational waves far away from the source and its inter-
action with a gravitational wave detector, since we can model the latter as an ensemble of
test masses. By definition, a test mass is such that its contribution to the gravitational field
is negligible. This assumption is reasonable for the mirrors at each end of an interferometer,
as their binding gravitational energy is negligible. If we consider a test mass described by
the worldline x#(\), where \ is an affine parameter, its motion is determined by the geodesic
equation ,

(e
Pat (et de?
dx2 7 eB AN dA

=0. (1.37)
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The geodesic equation can be derived from an action principle, with the point-particle action

Spp = —m/dT, (1.38)

where m and 7 are the particle’s mass and proper-time, respectively. Then, if we consider

dat
% N 0, it follows

= 0 as well, so that position of the test mass

a test mass at rest at the time of arrival of the gravitational wave,
d2z
from equations (1.37) and (1.33) that e ’/\70
does not change as the gravitational wave passes by. However, the proper distance between
two test masses (e.g., the two mirrors of a detector) does change due to the gravitational
wave’s passage, as it can be seen from the metric (1.34). Indeed, if we consider two test
masses located at the events (¢,21,0,0) and (¢, x2,0,0) respectively, so that their coordinate
distance is simply given by L = xo — x1, then the proper distance s between them is given

by

s? = (14 hy cosw(t — z/0)] ) L2, (1.39)

or equivalently, at first order in hy,,, by
1
s = (1 + §h+ cos|w(t — z/c)])L (1.40)

In general, if the events are separated by the coordinate vector E, their proper distance is

LiL;

S:L—I-hij oL

(1.41)

so that if we have two test masses placed at each end of a detector, their proper distance

evolves as
L;L;

Y 2L
Since it is the proper distance, rather than the coordinate distance, which determines the
time of flight of the laser beams traveling between each end of the detector, the presence
of a gravitational wave passing by can be determined by measuring the interference pattern
(and its changes) of the two laser beams.

§=nh + O(h?). (1.42)

1.4 Energy of a gravitational wave

In general, the energy carried by gravitational waves is a subtle subject, since it depends
on how we separate the gravitational field between a “background” and a “perturbation”
part. In particular, since any form of energy contributes to curvature of spacetime, gra-
vitational waves themselves should also be a source of spacetime curvature. However, the
linearized framework excludes the possibility of gravitational waves curving the background
flat spacetime, because the background metric is fixed to the Minkowski metric 7,,. Thus,
in order to study the energy carried by gravitational waves it is necessary to adopt a more
general point of view where gravitational waves are perturbations over a dynamical curved
background :

9w (%) = Guv (@) + Py (), || < 1, (1.43)
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where g, describes the background metric, and the condition |h,,| < 1 assumes that we
adopt a coordinate system such that the typical order of the background metric is | g, | ~ 1.
From a fundamental point of view, there is no unambiguous way to do this. In particular, one
could transfer any x dependence from g, to h,, or vice versa. In many situations however,
one can uniquely express the total metric as the sum of a background metric g,, and a
perturbation h,, if the physical system allows for a clear separation of scales. For instance,
if the typical reduced wavelength X' is much smaller than the characteristic background
curvature radius £, then it is possible to find an intermediate length scale L such that
A< L <« L, and define

v :<9m/> ) (1-443)
hw =9 — Guv (1.44b)

where (-) represents an average over scales smaller than L. Thus, the small fluctuations
corresponding to h,, have been “smoothed” over in order to produce the background metric
G-

As we will see in section 1.6.2, the LIGO-Virgo interferometers are sensitive to gravita-
tional waves of 10-100 Hz, corresponding to a reduced wavelength X ~ 50 — 500 km, while
the radius of the Earth is roughly Rg ~ 6400 km. Therefore the condition X < Rg is not
accurately fulfilled. Furthermore, the Earth’s Newtonian gravitational potential at the Ear-
th’s surface is |hoo| = 2G Mg /R% ~ 107 while the expected gravitational waves amplitudes
are of the order h ~ 1072!. This implies that any fluctuation up to 1072 of the Earth’s
potential is large compared to the gravitational waves. Thus, when considering the interac-
tion between an Earth-based detector and a passing gravitational wave, it is the fact that
the Earth’s background gravitational field is slowly varying in time when compared to the
gravitational wave that allows us to separate the scales. In other words, the frequencies fg of
the background gravitational field and the perturbation frequencies f are such that fp < f.
Moreover, we can introduce an intermediate frequency f* such that fp < f* <« f, allowing
us to take averages over many cycles of the perturbation field, giving us an operational way
to separate it from the background gravitational field. Thus, we can compute the background
metric as § = (g,), where the () stands for a spatial or temporal average, i.e., an average
over many cycles. For definiteness we will discuss of a spatial average over many wavelengths.

Our goal now is to show how the perturbation propagates on the background metric
and how its propagation affects the background metric. Using the decomposition given by
equation (1.43), we can expand the Ricci tensor in powers of h,,, as

Ry = R + RG) + RQ) + O(h?), (1.45)
where RW depends only on g, Rf}l,) is linear in Ay, and Rl(fy) is quadratic in hj,. The
computation of these quantities in terms of g,, and hy,, is straightforward but tedious, we
thus refer to [1, 2] for explicit expressions. Note that, by construction, R, only contains
low modes of the order ~ 4k, where k = 27 /L is the typical wave-vector of the background

metric g,,. Also, Rf}) only contains high-modes because it is linear in hy,. In contrast,

1. That is, X = i
2w
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RE?V) can contain both low and high-modes since it is quadratic h,, and we will therefore

decompose it as R,(EV) = (R,(L2y)> + (RLQ,,) - (RLQV)>) The low-modes remain essentially unchanged

when averaged so that they are included in the part <R,&21)>, and the remainder (Rf?l,) - (R,(fl,)>)

contains thus the high modes of ng,) Recasting the Einstein equations as

1
R, = 817G (TW - 2Tgw,) , (1.46)

the above decomposition allow us to split the Einstein equations in a high-mode and a
low-mode part. The low-mode part is obtained by taking the average of the field equations

1
Ry, = —(RQ)) +87G <TW - 2Tgm,> , (1.47)

and the high-mode part can be obtained by taking the difference,

1

1
R() = —(RZ) — (RD)) + 8rG (TW = 5T 9w — (T — 2Tgw,)> . (1.48)

We can define an effective stress-energy tensor for matter TW such that

1-_
Tuu - iTguu = <Tuy -

1

2T9W> ; (1.49)

where we introduced the trace T = gWT/“’. Let us also define

1 1
I <Rff) _ R(2)9m/> , (1.50)

where R?) = g R,(?,,) is the trace of RLQV) Finally, introducing the trace t = g"’t,, =

%(R@)), we can express equation (1.47) as

R, — QQWR =81G (T + tuw), (1.51)

which shows the contribution of the perturbation to the background curvature. In equations
(1.47) and (1.51), the scale of variation of the left-hand side is

_ _ 1
Ry ~ %G ~ ok (1.52)
Using the explicit form of <REL2V)> one can show [2] that it varies on scales

(R)) ~ (0h)* ~ (};)2 - (1.53)

Thus, in the case absence of matter fields the Einstein equations imply that 2

h L
S~ (1.54)

2. Here h denotes the Planck constant, so that AG has units of lengths squared.
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which determines the relative strength of the typical background Riemann tensor ~ 1/£2
and the gravitational wave curvature t,, ~ h?/ X2, In the presence of matter fields we will

have

h L
3 <75 (1.55)

since now the gravitational waves are not the main source contributing to the background
curvature.

Far away from the source, the stress-energy tensor of gravitational waves can be expressed
in the TT-gauge and is found to be [1, 2]

1 TT ap
= %<8ﬂh0¢6 8yhTT>, (156)
where h;l;T is assumed to be expressed in the TT-gauge. Thus, in order to compute t** we
need the Ricci tensor up to O(h?), and in the end, the energy carried away from the source
by the gravitational wave (and eventually transferred to a gravitational wave detector) can
be expressed as

2
C . s i
100 — 327TG<hiTjT P, (1.57)

or equivalently, in terms of the plus and cross amplitudes as

2

C . .
90 = 167rG<hi + h2). (1.58)

1.5 Emission of gravitational waves

Let us then consider the problem of the generation of gravitational waves by a source,
i.e., let us solve equation (1.19) with 7}, # 0. Far away from the source, the solution with
no-incoming radiation conditions in the TT-gauge, is given by

1

hij(t, T) = 4G Ay a(n) /dgﬂﬁ' e f,‘Tkz (t—|7 2,7 , (1.59)
where 1 = Z/|Z|, and Ay is the projector tensor
o 1
Aijwi(ft) = PiPji — 5 Py P (1.60)

defined in terms of Pj;(7) = 0;; —n;n;. The integral in equation (1.59) corresponds simply to
the convolution of the source with the retarded Green function for the wave equation (1.19).
The projection into the TT-gauge is used in order to get rid of spurious gauge modes, but
one must bear in mind that this is only possible in regions not containing matter fields.

Far away from the source, the field vector Z is much larger than the vector & parametri-
zing the source, therefore we can expand |Z — 7’| as

d2
|;E—:E”:r—:i"-ﬁ+(9<> , (1.61)
r
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where r = |Z| and d is the typical size of the source. Thus we can expand the source as
To (t— |2 —2,7) =T (t —r+7 - 0,7

~ T (t -, f’) + :E'iniangl (t —r, :1?") + w'ia:'jninjﬁngl (t -, :Z") +....
(1.62)

The gravitational field generated by the source is assumed to be sufficiently weak so that
the linearized approximation is justified. For a self-gravitating system, this condition also
implies that the internal motions be small, and the typical orbital speed of the source v
satisfies v < 1. Since every power z™ contributes with an order O(d™) and each time
derivative gives a factor O(wg), where wg is the typical frequency of the source satisfying
wg ~ v/d, then we see that equation (1.62) is an expansion carried in powers of the source
speed v. Defining the momenta of the stress tensor 7% as

S (1) = / & T (1, 7), (1.63)
SiF(f) = / &z T (t, ) (1.64)
SiH (g = / & T (¢, D)aka, (1.65)

and so on and so forth, then we can express (1.59) as
hiy (4 7) = G A () SH(t =7, &) + 0 (1= v, ) 4 PR SR (4 )
1g\bs r ij,kl ) m s 5 , e
(1.66)
We can now express the momenta of 7% in terms of the momenta of T% and 7% using the

conservation law 9, T"” = 0. Indeed, we can define the momenta of the energy density 79
as

M= / &z T, ) | (1.67)
M= / Bz T, 7) o | (1.68)
M = / &Pz T, 7) 2'ad | (1.69)

and so on, as well as the momenta of the linear momentum 7% as

Pl = / Pz TO(t, 1), (1.70)
P = / Pz TO(t, 7) 27, (1.71)
piik — / APz TO(t, 2) 2 2® | (1.72)

and so on and so forth. Then the conservation law (1.20) allow us to find, after straightforward
computations, that

D
§ = S (1.73)
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and similarly for the higher orders in (1.66). For instance, the next to leading order is given
by

Giik — EMUk +3 (Phik 4 pidk g phid) | (1.74)
so that we can express equation (1.66) in terms of the momenta of the energy density and
the linear momentum.

In particular, the main contribution to gravitational radiation, in an expansion on wv,
comes from the source’s quadrupole

g S B
QY = /d3x p(t, T) (33233] - 37“25”) , (1.75)

where p(t,#) = T% is the source’s density and r = |Z|. Indeed, the tensor M% can be
decomposed into irreducible representations of the rotation group as

~ 1 1.
M — (M” - 35”Mkk> + 58 My

, (1.76)
=QY + §5i‘ijk ,

and clearly the trace %(Vj My, will vanish as it contracts with the tensor A;; ;. Thus, it is
possible to show that at a distance r far away from the source the emitted gravitational field
is, again in the TT-gauge, given by

[hij(t, T)]quaa = ?Aij,kl(ﬁ)ka(t -r), (1.77)

and higher-order multipoles contribute with higher powers of the small parameter v. The
power radiated that is associated to this moment is given by

Pquad = E<QUQ ]> . (178)

This formalism already allows us to understand that, due to the radiation of energy from
the source there is some energy carried away by the gravitational modes, and therefore the
orbital motion will shrink. To illustrate this point, let us consider a binary system composed
of two masses m1 and mg, following a circular orbit of radius r12. Then, the energy of the
binary system Ebinary = Fkinetic + Epotential is given by

G mq me9
Fonary = ————— 1.79
binary 27’12 ( )
Since the radiated energy is being drawn from this energy, we have that Ebinary = —Pquad <0,

which implies 712 < 0, so that the orbital radius diminishes as well.

Let us stress that the fact that the leading contribution to gravitational radiation comes
from a quadrupole moment, instead of a monopole or dipole moment, is due to the conser-
vation of energy and momentum. Indeed, one can easily show that the energy-momentum
conservation law (1.20) implies that

M=0 and P'=0. (1.80)
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In a more qualitative way, a spherically symmetric system such as a pulsating spherically
symmetric star could not radiate since the gravitational potential far away from the source
depends only on the star’s mass, and as such it will not be affected by the monopole pulsation.
Thus, perturbations in the metric can not be propagated from a spherically symmetric source
due to mass conservation. The same argument forbids monopole radiation in electromagne-
tism, since the “monopole” term is the electric charge and is protected by a conservation
law. However, while in electromagnetism the leading radiation term is dipolar since there
is no conservation law protecting the electric dipole, in our case the “gravitational dipole”
is proportional to the linear momentum of the source. Thus, conservation of momentum
forbids dipole radiation in general relativity in a similar fashion as to monopole radiation.
This means, in particular, that any gravitational system which is symmetric with respect to
a given axis will not be able to emit gravitational waves.

1.6 Gravitational wave astronomy

1.6.1 Binary pulsars

The first experimental confirmation of the existence of gravitational waves came with the
discovery in 1974 of the first binary pulsar by Hulse and Taylor, PSR J19154+1606 [5], and
the subsequent long term study of its properties, leading particularly to the measurement of
the binary’s orbital decay [6]. This measurement has been found to be in excellent agreement
with the prediction for the binary’s energy loss due to the emission of gravitational waves as
computed by the quadrupole formalism of general relativity [6].

One of the key features of pulsars is that they can be used as extremely precise clocks
[7]. In order to achieve this it is necessary to take into account the short-term variability of
pulses, called the “weather” of the pulsar, and which can be treated as a noise in the source.
Although the profile of each pulse within the same pulsar may wildly differ, the averaged
profile of many pulses tends to remain very stable. Thus, using this averaged profile as a
reference template so as to eliminate the effects of the weather of the pulsar, the time-of-
arrival (TOA) of individual pulses can be computed from timing models. It is then observed
that, if we average over several pulses, then the pulsar behaves as an accurate clock (see e.g.,
[7, 8] for details).

In the case of PSR J19154-1606, the orbital parameters of the binary system are nowadays
very well known after more than 30 years of observation [6]. In particular, the pulsar was
found to have a (spin) period close to 59 ms, but it has a periodic modulation due to the
Doppler effect induced by its orbital motion. From this modulation it is possible to find,
with good accuracy, an orbital period P, ~ 8 hours, implying thus an orbital velocity of the
order of v ~ 107 3¢.

At a Newtonian level, the binary’s binding energy Ej can be defined as

Eb = - Géum y
a
ey (1.81)

where a is the semi-major axis, u = mymg/m is the reduced mass and m = my + mq is
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Pb 2 CL3

the total mass. In the second line we used the Kepler’s third law, (2 = am Then,
m m

the energy carried away by gravitational waves can be related to the rate of change of the
gravitational binding energy through the balance law

Eb = _Pquad7 (182)

where Pyuaq is the gravitational wave flux given by (1.78), and can be thus computed from
the measured properties of the binary. This energy loss can in turn be easily related to the
rate of change of the orbital period P, using equation (1.81), as

b, 3 Ey

B 32E (1.83)

The rate of change P, is one of the post-Keplerian parameters of the orbit [9]. These
results remain correct when computing the energy loss within a post-Newtonian scheme,
without invoking any energy-balance argument [10].

In the case of the Hulse-Taylor binary pulsar, the masses of the pulsar and its companion
are found to be [6] m, = 1.4414(2)Mg and m. = 1.3867(2) M, and thus the Keplerian
semi-major axis is @ ~ 2.2 x 10°m ~ 3R, where R is the solar radius. These masses can
be computed from the advance rate of the periastron (w), averaged over one orbital period
[10]. From the given masses and the relatively short distance by which they are separated,
and from the fact that no eclipse is observed, it is believed that the pulsar’s companion is
also a neutron star. This conclusion thus validates a model where the masses are taken to
be point particles.

The evolution of the orbital period is then given by the formula [9, 10, 2]

' 5/3 -1/3 —5/3
p, = L92rG myme(my, + me) (Pb> (1 B2y 37 4) , (1.84)

bcd (1—e2)7/2 o HETRRE T
where e ~ 0.61 is the eccentricity of the orbit. This is a consequence of equation (1.83).
The comparison between this prediction and the actual rate of change of the binary’s orbital
period (Pb)measured is shown in figure 1.1.

More precisely, after taking into account for the relative motion between the Earth and
the pulsar due to the Galaxy’s rotation, the ratio between the measured orbital period rate
and the prediction of general relativity is [11]

(Py)measured/ (Py)gr = 1.0013(21) . (1.85)

This provides a first test of general relativity, and a proof of the emission of gravitational
waves by the system. Let us recall that Py is a function of time, and that this given estimate
corresponds to data released in 2004 by Weisberg and Taylor [6].

In general, the remarkable rotational stability of pulsars and the precision of timing mo-
dels allow one to dig further into the physics of the system [12]. Indeed, even if a given pulsar
were a perfectly stable periodic source, the times-of-arrival of its pulses would be modulated
by several factors such as the motion of the Earth around the sun, the motion of the solar
system in the Galaxy and other peculiar motion effects. Most importantly for us, pulsar
timing allows us to measure some general-relativistic effects [12, 13, 14]. More precisely, the
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FI1GURE 1.1 — Comparison between the orbital decay prediction for PSR B1913+16, using
general relativity (in solid line), and the measured orbital decay (in points). The data was
taken at the Arecibo radio telescope between 1975 and 2005. Figure taken from [6].

modulations to the time-of-arrival of pulses coming from a pulsar can be decomposed as a
sum of effects : the Roemer time delay due to the motion of the Earth in the solar system,
the Shapiro time delay due to the effects of the gravitational field on the propagation of
light, and the Einstein time delay due to the fact that the measurement concerns proper
time instead of coordinate time (see e.g., [2]).

1.6.2 Gravitational wave interferometers

The main idea behind interferometric detectors is to exploit the great accuracy of inter-
ferometers at measuring changes of interfering patterns between its arms. Then, as it was
pointed out in section 1.3, one can relate the time of flight shift to the amplitude of the
gravitational wave h;; through equation (1.42). Although this idea is quite simple, the im-
plementation of it took more than 40 years of preparation and a huge collaboration to realize
it in practice.

It can be shown (see [2] for instance), that in order to detect gravitational waves at
frequency fgw, the optimal length L of a Michelson interferometer is given by

(1.86)

L ~ 750 km (100 HZ> .

gwW

In the case of Earth-based detectors such as the Laser Interferometer Gravitational-Wave
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Observatory (LIGO) and the Virgo interferometer, one is therefore forced to implement
resonant Fabry-Perot cavities in each arm so as to reach an effective length of a few hundred
km out of the 3-4 km of the actual instrument arms. This means that LIGO is optimized
to detect signals around 100 Hz, and among possible sources in this frequency band we find
stellar mass black hole binaries [15] and neutron star binaries [16], and more broadly stellar
mass objects, for instance pulsars [17] and supernovae [18] at low redshift [19]. See [20]
for prediction rates of compact binary coalescences. Among the main complexities of the
LIGO-Virgo project, we can mention the mechanical stability of the mirrors reflecting the
laser beams at each end, the implementation of the Fabry-Perot cavities, the vacuum pipe
required for the cavities, and of course the problem of minimizing the noise coming from of
a wild variety of sources. See [21] for more details on these technical issues. The general
optical layout of the LIGO interferometers is represented in figure 1.2. Given this setup, the

End test

T | mass
£ L.
<
Input test
Electro- rr?asses
optic n
25W  modulator L
22w || soow ]
Lpr Beam
Power ) Splitter 100 kW
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FIGURE 1.2 — Scheme of the optical layout for the LIGO interferometers. Figure extracted
from [21].

actual measured signal corresponds to h(t) = D% h;;j(t), where D% is a tensor characterizing
the geometrical features of the detector.

On the 14th of September 2015 at 09 :50 :45 UTC, the LIGO-Virgo collaboration detected
the first black hole binary merger in history [22], being thus the first direct detection both of
gravitational waves and of the black holes that produced them. While Virgo was not online
yet, both of LIGO’s observatories captured the signal in their data, and the significance
of the detection is estimated to 5.1 sigma. The reconstructed waveform h(t) is shown in
figure 1.3, and it corresponds to the coalescence of two black holes of masses 36f2M@ and
29ff41M@, resulting in a final black hole of mass 62f3M@, radiating thus an energy equivalent
to 3f8:§M@ [23]. This event being the first detection was remarkable, since at the time it was
not widely expected to find black holes with such high masses [23, 24]. Since then, five more
events have been found and released within the first two runs O1 and O2 of the LIGO-Virgo
collaboration, so that our data for (stellar mass) black hole population as well as for formation
models has significantly improved [25, 24]. Furthermore, since 2017 the Virgo interferometer
joined LIGO in the search of gravitational wave signals, allowing for the first triple detection
of a binary black hole merger (GW170814). The Virgo participation was also essential for
the spatial localization of GW170817, leading to the first multi-messenger detection of a
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FIGURE 1.3 — Reconstructed waveform h(t) for the detection of GW150914 in Livingston
(left) and Hanford (right). Figures taken from [23]

neutron star - neutron star merger [26]. Indeed, an associated Gamma Ray Burst (GRB)
was observed by the Fermi Gamma-ray Burst Monitor, just 1.7s after GW170817 [27]. This
double detection allowed for further scrutiny in the electromagnetic sector, leading to the
discovery of a kilonova and its host galaxy located at 4Of§4 Mpc distance from us [28].
The nearly coincident time of arrival of the two signals represents a strong constraint on
modified theories of gravity. Indeed, this result implies that the gravitational (tensorial)
modes propagate at the same speed as the photons, to within 1 part in 10'°.

These detections have been possible thanks to a deep understanding of the nature of the
expected signal, as well as of the functioning of the detectors, and more precisely of their
noise spectra. If we model the detector signal s(t) as composed by the sum of the gravitational
wave signal h(t) and some noise n(t), as

s(t) = h(t) +n(t), (1.87)

then the problem consists of distinguishing h(t) from n(t). The noise can be characterized
by measuring the spectral noise sensitivity S, (f) as a function of the frequency f, which is
shown in figure 1.4. As can be seen from figure 1.4, the detector has a peak of sensitivity
around 100 Hz. At lower frequencies, the detector’s performance is limited by seismic and
Newtonian noise, while at high frequencies the main limitation comes from the quantum shot
noise of the lasers. Thus, the observations below 1-10 Hertz would be difficult for Earth-based
detectors even if we could further increase the effective arm-length of the interferometers, as
seismic and Newtonian noise will still be there.

The difficulty of gravitational wave detection comes from the fact that we expect to have
n(t) 2 h(t), so that we must be able to extract an extraordinarily small strain amplitude,
typically of the order of h ~ 1072!, from a comparatively large noise background. In this
context, digging out the gravitational wave signal requires detailed knowledge of the typical
scales of variation of the noise n(t) as well as the expected waveform for h(t). More preci-
sely, in order to extract the signal from the noise one can cross-correlate the output of the
detector s(t) with a bank of templates that predicts the form the signal according to the
equations of general relativity. This match-filtering procedure [29, 30, 31, 32] has the goal of
finding a template with the largest correlation with the output of the detector. The methods
employed to produce the templates depend on the particular source that one is aiming to
detect [33]. Thus, templates banks [34] can be produced via post-Newtonian theory [35],
numerical relativity (e.g. [36, 37] or a perturbation theory approach [38] (e.g. the self-force
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FI1GURE 1.4 — The average spectral noise sensitivity of the Advanced LIGO detectors mea-
sured in order to determine the significance of GW150914. The curve in red corresponds to
Hanford and in blue to Livingston. Figure taken from [23].

formalism [39, 40]).

In the case of a space-based detector such as the Laser Interferometer Space Antenna
(LISA), there would be no seismic noise limiting the frequency band from below. Moreover, in
space one is allowed to use larger arms, and indeed the project intends to place its satellites
at a distance of 2.5 million km, and connecting them by six laser links [41]. The LISA
project builds upon the success of the LISA Pathfinder mission [42], and it is expected to be
launched around ~ 2030 [41]. This would open a new window in the frequency range from
10~* Hz up to 10! Hz, corresponding to the heaviest compact objects in the universe. In
particular, supermassive black holes ranging from 10% — 10 up to 107 M, are expected to be
present at the center of almost every massive galaxy in the local universe [43, 44, 45, 46], and
therefore when two galaxies merge we expect their black holes to merge as well [47, 48, 49].
This merging would produce signal in the LISA band [41]. According to their masses they
could be visible up to z ~20 [50], or even larger if they exist. The limitation here is due
to astrophysics and not to the instrument. Otherwise said, supermassive black holes are not
expected to exist above redshift z ~ 20 [50, 51], yet LISA has no intrinsic limitation to detect
sources of a larger redshift. Another important source for LISA are galactic binaries, and in
particular white dwarf binaries, for which around 10000 of them should be detectable in the
galaxy alone [52, 53]. These compact binaries emit a continuous and nearly monochromatic
gravitational wave signal. A few of them have already been observed in the electromagnetic
band, and could be used as verification binaries [54, 55, 56] . We know that these will be
detectable by LISA, but we expect many more to be visible. In fact, some ~ 10° binaries are
expected to be individually resolved by LISA [57, 58]. In addition to these resolvable sources,
we also expect to observe a background signal due to those of the white dwarf binaries which
will not be resolved by LISA [52, 58].

A third type of source for LISA are extreme mass ratio inspirals (EMRIs) [59]. These
are black holes binaries where one of the components is a supermassive black hole of mass
of 10° — 10% M, and the other is a stellar massive black hole of a mass of ~ 10 — 102 M.
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EMRISs evolve very slowly and they spend a large number of orbital cycles in the LISA band
before merger [60, 61], allowing for a great accuracy in the measurements. In fact, beside
the standard binary parameters such as the mass and spin of its components, EMRIs could
be used to measure higher multipoles of the supermassive black hole allowing thus for tests
on deviations of the Kerr metric [62]. This provides a test for the no-hair theorem of general
relativity, which states that all stationary black hole solutions to the Einstein equations (and
the Maxwell equations of electromagnetism) can be completely characterized by their mass
and angular momentum (and electric charge, if any) [63, 64, 65]. For more details on EMRISs,
see e.g. [40].

Finally, with this new gravitational wave observatory one would be able to study the
early phases of inspiraling binaries much before their merger, entering the LISA frequency
band months or even years before disappearing for a few weeks and reentering in the LIGO
frequency band, so that a follow up could be set up between space-based and ground-based
detectors [66]. More precisely, LIGO-Virgo binaries will spend some time in the LISA band
before disappearing and entering the LIGO-Virgo band instead. Using the measurements
from LISA one could predict the entry to the LIGO-Virgo band within 10 seconds [67].
More interesting for this work though, is the possibility of constraining the dipole emission
from LIGO-Virgo binary black holes through LISA [68]. Indeed, most extensions of gene-
ral relativity, and particularly Lorentz violating gravity, predict the violation of the strong
equivalence principle [69, 70, 10]. This effect is measured by a new parameter, called the sen-
sitivity o, that depends on the structure of each body as well as of the gravitational theory.
The physical explanation of the sensitivity will be explored in further detail in chapter 4. This
deviation from the universality of free fall leads to a modification of the flux Eqw emitted by
a binary system as compared to the flux predicted by general relativity Eqgr. More precisely,
generically there is a new dipole contribution modifying Einstein’s quadrupole formula. The
gravitational wave flux can be expanded in a post-Newtonian scheme as [71, 72]

v

1+B<“>2+0(Ul,02)+0<;>] , (1.88)

Cc

EGW = EGR

where o1 and o9 are the bodies’ sensitivities and B « (0] — 02)2 is a parameter whose

precise form can be computed for each given theory. Since the flux modification enters as
-2

a | — correction, i.e. is a -1PN correction, it can actually dominate the flux emission
c

during the early inspiral, provided that the difference |01 — 02| is sufficiently different from
zero. Such an energy loss via a new channel could dramatically reduce the time duration
of the inspiral phase, and therefore the arriving time of the binary into the LIGO-Virgo
band. Consequently, measuring the gravitational wave flux of binaries allows us to constrain
the parameter space of theory under study via the measured bounds on B. Let us remark
that, since the sensitivities of stellar objects such as neutron stars and black holes have no
reason to be the same, we have that bounds on B obtained from a binary pulsar system are
independent from bounds obtained by a binary black hole system. Otherwise said, this is a
test of the strong equivalence principle and the universality of free fall. In this way the stellar
mass binary black holes in the range of the current LIGO-Virgo detections, if detected prior
to their merger by LISA, can give bounds on B of the order of |B| < 1078 when observed by
LISA alone or |B| <107 — 1078 when observed both by space and ground-based detectors
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[68]. This illustrated in figure 1.5, where the aforementioned sources are displayed in the
horizontal axis and different points correspond to different observation modes.
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FIGURE 1.5 — 1o constraints on the parameter B from various black hole binary sources.
Among others, stars and plusses stand for GW150914-like BH binaries, filled circles stand for
massive BH binaries, and filled triangles stand for EMRIs/IMRISs (i.e., extreme/intermediate
mass ratio inspirals). Different points correspond to different instrument configurations :
“Curr. aLIGO” stands for LIGO at the time of GW150914, “Desgn alLIGO” stands for LIGO
at design sensitivity, “NxAx” are various six-link LISA configurations, where N1/N2 are
respectively pessimistic/target low frequency noise, and A1/A2 are respectively 1Gm/2Gm
arms, “Classic LISA” corresponds to a six-link 5-Gm arms and low-frequency noise at the
target level design, “C-NxAx” stands for a joint observation LIGO-LISA, and finally “aLLIGO-
LISA” stands for joint observations between LIGO and Classic LISA [68]. The dashed line
stands for the current constraint on vacuum dipole radiation from the low mass x-ray binary
A0620-00 [73]. Figure extracted from [68].

The same approach works for either supermassive black hole binaries or extreme (interme-
diate) mass-ratio inspirals (i.e., systems composed of a stellar (intermediate) mass compact
object orbiting a supermassive black hole) as they can enter LISA’s detection frequency band
at much earlier stages [66], where dipole emission can become predominant, and this can
lead to bounds on B of up to |B| < 1077 — 107 for the former, and |B| < 1078 — 1077 for
the latter [68].

Let us remark that, in the case of LIGO-Virgo detectors, this strategy would not prove
very efficient, as the black hole binaries enter into the detector’s frequency range at a rela-
tively late stage where v ~ ¢, and thus the bounds on B are only of the order of |B| < 1072
[74]. This is reflected in figure 1.6, where we can see that binary black hole mergers (in this
case GW150914) are more efficient at testing higher v/c orders than pulsars, while for lower
PN orders it is the binary pulsars that lead to the most stringent constraint [75].
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FIGURE 1.6 — (Left panel) Extracted from figure 6 in [75]. 90% upper bounds on the fractional
variations of the PN coefficients with respect to their GR values. In orange squares are the
bounds obtained from the single-parameter analysis of GW150914. In blue triangles are the
bounds extrapolated exclusively from the measured orbital-period derivative Py of the double
pulsar J0737-3039 [76].



2 — Lorentz Symmetry and its
violation

This thesis aims to test Lorentz symmetry in gravity, particularly by using gravitational
waves from black holes. Naturally then, a brief review on this cornerstone principle of Physics
is appropriate.

First, in order to motivate the study of Lorentz symmetry in gravity, we will begin by
recalling its origin and definition from special relativity in section 2.1. We will also stress in
that section the fundamental role of Lorentz invariance in the Standard Model of Particle
Physics. In section 2.2 we will argue that there are two empirical principles laying on the
foundations of gravitational theory : the Einstein’s principle of equivalence and the principle
of special relativity. There we will describe the components that build up the equivalence
principle, making clear the role of Lorentz symmetry as one of its ingredients, and therefore its
place on the foundations of gravitational theory. After that we will briefly review the diverse
class of experiments giving credit to these ideas. We will conclude this section arguing that,
based on these well-tested principles, extensions to general relativity should belong to the
class of theories called metric theories of gravity.

Next, following a quick discussion on why we should care about testing Lorentz symme-
try in gravity, we will show how Lorentz violations can be introduced respecting empirical
foundations and mathematical requirements. More specifically, in sections 2.3 and 2.4 we will
break Lorentz invariance by introducing a dynamical time-like vector field in two different
metric theories of gravity, Einstein-sether and khronometric theory. We will show how the
latter is related to the low-energy limit of a proposal for quantum gravity, namely Horava-
Lifshitz gravity [77, 78]. Before engaging into any analytical work, in section 2.5 we will
pause to discuss the current state of the art regarding observational constraints on Lorentz
violations for these theories.

We will end this chapter by exploring some general features concerning Lorentz-violating
gravity in section 2.6, and in particular regarding black holes in these theories. This last
section will lay the foundations for the chapters that follow.

21
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2.1 Lorentz symmetry in non-gravitational physics

The principle of independence of the laws of Nature with respect to the observer’s (uni-
form) motion represented a milestone in the history of Physics.

In order to explicitly see how Lorentz symmetry arises from this principle, we should
start from the beginning of it all : let us introduce the notion of inertial frame. By definition,
an inertial frame is a reference frame where the motion of bodies that are not subject to any
external force is constant, i.e., they move with constant velocity. It follows then that any
reference frame moving with constant speed with respect to an inertial frame will also be an
inertial frame itself. Now, experience seems to show (see section 2.2) that Nature does sa-
tisfy the relativity principle, which states that the laws of Nature are the same in all inertial
frames. This means that the equations describing Nature do not change when we transform
spatial and time coordinates by passing from one inertial frame to another.

The first appearance of this principle dates back to Galileo [79], who stated it for the
laws of classical mechanics. Galileo’s relativity principle can be stated in a mathematical way,
requiring that the laws of mechanics be invariant with respect to a set of coordinate trans-
formations called Galilean transformations. Let us consider an inertial frame S describing
events by the set of coordinates {¢,z,y, z}, where ¢ is the time and (z, y, z) are Euclidean
spatial coordinates. Let us also consider another reference frame S’ described by an analo-
gous set of coordinates {t',2’,y/, 2'}. Let us suppose that their 2 and 2’ axes coincide, that
S’ is moving with respect to S with the speed v along the z axis, and let’s further suppose
that both origins coincide at t = ¢ = 0 and that the 3/ and 2’ axes are parallel to the y and
z axes, respectively. Then, S’ is an inertial frame as well and the Galilean transformation
between them would be given by the equations

t' =t, (2.1a)
¥ =r—vt, (2.1b)
Y =y, (2.1¢)
Z =z. (2.1d)

These very simple transformations laws are at the heart of Newtonian mechanics and they
are true to high accuracy in the non-relativistic regimes, defined as such that v < 1 (let us
recall that we use units such that ¢ = 1). Unfortunately though, the laws of electromagne-
tism were found not to be invariant with respect to these transformations, and in particular
Galileo’s relativity principle would imply a dependence of the speed of light with respect to
the observer’s reference frame. A possible interpretation was given in terms of a putative
“aether medium” where the electromagnetic waves would propagate (which has absolutely
nothing to do with the “zether field” to be introduced below). The experiments finding no
dependence of the speed of light with respect to the observer’s state of motion, such as
Michelson-Morley’s interferometer experiment, were a strong clue towards the modern form
of the relativity principle.

The laws of electromagnetism were in fact found to be invariant under another set of transfor-
mations, found by Lorentz and Poincaré. Based upon this new invariance, Einstein proposed
his theory of special relativity in 1905. It enclosed Newtonian mechanics as a low-speed (non-
relativistic) limit, and shed a new light on the electromagnetic interaction as well. Taking
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the same definitions for the inertial frames S and S’ as above, the relation between their
respective coordinates is given now by the Lorentz transformations :

ct' =y(t —vx), (2.2a)
7 =y(x —vt), (2.2b)
y =y, (2:2¢)
Z =z, (2.2d)

where we introduced the Lorentz factor between the two frames,

1
7 V1—02

(2.3)

This transformation is also called a “Lorentz boost” from the inertial frame S to S’. Thus,
non-gravitational physics is, within experimental accuracy, invariant under these transforma-
tions, and the symmetry associated to this invariance is what we refer to Lorentz symmetry.
We note that time and space coordinates get mixed by these transformations, breaking
down the hypothesis of a “universal time flow” that is implicit in the transformations (2.1).
Furthermore, it follows that three-dimensional vectors such as the velocity v are invariant
quantities only in the non-relativistic regimes.

Let us remark that, if we consecutively apply two Lorentz boosts £1 and Lo associated res-
pectively to the velocities v; and vo, one after the other, then the resulting transformation
is equivalent to a single Lorentz boost L3 associated to the speed v3, given by their com-
position L3 = L9 0 L1, but for which vy # vy + vo. That is to say, velocities are no longer
added linearly as in the non-relativistic case. Furthermore, the inverse of the transformation
boosting S’ to S would be simply obtained by replacing v into —v in (2.2). And finally,
it is clear that by setting v to zero we obtain the identity transformation. Thus, Lorentz
transformations behave as a group (having a composition rule, as well as an inverse and
identity transformations), and we can use the tools of group theory to further study Lorentz
Symmetry.

From the point of view of group theory, if we assume that Lorentz invariance is a fundamen-
tal symmetry of Nature, then physics must be described in terms of representations of the
Lorentz group. In this context, a major role is played by irreducible representations, and in
the case of the Lorentz group, the different types of irreducible representations are classified
by none other than their spin [80]. Thus at this stage we can readily appreciate that Lorentz
invariance is at the core of all particle physics, and in particular of the Standard Model of
particle physics, as the construction of all its fields lies heavily on Lorentz invariance.

We could even go further since, from a field theory perspective [81, 82, 83], it would be
enough to start from quantum mechanics and Lorentz symmetry to be led to the conclusion
that a massless spin-1 particle (the photon) must couple to conserved charges, whereas a
massless spin-2 particle (the graviton) must couple to all sources of energy and momentum
with the same strength (satisfying thus the equivalence principle). At any rate, it is manifest
that Lorentz invariance plays a major role in theoretical physics and the purpose of this
section was to expose this for the matter sector.
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2.2 Lorentz symmetry and the equivalence principle

We now turn our attention to gravity. The indisputable starting point here is the equi-
valence principle, for it lies deep at the heart of gravitational theory.

In its original form, it states that the motion of freely falling objects immersed in an
external gravitational field is the same for all bodies, regardless of their internal structure
and composition. This statement is also referred to as the Universality of free fall.

One can also reformulate this principle in a more similar way to what Galileo and Newton
did, stating that the inertial mass of a body my, as it enters into Newton’s second law, is
the same as (or proportional to) its gravitational mass mg, as it couples to the gravitational
field, for instance. Nowadays, this corresponds to what we call the weak equivalence prin-
ciple (WEP). Thus the ratio m;/mg would be a constant independent of the test body’s
composition and we simply talk of its “mass”.

In its modern form [84], the Einstein equivalence principle contains the weak equiva-
lence principle as an ingredient, but goes further by stating that both local position invariance
(LPI) and local Lorentz invariance (LLI) are also true. Local Lorentz (position) invariance
is the statement that the outcome of any non-gravitational experiment is independent of the
velocity (position) of the freely-falling frame in which it is performed. Note that while the
universality of free fall is a purely mechanical statement, the principles of LPI and LLI are
of a much more universal character since they take into account all observable phenomena,
save gravitational experiments. Let us remark that, at least in principle, one could conceive
the property of local Lorentz invariance of non-gravitational experiments to be independent
to the property of Lorentz invariance in gravitational experiments, and the issue of an un-
derlying interdependence will be discussed in 2.2.1. There is wide experimental evidence in
favor of the Einstein equivalence principle, coming from various tests of each its three defi-
ning statements (WEP, LLI and LPI). First, deviations from the weak equivalence principle
have been tightly constrained through E6tvos-type experiments. The main idea behind this
sort of experiment is to look for differences in the ratio of inertial and gravitational masses,
my/mg, for laboratory-sized bodies (i.e., whose gravitational binding energy is negligible) of
different composition. Indeed, if the motion of two test bodies immersed in a gravitational
field g were to differ, then one could state that their inertial and gravitational masses are
no longer equal, and their accelerations a are given by mia = mqgg. Thus, measuring a dif-
ference in acceleration corresponds to measuring a difference in gravitational masses. Since
the inertial mass mp of each test body is composed of different forms of mass-energy, such
as rest energy, electromagnetic self energy, et cetera, if any of those were to contribute in a
different way to the gravitational mass mg, this would result in a different acceleration a.
One could conceive a first order correction in the composing mass-energies to the inertial
mass expressed as

mg = mp + Z nEA, (2.4)
A

where E4 is the self energy of the body generated by the interaction A. The dimensionless
parameter n? is called the E6tvos parameter and it measures the strength of the violation
of the weak equivalence principle associated to the interaction A. Then, if we measure the
difference in the acceleration a1, as between test bodies of inertial mass m and mo, subject
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to the same gravitational field, we can get constraints on the Edtvos ratio n defined as
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Recently, the first MICROSCOPE [85] data has bound the deviations to no more than 1
part in 10 for bodies whose gravitational binding energy is small, and new proposals have
been put forward to test the weak equivalence principle for quantum-entangled systems [86].

Second, local position invariance has been tested by gravitational redshift experiments,
which put bounds on a possible spatial dependence of the gravitational redshift of atomic
clocks (see for instance [87]), while local time invariance is tested through measurements of
the possible evolution of the fundamental constants of non-gravitational physics (see [10]
for more details and examples).

Finally, local Lorentz invariance has been tested by a broad class of experiments, e.g.,
by tests of time-dilation (e.g., [88]), tests of the independence of the speed of light on the
source’s velocity (e.g. [89]), tests of the isotropy of the speed of light (e.g. [90]), and of course
the classic Michelson-Morley experiment and its successors [91]. Last but not least, from a
particle physics perspective, deviations from Lorentz symmetry arising in the matter sector
[92, 93, 94, 95] have been tightly constrained by using the standard model extension [96,
97, 98]. This model-independent formalism has proven very efficient on bounding violations
of Lorentz symmetry in the matter sector [93] or in the sector coupling matter to gravity
[99].

Actually, it is tempting to conclude that any “complete” physical theory should have
theoretical connections between the different statements forming the Einstein equivalence
principle, so that they would not be all independent. This is known as “Schiff’s” conjecture.
While it might be worked out for a given theory, it is hard, if even possible, to find a com-
pelling mathematical “proof” working for every single gravitational theory. Thus we will not
develop this idea further and we mention its existence merely for completeness.

Given this firm empirical data we will not try to challenge Lorentz invariance in any of the
previously stated forms, namely for the interactions within matter (given by the Standard
Model of particle physics) or between matter and the gravitational field (i.e., the universal
coupling of matter to the metric). On the contrary we will embrace the conclusions that fol-
low from the Einstein equivalence principle and assume that there is only one gravitational
field, the metric, that couples to matter in an universal way.

Yet there still is ample playground for us if we try to check for Lorentz violations in the
gravitational sector, i.e., gravity coupling to itself. We could ask what happens, for instance,
when we try to generalize the Finstein equivalence principle to bodies whose gravitational
binding energy is not negligible. This idea can be stated as the strong equivalence principle
(SEP), and since it is a central concept for the rest of this work we will state it more expli-
citly.

Thus, in an analogous manner to the previous construction of the Einstein equivalence prin-
ciple, the strong equivalence principle is composed of three parts : the claim that (1) the
principle of free fall is also valid for self-gravitating bodies as well as for test bodies (generali-
zation of WEP), (2) the outcome of any local test experiment is independent of the position
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of the freely-falling frame (generalization of local position invariance), and (3) the outcome
of any local test experiment is independent of the velocity of the freely-falling frame (gene-
ralization of local Lorentz invariance). The mere conception of this principle suggests new
paths to explore, for we may want to test whether or not gravity verifies Lorentz invariance
as stated in this new stronger way. As we will see later, the strong equivalence principle can
prove to be a very useful tool because, on one hand general relativity does satisfy it, while
on the other most of modified gravity theories, and particularly Lorentz violating gravity,
do not. In the next chapter we will explain how we try to exploit the consequences of this
difference.

2.2.1 Percolation from the gravitational sector to the matter sector

While several quantum gravity proposals (string theories with extra-dimensions [100],
non-commutative field theory [101] and Horava gravity [77, 78] for instance) hint towards
Lorentz violations appearing in the ultraviolet, i.e., at small scales, it is not completely ob-
vious that we may freely break Lorentz invariance in the gravitational sector without messing
things out in the matter sector. Indeed, one could reasonably argue that any gravitational Lo-
rentz violation would percolate into particle physics, and since there are very tight constraints
on Lorentz violations in the matter sector, such as those mentioned in sections 2.1 and 2.2,
then one would conclude that gravitational Lorentz violations must also be small. There exist
counter-examples to this argument, however, and infrared (i.e., at long distances) Lorentz
invariance could still be preserved by different mechanisms, even if gravity presents Lorentz
violations in the ultraviolet. For instance, it could be protected by supersymmetry [102], or
it could be an emergent symmetry appearing at low energies [103, 104] for different reasons,
such as a renormalization group flow of the system leading to infrared Lorentz invariance
[102, 105], or it could even be an accidental symmetry as suggested by [106]. It has also
been proposed that a classically Lorentz invariant matter sector may co-exist with a Lorentz
violating gravity sector provided that their interaction is mediated by higher-dimensional
operators and is suppressed by a high-energy scale [107]. We therefore conclude that testing
Lorentz invariance in the gravitational sector is still a reasonable enterprise since there is
an ample spectrum of mechanisms able to control Lorentz violating percolation, despite the
stringent constraints from the matter sector.

2.2.2 The Einstein equivalence principle as a tool to construct modified theories
of gravitation

Having made the case for the why to study Lorentz violating gravity, now we must stop
to discuss how.
To begin with, let us remark that the empirical support for the Einstein equivalence principle
(composed of WEP, LPI and LLI) also helps us characterize the sort of theory we can
hope to be viable. Indeed, since the Einstein equivalence principle implies that, locally, it is
impossible to distinguish between a gravitational force and an accelerating frame, then we
are compelled to conclude that the motion of bodies, in the absence of any external force, is
solely determined by the spacetime’s structure. This strongly suggests that the only viable
(classical) gravitational theories are those satisfying the postulates of metric theories [10],
namely :
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— spacetime is endowed with a symmetric metric,
— the trajectories of freely falling test bodies are geodesics of that metric, and finally

— in local freely falling reference frames, the non-gravitational laws of physics are those
written in the language of special relativity.

Among these metric theories, general relativity occupies a very special place. This can
be clearly shown by Lovelock’s theorem [108, 109] : the only second-order Euler-Lagrange
equation obtainable in a four dimensional space from a scalar density of the form £ = £(g,.,)
is

1
ay/—g <RW — 2Rg,w> + A =99uw =0, (2.6)

where a and A are constants, while R, and R are the Ricci tensor and scalar curvature,
respectively. We recognize the Einstein tensor G, = Ry, — %Rguy. Note that this gives us
the Einstein’s field equations in empty space with a cosmological constant A = \/a. The
most general scalar density leading to these equations is given by the Lagrangian density

£ = ay/=gR—20/=g+ B * R, Ragp +1v/=g(R2 = AR", RYy + R* po R* ) (2.7)

where 8 and « are constants. Here €77 is the four dimensional Levi-Civita symbol, defined
such that e"*P? is totally anti-symmetric and such that €?1?3 = 1. The third term, proportio-
nal to §, is called Pontryagin scalar and is a total derivative in any number of dimensions,
while the fourth term, proportional to v, is called the Gauss-Bonnet invariant and is a topo-
logical invariant. The Gauss-Bonnet invariant is also a total derivative in the case of a four
dimensional spacetime. These terms are called Lovelock’s invariants and neither of them
contributes to the field equations.

In order to get an insight on the special position of general relativity, let us state explicitly
the hypotheses that lead to this theorem. We have assumed that (1) the metric tensor is the
only field involved in the gravitational action, (2) we work in a four-dimensional space time,
(3) we only accept up to second order derivatives of the metric in the field equations, (4) the
dynamics can be derived from an action principle, and (5) locality.

There is another way to approach this result. Because of diffeomorphism invariance, the
variation of a scalar Lagrangian with respect to the metric g,, gives a conserved 2-tensor.
However, within a 4-dimensional Riemannian variety, the only conserved symmetric 2-tensor
constructed from the metric and its derivatives is the Einstein tensor G/,,. Thus, in the
absence of matter fields, the gravitational dynamics is uniquely determined if we consider
only one gravitational field, the metric, and if we assume diffeomorphism invariance, a four-
dimensional spacetime, derivatives of the metric in the field equations no higher than second
order (this ensures stability), locality, and finally, if we assume that the dynamics are derived
from an action principle.

Lovelock’s theorem implies that if we want to step further from general relativity we need
to break at least one of these assumptions. For the sake of this thesis we will give up the
hypothesis of the metric as unique gravitational field, and consider a new gravitational field
mediating the way in which the matter fields create the metric. As we will see further on,
this new field breaks local Lorentz invariance as generalized to gravitating objects while still
satisfying the Einstein equivalence principle.
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2.3 Khronometric theory

In both Einstein-sether [110] and khronometric theory [111], Lorentz symmetry is vio-
lated by introducing a dynamical time-like vector field, the “sether”. Since the sether field
defines a preferred time direction at each spacetime event, it immediately follows that boost
symmetry, and therefore Lorentz symmetry, is broken. The Einstein equivalence principle is
protected by coupling the matter fields only to the metric g,,. The dynamics of the new
vector field appears only in the gravitational sector, meaning that in the action it interacts
only with the metric. Then its effects on matter only appear as a consequence of its effect
on the metric, as required by the Einstein equivalence principle.

In this section we will first introduce khronometric theory as a low-energy limit of Horava
gravity. So let us begin by succinctly characterizing the latter as a proposal for quantum gra-
vity.

The main idea behind Horava’s theory [77, 78] is to introduce an anisotropy between
space and time within the framework of quantum field theory. This anisotropy appears
at high energies (i.e., small distances), so that spacetime would be isotropic in the low
energy regime. While usual relativistic conformal field theories are compatible with scaling
symmetry (implying physical processes with no characteristic length scale), Hofava gravity
is constructed so that it will be compatible with Lifshitz scaling with dynamical exponent
z. Lifshitz scaling is defined as an anisotropic scaling of the time ¢ and space coordinates x
given by

t— Nt, x—Ax, (2.8)

where A € R is a constant and z is the dynamical exponent measuring the anisotropy. Lorentz
boosts (2.2) are the transformations

. 1 o
(t, .fl) — \/ﬁ(t — 'ij], b — ’Ult) y (29)
which together with (2.8) gives
. 1 o .
(t,z") — (Nt — X200 Aat — Mo't) (2.10)

V1 — N2 2242

since v — A'7%v. We can see that Lifshitz scaling and Lorentz symmetry are compatible
only for z = 1. Thus, for z = 1 spacetime symmetry can be enhanced to include the Lorentz
group, while for any other value of z, boost invariance is explicitly broken. Horava gravity
is designed to have a dynamical exponent z = 3 in the UV, so that at short distances it
describes the interaction of non-relativistic gravitons [77]. The main interest of this gravi-
tational theory is that it becomes power-counting renormalizable in 3+1 dimensions [112].
At long distances, Hofava gravity naturally flows to the relativistic value z =1 [78, 77, 102]
leading to emergent infrared Lorentz-invariance.

In order to encode the special role given to time in (2.8), spacetime is viewed as a dif-
ferentiable manifold of dimension d = 4 carrying a new geometric structure. Technically
speaking, the additional structure is that of a codimension-one foliation : this means that
spacetime can be decomposed into submanifolds, the leaves of the foliation, which are of
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dimension d — 1 and fit together continuously. See, e.g., [113, 114] for a rigorous definition of
foliations in a manifold. The leaves of this preferred foliation play the role of hypersurfaces
of constant time, therefore it is easier to introduce the theory using the formalism of ADM
3+1 split.

Let us suppose that the spacetime manifold is foliated by three-dimensional space-like
hypersurfaces Y7, labeled by some preferred time function 7', which we call the “khronon” !.
The metric g,,, will induce a spatial metric 7y, on each of the hypersurfaces, which can be
expressed as

Vv = G — Uy Uy (2.11)

where u* is a time-like unit vector field orthogonal to the hypersurface. This means that we
can express it as being proportional to VT'. Thus we will have

T
w, = B A— NV,T, (2.12)

V9o, 1o, T

where N is the lapse function. The extrinsic curvature K, is defined as half the Lie-derivative
of the induced metric 7,,, taken orthogonal to the hypersurface, i.e, in the direction of u :

1 1
Ly Ypv = §Upvp'7;w + ’Yp(uvu)up : (2'13)

Ky = 5

Using a coordinate system adapted to the foliation (i.e., using 7" as time), the gravitational
part of the action of Hofava gravity can be expressed as [78, 111]

1 1
Td?x N L Ly+-—1L 2.14
SHi = 167 GHL/d &z \/>( 2+]\42 M4 6) ( )

where Gy is a bare gravitational constant (its relation to the measured value of Newton’s
gravitational constant is given below), v is the determinant of the spatial metric v,4, and
M, is a new mass scale suppressing the Lagrangians L4 and Lg, which are of fourth and
sixth order in spatial derivatives, respectively, but contain no time derivative [78, 111]. It is
the introduction of these higher spatial derivatives in the action that leads to the different
scaling of space and time in the UV, leading in turn to a theory that is power-counting
renormalizable [112]. The presence of these higher order terms has an important role in the
causal structure of the theory, for they allow for higher order dispersion relations. This issue
will be discussed further in the section dedicated to black holes in Lorentz violating theories.

The precise form of Ly and Lg is not relevant for this work. In fact, for astrophysical
applications, and particularly for the study of (stellar or supermassive) black holes, one can
neglect these higher order terms. On the one hand, based on dimensional arguments, the
error introduced when neglecting the Ly and Lg Lagrangians on a black hole solution of
mass M is of the order O(G*M2M[2) = O(M},,,a./ (M, M)?). On the other hand, the
suppressing mass M, has a broad viable range, and its lowest conceivable value corresponds
to a rather weak bound M, > 1072 eV [115, 10]. This lower bound comes from to taking

~

into account the constraints on Lorentz violation only from the gravity sector [10, 115]; any

1. From Greek ypovog, time.
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other bound would depend on the details of the percolation of Lorentz gravitational viola-
tions into the matter sector, which is poorly understood and model dependent. Taking this
lowest bound for M, ~ 1072 eV would mean an error of the order of 10~*¥(10M, /M )?
smaller when neglecting the higher order Lagrangians, which is clearly acceptable for black
holes in the range of the LIGO/Virgo detectors, as well as for LISA. For completeness, let
us also remark that the mass scale M, is also bound from above so that M, < 106 GeV
[115]. This bound comes from imposing that the theory remains power-counting normalizable
[78, 116, 117, 118] by letting it be perturbative at all scales.

The low-energy Lagrangian Lo corresponds precisely to the Lagrangian of khronometric
theory and can be expressed as

14\ 1 |
ey I R+ —2 g, (2.15)

Ly = KKV —
2T 1-7 1-8""1-5

where K = 4% K;j, R is the scalar curvature associated to the spatial metric, a" = u”V, u#
is the acceleration of the congruence and finally, «;, 5 and A are coupling constants of the
theory. The total action of khronometric theory is thus

1+ A 1 « ,

3 ’Lj 2 g

Skn = T6n GHL/de Ny (KUK 1—ﬁK + 1—5R+ 1_ﬁala>+5‘matter[g,\ll]'
(2.16)

Here Shatter is the matter action, where the matter fields ¥ are minimally coupled to the
metric g (in order to respect the equivalence principle, as a direct coupling would entail
test particle motion dependent on gravitational fields other than the metric). This action is
invariant under foliation-preserving diffeomorphisms

T—-T(T), 2= &(,T). (2.17)

Note that the bare gravitational constant Gy can be related to the measured value of
Newton’s gravitational constant G, as measured locally by Cavendish-like experiments, by
[119, 120]

G — Gur

N — .
(1—a/2)(1-5)

Although the introduction of Hofava gravity relies on an explicit decomposition between

time and space coordinates, the theory can still be written covariantly. To illustrate this
point we will cast the action of khronometric theory in an explicitly covariant form as

(2.18)

Skh 167TGEA /d4$ vV (R + Co O-,LLUO-M 769 9 + cq au(l“) + Smatter[g, \II} , (219)

where g is the metric determinant, the bare gravitational constant is Gga = Ggr/(1 — 3),
R is the scalar curvature associated to the four-dimensional metric, ¢, = 8, ¢g = 3A+ [
and ¢, = a. We have used the standard decomposition for a congruence Vu, where V is the
covariant derivative associated to the metric g, given by

1
vuuu =W +0puy + §G’ij — auay, (220)
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where ¢ is the expansion of the congruence world lines, w,,, is the rotation (vorticity) tensor,
and o0, is the shear tensor. They are given explicitly by

0= V-u = V,u", (2.21)

Wy = %(ya,,vauu =%, Vauy) = V| — apuy) (2.22)

1
%(’yal,vau“ + 7%, Vauy) + %0 Y = V() — Q@) + §6 Yo - (2.23)

Note that the sether’s vorticity w,, is identically zero since u is a hypersurface orthogonal
field, as can be easily verified from its definition.

As we will soon see, this covariant representation of khronometric theory can be easily linked
to Einstein-sether theory (see equation (2.32) below), and we want to exploit this similarity
to derive the field equations of both theories in a similar fashion. Therefore we will reserve a
detailed derivation of the field equations from the action to section 2.4, and we will simply
give the resulting equations for khronometric theory to conclude this section.

The field equations of khronometric theory are obtained by varying the action (2.19)
with respect to the metric and the khronon T'. After variation of the action Sy, we get a
tensor equation generalizing the Einstein field equations, and a vector equation (the “khronon
equation”) given by

E, =0, (2.24)

0 () -0 229

where ||VT|| = 4/gP?V ,TV,T. We refer to Appendix 2.A for more details on the derivation
of the field equations. The tensors E,, and &, are defined as follows :

Eu = Gy — T — 87Gn TR (2.26)

where
T,uzz — —2 5Smatter

matter \/jg 5 G

is the matter stress-energy tensor, and

(2.27)

E,=vw (VPJ‘"’ —« apV”up) =0, (2.28)

where we introduced J”;, = A 067 + 8 V,u” + a a,u”. In (2.26) the khronon stress-energy
tensor is given by
kh _ 2
Ty =V, [J(”pul,) = JP ) — J(W)up} + [ug V,J —aa }uu Uy 2.29)
1 .
+aa,a, + 5()\ 6% + BV "V, ut + o az)g,w + 2fE(#u,,) ,

Moreover, in the same way in which diffeomorphism invariance implies the Bianchi iden-
tities in general relativity, we can derive an equivalent set of identities for khronometric
theory. The result is the following generalized Bianchi identity :

V,EM = ku”, (2.30)
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where k is as

1 A+
k=—=|VT|V <> . 2.31

We refer to Appendix 2.B for a derivation of this new result. It can be shown [120] that
the khronon equation is a consequence of the Einstein equation and the Bianchi identity, so
that it is not in fact an independent equation in khronometric theory. This is an important
result and will be exploited later when solving the field equations.

2.4 Einstein-zther theory

From the previous action (2.19) we are naturally lead to Einstein-sether’s action by
allowing the sether field to be non-hypersurface orthogonal. This means that we can now
introduce a new term proportional to the vorticity wj,,, so that the action becomes

-1
B 167TGEA
+ Smatter [gv \II] .

1
Sea /d4x V=g (R + o 0™ + ¢y w4+ 509 6 + ¢, ayal + Xg" uyu, — 1))

(2.32)

Note that in order to keep the unit norm for the sether vector u we introduced a Lagrange
multiplier A\ reinforcing this condition. Actually, the gravitational part is more commonly
expressed as [121, 122, 120]

S =
167TGEA

/ (R + M, VaulV gu” 4+ Ng" uyu, — 1)>\/—g d*z, (2.33)
where g is the metric determinant, R is the Ricci scalar and
M"‘BW =c go‘ﬂgm, + co 55 55 + c3 55 O uauﬁgwj . (2.34)

This is the most generic action that is diffeomorphism-invariant and quadratic in the deri-
vatives of the sether field u.

The new coupling constants c¢i, ¢a, ¢3 and ¢4, which define the parameter space of the
theory, are related to the old coefficients of (2.32) by the relations

cg = 3cy+cp+cs, (235)
Cq = cl+c¢q, (2.36)
Co = c1+cs, (2.37)
Cw = €1 —c3. (2.38)
Thus the total action of Einstein-sether theory is given by
-1
Sen = o | (R+ Lea + Mg v’ = 0)v=gd% + Snaialg ¥, (239)
167TGEA

where we introduced the notation

Lgs = M8, Vul Vau” (2.40)
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Variation of the action can now be performed with respect to the metric g"”, the aether
field u* and the Lagrange multiplier A, leading to the Euler-Lagrange equations

G + (255: — %LEA G — Aty — 8TGpa Tlinyatter =0, (2.41a)
5523“\ +2\u, =0, (2.41D)
guwut'u’ —1=0, (2.41c)
where G, = Ry — %R Juv is the Einstein tensor and
o =2 S 0.12)

matter ﬁ ij ’

is the matter stress-energy tensor. Notice that the Lagrange multiplier can be computed
from the vector equation after contraction with u*, by using the unit norm equation (2.41c¢).

Thus it is manifest that L s
A= — Syt EA
2" Tsun

and we can plug this value both in the tensor equation (2.41a) and in the vector equation
(2.41b). The former leads to a set of modified Einstein field equations

(2.43)

Ep = G — Tjp —81Gpa T =0, (2.44)
while the latter yields the sether equations

E, = (VaJa” — ¢y aaV”ua) (G — upuy) =0, (2.45)

where we introduced J%, = M B wVau” . In fact, the vector &, is related to the variations
in (2.41b) by

B () w] o)

meaning that the term proportional to Ju* in the variation of the action (2.39) is —2/&,du*.
Explicit computation leads to the sether stress-energy tensor as

TEd = Va [T ) = Ity = Juyu®] + e[ (Vo) (VOw,) = (V) (Vou®)| .

1
+ [u5 Vo — ¢, ag]u“ Uy + caay ay + 3 M?? 5 V pju vV, u? G »

These are precisely the same quantities that we introduced in section 2.3, equations (2.24),
(2.25), (2.26) and (2.28) in order to express the field equations for khronometric theory,
expressed in terms of the coupling constants of Einstein-sether theory. In fact, expressing the
khronometric action as

Sin = I / (R + LEA)\/jgd4l‘ + Smatter[8, V], (2.48)
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we can perform variation with respect to 7" instead of u, using the definition (2.12) to express
dut as

0,0T 1
Sut = (g —uru’ ) = — —uf u, ue 6977 . (2.49)
( ) Ivr| 27 "
This allows us to express the variations as
0Skn = _1/ {(E L+ 2E,u ) og"” + 2V, (}Ey> 6T] V=g d*% 4+ Spatter[, V]
167Gren " (") IV o
(2.50)

which leads to the khronometric equations as stated in (2.24) and (2.25), once we identify
TEA with T — 2/ ,u,,).

Let us remark that not all the terms of Ly, are independent in khronometric theory,
because the parameter space of khronometric theory is a three a dimensional one. Indeed,
as long as we restrict our attention to orthogonal solutions, any multiple of the vorticity

1
Wwh” = 3 (VMUVV“UV - V,u, Vit — a2> , (2.51)

can be added to the action (2.39) with impunity. For instance, we could absorb ¢; by adding a
term —2c¢w,,,w"”, leading to the new coefficients ¢ = 0, ¢, = ¢, ¢4 = c1+c3 and ¢} = ¢1+ca.
In general, we can relate the coefficients «, § and A via the mapping

A=co, B=c1+c3, a=c+cy. (2.52)

Note that any hypersurface-orthogonal solution to the Einstein-sether equations is also
a solution to khronometric theory, though the converse does not always hold. That is, if we
find a solution to the equations

E, =0,

2.53
oo, (2.53)

where u is an hypersurface-orthogonal field, then it follows that there exists a khronon field
T such that w = VT'/||VT||, and such that the equations

By — 28 ,u,) =0,

Vi (jorp) =0 >

are satisfied. However, a khronometric solution to the field equations (2.54) does not neces-
sarily satisfy (2.53), since it is not guaranteed that AE* = 0.

Since we still have general covariance in these theories, we can make use of infinitesimal
gauge transformations in order to show that solutions must also satisfy a modified set of
Bianchi identities in the same way as in general relativity. Indeed, if we make an infinitesimal
change of coordinates given by a 4-vector e, the action (2.39) will change as

—1

56 SEA - 167TGEA

/ (EW Lg™ — 208, £6u“)\/—g diz (2.55)
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where L. is the Lie derivative with respect to the vector €. After inserting the given Lie
derivatives

Logh =— AVACPED) 7

(2.56)
Leut =PV ul' —uPV et
we can proceed to integration by parts in order to obtain the relation
V (EM —uwEY) = E,NV"u", (2.57)

which is a generalization of the standard Bianchi identity V,G*” = 0 for the case of Einstein-
sether theory. It can be easily seen that we do indeed recover the standard GR relation in
the limit where the ¢; go to zero.

In the case of khronometric theory, the action (2.50) will transform under an infinitesimal
change of coordinates as

_1/{E Log™ + 2V (EV)cT]\ﬁd‘lx (2.58)

167Gpy J |1 v\Jvr)) ~ g ‘
where the Lie derivative of T is LT = €V, T. After integration by parts, this leads to the
Bianchi identity for khronometric theory, equation (2.31).

At this stage, we can argue that the Einstein equations together with the Bianchi iden-
tities imply the khronon equation (2.25). Indeed, the change in the action (2.58) can be

rewritten as 59 59 55
5eSkh:/[(6g) Leg+ <N> LY+ <5T) EET] : (2.59)

0¢Skn =

and let us suppose that the Einstein equation is satisfied, so that §5/dg = 0, and let us
further suppose that the matter field equations are also satisfied, i.e, 5/d¥ = 0. On the one
hand, since the total variation d.Sx, must vanish, we obtain the following identity

/(§§> LT =0, (2.60)

which must hold for every vector e* defining the coordinate transformation. On the other
hand, since T defines the time foliation the derivative £/ cannot vanish, and furthermore
can be varied at will by choosing different vector fields e#. We therefore conclude that 6.5/0T
must vanish, that is, the khronon equation is satisfied.

2.5 Experimental constraints

In this section we will review the current observational constraints on Lorentz violating
gravity, and particularly khronometric and Einstein-aether theory. Let us stress that the weak
equivalence principle is verified in both Einstein-sether and khronometric theory due to the
universal coupling of the metric to the matter fields. Since the sther field does not couple
directly to matter, its effects on it must only come as a residual of its coupling with the gra-
vitational field. Therefore we expect these effects to occur only in curved spacetime, while
being small within nearly flat spacetimes. As mentioned in section 2.2.1, however, there still
could be some measurable effects due to Lorentz violation in gravity, allowing us to reduced
the parameter space for these theories. These constraints are varied, and we will present
them in the following.
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2.5.1 Stability and consistency requirements

First, from a theoretical point of view we would like to have stable propagating modes
with positive energy in flat spacetime. Indeed, it has been shown [123, 124] that, besides the
standard spin-2 mode for metric perturbations, gravitational perturbations propagate via
spin-0 modes for both Einstein-sether and khronometric theory, and also via spin-1 modes
for Einstein-sether. Also, we will require their propagation speed to be greater than the speed
of light for otherwise they would decay in a detectable Cherenkov-like emission. That is, in
the same way as a charged particle emits radiation while traveling faster than the speed
of light in a given medium, high energy cosmic rays should decay into the new propagation
channels while traveling faster than the gravitational modes [125, 126]. Since this Cherenkov
like emission is not observed within high energy cosmic rays, one can give lower bounds to
the speed of gravitational wave modes. Denoting the squared speed of the spin-i propagation
mode as s? we have for Einstein-zether theory that [123]

(2 —c1a)c123

2
Sy = , 2.61a
O 7 era2(1 + ¢2)? — e123(1 4 ¢2 + c193)] ( )
12, 1.2
2 c1 — icl + 563
§f=——=2 -2 ° 2.61b
V7 (1 —ci3)en ( )
1
2
— 2.61

where ¢;; and ¢;5;, are shorthands for ¢;+c¢; and ¢;+c;+c¢y, respectively, and for khronometric
theory we have

5 (@-2(B+N

AN+ A+N

52 _1_16 , (2.62b)
which actually coincides with (2.61a) and (2.61c).

The stability of the propagation modes together with the no-Cherenkov condition impose
in khronometric theory [126, 127, 115]

(2.62a)

BB+
0 1/3, A> —F++=
<B<L/3, A> 135
2
0<pB<1/3, >\<—%ﬁ, (2.63)
pE+1) 2+
1 1, ——— <A< ——.
/3 < B <1, 133 <A< 3
while for Einstein-sether we have the bounds [126, 123]
4
0< <1,0<ec. < ——— 2.64
¢ > 1,Uxc¢C _3(1_C+)7 ( )

where c4+ = ¢ £ c3.
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2.5.2 Multi-messenger astronomy

The most stringent constraint comes from the recent simultaneous detection of a binary
neutron star merger and the associated gamma ray burst (GRB) [28]. In fact, the propagation
speed sy of the tensor mode, i.e., gravitational waves, cannot differ from the speed of light ¢
(which we set to 1) by more than one part in 10!, Yet this speed is found to depend on the
values of the theories’ parameters. For khronometric theory we have [124] s2 = 1/(1 — j3)
(not the Lorentz boost), so this implies a very tight bound on 8 given by

11/s3 —1| =B S 1071 (2.65)

In the case of Einstein-sether, the ratio between the speed of light and the tensor mode’s
squared speed is given by [123]

|c?/c2 — 1] = |eg + e3] S 1071, (2.66)

which corresponds precisely to the same constraint from khronometric theory since § =
c1 + cs.

2.5.3 Solar system and the weak-field regime

Third, in the weak-regime and small velocity limit, both khronometric and Einstein-aether
theory reduce to Newtonian gravity [119], with Newton’s gravitational constant G being
related to the bare gravitational constant by

GEA GH L

g T e ) (207
where, again, ¢;; stands for ¢;+c;. Corrections to Newtonian gravity are described by the post-
Newtonian formalism. Thus, Solar system tests allow one to constrain the parameter space
of the theory via its parametrized post-Newtonian parameters. Only two PPN parameters,
a1 and ag, are non-zero in Einstein-aether and khronometric theory, in contrast with general
relativity. They correspond to preferred frame effects and in GR they are both exactly zero.
Current constraints bound them to remain very small, a; < 107% and ap < 1077 [10]. In
both khronometric and Einstein-sether theory these observations can be used to shrink the
parameter space to a two-dimensional space. On the one hand, for khronometric theory we
have [124]

ar = 4 0‘5__215 - “a, (2.68)
o ar(l1+48+2))] « 142
= 5T an {1 —4(64‘/\) }— a—2{1 a— ], (2.69)

where we used the multi-messenger constraint (2.65) to simplify each expression. Solar system
bounds are thus given by

dla] S 1074,

1+2)
A

o (2.70)

sl e

a—2
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These constraints are satisfied if we set |o| < 1077, in which case A must only satisfy the
rather curious bound from below |A| = 1077, but is left completely unbound from above.
Let us remark that, if we were not to use the multi-messenger constraint to set 8 = 0, solar
system bounds can be satisfied by the simple condition

a—2ﬁ’ ar(1+B+20)7"1
B-1 A(B+A) ’

which constraints « but leaves unconstrained the other couple parameters 5 and A. For this
reason, in practice we will choose to work setting @ = 28 all throughout this work and
consider only the space allowed for § and A, before setting 3 to zero. Similarly, for Einstein-
ather theory we could expand the theory using «; and ag as dimensionless small numbers.
One then finds that [122, 121]

oy | = 4‘ <107° {1 + (2.71)

c —cie3 — 263

— = 0, 2.72

c2 301 (2.72)
2

Cq = _073 = —C1, (2.73)
C1

to leading order in a1 and aa, where we used again the results from the previous section.
This leaves the parameter space of Einstein-sether depending only on one parameter, c;.

2.5.4 Cosmology

For khronometric theory, the Friedmann equation takes the same form as in general
relativity but with a gravitational constant G¢ related to G as [128]

@:2—1-5—1—3/\’ (2.74)
Go 2 —«

to leading order in a; [129, 130]. This means that the Universe expands with an effectively
rescaled Newton’s constant, leading to a decrease of the expansion rate of the Universe, in-
dependently of the matter content. Consequently, the change in the rate of cosmic expansion
leads to a modification of the production of primordial elements during Big Bang Nucleo-
synthesis (BBN). However, from cosmology, and particularly from the agreement between
the metal abundances predicted by BBN and observations, we get a bound on the difference
between the cosmological gravitational constant G and Newton’s gravitational constant G
given by |Geo/Gn —1| < 1/8 [119]. Once combined with the Cherenkov/stability constraints
these bounds reduce the viable parameter space to a narrow strip near the A axis [129] (i.e.,
for a = 5 =0).

In the case of Einstein-ather theory, once we take into account the solar system constraints
it turns out that the ratio Gy ~ G¢ up to terms of order @(10~%), which means that cosmo-
logical observations (and more particularly the BBN) do not reduce significantly the viable
parameter space of the theory. This was worked out in [122, 130].

2.5.5 Binary pulsars and the strong-field regime

Finally, binary pulsars can also be used to put on constraints to the parameter space of
Lorentz violating theories. On the one hand, one could try to reduce the parameter space in
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an analogous manner to the previous section, using the strong-field counterparts of the PPN
parameters o and as. As we mentioned above, deviations from the PPN parameters within
the weak-regime allow us to constraint the parameters of the theory. Similarly, their strong-
regime counterparts are also constrained through binary and isolated pulsar observations.
Denoting them by the use of an overhead hat we have |a;] < 1075 and |a2| < 107Y [131, 132].

On the other hand, as it will be further explained in the next chapter, Lorentz violation
generically leads to a violation of the universality of free fall, and in turn, with this change in
the dynamics there is a generic emission of dipole gravitational radiation which can be mea-
sured (cf. section 1.6.2). This effect is encoded in a set of parameters called the sensitivities,
which will be properly discussed in the next chapter. However, observations of binary pulsars
and their period decay rate is in agreement to GR’s prediction within observational uncer-
tainties (cf. section 1.6.1), and one can therefore put constraints into the parameter space
[129]. The constraints coming from dipolar radiation in binary pulsars are much stronger
than those coming from the strong field PPN parameters, as illustrated in figures 7 and 8
of [129]. One could summarize these bounds by stating that the couplings cannot be much
larger than a few percent, that is, |¢;] < 1072 in general, save for A that has a weaker bound
A<0.1.

2.6 Black holes in Lorentz Violating gravity

The notion of a black hole relies on the causal structure of special relativity, which in
turn relies on Lorentz symmetry. Indeed, the main feature defining a black hole is its event
horizon. Moreover, the specificity of the even horizon is that it defines a causal boundary
separating the inner region from the exterior of the black hole. Now, this possibility exists
in general relativity because signals are confined to propagate within future-directed light
cones, and this in turn is due to the Lorentzian causal structure of the theory.

Once we give up Lorentz symmetry however, the very notion of an event horizon becomes
subtle. As we will soon discuss, this will result in the appearance of “new horizons” to be
taken into account. These horizons will be defined with respect to new degrees of freedom
introduced by Lorentz violation in the gravity sector. As discussed in section 2.5.1, besides
the standard metric spin-2 mode there are spin-1 and spin-0 gravity modes which propagate
at superluminal speeds (in order to avoid Cherenkov radiation, cf. section 2.5.1), meaning
that the surface trapping them is inside the metric horizon.

In this section we will discuss these new features as they were known before this thesis and
more specifically we will focus on static and spherically symmetric black holes in Einstein-
ather theory and khronometric theory. Thus we will revise some previous results, following
particularly [133], while at the same time introducing the notation to be used in the next
chapter.

Let us first recall that, as it follows from the field equations (2.24), (2.25) and (2.44),
(2.45), any hypersurface-orthogonal solution to Einstein-sether equations is also a khrono-
metric solution, though the converse is not necessarily true. In particular, static spherically
symmetric solutions, such as a spherically symmetric static black hole [133], are the same
in both theories and we can extend the results obtained within one theory to the other. This
result is not completely obvious and in fact it will no longer be true neither for a rotating
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black hole [134, 135], nor for a moving black hole. Thus, in this section we will formulate the
equations describing static spherically symmetric black holes within khronometric theory,
bearing in mind that these results are trivially transposed to Einstein-aether theory due to
spherical symmetry. Furthermore, we will make use of the fact that in khronometric theory
the sether equation is a consequence of the modified Einstein equation and the Bianchi iden-
tities in order to get rid of it.

As mentioned before, a first crucial result concerns the existence of new “horizons” besides
the standard matter/light horizon. Indeed, as mentioned in section 2.5.1, gravitational per-
turbations in both Einstein-sether and khronometric theory exhibits a spin-0 modes and in
Einstein-sether there also exists a spin-1 mode of propagation besides the standard spin-2
mode for metric perturbations [123, 124]. These new modes have different speeds (larger
than the speed of light, so that there is no matter Cherenkov radiation) each defining thus
a new notion of “horizon” with respect to them. These horizons correspond to null surfaces
for the effective metric ‘

9((523 = gap + (57 — Duqug, (2.75)
where s; is the propagation speed of the spin-i mode. Note that the spin-1 horizon should
play no physical role in the static spherically symmetric case, since it is not a propagating
mode in khronometric theory and this solution coincides with Einstein-sether’s solution (this
is in agreement with symmetry considerations as well).

Furthermore, as one gives up Lorentz Invariance there is in principle no reason to restrain
dispersion relations only to linear relations. Thus, let us consider higher-order dispersion
relations such as

W=k +ak*+0k", (2.76)

where w is the angular frequency, k is the wave number and a and b are constants with the
appropriate dimensions. The new powers are suggested by the form of the action of Horava
gravity (equation (2.14)), and there could be even higher powers of k involved. This would
lead to arbitrarily high speeds of propagation in the UV, which could in principle escape any
of the aforementioned horizons. It has been found however, that there exists an innermost
surface inside which the sether flow forces all motion to fall to the center, regardless of its
propagation speed [127]. Because of this, such inmost surface has been called the “Universal
Horizon”. In order to give further details about these surfaces we will need to state and solve
the field equations (or rather present the numerical solutions already obtained by [133]).

2.6.1 Static, spherically symmetric black holes

The static, spherically symmetric black hole solution has been already presented in [133].

In solving the field equations we found it useful to work in Eddington-Finkelstein coordinates

{v,r,0, ¢}, for they are regular at the metric horizon. In these coordinates, the metric Ansatz
can be expressed as

ds? = f(r)dv? — 2B(r)dvdr 4+ r2dQ?, (2.77)

while the sether vector takes the form

1+ f(r)A(r)?

M pu—
unde 2A(r)

dv — A(r)B(r)dr, (2.78)



2.6 BLACK HOLES IN LORENTZ VIOLATING GRAVITY 41

where A(r) corresponds to the time component of the contravariant sether vector, u¥ = A(r).
In order to keep the simplicity in the notation, we will express most of our computations in
terms of Einstein-aether coupling coefficients, c1, c2, ¢3, ¢4, but this is no problem as they can
be easily cast back in terms of the khronometric coupling coefficients «, § and A using the
relations (2.52). In particular, the limit a, 5, A — 0 corresponds to the limit of vanishing ¢;s.
Let us anticipate that, since we recover general relativity in the limit of vanishing coupling
constants ¢; — 0, we should recover the Schwarzschild solution for f(r) and B(r) in this
limit, namely f(r) =1— @ and B(r) = 1.

Plugging the Ansatz (2.77), (2.78) into the modified field equations give us a system of
ordinary differential equations where the non-trivial independent components of the tensor
equation E*, = 02 can be denoted as® B; = 0 for i = 1,2,3 and Cy = 0. The equations
B = 0 are of the second order for f and A and of the first order on B, but we find that Cy = 0
contains fewer derivatives, i.e., at most one derivative in f and A and no derivative in B.
The system of equations B = 0 can be diagonalized on f”, A”, and B’, so that schematically
we have

(2.79)

All these expressions are algebraic functions on the coupling coefficients ¢; and analytic
on r. We can make use of the Bianchi identity (2.30) to prove that C{ corresponds to a
constraint equation, in the same manner as the Bianchi identity of general relativity implies
the momentum and Hamiltonian constraints. Indeed, the non-identically zero components of
the Bianchi identity are given by

V2E21 = KUy, (2.80)
V2E22 = KUz, (2.81)

where Vs is the covariant derivative with respect to the second variable, i.e., the r variable.
From these two equations we find that the quantity

Co = ug B —uy E%, (2.82)

will satisfy the relation
V,Co = E*1V,uy — E%V,u; . (2.83)

Expanding the covariant derivatives we find that Cj satisfies the evolution equation

L0y = a(r) Co+ 5i() Br. (2.84)

2. Actually, we use the tensor E*, instead of E*”, because in this form we can easily make use of the
Bianchi identity (2.30) to elucidate the structure of dynamical and constraint equations as it will soon be
discussed.

3. B; stands here for “background”, as opposed to the equations appearing at O(v). Not to be confused
with the function B(r).
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where a(r) and f;(r) are analytic functions on the ¢;’s and the functions f, A and B. It
follows that, if the initial conditions satisfy the constraint Cy = 0 and we solve for the equa-
tions of motion B = 0 everywhere, then the constraints will be satisfied everywhere in virtue
of its evolution equation.

2.6.2 Black hole 'Charges’

This structure would mean, in principle, that there are 5-1=4 initial conditions required
at any given point in order to integrate the system. Indeed, on the one hand, the system
B = 0 containing five derivatives in total, one would require 5 initial conditions at each point
in order to integrate it. On the other hand, the equation Cy = 0 must also be satisfied at the
initial integration point (and thanks to its evolution equation it will be satisfied everywhere
else as well), reducing by 1 the total number of independent initial conditions. For numerical
reasons we choose to integrate from the metric horizon ry,, where f(ry,) = 0, so that then
we are left with only three independent initial conditions. Nevertheless, generic solutions
(i.e., for random initial conditions) are not asymptotically flat, and imposing this condition
leads to a two-dimensional family of solutions. Asymptotically flat solutions are obtained by
shooting of the initial parameters, as will be further discussed in chapter 4 for the perturbed
solution. This is to be contrasted to general relativity where asymptotic flatness follows from
the field equations. This can be understood by solving perturbatively the field equations
near spatial infinity. The asymptotic form of f, A and B has been found to be for a suitable
gauge [136, 127, 133] :

Fy 61+C4F1
=14+ — -1
1) + r + 48 713
F A F} ci+ey 4 1
Afry=1— L 22 [ 21 F3 _FAy| =+ ... 2.85
") 2r+r2+<16 g6 1R )E T (2.85)
c1 + cq Ff c1 + ca Fy
B(r) =1 it N it
(1) =1+ =5 2 12 3 ’

where the constants £} and Ay will specify all the other coefficients of the solution. Notice
that the solution does indeed go to the Schwarzschild solution when we take all the ¢; equal
to zero. It is readily seen that the constant F} can be related to the total mass My as
measured by a distant observer, via the relation 2G y M;ot = —F1, so the question arises as
to what is the nature of the parameter As.

At this stage one could be tempted to conclude that for each given mass, there is a one-
dimensional family of solutions characterized by a new charge or “hair”. However, there is only
one solution in this family which is also regular at the spin-0 horizon [137, 136, 133]. Thus,
while the constant I can be related to the ADM mass M;., the value of As must be chosen
such that the solution doesn’t present any singularity at the spin-0 horizon. This condition
is justified by the fact that numerical simulations for spherically symmetric collapse seem
to produce regular, stationary black holes, with nothing special about the spin-0 location
[138]. Thus, after selecting the correct value for Ay = A5®(Miet) physical solutions belong
to a one-dimensional family of solutions parametrized by the mass Miqt.
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2.6.3 Digging further into the black hole

Outside the metric horizon and within the allowed parameter space, static Lorentz-
violating black holes are very similar to black holes of general relativity [133]. Indeed, let us
consider the spacetime outside the metric horizon and associate to it an astrophysically-
measurable parameter. For instance, the location of the innermost stable circular orbit
(ISCO) determines the inner edge of thin accretion disks and their radiative efficiency
[139, 140]. As it can be seen in figure 2.1, the fractional deviation away from general re-
lativity, computed for small coupling coefficients (both in khronometric and Einstein-sether
theory). The deviations obtained by [133] were found to be typically no larger than a few
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FIGURE 2.1 — Left panel : fractional deviation of the location of the ISCO (for Einstein-sether
theory), characterized by the dimensionless product wigcory, where wigco is the ISCO fre-
quency and ry the gravitational radius. Right panel : fractional deviation of the dimensionless
product wiscory in khronometric theory. Both figures were extracted from [133]. There, the
fractional deviation away from general relativity of two astrophysically-measurable parame-
ters are plotted for the allowed parameter space.

percent, meaning that they would not be detectable with present data.

Inside the metric horizon however, the structure is more complex, as we have already discus-
sed the presence of the spin-0 horizon and its implications on the regularity of the solution.
Moreover, as in GR, the geometry at the center of the black hole is singular, as can be ob-
served by computing the Kretschmann scalar and checking that it diverges as we approach
r = 0. In between the spin-0 horizon and the origin singularity there is another peculiar
surface, the universal horizon. In order to understand its appearance we will focus on the
orientation of the sether field inside the metric horizon. More precisely, we will consider the
boost angle between the sther and the normal to the constant-r hypersurfaces

dr
0, = arccos (u . ) . 2.86
N (2:36)

From the numerical solutions it is observed that 0, generically vanishes on a constant radius
surface r = ry close to the metric horizon, and many times again further as shown in the
left panel of figure 2.2.
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FIGURE 2.2 — Left panel : the boost angle 6, between the sether field and the normal to
the r=constant hypersurfaces, in terms of the variable r/ry, where rg is the location of the
metric horizon. The numerical solutions were obtained for s-theory with c; = 0.8, c— = 0.01.
As r decreases, 6, vanishes soon after crossing the metric horizon (r/rg < 1), meaning that
the sether becomes normal to an r=constant hypersurface. This happens infinitely many
times while approaching the center of the black hole, as indicated by the many oscillations
of 6,. The first crossing corresponds to the location of the universal horizon. Right panel :
schematic representation of the spacetime for a Lorentz violating black hole. In green are the
constant preferred-time hypersurfaces, darker lines corresponding to later preferred times 7.
The universal horizon is represented by the indicated red line, and for a smaller radius there
is the next horizon where the boost angle vanishes again. The figure is truncated between
these two horizons. The curves spanning the exterior of the universal horizon do not cross it.
The curves spanning the region in between the red lines do not cross any of these horizons,
and in particular they do not extend into the exterior of the universal horizon. Thus, as
we require that signals must travel into the future, any signal emitted in the interior of the
universal horizon will be trapped. Both figures were extracted from [133].

This is a result of great importance and it allows to answer the troubling question of
arbitrarily high propagation speeds raised earlier on this section. In fact, by construction,
the aether field defines a preferred foliation (this is intrinsically true for Hofava gravity and a
consequence of spherically symmetry and the static Ansatz for Einstein-aether theory) by sin-
gling out hypersurfaces orthogonal to it. Also, we saw that by choosing adapted coordinates
these hypersurfaces can be taken to be hypersurfaces of constant preferred time 7. Thus the
ather orientation defines unambiguously the future time direction of the foliation. It is clear
then that hypersurfaces of constant preferred time T cannot intersect, and this means that
if a hypersurface of constant T' = T, is also a constant radius hypersurface r = r,, then
any hypersurface of constant T > T, cannot extend outside r > r,. This is precisely what
happens when 6, = 0 : the aether field is parallel to the 1-form dr and thus orthogonal to
the surface r = constant where the 6, angle vanishes. This is shown graphically in the right
panel of figure 2.2. The outmost surface for which 6, becomes zero is what has been called
the universal horizon. As a consequence of this, no signal can escape the interior of the uni-
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versal horizon, no matter how large its propagation speed (hence its name). This surface is,
in Lorentz violating gravity, a causal boundary separating the black hole’s inner region from
its exterior region, in the same way in which the metric horizon does in general relativity.

The radial position ry, of the universal horizon can be found by using the fact that, if
the @ther vector is orthogonal to ry, = constant, then it is proportional to dr. In particular,
this means that u, = 0, or more explicitly (cf. equation (2.78))

1+ fran)A(ran)? = 0. (2.87)

Within Eddington-Finkelstein coordinates, the universal horizon is located at the largest
radial position ry, where the previous equation is satisfied.

These results are the basis on which the work of next chapter relies. Hereafter, we will
refer to the set of functions f(r), A(r) and B(r) defining the static metric (2.77) and the
static aether (2.78) as to the “background solution”, while the first order solution corres-
ponding to a slowly moving black hole with respect to the sether will be referred as to the
“perturbed solution”. Let us stress one more time that, although the static spherically sym-
metric black hole solution was derived for khronometric theory, the results are also valid for
Einstein-sether theory.
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2.A Derivation of the field equations

The gravitational action of Einstein-aether theory is given by

/ (R+ L+ (g™ wpun — 1))v/—gd'z, (2.88)

56 = 167G

where [ is a Lagrange multiplier enforcing the unitary condition and where
L = (19" gap + c20kof + 30300 + caulu’ gop)V u®V,ul . (2.89)
Khronometric theory is recovered by setting

0,T

uy = W , (2.90)
and mapping the coupling coefficients
a=ci+tcey,f=c1+ce3, A=co. (2.91)
Then the total action of the theory is simply given by
Stotal = S + Smatter(8, V] - (2.92)

Variation of the gravitation part yields

L , (0L
% o G/ { ’”+3 i gt )3g” +<%+2zu#> 5uu+5l(u2—1)}\/jgd4x

(2.93)
which gives the field equations
oL 1
G + o 59 L+ luyu, — 87G Tt =0, (2.94a)
oL
— +2lu* =0, (2.94b)
Oouy,
u?—1=0, (2.94c)
1 L
where Tﬁatter comes from the matter action Spatier- We can solve for | = —§uu§— and
Up
insert this back to obtain
G —TY — 8nG TRatter — 2.95
jz ny 7T nv - 9 ( : a)
EF=0, (2.95b)
w?=1. (2.95¢)

where we introduced
oL 1 1 0L

TV = — _ Zg.L— —u,—u,u,, (2.96)
w ggrr 27 2 " ou, "
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which differs for Einstein-sether theory and khronometric gravity due to the extra g** contri-

bution of (2.90) and
oL oL

Fr=——u
ouy, p@up

ut =0, (2.97)
From (2.89) we can directly compute

Tfj}} =V, [J(”pu,,) = JP ) — J(M,,)up} + [ug V,J — ozaﬂuu Uy

2.98)
1 (
+aa,a, + 5()\ 0% + BV 'V, ut + « az)glw + 28, u,)

and
Ey =y (vpjpv “ apV”up) =0, (2.99)

where we introduced J*), = A 00}, + 8 V,u” + a a,ut.

2.B Bianchi identity in khronometric theory

The action of khronometric theory is given by

1

S e

Lo V=g (RAA (V)4 BV, Vot + 0 0,0 ) +Smaster gy ] (2:100)
Its variation with respect to the metric g"* gives the modified Einstein equations
E. =0, (2.101)

while variation with respect to the khronon gives the khronon equation, which we do not
need to compute yet. Ignoring the matter component, the variation of the action can be

expressed as
08
;w 4
38 = /(5 09 5T5T) d*z

:/ (EW V—gog" + g]b: 5T> dz.

(2.102)

In particular, if we make an infinitesimal change of coordinates given by a 4-vector e”, the
action (2.100) will change as

o 1 68 \
(5eSkh - 167TGEA / |:ENV »Ceg + (\/761_,) EET:| RV gd xT, (2103)

where L. is the Lie derivative with respect to the vector €. After inserting the given Lie
derivatives

Logh =— AVACPD) ’

(2.104)
LT ="V, T,

we can proceed to integration by parts in order to obtain the relation

1 1 68
8S, = ——— [ |2V EM YTle, d*z 2.1
S 167rGEA/[v“ +< %H)v }6\/7 (2.105)
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From this equation (and diffeomorphism invariance) we deduce the Bianchi identity

1
VB =
I 2(

_1 95
V—g0T
which shows that the divergence of E*¥ is proportional to u” by a term that includes the

khronon equation. In fact, we can do better and compute explicitly the variation of S with
respect to T'. The easiest way to do so is by noticing that

) VT, (2.106)

% = ;5; g X % g (2.107)
where we keep ¢g" fixed, and using the fact that
Suy) (08 — u"u,)0,0T . (2.108)
o1 lgnv
Then after integrating by parts one finds that
5| ., = / <g§ 5T> dly -
[ (N 0B 1 s,
Clearly then what we obtained is precisely the khronon equation (2.25)
P <H§;H> =0, (2.110)
where we recall that we introduced
Ju =N (Vou?) 68 + B V,u” + a ayu (2.111)
By =7 (Vod” = aa, V"), (2.112)
Vv = Guv — Uy Uy - (2.113)
We can therefore express the khronometric Bianchi identity as
V. EM =ru”, (2.114)
where we introduced
= —% (\/1_79‘;;) VT = —%Hv:rnvu (ﬁ;) . (2.115)



3 — Dipole emission in
Lorentz-violating Gravity

In this chapter we will see how the preferred-frame effects introduced in the gravity
sector affect the motion of a binary black hole system. We will also see how this leads to
detectable changes in the gravitational wave fluxes the binary emits. In order to do so, we
will first review the general physical principles that lead to these modifications in section 3.1,
in particular the strong equivalence principle and its violations. Based on this motivation, in
section 3.2 we will introduce a point-particle model containing parameters quantifying these
violations, which we will refer to as “sensitivities”. Using a post-Newtonian approximation
for the binary dynamics, we will show how this scheme naturally leads to a semi-analytic
prescription to compute the sensitivities in section 3.3. Indeed, we will see that these can
be read off from the asymptotic metric of a single slowly moving black hole. The formalism
developed will be extended to describe the modified gravitational radiation in section 3.4.
The main results of this chapter are based on the work of [?], and are the motivation for
the work developed in the next chapter. Finally, the possibility of observing modifications
to the gravitational wave flux will be discussed in section 3.5.

3.1 Strong equivalence principle and its violations

As explained in the previous chapter, the Einstein equivalence principle has been tho-
roughly tested in the limit of small gravitational binding energy. Moreover, we can show
that in general relativity the equivalence principle is still valid for bodies whose gravitational
binding energy is not negligible. That is, general relativity satisfies the strong equivalence
principle (SEP). To clarify what we mean by this, let us suppose that we carry out any test
experiment within a sufficiently small spacetime region U, in the presence of an external
gravitational field, and we record the results. Then the strong equivalence principle states
that we can always find a suitable reference frame U’, in the absence of a background gra-
vitational field, where the observers will record the same results when performing the same
experiment.

In order to see how this remarkable feature appears in general relativity, let us suppose we
are given a gravitating system to study. Let us then consider a local, freely falling frame large
enough to encompass one of the gravitating bodies (or experimental set-up), yet small enough
so that we can neglect the inhomogeneities of the external gravitational field throughout its
volume. On the one hand, the dynamics of the local system will be determined by the metric,
which in turn will be generated both by the local and external systems. More precisely, when

49
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solving the field equations for the gravitational field generated by the local system we must
take into account, not only the matter distribution of the local system, but also the boundary
conditions established by the external system. On the other hand, from general covariance
it is always possible to find a coordinate system where the metric g reduces to Minkowski’s
metric at the boundary between the local and the external systems. That is, if we denote
R the radius of curvature of spacetime due to the external fields (if the body were removed
from it), then we can construct Riemann normal coordinates to describe our system, leading

to the metric
[
Juv = M + (@) R2 s (31)

where x is the distance to the body (or test experiment). This leads thus to free falling
motion for the local system in general relativity. It is capital to remark that this simple
conclusion ceases to be valid in the presence of more than one gravitational field. Indeed,
although it will always be possible to find a reference frame where equation (3.1) holds, the
asymptotic values of the other gravitational fields will be determined by the external system.
These asymptotic boundary conditions must be taken into account when solving the field
equations for the internal gravitational field, and this leads to a reference frame-dependent
dynamics.

Another way to state the strong equivalence principle is that self-gravitating objects also
follow geodesics. Let us consider, for instance, the motion of a binary system. Then, as long
as the binary’s separation is sufficiently large compared to the size of its components, we are
allowed to neglect finite size and tidal effects. For instance, the orbital motion of a celestial
bodies such as the Earth and Sun, is the same as the orbital motion of any other couple of
binary objects with the same mass and spin, save for tidal and finite size effects. This will
hold true for any body regardless of its gravitational binding energy, again up to corrections
due to tidal forces.

It is enlightening to discuss this from a more quantitative perspective, using a point
particle description where the equations of motion are written in terms of surface integrals,
as proposed by Itoh and Futamase [141, 142, 143]. Let us suppose that we can define a set
of disjoint volumes V, covering the a-the body. This is possible since we suppose that the
typical binary distance d is much larger than the sizes of the bodies. Let us further suppose
that we can cover a sufficiently large region of spacetime using harmonics coordinates, i.e.,
such that we can write the Einstein equations in “relaxed form”

Oh? = 16mGr7 (3.2)
where h*8 = \/=gg*? — n*8 and
1
af — (_ af af ap Bv _ puv af
77 = (=g) (Togwer +177) + 353 (Qh 01" — 1 9,0,h°7) (3.3)

where tﬁg is the Landau-Lifshitz pseudo-tensor

« 14 « 1 « v
167G (—g)tr =ga, g*° 9,h°> 9,h°" + 39w 9 5 o,n™ ot
— G (g*a d,h" + gwapha”)amw (3.4)

1
+ g (2ga)\ gﬁﬂ - gaB gku) (291/,0 Gor — Gpo gl/T)a)\hyT a#hpa .
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The harmonic condition must be added to the relaxed equations in order to have a set of
equations equivalent to the full Einstein equations :

Bah™ =0, (3.5)
and this implies, together with the relaxed equations (3.2), the conservation law
Da =0. (3.6)

Multipole moments of the bodies are defined in terms of 7*2, and in particular its masses.
We can define the “center of mass” coordinates of each particle z,(t) such that the dipole
moment

/ Py y' 7t Z,(t) + 7)) (3.7)

—

d
is a constant. The velocity of the a-th body is defined then as ¥, = £ We can take the

time derivative of equation (3.7) to obtain the identity

d 3, i 00 , .ja 00
0= ED /Vadyy(am' —{—Ua@]T)

= d3y yl( — 8j7j0 + vgajTOO)
Va

:7/ dy {8 [y'TjO] '}Jrvj/ a3 {a[z 00] 51 00}
/dS yTJO /d?’yT’O—i—v]/ dSJyT —vj/ d3y7'

where we used the conservation law (3.6) to go from the first to the second line, and Gauss’
theorem for the last step. The surface S, is the boundary of the volume V,. This equation
can be expressed more simply as

0=P, —v Py — Q. (3.9)

where P! is the effective four-momentum

pr= /V &y (8 Z,(t) + §) (3.10)
and Q! is defined only in terms of surface integrals

E/S ds; yiri® — Ué/s ds; yir%. (3.11)

Taking one more time derivative leads us to an equation of motion for Z(t), given by

Pod”fz_dpé_ ;AP dQj
T at Car dt

(3.12)

or equivalently,

o o o o A
po 3 —/ ds; Tﬂ+vg/ ds; T°Z+v;/ ds; Tjo—vévj/ ds; Q , (3.13)
dt Sa S, Sa
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The quantity P? can be identified with the mass of the a-th body as it tends to the ADM-
mass in the v, — 0 limit (or equivalently, in the d — oo limit). Thus, all these quantities can
be computed in terms of surface integrals, which hints towards the “effacement of the internal
structure” principle. In the freely falling frame, the asymptotically measured quantities that
determine the gravitational field are the body’s mass m and its spin J (again, ignoring tidal
effects). Thus, the binary’s dynamics will depend exclusively on the mass and the spin of its
components, independently of their compositions and internal structures. This miraculous
simplification is sometimes referred to as the “effacement principle”. More precisely, it is
possible to show that the contribution of higher internal multipole moments to these surface
integrals enters as a 5 PN effect, but a more careful study is required to prove this fact. We
refer to [144, 141, 142, 143] and references therein for more details.

This leads thus to free falling motion for the local system in general relativity. However,
this principle will not hold true when we introduce extra gravitational degrees of freedom.
The physical origin of this effect comes from the coupling of the extra fields to the matter
through the metric. Indeed, while it might still be possible to find a coordinate system which
has Minkowski’s metric as an asymptotic value, the new field will have non-trivial boundary
values which will affect the dynamics of the local system. Particularly, for both khronometric
and Einstein-z theory the local’s system dynamics will depend on the boundary value of &
vector u as seen by the freely-falling frame. More precisely, when expressing the modified
Einstein equations in relaxed form we must include the khronon/aether stress energy tensor.
Let us say, for instance, that we focus in khronometric theory. Then the relaxed equations
take the form

Oh*? = 167G(r°% +737) (3.14)
where Tfhﬁ is given in terms of the khronon stress energy tensor Tﬁlﬁ by
1
T = 5o (9T - (3.15)
Therefore, following the same procedure outlined before lead us to an evolution equation simi-

lar to (3.13). However, now some of the surface integrals will be carried over Tff , introducing

thus a dependence on the relative velocity between the falling frame and the khronon/sether
field. Moreover, we will also find volume integrals over the tensor Tff which simply cannot
be converted to surface integrals. Evidently the same conclusion holds by trading Tﬁ? for
70 as the definitions of T lf‘h’B and T2 are analogous (cf. sections 2.3 and 2.4). Thus, nei-
ther Einstein-sether nor khronometric theory are expected to satisfy the strong equivalence
principle. Furthermore, the way this velocity-dependence appears will depend on the body’s
internal structure instead of only the body’s mass and spin.

Another well-known example where violations of the strong equivalence principle appear is
given by scalar-tensor theories [?, 7, 145, 72, 71, ?]. These theories contain a scalar field ¢,
besides the metric g,,,, a potential function V' (¢) and a coupling function A(¢). Their action
can be written as

1
S=1Te6-C / [0R — ¢~ w(9)g" 0,00, ¢ — ¢*V ()] —gd T + Smatter (g, ], (3.16)

where w is such that

3+ulo) = a(@) 2, ale)= T (3.17)
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The strong equivalence principle is violated in these theories because the value of the scalar
field affects the local value of the gravitational constant G, introducing thus a position
dependence on the body’s gravitational binding energy. This leads to a renormalization of
the gravitational mass m, (because the binding energy contributes to it), which becomes a
function of the scalar field. We can therefore write the mass of the a-th body as

Mme = ma(Qb) , (318)

which explicitly takes into account the position-dependence of the gravitational mass through
the local value of the scalar field ¢. The corresponding modification of the body’s motion has
been long known in these theories and is referred to as the “Nordtvedt effect”. By extension,
we will also use the same name for Lorentz-violating theories. Of course, here instead of
a position dependence we will find that the gravitational binding energy of a body must
depend on its speed relative to the sether field.

3.2 Point-particle approximation and the sensitivities

The previous discussion was intended to motivate the physics behind SEP violations, thus
it was essentially conceptual. Now, if we want to make precise predictions we need to solve the
field equations and compute the physical observables associated to the solutions. However, we
do not have exact solutions neither in khronometric theory nor in general relativity. Thus we
are forced to either look for numerical schemes to solve the field equations or to approximate
schemes to obtain the binary evolution.

Throughout this work we will consider the post-Newtonian approximation to study the
orbital decay of binary black holes. Thus, we will assume that the orbital speed of the black
holes is a small parameter that can be used to expand the system’s dynamics (recall that we
set ¢ = 1) . This corresponds to an early phase where the distance between the black holes
is large compared to their size. Otherwise said, we deal with a phase much earlier than the
coalescence. Moreover, we will assume that the relative speed of each black hole relative to
the sether field is small as well. The latter hypothesis can be justified by recalling two facts.
On the one hand, the sether must be almost aligned with the CMB frame in order to avoid
non-viable effects on the cosmological evolution, and notably large deviations away from the
GR predictions for the CMB spectrum [146]. On the other hand, the peculiar velocities of
galaxies such as our Milky Way, relative to the CMB, are of the order of ~ 1073. From this,
we conclude that the velocity of the center of mass of binary systems with respect to the
ether must also be small, justifying our assumption.

Furthermore, considering that the black holes are sufficiently afar, we will model each of
them using a point-particle prescription. In order to encode the Nordtvedt effect described
in the previous discussion, the point-particle action must depend on new “aether charges” or
“sensitivity parameters”. These sensitivities will effectively couple the particles to the sether
field.

In general, modeling compact objects using point-particles requires a scheme to describe
their dynamics. This scheme must include effects such as the self-force appearing in any
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field theory [147], but also the modifications to the dynamics coming from violations of the
strong equivalence principle. Let us first describe how the violations of the strong equivalence
principle are parametrized for scalar-tensor theories as given by the action (3.16). We can
make a point-particle model, using the gravitational mass (3.18), by writing the point-particle
action Sg)pA = — ['ma(¢)dra, where d74 is the proper time along the body’s trajectory. As
we are interested in a post-Newtonian regime, where all motion is slow compared to the
speed of light, we expect that the variations of the scalar field are slow and small as well.
Then we can consider the leading-order Taylor expansion of the mass m(¢) in terms of the

field ¢, and parametrize the violations of SEP through the sensitivity [148]

Olnmgy
Olng lp=¢,’

s% (3.19)
where ¢ is the (constant) value of the scalar field far from the object. This procedure allows
to take into account the renormalization of the binding energy due to the dependence of the
value of the gravitational constant on the local value of the scalar field.

For Lorentz-violating gravity, we can make use of a similar strategy to model the mo-
difications to the dynamics coming from violations of the strong equivalence principle. A
simple way to describe the latter consists of characterizing each body A by a mass function
ma(va), depending on its relative velocity with respect to the esether frame. This introduces
a dependence in the point-particle action Sp, Ao on the particle’s Lorentz factor with respect
to the sther, v4 = w4 - u, where u is the asther field at the particle’s position and uy, its
four-velocity. Thus, the particle’s point-particle action becomes [149]

%MZ—/mMmMm, (3.20)

where d74 is the proper time along the body’s trajectory. Let us denote the velocity of the
A-th particle with respect to the sether field as vga, i.e., v4 = /72 —1/7, and the relative
velocity between the bodies as v1s. Since we are considering a PN regime where both v
and v, are small parameters, we can express the mass function m4(v4) perturbatively near
the static limit y4 = 1 (corresponding to v4 = 0). Expanding we can write thus

Sppa = —ria [ dra{1+oa(l= )+ 50h (0 =P + 01—}, (32)

where m4 = my(1) is the body’s mass while at rest with respect to the sether, and where
we have introduced the sensitivities 04 and o’y as

d®>Inma(ya) (3.22)

[ 2
O A _UA+UA+ d(ln")/A)2 ‘7A21 .

Let us stress that the sensitivities, as defined above, will in principle depend on the body’s
composition and internal structure. Thus for instance, the sensitivity of a neutron star of
mass m and spin J has no reason to be the same as the sensitivity of a black hole of the
same mass and spin. This is markedly different from GR, and means in particular that the
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effacement principle is violated. Therefore we have to compute the sensitivities for each dif-
ferent type of object. In this chapter we aim to compute them for black holes.

When we model the interaction between the sether and a massive object with an effective
action such as (3.21), we formally introduce a direct coupling between the matter and the
sether. However, the field equations (2.24) and (2.25) were obtained from an action where
the matter couples only to the metric. Consequently, when modeling the coupling between a
point-particle and the sther we must modify the field equations in order to take into account
the effect of the sensitivities. Variation of the total action (2.39) with respect to its degrees
of freedom will notably differ for Spatter, Where terms proportional to the sensitivities will
appear. More precisely, in the modified Einstein equations (2.24) and (2.44) the stress energy
tensor of matter picks up a contribution proportional to sensitivities. Thus, while the sether
stress energy tensor remains unchanged (i.e., given by (2.47)) the matter stress energy tensor
becomes [129]

. ~ 5(3) i ol /
T o = P2 T (14 T8 (1) <ty [oa b o (1)) (2000 =y )

ulv=g
(3.23)

for Einstein-gether theory and

maAdB) (zh — 2t o’

T3 0= A0 T ([ g - T3] x ity — o+ o1 = )
Ve

(3.24)

for khronometric theory. Here, x4 is the Ath point-particle’s worldline and 83 is the three-
dimensional Dirac delta. The acther equation is similarly modified. In fact, both in Einstein-
sether and khronometric theory the vector A* now includes a source term [129]

87TGEA mA
uav=g

where A* is still given by (2.45). Note that o4 is multiplied by terms of order v4, whereas
014 appears next to terms proportional to v134.

Now that we know how the field equations are modified in order to take into account for
the effective coupling between an compact body A and the sether, we would like to have
a procedure allowing us to compute the sensitivities. In order to achieve this goal, let us
obtain a post-Newtonian expansion of the metric of a point-particle using the effective field
equations. Then, comparison to an asymptotic solution of the field equations will allow us
to express the sensitivities in terms of a set of parameters defining the asymptotic solution.

Ar = AF 4 53 (@t — ) x (04 + 4 (1 —~a)) (U — yauh), (3.25)

3.3 Sensitivities and the asymptotic metric

The field equations for a binary black hole system can be solved within a post-Newtonian
approximation, i.e., one where an expansion of the dynamics is made using the orbital speed
as a small parameter vis < 1. We will also impose that the speed of each black hole with
respect to the sether field be small, i.e., v4 < 1. The 1PN solution has the same form in
both Einstein-sether and khronometric theory. The results of this section were obtained in
[129].
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Let us consider two black holes of masses my, mo orbiting each other. In the standard
post-Newtonian gauge, that is, using PN coordinates (t',2’,y/, 2’) such that the spatial part
of the metric is diagonal and isotropic (see [9], section 4.2 for more details), and restoring
the powers of 1/c to clarify the PN order counting, the 1PN metric reads [129]

1 QGN’erl 1 2G2 m2 2G2 m1m2 2G2 Thl’fng 3G m1 2
90/0/:1_7 / + 172 -+ N// + ]\i/ - Aj ,(1+01)
c r c '] Ty (EYED £
+1¢2+0(1/0),
1 G G
Jorir = [Bl ENT iy gk ONTOL iri 1] 4 52 4 O(1/cY),
3 £ 7"1
1 2GN™m
gy = — (1+ 0251) 5+ 124 0(1/ch),
1

(3.26)

where v’} is the velocity of the A-th black hole, 7, the binary’s separation, r/y the distance
from the field point to the A-th black hole, A” the unit vector associated with 7’y and the
symbol 1 <+ 2 means that one has to duphcate the terms on the right-hand side exchan-
ging body 1 and 2. In this scheme, a term proportional to (|v/4!|/c)*¥ (or equivalently to
G(ma/r'"y)N) with respect to the Newtonian solution is said to be of N-th PN order and will
be denoted as O(1/¢*Y). In khronometric theory the coefficients B* are given by

3 1 2 -« 1
BE = -2+ Z(o};h — 2a5M) (1 T 35- aaA) — 204 — 1041 N1404), (3.27)

where the PPN parameters are, for khronometric theory, given by

4o — 28)
kh
_ 2
akh _ (Oé - 26)[_62 + B(Oé B 3) +a+ )‘(_1 — 3ﬂ + 2@)] ) (329)
? (B =1+ B)(a-2)
Using the same notations, the sether field at 1PN has the form
1 G’Nm1
0 _
U _1+02 = +1<—>2+(’)(1/c) (3.30)
, 1G
U= 1:/1m1 (Crof + Crofafat) +16 24 001/, (3.31)
where the coefficients C* are
8 + akh 2 —a [2akh — kb 204
+ _ 1 2 1
Oy = 1 (1+04) 1 ( 25— a) +5+)\ (3.32)

Note that at 1 PN order there is only one sensitivity parameter, o4, appearing in the
metric, whereas ¢’y is expected to appear at higher PN orders. More precisely, gy ¢ contains
the sensitivity multiplied by a O(v?) term, the frame dragging metric component gy contains
o multiplied by a O(v) term and the spatial part of the metric g;;; does not contain any
term proportional to the sensitivities.
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3.3.1 Extraction procedure

This result for the 1PN metric hints at an extraction prescription allowing us to compute
the sensitivities from a single-body solution. Indeed, this procedure can be obtained from the
following argument. Let us consider the limit where there is only one black hole, by placing
ourselves within a buffer region such that R, < r < r},, where R, is the “horizon radius”
of the black hole. The existence of this region is guaranteed by the conditions defining the
PN scheme, particularly the fact that {5 > R.. In this buffer region we can set the other
black hole’s mass to zero, (g = 0, i.e., the effect of the second black hole is subdominant) or
equivalently take the limit where 7}, goes to infinity, producing an expression that contains
parameters relative to the first black hole only.

Let us remark that, while it is difficult to look for exact solutions for a binary system,
we can still attempt to find such solutions for single bodies (provided that they are simple
enough). The key observation here is that, if we are able to solve the exact strong-field
equations without a point-particle approximation, then we can read the sensitivity from
the asymptotic behavior of the exact solution, by comparing to equation (3.26). This is the
extraction procedure that we will use to compute the black hole sensitivity in the following
sections. More precisely, we will consider a single black hole moving slowly with respect to
the sether field, so that its speed v will be taken as a small parameter, and then solve the field
equations to the first order in its speed. Then we will compare the asymptotic behavior of the
analytic solution to the frame dragging sector of the PN solution in order to read the O(v)
term containing the sensitivity o. Since we will work using spatial spherical coordinates it is
useful to recast the 1 PN metric of equation (3.26) for a single body in spherical coordinates.
Thus, dropping the A label since we work with a single body, the asymptotic solution for a
slowly moving black hole is given, in a suitable gauge, by the metric [129]

2M,
ds? = dt? — dr? +{ - T(dt2 + dr?) — 2 (d92 + sin? 9d902>
_ i M.,
—2v (B~ + B —1—4)7 cos fdt dr (3.33)

M, 1
+20r {(3—}—3_ — J)r] sin&dtde} X [1 + 0 <U, ’rﬂ ,

and the sether field

M., 1
Uydzt = (dt + v cos Odr — vrsin 6d0) x {1 - +0 (2)} +0(v?), (3.34)
T T
where M, = G ™. Here BT takes the same form as before and J is defined as
3 1 2 -« 1
BT = 4+ + (afh —20kP (1 )—2 —akM) (1 .
5 4(041 as’) +25—a0 ( + 1o )( +o0), (3.35)
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2(A + B)(a —2)
Clearly, the sensitivity can be read off a strong field solution from the asymptotic values of the
g¢r and g, components of the metric, through the combinations 3+ B~ —.J and B~ +B* +4,
respectively. Both readings must give the same value. This is indeed a consistency condition
that we use to validate our computations.
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3.4 Dipolar radiation

Before tackling the problem of finding exact solutions to the field equations, we will review
the observable effects produced by the sensitivities. First, let us recall that the sensitivities
were introduced in order to quantify deviations from geodesic motion, thus encoding the
violations of the strong equivalence principle. Indeed, they characterize how the structure of
a compact object, such as a black hole or a neutron star, changes with its motion relative to
the ambient (extra) field in which it is immersed, i.e., the aether field. They are also deter-
mined by the composition and nature (black hole or neutron star) of the body, so different
objects will respond differently to the ambient field. This is dependence on composition and
nature of the body is a manifest breaking of the universality of free fall.

The sensitivities affect both the conservative and dissipative sectors. Indeed, in the conser-
vative sector the sensitivities modify Newton’s universal gravitation law [149], so that the
motion of a binary is described, at Newtonian order, by

VY = —————— 5= 3.37
A (1 + O'A)T%B Y ( )

where rap = |4 — xp| and Alyp = (2% — ) /T aB-

This relation can be written in a more symmetrical way as

4 mph’

oy = — 9B (3.38)
TAB

where we introduced the active gravitational masses

mpg Ean(l—i—aB) (339)
and the “strong field” gravitational constant
G

G= N (3.40)

(1404)(1+0p)"

The sensitivities also modify the equations of motion at higher PN order in the conservative
sector in a similar fashion [149].

3.4.1 Dissipative PN dynamics

Regarding the dissipative sector, we expect to lose binary gravitational energy not only to
the tensor modes, as in general relativity, but also to the scalar modes present in khronometric
theory (and also to the vector modes in Einstein-sether). Furthermore, the sensitivities allow
for dipolar radiation, which is absent in general relativity due to conservation of linear
momentum (cf. section 1.5, see also [10]). This modifies in turn the gravitational wave flux.

From the corrections to the conservative sector at Newtonian order, we have that the
binary’s binding energy FEj, will be defined as in Newtonian mechanics, but written instead
in terms of the strong field gravitational constant G and the active gravitational masses m4 :

_Gpm

—
b 2

(3.41)



3.4 DIPOLAR RADIATION 59

where a is the semi-major axis, u = mimg/m is the reduced (active) mass and m = mj +mo
is the total (active) mass. The energy carried away from the system can be related to the
rate of change of the gravitational binding energy through the balance law [124, 149]

Ey,=-F, (3.42)

where F is the gravitational wave flux. In khronometric and Einstein-sether theory, this
energy is carried away from the source by the tensor and scalar modes, as well as vector modes
for Einstein-sether theory. The gravitational wave flux was first computed in [149, 124] for
weak-field sources and later generalized to strong-field sources in [129], both for khronometric
and Einstein-sether theory. From here one we will only discuss about the radiation problem
in khronometric theory. We refer to [129] for a detailed discussion of gravitational radiation
in Einstein-sether theory.

In order to compute the flux F, we can place ourselves in the radiation zone and express
the metric and khronon field as perturbations of the flat background and of a future time
direction, respectively. Thus, we choose coordinates such that the background metric is the
Minkowski metric and the sether background is aligned with the future direction. In this
way, we can define g, = 1, + by and v = 8} + U*. Furthermore, we can choose a gauge
[124] where U® = 0, by making an infinitesimal gauge transformation redefining the time
coordinate t. In fact we have that

U U -9 if TT+€, (3.43)

so that we can choose & so as to eliminate U°. Decomposing the metric and aether per-
turbations as irreducible transverse and longitudinal components, the perturbations can be
written as

hoi Z’Yih‘F’Yﬁ? U'=v'+u,,

1 N , N (3.44)
hij = ¢ij + A <5ijAF - FU) + 2035 + Plij
where A is the Laplacian differential operator defined as A = 9;0;, and
Wi =Vl =i = diij = ¢ii = 0. (3.45)

Thus, 7" and 9;7" are the transverse and longitudinal parts of ho;, a similarly v and 9;v
are the transverse and longitudinal pieces of U?. The functions ¢;j and F' correspond to the
spin-2 and spin-0 far-zone fields, as it will become clear in equations (3.48) and (3.49), while
the other metric terms correspond to longitudinal modes that do not radiate in khronometric
theory. Let us denote by x(t) the trajectories of the A-th point-particle and vy(t) = i
its 3-velocity. Our goal is to obtain the perturbation fields at a distance r far away from

the source, r > |2Y|, i.e., in the radiation zone. Then, the transverse-traceless projector is
i

built using the unit-norm vector 7! = r—, where the r? are the coordinates of the field point.
Inserting the metric and aether decompgsition into the field equations, as derived from in the
point-particle model, allows us to obtain the behavior by the far-zone fields. Following the
methods described in [124], the gravitational wave flux can be computed as

___1 2Ly g _(@=2)py
<I>——Médﬂr <Ct¢”¢” Y FF>, (346)

S
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where the angled-brackets indicate an average over several wavelengths. Also, the propagation
speed of the tensor modes is ¢; 2—-1- 8, and the propagation speed of the scalar modes is

given by

o (a=2)(B+A)
¢; = aB—12+B+3N)’ (3-47)

cf. section 2.5. The far-zone fields are found to be [124] given by the expressions

2GEA =
bij = ———Q (t —r/cr), (3.48)
in the case of the tensor modes, which must be evaluated at the retarded time ¢t — r/c¢;, and
4Ger v [3 - 1 . AT . 1. . 2 .
F=—""|=(Z-D)A"WQi; + =21y ———(Qi; + =9;;Z Rty 3.49
(06—2)7“ 2( )anZj+2 kk acg (QU+3 1) kk)+OéCsn ‘| ) ( )
in the case of the scalar modes. Here, ();; is the traceless quadrupole tensor, defined as
1
Qij = Lij — 301k, (3.50)
where the tensor of inertia I;; of a system of A point-particles is given by
Li; = ZmAwile {1 +0 (1/02)} . (3.51)
A

We have also introduced the trace-free part of the rescaled mass quadrupole tensor Q;j;,
related to the rescaled mass inertia tensor

Z; = ZUAmAxfg:cil [1 + O (1/62” , (3.52)
A
by the relation
1
Qij = Zij — 30w (3.53)
as well as the vector ‘ '
= =Y oamavh [140 (1/)] | (3.54)
A

and the constant Z is given by

(of" —2a5")(1 - B)
3(26 - a)

Let us stress that the different quantities defining F' are to be evaluated at the retarded time

t—r/cs.

The flux can then be evaluated for a binary system in terms of the (Newtonian) center-of-

mass coordinates X, = (m1 2} +ma 23)/m. The energy lost by the binary system is finally
given by the formula [129]

Z

(3.55)
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where VéM = XéM is the center of mass velocity of the system relative to the sether and
vy =7, is the relative 3-velocity of the binary. Also, we have introduced the coefficients

5 2
Ag = 3a(2zia)c5 B, = 4;.222—2) (3.58)
3 5
By = 3(;3(2;0—2) Bs = m, (3.59)
3
c= 3625(62_06) (3.60)

where we reintroduced the powers of ¢ for later power-counting, and the shorthand & =

s1ma/m + samq/m. Finally, the sensitivities are represented by the parameter
OA

1404y )

sS4 = (3.61)
Let us remark first that in the limit where the khronometric coupling coefficients «, 8, A go to
zero, the flux and the rate of energy loss formulae reduce to the GR result (provided that the
sensitivities vanish in that limit), that is, we recover the quadrupole formula and there is no
dipolar radiation. The preferred frame effect can be observed in these formulae through the
presence of Vo, the velocity of the center of mass with respect to the sether, whereas secular
term depending directly on Xps can be neglected [149]. Most importantly, let us stress that,
provided that the difference of the bodies’ sensitivities |s; — s2| and the coupling constants are
large enough, the khronometric terms can dominate the GR ones, even for small coupling.
Indeed, the leading order terms in the khronometric result enter at an absolute order of
O(1/c®), whereas the quadrupole formula in GR does it at O(1/c!Y). These dominant terms
are proportional to the difference of the sensitivity parameters squared. Thus, this scaling
given by fewer powers of m/r13 corresponds to a -1 PN correction and is therefore dominant
during inspiral. This new emission mode, besides the standard quadrupole emission, enhances
the energy loss rate of the binary, and consequently it will tend to shorten the duration of
the orbital phase of binary systems and lead them to a faster coalescence (cf. section 1.6.2).

3.5 Chapter conclusions

We have seen that in modified theories of gravity, there is, generically, violations of
the strong equivalence principle, that is, the universality of free fall does not extend into
self-gravitating objects. This effect can be parametrized by a set of parameters called the
sensitivities, as can be seen by introducing an effective point particle model, as explained in
3.2. The modification to the orbital dynamics induced by the sensitivities also modifies the
gravitational wave flux, and in the case of Lorentz violating gravity the dominant emission
mode now appears to be dipolar, as discussed in 3.4. The strength of this dipolar emission is
proportional to the difference of the sensitivities squared. The apparition of a new emission
channel leads to a faster binary energy loss, and therefore to a faster evolution towards
coalescence. In particular, this would differ from predictions using multi-band GW detections
as mentioned in section 1.6.2. Therefore the computation of the sensitivity for different
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compact objects is of capital importance. This has been done in reference [?] in the case of
neutron stars, and the purpose of the next chapter is to compute the sensitivity for binary
black holes. More precisely, in section 3.3 we have seen that the sensitivities can be extracted
from a solution slowly moving with respect to the Lorentz violating field, as it was done in
[?], and the next chapter will tackle the computation of slowly moving black holes.



4 — Slowly moving black holes in
Lorentz-violating Gravity

In this chapter we will see how the preferred-frame effects introduced in the gravity
sector affect the motion of a binary black hole system. We will also see how this leads to
detectable changes in the gravitational wave fluxes the binary emits. In order to do so, we
will first review the general physical principles that lead to these modifications in section 3.1,
in particular the strong equivalence principle and its violations. Based on this motivation, in
section 3.2 we will introduce a point-particle model containing parameters quantifying these
violations, which we will refer to as “sensitivities”. Using a post-Newtonian approximation
for the binary dynamics, we will show how this scheme naturally leads to a semi-analytic
prescription to compute the sensitivities in section 3.3. Indeed, we will see that these can
be read off from the asymptotic metric of a single slowly moving black hole. The formalism
developed will be extended to describe the modified gravitational radiation in section 3.4. Up
to that point, we do not pretend showing any new result. Indeed, new results are postponed
to the end of this chapter, starting in section 4.1. There we will describe solutions for black
holes slowly moving with respect to a Lorentz-violating field. We will show that some of these
solutions are not regular. Moreover, we will conclude that imposing regularity reduces the
parameter space of Lorentz-violating theories in a way that is in agreement with experimental
constraints. Finally, with these results at hand, the possibility of observing modifications to
the gravitational wave flux will be discussed in section 4.4.

4.1 Slowly moving black holes

In section 3.3.1, we highlighted a prescription allowing us to measure the sensitivities of
a compact object, which appear when modeling a binary system through the point-particle
approximation, by taking the limit where the system is composed of a single object moving
relative to the khronon field. In this section, we will construct such a solution in the case of a
non-spinning black hole in khronometric theory, slowly moving with respect to the ambient
khronon field. In order to do so, we will begin by presenting the metric and khronon Ansatz
as composed by a static background and a perturbation scaling with the relative velocity v
between the khronon and the black hole. Expanding the field equations at zeroth order in v
will give the static solution described in section 2.6.1. Solving the first order equations will
be the core of this section.

63
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4.1.1 Construction of the Ansatz

We have formulated the physical system as composed by a stationary sether background
and a non-spinning black hole in slow motion with respect to it. Equivalently, we can choose
to describe the system as given by a black hole at rest and a moving aether ! whose asymptotic
behavior corresponds to a constant flow. Both pictures are related by a gauge transformation.
Here we choose the latter point of view, as it avoids the need of a time-dependent description
of the black hole’s position. For definiteness, we will set the motion of the sether flow along
the z axis, and let v be its asymptotic speed.

4.1.1.a) Symmetries and the perturbation potentials

We want to choose our coordinates in such a way that, at zeroth order in v, the solution
will be described by the metric (2.77) and the khronon (2.78). Those solutions are given
Ansatz using Eddington-Finkelstein coordinates (cf. section 2.6). However, for our goals
it is easier to write the metric’s and the sether’s first order perturbations using isotropic
cylindrical coordinates, x# = {t, p, ®,z}. In these coordinates, the black hole is located at
the origin and its four-velocity is given by wup, = (1/4/g1,0,0,0) (black hole at rest). The
background metric can be written as

ds? = f(7)dt2 — b2(7) (dp2 + p2de? + dz2) , (4.1)

where 7 = /p? + 22 is the isotropic radial coordinate. Note that 7 is different from the
areal coordinate r used in Eddington-Finkelstein coordinates. They are simply related by
the relation r = 7 b(7). Also, b(7) is related to B(r) by the relation

B(r) b(7)
= . 4.2
f(r)  b(7)+ 7 db(r)/drF (4.2)
The background aether field is given by
ubdx“ = A(r)dt + a,dr, (4.3)

where 4, is determined by the normalization condition u}juﬁ = 1. Note that @, # 0, in
contrast to a star where the sether cannot have any r component at O(v°) (in which case we
must set u, = 6,1/ f(F)), see [150] where this is proved by direct resolution of the field equa-
tions 2. The advantage of using isotropic coordinates, instead of directly using Eddington-
Finkelstein coordinates, comes from the fact that in the former the spatial part of the metric
becomes conformally flat, thus simplifies our treatment in the following. Moreover, the use of
cylindrical coordinates rather than spherical coordinates allows for an easier treatment of the

1. Let us recall that now the sether field is not a fundamental quantity, but is rather derived from the
khronon field. We choose to speak of the @ther field derived from the khronon, instead of the khronon field
itself, as it allows for a simple geometrical description in terms of a vector field flow.

2. The physical reason behind this fact is that in stars we must impose regularity of the sether field at the
center. More precisely, spherical symmetry implies that the radial part of the sether must vanish at r = 0.
Imposing this boundary condition together with asymptotical flatness leads to the vanishing of the radial
component everywhere. In contrast, for black holes the sether flow can be singular at the center and in fact
it flows towards the center.
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perturbed system. Indeed, our physical system exhibits cylindrical invariance with respect
to the axis of the sether flow, i.e., the z axis. This implies that physical perturbations must
transform, under rotations of the z axis, as scalar, vector, or tensor quantities. Also, due
to cylindrical symmetry we have that physical quantities cannot depend on the azimuthal
coordinate ¢.

Let us consider the symmetry properties of the first order perturbation, i.e., carrying v.

‘We note that the simultaneous coordinate reversal
t— —t
’ (4.4)
zZ —2,

must leave the physics unchanged. This transformation can also be interpreted as a simulta-
neous time and motion reversal, which is clearly a symmetry of the system. It follows that
the only metric components allowed for the perturbations are gis, gip, 9iz» Gpps 9p- and g...
With respect to spatial rotations, the metric perturbations will decompose as

§(ds?) = v 8 gy dt? scalar
+2v (6gtp dp + dgi- dz)dt vector (4.5)
v (8gpp dp? + 289, dpdz + 9., dz?) tensor.

The total metric would be then
ds? =f(F)d? = b*(7) (dp? + pPdg? + d=?)
+ v(dgtt dt* + 26g;, dtdp + 289, dzdt + 8g,, dp® + 28g,. dpdz + 6g.. sz) + O(v?).
(4.6)

The same symmetry considerations applied to the sether field imply that the only components
that can be perturbed are duf, du” and du?. This leads to the sether Ansatz

ut =l + ul (D) + 6uP (9,)" + ou’ (9:)" (4.7)

Clearly, the only 3-vectors we have in order to construct the perturbations belong to the
(p, z) plane and are given by ¢ = (0,v) and 7 = (p, z)/7 = (sin @, cosf), which provides a
basis in the (p, z) plane. Thus, we must construct scalar, vector and tensor perturbations of
order O(v) by means of ¥ and 7. This means, for instance, that the scalar terms must be
expressed as the product of an arbitrary function of the radius 7 times the scalar 7 - v. Thus,
we can express the metric perturbations as

Ly —1/)( )(n v) =vcosf 1/;(?),

(?iﬁi)—aﬂ V(7 )i+ a7

51110(3089 a1 (7)
cos? 0 a1 (F) + aa(F) )’

( 09pp  09p2 ) =as(7 < _’)n n + oy (F)nto?) |

(4.8)

5gzp 0922

cos 0sin? 0 a3 () sin §(cos? 0 as(7) + a4(7))
sin 0(cos? 0 az(7) + ay(F)) cosf(cos? O as(F) + as(F)) |’
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where we have introduced the unknown functions (7) and a;(7) for i = 1,2,3,4. We will
refer to them as the “metric perturbation potentials”. Along the same lines, we observe that
the time component du’ must transform as a scalar under spatial rotations while (du”, Ju?)
must transform as a vector. Thus, we must express the sether perturbations as

Su' = B(F) it - ¥ = vcos b By (F), (4.9)

( gzz ) = Ba(7) (

B cos 0sin 6 [o(T)
- ( cos? 0 Bo(7) + (7) ) ’ (4.10)

-0+ (F)U

St

where we have introduced the arbitrary functions 3 »(7) and v(7), and we will refer to them
as to the “khronon perturbation potentials”. Notice that a functional dependence on p or z
would require another projection using the vector #, and as such it would be a O(v?) effect.
Thus, the perturbation potentials are functions only of 7 = /p? + 22 and not of p nor z.

4.1.1.b) Asymptotic sether flow condition

At this juncture we find it convenient to remark that, from the khronon Ansatz, we
can immediately foresee the asymptotic behavior that we are looking for in the pertur-
bation potentials. Indeed, an asymptotic sther flow in slow uniform motion along the z
axis would correspond to (9 — vd,)/v/1 —v? in Cartesian coordinates, or equivalently to

(&,v —wvcosf0, +v sinf/r 89) /v1—2? in Eddington-Finkelstein coordinates. Thus, ins-

pection of equations (4.10) and (4.10) allows us to conclude that we must impose

P12(F) — 0 as 7 — o0, (4.11a)
y(7) — =1 as 7 — o0, (4.11b)

as this guarantees that the potentials are such that the O(v) sether field asymptotes to
(815 — v@z).

4.1.1.c) From isotropic cylindrical coordinates to Eddington-Finkelstein coor-
dinates

Now that we obtained the Ansétze (4.6) and (4.7) with their explicit functional form, we
can transform them to Eddington-Finkelstein coordinates {v,r, 0, ¢}. Let us warn the reader
that two typographies for “v” will be present from now on. First, the letter v corresponding
to the small relative velocity between the black hole and the ather field. Second, the letter
v which appears as a coordinate in Eddington-Finkelstein coordinates. In these coordinates
the background metric is given by

ds® = f(r)dv? — 2B(r)dvdr + r2dQ?, (4.12)
and the background ather field is

L+ AR ()

uy, dat = A dv — A(r)B(r)dr. (4.13)
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After some straightforward algebra, on the one hand we can express the metric Ansatz as

gudzdz” =(f +vcosf f2 1/))dv2 + 2( — B +vcosbf (g — Bw))dvdr
+ 2(—vf sinfn )dvdl + ( —vcosOB (2n +2ny — By ))dr2 (4.14)

+ (v sinf (B m2 — 13 ))drd@ —r2dQ* + O(v?),

where we have introduced the new metric potentials ¢(r) and n;(r) for ¢ = 1,2,3,4, and
we have omitted the r-dependence of the functions f(r), A(r), and B(r) as well as of the
perturbations 171 2 3(r), and ¢ (r) in order to facilitate the reading. The sether Ansatz becomes

r)2f(r
uy, dat = (W + v (1(r) cos 9> dv+ (—A(T)B(r)+v Ca(r) cos 0) dr—v (3(r)sin6do,

(4.15)
where we have introduced the new potentials (;(r) with i = 1,2, 3.

4.1.1.d) Infinitesimal gauge transformations

The procedure outlined can be extended to simplify our Ansétze even further, however.
Indeed, we can still perform an infinitesimal gauge transformation and simplify some of the
potentials. In particular, we can choose to set ug to zero within a suitable gauge. In order to
achieve this, we propose a coordinate transformation of the form 3

v =v 4 v Hi(r)cos 6 + O(v?), (4.16)

which gives dv = dv' — v H{(r) cos § dr + v H;(r) sin § df. Thus, for the 1-form w,, this trans-
formation gives

uudzt = (uytv (i (r) cosf)dv'+ (ur—i—(v Co(r)—vuy Hi (r)) cos )dr+ (—v C3(r)+v uvH(T)) sin 6d6 .
(4.17)
G(r)
Uy

the v/ of this coordinate system and simply refer to it as the Eddington-Finkelstein coordi-
nates {v,r,0,¢}.

There is still another gauge transformation we can make to reduce the number of free po-
tentials. Indeed, the infinitesimal coordinate transformation

Clearly, by choosing Hy(r) = we obtain uy = 0. Henceforth we will drop the prime in

7+ 1+ vHa(r) cos b, 0'—>9—UH2(T) sinf, (4.18)
T

allow us to remove any of the metric potentials in 4.14. We here choose to set n4(r) = 0
without any loose of generality.

Moreover, the khronon potentials are not completely free though, because the sether
flow must be both hypersurface-orthogonal and of unity norm. Thus, we need to restrain

3. Attention to the different “v”s...
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the functions (;(r) and (a(r) further by imposing the normalization and the orthogonality
conditions, namely g, u#u” =1 and

wh = e“O‘BA’uaV/Bu,Y =0, (4.19)

where €#*#7 is the Levi-Civita tensor, in agreement with Frobenius theorem. These relations
completely determine the sether potentials (12 in terms of the metric potentials.
Therefore, after a few re-definitions we can express the metric Ansatz as

guvdatda” :(f(r)dv2 —2B(r)drdv — r2dQ2) +v { cos 6 f(r)* ¢(r)dv?
+ B(r)cos 0[yp(r) — 26(r)]dr? + 2f(r) cos 0[5 (r) — B(r)i(r)]dvdr  (4.20)
— 2sin 0 x(r)dvdd + 2sin 0[B(r)x(r) — £(r)]drdo} + O(v?).

The final form of the sether Ansatz is then

L+ f(r)A(r)?

Aot =
Une 2A(r)

dv — A(r)B(r)dr

(4.21)
r) A(r)? ) h(r
<1_|_f() ()) ()dv_UCOSHMdT_'—O(U%’

Focost T B 1A(r)

where h(r) = (A(r)*f(r)? — 1)d(r) + 2A(r)*B(r)y(r). From now on, we will refer to 4(r),
x(r), ¥(r) and X(r) which appear in equations (4.20) and (4.21) as to the “perturbation
potentials”. All these transformations are shown in a recapitulative manner in figure 4.1.

Let us remark that, since the metric and khronon potentials depend only on one variable,
r, the field equations must reduce to a system of ordinary differential equations for the
potentials. However, the fact that this Anétze yield separable equations is a highly non-
trivial result. Indeed, instead of using the vectors 7 and ¥ to express our potentials, we could
have expressed the metric and assther perturbations as sums of Legendre polynomials, e.g.,

dgu = Z kn(r)Py(cosf), (4.22)

where P, is the n-th Legendre polynomial, and so on for the other perturbations. We can
perform this decomposition because of the symmetries of our physical system. Plugging this
form of Ansatz into the field equation yields a set of differential equations which must be
solved order by order. On the one hand, each equation couples in general different modes
(e.g., different k,), meaning that, in principle, they are not independent (reflecting that the
system is governed by partial differential equations). On the other hand, the fact that we
can express our perturbations as in equations( 4.20) and (4.21) means that only the first
modes (n = 1) of the Legendre decomposition are necessary to characterize the order O(v)
solution. Thus, the separability of the field equations is a consequence of the symmetries of
the system that lead us to the decomposition given by (4.20) and (4.21).

Let us recall that, in order to obtain an asymptotic sether flow corresponding to our
physical description, the potentials from the original sether Ansatz in isotropic cylindrical
coordinates (see equations (4.10), (4.10)) must satisfy the conditions (4.11a), (4.11b). In
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Isotropic cylindrical coordinates | £ =7 Sin 0 Isotropic spherical coordinates
(t,p, b, 2) 2z :FCOSQ> (t,7,0,9)
a1 (7), az (7:), 013(7:), 04457“), a5 (r) r =7b(F)
B1(r), B2(7),~(7) 4 B(r)dr
T =

(O(F) + 70/ (7))\/ £ (r)

Eddington-Finkelstein coordinates | €—— Areal Sphe;icale coordinates
(V7Ir797¢) t:v—i—R(T) ( ) T 7¢)

o(r), x(r),v(r),X(r),n(r) R(r) = _B(r)
Cl (T’), CZ (T)a C3(T)
Gauge conditions " —xt + & (x)

€40, = v Hy(r) cos 0 0y .
+v Ha () (cos@@r — 812989> H, sets  1(r)

Hy sets (3(r) = (up = 0)
0

No-vorticity condition w,,, =0 set (1(r),(2(r) in terms of

Unitary condition g, u"u” =1 o(r), x(r), ¢(r), X(r)

FIGURE 4.1 — Schematic representation of the coordinate transformations leading from the
geometrical Ansatz in isotropic cylindrical coordinates to Eddington-Finkelstein coordinates,
as well as the infinitesimal gauge conditions allowing to set two of the 8 initial potentials to
zero, and the geometrical conditions that set two of the 6 remaining potentials in terms of
the other four, which we call §(r), x(r), ¥ (r), X(r), the perturbation potentials.

particular, v(r) must asymptote to —1 for large r, so it is convenient to recast this function
in terms of the new potentials introduced above

B+ A2 f()x(r) — (1= A%()f(r)) ()

v(r) = 2 A()B(r) (4.23)

Later in this work, this relation will give us asymptotic conditions to be imposed on the
potentials x(r) and X(r).

4.2 Structure of the field equations

We shall now tackle the problem of solving the field equations for a black hole slowly
moving with respect to the aether field. Plugging the metric and sether Ansitze, (4.20)
and (4.21) into the field equations and expanding in O(v) gives us zeroth and first order
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equations for the potentials. The former involve only the background functions f, A and B,
and correspond to the set of equations defining the static spherically symmetric background
discussed in (2.6.1), while the latter are linear in the perturbations potentials d(r), x(7),
¥(r) and X(r), and depend also on the background potentials f, A and B. The piece of
the modified Einstein tensor E*, that scales linearly with v is composed of 7 non-zero
components, two of them being proportional to each other. In principle, this means that
there are 6 equations of motion, which we can write schematically as

11
P, = anyi(r)wi =0, forne{l,23,4,506} (4.24)
i=1

where the p,, ;(r) are algebraic expressions of the radial coordinate r, the coupling coefficients
a, B and A, and of the background functions f(r), A(r) and B(r) as well. The vector w is
defined in terms of the perturbations potentials as

w = (3(r), x(r), (r). (). 8 (1), X (0.0 (1), (1), 8" (), (), 07(r)) . (4.25)
In the same way as we did in section 2.6, we can make use of the Bianchi identity
VuEY, = k(r) uy , (4.26)

to show that not all 6 equations are dynamical equations. Let us first recall that the zeroth
order piece of these identities lead in fact to the evolution equation (2.84) for the background
constraint equation (2.82), cf. section 2.6. The piece proportional to v has 3 non-trivial
relations obtained by setting v = v, r and 6. We can combine these relations to obtain

u,V,EF v — uyoV BV =k upuy — Kupuyv =0, (4.27a)
ugV B — u, VBV g =k ugu, — Kupug = 0. (4.27D)

Note that there are only two independent identities, since the analogous combination between
the v and 6 components can be deduced from these two. On the one hand, the first equation
can be written as

V,(ur E¥y —uyv E*,) = EF oV 0, — EF,.V ugw, (4.28)
while on the other hand, since ug = 0 in our gauge, the second equation is simply
V,.Elg =V, Eg+VeE%% =0. (4.29)

More important for us is the first order part of these identities. Expanding them, and per-
forming a few algebraic manipulations, we find

dCq 4

T ai(r)Cr +bi(r)Co + 3> dip(r) Py, (4.30)
n=1

dCy 4

. az(r) C1 + ba(r) Co + 3 don(r) P, (4.31)
n=1

WheI‘e~C1 can be iden‘fiﬁeNd WNith ~the combination u,'i’ ]54—u‘13v ]55, the term C'5 can be identified
with Ps, and P = (P, P», P3, Py). Here, the functions a;(r), b;(r) and d; j(r) are algebraic
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expressions of the radial coordinate r, of the background functions f(r), A(r) and B(r) and
the coupling coefficients «, §, and A. From the identities (4.30) we deduce that, if all the
modified Einstein equations E*, = 0 are satisfied at some initial point r;, then it is enough
to solve the equations P = 0 to move to r = r; + Ar, in order to satisfy the equations
C1 = Cy = 0 there as well. We conclude that the equations (4.24) for n = 1,2, 3,4, that is,
P =0, are indeed evolution equations for the perturbation potentials, while C; and Cs are
constraints to be imposed at the initial integration radius 7.

More precisely, assuming the background potentials O(v) solve the zeroth order equations,
then the modified Einstein equations reduce to a system of ordinary differential equations
of second order in 6(r), x(r), and ¥(r) and of first order in X(r), plus two initial value
equations. The evolution equations can be diagonalized and put into the form

5" (r) = 8" (8(r), X(r), % (r), (r), 8'(r), X' (), ' (1)) (4.322)
X' (r) = X" (80, x(r), (1), 2(r), 8 (), X (), ¢ (7)) (4.32b)
'(r) = ¢ (8(r), X(r), 0 (r), 2(r), 8/ (), X' (), ' (1)) (4.32)
S (r) = 2/ (8(r), x(r), (r), (), ' (r), X' (1), ¥/ (1)), (4.32d)

where each of these expressions is linear on the perturbed potentials and their derivatives.
This is the system we will solve numerically in the following sections.

In practice, small errors appear since we solve for the field equations numerically, and
these errors leak into the constraints. Nonetheless, we checked that the sign of the functions
a;(r) and b;(r) are negative for large values of the radial coordinate r, meaning that the
constraint evolution equations behave as an asymptotically damped system. This property
guaranties that the constraints are stable near zero, and numerical errors tend to remain
small at spatial infinity.

4.2.1 Boundary conditions

To obtain a numerical solution to our differential equations (4.32) we would like to set
some initial conditions at given initial radius r; and then numerically integrate the equations
to all other radii. From the number of derivatives present in the equations of motion (7), and
from the number of constraint equations (2), one would expect 7-2=5 free initial conditions
to be needed at any point in order to integrate the system. This would be the case if the
equations were regular everywhere. Unfortunately, inspection of these equations shows pos-
sible singularities at the metric, spin-0 and universal horizon, together with spatial infinity.
Let us consider for instance the equation (4.32a). If we Taylor expand it near the metric
horizon ry,, we find

" _ Ry Ry _ )0
5" (r) = (RN e +0((r=m)), (4.33)

where R; and Ry are algebraic expressions on the potentials d(ry), x(mn), ¥(rn), X(rn) and
their derivatives, evaluated at the metric horizon. Therefore, in order to have a regular
equation for ¢”(r) at r = ry,, both Ry and R2 must vanish at that point. Similar expressions
appear when studying the equations of motion for the other potentials x(r), ¢ (r) and X(r),
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for each of the singular points aforementioned. From a theoretical point of view, these singular
points simply impose new conditions on the perturbation potentials. Yet from a numerical
point of view they make the numerical solution unstable since the regularity condition is
never perfectly satisfied if r; # 7gingular- Thus, from a practical point of view we found it more
convenient to begin our numerical integration on an irregular point and impose regularity
there through the initial conditions.

If one starts at the metric horizon for instance, regularity reduces the number of “free”
initial conditions from 5 to 2. In practice, this is achieved by solving perturbatively the field
equations near the singular point. This procedure give us a series expansion of the form

oo k
§(r) =bon + > (S0, Son) (7" - T’h) ;

P
ad k
X(r) =Y Xkn(Bo,n, Son) (7“ — ?“h) ,
o ) (4.34)
Y(r) = Yrn(dons Son) (7“ - Th) :
=0 k
%(r) =Son + Y Tkn(ons Ton) (7" — Th) ,
k=1

where all the coefficients in the expansion can be expressed in terms of the two initial
conditions dpp = 0(r) and Yoy = X(rh). In this notation, the series coefficients, such as
X0,h(00,h; Xon) = X(rn) for instance, also depend on the free parameters of the background
solution (see discussion in 2.6.2) and the coupling coefficients «, 5, \. Here we are assu-
ming that the potentials are regular at the metric horizon. Indeed, it can be shown that
analyticity of the potentials §, x, ¥ and ¥ is required to ensure finiteness of the invariants
constructed with the metric, the sether vector, and the Killing vectors 0, and Jy (e.g. R,
R RY, R0 R* @B and scalars obtained by contracting among themselves curvature ten-
sors, Killing vectors and the sether). See Appendix 4.B for a proof of this fact.
Furthermore, the field equations at first order are linear in the perturbation potentials and
their derivatives, thus they are invariant under a global rescaling. More precisely, if the set
of potentials {d(r), x(r), ¥(r), X(r)} is a solution of the field equations, then for any given
A € R, the set {Ad(r), Ax(r), Ap(r), AX(r)} will also be a solution. This is clear since the
scaling factor A appears simply as an overall factor in the field equations. We can make use
of this rescaling freedom and choose A to fix any one parameter of the initial conditions.
Without loss of generality, we will set ¥(r,) = ¥on = 1. We can make use of the series
expansion of equations (4.34), truncated at some finite order n, to integrate the system to a
distance € away from the singular point (the metric horizon in this case). In doing this, we
are introducing a numerical error of the order O(e"*!), which can be made arbitrarily small
by increasing n and decreasing e. This procedure allows us to integrate numerically outwards
or inwards the equations of motion, avoiding numerical instabilities at the metric horizon.
To recapitulate, we found that constraints, regularity and scaling gives us just one initial
condition parameter, dgp,, to integrate from the metric horizon ry,.
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4.2.2 Integration to spatial infinity

Let us consider the integration of the equations of motion from the metric horizon to
spatial infinity. If the initial condition dpj were a free parameter of the solution, then it
would be a “hair” of the theory. We will soon show that this is not the case however, and in
fact 0o must get fixed by imposing asymptotical flatness.

Indeed, generic values for the parameter dpy lead to solutions that are not asymptoti-
cally flat. However, for the cases that we studied we could always find a value of dp}, that
gives an asymptotically flat solution. This special value can be found through a bisection
procedure, where the free parameter is used as a shooting parameter. In order to implement
this method, one must first understand the structure of asymptotically flat solutions. Solving
perturbatively the field equations near spatial infinity give

_ (B+ A)(Fido — 4x0) | 02(0, x0) | d3(d0, X0, X2) + 93,.(do, X0) log(r)
5(7") —50 — 2 + 3
(1-38—-2N\)r r r
dk (90, X0, X25 21) + Ok, (d0, X0, X2, 1) log(r)
+ Z - :

(4.35a)

x(r) :507“+X0+
(FE (a(A+1)(38 42X\ — 1) — 1152 + B(7 — 15)) + \(7 — ) F1B+AN-T) ) 1
o=
-

16(8+ M) (38 +2X —1) 0T T 128+ 8A -4
x2 + X2,.(d0, X0) log(r)
+ .
6 ) ) 72 0 5 5 ,Z 1
+Z <Xk: 0, X0, X2 1)+X]:,1<;L( 0, X0, X2, 21) log(r )) ’ (4.35b)
o) :35(3F1 —1821215)50 — 8% 1/}3(50,:;0,21) n i W(%»(:}; X2, X1) ’ (4.35¢)
k=4
21
o(r) :% + {F1(3F12 — 84y) (MJr
o (28% 4+ B(1TA — 52) — 25X + 16) + 2232 + 682\ — 1) + 4\ 5
16(—2)(36 + 21 — 1) 0
(845 — 3F2) (13 + 10)8% + 3B8(a(4X — 5) + 4\ — 2) — 2(Ta + 4)\)
N 8(2 — a)(1— 35— 2\) X0
é(a L3R 21} n Z 2k 5°’X°’X2’21) , (4.35d)

where, due to regularity conditions at infinity, there are only 4 independent coefficients, dy,
X0, X2 and X1 which, together with the free parameters of the background solution, F; and
Ao, enable us to express the rest of the series. Let us remark the presence of logarithmic terms
in the asymptotic development of 6(r) and x(r), equations (4.35a) and (4.35b). Logarithmic
terms are also present in post-Newtonian expansions of general relativity (see [144]), and
they can be understood by noticing that the radial variable r is not really the propagation
variable for light cones. The latter is rather related to the tortoise coordinate r*, which
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indeed relates to r through logarithmic terms.

Let us recall that spatial infinity is a singular point of the differential equations (4.32). The
only condition imposed in order to get the result (4.35) is that the solution be regular at
infinity (cf. discussion around equation (4.33)). Moreover, we did not need to solve for the
constraint equations C7 = Cy = 0, as these equations were identically solved by the regular
solution. Thus the reduction from 7 to 4 initial data is uniquely due to 3 regularity conditions.
Let us remark, however, that this does not seem to be so until we solve the field equations
(4.32) up to order O(1/r®). More precisely, if we iterate only up to order O(1/r?), then the
solution contains some additional free parameters with respect to (4.35), which vanish once
we solve the O(1/r3) equations. In particular,

Y(r) = Ypr + o+ U1 /T + ... (4.36)

at this order. However, we find that the constraints C7 and C3 are proportional to v, and
therefore they do not vanish by merely solving the field equations up to order O(1/r2). This
subtlety will be of great importance later on (section 4.2.4) when interpreting our numerical
solutions.

Inspection of the asymptotic behavior of the metric and sether Ansétze (4.20) and (4.21)
given by the solution (4.35) shows that this is an asymptotically flat solution. Therefore we
conclude that regularity near spatial infinity implies asymptotical flatness as well. However,
generic solutions obtained by integration of the equations of motion, starting from the metric
horizon, are not asymptotically flat and thus do not satisfy the relations (4.35) at infinity.
More precisely, we have checked that for arbitrary values of the initial condition §(ry) = dg n,
the function 6(r) diverges at infinity. Together with the observation that, in general numerical
solutions (empirically) satisfy |¢)(r)| < |d(r)|, this would imply that the g,, component of
the metric diverges as well, which is unacceptable. The subordination of ¢ (r) with respect to

d(r) can be understood from (4.35), where we observe that regular solutions have a O(%)

relative order between these two functions®. We therefore conclude that we cannot accept
arbitrary values of the parameter g, and we have to find the correct initial conditions to
ensure that equations (4.35) are satisfied. As previously anticipated, we will determine the
correct initial data via a bisection procedure.

4.2.3 Bisection procedure

We said in the previous section that generically numerical solution are not asymptotically
flat, and one way to observe this fact is from the divergent behavior of d(r) (which should in
fact asymptote to a constant value, as seen in equation (4.35a)). For instance, the numerical
solutions obtained using a given set of initial conditions 5[{ p and g, such that ]5('{ h—6& W=1
are shown in figure 4.2. They have an asymptotic divergence that goes as ~ r? and ~ —r2,

respectively.

Starting from an arbitrary numerical solution one can extract an asymptotic deviation

4. Note however that there is no special reason for irregular solutions to behave similarly to regular
solutions. Therefore this is only a heuristic argument.
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Asymptotic divergence from two different initial data, |05, — 0,5, | = 1
100000 — 60&1
N
60,11
50000
0
= —50000
=
~100000
~150000
~200000
0 2500 5000 7500 10000 12500 15000 17500

Radial coordinate r

F1GURE 4.2 — Numerical solutions obtained using two initial conditions (55{7 L, and (5& ,, such that
|5(J)r’ 1=00.n| = 1. The best asymptotic fit for both curves is actually of the form 6(r) ~ d; r2. The
fit using the form (4.37) represents the qualitatively divergent behavior as well. Numerical
solution obtained for the coupling coefficients a = 0.02, 5 = 0.01 and A = 0.1.

parameter 6,, defined in terms of the effective fit

N 51 52 53 + 537[/ log(r) 1

We do not presume that the function 6(r) grows indeed linearly with r, and in fact there are
higher powers of r that dominate the expansion when the initial parameter ¢, is too “far”
from the value giving asymptotical flatness.

Thus, the aim of describing these solutions as in equation (4.37) is to provide an opera-
tional prescription allowing us to determine if the solution diverges towards plus or minus
infinity. The important point here is that, even for solutions diverging as a higher power of
r (such as those in figure 4.2), the sign of the deviation parameter 6, evaluated through the
fit (4.37) truthfully represents the divergence towards plus or minus infinity. Compared to a
more complex choice of the fitting function, such as §(r) & 8, 12 + 6, 7+ 0o + 61 /7 + d2/7 +
(63 + 63,2 log(r))/r® + O(1/r%), the fit (4.37) has the advantage of remaining stable when
the deviation parameter becomes small, i.e., as we approach the asymptotically flat solution.
Evidently, the coefficients dg, 91, d2, etc. of the series (4.37) do not necessarily satisfy the
same relations obtained for the regular solution (4.35).

By exploring the parameter space of the initial condition dp, we find that it can be
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neatly decomposed in a set of values for which the asymptotic deviation parameter J, is
positive and another for which 9§, is negative. In order to make this statement more clear,
let us call these sets D' and D, respectively. More precisely, we will say that 5& L € DT if
the integrated solution using 5({ ,, as the initial condition is such that the extracted deviation
parameter is positive d,, > 0. Conversely, we will say that 50_’ 1, € D if the integrated solution
is such that the extracted deviation parameter is negative §, < 0. Then, we observed the
following property. Let us suppose we have a pair of initial conditions 6(; L, and 5& ,, satisfying
on < 5({ 1> and another arbitrary initial condition dg . On the one hand, if g, is such that
don > 56r7h, then o1, belongs to DT. On the other hand, if dpy is such that dop < 507711,
then it will belong to D~. The same discussion applies with the appropriate change in the
inequalities if the initial pair ;) and 5{{ ,, satisfied instead the relation 50_7 h> (5{{ L~ In this
case 0 > (5& ,, implies dp, € D~ while dp 1, < (50_7 ,, implies & € DT. This property implies
the existence of a parameter 557}1 € R such that the ensembles D~ and DT are simply given
by the open intervals | — oo, d;},) and (don, oo[ . But more importantly for us, the initial
condition at the metric horizon dg ,, is such that, after integration, the asymptotic deviation
parameter 6, is zero, meaning that we found an asymptotically flat solution.
Starting from any pair (6& ho (5({ w) € D~ x D we can approach 0o, through a bisection
procedure. Indeed, let us suppose that we have found such a pair ((5& b 56’: L)- Let us then
define

_ Son + 90

= 5 ,
and integrate using this value as the new initial condition. Obviously then, we have that
either o, € D~ or dp, € DT. If the former condition is satisfied, we define the new bisecting
interval by setting 5& L = 0o,n and letting 5& 1, unchanged, if the latter condition is satisfied

0,h (4.38)

then we set 5(‘)" L = 6o,n and J,, remains unchanged. This procedure give us a new interval

(651,001) € D~ x Dt whose length is half the initial interval. Iteration then allows us
to éppr,oach as much as desired the initial condition 45, that we seek. An example of these
iterations is given in figure 4.3. Since it is numerically impossible to reach the precise value of
09 n» the best we can do is to iterate until the two branches given by ¢, € D~ and 68:}1 € Df
are close enough so that we can neglect their difference. Let us define the relative error
between the solutions 67 (r) and 6~ (r), corresponding respectively to the initial conditions
(50_7}1 € D~ and 58:11 € DT, by

0 (r) =6~ (r)

5 () +0-(r) (4.39)

relative error(r) = 2

This error function is plotted in figure 4.4 using a pair of solutions whose initial conditions
are such that |56r,h — g | = 125/140737488355328 ~ 1072, As can be seen in that figure, the
error function tends to grow as we get away from the initial radius r,. We can use this error
function to set a criterion qualifying our solution. Indeed, we choose to trust the solutions
6t (r) and §(r) only for radii such that the relative difference (4.39) is less than a certain
threshold €. Then, we can determine a maximum radius 7 such that relative error(r) < € for
all » < 7. On the one hand, we would like to have a large value of ¥ where we can trust our
solutions. On the other hand, for any given threshold €, a larger value of i generically implies
more bisections to perform. We choose to set € to 107%, and we find ¥ ~ 2rmax /3 for the
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Asymptotic divergence zoomed, adding four new solutions:
1961 = Sgul ~ 1/100, 85, — Jg,,] ~ 1/1000

2000
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—500 —_— (S(Ih

—1000 _—
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— o

—1500 Son

+
- 5().11

—2000 T y v y T T T -
0 2500 5000 7500 10000 12500 15000 17500

Radial coordinate r

FIGURE 4.3 — To the previous plot of figure 4.2 we have added four new numerical solutions
obtained through bisection of the interval defined by 6& p and 6q . The new pair of solutions
were obtained by a bisection procedure, and their respective dp; parameters are such that
|56r h'g(;, W = 122 and |55f h:Oi | = Tor22=5. Numerical solution obtained for the coupling
coefficients « = 0.02, 5 = 0.01 and A = 0.1.

solutions, where 7.5 is the maximum radius up to which the background solution was solved.

Finally, we adopt as a proxy to the asymptotically flat solution the average potentials

< dt(r) +6-(r)

5(r) = (4.40a)
() = X+ (0) ;r xr) (4.40b)
P(r) = W (4.40c)
Y(r) = W (4.40d)

defined only for r less than 7 (that is, we discard the regions where r > 7). An example of
the averaged solution is shown in the case of §(r), in figure 4.5. On the one hand, we know
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Relative error between two branches such that |65, — ;| < 107"

10—6 4

1074
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—
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©
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10—11 4

relative error(r)

10—12 4
10—13 4

10—1'—1 4

10! 102 103 10*
Radial coordinate r

FIGURE 4.4 — The relative error function defined using the solutions corresponding to 6& b
and J,, obtained by bisection. Notice that the relative difference grows with the distance
from the original integration point, i.e., the metric horizon. In the case shown, the threshold
¢ = 107 is crossed at 7 ~ 11305. Numerical solution obtained for the coupling coefficients
a=0.02, 5=0.01 and A =0.1.

that the true asymptotically flat solution lies in between the plus and minus solutions, and
on the other we have that these solutions do not differ in more than one part in a million
throughout the domain of definition. Therefore we expect the solution defined in (4.40) to be
close to one satisfying equations (4.35). Thus one must check that the potentials 6(r), X(r),
Y(r) and %(r) thus obtained satisfy the regularity conditions associated to the asymptotic
expansion (4.35). This will be done in the following section.

4.2.4 Consistency relations

In this section we will explain how we can make use of two numerical solutions, corres-
ponding to the example shown in figure 4.5. We will refer to the solution given by 6 (r),
xT(r), ¥ (r), and X (r) to as the “plus” solution, and the solution given by §~(r), x (r),
¥~ (r), and ¥~ (7) to as the “minus” solution. We fitted each of the branches, plus and minus,
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Asymptotic divergence from two close initial data, |d],, — &, < 10712

and their average

0.00036 7423
0.00035
0.00034
0.00033
S
o
0.00032
0.00031
_— 5(;}1
+
0.00030 I
—— don
0.00029 : . . : : : : :
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FIGURE 4.5 — Numerical solutions obtained using two very close initial conditions that we
call again 50+, p and 6q .. In green we show the average of these solutions. Note that the latter

function will correspond to some other intermediate value (1, not necessarily (5({ nToomn)/2.

by the functions

St (r) =

X1t (7)
Vrg(r) =

Yh(r) =

61 09

Opar? + byr + 0o T S 2 (4.41a)
i i b
= Xpar® + Xp2r® + Xpr + Ko+ - (4.41b)
5
wpr+¢o+ﬂ+f+f3, (4.41c)
21 E2 3

Spar® + Xpr 4+ X + — toa Tt (4.41d)

3

and from these fits we estimated the value of the asymptotically flat coefficients. For instance,
for the function §(r) the fitted coefficients are

o =1.68x 1071,
5 =1.63x 107",

5f = 4.250,
6 = —0.00812,
55 =0.156,

0y =—1.64x 1071, Sp =1.19 x 1071¢
5, =6.52x 1071, , = 1.14 x 10713
5(; = 4.250, 6o = 4.250,

o7 = —0.00812, 61 = —0.00812,

65 = 0.156, 6o = 0.156..
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In the first column we have the fitted coefficients for the plus branch, in the second column
those of the minus branch, and in the third column we show the inferred value for the
asymptotically flat solution defined as

Op = W , (4.422)
op = 5;;5?_ , (4.42b)
oo = ‘53‘2“50 , (4.42¢)
o1 = 5;;51 (4.42d)
by = 5;‘2“52_ . (4.42¢)

It could seem contradictory that the value of 5; (4.42a) is positive, as it comes from the fit for
a function whose deviation parameter §, is negative (see figure 4.5). Let us remark, however,
that the fit (4.41) contains now a quadratic term, r2, which does indeed have a negative
value. In any case, both coefficients are of the order of 107 and their sign is unstable if
we change the number of functions we use as a base for fitting. This is why, we choose to
keep just the linear term in 7 in the fit to determine whether the function §(r) is positive or
negative divergent. In this manner, the estimated values for the other potential’s coefficients
are the following :

Xp3 = 9.8 x 10717 Py =4.8x 1078, ¥, = —4.7x 10719,
Xp2 = 4.4 x 10714, o =14x%x10""7, Yo =—-4.9x10719,
Xp = 4.250, 1 =1.9%x1077, ¥ =0.110,

%o = —2.110, o = 0.0404 , Yy = —0.557,

x1 = —0.152, 3 = 0.299, Y3 =—0.5+4.5,
Y2 =9.19.

Thus we obtained an asymptotic fit for the data shown in figure 4.5, given by the potentials
(4.41) and using the numerical values in (4.42a) and (4.43a). Let us recall that the inde-
pendent coefficients of the series given by equation (4.35) are dg, xo, x2 and ¥;. From the
numerical solution we can extract thus

b0 =4.250, (4.43a)
Xo = —2.110, (4.43Db)
X2 =9.19, (4.43c)
¥ =0.110. (4.434d)

Then we can check if the series coefficients correspond indeed to the expected values given by
the relations (4.35).We can do so by computing the relative differences between the expected
and the fitted coefficients. Thus, let us denote the former using the upper index “th”, that
is, the theoretical value given in equations (4.35) are 6{", 65" and so on and so forth. Each of
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these theoretical values depend on the three independent coefficients of (4.43), whose error
are known. Thus we find

5th 5th

L _1=19%x107°, 2 _1/=15%x1073, (4.44a)
(51 62
Xth Xth
ZP Q| =48x10"1, L _1]=98x107%, (4.44D)
Xp X1

th Q,Z)th

2 1] =30x10"%, 3 1] =0.012, (4.44c)
o )3
Eth Eth

2 1| =0.005, 3 1/=0.04 (4.44d)
22 23

where we recall that the tilde stands for quantities fitted from the averaged numerical solu-
tion. The lower index “p” stands for the linear coefficient in the expansion of x(r), that is to
say, it appears as x,r in the series (4.35). The last of these consistency terms is the larger
of all of them and it corresponds to a relative difference between the expected theoretical
relation (4.35) and the fitted value of no more than 4 percent. We conclude that we can
safely make use of our averaged solution to extract the first terms of the series (4.35). In
particular, the “free parameters” dy and xq are the only required to compute the sensitivity
o (see equation (4.47) below).

Let us remark that, if we consider exclusively the errors associated with the fitting of
the coefficients (4.42a) and (4.43a), and the corresponding propagation, we find that the
terms (4.44) are not zero within the numerical errors. In fact, it can be argued that the
small errors in the expressions (4.44) come from the violation of the constraint equations
C; = 0. Indeed, as previously discussed the asymptotic expansion (4.35) can be carried out
without imposing the constraint equations and allowing for a larger set of solutions (cf.
discussion around equation (4.36)). Therefore, solving perturbatively up to order O (%2) in
the equations of motion allows for a term ~ 1,7, which can account for the small linear
term in (4.41c). This coefficient in turn it can be related to the other small coefficients in
the series, as well as accounting for a small correction to the leading terms of the fit.

On the one hand, however, the O (T%) field equations together with the constraint equa-
tions necessarily imply 1, = 0. On the other hand, we saw that imposing the constraints
at the initial data and solving for the equations of motion implied the constraint equations
through the constraint evolution equation (4.30). Nevertheless, when we solve the field equa-
tions numerically we introduce some errors to the solution, which lead to non-vanishing
constraints. We therefore conclude that the small violations of the constraints, due to the
numerical resolution scheme, are due to the small errors in the numerical scheme solving for
the equations of motion. The thorough study of this issue constitutes a work in progress...

4.2.5 Extraction of the sensitivities

An appropriate gauge transformation allows us to compare the post-Newtonian solution
(3.33) containing the sensitivity ¥ to the asymptotic solution (4.35). Indeed, in our gauge
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the metric (4.20) is given by

ds? = (1 —~ 2M) dt* — (1 + QM) dr? — r2dQ?
" " (4.45)

2M 1
+ v {250 cos fdtdr — 2dg sin 6dtdf [r (1 — r) do + X(]:l } + O (7"2’ v2> )

Therefore we have that this metric can match the form given by equation (3.33) if we make
an infinitesimal change of coordinates

t—t+vrcosf. (4.46)

In principle, this is enough to extract the sensitivity, since it is contained in two different
pieces of the metric. Indeed, we find that the sensitivity o is given by
a—fB—3aB+58%+\—2a\+ 38\ (1=58)(B+XN xo

T (2—a)(1-33-2)) +2 1-38—2\ Rody’ (4.47)

2Gga M
where Ry = — 2~ is the gravitational radius associated to the mass M, and &y, Yo

(1-a/2)

are the constant terms appearing in the asymptotic series for §(r) and x(r), cf. equations
(4.35a-4.35b).
There is yet another way to get the same result (4.47). Indeed, we can solve the modified
Einstein equations
GM — Tl = 8xGT", (4.48)

matter »

where we use a point particle prescription for the stress-energy tensor as in equation (3.24).
Thus the right-hand side contains the sensitivity ¢ in its piece proportional to v, while the
left-hand side is constructed using the zeroth and first order potentials f, A, B, 4, x, ¥, and
¥, as usual. We can expand the modified Einstein equations in powers of 1/c?, that is, we
express the potentials as

1) = folr) + flc(;) L0 Lo (;) :

ct
A(r) = Ao(r) + Ag) + Aiff) +0 (;) : (4.49)
B0) = B + 257+ B2 0 ()

as well as the analogous expressions for the first order potentials d(r), x(r), ¥(r) and X(r).
Thus we obtain a set of Poisson-type equations with a source. Solving these equations allows
us to find the direct functional dependence of the potential’s coefficients on the source terms.
In particular, we find dg and x¢ as a functions of o, and inverting these relations we recovered
the result (4.47).

This means that, for any set of coupling coefficients {a, 8, A}, we can extract the as-
sociated sensitivity from the asymptotic values of the numerically computed functions ()
and x(r). For the example presented in the previous section, we had § = 1/100 = «/2 and
A = 1/10, the gravitational radius Ry = —F; = m was set to 2.002, and the fitted values for
do and xp obtained in (4.43) give us xo/do = —0.497. The formula (4.47) give us then

¥ ~ 0.00125, (4.50)
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for this special case. Note that the sensitivity is a dimensionless quantity, as it is simple to
check that g scales as a length. This is an illustration of how the methods presented can be
used to extract the sensitivities describing a compact object such as a black hole in Lorentz
violating gravity.

4.2.6 Interior solution and the spin-0 frame

Until now we have been focused on finding a numerical solution valid from the metric
horizon outwards to spatial infinity. However, the solution must be completed by integrating
also from the metric horizon inwards, at least up to the universal horizon. There the situation
is more delicate because of the inner structure of the black hole and the singular points. Thus,
before describing how we solve the field equations inside the metric horizon, it will be useful
to analyze the functional form of the different scalar curvature invariants near the singular
points inside the metric horizon.

4.2.6.a) Curvature invariants

Curvature invariants are essential to determine, at any putative singular point, whether
or not we are facing a physical singularity, or if we deal instead with a coordinate singularity.
Let us consider as an example the case of a non-spinning static black hole in general relativity.
If we express the solution in Schwarzschild coordinates, then one might suspect the presence
of a physical singularity at the event horizon and another one at the center of the black
hole. On the one hand, the former turns out to be simply a coordinate singularity. This is
readily seen as none of the curvature invariants diverges at the event horizon. Furthermore,
this singularity can be made to disappear by an appropriate coordinate transformation, as
can be seen by choosing Eddington-Finkelstein coordinates. Thus the Schwarzschild metric
for a black hole of mass M becomes

ds? = (1 - ’;?) dv? + 2dvdr — r2d02, (4.51)
where rog = 2GM is the Schwarzschild radius. It is clear then that the metric is indeed regu-
lar at the event horizon, r = rg. On the other hand, it is impossible to get rid of the r = 0
singularity. Indeed, by computing the curvature invariants one realizes that the origin of the
coordinates is actually a physical singularity. For instance, the Kretschmann invariant scales
as Ry, 5 RHveB M2 /7%, thus it clearly blows up while approaching r = 0.

In our case, there are several quantities of interest which ought to be computed. In
particular, unlike in general relativity, the field equations (2.24) and (2.44) do not necessarily
imply a vanishing Ricci tensor in the absence of matter fields, since the contribution of
the sether stress-energy tensor (2.47) does not vanish. Furthermore, although we impose
regularity at the metric horizon, nothing guarantees that our solutions will be regular at the
spin-0 or universal horizon. Indeed, the field equations (4.32a) can be shown to present a
possible singularity there (cf. equation (4.33)) Thus, in the following we will investigate the
regularity of these hypersurfaces. First, the volume invariant /—g dz* is regular everywhere

V—gdtz = (T‘QB(T) sin 6 + %T‘Zf(’r‘)B(’l“) sin260 ¢ (r) + (’)(02))dvdrd¢9d¢ , (4.52)
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so it will not be further discussed. Using the Ansatz (4.20-4.21), the Ricci scalar R can be
expressed schematically as

ai(r) | bi(r) 2
R= - +v 3 cosf + O(v?), (4.53)
where a;(r) stands for an algebraic expression given in terms of the zeroth order potentials
f, A and B and their derivatives, and by (r) stands for an algebraic expression given in terms
of zeroth and first order potentials f, A, B, J, x, ¥, X and their derivatives. Similarly, the
Ricci tensor contracted with itself is

R.s R* = a2(47°) +v ba(r) cosf + O(v?), (4.54)

r rd

the Kretschmann invariant is

az(r) o bs(r)

praf _
Ryvap 1t T4 ro

cosf + O(v?), (4.55)

and the two Killing scalars coming from the contraction of the Riemann tensor with the
Killing vectors (0y) and (0y4) read

ki1 = Ruapu’u®(0y) (0y)° a4(r) + vby(r) cos § + O(v?), (4.56)
ko = Ruyapuu® (94)" (04) = as(r)sin® @ + vbs(r) cosOsin® 0 + O(v?). (4.57)

The combinations R,z u/ u® (dy)” (94)° and Ry g ut u (0g)” (0,)? are identically zero,
so they will not be considered. Again, a;(r) and b;(r) are functions of the zeroth and first
order potentials f, A, B, ¢, x, v, 2 and their derivatives.

Thus, most curvature invariants are singular at the center of the black hole » = 0. We
recover then the same result as in general relativity. Regarding the different horizon surfaces,
at zeroth order in v all curvature invariant are regular [127]. Indeed, the key observation here
is that, since the background functions f(r), A(r) and B(r) can be integrated inwards up to
r = 0 with no singularity, then the terms a;(r) are everywhere regular. At first order however,
the terms b;(r) depend on the perturbed potentials §(r), x(r), ¥ (r) and 3(r) as well. This
means that, the O(v) part of the curvature invariants can become singular depending on the
behavior of the first order solution (i.e., if the field equations present singularities at r = rg
or ry, and as a result d, x, ¥, and ¥ diverge, then the curvature invariants diverge as well).

4.2.6.b) The spin-0 horizon

Let us then go back to the completion of the solution inside the black hole. Empirically
we observed that, in general, the system cannot be fully integrated inwards as the solution
blows up while approaching the spin-0 horizon. We here recall that, by definition, the spin-0
horizon radius rg is such that

g\(/(\]/) =gv T (83 - 1)Uvuv ) (4.58)

where s is the spin-0 speed as given by equation (2.62a). Then we find that the field equations
can be integrated numerically until the spin-0 radius 759 € (run, 1) instead of r, as required.
In order to verify that this is due to a physical irregularity and not simply due to the stiffness
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of the system at that point we checked two things. We computed the curvature invariants
and studied their behavior as the solution approaches the spin-0 horizon. Denoting CI any
of the curvature invariants previously defined, we find

a

for some constant a € R and where b ~ 2. This is exemplified in figure 4.6.

Scalar curvature R inside the metric horizon

106_
— R

10° 4 Power-law fit

104_
103 J
102 4

101 4

100_

10-3 102 10!
Reduced variable z = (r — ry)/M

FIGURE 4.6 — The first order component of the scalar curvature, corresponding to the term
bi(r) in (4.53), is plotted against the distance to the spin-0 horizon defined as z = (r—ry0)/M.
The data comes from a numerical solution obtained for § = 1/100 = /2 and A = 1/10. In
orange there is the best power law fit to represent the divergence. The power-law is given by
R~ (—103.4 + 1 /22904 M.

One could argue, however, that this argument is not conclusive. Indeed, the divergence
of the scalar invariants could be due to numerical instabilities while approaching a regular
but apparently singular point of the differential equations. More precisely, the solution could
be such that the terms collectively denoted by “a” in equation (4.59) go to zero as they
approach the spin-0 horizon. If we have a ~ (r — r4)?, then the curvature invariants would
tend to a finite value and the solution would be regular there. However, even if the solution
were to be regular, numerical instabilities would make this division unstable and the system

could diverge anyway. Fortunately, there is another way to study this problem based on a
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field redefinition. In order to see how this method comes about, let us note that the action
(2.39) is invariant under the transformation [151]

u_>l - v+ —1Du Uy ,
gﬂ g;tu gu (C ) 1 (460)
T-T =T

¢ being a constant, provided that the original values «, 5 and A are replaced by the following
alongside the re-definitions

o =a,
B+XN=C(B+N), (4.61)
B =1=¢B~-1).

It is easy to see that the sether vector transforms as u# — u'* = u*/+/C. From this symmetry
we conclude that for every “physical” solution corresponding to a set of allowed coefficients «,
B and A in the theory’s parameter space, one can generate an additional one-parameter family
of “mathematical” solutions given by equation (4.60), corresponding to the one-parameter
family of coefficients o', 5’ and X given by equation (4.61). Note that the new set of coeffi-
cients does not need to be necessarily physically allowed in parameter space. Also note that if
¢ = s, then the primed metric ¢’ coincides with the spin-0 metric. Therefore, by performing
the field redefinition given by equations (4.60) and (4.61), we can solve the original problem
in a “frame” (the so-called spin-0 frame) in which the metric and spin-0 horizon coincide. In
this way, the two spin-0 and metric singularities in the field equations (4.32) get to coincide
and therefore our numerical treatment is simplified. Indeed, we can impose regularity by
solving the equations perturbatively there. Let us stress that precisely the same trick was
used to find the static, spherically symmetric black hole solutions (see [136, 127, 133]).

In order to solve the field equations within the spin-0 frame we must repeat the procedure
described starting in section 4.2.1. That is, we expand the equations near the singular point
and we count how many free parameters we have to set our initial data after we impose
regularity. The first thing that we note in doing so concerns the background solution. In
section 2.6.2 we mentioned that regularity left three initial conditions at the metric horizon,
as it was already known and exposed in [133]. More precisely, for the “physical” system, i.e.,
where sg # 1, we have at the metric horizon

f(rn) =0,

I (rn) free,

A(rn) free, (4.62)
A'(ry) free,

B(ry) fixed by the constraint .

Thus, when solving the equations perturbatively near ry, the solution could be expressed in
terms of f1 = f/(ry), Ag = A(ry) and A; = A'(ry). This way, we can obtain an analytic
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formula for By = B(ry) in the form By = By(f1, Ao, A1), and in general we will have

f(r) = filr —m) +ZW( — )", (4.63a)
k=2 :

A(r) = Ao+ Ai(r — ) +ZW( — )k, (4.63b)
k=2 :

B(r) = i W(r — )k, (4.63c)
k=0 :

where all the series are determined by f1, Ag and A;. Let us stress that these expressions
fra2, Agyo or By for kK > 0 depend on the coupling coefficients as well, and more importantly
for us, they happen to diverge in when sy — 1 (i.e., in the spin-0 frame). Indeed, the
combination sZ — 1 appears in the denominator of these expressions. Therefore, in the spin-0
frame we can no longer make use of the same formulae for the background series that we
obtained in the physical frame, because those formulae were obtained under the hypothesis
that sg # 1. Instead, we have to solve again for the series expansion near the metric horizon
(which coincides with the spin-0 horizon) for the particular value of the coupling coefficients
predicted by (4.61), and generically we will have

f(rn) =0,
1 (rn) fixed by regularity ,

in the spin — 0 frame ¢ A(r) free, (4.64)
Al(ry free,

)
B(ry) fixed by the constraint .

This translates into a new counting of the regularity conditions for the perturbed potentials at
the metric horizon, because the series expansion (4.34) depends on the form of the background
potentials and thus was also obtained under the assumption that sg # 1. The initial data
for the potentials §, x, ¥ and ¥ changes when we go to the spin-0 frame in a similar fashion
to the passage from the initial data (4.62) to the new (4.64) for the background potentials
f, A and B. Indeed, while in the general case we had 7 — 2(constraints) — 3(regularity) = 2
initial conditions to input at the metric horizon, one of which can be set to 1 by rescaling,
we now have 7 — 2(constraints) — 4(regularity) = 1 condition which can be fixed to any value
by rescaling. Thus, the parameter dg which we used as a bisection parameter in the previous
scheme can be now set to 1 without any lose of generality.

4.2.6.c) Integration outside the black hole

It follows then, that we can just integrate the equations of motion using of the unique
(up to a rescaling factor) set of initial conditions at the metric/spin-0 horizon. The fact
that we can implement the field redefinition as discussed above shows that the singularity
at the spin-0 horizon can be removed using the spin-0 frame. This procedure is known to
give regular, asymptotically flat solutions at O(v") [133]. Unfortunately, then we find that
the solutions are no longer asymptotically flat at O(v). Indeed, we see in figure 4.7 that,
asymptotically, 6(r) diverges as ~ 2. As discussed earlier in section 4.2.2, this means that
the solution thus obtained is not flat at infinity.
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Asymptotic behavior of §(r) in the spin-0 frame

104 — o(r)

Power-law fit

1034

10° 10" 102 10°
Radial variable /M

FIGURE 4.7 — Log-log plot of the potential d(r) integrated from the metric/spin-0 horizon
outwards using the unique set of initial data available at that point (cf. section 4.2.6.b)).
The data comes from a numerical solution computed in the spin-0 frame, corresponding to
the values 5 = 0.01 = «/2 and A = 0.2 in the physical frame. An orange line denotes the
best power law fit to represent the divergence, given by §(r) ~ r2/50.

4.2.6.d) Integration inside the black hole

At this stage, ignoring the issue of asymptotic flatness at infinity, the only problem left is
the regularity of the solution at the universal horizon. Since r = ryy, is a singular point of the
equations of motion, the integrated solution will inevitably diverge there due to numerical
instabilities. Again, we would like to assess if this divergence is physical or not. One way
to avoid numerical instabilities is to integrate the equations of motion twice, once starting
from the universal horizon up to a middle point 7* = (ry, + r4)/2, and another starting
from the metric horizon down to the middle point. That is, we impose regularity by solving
perturbatively at both 7, and ry,, and then we check whether the two solutions match at the
middle point. The solution coming from the metric horizon inwards is uniquely determined,
because it has a unique set of initial data up to rescaling freedom (the discussion is analogous
to the previous section). In order to set our initial data at the universal horizon r,;, we must
consider how many conditions are imposed by regularity in the same way as we have done
before for the metric horizon. Thus we find that regularity conditions reduce the number of
free parameters from 7 to 3, and after rescaling one of them we find that there are only two
free parameters that define the initial conditions. We choose to express our initial conditions
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in terms of §gyn = 0(7un) and xoun = X(run) so that

s k
5(T) :50,uh + Z dk,uh(50,uh7 XO,uh) (T - Tuh) s
k=1

& k
X(r) =xXouh + Y Xk,uh (60,ub> X0,un) (7” - Tuh) ,

o= ) (4.65)
= Yun(6o,ubs Xo,un) (7“ - Tuh) ,
kozo(] .
= Zkun(Go,uns Xo,un) (7" - Tuh)
k=0

Summarizing, the branch coming from the metric/spin-0 horizon is known, and we want to
determine if there is exists a couple (0o un, Xo,un) such that the solution coming from the
universal horizon matches the former.

The matching of these solutions would imply, for instance, that the derivative at midpoint
o1, (r) computed when r — r* from the metric horizon must be be equal to the derivative
6/, (r) computed when r — 7* from the universal horizon. However, we know each solution
only up to a global scaling coefficient. One way to get rid of the unknown scaling parameter

is by taking the ratios 0 (r)/0n(r) and 674 (r)/dun(r), where the unknown scaling parameter
simplifies. Therefore, we require that the differences

A ( ’(r)) ('6’<r*>] [6'0«*)] )
(r) Lo(r) Sy LO(r) 1)

(x’(?")) [ 1

x(r) i ]
(W(T ) _ (e '¢’(T*)}

P(r) LY(r*) L Lo(r*) 1y, 7
2 (57) = ([569)]

%(r)
where the subscript 'uh’ (resp. 'h’) indicates that the quantity is evaluated using the nume-
rical solution integrated from the universal horizon (resp. from the metric horizon), vanish.
Let us stress that, in each of these terms, the fraction corresponding to the metric horizon
branch is fixed. Thus we integrate from the point rj, + ¢, where e = 1072 up to r*, exploring
a grid of initial conditions given by (8o uh, X0,un) € [—10000, 10000] x [—10000, 10000}, spaced

by intervals of 1000 in each dimension. This rather coarse grid allows us to observe the main
features of the differences (4.66). Thus, in figure 4.8 we show the sum of the squares

s=[ G+ LCE] G G e
and we note that there is a “valley” where the differences (4.66) are minimized. We increased

the resolution of our grid to a few thousand of points in order to analyze the reduced area
represented in figure 4.9. However, we found that the lowest value for A was of the order of

(9

Q«.

(4.66)
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Color map of A
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FIGURE 4.8 — Color map of A as a function of (00,uh> Xo,un)- The colors were chosen so as
to show that A is positive everywhere. Indeed, the minimal value set for the color-bar is 10,
and any value under 10 would be indicated in red. This coarse grid suggest a more detailed
analysis around a reduced area.

~ 20, and indeed we investigated with an increased precision in the region where we found
the local minimum. The plot corresponding to that region is shown in figure 4.10. The fact
that A never goes below a threshold of the order of 20 shows that the different terms in
squares in (4.67) never vanish simultaneously. Consequently, we conclude that neither the
differences (4.66) do so, and this means that there is no pair of initial conditions (8o yh, X0,un)
at the universal horizon such that the solution matches that one from the metric horizon.
From this we conclude that it is not possible to find a solution regular both at the spin-0
horizon and at the universal horizon, i.e., our regular solution at the metric/spin-0 horizon
is not regular at the universal horizon.

In conclusion, going to the spin-0 frame allowed us to enforce regularity at the spin-0
horizon. However, the solution was found to be unique and we lost the shooting parameter
to bisect. Outside the metric horizon, the solution thus obtained was found to be singular at
spatial infinity and not asymptotically flat. Inside the metric horizon the solution is singular
at the universal horizon.

4.3 The a = 3 =0 case

From the results of the last section one would conclude that, in khronometric theory, black
holes are not regular at order O(v). We reach this conclusion because the spin-0 horizon is
between the universal horizon and the metric horizon, and we need to impose regularity at
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FIGURE 4.9 — Color map of A as a function of (00,uh;> X0,uh)- The colors were chosen so as
to show that A is positive everywhere. Indeed, the minimal value set for the color-bar is 10,
and any value under 10 would be indicated in red. Although the grid still seems to be coarse,
there is in fact much more data which we could not include in the figure. This was due to
the use of an irregular grid and the problems to interpolate under such conditions.

Color map of the local minimum of A
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FIGURE 4.10 — Color map of A as a function of (00,uh> X0,un)- The colors were chosen so as
to show that A is positive everywhere. Indeed, the minimal value set for the color-bar is
10, and any value under 10 would be indicated in red. This is the valley where the minimal
values are reached. The lowest value of all is of the order of ~ 20.
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each of these surfaces separately. However, there may exist a set of parameters «, 3, A for
which the spin-0 horizon coincides with the universal horizon, so that enforcing regularity at
the former is sufficient to ensure the existence of a regular solution. For this to be true, we
would need to have the conditions defining the radial position of the spin-0 horizon (2.75)
and the universal horizon (2.87) both being satisfied at a single point 7* = ry, = r4. More
explicitly, as long as the spin-0 speed sq is finite, this would mean that the radius r* is such
that

r*)A(r*)? 2
Fr*) +(s5—1) (1 +J02<14(7)~f)( ) ) =0, (4.68a)
L+ f(r)A(r*)? = 0. (4.68b)

The first equation is the relation defining the spin-0 horizon 7y and the second defines
the universal horizon r.,. Plugging (4.68b) into (4.68a) gives f(r*) = 0, which is then
incompatible with equation (4.68b). There is yet another way to merge the spin-0 horizon
with the universal horizon without lose all Lorentz violating effects : we can make the spin-0
speed sq diverge so that equation (4.68a) reduces to equation (4.68b). This can be achieved
by setting o = 0. The special case where « is set to zero as been worked out in [152] in
static, spherically symmetric configurations. Even though the exact form of the functions
f(r), B(r) and A(r) can in general be given only numerically, in the special case a« = 0
analytic solutions exist for the background functions :

~ 4
Fry=1- 2G7{Vm - ﬂ;}r, B(r) =1, (4.692)

2 4

GNm( 27 )1/4
Tkr = 9

1-8
It can be easily checked that the universal horizon and the spin-0 horizon coincide in this
particular case, since when o — 0 the spin-0 speed given by eq. (2.62a) diverges, and are
both located at ry, = %G ~nm. Indeed, as the spin-0 speed increases, the location of the spin-0
horizon moves further into the black hole. Moreover, since the universal horizon is such that
it traps modes propagating at any arbitrary speed, we conclude that in this limit the spin-
0 horizon merges with the universal horizon. This statement can also be mathematically
proved, noting that if sy becomes infinite then 1 + f(r*)A(r*)? = 0 becomes a necessary
condition in equation (4.68a), leading precisely to equation (4.68b). This procedure has the
evident advantage that it does not impose f(r*) = 0 as well, so that the metric and universal
horizons do not merge.

Note also that this solution does not depend on the coupling parameter A, even though that
is mot assumed to vanish.

(4.69c¢)

This limit is particularly attractive as |a| < 1077 experimentally (c.f. Sec. 2.5). Assuming
a = 0 alone, however, does not avoid the appearance of finite-area singularities at the
universal /metric horizon, as can be seen from figure 4.11, where we show the divergence of
the curvature invariants of the asymptotically flat solution regular at the matter horizon.
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FIGURE 4.11 — O(v) contribution to the Ricci scalar near the universal/spin-0 horizon, for
the asymptotically flat solution regular at the matter horizon, and for o = 0, § = 0.01 and

A=0.1.

However, from the experimental limits presented in Sec. 2.5, it follows that 5] < 10717,
so it is attractive to also set 8 = 0 exactly. Indeed, from the experimental bounds discussed
in 2.5.2 and in 2.5.3, a is zero up to 10~7 and J3 is zero up to 10~ (indeed, as the spin-2
mode speed is given by s3 = 1/(1 — /), the nearly coincident arrival of gravitational and
electromagnetic radiation constraints 5 to be very small. Then, this result together with the
solar system constraints bounding « to be close to 23 gives a tight bound due to the very
tight bound on (). Spherical black hole solutions for « = § = 0 are very simple and known
analytically in this limit, and are given by

2
firy=1- s , (4.70a)
r
1 TEA 4 TEA 2
Alr) = —— — ] = — 4.70b
(r) 1—2u/r( f(r)—i_(T) <7”> 7 ( )
B(r)=1, (4.70¢)
33/4
where 5, = —— . Again, the coupling coefficient A does not appear in the solution for the

background potentials, nor any other coupling coefficient. Furthermore, the solution for the
metric corresponds precisely to a Schwarzschild black hole in general relativity. Since oo =0
implies that Gy = Gga, then the gravitational radius coincides with the Schwarzschild
radius. From these considerations it follows that the parameter A cannot be constrained by
static stationary black holes, as they are indistinguishable from GR black holes.
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For the slowly moving black hole, the sensitivity of equation (4.47) reduces to

_ A X0

where xo is the asymptotic constant defined in (4.35b), and Ry is the gravitational radius
of the black hole and is equal to 2u. Thus, in principle A may be constrained by black hole
dipole flux emission [68].

In the previous paragraphs we have shown the order O(v°) black hole solution as deter-
mined by the metric potentials f, A and B, which are greatly simplified. Let us now tackle
the O(v") system and solve for the perturbed potentials §(r), x(r), ¥ (r) and X(r). First, one
can show that, for « = 8 = 0, both the functions ¢ (r) and 3(r) vanish identically. Indeed,
this can be proven by inserting a null Ansatz for both ¢ and ¥ into the field equations, and
showing that d(r) and x(r) satisfy a system of 2 ordinary differential equations, i.e., that
the problem is not over-determined. In more detail, setting vy = 0 and ¥ = 0 allows us to
solve the two constraint equations C and Cy in terms of ¢'(r) and x'(r). Taking derivatives
of these equations, one obtains the remaining equations of motion (4.32a) and (4.32b). Ano-
ther way to obtain this result, is to perform a perturbative expansion near some given initial
point. One can then show by recursion that all the series coefficients for 1) and 3 must vanish.

As a consequence of this result, we can make use of the constraint equations C; = Cy =0
(cf. equations (4.30)) instead of the equations of motion (4.32a) and (4.32b), as both sets
of equations happen to be equivalent. This procedure is simpler, as the constraints involve
fewer derivatives in the potentials than the equations of motion. Thus, setting ¢ (r) and X(r)
to zero the constraint equations simply become

4(8r* + dprd — 27u) 5(r) — 32r?
165 — 204 + 274 ) 1604 — 218 1 274 "
X' (r)—46(r) =0. (4.73)

§(r) +

(r) =0, (4.72)

Let us remark that these expressions do not involve the coupling coefficient A, and therefore
we will find solutions that do not depend on it. We thus expect that the solution to be also
equivalent to a Schwarzschild black hole. Further on we will want to assess whether or not we
find regular solutions to the system (4.72) and (4.73), so we will express now the functional
form of the curvature invariants. They are now simply given by

R =0(v?), (4.74a)
Ras R —0(?), (4.74b)
v 48u2
Ragw/RaB“ :% + O(v?), (4.74¢)
2715 ~ 2
Ky =7 + v by1(r)d(r) cos b + O(v?), (4.74d)
ky = — B sin? g + v Bg(r)(é(r) —xX'(r) cos @ sin? 6 + (’)(02) , (4.74e)
T

where by (r) and by(r) are algebraic expressions on the background functions. Thus, up to
order O(v?), the curvature invariants not involving the sether are the same as for a Schwarz-
schild black hole in general relativity. The O(v) piece comes as no surprise since we know
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that the metric is Schwarzschild, however the O(v) is not a trivial result. Also, due to the
equation of motion (4.73), the O(v) part of the killing invariant ko vanishes.

We can express x(r) in terms of d(r) and ¢'(r) using equation (4.72)

_27pt + 160t — 323
N 3272

8rd — 4;”“3 — 27u4
83

x(r) §(r) + o(r) . (4.75)

Taking the derivative of equation (4.75) and replacing x’(r) into equation (4.73) we obtain
a second order differential equation for §(r),

2 4 4 4
(r — pr+ 27H> §"(r) + (27" e Slu ) §'(r) + 817'u6(r) =0. (4.76)

2 3272 8rd

From this, it follows that we can simply focus on solving equation (4.76), as it is enough to
get all the information on the system.

Solving equation (4.76) near spatial infinity gives

3 1
ory=80+—=4+0(— 4.77
(r) =do+ 5 + <r4), (4.77)
where dp and d3 are integration constants. This in turn implies through equation (4.75) that
x(r) behaves asymptotically as

03 1
x(r) = dor + x0 — 22 + O (7“4> , (4.78)

R
where xg = —%60 = —ZO50 (let us recall that Ry is the gravitational radius) is fixed in terms

1

of dg. It follows that RX% =7 and from this we obtain that the sensitivity ¢ vanishes.
000

Indeed, equation (4.71) give us

c=0, (4.79)

irrespective for the value for A. This result was to be expected, since the equations of motion
do not actually depend on the coupling coefficient A\ (cf. equations (4.72) and (4.73)).

In fact, we found an infinitesimal gauge transformation that brings the perturbed sta-
tionary metric of equation (4.20) to the Schwarzschild solution in Eddington-Finkelstein
coordinates. To see this, let us note that for & = § = 0 the metric Ansatz of equation (4.20)
can be recast as

ds® = <1 — 2:) dv? — 2dvdr — r2dQ

+v {2 (1 - 2;L) (cos@ d(r)dr — sin Qx(r)dﬁ)dv — 2c0s05(r)dr? + 2sin 0 x(r) dOdr

+0(v?),
(4.80)
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and the O(v) piece can be removed by the time coordinate redefinition
v =v+wvx(r) cosb, (4.81)

leaving us with the Schwarzschild solution in Eddington-Finkelstein coordinates

ds? = (1 — 2:‘) dv’? — 2dv/dr — r2dQ + O(v?) . (4.82)
This means that at first order in v, the geometry of the spacetime is not affected by the
presence of the sether field. In particular, since the metric is equivalent to the Schwarzschild
solution up to a gauge transformation, all invariants constructed only using the metric are
automatically regular outside the origin = 0. Nonetheless, the sether field still might have
a non-trivial profile (different from the background solution) which must be solved for, even
after the gauge transformation is performed.

Inspection of equations (4.76) and (4.73) reveals that, besides r = 0, the only singular
point of the equations of motion corresponds to the universal horizon, located at 7y, = 3u/2°.
Near the universal horizon, the equation (4.76) for 6(r) takes the form

226" (x) + 528 (x) +25(x) ~0. (4.83)

where x = r —ryy, is the distance to the universal horizon, and we have taken only the leading
orders in . Then, we find that the solution to this equation is made of two divergent modes,
namely

§(z) = Cp o V24V 4 o V20V (4.84)

where C}, and Cs are integration constants. We can call the first mode the “hard” mode
and the second the “soft” mode. Indeed, though in both cases the function §(r) diverges
while approaching the universal horizon, for the soft mode we can make again a coordinate
redefinition absorbing this divergence. To show this, let us write the metric Ansatz again
using the coordinate x instead of r as

ds? =f(x)dv? — 2dvdz — (z + re,)?dQ + v [2f(x) cos 0 §(z)dvdx
(4.85)
— 2f() sin O (x)d0dv — 2.cos 05(x)da? + 2sin 0 x(x) dddz] + O(v?).

We want to show that the terms proportional to §(z) and x(x) can be made regular at x = 0.
Let us define the coordinate z = xzd(x), so that we find

§(x)\ ! dz
de=(1 —_— —_—. 4.86
o= (1+55) i (459
If, near x = 0, we have d(x) ~ z", where n is one of the powers in (4.84), then the product
!/
RIS
()

converges to a constant as we approach x = 0. We note that, in terms of z, each of

5. To be more precise, the equations of motion do present a singularity at spatial infinity, however it is a
removable singularity and therefore the solutions are always regular at infinity. This can be seen from equation
(4.77), which has the maximum number of free parameters (as there are only two derivatives in the equations
(4.76) and (4.73)), meaning that regularity does not impose any condition on the initial data, and is always
asymptotically flat.
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the coefficients of the metric are now automatically regular except for the gy9 component of
the metric. Indeed, if we expand this term near x = 0 we find that it becomes

gvo = —2vf(z) sin Ox(z)dfdv ~ —2(n + 3) f(z) sin(0)z" L dvd8, (4.87)

and this will be finite at x = 0 only if n + 1 > 0. This is indeed true for the soft mode, as
n ~ —0.5. However, the hard mode as a power n ~ —3, so that the g,9 component of the
metric diverges.

Therefore we were not able to absorb the metric singularity of the hard mode, and by
computing the killing scalar k1 we confirm that that mode produces a curvature singularity.
Indeed, to leading order in the auxiliary variable = r — ry,, the O(v) part of the killing
scalar k; goes as

k1 o< cos(0)(r — ran)?6(r) . (4.88)

Thus, expressing §(r) as a superposition of the two modes we have
k1 o< cos(0) (Cyz™ + Csz™) (4.89)

withm =1—-+v2 < 0and n = 14++v2 > 0. As we can see, the hard mode produces a
curvature singularity as it approaches the universal horizon, while the soft mode is physically
well behaved. This result is in agreement with the fact that we can make a redefinition of
the perturbations such as to absorb the divergence of the function 6(r) when it contains only
a soft mode, while this is no longer possible if §(r) contains a hard mode as well.

We therefore conclude that we can integrate the system of equations (4.76) and (4.73) starting
from the universal horizon, using initial data such that only the soft mode is excited. As there
are no other singular points we can obtain a solution everywhere else. Such a solution is shown
in figure 4.12, for the potential &(r). Also, the O(v) part of the killing scalar k is plotted.
Both quantities are plotted in absolute value.

4.4 Chapter conclusions

On the one hand, the study of slowly moving black holes in section 4.1 revealed that
regular black hole solutions do not exist when the coupling coefficients o and 5 are different
from zero (cf. sections 4.2.6 to 4.2.6.d)). We therefore conclude that, even without the LIGO-
Virgo/FERMI detection, or even without the parametrized post-Newtonian constraints, we
would still have to set a = 5 = 0.

On the other hand, setting o = 8 = 0 led us to a unique slowly moving black hole solution,
independent of the coupling constant A. This solution is identical to a Schwarzschild black
hole in its metric, but has a non-trivial khronon-field. Moreover, the associated sensitivity
vanishes for all values of A, meaning that the simple prescription adopted in section 3.4 is
not sufficient to constraint A through dipolar radiation constraints. Indeed, to describe the
dipolar radiation our methods must be extended to include effects coming from higher order
sensitivities, such as described in section 3.2.
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Unique regular solution for 6(r) in the o = § = 0 case
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FIGURE 4.12 — Upper panel : The (absolute value of the) unique solution that is phy-
sically regular is plotted in log scale. Near the universal horizon the solution goes as
d(x) ~ Cs 2V20-V2) where Cs ~ —1.618 in order to have d(r) ~ —1 as r goes to infinity.
Lower panel : The killing scalar & is shown to be finite everywhere for this solution.
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4.A Explicit form of the field equations
Let us express the modified Einstein tensor E*, in the form

Q1+ vcosfSi(r) Qa2+ vcoshSy(r) 0 vsin 6S3(r)
Q4 +vcosfSs(r) Qs+ vcoshSs(r) 0 v sin 6.Sg(r) +O(?)

0 0 Q7+ vcosS7(r) 0 ’

vsin 0Ss(r) vsin 6Sy(r) 0 Q10 + vcosfSio(r)

E*, =

(4.90)

where Q;, P; for i = 1,..,10 are respectively, the background and perturbed equations (i.e.,
the O(v°) and O(v) equations). Then the explicit form of these equations are

! (3r% (~a+B+A) B[r] A'[r])? - 2A[r]? (B[r] (-A+r® (4a+3 (-a+B) +32) £[r] A [r]?) +TAB [r]) +r (40 +3 (-a+B) +32)

1= 8r?a[r]*B(r]?

A[r)® £[r] (-rA’[r] B'[r] +B[r] (2A'[r] +rA”[r])) +TA[r] (r (-a+B+2) A'[r] B [r] -B[r] (2 (-a+B+3A) A'[r] +r (-a+B+2)A"[r])) +

r (-a+B+A)A[r]’ £[r]? (-r£[r] A [r] B'[r] +B[r] (2rA'[r] £ [r] +£[r] (2A'[r] +rA”[r]))) +rA[r]® £[r]
(r(-4a-5(-a+B) -51) £[r] A [r] B [r] +B[r] (2r (2a+5 (~a+B) +5A) A [r] £[r] +£[r] (2 (4a+5 (-a+B) +TA) A [r] +r (4a+5 (~a+B) +51) A" [r]))) -

A[r]® £[r]? (rB'[r] (2Af[r] +r (-a+B+A) £[r]) +B[r] (2 (B+A) £[r] -r (~a+B+A) (2£ [r] +r £/ [r]))) +
A[r]* (8B[r]®+rB[r] (2(8+52) £[r] +r (a+B+2) £[r]) -

Blr] (-2 (-4+3a+3 (-a+B) +A) £[r] +r? Ba+B+A) £[r]*A[r]®+1 (2 (4+a+B+32) £[r] +T (a+B+A) £7[r]))) +
A[r]® (-2r £[r] B'[r] BA£[r] +r (a+2 (-a+B) +22) £[r]) +

Br] (-2 (2a+2 (-a+pB) + ) £[r]2+r? (a+B+A) £ ]2 +2rf[r] (2 (a+2 (~a+B) +3A) £r]+r (a+2 (~a+B) +2 Q) £702]))))

T4r?B[r]?
8rB [r] SNSE (2£? (4a+3 (-a+B) +31) B[r] A'[r]? +2A[r]? (B[r] (-3 (B+2A) +1° (a+B+A) £[r]A'[r]?) -3 AB[r]) +T (4a+3 (-a+pB) +3 1) Alr]
r
(rA'[r] B'[r] -B[r] (2A'[r] +r A" [r])) —r(—a+/3+)L)A[r]5f[r] (-r £[r] A'[r] B [r] +B[r] (2rA'[r] £ [r] +£f[r] (2A'[r] +TA"[r]))) -
2rA[r]® (-2r (B+A) £[r] A [r] B'[r] +B[r] (r (2a+3 (~a+B) +3A) A'[r] £[r] +2 (B+A) £[r] (2A'[r] +TA"[r]))) +
A[r]® £[r] (rB'[r] (2Af[r] +r (-a+B+A) £[r]) +B[r] (2 (B+A) £[r] -r (~a+B+A) (2F [r] +r £’ [r]))) +
Alr]® (rB'[r] (AXf[r] +r (2a+3 (-a+B) +3 1) £[r]) +B[r] (4 (B+2) £r] -r (20+3 (-a+B) +3 1) (2£[r] +T£"[r]))))
—71“2“;]63“]4 (1+A[r)?£(r])® (21* (~a+B+2) B[r] A'[r]? +2A[r]? (B[r] (-B-A+x® (a+B+A) £[r] A'[r]?) T AB'[r]) +
r (-a+B+A)A[r] (rA'[r] B [r] -B[r] (2A'[r] +rA”[r])) -2 (a+B+A)A[r]3 (-r £[r] A'[r] B'[r] +B[r] (rA'[r] £ [r] + £[r] (2A'[r] +T A" [r]))) -
r(-a+B+A)A[r]° £[r] (-r£[r] A [r] B'[r] +B[r] (2rA'[r] £ [r] +£[r] (2A[r] +TA”[r]))) +T (a+B+A)A[r]® (rB'[r] £[r] -B[r] (2£ [r] +T£'[r])) +
A[r]® f[r] (rB[r] (2A£[r] +r (-a+B+2A) £[r]) +B[r] (2 (B+A) £[r] -T (~a+B+A) (2£[r] +T £ [r]))))
_r
8r?B[r]?
8B(r] (-B[r)?+£[r] +rf[r]) -‘W(ar2 (~a+B+A)Blr] A'[r]? +2A[r]? (B[r] (A+1? (4a+3 (-a+B) +3 1) £[r] A'[r]?) T AB'[r]) +T (4a+3 (-a+B) +32)
r
A[r]® £[r] (rA'[r] B'[r] -B[r] (2A'[r] +TA”[r])) +rA[r] (r (—-a+B+A) A [r] B'[r] -B[r] (2 (-a+B+3A) A [r] +x (-a+B+A) A" [r])) -
r(-a+B+A)Alr]” £[r]? (-r £[r]) A'[r] B [r] +B[r] (2rA'[r] £ [r] + £[r] (2A'[r] +T A" [r]))) -
rA[r]® £[r] (-r (4a+3 (-a+B) +3 1) £[r] A [r] B [r] +B[r] (2r (a+B+A) A'[r] £[r] +£[r] (2 (4a+3 (-a+B) +A) A [r] +r (da+3 (~a+B) +32) A" [r]))) +
A[r]® £[r]? (rB'[r] (2Af[r] +x (~a+B+A) £[r]) +B[r] (2 (B+A) £[r] - (-a+B+A) (2£ [r] +x £’ [r]))) +
A[r]® (2r£[r] B [r] (Af[r]+x (B+A) £[r]) +B[r] ((4a+4 (-a+B) +6X) £[r]”+r’ (~a+B+A) £[r]”>-2rf[r] (2B [r] +x (B+A) £/ [r]))) +
A[r]? (rB’[r] (-2Xf[r] +xr (a+B+2A) £[r]) +
Blr] (-2 (3a+3 (-a+B) +5A) £[r] +r’ (4o+3 (~a+B) +32) £[r]* A [r]® -1 (2 (@+B+3X) £[r] +T (a+B+2A) £ [r]))))
= S (r(@-B+5X) Blr] &' [r]? -2A[r]? (r (a+B+2) B[r] £[r] A [r]*+ (B+22) B'[r]) -

" 8rA[r]®B[r]
2r (a+B+A)A[r]®B[r] A [r] £[r] -2A[r] (-xAA [r] B [r] +B[r] (2 (B+22) A'[r] +T AA" [r])) +
2A[r]® £(r] (-rA£[r] A [r] B'[r] +B[r] (r (0-B+3A) A [r] £[r] +£[r] (2 (B+2A) A [r] +TAA"[r]))) +

A[r]® (-2 (B+2X) £[x])? B/ [r] +x (a-B+A) Blr] £ [r]2+2£[r] (-xAB [r] £ [r] +B[r] (2 (B+2X) £[r] +TA£ [r]))) +

Ar]® (2B'[r] (2 (2+B+2X) £[r] +T (2+A) £[r]) +B[r] (r (a-B+A) £[r]2A[r]2-2 (2 (2+B+2A) £[r] +x (2+2) £ [r]))))

Q10 = Q7
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for the background equations, while for the perturbed equations we have
1
64r®A[r]®B[r]°
2r?A[r] B[r] (10r( oa+B+A)S[r] A [r] B [r] -B[r] (r (-a+B+A) A [r] (Y[r] B [r] +86 [r])+26([r] (2 (-a+B+5A)A'[r] +r (-a+B+A)A"[r])) +
B(r]? (41 (-a+B+X) A'[r] ¥ [r] +¥[r] (2 (-a+B+5X) A'[r] +r (-a+B+2) A" [r]))) +
? (~o+B+A)A[r]¥ Br] £[r]* (-4r£[r] 6[r] A'[r] B'[r] +B[r]? (4ry[r] A'[r] £[r] + £[r] (2¥[r] A'[r] + A [r] ¥ [r] +T¥[r] A" [r])) +
Blr] (8r&[r] A'[r] £[r] +£[r] (raA'[r] (-¥[r] B [r] +268'[r]) +26[r] (2A"[r] +rA"[r])))) +
4rA[r]5B[r] flr] (4 (—0(+B+)L)B[r]3x[r]A'[r] +61r? (4o+3 (-a+B) +32) £[r] 6[r] A'[r] B [r] -
r(4a+3 (-a+B) +3X)Blr] (4r6(r] A [r] £[r] +£(r] (rA [r] (Y[r] B [r] +46& [r]) +26[r] (2A'[r] +TrA”[r]))) -
(40+3 (~a+B) +32) B[r]® (42[r]A'[r] -T (2ry[r] A'[r] £[r] + £[r] (2y[r] A'[r] +2TA'[r] ¥ [r] +ry¥[r] A" [r])))) +
4ra(r]’B(r] £[r]? (-4 (a-B+52) B[r]’ x[r] A'[r] -4r? (3a+5 (-a+pB) +52) £[r] 6[r] A'[r] B'[r] +
rB(r] (6r (20+5 (-a+B) +5X) 6[r] A'[r] £ [r] +£[r] (-rA[r] ((4a+3 (-a+B) +3X) Y[r] B [r] -2 (20+5 (-a+B) +521) & [r]) +
26[r] (2 (4a+5 (~a+B) +TA) A [r] +r (da+5 (—a+B) +5A) A" [r]))) +B[r]? (-4 (4a+5 (-a+B) +7A) =[r] A [r] +
r(Zr(5a+6 (—a+B) +62) Y[r] A [r] £[r] +£f[r] (3r(2a+3 (~a+B) +3A) A [r] ¥ [r]+ (da+3 (-a+B)+3Q) ¥[r] (2A'[r] +rA”[r]))))) +

(16 2% (~o+ B+ 1) Br]? (-26[r] +B[r] ¥[r]) A'[r]® -

2rA[r]®B[r] ( (-a+B+3X) B[r]®x[r] A [r] +20x2 (a+B+A) £[r] 6[r] A [r] B'[r] -rB[r] (4r (3a-B-2A) &[r] A'[r] £[z] +
[r] (£A'[r] ((Ba+7 (-a+B) +TA) Y[r] B [r] +2 (12a+5 (~a+B) +51) & [r]) +26[r] (2 (8a+5 (-a+B) +A) A'[r] + (Ba+5 (~a+B) +5A) A" [r]))) +
B(r]? (8 (-a+B+3X) S[r]A[r] +r (4r (200-B-2) Y[r] A [r] £[r] +£[r] (3r (3a+B+A) A[r] ¥ [r]+ (Ba+7 (-a+B) +7A) ¥[r] (2A[r] +rA"[r]))))) +
2rA[r] *Blr] £[r]® (-8 (-a+B+2A) B[r]® x[r] A [r] -2r® (16 0 +29 (-a+f) +29X) £[r] 6[r] A'[r] B'[r] +
B[r] (16r (3a+7 (-a+B) +7TA) 6[r] A [r] £[r] + £[r] (rA'[r] (- (8a+11 (~a+B) +11 1) ¢[r] B [r] +16 (a+2 (-~a+B) +21) & [r]) +
26[r] (2(8a+13 (~a+B) +17A) A [r] +r (Ba+13 (~a+B) +13A) A" [r]))) +B[r]? (-8 (~a+B+A) Z[r]A'[r] +T (4r (6a+13 (~a+f) +13 1)

WIr] A [r] £r] +£[r] (8r (a+2 (-a+B) +22) A [r] ¢ [r] +¥[r] (2 (Boa+ 11 (~a+B) +15X) A'[r] +r (Ba+11 (-a+f) +112) A”[r]))))) +
rA[r]? (-6 (-a+B+2) 6[r] B [r]?+2rB[r] (3T (-a+B+A) B [r] &[r] +6[r] (2 (-a+B+3X) B'[r] +r (-a+B+2)B"[r])) +
Br]? (46[r] (-2 (B+22) +3r% (Ba+5 (~a+B) +52) £[r] A'[r]?) -r (4 (~a+B+32) &[r] +T (-a+B+2) (B'[r] ¥ [r] +28"[r]))) +
B[r]® (¢[r] (4 (B+2X) -61x2 (8a+7(—a+[3)+7)\)f[r]A'[r]Z)+r(2(—a+/3+3)k)w'[r]+r(—£x+ﬁ+)\)w"[r])))+
2a[r)® £r] (12raB(r]® £[r] ¥[r] +6’ (6a+7 (-a+B) +72A) £[r]*&[r] B'[r]’
8B[r]® (-2r (B+3X) x[r] £[r] +£[r] (rad[r]+ (8a+8 (-a+B) +6X) x[r] -r (da+4 (-a+B) +51) X' [r])) -2r2B[r] £[r] (6T (5a+7 (-a+B) +7A)
S[r] B [r] £[r] +£[(r] (3r (6a+7 (~a+B) +7A) B [r] &[r] +6[r] (2 (6a+7 (~a+B) +15) B'[r] +x (6a+7 (-~ax+B) +7TA) B [r]))) +
rB(r]® (24r® (~a+B+A) £[r]*S[r] A [r)? +2r% (Ba+15 (-a+B) +152) 6[r] £ [r)? +2£[r] (12A%[r] B'[r] + 1 (r £ [r]
(-(3a+5 (—a+B) +5A) Y[r] B'[r] + (20 +27 (~a+B) +27 1) &' [r]) +6[r] (2 (10a+15 (~a+B) +21A) £ [r] +5r (2a+3 (-a+B) +32) £ [r]))) +
£[r]® (-8 (2a+2 (-0 +f) + ) S[r] +r (4 (60 +7 (~a+f) +9IX) &[r] +T (-(200+7 (-a+B) +7A) B [r] ¥/ [r] +2 (6a+7 (-a+B) +72) & [r])))) +
B(r)® (121° (-a+B+A) £[r]> ¢[r] A'[r]® + T £ [r] (-16 (a+2 (-a+B) +3A) Z[r] +r? (Ba+15 (-a+f) +152) ¥[r] £[r]) + £[r] (16 (200+2 (~a+B) +A) 2[x] +
r(-24Az’[r]+r2(12a+29(-a+/3)+29A)f’[r]w’[r]+2rw[r](z(3a+5(-a+/5)+4/\)f’[r]+r(3a+5(-a+5)+5,\) “[x]))) +
r2f£r]? (2 (2a+7 (~a+B) +5A) Y [r] +T (2a+7 (~a+B) +TA) ¥ [r])))+rA[r]”f[r]3(5r2<—a+/3+)\)f[r]25[r]s[r]
2rB[r] £[r] (12r (-a+B+A) S[r] B [r] £[r] +£[r] (3r (-a+B+A) B [r] &[r] +56[r] (2 (-a+B+5A) B'[r] +T (-a+B+A) B'[r]))) +
Br]® (121® (~a+B+A) 8[r] £[r]* +6x (~a+B+A) £[r] (rf[r] (-y[r]B'[r] +2& [r]) +26[r] (2£ [r] +T£"[r])) -
£[r]? (16 (B+2) 6[r] +r (BAY[r] B [r] - (-a+B+2) (48 [r] -rB [r] ¢ [r] +2r&”[r])))) +B[r]?
(6% (~o+ B+ ) Y] £[r]* + 61 (~a+B+ ) £[r] (r €[] ¥ [r] +y[r] (2£[r] +T £ [r])) + £[r]® (-8 (B+A) Y[r] +T (-o+B+A) (2¥ [r] +x ¥’ [r])))) -
2A(r]® (-4r (5a+2 (-a+B)) B[r]® £[r] ¥[r] -6r> (6a+5 (-a+B) +5) £[r]? 6[(r] B'[r]? +
8B[r]* (r (a+B+A) x[x] £[r] +£[r] (r (-4+3a+2 (~a+B)) 6[r] -6 (B+A) x[r] +T (4+3 1) X' [r])) +2r’B[r] £[r]
(12r (B+A) 6[r] B [r] £[r]) +£[r] (3r (6a+5 (-a+B) +51) B [r] & [r] +6[r] (2 (6a+5 (-a+B) +TA) B [r] +r (6a+5 (-a+B) +51) B [r]))) +r
B(r]? £[r] (4r? (3a+B+2) £[r]?6[r] A'[r]? -
2 (-4 (8+5Q) 2[r] B [r] +r (rf[r] ((Ta+6 (-a+B) +6X) Y[r] B [r]+ (L0a+9 (~a+B) +92) & [r])+ (2a+3 (~a+B) +31) &[] (2£ [r] +r£'[r]))) +
£[r] (8 (B+A) S[r] -r (BAY[r] B [r] +4 (60+5 (-a+f) +5A) & [r] +r ((18a+13 (-a+f) +132) B [r] ¥ [r] +2 (6a+5 (-a+pB) +52) & [r])))) +
Blr]® (22° (4a+3 (-a+B) +3X) £[r]° Y[r] A [r]? +4r £ [r] (-2 (4+a+B+3X) B[r] +1° (3a+2 (-a+B) +21) ¥[r] £(r]) +
£lr] (16 (-4+30+3 (~a+B) +A) S[r] +r (-8 (8+51) X'[r] +r” (46 a+33 (-a+f) +33 ) £ [r] ¥ [r] +2ry[r]
(2(T0+6 (-a+f) +7A) £[r] +1 (Ta+6 (-a+f) +6X) £7(r]))) +r£[r]? (-4BY[r] +r (18a+13 (~a+B) +13X) (2¥/[r] +ry [r])))) +
A[r]* £[r]? (-8r (a+2 (-~a+B)) Blr]* £[r] ¥(r] +6r° (4oa+7 (~a+B) +72) £[r]* 6(r] B'[r]* - 16 B[r]*
(r (—a+B+A) x[r] £[r] +£[r] (r(a+2 (-a+B)) 6[r] -2 (B+A) x[r] +rAx'[r])) -2r’B[r] £[r] (32r (a+2 (-a+B) +2 1) 6[r] B'[r] £ [r] +
£lr] (3r (4a+7 (—a+B) +TA) B [r] &[r] +6[r] (2 (da+7 (-a+B) +21A) B'[r] +r (4a+7 (—a+B) +TA) B [r]))) +
rB(r]? (12r% (~a+B+2) £[r]* 6[r] A [r]?+8r% (4a+9 (-a+B) +92) 6[r] £[r]* +4£(r] (4AZ[r] B'[r] +x (£ [r] (-3 (a+2 (-o+B) +2 1) ¥[r] B'[r] +
(L0a+19 (—a+B) +194) & [r]) +6[r] (2 (6a+13 (-a+B) +17TA) £ [r] +r (6a+13 (—a+B) +13 1) £7[r]))) -£[r]? (8 (5a+5 (-a+B) +4X)
S[r] +r (16 AY[r] B'[r] -4 (4a+7 (-a+f) +9A) &[r] +T ((4a+9 (-a+B) +9IX) B [r] ¥ [r] -2 (4a+7 (-a+B) +7T2) & [r])))) +
Blr]® (6 (-a+B+A) £[r]> U[r] A [r]? + 4T £ [r] (-4 (~a+B+A) S[r] +T? (4a+9 (~a+B) +9A) ¥[r] £(r]) +
2£[r] (16 (B+2) Z[r] +r (-8A%'[r] +r? (10a+21 (~a+B) +21X) £/ [r] ¥ [r] +2ry[r] (2 (3a+6 (~a+B) +72) £[r] +3r (a+2 (~a+pB) +22) £ [r]))) +
rE[r]? (-4 (3a+3 (-a+B) +2X) Y[r] +T (2 (4a+9 (-a+B) +TA) ¥ [r] +T (4a+9 (-a+B) +9IX) ¥’ [r])))) +
A[r]* (8raB[r]®y(r] +6r’ (3a+B+A) £(r] 6[r] B [r]®-16B[r]® (radlr] -2 (2x[r] +rx [r])) -
2r?B(r] (-4r (a+2 (-a+B) +2A) 6[r] B [r] £[r] +£[r] (3r (3a+B+A) B'[r] &[r] +5[r] (2 (3a+B-3A) B [r]+r (3a+B+1A)B"[r]))) +
rB[r]® (16 % (40 +3 (~a+B) +32) £[r]> 6[r] A'[r]? -
2 (-8AS[r] B [r]+r (rf[r] ((2a+3 (-a+B) +3A) Y[r] B [r] +4 (-a+B+A) &[r]) +46[r] (2 (B+2X) £[r] +x (B+A) £[r]))) +
flr] (-16 (B+2X) 6[r] +r (BAY[r] B [r] +4 (3a+B-3A) & [r] +r ((5a-B-2A) B [r] U/'[r]+Z(3a+B+A)6”[r]))))+
B(r])® (-32A2[r] +r (-8r% (4a+3 (~a+B) +32) £[r)? y[r] A [r]? +2 (4 (-2 [r] +£® (-a+B+A) £ [c] ¥ [r]) +T¥[r]
(2 (2a+3 (~a+B) +52) £[r] +r (2a+3 (-a+B) +32) £/ [r])) +£[x] (B (B+A) Y[r] +T (-2 (5a-B-51) ¢ [r] +x (-5a+B+A) ¥"[r]))))))
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-32rB(r])® (-2B[r]’ ¥[r] -2 (3(r] B'[r] + £[r] (6[r] +Ty[r] B'[r]) +rS[r] £'[r]) +

“3229B(r)t
B[r]? (46[r] -2x [r]) +B[r] (2 (ry[r] £[r] +='[r]) + £[r] (¥[r] +r11/’[r]))) +8rB[r] £f[r] (&[r] -B[r] ¥[r])

8rB'[r] -

(2£? (4a+3 (-a+B) +3A) B[r] A'[r]? +2A[r]? (B[r] (-3 (B+2A) +r’ (a+B+A) £[r] A'[r]?) -3rAB[r])+r (4a+3 (-a+B) +3 1)

[r)?
A[r] (rA'[r] B [r] -B[r] (2A[r] +rA”[r])) -r (-a+B+A) A[r]® £[r] (-r£[r] A [r] B [r] +B[r] (2r A [r] £ [r] + £[r] (2A'[r] +T A" [r]))) -
2rA[r]® (-2r (B+A) £[r] A'[r] B'[r] +B[r] (r (2a+3 (—a+B) +3A) A'[r] £[r] +2 (B+A) £[r] (2A [r] +TrA"[r]))) +
A[r]® f£(r] (rB[r] (2Af[r] +r (-a+B+A) £[r]) +B[r] (2 (B+A) £[r] -r (-a+B+A) (2f [r] +x £/ [r]))) +

Alr]® (rB[r] (AXf[r]+r (2a+3 (-a+B) +3X) £[r]) +B[r] (4 (B+A) £[r] -t (2a+3 (-a+B) +3 1) (2f'[r] +rf”[r])))) +

2

4rB(r] (-28(r] +B[r]¥[r]) |8B[r] (-B[r]*+£[r] +T £ [r]) - (3 r? (-a+B+A)B[r] A [r]?+

A[r]*
2A[r)? (B[r] ()u-rz (do+3 (-a+B) +32A) f[r]A'[r]Z) —rAB'[r]) +r (4a+3 (-a+B) +3X)A[r]® f[r] (rA'[r] B [r] -B[r] (2A'[r] +rA”"[r])) +
rA[r] (r (-a+B+2A) A'[r] B'[r] -B[r] (2 (~a+B+3X)A'[r] +r (-a+B+A)A"[r])) -
r(-a+B+A)A[r]" £[r]? (-rf[r] A’ [r] B [r] +B[r] (2rA'[r] £ [r] + £[r] (2A'[r] +rA”[r]))) -rA[r]® £[r]

(-r (4a+3 (-a+P) +3A) £[r] A [r] B [r] +B[r] (2r (a+B+A) A [r] £[r] +£[r] (2 (4a+3 (-a+B) +A) A [r] +r (4a+3 (~a+B) +3 1) A" [r]))) +
A[r]sf[r]z (rB'[r] (2Xf[r] +x (-a+B+A) £[r]) +B[r] (2 (B+A) £[r] -r (-a+B+A) (2f [r] +r£f'[r]))) +
A[r]® (2r£[r]B'[r] (Xf[r] +r (B+2) £[r]) +B[r] ((4a+4 (-a+B) +6X) £[r]? +r® (~a+B+A) £ [r]?-2rf[r] (2BF [r] +x (B+21) £/[r]))) +
INFI R (rB’[r] (-2xf[r] +r (a+B+A) £[r]) +

Blr] (-2 (3a+3 (-a+B) +51) £[r] +r? (4a+3 (-a+B) +32) £[r]? A [r]? -1 (2 (@+B+3 1) £[r] +r (a+B+2A) £ [r])))) |-

W(‘2r3 (20 +21 (~a+B) +212) B[r]? (-26[r] +B[r] ¥[r]) &' [r]* +2r*A[r] B[r] (41 (Ba+7 (-a+B) +TA) 6[r] &' [r] B'[r] -
Blr] (rA'[r] ((4a+5 (-a+B) +52) Y[r] B [r] +6 (4a+3 (~a+B) +31) & [r]) +26[r] (2 (4a+5 (-a+B) +IX) A [r] +x (da+5 (~a+B) +51) A [r])) +
Blr]® (3r (4a+3 (-a+B) +3A) A [r] ¥ [r] +¥[r] (2 (4a+5 (-a+f) +IA) A'[r] +r (da+5 (-a+B) +5A) A" [r]))) +
6r’ (-a+B+2)A[r]°B[r] £[r]® (—4rf[r] S[r] A [r] B [r] +B[r]? (4ry[r] A [r] £[r] +£[r] (2¢[r] A [r] +r A [r] ¢ [r] +Ty[r] A" [r])) +
B(r] (8xr&[r]A'[r] £ [r] +£f[r] (rA'[r] (-¢[r]B'[r] +2& [r]) +28[r] (2A'[r] +rA”[r])))) +4r (4a+3 (-a+B) +31) A[r]’B[r]
(4B[r]3x[r]A'[r] +6r? f(r] 6[r] A [r] B [r] -rB[r] (2ré(r] A [r] £[r] +f[r] (rA[r] (-¢[r] B [r] +46 [r]) +28[r] (2A'[r] +TA”[r]))) +
B(r]? (-45[r] A'[r] +x (ry[r] A'[r] £[r] + £[r] (2rA'[r] ¥ [r] -y[r] (22" [r] +TA"[r]))))) +
4raf(r]’B(r] £(r]? (-4 (-a+B+2) B[r]>x[r] A [r] -2r? (Ba+ 11 (-a+fB) +112) £[r] 6[r] A'[r] B[] +
rBr] (2r (12a+19 (-a+B) +19) 6[r] A’ [r] £ [r] + £[r] (-rA[r] ((4a+3 (-a+B) +3 1) Y[r] B'[r] -4 (2a+3 (~a+B) +31) & [r]) +
2 (4a+5 (-a+B) +51) 8[r] (2A'[r] +TA”[r]))) +B[r]? (-4 (-a+B+A) =[r] A'[r] +
r(3r(4a+5 (~a+B) +52) Y[r] A [r] £r] +£[r] (2r (20+3 (-a+f) +3 ) A'[r] ¥ [r] + (4o +3 (-a+ ) +3X) ¥[r] (2&'[r] +TA"[r]))))) +
BrA[r]sB[r] flr] (—4 (a-B+A) B[r]3x[r] A'[r] +2r? (-2a-3 (-a+B) -32) £[r] 6[r] A’ [r] B'[r] +
rBlr] (2r (20+5 (~a+B) +52) 6[r] A'[r] £ [r] + £[r] (rA[r] ((a+2 (-a+B) +2X) Y[r] B'[r] + (20+3 (~a+B) +3 1) & [r]) +
6[r] (2 (2a+3 (-a+B) +5X) A [r] +r (2a+3 (-a+B) +3X) A”[r]))) -B[r]? (8 (B+A) =[r] A'[r] +
r(2r (-2a+B+A) Y[r] A'[r] £[r] +£[r] (-31 (B+A) A'[r] ¥ [r] +¥[r] (2 (a+2 (-a+B) +3X) A'[r] +T (a+2 (-a+fB) +2A) A" [r]))))) +rA[r]?
(6% (4a+3 (-a+B) +32) 6[r] B [r]*-2rB[r] (3r (4a+3 (~a+B) +3A) B'[r] & [r] +6[r] (2 (4a+3 (-a+B) +7X) B'[r] +r (4a+3 (-a+B) +32) B [r])) +
B[r]? (85([r] (22+3r? (40+3 (-a+f) +3A) £[r] A'[r]?) +x (8AY[r] B [r] + (4a+3 (-a+B) +3X) (46 [r] +rB [r] ¢ [r] +2r&"[r]))) +
B[r]® (4y[r] (-22+1? (4o+3 (-a+f) +3A) £[r] A [r]?) -r (4o+3 (-a+f) +32A) (2¥/[r] +T ¥ [r]))) +
2A(r]® £r] (-4 (@+2 (-a+B)) B[r]® £[r] ¥[r] +61° (2a+3 (-a+B) +3 1) £[r]? 6[r] B'[r]? -
8B[r]? (r (-a+B+A) x[r] £[r] +£[r] (r (a+2 (-a+B))S[r] -2 (B+A) x[r] +rAx [r])) -2r?B[r] £[r] (r (16 a+25 (-a+B) +251) 6[r] B'[r] £ [r] +
[r] (3r(2a+3 (-a+B) +3A) B [r] & [r] +6[r] (2 (2a+3 (~a+PB) +TA) B [r]+r (2a+3 (-a+B) +321)B"[r]))) +
rB(r]? (6r? (~a+B+2) £[r]>S[r] A [r]*+81r% (2a+3 (-a+B) +32) 6[r] £[r]%+
flr] (BAZ[r] B [r] +x (£ [r] ((~6a-7 (-a+B) —TA) Y[r] B [r] +10 (2a+3 (-a+B) +3 1) & [r]) +4 (3a+5 (~a+B) +5) 6[r) (2£ [r] +r £ [r]))) -
2£(r]? (8 (B+A)S[r] +x (-2 (2a+3 (-a+B) +3X) & [r]+x ((a+2 (-a+B) +2A) B [r] ¥ [r] + (-20-3 (-a+B) -32) & [r])))) +
Br]® (3r (~a+B+2) £[r]*Y[r] A [r]® +4r € [r] (-2 (-a+B+A) B[r] +r? (2a+3 (-o+B) +3X) Y[r] £[r]) +
£[r] (16 (B+2) Z[r] +r (-8AX[r] +r? (10a+17 (~a+B) +17X) £ [r] ¢ [r] +T¥[r] (2 (6a+7 (-a+B) +5A) £ [r] +T (6a+7 (-a+f) +7A) £7[r]))) +
222 £(r]? (2 (@+2 (-a+B) + ) ¥ [r] +x (a+2 (-a+B) +2) ¥ [r]))) +rA[r]® £[r]? (61 (-a+B+X) £[r]26[r] B'[r]? -
2rB(r] £[r] (12r (-a+B+X) 6[r] B [r] £ [r] +£[r] (3r (—a+B+2A) B [r] & [r] +6[r] (2 (-a+B+51) B'[r] +r (-a+B+A) B [r]))) +
B(r]? (121® (~a+B+A) 8[r] £[r]*+61 (-a+B+2A) £[r] (rf[r] (-¥[r] B [r] +268 [r]) +26[r] (2 [r] +r£"[r])) -
£[r]* (16 (B+A) S[r] +r (8AY[r] B'[r] - (-a+B+2) (48 [r] ~rB [r] ¥ [r] +2r8"[r])))) +B[r]’
(6% (~a+B+2) w[r] £[r]*+6r (~a+B+2A) £[r] (£ [r] ¢ [r] +¥[r] (2F[r] +T £ [r])) + £[r]? (-8 (B+2A) ¥[r] +T (-a+B+A) (2¥/[r] +Ty”"[r])))) +
2A[r]® (8raB(r]® £[r] ¥(r] +36 1> (B+A) £(r]?6[r] B [r]® +8B[r]* (-T (a+B+3 1) x[r] £[r] +4 (B+2) £[r] (2x[r] -TX [r])) -
4r?B[r]) £lr] (2r (Ta+8 (-a+B) +81) 6[r] B'[r] £[r] +£[r] (9 (B+A) B [r] &[r] +6[r] (2 (3a+3 (~a+B) +51) B'[r] +3r (B+A) B”[r]))) +
rB(r]® (122° (~a+B+A) £[r]’ 6[r] A [r]® +21r® (Ba+11 (~o+ ) +1121) &[r] £[r]? + £[r] (16 AZ[r] B'[r] +
r(rf[r] (3 (-a+B+A) Y[r] B [r] +2 (20 a+21 (-~a+B) +212) & [r]) +26[r] (2 (Ba+11 (-a+B) +15X) £[r] +r (8a+1l (—a+B) +11 1) £7[r]))) +
£[r]* (-8B6[r] +r (16 AyY[r] B [r] +24 (B+2) & [r] +1 (- (2a+5 (~a+B) +52) B [r] ¥ [r] +12 (B+2) &"[r])))) +
B(r]® (61 (-a+B+2) £[r]>Y[r] A [r]® +r £ [r] (-8 (2a+3 (-a+B) +3X) Z[r] +r° (Ba+7 (-a+B) +7TA) ¥[r] £[r]) +
£[r] (32 (B+2) B[r] +1 (-16 A% [r] +T° (12a+19 (-o+ ) +19X) £ [r] ¥ [r] ~Ty[r] ((6 (-a+B) +22 1) £ [r] +3r (-a+B+2A) £ [r]))) +
rf(r]? (4 (3a+3 (-a+B) +2A) Y[r] +r (2 (2a+5 (-a+B) +A) ¥ [r] +r (2a+5 (-a+B) +52) ¥ [r])))) +
2a[r]* (4r (3a+2 (-a+B)) B[r]>¥(r] +6r° (6a+5 (-a+B) +52) £[r] 6[r] B [r]*-8B[r]* (r (3a+2 (-a+B)) 6[r] -6 (B+A) x[r] +3rAx [r]) -
2r’B(r] (r (12a+13 (-a+p) +13 1) 6[r] B [r] £ [r] +
flr] (3r (6a+5 (—a+B) +51) B'[r] &[r] +5[r] (2 (6a+5 (-a+B) +IA) B [r] +T (6a+5 (—a+B) +51) B [r]))) +
rB(r])? (-8rf af[r]®6[r] A [r]?-24A2[r] B'[r] +r (r£[r] ((6a+7 (-a+B) +7TA) Y[r] B [r] +2 (10a+9 (~a+pB) +92) & [r]) +

Hh
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46[r] (2 (a+2 (-a+B)) £[r] +T (a+2 (~a+B) +22) £7[r])) +2£[r] (-8 (2a+2 (—a+B) +32) 6[r] +
T (-8AY[r] B [r] +2 (6a+5 (-a+B) +5X) &[r] +r ((5a+4 (-a+B) +4X) B'[r] ¥ [r] + (6a+5 (-a+B) +51) 8" [r])))) -

(a8 (B+A) Z(r]+r (207 (-3a+B+2) £[r]? U[r] A [r]? +3 (-82A%[r] +r® (60 +5 (~a+B) +52) £[r] ¥ [r]) +ry¥[r] (2 (6a+7 (-a+B) -32) £[r] +

B(r]
T (6a+7 (-a+B)+72) £7[x]) +2£[r] (4BY[r] +T (2 (5a+4 (-a+B) +N) ¥ [r] +T (Sa+4 (~a+B) +42) ¥"[r]))))))

1
- A B
r? (a-B+3A) A[r]®B[r] £[r]® (26[r] +B[r] ¥[r]) A [r] -r?A[r]?B[r] £[r] (2 (4a+3 (-a+B) +31) 6[r] - (~a+B+A) B[r] ¥[r]) A [r] +
r?A[r]®Blr] £[r]? ((4a+6 (-a+B) +61) S[r] + (a+B+1A) Blr] y[r]) A [r] -rA[r]
(2r(2a+2 (-a+B) +1) 6[r] B'[r] -2B[r] (2 (B+A) 6[r] +r (2a+2 (-a+B) +A) & [r]) +B[r]? (2 (B+A) ¥[r] +r (2a+2 (-a+B) +2A) ¥ [r])) +rA[r]” £[r]?
(-2rX£[r] 6[r] B [r] +2B[r] (r (a-B+32) 6[r] £[r] +£[r] (2 (B+A) 6[r] +rA& [r])) +B[r]? (r (a-B+3A) y[r] £[r] +£[r] (2 (B+2) ¥[r] +T Ay [r]))) +
A[r]® £[r] (-8 (B+22) B[r]®x[r] -2r? (2a+2 (-a+B) +3 ) £[r] 6[r] B [r] +
2rB[r] (2r (2a+2 (-a+B) +32) 6[r] £[r] +£[r] (6 (B+A)S[r]+r (2a+2 (-a+PB) +32A)&([r])) +
Blr]? (-8 (B+22) S[r] +r (2r (a+B+32A) ¥[r] £[r] +£[r] (2 (3a+3 (-a+B) +A) Y[r] +r (2a+2 (-a+B) +52) w'[r])))) +
a[r)? (-8 (2+B+22) B[r]® x[r] -2rB'[r] (4T (-1+8) x[r] £[r] +£[r] (r (4+32) 8[r] -4 (-1+6) (2x[r] -rx'[r]))) +
B(r]2 (8 (2+B+22) B[r] -r (-r (-12+4a+3 (~a+B) -5A) ¥[r] £[r] +£[r] (2 (-4+3a+3 (~a+B) + ) Y[r] +x (B+51) ¥ [r]))) +
2B[r] (r? (-(-8+40+3 (-o+B) -32) 6[r] £[r] +4 (-1+B) (2£[r] x'[r] +x[r] £7[r])) +
£lr] (6 (B+2) 6[r] -8 (-1+B8) x[r] +r® ((4+32) & [r] +4 (-1+8) x"[r])))))

(r? (6a+7 (-a+B) +31) B[r] (-26[r] +B[r] ¥[r]) A'[r] +

1
" 128 r*A[r]®B[r]®
6r® (~a+B+A)A[r] B[r] (4r5[r]A’[r] B'[r] -B[r] (rA'[r] (¥[r] B [r] +2& [r]) +26[r] (2A'[r] +rA”[r])) +B[r]? (rA'[r] ¥ [r] +¥[r] (24" [r] +TA"[r]))) +
61 (-a+B+A)A[r] ¥ B[r] £[r]® (-4r £(r] 6[r] A [r] B'[r] +B[r]® (4ry[r] A'[r] £[r] +£[r] (2¥[r] A [r] +T A [r] ¥ [r] +T¥[r] A" [r])) +
Blr] (8ré[r] A'[r] £ [r] +£[r] (rA'[r] (-¥[r] B [r] +26 [r]) +26(r] (2A[r] +TA"[r])))) -8T (4a+3 (-a+B) +32) A[r]’ B[r]® £[r]?
(rzA'[r] (£[r] ¥([x] B'[r] -268(x] £[r]) +B[xr] (45[r] A’ [x] - (3ry[r] A [r] £ [r] +£[r] (2¥[r] A'[x] +2x A [r] ¥ [r] +T¥[r] A" [x])))) +
4ra[r]®B(r] (4 (-a+B+A)B[r]® x[r] A [r] +8r% (2a+3 (-a+B) +32) £[r] 6[r] A [r] B [r] ~rB[r] (2r (4a+3 (-a+B) +31) 6[r] A [r] £[r] +
flr] (rA'[r] ((4a+5 (-a+B) +5X) ¥[r] B [r] +4 (2a+3 (-a+B) +3X) 6 [r]) +4 (2a+3 (-a+B) +31) 6[r] (2A [r] +rA”[r]))) +B[r]? (-4 (-a+B+2A)
S[r]A'[r]+r(r (4a+3 (-a+B) +3A) Y[r] A [r] £[r] +£f[r] (2r (2a+3 (-a+B) +3A) A [r] Y [r] + (4a+5 (-a+B) +5A) y[r] (2A'[r] +rA"[r]))))) +
4rA[r)VB(r] £[r]* (-4 (-a+B+2) B[r]*x[r] A[r] -8r® (200+3 (-~a+f) +32) £[r] 6[r] A [r] B'[r] +
rB[r] (6r (4a+7 (~a+B) +7A) S[r] A [r] £[r] +£[r] (A [r] ((-4a-5 (-a+B) -5A) Y[r] B [r] +4 (2a+3 (-a+B) +3 1) & [r]) +
4 (2a+3 (~a+B) +32) 6[r] (2 [r] +rA”[r]))) +B[r]? (-4 (-a+B+A) Z[r] A [r] +
r(r(12a+19 (-a+f) +19 ) ¥(r] A [r] £ [r] +£[r] (2T (2a+3 (-a+B) +3A) A'[r] ¥ [r] + (4a+5 (-a+B) +51) ¥[r] (2A'[r] +TA"[r]))))) +
2rA[r]®B[r] £[r] (16 (a-B+2) B[r]® x[r] A'[r] +4r? (16 a+15 (-a+fB) +1521) £[r] 6[r] A'[r] B'[r] -
rB[r] (8r (4a+3 (-a+B) +3X) &[r] A [r] £[r] +£[r] (rA'[r] ((16a+13 (~a+B) +13X) ¥[r] B'[r] +2 (16 a+15 (~a+B) +1521) & [r]) +
2 (16a+15 (~a+B) +1521) 6[r] (2A'[r] +TA”[r]))) +B[r]? (-32 (B+A) S[r] A [r] +
r(4r (6a+5 (-o+B) +52) Y[r] A [r] £[r] +£[r] (3r (Ba+7 (-a+B) +TA) A [r] ¥ [r] + (16a+13 (~a+B) +13 ) ¥[r] (2A'[r] +TA”[r]))))) +
2ra(r)’B(r] £[r]® (-16 (a-B+A) B(r]® x[r] A'[r] -41? (16 a+ 15 (-a+B) +152) £[r] 6[r] A" [r] B'[r] +
rB(r] (96r (B+A) S[r] A [r] £ [r] +£f[r] (rA'[r] (-(l6a+13 (-a+B) +13 Q) Y[r] B [r] +2 (l6a+15 (-a+B) +151) & [r]) +
2 (16a+15 (~a+B) +1521) 6[r] (2A[r] +rA”[r]))) +B[r]? (-32 (B+A) S[r]A'[r] +
T(8r (Ta+6 (-a+B) +62) Y[r] A [r] £[r] +£[r] (3x (Ba+7 (-a+B) +TA) A'[r] ¥ [r] + (16a+13 (-a+B) +13 1) ¥[r] (2A'[r] +TA"[r]))))) +
2a[r)® £[r] (122° (60 +5 (-a+B) +521) £[r]*6[r] B'[r]® -8B[r]* (r (4a+3 (-a+B) +3 ) x[r] £[r] +
2f(r] (r(-4+3a+2 (-a+B))6[r] -6 (B+A) x[r] +r (4+32) x'[r])) -4r?B[r] £[r] (3r (Ba+7 (-a+B) +7A) &[r] B [r] £[r] +
flr] (3r (6a+5 (—a+B) +52) B'[r] & [r] +6[r] (2 (6a+5 (-a+B) +TA) B [r] +r (6a+5 (—a+B) +5) B”[r]))) +
rBr]® (£ (~a+B+A) £[r]° YT A [r]? +4 (4a+3 (-a+B) +3A) £[r] (-22[r] +r?Y[r] £[r]) +2r (4a+3 (-a+pB) +32) £[r]
(2r € [r] ¥ [r] +¥[r] (€ [r] +r£7[r]))) +2rB[r]? (3r° (-a+B+2) £[r]* S[r] A [r]* +4r® (4a+3 (~a+B) +32) 6[r] £[r]*+
rflr] (rfr] (-(4a+3 (-a+B) +3X) Y[r] B [r] +6 (6a+5 (-a+B) +51) & [r]) +12 (B+A) 6[r] (2£ [r] +r £ [r])) +
2£[r]% (-4 (B+2) 6[r] +r (60 +5 (-a+f) +54) (28 [r] +r8"[r])))) +
rA[r]? (6r? (-a+B+2) 8[r] B'[r]?-2rB[r] (3r (-a+B+2) B [r] & [r] +6[r] (2 (-a+B+51) B'[r] +r (-a+B+2A) B"[r])) +
Br]? (86[r] (-2 (B+A) +x? (Ba+15 (-a+B) +152) £[r] A’ [r]?) +r (BAY[r] B'[r] + (~a+B+A) (46 [r] +rB [r] ¥ [r] +2r6"[r]))) -
Br]® (4y(r] (-2 (B+A) +x? (Ba+13 (-a+B) +132) £[r] A [r]?) +x (-a+B+2A) (2¥ [r] +T¥”[r]))) +rA[r]™ £[r])* (6% (-a+B+ ) £[r])? 6[r] B'[r]? -

sS4 - (-182% (~a+B+ 1) B[r]? (-26[r] +B[r] ¥[r]) A [r]*+
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2rB[r] f[r] (12r (-a+B+A) 6[r] B [r] £ [r] +£f[r] (3r (-a+B+A) B [r] &[r] +6[r] (2 (-a+B+5A) B [r]+r (-a+B+A)B"[r]))) +
B(r]? (12r% (-a+B+2) 6[r] £ [r]?+6x (~a+B+2) £(r] (rf [r] (-¥[r] B [r] +26[r]) +26[r] (2£ [r] +r£’[r])) -
£[r]? (16 (B+A) S[r] +r (8AY([r] B [r] - (-a+B+ 1) (48 [r] -rB [r] ¥ [r] +21r6"[r])))) +B[r]’
(6% (~a+B+2) Y[r] £(r]?+6x (~a+B+2) £[r] (£ [r] ¢ [r] +¥[r] (2€[r] +r £ [r])) +£[r]? (-8 (B+X) ¥[r] +r (~a+B+A) (2¥ [r] +Ty’[r])))) +
2A[r]Y £[r]® (-4r(a+2 (-a+B)) B[r]® £[r] y[r] + 61 (2a+3 (-a+B) +32) £[r]?6(r] B'[r]? -
8B[r]® (r (~a+B+A) x[r] £[r] +£[r] (r(a+2 (—a+B))S[r] -2 (B+A) x[r] +xAx [r])) -2r’B[r] £[r] (r (16 a+27 (-a+B) +27) &6[r] B'[r] £ [r] +
£{r] (3r (2a+3 (—a+B) +3 1) B'[r] &[r] +6[r] (2 (2a+3 (-a+B) +9IAN) B [r] +r (2a+3 (-a+B) +31) B [r]))) +
rB(r]? (6r® (~a+B+A) £[r]*6[r] A [r]? +81% (2a+3 (-a+B) +32) 6[r] £[r]?+
£{r] (BAZ[r] B [r] +r (£ € [r] (-(6a+11 (-a+B) +11A) ¢[r] B [r] +10 (2a+3 (-~a+B) +32) & [r]) +12 (a+2 (-a+B) +22) 6[r] (2£ [r] +r£'[r]))) -
2£[r]? (12 (B+A) S[r] +r (42U[r] B'[r] -2 (20+3 (-a+B) +3A) & [r] +T ((a+2 (~a+B) +22) B'[r] ¥ [r] + (-2a-3 (-a+B) -32) & [r])))) +
Blr]® (32 (-a+B+A) £[r]*U[r] A [r])? + 4T £ [r] (-2 (~a+B+A) S[r] +T? (2a+3 (-a+B) +32) ¥[r] £(r])+
£[r] (16 (B+2) B[r] +1 (-8 [r] +r? (10 @+ 17 (-a+B) +17A) £ [r] ¥ [r] +T¥([r] (2 (6a+11 (-a+B) +9 ) £[r] +r (6a+11 (-a+f) +112) £ [r]))) +
2r£[r]® (-4 (B+2) Ylr] +r (2 (@+2 (~a+f) +A) ¥ [r] +r (a+2 (~a+B) +22) ¥ [r])))) +
A[r]® (-16raB(r]® £[r] ¥(r] +6r° (16a+15 (-~a+B) +15) £[r]?6(r] B'[r]? + 16 B[r]* (-r (20+3 (~a+B) +A) x[r] £[r] +4 (B+A) £[r] (2x[r] - X [r])) -
2r’B(r] f(r] (4r (Ba+9 (-a+B) +91) 6[r] B [r] £ [r] +
£{r] (3r (160 +15 (~a+B) +15X) B [r] & [r] +6[r] (2 (16a+15 (-a+B) +27 ) B'[r] +T (16 a+ 15 (-a+B) +151) B [r]))) +
rB(r]? (16 % (40 +3 (-a+B) +32) £[r]*S[r] A [r]? +41? (4a+3 (-a+B) +32) 6[r] £[r]?+
2f(r] (-16 AS[r] B [r] +x (rf[r] ((-5a+B+A) Y[r] B [r] +2 (16a+15 (-a+B) +151) & [r]) +6 (~a+B+A) S[r] (2f [r] +r £ [r]))) + £(r]?
(-48 (B+X) 6[r] +r (BAY[r] B'[r] +4 (16 a+ 15 (~a+B) +1524) &' [r] +T ((Ba+13 (~a+B) +13 1) B'[r] ¥ [r] +2 (16 a+ 15 (~a+B) +151) 6 [r])))) -
B(r]® (8r° (4a+3 (-a+B) +3X) £[r]’ y[r] A [r]*-2rf [r] (-8 (a+B+2) 2[r] +r (4a+3 (-a+pB) +3A) ¥[r] £[r]) +
2£[r] (32 (B+2) Z[r] +r (-16 A% [r] +7r® (-a+B+A) £[r] ¥ [r] +ry[r] (-2 (50-F+32) £[r] +r (-5a+B+A) £ [r]))) +
r£(r]® (-8 (B+A) Y[r] +r (2 (8a+13 (-a+B) +5A) ¥ [r] +r (Ba+13 (-a+B) +13 ) ¢ [r])))) +A[r]* £[r]?
(16raB[r]® £(r] ¥[r] +6r’ (16 +15 (-a+B) +152) £[r]*6[r] B [r]® + 16 B[r]® (-r (a+B+3 ) x[r] £[r] +4 (B+21) £[r] (2x[r] -rx'[r])) -2 1’ B[r] £[r]
(96 r (B+A) 6[r] B [r] £[r] +£[r] (3r (16a+15 (~a+B) +15X) B'[r] &6 [r] +6[r] (2 (16a+15 (-a+B) +27 ) B [r] +r (16 a+ 15 (~a+B) +152) B [r]))) +
rBr]? (24r% (~a+B+2) £[r]° S[r] A [r]?+81r% (10a+9 (-a+B) +9A) 6[(r] £[r]? +4£[r] (8AR[r] B'[r] +
r(rf(r] ((-6a-7 (-a+B) -TA) Y[r] B [r] +2 (16 +15 (-a+B) +152X) 6 [r]) +2 (Ba+9 (~a+B) +9A) 6[r] (2f [r] +r£’[r]))) + £[r]?
(-48 (B+X) 8[r] +T (-8AY[r] B'[r] +4 (16 00+ 15 (~a+B) +152) & [r] +r (- (8a+13 (-a+B) +132) B [r] ¥ [r] +2 (160 +15 (~a+pB) +152) 67 [r])))) +
Br]® (121 (~a+B+A) £[r]* Y[r] A [r]® +4r £ [r] (-4 (2a+3 (-a+B) +3A) Z[r] +r’ (10a+9 (-o+B) +9X) Y[r] £[r]) +
4£[r] (16 (B+2) Z[r] +r (2 (-4 [r] +1° (6a+7 (-a+B) +7A) £[r] ¥ [r]) +r¥[r] (2 (6a+7 (-a+f) +5A) £[r] +r (60+7 (-a+f) +7A) £/ [r]))) +
r£(r]® (-8 (B+A) Y[r] +r (2 (Ba+13 (-a+B) +5) ¥ [r] +r (Ba+ 13 (-a+B) +132) ¥ [r])))) -
2A[r]* (-4r (a+2 (-a+B)) BIr]®Y[r] -6’ (2a+3 (-~a+B) +31) £[r] 6[r] B'[r]? +8B[r]® (r (a+2 (-a+B)) 6[r] -2 (B+2A) x[x] +TAX [r]) +
2r?B[r] (3r (-a+B+A) 6[r] B [r] £[r] +£[r] (3r (2a+3 (~a+B) +31) B [r] &[r] +6[r] (2 (2a+3 (~a+B) +9A) B'[r] +r (2a+3 (-a+B) +3X) B”[r]))) -
rB(r]® (2r? (32+33 (-o+B) +332) £[r]*S[r] A [r]® -8AX[r] B'[r] +
rB(r]? (2r® (320+33 (-a+B) +332) £[r]*S[r] A'[r]* - 82Ax[r] B'[r] +
r(rf(r] ((-3a+B+A) Y[r] B [r] +2 (2a+3 (-a+B) +32) &[r]) -4ad[r] (2£[r] +T £ [r])) +
2£[r] (-12 (B+A) S[r] +r (4AY[r] B [r] + (4a+6 (-a+B) +62X) & [r] +x ((a+2 (~a+B) +22) B'[r] ¥ [r] + (2a+3 (~a+B) +32) &' [r])))) +
Br]® (16 (B+A) Z[r] +r (r? (320+27 (-o+B) +27 ) £[r]* Y[r] A [r]® -8 [r] +2r af [r] ¥ [r] + 5% (-a+B) £ [r] ¥ [r] +5r° XE [r] ¥ [r] +
ry(r] (-2 (3a-B+A) £[r] +r (-30+B+2) £ [r]) +£[r] (-8 (B+X) Y[r] +27 (2 (a+2 (-o+f) +A) ¥ [r] +T (a+2 (-a+B) +22) ¥ [r]))))))
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8rB(r] £[r] (6[r] -B[r] ¥[r]) |8B[r] (-B[r]’+f[r] +rf[r]) -
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_r
64r®B[r]°
4B([r]? (-rB[r]* £(r] ¥[r] -c£[r] 6(r] (£[r] +r £ [r]) +rB[r]® £[r] (26(r] - X [r]) +B[r] (-r=[r] £ [r] +£[r] (-2%[r] +r? ¥[r] £'[r]) + £ £[r]?
rB(r] (-26(r] +B(r] ¥(r]) |16B[r] £[r] (-B[r]?+£[r] +r £ [r]) - _t
A[r]®

(-2 (-a+B+2) B[] A [r]® +2A[r])? (B[r] (B+2A-2r? af[r] A'[r]?) +TAB'[r]) +21° (4a+3 (-a+B) +3 1) A[r]®
A[r] (-rA'[r] B'[r] +B[r] (2A'[r] +T A" [r])) —r(—a+B+A)A[r]9f[r]3 (-r £[r] A’ [r] B'[r] +B[r] (2rA'[r] £ [r] +f[r] (2A'[r] +TA"[r]))) -
2rA(r]” £r]? (-r (@+B+A) £[r] A [r] B [r] +B[r] (r (3a-B-A) A [r] £[r] +£[r] (2 (a+B-A) A [r] +T (a+B+X)A"[r]))) +

2rA[r]® (-r (a+B+A) £[r] A'[r] B'[r] +B[r] (r (a+B+A) A'[r] £[r] +£[r] (2 (a+B-A) A'[r] +r (a+B+A)A"[r]))) +

A[r] £[r])® (rB'[r] (2Af[r] +T (-a+B+A) £[r]) +B[r] (2 (B+A) £[r] -1 (-a+B+A) (2f [r] +r £’ [r]))
A[r]® (-x® (@+B+2) B'[r] £[r] +B[r] (4 (B+22) £[r] +2x% (4a+3 (-a+B) +3 1) £[r)? A [r]? +x (a+B+A

) +
)
(-xB[r] (4XE[r] +r (-a+B+2) £[r]) +B[r] (-4 (3a+3 (-a+B) +52) £[r] +41* (B

(2€[r] +T £ [x]))) +A[r]® £[r]
+ ) £[r]2A ]2+ (-2 (@-B+3X) £[r] +T (—a+B+1A)

A[r]® £[r] (£? (a+B+A) £[r] B'[r] £[r] +B[r] (4 (B+22) £[r]* +21? (-a+B+A) £[r]> -r£[r] (2 (a+B-3X) £[r] +r (a+B+A) £ [r])))) |+

m(ar’ (-a+B+A)B[r] A [r]?+
2a[r)? (B[r] (A+x? (4a+3 (-a+B) +32) £[r] A [r]?) ~rAB'[r]) +T (40 +3 (-a+B) +32) A[r]’
rA[r] (r (-a+B+A) A [r] B [r] -B[r] (2 (~a+B+31) A [r] +r (-a+B+A)A"[r])) -
r(-a+B+A)A[r]" £[r]? (-r£[r] A’ [r] B [r] +B[r] (2rA'[r] £ [r] + £[r] (2A'[r] +rA”[r]))) -rA[r]® £[r]
(- r(4a+3( a+B) +3A) £[r] A [r] B [r] +B[r] (2r (a+B+A) A [r] £[r] +£[r] (2 (4a+3 (-a+B) +A) A [r] +r (da+3 (-a+B) +321) A" [r])
[r]® £[r)? (rB'[r] (2Af[r] +r (-a+B+A) £[r]) +B[r] (2 (B+A) £r] -r (-a+B+A) (2 [r] +r£'[r]))) +
[
[

f[r] (rA'[r] B [r] -B[r] (2A'[r] +rA”[r])) +

)+

)¢ (er[] ‘[r] (AE[r] +x (B+2) £[r]) +B[r] ((4a+4 (-a+B) +6A) £[r]? +r? (~a+B+A) £ [r]?

a
a
Alr]* (rB'[r] (-22f[r] +r (a+B+2) £[r]) +

—2rf[r] (2BE[r]+x (B+A) £7[x]))) +

Blr] (-2 (3a+3 (-a+B) +5X) £[r] +r? (da+3 (-a+B) +3 ) £[r]2A[r]? -r (2 (a+B+32) £[r] +r (a+B+2) £ [r])))) |-

1

Alr]

= (-16x> (-a+B+2) B[r]? (-26(r] +B[r] ¥[r]) A'[r])? +2r? A[r] B[r] (10T (~a+B+1) 6[r] A'[r] B'[r] -

B(r] (r (-a+B+A) A [r] (Y[r] B [r] +86& [r]) +26[r] (2 (-a+B+5A) A [r] +r (~a+B+A)A"[r])) +
[r]? (4 (~a+B+2) A [r] ¥ [r] +¥[r] (2(—a+6+5A)A'[r]+r(—a+B+/\)A”[r])))+
6r (-a+B+2)A[r]*B[r] £[r]* (—4rf[r] S[r) A [r] B'[r] +B[r]? (4ry[r] A [r] £ [r] + £[r] (2¢[r] A [r] +rA [r] ¥ [r] +Ty¥[r] A" [r])) +
B[r] (8rS[r] A'[r] £ [r] +£f[r] (rA'[r] (-¢[r]B'[r] +28 [r])+28[r] (2A'[r] +rA”[r])))) +

4rA[r]5B[r]f[r] (4 (8a+5 (-a+p3) +5)L)B[r]3x[r]A'[r] +4r? (4a+3 (-a+B) +32) £[r] 5[r] A'[r] B'[r] +r? (da+3 (-a+B) +32)

Wrl)) +

B[r] f[r]A'[r] £ [r] +T (-a+B+A)

£e]))) +
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Blr] £[r] A [r] (Y[r] B [r] -46[r]) - (4a+3 (-a+B) +3A) B[r]® (4S[r]A'[r] +rf(r] (-2rA [r] ¥ [r] +¥[r] (2A'[r] +rA"[r])))) +
4ra(r)’Br] £[r]? (4 (3 (-a+B) +2) B[r]® x[r] A'[r] - 21 (6a+5 (-o+B) +52) £[r] 5[r] A'[r] B'[r] +
rB(r] (2r (6a+7 (~a+B) +7A) S[r] A [r] £[r] +£[r] (rA [r] ((~a+B+A) Y[r] B [r] +2 (a+B+A) &[r]) +8 (B+A) 6[r] (2A [r] +TA”"[r]))) +
Br]? (-4 (4a+3 (-o+f) +2) B[r] A [r] +T (6roay[r] A'[r] £[r] + £[r] (31 (a+B+A) A [r] ¥ [r] - (-a+B+A) ¥[r] (2A°[r] +TA"[r]))))) +
2rA(r]®B(r] (8 (-a+B+32) B[r]®x[r] A [r] +81% (3a+4 (-a+B) +42) £[r] §[r] A [r] B'[r] ~rB[r] (4T (-3a+B+A) 6[r] A [r] £[r] +
£lr] (A [r] (- (-a+B+A) Y[r] B [r] +2 (12a+13 (~a+B) +13 1) & [r]) +26[r] ((6 (-a+B) +22 ) A'[r] +3r (~a+B+A) A" [r]))) -B[r]?
(8 (-a+B+32A) B[] A [r] +T (41 (2a-B-2) Y[r] A [r] £[r] +£[r] (-3r (4a+5 (-a+B) +5X) A'[r] ¥ [r] + (-a+B+2A) ¥[r] (24 [r] +rA"[r]))))) +
2rA(r]’Br] £[r]® (-8 (~a+B+ 1) B[r]> x[r] A'[r] +21° (-16a-17 (-a+B) -17A) £[r] 6[r] A'[r] B[] +
rB(r] (48 (B+A) 6[r] A'[r] £[r] + £[r] (rA'[r] (- (Ba+5 (-a+B) +52X) Y[r] B [r] +16 (B+A) & [r]) +
25[r] (2(Ba+9 (~a+B) +5A) A'[r] +r (Ba+9 (~a+B) +9A)A”[r]))) +B[r]? (-8 (-a+B+A) Z[r] A [r] +
(8r(3a+2( a+B) +2A)w[r] A'[r] £[r] +£[r] (8r (B+A) A'[r] ¥ [r] +¥[r] (2 (Ba+5 (-a+B) +A) A'[r] + (Ba+5 (-a+B) +51) A" [r]))))) -
rA[r]z( 2 (-a+B+A)6[r] B [r]?+2rB[r] (3r (-a+B+A) B [r] &[r] +56[r] (2 (-a+B+321) B [r]+r (-a+B+A)B"[r])) -
B[r]? ( &(r] (2 (B+22) +1? (16 +21 (-a+B) +21 ) £[x] A'[r]?) 4+ (4 (-a+B+32) &[r] +T (-a+B+2) (B [r] ¥ [r] +267[r]))) +
B[r]® (211/[1:]( (B+22) + (16a+9(—Q+B)+9A)f[r]A’[r]z)+r(2 (~a+B+3X) Y [r] +x (~oa+B+A) Y’ [r]))) +rA[r]? £(r]® (6 (-a+B+2A) £[r]?
6(r] B [r]?-2rB(r] £f(r] (12r (-a+B+A) 6[r] B [r] £[r] +£[r] (3r (—a+B+A) B [r] &[r] +6[r] (2 (-a+B+5A) B [r] +r (-a+B+2A) B [r]))) +
Br]? (121% (~a+B+ 1) 6[r] £[r]®+6x (-a+B+A) £[x] (r£[r] (-¥[r]B'[r] +26[r]) +26[r] (£ [r] +T£7[r])) -
£[r]? (16 (B+A) 6[r] +r (8AY[r] B'[r] - (~a+B+A) (46 [r] -rB [r] ¢ [r] +2r6"[r])))) +B[r]®
(6% (~a+B+ ) Y[r] £[r]*+ 6T (-a+B+A) £[x] (£ [r] ¢ (] +¥[r] 2 [r] +T £ [r])) +E[r]? (-8 (B+A) Y[r] +x (-a+B+A) (2 [x] +T¥"[r])))) -
2A[r])® (-4r (a+2 (-a+B)) Blr]* £[r] ¥[r] -6’ (6a+5 (-a+pB) +51) £[r]*6[r] B'[r]? +
BB[r]“(—r(a+B+/1)X[r1f’[r]+f[r] (r(30(+2(—a+B))6[r]—6(B+)L)x[r]+3r)\x’[r]))+2r28[r]f[r]
(16 (B+A) 6[r] B [r] £[r] +£[r] (3r (6a+5 (~a+B) +51) B'[r] & [r] +6[r] (2 (6a+5 (-a+B) +IA) B [r] +r (6a+5 (-a+B) +51) B”[r]))) +
rB(r]’®£[r] (8r® (a+B+A) £[r]? 6[r]A'[r]? -2 (-4 12[r] B'[r] +
r(rf[r] (3 (B+A) Y[r] B [r]+ (L0a+9 (-a+B) +9IA) &[r]) +6[r] (2 (6a+7 (~a+B) +3X) £[r] +r (6a+7 (~a+B) +7T2A) £ [xr]))) +
£[r] (16 (2a+2 (~a+B) +31) S[r] -r (4 (6a+5 (-a+B) +5A) & [r] +r ((2a+3 (-a+B) +3X) B [r] ¥ [r] +2 (6a+5 (- a+B)+SA)6 [r1)))) +
Br]® (22 (-a+B+2) £[x)° Y[r] A [r]? - 4T £ [r] (-2 (@+B+3X) S[xr] +r? (3a+2 (-a+B) +2A) ¥[r] £[r]) +
£[r] (16 (3a+3 (-o+B) +54) Z[r] +r (-82A%'[r] -r® (100 +3 (o +B) +3A) £[r] ¥ [r] +2ry[r] ((60+6 (~a+B) -82) £[r] +3r (B+2) £ [r]))) +
r£(r]? (-4 (B+2X) Ylr] +T (2 (2a+3 (-a+B) -9X) ¥ [r] +T (2a+3 (~a+B) +32) ¥’ [r])))) +2A[r])® £[r] (4raB[r]® £[r] ¥(r] +
61’ (6a+5 (-a+pB) +5X) £[r]*&[r] B'[r]®-8B[r]* (2rox(r] £[r] +£[r] (rad[r] -2 (4o+4 (-o+B) +51) x[r] +r (da+4 (-a+B) +3X) x'[r])) -
2r?B[r] £[r] (2r (15a+13 (~a+B) +13 1) 6[r] B'[r] £ [r] +£[r] (3r (6a+5 (-a+B) +51) B [r] & [r] +
Slr] (2 (6a+5 (-o+B) +7A) B'[r] +T (6a+5 (-a+B) +51) B"[r]))) +rB[r]® (2r? (Ba+5 (-a+B) +52) 6[r] £ [r]® +2£[r]
(4XZ[r] B'[r] +x (r£[r] (-ay[r] B [r] +5 (4a+3 (-a+B) +3X) & [r]) +5[r] (2 (L0a+11 (~a+B) +9X) £ [r] +r (10 + 11l (-a+B) +11 1) £/ [r]))) +
£[r]? (-16 (B+A) 6(r] +T (BAY[r] B'[r] +4 (6a+5 (-a+B) +3 1) & [r] +r ((-2a-3 (-a+B) -32) B'[r] ¥ [r] +2 (6a+5 (-a+B) +52) 6" [r])))) +
B[r]® (r£1x] (-1682([x] +x? (Ba+3 (-a+B) +32Q) Y[r] £[r]) +£(r] (16 (2a+2 (-a+B) +3 1) B[r] +T (-8 [r] +3r2 (4a+3 (-a+B) +3A) £[r] ¥ (] +

2

2ry[r] (2 (a-32) £[r] +raf’[r]))) +rE[r]? (8 (B+A) ¥[r] +r ((40+6 (-a+f) -6X) ¥ [r] +T (20+3 (-a+ ) +3X) ¥ [r])))) +
A[r]* £[r])? (-8r (a+2 (~a+B)) Blr]* £[r] ¥[r] +6 > (40+5 (-a+B) +52) £[r]* 5[r] B'[r]? - 16 B[r]*
(r (—a+B+A) x[r] £[r] +£[r] (r(a+2 (-a+B)) 6[r] -2 (B+A) x[r] +rAx’[r])) -2r’B[r] £(r] (8r (4a+5 (-a+B) +51) 6[r] B'[r] £ [r] +
£lr] (3r (4a+5 (-a+B) +51) B [r] &[r] +6[r] (2 (4a+5 (-a+B) +11A) B'[r] +r (da+5 (-a+B) +51) B [r]))) +
rB(r]® (12r% (~a+B+A) £[r]* 6[r] A [r]? +8r® (40 +3 (~a+B) +31) 6[r] £[r]®+4£[r] (412[r] B'[r] +
r(-rf[r] (3(B+A) Y[r] B [r]+ (-10a-11 (~a+B) -112) & [r]) +5[r] (2 (6a+9 (-a+B) +5A) £[r] +3r (2a+3 (-a+B) +3 1) £7[r]))) +

flr]? (-8 (5a+5 (-a+B) +6A) S[r] +r (4 (4a+5 (-a+B) +3X) &[r] +r (- (4a+7 (-a+B) +72) B [r] 11/'[r]+2(4a+5(—a+6)+5)\)6 [r])))) +
Br]® (61 (-a+B+A) £[r]>Y[r] A [r]? + 4T £ [r] (-4 (-a+B+A) Z[r] +T° (4a+3 (-a+B) +3A) ¥[r] £(r]) +

2£(r] (16 (B+2) B[r] +x (-8 [r] +r° (10a+13 (-o+B) +132) £ [r] ¥ [r] +6xy[r] (2BE [r] +x (B+2A) £ [x]))) +

rE(r]? (-4 (B+2X) Y[r] +r (2 (4o+7 (-o+f) +X) ¥ [r] +x (4a+7 (-a+f) +7X) ¥ [r])))) +A[r]*

(-8raB[r]®y[r] +6r’ (4a+5 (-a+B) +52) £[r] 6[r] B [r]* +16B[r]® (ras(r] -A (2x[r] +rx[r])) -2r?B[r] (4r (a+2 (-a+B) +2 1) 6[r] B'[r] £ [r] +
flr] (3r (4a+5 (-a+B) +52) B [r] &[r] +5[r] (2 (4o(+5(—0(+f5)+13A)B'[r]+r(4a+5(—a+B)+5)\)B”[r])))+rB[r]2(16r2 (doa+3 (—a+B) +3 1)
£flr]?26[r] A [r]?+2 (-8AS[r] B [r] +r (rf[r] ((2a+3 (-a+B) +3X) Y[r] B [r] +4 (-a+B+A) & [r]) +46[r] (2 (B+2) £[r] +r(/3+A) £7[x]))) +
£[r] (16 (B+32) 6[r] +r (-8Y[r] B [r] +4 (4a+5 (-a+B) +9A) & [r] +x ((4da+7 (-a+B) +72) B [r] ¥ [r] +2 (4a+5 (-a+B) +52) 6”[r])))) +

B[r]3(32)\2[r]—r(2 (4(—2AZ’[r]+r2(—a+B+A) ] ¥ [r]) +x¥lr] (2 (2a+3 (-a+B) +51) £[r] +r (2a+3 (-a+p) +3 1) £7[r])) +

£{r] (8 (B+2) Y[r] +r (2 (4a+7 (~a+B) +11X) ¥ [r] +x (4a+7 (~a+p) +7X) ¥’ [r]))))))

1
32r?A(r])®B[r]*

(-4x® (4a+3 (-a+B) +3X) A[r]*B[r] £[r)?6[r] A'[r] +T° (a-B+3 1) B[r] (26[r] -B[r] ¥[r])A'[r] +r’ (a-B+32) A[r]®B[r] £[r]® (26[r] +B[r] ¥[r]) A'[r] +
2r?A[r]?B[r] £[r] (-4BS6[r] + (2a+3 (-a+B) +A) B[r] ¥[r]) A [r] -2r?A[r]®B[r] £[r]® (4B6[r] + (2a+3 (-a+B) +A) B[r] ¥[r]) A [r] +
rA[r] (2rAs[r] B [r] -2B[r] (2 (B+A) 6[r] +rA& [r]) +B[r]® (2 (B+2A) ¥[r] +ray [r])) +rA[r]’ £[r]’

(-2rX£[r] 6[r] B'[r] +2B[r] (r (a-B+32) &[r] £[r] +£[r] (2 (B+2) 6[r] +T A& [r])) +B[r]? (r (a-B+3X) ¢¥[r] £[r] +£[r] (2 (B+A) ¥[r] +TAY [r]))) +

A[r]7f[ ]2 (-8 (B+22) B[r]*x[r] -4r? A£[r] 6[r] B'[r] +2TB[r] (r (-2a-3 (-a+B) +32) 6[r] £ [r] +2£[r] (2 (B+A) 6[r] +T A8 [r])) +

r]? (-8 (B+2X) Z[r] +T (r (-20-5 (-a+B) +32) ¢[r] £ [r] +4£[r] (Bylr] +xA¥ [r])))) +

Alr ]3 (a (B+2)L)B[r]zx[r] +4r? X£[r] 6[r] B [r] -2rB[r] (r (a+B+32) S[r] £[r] +2£[r] (2 (B+A) &[r] +T A8 [r])) +

B(r]? (-8 (B+2X) Z[r] +r (r (a+B+52) ¥[r] £[r] +4£[r] (BY[r] +rA¥ [r])))) -A[r]®B[r] £[r] (2 (4o +3 (-a+f) +3 ) §[r] £'[r] +

]

B(r ( 16 (2+B+2A) Z[r] +r (r (24-8a-5 (-a+B) +11A) y[r] £ (r] +2£f[r] (2 (-4+3a+3 (—a+B) +A) Y[r] +r (8+52Q) zl/'[r])))))
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—m 8rB[r]? (—2B[r]3f[r] Ulr] -2£[r] B [r] (-23[r] +r? (ylr] £ (] + £[r] ¥ix])) +
B[r] (—4Z[r] £(r] +3r?y[r] £[r]%+£f[r] (—42’[1‘] + 7t £ [r) Y [r] +2ry[r] (£ [r] +rf”[r])) +2rf[r]? (¥ [x] +rz[1”[r]))) -
m(—BZrlA[r]EB[r]qf[r]x[r}A’[r]+20r3)LB[r]2 (-26[r] +B[r] ¥[r]) A [r]? -
Blr] (3r® (-a+B+2A)B[r] (-26[r] +B[r] ¢¥[r]) A'[r]? +2rA[r]® £[(r] A'[r] (-16 AB[r]® x[r] -2 (4a+3 (-a+B) +3 1) £[r] 6[r] B'[r] +
r? (-a+B+A) B[r]? ylr] £[r] +2r° (4a+3 (-a+B) +32) B[r] (6[r] £[r] +£[r] & [r])) +2rA[r]?
(2ra6(r] B [r] -2B[r] (6[r] (B+2x+r? (4a+3 (-o+B) +3X) £[r] A [r]?) +x A& [r]) +B[r]? (¥[r] (B+2A+21 (a+B+2) £[r] A [r]?) + Ay [r])) -
r?A[r] A'[r] (27 (-a+B+A) S[r] B'[r] -2B[r] (BAS[r] +r (~a+B+2) & [r]) +B[r]® (BAY[r] +r (~a+B+A) ¥ [r])) +
r?Alr]® £[r]*A'[r] (-2r (-a+B+2) £[r] 6[r] B'[r] +2B[r] (6T (~a+B+A) 6[r] £[r] +£[r] (BAS[r] +r (-a+B+2A) & [r])) +
B(r)? (6 (-a+B+X) ¥[r] £[r] +£[r] (BAY[r] +T (-a+B+2) ¥ [r]))) +TA[r]* £[r]? (-2r £[r] 6[r] B'[r] (2A£[r] +T (-a+B+2) £[r]) +
2B[r] (3r? (-a+B+2) 6[r] £[r]? +2£[r]? ((B+2X) 6[r] +rA& [r]) +T£[r] £[r] (BAS[r] +r (-a+B+A) & [r])) +
B(r]? (3r® (-a+B+2) ¥[r] £[r]® +2£[r]? ((B+22) y[r] +TA¥ [r]) +T£[r] £[r] (BAY[r] +r (~a+B+2) ¥ [r]))) -
2ra(r]®*A'[r] (8AB[r]® x[r] +4r? (B+A) £[r] 6[r] B [r] -4rB(r] (-rad(r] £[r] +£[r] (2A6[r] +T (B+2A) & [r])) +
B[r]? (—8AZ[r]+r2 ((-3a+B+A) ¥[r] £(r]+ (2a+3 (-a+B) +32) f[r] w’[r])))+
2ra[r]” £[r]? A [r] (-82B[r]’ x[r] -4r® (B+2) £[r] 6[r] B'[r] +4rB[r] (3r (B+2A) &[r] £[r] +£[r] (228[r] +1 (B+21) & [r])) +
B(r]? (-8AZ[r] +r? ((6a+5 (-a+fB) +52) Y[r] £[r] + (2a+3 (-a+pB) +32) £[r] ¥ [r]))) -A[r]* (-16 (B+22) B[r]® x[r] +
2r?6[r] B [r] (-4Af[r] +r (a+B+A) £[r]) -2rB[r] (-4£[r] ((B+2A)S[r] +rAd [r])+rf [r] (-425[r] +r (a+B+2A) & [r])) +
Br]? (16 (B+2A) Z[r] +1? (-2r (-a+B+2) £[r]? Y[r] A [r]? -8 A£[r] ¥ [r] + £[r] (-8AY[r] +T (a+B+A) ¥ [r])))) +
A[r]® £[r] (-16B[r]’ x[r] ((B+2A) £[r] +TA£ [r]) -2 £[r] 6[r] B'[r] (4A£[r] +r (20+3 (-o+B) +32) £[r]) +
2rBlr] (3r (-a+B+2A) £[r]*S[r] A [r]® +2r" (2a+3 (-a+B) +3X) 6[r] £[r]* +4£[r]® ((B+21) 6[r] +r A& [r]) +r£[r] £ [r]
(1226([r] +1 (20+3 (-a+B) +32) &'[r])) +B[r]? (3 (-a+B+2) £[r]> Y[r] A [r]? +2r £ [r] (-8AE[r] +r? (2a+3 (-o+B) +3 ) ¥[r] £[r]) +
8r? Af(r]? Y [r] +£[r] (-16 (B+2A) B[r] +r’ £[r] (BAY[r] +T (20+5 (~a+B) +52) ¥ [r])))) +
A[r]® (-16 rAB[r]’ x[r] £[r] -2’ (4a+3 (-a+B) +32) £[r] 6[r] B [r] £[r] +21° (4a+3 (-a+B) +31) B[r] (2£[r)’ 6[r] &' [r]? +
s(r] f’[r]2 £r] £[r] & [r]) +B[r]® (42’ (a+B+2) £[r)* Y[r] A [r]? -r £ [r] (-16 AZ[r] +r* (Ba+5 (-a+f) +52) ¥[r] £[r]) -
rE(r]? ((B+2X) ¥[r] +5cA¥ [r]) +£[r] (32 (B+22) Z[r] -r? £[r] (24 X¢[r] +r (Ba+5 (~a+B) +52) ¥ [r]))))) -
4r®A[r] B[r] (6rAS([r] A'[r] B [r] -B[r] (rAA [r] (Y[r]B'[r] +4& [r]) +26[r] (2 (B+32) A [r] +TAA"[r])) +
B[r]? (2r AN [r] ¥/ [r] +¥[r] (2 (B+3 1) A'[r] +TAA"[r]))) +
4ra[r]®’B(r] (-4 (B+3X1) B[r]’ x[r]A'[r] -6r> X£f[r] 6[r] A'[r] B'[r] +B[r]’A'[r] (4 (B+3X) Z[r] -3 X (y[r] £ [r] +£[r] ¥ [r])) +
2rB[r] (2rAS[r] A [r] £[r] +£[r] (2rAA [r] &[r] +5[r] (2 (B+3 1) A'[r] +TAA"[r])))) +
4rA(r]’B[r] £(r]? (-4 (B+32) B[r]’ x[r] A [r] -6r? X£[r] 6(r] A [r] B'[r] +B[r]*A'[r] (-4 (B+32) 2[r] +3r? A (¥[r] £ [r] +£[r] ¥ [r])) +
2rB[r] (6rAS[r] A [r] £[r] +£[r] (2rAA [r] &[r] +5[r] (2 (B+3 1) A'[r] +TAA"[r])))) + 4’ A[r])® B[r] £[r]’
(—Gr)kf[r] S[r] A [r] B [r] +B[r] (16xAS[r] A [r] £ [r] +£f[r] (rAA'[r] (-¥[r] B [r] +46 [r]) +26[r] (2 (B+3A) A [r] +TAA"[r]))) +
B(r]? (8rAy(r] & [r] £[r] +£[r] (2r XA [r] ¥ [r] +¥([r] (2 (B+3X) A'[r] +TAR"[r])))) +
rA[r]? (-6r?x6[r] B'[r]* +2rB[r] (3rAB [r] & [r] +5[r] (2 (2a+2 (-a+fB) +52) B [r] +T AB"[r])) -
B(r]? (46(r] (B+2A+6r? AE[r] A [r]?) +x (2 (B+22) Y[r] B [r] +4 (B+3 1) &[r] +r A (B [r] ¥ [r] +26"[r]))) +
B[r]® (2 (B+22) ¥[r] +x (2 (B+32) ¥ [r] +x Ay’ [r]))) +
4a[r)®£(r] (3L A£[r)?6(r]) B [r]?-2B[xr]® (2x (B+32) x[r] £[r] + (B+2A) £[r] (2x[r] +T X [r])) -
r?Blr] £[r] (9rAS[r] B [r] £ [r] +£[r] (3rAB [r] & [r] +6[r] (2 (2a+2 (-a+f) +52) B'[r] +rAB”[r]))) +rB[r]? (6r* X£f[r]’ 6[r] A'[r]? +
6r2AS[r] £[r]2+£[r] (2 (B+22) 2[r] B [r] +r (tAf[r] (-¥[r] B [r] +6& [r]) +36[r] (2 (B+3) £[r] +rAf’[r]))) +£[r]?
(2(B+22) 6[r] +T (2 (B+32) & [r] +T A (-B'[r] ¥ [r] +&”[r])))) +B[r])® (3r’ A£[r]> Y[r] &' [r]? +r£'[r] (-4 (B+3 ) =[r] +3r° Ay[r] £[r]) +
£r] (-4 (B+22) B[r] +x (-2 (B+2X) X' [r] +5r? AE [r] ¢ [r] +Ty[r] ((B+42) £[r] +TA£"[r]))) +r? £[r]? ((B+4X) ¥ [r] +T Ay [r]))) +
ra[r] £(r]? (6’ Af[r]?6[r] B'[r]®-2rB[r] £[r] (12r2A6[r] B'[r] £ [r] +£(r] (3rAB [r] & [r] +6[r] (2 (2a+2 (-a+B) +52) B'[r] +r AB"[r]))) +
Blr]® (24r’ As[r] £[r]® +4rf[r] (rAf [r] (-¥[r] B [r] +46& [r]) +26[r] (2 (B+3A) £[r] +rA£ [r])) +
£[r]? (4 (B+22) 6[r] +r (-2 (B+22) Y[r] B'[r] +4 (B+3X) & [r] +T A (-B'[r] ¥ [r] +26"[r])))) +
B(r]® (12r° Aylr]) £r]® +4r £[r] (2 A€ [r] ¢ [r] +¥[r] (2 (B+32) £[r] +rA£ [r])) +£[r]? (2 (B+2A) Y[r] +T (2 (B+3X) ¥ [r] +T2y"[r])))) -
2a[r]®Br]? (8 AB[r]®x[r] £ [r] -r£[r] (4x? A£[r]®6[r] A'[r]®-2B'[r] (4 (B+22) 2[r] -3r* Ay[r] £[r]) +
r£(r] B'[r] (2(B+22) ¥[r] +5r-ay [x])) +B[r] (-8r £ [r] ((B+3) =[r] -r? ylr] £[r]) -
2f[r] (8(B+2X) 2[r]-r (-4 (B+22) ¥'[r] +9r’ Af [r] ¥ [r] +ry[r] (2 (2a+2 (-a+f) +7A) £[r] +3rA£ [r]))) +
r£(r]? (2 (B+22) ¥[r] +T ((60+6 (-o+B) +22X) ¥ [r] +5r2y”[r])))) +4A[r]® (-3r> X£[(r] 6[r] B [r]*+2 (B+22) Br]® (2x[r] +T X [r]) +
r?B[r] (3rAS[r] B [r] £(r] +£[r] (3rAB [r] & [r] +6[r] (2 (2a+2 (-a+B) +51) B'[r] +r AB”[r]))) ~rB[r]? (-2 (B+22) =[r] B'[r] +
r(rAf[r] (Y[r] B [r] +28[r]) +6[r] (2 (B+3X) £[r] +xAf’[r])) +£[r] (2 (B+22)6[x] +x (2 (B+3X) & [r]+rA (B [r] ¥ [r]+6"[r])))) +

)

B[r]3 (-4 (B+2A) 2[r]+r (-2 (B+2A) 2 [r]+xry[r] ((B+4x) £ [r]+rAf’[r])+r (2rAf [r] ¢ [r] +£[r] ((B+4A) Y [r] +r)u/1”[r]))))))
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_mur’ (~a+B+A)B[r] (-n[r] +B[r] x[r]) A [r]?+
A[r]? (4T A2[r] B [r] -2B[r] (Z[r] (-2 (B+A) +2r° (2a+3 (-a+B) +3A) £[r]A'[r]?) +rA(ré(r] +2x[r]) B [r]) +
2B[r]? (2r (B+2A) 6[r] +2x[r] (-B-A+T? (2a+7 (-a+B) +A) £[r] A'[r]?) +r? X6 [r]) -rB[r]® (2 (B+A) ¥[r] +T Ay [r])) +
2ra(r]® f[r)] (r(—oz+/3+A)B[r]3f[r]d/[r]A'[r]—2r(4a+3(—a+B)+3)\)f[r]2[r]A'[r] B'[r] -2r (-a+B+A)Blr]?x[r] A [r] £ [r] +
2 (40+3 (-a+B) +32) B[r] Z[r] (ra’[r] £[r] +£[r] (2A'[r] +TA"[r]))) +
rAlr] (r (a-B+32)B[r]® Yy[r] A [r] -2r (—-a+B+A) X[r] A [r] B'[r] +2 (~a+B+A) B[r] (rx[r] A [r] B [r] +x3[r] (2A'[r] +T A" [r])) -
2B[r]? (r(a-B+32) 8[r] A [r] + (-a+B+2A) x[r] (2A[r] +rAa”[r]))) +rA[r]’ £[r]® (r (a-B+32) B[r]® £[r] ¥[r] A'[r] -
2r (-a+B+A) £[r] Z[r] A [r] B [r] +2 (-a+B+A)B[r] (2rx[r]A'[r] £ [r] + £f[r] (-rx[r] A’ [r] B [r] +2Z[r] (2A'[r] +TrA"[r]))) +
2B[r]? (2r (-a+B+A) x[r] A [r] £[r] +f[r] (£ (a-B+31) S[r] A [r] + (—a+B+A) x[r] (2A"[r] +rA"[r])))) +
4rafr]® (r(2a+2 (-a+B) + ) B[r]® £[r] ¢[r] A'[r] - 21 (B+2A) £[r] 2[r] A [r] B'[r] +
B(r] (r (a+B+A) S[r] A [r] £[r] +£f[r] (r (2a+3 (-a+B) +A) x[r] A [r] B [r] +2 (B+A) =[r] (2A'[r] +T A" [r]))) -
Blr)? (r (a+B+A) x[r] A [r] £[r] + £[r] (r (4a+5 (-a+B) +3A) S[r] A [r] +x[r] (2 (-a+B+A) A [r] +T (2a+3 (-a+pB) +A) A”[r])))) +
4rafr]’ £{r]? (r (2a+2 (-a+B) +A) Blr]* £[r] y[r] A'[r] -2r (B+2) £[r] [r] A'[r] B'[r] +
Blr] (r (2a+3 (~a+B) +31) S[r]A [r] £[r] +£[r] (- (2a+3 (~a+B) +A) x[r] A [r] B'[r] +2 (B+A) =[r] (2A'[r] +TA”[r]))) +
B[r]® (r (2a+9 (-a+B) +A) x[r] A'[r] £[r] +£[r] (r (4a+5 (-o+B) +3X) S[r] A [r] +x[r] (2 (-a+B+A) A[r] +T (2a+3 (-a+B) +A) A" [r])))) +
A[r]* £[r]® (-2r2([r] B'[r] (2QA£[r] +r (-a+B+2) £[r]) +rB[r]’ (r (a-B+32) ¥[r] £[r] +£[r] (2 (B+A) ¥[r] +T 1Y [r])) -
2B[r] (£[r] (2 (B+A) Z[r] +rxA(ré[r] +2x[r])B'[r]) +r (-a+B+A) (rx[r] B [r] £[r]-2[r] (2€[r]+xf [r]))) +
2B[r]? (£[r] (2r (B+2) 6[r] -2 (B+A) x[r] +r? A& [r]) +x (r (a-B+32) 6[r] £[r] + (~a+B+A) x[r] (2 [r] +r£7[r])))) -
A[r]* (8 (B+22) B[r]* x[r] +2r2(r] B'[r] (-4Xf[r] +T (a+B+2) £[r]) +B[r]®
(-8 (B+22) B[r] +x (r (@+B+5X) ¥[r] £[r] +£[r] (4 (2a+2 (~a+B) +2) ¥[r] +2r (2a+2 (-a+B) +32) ¥ [r]))) +2B[r] (2r° (4a+3 (-a+B) +32)
£(r]?2[r] A'[r]* -4 £[r] ((B+2A) B[r] -1 (r (B+2) 6[r] -Bx[r]) B'[r]) -x (a+B+2) (rx[r] B [r] £[r] +2[r] (2€ [r] +T £ [r]))) -2B[r]?
(-22® (a+B+2) £[r)? x[r] A [r])? + 4 £[r] (2x (B+2) 6[r] -Bx[r] +r? (B+A) & [r]) +x (r (a+B+32) 6[r] £[r] - (a+B+A) x[r] (2 [r] +r£"[r])))) +
A[r])® £(r] (—8 (B+22) Blr]* £[r] x[r] -2rf[r] 2[r] B [r] (4Xf[r] +r (20+3 (-a+B) +32) £[r]) +
Blr]® £[r] (-8 (B+2) 2[r] +x (r (L0a+9 (-~a+B) +9A) Y[r] £[r] +£[r] (4 (2a+2 (~a+B) +A) Y[r] +2r (2a+2 (-a+B) +3) ¥ [r]))) -2B[r] £[r]
(4f[r] ((B+A)Z[r]+r(r (B+A)S[r] -Bx[r])B[r])+r(r(2a+5 (-a+B) +A) x[r] B [r] £[r] - (2a+3 (~a+B) +32) 2[r] (2f'[r] +r£'[r]))) +
2B[r]? (4% (-a+B) x[x] £ [r]? +4£[r]? (2r (B+2) 8[r] -Bx[r] +T? (B+A) & [x]) +
T£[r] (r (10a+11 (-a+B) +9X) &[] £[r] +x[r] (2 (-3a+B+A) £[r]+r (2a+5 (-a+B) +2) £7[x])))) -
A[r]®f[r] (16 (B+22) B[r]*x[r] -’ (~a+B+A) B[r]® y[r] £ [r] +2r’ (4o +3 (-a+f) +32) =[r] B'[r] £[r] +
2rB[r] (2r(a+ﬁ+)t) flr]?s[r] A [r]?-r (-3 (-a+B) +A) x[r] B [r] £[r] +

S8 =

2£[r] B'[r] (r(4+3X)6[r] -2 ((2a+2 (-a+B) +A) x[r] -2r (-1+B) X'[r])) - (4a+3 (-a+B) +3 1) 2[r] (2£ [r] +r £ [r])) +
2B[r)? (227 3a-B+2) £[r]? x[r] A [r]? +x (r (-16+4a+3 (-a+B) -92) 6[r] £[r] -16x (-1+B) £[r] X' [r] +
Xx[r] (2 (3a+B+A) £[r] +x (-3 (-a+B) +A) £[r])) -2£[x] (6r (B+2) 6[r] -2 (B-A) x[r] +r? ((4+32) &8 [r] +4 (-1+B) x"1x1)))))

9 r(-a+B-52) B[r] A" [r]? . 2 (r (a+B+2)B[r] £[r] A'[r]?+ (B+22) B'[r]) .
16 r*B[r]? A[r]t A[r)?
2r (a+B+2A) B[r] A'[r] £ [r] 28 (2] (2 (248+22) £[r] + 2 (24 2) £[2]} + -2rAA[r] B'[r] +2B[r] (2 (8+22) A'[r] +TAA"[r])
A[r] A[r]?
2A[r] £(r] (-xAf[r] A [r] B'[r] +B[r] (r (a-B+3A) A [r] £[r] +£[r] (2 (B+2A) A [r] +TAA"[r]))) +
Br] (-r (a-B+A) £[r]? A [r]®+4 (2+B+22) £[r] +21 (2+21) £'[r]) +

2r (-2[r] +B[r] x[r])

A[r]? (2 (B+22) £[r]®B'[r] - (a-B+A) B[r] £[r]*-2£[r] (-rAB'[r] £[r] +B[r] (2 (B+22) £[r] +rA£ [r])))]|-

4B[r] (r (3rB[r]2d/[r] f'lr] -2 (22[r] +rx[r] B [r]) £ [r] +B[r] (-4ré[r] £[r] +4x(r]) £f[r]+4rf [r]x [r]+2rx([r] f"[r])) -

2£(r] (22(x) +x (B'[r] (-xS[r] +2x[r] +rx'[r]) +B[r]? (y[r]) -T¥ [r]) +T B[] (&[] -X"[z])))) + (6% (-a+B+2) B[r] (-2[r] +B[r] x[r])

Alx]*
A'[r]® -A[r]® (-4rAs[r] B [r] +2B[r] (22[r] (A+1® (4a+3 (-a+B) +32) £[r] A [r]?) +x (r (2a+2 (-a+B) +A) 8[r] +2Ax[r]) B'[r]) +
2B[r)? (-2r (B+2) 6[r] +2x[r] (-2+x? (4a+3 (-o+B) +3A) £[r] A [r]?) -r? (2a+2 (-a+B) +A) & [r]) +
rBr]® (2(B+A) ¥lr]+r (2a+2 (-a+B) +A) ¥ [r])) +TA[r]® £[r]
(r(—a+/3+)\)B[r]3U1[r]A'[r] -2r (4a+3 (-a+B) +32) Z[r]A[r]B[r]+2 (4a+3 (-a+B) +3A)B[r] (-rx[r]A [r] B [r] +3[r] (2A'[r] +r A" [r])) -
2 (4a+3 (-o+B) +31) B[r]® (ré[r] A [r] -x[r] (2A°[r] +TA"[r]))) +rA[r] (r (6a+7 (-a+B) +3A) B[r]® y[r] A'[r] -
2r (-a+B+A) S[r] A [r] B'[r] +2B[r] (r (-a+B+A) x[r] A[r] B'[r] +3[r] (2 (-a+B+3A) A [r] +r (-a+B+2A) A" [r])) -
2B[r])? (r(6a+7 (-o+B) +321) S[r] A [r] +x[r] (2 (-a+B+3A) A[r] +T (~a+B+A)A"[r]))) +rAl[r]” £[r]? (r (a-B+3 1) B[r]® £[r] ¥[r] A'[r] -
2r (-a+B+A) £[r] B[r] A [r] B'[r] +2 (-a+B+A) B[r] (2r=[r] A'[r] £ [r] + £[r] (-rx[r] A [r] B [r] +[r] (2A'[r] +TA”[r]))) +
2B[r])? (2r (-a+B+2) x[r] A'[r] £[r] + £[r] (r (@-B+3X) S[r]A[r] + (-a+B+2) x[r] (2A'[r] +TA"[r])))) +
ra[r]® f[r] (r (a+B+)B[r]® £[r] Yy[r] A [r] -2r (4a+3 (-a+B) +3X) £[r] S[r] A [r] B [r] +2B[r] (2r (a+B+A) 5[r] A [r] £ [r] +
flr] (r(-4a-5(-a+B) -5X) x[r] A [r] B'[r] +2[r] (2 (4a+3 (-a+B) +A) A [r] +r (4a+3 (-a+B) +32) A”[r]))) +2B[r]? (2r (2a+5 (~a+B) +51)



108 CHAPITRE 4. SLOWLY MOVING BLACK HOLES IN LORENTZ-VIOLATING GRAVITY

x[r] A [r] £ [r] +£f[r] (r (2a+3 (-a+B) +3A) S[r] A [r] +x[r] (2 (4a+5(—a+/3)+7)\)A'[r]+r(4a+5(—a+/3)+5)k)A”[r]))))+
A[r]® £(r]? (-2r2[r] B'[r] (2A£[r] +x (-a+B+A) £[r]) +rB[r]® (r (a-B+32) ¢[r] £r] +£[r] (2 (B+A) ¥[r] +T Ay [r])) -
2B[r] (£[r] (2 (B+A) B[r] +r A (ré[r] +2x[r]) B [r]) +r (-a+B+A) (rx[r] B [r] £[r]-=[r] (2£ [r] +x£'[r]))) +
2B[r1z(f[r] (2r(B+x\)5[r]—2(B+)\)X[r]+r2)k6’[ 1) +x(x(@-B+3X)S[r] £r] + (~a+B+A) x[r] (2£ [x] +T£"[x])))) +
A[r]® (-8 (B+2) B[r]* £r] x[r] -4T £[r] Z[r] B'[r] (A£[r] +r (B+2A) £[r]) +
B[r]af[r] (-8 (B+2A) 2[r]+xr (2r (a+B+3A) Y[r] £[r] +£[r] (2 (3a+3 (~a+B) +A) Y[r]l+r (2a+2 (-a+P) +51) ¥ [r]))) -
2B[r] (f[r]z((4a+4(—a+[3)+6A)Z[r]+r(r(2a+2(—a+6)+3)\)é[r]+6/\x[r])B'[r])+
r? (-a+fB+A) 2[r] £[r]*-2rf(r] (-r (a+2 (-a+B) +2A) x[r] B'[r] £[r] +2[r] (2BF [r] +T (B+A) £ [r]))) +
2B[r)? (£ (~o+ B+ ) x[r] £ [r]® +£[r]® (6T (B+2) 6[r] -2 (2a+2 (-a+B) +A) X[r] +T° (2a+2 (-a+B) +321) & [r]) +
2rf(r] (r (2a+2( a+B) +31) 6[r] £r] +x[r] (2 (a+2 (-a+B) +3A) £[r] +T (a+2 (-a+B) +21) £7[r])))) +
A[r]* (-8 (B+22) B[r]* x[r] -2r2(r] B'[r] (-2Af[r] +x (a+B+2) £[r]) +
B[r] (8 (B+2A) 2[r]+r(r(da+3 (-a+B) -5A) ¢y[r] £[r] -£f[r] (2 (3a+3 (-a+B) +A) Y[r] +5rAy'[r]))) +
2B[r] (-r? (4a+3 (-a+B) +3X) £[r]*Z(r] A [r]? +£[r] (2 (3a+3 (-a+B) +5X) Z[r] +rB'[r] (-3rA6[r] +2 (4a+4 (-a+B) +52) x[r] -4rBx [r])) +
r(r(-2a-3(-o+B) +A) x[r] B'[r] £[r] +2[r] (2 (a+B+3X) £[r] +r (a+B+2) £'[r]))) -2B[r]?
(£ (3a+B+2) £[r)? x[r] A [r]? +x (r (4a+3 (-o+B) -32A) 6[r] £[r] -8rBE [r] X [r] +x[r] (2 (a+B+32) £[r] +r (-2a-3 (-a+p) +A) £ [r])) -

£[r] (6T (B+A) S[r] -2 (B-2) x[x] +° (316 [x] +4Bx"[x])))))

§10 =87

Note however that not all of these components are independent, as the modified Einstein
tensor is symmetric : F* = EY#, and from this we deduce the following relations

Qs = Q1+ QZ{()) (4.91)
S, = B(r)*(=2Q40(r) — 51 + 55() -)F ]f() r)3Quy(r) — Q2f(7“)25(7")7 (4.92)
§o = B0+ 50 SNOOIQ =@+ H) = Q)
5 = BOPO(@1 = Q1) + ) Ll >) ()@= Q) = @IZE) 0
Furthermore, the generalized Bianchi identity implies that the combinations
_ Qs (A(r)*f(r) +1)
Co=—A(r)B(r)Qs — 2 2] : (4.95)
2
Cl = _56 (A(;L{T()T) + 1) , (4.96)
Co= ‘W{M“)QQ‘* (A2 f(r) +1) (B () (A2 F(r) +1) +25(r) (A2 (r) — 1))
L@ (A2 f(r) + 1)* (BOr)w(r) (A(r)2£(r) +1) +20(r) (A(r)*f(r) = 1))
B(r)
H16A(r) B(r)Sa + 8A(r)2Ss (A(r)2f (r) +1) } , (4.97)

are initial constraint equations. Indeed, they satisfy the following identities

dCo _ Q2 (4f (N A'(r) + A()* (= f () f'(r) + A(r) f'(r))
dr 4A(r)2B(r)
+ Q1 (A’( r) 1 A'(r) 2) _ Qr(A(r)?f(r) +1)

P laE 2A<r>f’<r>) +Co ( G el
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dCl__ Cl - T 7"2 T r /7" r r /7" r 7“3 T /7"
& = TACPBO(0) +rA<T>B(T>{ A(r)?B(r) f(r)A'(r) + rB(r)A'(r) + rA(r)* £(r) B'(r)

(4.98)
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dCy 4C1 A(r)?B(r)? N (1—A(r)%f(r)) SsB(r)
dr r2 (f(r)A(r)2+1) r2A(r)
4 S (f(r) (A(r)* ' (r) = 4A(r)) = A(r) f'(r)) B(r)
2f(r) (f(r)A(r)? + 1)

LG < f(A@)? | fAMAr) 2 f'(r) A'(r) )
fAr)?+1 0 f(r)Ar)?+1 r 2f(r)  f(r)A(r)* + A(r)
+

@ (fAr)? +1
32r2A(r)*B

A7) (B P () + fr)Y () B

2 (35(r) /() + 2/ (1)3'(r)) B(r) + 20 [(r)3(r) B (r) A(r)?

—47«23( J(r)*(25(r) + By () A'(r)A(r)* = 4r2B(r) f(r) (B(r)(r) — 26(r)) A'(r)
72 (BBE)BOY(r) = 20() /() + 47 () (¢ () B(r)? = 26 (r) B(r) + 25(r) B'(r) ) ) A(r)}

~—
—~

+ 16?214@@ B0 {2r2B< )F(r)P(20(r) + B(r)p(r) A (r) A(r)*

—r23<> (r)*(20(r) + <> () (MA@

= 2f(r)?A(r)* (16x(r) B(r)* + 72 (4(r) f(r) + 3f (r)v'(r)) B(r)?

—2r’ (()f r)+ f(r)o <>> (r) + 2r2f(r)5(r) B'(r))

+ 12 f()A(r)* (Br)(106(r) = 9B() () f'(r) = 8£(r) (¢ (r) B(r)? = &' (1) B(r) + 6(r)B'(r)) )
+4rZB<) FE2H(r) A (A + 202 B(r) £ (1) (B(r)i(r) — 20(r)) A'(r)

= 22A(r) (B)(B(r)(r) = 26(r) f(r) + f(r) (¢/(r) B(r)? = 25 (1) B(r) + 26(r) B'(r)) ) }

CO 2 3 / 3
+ A BOTT G ){47« B(r) f(r)*(26(r) + B(r)u(r)) A'(r) A(r)

+4r2B(r) f(r)2(26(r) + B(r)e(r)) A'(r) A(r)

+ 12 f(r)2Ar)* (3B(r)(26(r) + B(r)$(n)f'(r) + F(r) (20 () B(r)? + 45/ (r) B(r) — 45(r) B'(r)) )
— 4f (A2 (Sx(r)B(r)* + 2B(r)? (r* () /(1) + f(r)¢/ (1)) — 4(r))

=2 (30() f'(r) + 2 (1)3' (1)) B(r) + 2r2f(r)3(r) B'(r))

+7 (=3B( r) = 20(r) f'(r) = 2f(r) (¥ () B(r)? _25/(T>B(T)+25(T)B/(r)>)}
(fMA@r)?* +1) S (F(r)A(r)* +1) pl(r)f'(r)
rA(r) 4A(r) f(r) 7

(4.99)



4.A EXPLICIT FORM OF THE FIELD EQUATIONS 111

which are constraint evolution equations.
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4.B Regularity of the potentials at the metric horizon

The Ricci tensor R, can be contracted twice with the killing vector k* = (0,)*, that is,
its time-time component Ry, must be an invariant. Its O(v) part can be expressed in term
of the first order potentials as

jgve :4T2J£é7;)74)3 (=277 (B (r) (2u(r) () + £ (7))

+ B (r(Bro) /() + Fr) (4 () + Trf (1) (r) + 8e(r) f/(r)) - (4:100)
+2£(r)? (r(r) +20/(r)) ) =4S () (1)) — 4B(r)* F(r) o (r) ) -

Near the metric horizon, for « = 28 =1/100 and A = 1/10, Ry becomes

R"VH ~ 2(0.0949)(x) — 0.062%(x)) + O(z?), (4.101)

COS

where x = r—ry, r, being the metric horizon, and where we neglected terms of order O(x2). If
we want Ryy to remain finite as we approach x = 0, then the difference 0.14¢(z) — 0.32%(z)
can diverge at most as 1/x. More precisely, by setting Ry, = a1 + bz + O(22) for some
ai, b1 € R, we get

S(z) = L5p(x) + 2L + by, (4.102)
x
for some real numbers aj,b; € R. Similarly, the O(v) part of the Ricci scalar R is given by

ci@ :2r31;(7~)3 (= 2rf(B'() (r? W) F (1) + fr)w' () = 43(r)) +

B(r) (rf'(r) (3r%0(r) f'(r) — 83(r))

(4.103)
+ £) [ (TP )0 () + 200 (r) (rf () + 2 (1)) = 85 (7)) — 8(1)]
+ 22 f(r)? (1 (r) + 204 (1)) ) = 4rB(r)* F(r)(r)) -
Near the metric horizon R becomes
5~ = 0.55(x) + 0.49(2) + o[Y(@) + 0.75() + 1.2¢/ (2) = ¥'(2) + | + O(a?)
cos (4.104)

= (8 — 12) ay + (8 — 12z)by + (0.11z — 0.4)¢(z) — 0.25z () + O(z?),

x
where we have used in the second line the relation between ¥(x) and ¢ (x) given by (4.102).

In order to keep R finite, that is, R ~ ay + bax for some real numbers ag, b € R, ¢(z) must
be of the form

60.550

P(x) = W((152@1+13a2+102b1)F(1.5,:U/2)+47a1f(0.572x)+330b1F(2,:c/2)—|—28b2F(2,x/2)+01) )
(4.105)
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where I'(z,y) is the incomplete gamma function and ¢; is some integration constant. The
same analysis shows that the O(v) part of R,sR*” is given by

RopR 1
cosd 2r5B(r)b

+rf(r) (rPe(n) f () = 25(r )) + 22 f(r) 2 (r))
+2rB< > F@)B' () (rp(r) (rf' () +2£(r)) = 4%(r))
—rB(r)B'(r) [ f'( r>2<3r2w<> '(r) = 43(r)) + £ (r)? (" (r) + /(1))
+rf(r >( () (72 F () () + 4 () (rf(r) + 3f/(r) = 4%/(1))
—AB(r)(rf"(r) + 8'(r)))
+21(r)? (r (7 (r /()9 () + 1) (r" () + 109/ (1))
+2r(r) (rf"(r) + f/(r)) = 125(r) = 125(r)
+ B2 [r2f/(r) (3r26() £ (r) (rf" () + 2f' (1)) = 45(r) (rf(r) + 4f (1))
+rf ) (r(= 4 ) () + 1402 F (02 () + £ () (70 ()9 () = 165 (1))
+20(r) (P27 ()2 4 4L (1) + 30 S (1) (1)) )
= 24%(r)f'(r)) + 42 £ (1) ()
+2£(r)? (r (r )" () + 72 £ (1) (1) + 2% £/ (1) () + 42 () (7)
+2rp(r) f'(r) — 45 (r) — 85(r)]
= 2B(r)* (—4rS(r) f(r) + £(r) (r (ro(r) (rf"(r) + 6£(r)) — 45 (1) — 85(r))

+2rf(r)* (ry/(r) + wm)} :

{2r2f<r>B'<r>2(f<r> (727(r) (r' () + 20(r)) = 125(r) ) + 4rB(r)° £ (1) (1)

(4.106)
Near the metric horizon this expression in turns becomes

R,sR*"
COS

~ 0.0007E(m)—0.0002¢(x)+$(0.0031!1(93)—0.0042(1’)4—0.0012’(95)—0.00071/)'($))+O(m2) .
(4.107)

In order to keep RaﬂRo‘ﬁ finite as we approach x = 0, that is, setting RagRo‘ﬂ = a3 + bzx

for some as, b € R, then ¥ must be of the form

62.615

P(x) = W((280,1—45(Ja2—4.81;1)F(0.6, 2.62)+12a1T(—0.4, 2.62)+11b,1'(1.6, 2.62)— 170b,1'(1.6, 2.6x)+c2) ,
0

(4.108)
for some constant cp (we have again made use of (4.102) to express X(x) in terms of ¢(x)).
However the two conditions (4.105) and (4.108) are both satisfied only if 1(z) is finite as
x goes to zero, that is, if we set co = ¢1 = a; = 0.
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In fact, from equation (4.108) it follows that a; must be set to zero, so that (4.108) would
yield a real-valued function. In any case, the set of functions

60.533 60.51‘ 60.5$ 60.51‘

being linearly independent from the set

2.6x 2.6x

62.650 62.690 e e

then one must set each of the coefficients to zero. We therefore conclude that 0, and conse-
quently ¥, must be regular at the metric horizon.

In a similar fashion, the O(v) piece of the Ricci tensor contracted with the Killing vector
k* = (0y)* and the sether vector u#, near the metric horizon takes the form

Ry kPu? ~0.000015(x) — 0.04%(2) + 0.061) ()
+2(0.046(x) — 0.09¢(z) + 0.03%(x) (4.111)

+0.000019 () — 0.04% () — 0.04X'(z) + 0.2¢/(x) ) + O(a?),

from which we deduce that § must be regular at the metric horizon given that we already
proved that both ¢ and 3 are regular there. Finally, the O(v) piece of the Ricci tensor
contracted twice with the sether vector u*, near the metric horizon takes the form

Ryutu? ~0.066(x) + 0.05%" (z) — 0.1%(x) — 0.06X'(z) 4+ 0.2¢(x)
+2( = 0.048(x) — 0.5¢(x) + 0.35() + 0.065(x) + 0.04X (x) (4.112)

+0.7¢/ (2) — 035 () + 0.05%"(z) — 0.06Y" (x) ) + O(a?),

from which we deduce the regularity of X’ near the metric horizon, and therefore that of x
there.



5 — Open issues and conclusions

The aim of this thesis was to study the effect of Lorentz violations on the emission
of the gravitational waves produced by binary black holes. More precisely, in chapter 2
we have presented two different phenomenological frameworks, namely khronometric theory
and Einstein-sether theory, where Lorentz violations were introduced via a new gravitational
field. Various aspects and constraints were presented in that chapter, and in particular we
have reviewed the static spherically symmetric black hole solutions ( [127, 133]) in section 2.6.

The main results of this thesis were presented in chapter 4. In sections 3.1 and 3.2 we
have shown that the coupling of the Lorentz violating field to the metric induces a violation
of the strong equivalence principle and the universality of free-fall. We have also shown that
this can be quantified by new parameters within a point-particle approximation, the sen-
sitivities. The great physical importance of the sensitivities was highlighted in section 3.4,
were we have shown that the new dynamics leads to a modification of the gravitational wave
flux, and in particular to the appearance of dipolar radiation proportional to the sensitivi-
ties squared, which could dominate over the quadrupolar flux if the sensitivities do not vanish.

Following the extraction procedure discussed in section 3.3, where we have shown that
the sensitivities can be computed from the asymptotic metric of a single compact object
moving slowly with respect to the Lorentz violating field, in section 4.1 we have begun the
study of slowly moving black holes. This study has revealed some interesting phenomenology.
First, we have found in section 4.2.6 that slowly moving black holes are inherently singular
in most of the parameter space of the theory (where a # 0 and 3 # 0). More precisely, we
have found that either slowly moving black holes are singular at the spin-0 horizon or they
can be made regular at the spin-0 horizon by exploiting a symmetry in the action. However,
we have seen in sections 4.2.6.c) and 4.2.6.d) that regularity can only be achieved at the
high cost of losing asymptotic flatness, and even then black holes are inevitably singular at
the universal horizon. Consequently, a = 5 = 0 is the only region in parameter space where
we can have slowly moving black holes that are regular throughout the whole space time,
without curvature singularities. As discussed in section 4.3, this region is special since the
speed of the spin-0 modes goes to infinity as o and £ go to zero, and from this it follows
that the spin-0 horizon merges the universal horizon.

Black holes in this region are simpler because their spin-0 horizon coincides with the uni-
versal horizon. We have found that, up to O(v?) corrections, slowly moving black holes are
regular everywhere, as discussed in section 4.3. Indeed, at O(v?) we have found that their
metric is a Schwarzschild one, although the khronon field still presents a non trivial profile.
From this slowly moving black hole solution, we have found that the sensitivity vanishes, re-
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gardless of the value of A, in agreement with the fact that the metric is the same as in general
relativity. This result is of great importance, as it implies that binary black holes in the only
non pathological region of the parameter space of the theory do not emit dipole radiation
as expected. Indeed, this is a very surprising result, because in khronometric theory there is
no symmetry preventing the emission of dipolar radiation, in contrast to general relativity
where the conservation of momentum protects the dipole moment from radiating.

We have motivated the physical meaning of the sensitivities via the strong equivalence prin-
ciple and its violations. Let us consider again one the arguments that we have given in section
3.1. We want to describe the motion of a binary system in their inspiral phase, when the
typical binary distance d is much larger than the sizes of the bodies, and we can define a set
of disjoint volumes V,, covering the a-the body. Let us suppose that we can cover a suffi-
ciently large region of spacetime using harmonics coordinates, and let us write the modified
FEinstein equations in the relaxed form

Or%? = 167G(r%° +127), 0.0 =0, (5.1)
apf
h

where 7" = ﬁ(—g)Tfhﬁ . These equations imply the “conservation law”

Bt + 0,727 = 0. (5.2)

In the same way as we did in section 3.1, we can define the a-the body’s position Z, as such
that the dipole moment

Dl = / Py y' 70, Za(t) + 7)), (5.3)
is a constant. Deriving this relation with respect to time gives us
0=0yD! = / Py y" (9™ + v19,;7%)
= [ o — ool — oyl o | @ty (o,7) - o7™)
= — /V d3y {3]'[927‘]0 + y’Tﬁh] — 700y yZOOTkh + vl / ds; ' 700 _ / d3y 5Z 00
= /dS yTJO—I-/ d3yT’O—|—UJ/ dSJyT —1)/d3y(5Z 00

—/S ds; y' ﬁ}?+/ d3 Tkh_yZaOTkh)7
(5.4)

where we used the conservation law (5.2) and Gauss’ theorem. We can rewrite this equation
in a more compact form using the effective four-momentum P# and a boundary term, Q¢
defined in equation (3.11).

0=P-viP) - @+ [ dy(nh —varld) - [ as; v, (55)
Va
Taking one more time derivative leads us to the equation of motion

dvl, dPi dPY dQi  d
PO — a 1 a a -~ / 3 a0 / i_j0 )
e dt at el dt dt + dt Jy, d (Tkh aOTkh dat dS; y'riy,  (5.6)
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which generalizes the geodesic equation for a body in khronometric theory. In general re-
lativity, all the right-hand side terms are defined in terms of surface integrals, and can be
simplified using Riemann normal coordinates. In khronometric theory, however, some of the
surface integrals depend on Tff , introducing thus a dependence on the relative velocity bet-
ween the falling frame and the khronon field. Moreover, we also find volume integrals which
introduce a dependence on the fields at the interior of V,. How can, under these general
considerations, the movement of a black hole not depend on its relative motion with respect
to the environing khronon field ? To answer this question we can express expand Tl?hﬁ in the
relative velocity v, and use the results obtained in the previous chapter. In fact, we can easily
show that, in the region where « = g =0, T; kahﬁ depends exclusively on the sether’s divergence
V ut. Using the solution that we have found in section 4.3 we obtain that V ,u# vanishes up
to order O(v?). In turn, this implies that Tfhﬁ and the surface and volume integrals appearing
in equation (5.6) vanish up to order O(v?), in agreement with the vanishing of the sensitivity
g.

We have seen in section 2.5 that, on the one hand, solar system experiments [10, 122, 124]
constraint the parameters a and 3 to satisfy | — 23| = 0 to within one part in 107. On the
other hand, the multi-messenger observation of GW170817 [23, 28] bounds 3 to vanish up to
one part in 10, otherwise the propagation speed of gravitational waves would significantly
differ from that of light, in contradiction to the simultaneous arrival of the electromagnetic
and gravitational signals from GW170817. Together, these experimental results bound « and
B to satisfy |a] <1077 and || < 10715, The final shape of the parameter space, all bounds
taken into account, corresponds to the segment 0 < A < 0, 1, as is shown in figure 5.1, where
the parameter space is projected into the 5 — A plane.
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FIGURE 5.1 — Projection of the «, 8, A parameter space into the 5 — A plane. The light-blue
shaded region corresponds to the allowed parameter space after imposing stability /Cherenkov
considerations, the orange region to Big-Bang nucleosynthesis bounds, and the purple region
to binary pulsar constraints. The current allowed parameter space is a one-dimensional set,
which in this figure corresponds to the red line, i.e., to 8 = 0. Notice also that, due to BBN
bounds, that line is restricted to the interval 0 < A < 0, 1. Figure adapted from [129].

In retrospective, the fact that LIGO-VIRGO found gravitational waves that propagate
at the speed of light should not be surprising at all, as the spin-2 modes propagate at the
same speed as the photon for @« = 8 = 0. Indeed, under the light of the results of this work
it is clear that one would have reached the conclusion that o = § = 0 was a special region
even without these experimental constraints.

Altogether, a = 8 = 0 is favored by empirical observations and by the aforementioned
theoretical remarks. This leaves only one free parameter left for khronometric theory, namely
A. Pulsar constraints bound this parameter to be no more than 0.1, i.e., |A\| < 0.1 [129].
However, from the theoretical standpoint we have not been able to give further bounds to
this coupling coefficient. Indeed, we have found that there is no dipole radiation at order
O(v?) in the relative motion between the black-holes and the khronon-field.

These results are of importance in the interpretation of Lorentz violations in gravity,
particularly with upcoming missions such as LISA, as it tell us that dipolar emission is not
present even when Lorentz symmetry is explicitly violated in the gravitational sector. There-
fore, more studies are required in order to find the leading-order (if any) modifications to the
GR gravitational wave fluxes produced by Lorentz violations. In particular, the derivative of
the sensitivity with respect to the black hole velocity still could be non-zero in khronometric
theory, in which case there would be a modification to the quadrupole formula of general
relativity. Furthermore, this study does not consider slowly moving black holes in Einstein-
sether theory, where it could still be possible to find ¢ # 0 and therefore a non-vanishing
dipole contribution to the gravitational wave flux. Thus a natural path to extend the studies
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of this thesis consist of testing both the regularity of black holes outside the available region
of Finstein-zether theory, but more importantly to check whether the sensitivity vanishes for
its allowed parameter space.
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A — Appendix : academic paper

Finally, we here present the latest version of the academic paper where the research work
highlighted in this thesis is resumed, to be published soon.
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Hotava gravity breaks Lorentz symmetry by introducing a preferred spacetime foliation, which is
defined by a timelike dynamical scalar field, the khronon. The presence of this preferred foliation
makes black hole solutions more complicated than in General Relativity, with the appearance of
multiple distinct event horizons: a matter horizon for light/matter fields; a spin-0 horizon for the
scalar excitations of the khronon; a spin-2 horizon for tensorial gravitational waves; and even, at
least in spherical symmetry, a universal horizon for instantaneously propagating modes appearing in
the ultraviolet. We study how black hole solutions in Hofava gravity change when the black hole is
allowed to move with low velocity relative to the preferred foliation. These slowly moving solutions
are a crucial ingredient to compute black hole “sensitivities” and predict gravitational wave emission
(and particularly dipolar radiation) from the inspiral of binary black hole systems. We find that
for generic values of the theory’s three dimensionless coupling constants, slowly moving black holes
present curvature singularities at the universal horizon. Singularities at the spin-0 horizon also
arise unless one waives the requirement of asymptotic flatness at spatial infinity. Nevertheless, we
have verified that at least in a one-dimensional subset of the (three-dimensional) parameter space
of the theory’s coupling constants, slowly moving black holes are regular everywhere, even though
they coincide with the general relativistic ones (thus implying in particular the absence of dipolar
gravitational radiation). Remarkably, this subset of the parameter space essentially coincides with

the one selected by the recent constraints from GW170817 and by solar system tests.

I. INTRODUCTION

Lorentz symmetry is believed to be a fundamental sym-
metry of Nature, and has been tested with high precision
in a variety of settings. Indeed, violations of Lorentz
symmetry are tightly constrained in the matter sector
through particle physics experiments, and parametrized
models such as the Standard Model Extension [1-3] ef-
ficiently bound such violations in the interaction sector
between gravity and matter. Nevertheless, constraints in
the gravitational sector (i.e. from purely gravitational
systems) are much less compelling. Since Lorentz sym-
metry is a cornerstone of our current understanding of
fundamental physics, it is worth exploring ways to im-
prove these purely gravitational constraints. One may
argue that the absence of Lorentz violations (LVs) in
the matter and matter/gravity sectors probably points
to small LVs in the purely gravitational sector, but that
is not necessarily the case. Indeed, mechanisms allowing
large LVs in gravity to co-exist with small LVs in matter
have been put forward, and include e.g. the emergence of
Lorentz symmetry at low energies as a result of renormal-
ization group running [4-6] or accidental symmetries [7],
or the suppression of the percolation of LVs from gravity
to matter via a large energy scale [8].

In order to bound LVs in gravity, one has to set up a
suitable phenomenological framework. In this paper we
will focus not on LVs tout court, but rather on violations
of boost symmetry (see e.g. [9] for violations of spatial
rotation symmetry in gravity). A generic way to break
boost symmetry is to introduce a dynamical timelike vec-
tor field (the eether) defining a preferred time direction at
each spacetime event. Restricting the action to be covari-

ant and quadratic in the first derivatives of the sether, one
obtains Einstein-Ather theory [10], which has been ex-
tensively used as a theoretical framework to understand
how LVs may appear in gravitational experiments, so as
to constrain them. If one further requires that the sether
field not only defines a local preferred time direction, but
also a preferred spacetime foliation, one ends up with a
different Lorentz violating theory, khronometric gravity
[11] . The action for this theory is the same as that of
Einstein-Ather theory (which is indeed the most generic
action one can write at quadratic order in the deriva-
tives), but the ather field is constrained to be hypersur-
face orthogonal, i.e. parallel to the gradient of a timelike
scalar field (the khronon) defining the preferred space-
time foliation.

Besides being interesting as a theoretical framework
to effectively describe LVs in gravity at low energies,
khronometric theory gains further interest from coincid-
ing with the low energy limit of Hofava gravity [12, 13].
The latter is a theory of gravity that is power count-
ing [12, 13] and also perturbatively renormalizable [14],
thanks to the presence of an anisotropic scaling (Lifschitz
scaling) between the time and spatial coordinates. Since
this anisotropic scaling clearly breaks boost symmetry,
Lorentz (and specifically boost) violations are crucial for
the improved ultraviolet (UV) behavior of this theory.

Among the places where LVs play a major role is
the structure of black holes (BHs). Indeed, in both
Einstein-Ather and khronometric/Hofava gravity there
exist additional graviton polarizations besides the spin-
2 gravitons of General Relativity (GR). In more detail,
the aether vector of Einstein-Ather theory can be de-
composed into spin-1 and spin-0 degrees of freedom [15],



while the Lorentz violating khronon scalar of khronomet-
ric/Hofava gravity gives rise to a spin-0 polarization [16].
These additional graviton polarizations propagate with
speed that is generally different from the speed of the
spin-2 modes, which in turn does not necessarily match
the speed of light.! As a result, BHs have multiple hori-
zons, a matter horizon for light and other matter fields; a
spin-2 horizon for tensor GWs; a spin-0 horizon for scalar
modes; and a spin-1 horizons for the vector modes, if they
are present. Moreover, at least in spherically symmet-
ric, static and asymptotically flat configurations, BHs
also possess a universal horizon for modes of arbitary
speed [19, 20] . Modes with propagation speed diverging
in the UV do indeed appear in Hofava gravity when one
moves away from its low energy limit (i.e. from khrono-
metric gravity).

The regularity of these multiple event horizons has long
proven a thorny issue in these theories. Already in spher-
ical symmetry, there exists a one parameter family of BH
solutions (parametrized by the mass, as in GR), but also
a two parameter family of solutions (parametrized by the
mass and a “hair” charge) that are singular at the spin-0
horizon [19, 21] . Numerical simulations seem to sug-
gest that this second family of BHs is never produced in
gravitational collapse [22], but regularity becomes even
more of an issue when one moves away from spherical
symmetry. For instance, while slowly rotating BHs in
khronometric theory pose no particular problem [23, 24]
, ones in Einstein-ather theory present no universal hori-
zon [25] . Moreover, they are singular at all but the out-
ermost spin-1 horizon in regions of the parameter space
of the theory’s couplings where multiple spin-1 horizons
exist [25].There are also suggestions that the universal
horizon found in static spherically symmetric BHs may
be non-linearly unstable, at least in the eikonal (i.e. small
wavelength) limit and in Hofava gravity, thus forming a
finite-area curvature singularity [20]. This may be re-
lated to the universal horizon being a Cauchy horizon in
Hotrava gravity [26].

To further investigate the stability and regularity of
BH horizons in boost-violating gravity, we focus here on
non-spinning BHs moving slowly relative to the preferred
foliation in khronometric theory. This is a highly rele-
vant physical configuration for understanding GW emis-
sion from binary systems including at least one BH. A
generic feature of gravitational theories extending GR is
the possible presence of dipolar gravitational radiation
from quasicircular binary systems of compact objects,
e.g. neutron stars [27-33] or BHs [34]. This is experimen-

INote that the GW170817 coincident detection of a neutron star
merger in gravitational waves (GWs) and gamma rays constrains
the speed of the spin-2 mode to match almost exactly the speed
of light. However, even if one includes this constraint, Lorentz
violating gravity remains viable [17] , and in particular the speed
of the spin-0 mode can be very different from the speed of light [18] .
‘We will examine in detail the experimental bounds on khronometric
theory, including those from GW170817, in Sec. II.

tally very important because dipolar emission appears
at -1PN order, i.e. it is enhanced by a factor (v/c)~2
(with v being the binary’s relative velocity) compared to
the usual quadrupolar emission of GR2. As such, dipo-
lar emission may in principle dominate the evolution of
binary systems at large separations, a prediction that
can be tested against binary pulsars data or the latest
LIGO/Virgo detections .

In Einstein-Ather and khronometric/Horava gravity,
dipolar emission from systems of two neutron stars was
studied and compared to binary pulsar observations in
Ref. [27]. Ref. [27] also laid out the theoretical frame-
work to compute dipolar gravitational emission in these
theories, showing that the effect is proportional (as in
Fierz-Jordan-Brans-Dicke theory [28, 29, 33, 36-38]) to
the square of the difference of the “sensitivities” of the
two binary components. Ref. [27] then went on to extract
the sensitivities of neutron stars from solutions of isolated
stars in slow motion relative to the sether/khronon. In
this paper, we will follow the same program for BHs in
Hotava gravity, extracting their sensitivities from slowly
moving solutions and drawing the implications for dipo-
lar GW emission.

A. Executive summary, layout and conventions

The calculation of BH sensitivities turns out to be
much more complicated than for neutron stars, due to
the presence of multiple BH horizons and their tendency
to become singular. Our main findings and conclusions
can be summarized as follows:

e For generic values of the three dimensionless cou-
pling constants «, (8, A of khronometric theory,
BHs slowly moving relative to the preferred fo-
liation present finite area curvature singularities.
In more detail, if one imposes that the solution is
asymptotically flat and regular at the matter hori-
zon (which turns out to be the outermost one once
experimental constraints on the theory’s couplings
are accounted for), a curvature singularity neces-
sarily arises further in, at the spin-0 horizon. Giv-
ing up the requirement of asymptotic flatness al-
lows one to obtain solutions that are regular at the
spin-0 and matter horizons, but not further in, at
the universal horizon, which becomes a finite-area
curvature singularity.

e If the coupling parameters of the theory are such
that the speed of the spin-2 modes exactly matches
that of light and the predictions of the theory in

2The post-Newtonian (PN) expansion [35] is one in v/c, v being
the characteristic velocity of the system under consideration, with
terms of order (v/c)?" relative to the leading one being referred to
as terms of “nPN” order.



the solar system (i.e. at 1PN order) ezactly match
those of GR, one is still left with a one-dimensional
parameter space. In more detail, these conditions
set @« = B = 0 (which is quite natural since the
experimental bounds on these two parameters are
very tight, [a| < 1077 and |3| < 1071%), while A
can be as large as ~ 0.01 — 0.1 without violating
any experimental bounds. In this one-dimensional
subset of the parameter space, slowly moving BHs
are regular everywhere outside the central singular-
ity at » = 0, but coincide with the Schwarzschild
solution (because the khronon profile, albeit non-
trivial, has vanishing stress energy, i.e. the khronon
is a stealth field). Therefore, BH sensitivities are
zero and no dipolar emission is expected from sys-
tems of two BHs. This result confirms, at the
order at which we are working, the conclusion of
Refs. [39], namely that khronometric theories with
a = = 0 only have general relativistic solutions
in vacuum, if asymptotic flatness is imposed. We
therefore expect GW emission to match the gen-
eral relativistic predictions exactly even at higher
PN orders (quadrupolar emission and higher) if

a=p=0.

e Even if the finite area curvature singularities that
we find were due to the breakdown of our approxi-
mation scheme, and moving BHs turned out to exit
and be regular away from the central singularity
at 7 # 0, deviations away from the GR predic-
tions for GW emission should be expected to be
of (fractional) order O[max(c,3)] ~ 1077, since
GW generation should be exactly the same as in
GR for « = 8 = 0 even at higher PN orders.
Such small differences are unlikely to be observable
with present and future GW detectors. However,
if finite area curvature singularities exist (possibly
smoothed by UV corrections to the low energy the-
ory), they may give rise to “echos” in the post-
ringdown GW signal and/or smoking-gun features
in the stochastic GW background.

The paper is organized as follows. In Sec. II we
will briefly review Hofava/khronometric gravity and the
experimental constraints on its free parameters. In
Sec. III we review how sensitivities of generic compact
objects can be computed from slowly moving solutions,
and how they are related to strong equivalence princi-
ple violations and more specifically to dipolar gravita-
tional emission. In Sec. IV we review spherical BHs in
Horava/khronometric gravity, and introduce the ansitz
for the metric and khronon field of slowly moving BHs.
In Sec. V we write the field equations for slowly mov-
ing BHs and solve them for generic values of the cou-
pling constants, while the a = 8 = 0 case is discussed in
Sec. VI. Our conclusions are drawn in Sec. VII.

Henceforth, we will set the speed of light ¢ = 1, and
adopt a metric signature (+, —, —, —).

II. LORENTZ VIOLATING GRAVITY

In Horava gravity [13], Lorentz symmetry is violated
by introducing a dynamical scalar field T, the “khronon”,
which defines a preferred time foliation. As such, the
gradient of the khronon needs to be a timelike vector
(V,TVFT > 0 in our notation), i.e. hypersurfaces of
constant khronon (the preferred foliation) are spacelike.
Using coordinates adapted to the khronon (i.e. using T’
as the time coordinate), the action for Hofava gravity
can be written as [11, 13]

18 1+ A
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where K, 3R, and ;; are respectively the extrinsic cur-
vature, 3-dimensional Ricci scalar and 3-metric of the
T = const hypersurfaces; K = K%~,;;; N is the lapse;
a; = 0;InN; «a, f and X\ are dimensionless coupling
constants, and Latin (spatial) indices are raised /lowered
with the 3-metric v;;. The bare gravitational constant
G is related to the value measured locally (e.g. via
Cavendish experiments) by [40, 41]

G

(2)
The terms L4 and Lg, suppressed by a mass scale
M, contain respectively fourth and sixth order deriva-
tives with respect to the spatial coordinates, but no
T-derivatives. Their detailed form is not needed for
our purposes, but note that their presence is needed to
ensure power counting renormalizability of the theory.
Note that this action is not invariant under generic 4-
dimensional diffeomorphisms (exactly because it violates
Lorentz symmetry) but only under foliation-preserving
diffeomorphisms
T—T(T), o —&T). (3)
The matter fields, collectively denoted as W, are as-
sumed to couple (at the level of the action) with the 4-
metric g, alone, so as to ensure that test particles move
along geodesics and that no LVs appear in the matter
sector (i.e. in the Standard Model of particle physics),
at least at lowest order. LVs may still percolate to the
matter sector from the gravitational one, and suitable
mechanisms suppressing this effect have therefore to be
put in place in order to satisfy the tight bounds on LVs
in the Standard Model. Such mechanisms include for
instance the possibility that Lorentz invariance in the
matter sector might merely be an emergent feature at
low energies [42, 43], due e.g. to renormalization group
running [4-6] or to accidental symmetries [7]. Alterna-
tively, as pointed out in [8], the matter sector and the
gravitational sector could present different levels of LV,



provided that the interaction between them is suppressed
by a high energy-scale.

According to the precise mechanism that prevents the
aforementioned percolation of LVs from gravity to the
Standard Model, the bounds on the mass scale M, may
vary. Assuming this percolation is efficiently suppressed,
M, needs to be = 1072 eV to agree with experimen-
tal tests of Newton’s law at sub-mm scales [44, 45], and
needs to be bound from above (M, < 1016 GeV) so that
the theory is perturbative at all scales [44], which is a
necessary condition to apply the power-counting renor-
malizability arguments of [13] (see also [14]).

The effect of the higher-order terms Lo and L4 ap-
pearing in the action (1) is typically small for astrophys-
ical objects. Simple dimensional arguments show indeed
that the fractional error incurred as a result of neglect-
ing those terms when studying objects of mass M is
~ O((GNMM,)™2) = O(M3/(MDM,)?) (with Mp the
Planck mass) [27]. Therefore, given the viable range for
M,, the error is < 10718(10My/M)?. For most (astro-
physical) purposes, one can therefore neglect those terms,
even though they are crucial for power counting renor-
malizability and for the definition of BH horizons (c.f.
Refs. [46] and the discussion on universal horizons in
Sec. IV).

For these reasons, in this paper we will focus on the
low-energy limit of Hotava gravity, i.e. we will neglect
the terms Lo and Ly in eq. (1). The resulting theory is
often also referred to as khronometric theory [27]. For
our purposes it will also be convenient to re-write the
action covariantly, i.e. in a generic coordinate system
not adapted to the khronon field, in terms of an “sether”
timelike vector u* of unit norm,

9,T
VTV, T

Neglecting the Lo and L4 terms the action (1) then be-
comes

(4)
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where g, R and V are 4-dimensional quantities (the met-
ric determinant, Ricci scalar and Levi-Civita connection
respectively). Note that this action is invariant under
4-dimensional diffeomorphisms, but the theory is still
Lorentz (i.e. boost) violating due to the presence of the
timelike aether vector u*, which defines a preferred time
direction.

The field equations of khronometric theory are ob-
tained by varying the action (5) with respect to g"” and
T. Variation with respect to the metric yields the gener-
alized Einstein equations

Gy — Ty = 8nG T, (6)

where G, = Ry, — Rg,,/2 is the Einstein tensor, the

matter stress-energy tensor is defined as usual as
—2 6Smatter
V=9 6g;w ’

and the khronon stress-energy tensor is given by

T _

matter

kh —
T, =V, [J(upul/) =Py — J(;W)up] taa,ay ®)
1
+ [UU vapa - 01(12} Uy Uy + 5 Ln Gpw + 2[E(Muu) >

2
with
JPu =X (Vou?) 80+ B Vyuf + aayu?, (9)
E,=vw (VpJp” — ozapV”up) , (10)
Vo = Guv — Uy Uy - (11)

Variation with respect to T gives instead the scalar equa-
tion

JEH
v (Jerrer) =0 (12)
However, it can be shown that this equation actually fol-
lows from the generalized Einstein equations (6), from
the Bianchi identity, and from the equations of motion
of matter (which imply in particular V,Tho .. = 0).
This fact is also obvious by considering diffeomorphism
invariance of the covariant action (5), c.f. [41]. In the
following, to derive moving BH solutions, we will there-
fore solve the generalized Einstein equations (6) only.
Moreover, in the same way in which diffeomorphism
invariance implies the Bianchi identity in GR, diffeomor-
phism invariance of the covariant gravitational action
(i.e. (5) without the matter contribution Spatter) implies
the generalized Bianchi identity :

VBN = (13)
where we have defined
EM =Gy — Ty, (14)

1 ;o
= —-\/VoTV,T ). 15
k=g VTV VM< WT%T) (15)

A. Experimental constraints

The coupling parameters «, S and A of khronometric
theory need to satisfy a number of theoretical and exper-
imental constraints, which we will now review.

First, let us note that the theory has three propagat-
ing degrees of freedom, namely a spin-2 mode (with two
polarizations) like in GR, and a spin-0 mode. The prop-
agation speeds of these modes in flat spacetime are re-
spectively given by

s (a=2)(B+N)

OB -2 AN’ (162)
2 1

c5 15 (16b)



To avoid classical (gradient) instabilities and to ensure
positive energies (i.e. quantum stability, or absence of
ghosts), one needs to impose ¢ > 0 and ¢ > 0 [47, 48].
Moreover, to avoid ultra-high energy cosmic rays to decay
into these gravitational modes in a Cherenkov-like cas-
cade, the propagation speeds must satisfy ¢3 > 1—10715
and ¢3 > 1 — 10715, Gravitational wave observations
also constrain the coupling parameters and the prop-
agation speeds. Binary pulsar observations bound the
speed of the spin-2 mode to match the speed of light to
within about 0.5% [27], while the recent coincident de-
tection of GW170817 and GRB 170817A [49] constrains
—3x 10715 < g —1 < 7x 10716, Overall, all these
constraints imply in particular

18] <1071, (17)

Further bounds follow from solar system measure-
ments, and specifically from the upper bounds on the
preferred frame parameters a; and as appearing in the
parametrized PN expansion, i.e. |ai| < 107% and |ag| <
10~7 [45]. Indeed, in khronometric theory these param-
eters are functions of the coupling constants through [16]

ay = (2_7_215, (18a)
. a1 a1(1 =+ 5 + 2)\)

Taking into account the multi-messenger constraint (17),
solar system bounds thus become

4laf $107%,
142X
A

(19a)

[e%

<1077.

~

(19b)
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-

These constraints are satisfied by |a| < 1077, at least if
A 1077 or by |a| £0.25 x 107% and A =~ a/(1 — 2a).
The latter case (together with Eq. (17)) would imply
therefore very small values for the three coupling con-
stants, |a| ~ || <1075 and || < 1071%, which seem un-
likely to allow for large observable deviations away from
the general-relativistic behavior. The former case, how-
ever, while tightly constraining o and 8 (la| < 1077,
|8] < 10715), leaves \ essentially unconstrained.

Indeed, the only meaningful constraint on A comes
from cosmological observations. For khronometric the-
ory, the Friedmann equations take the same form as in
GR, but with a gravitational constant G¢ different from
the locally measured one (Gy) and related to it by

Gy _2+B+3\ 3

1+ =X 2
5 o + 5 (20)

Ge
where in the last equality we have used the aforemen-
tioned bounds on « and B. In order to correctly predict
the abundance of primordial elements during Big Bang
Nucleosynthesis (BBN), which is in turn very sensitive to
the expansion rate of the Universe and thus to G¢, one

needs to impose |Go/Gy — 1| < 1/8 [40]. This results
in 0 < XA <0.1 (note that A need to be positive to avoid
ghosts, gradient instabilities and vacuum Cherenkov ra-
diation, as discussed at the beginning of this section; c.f.
also Ref. [27]). Further constraints may come from other
cosmological observations (such as those of the large scale
structure and the cosmic microwave background - CMB),
but have not yet been worked out in detail. Ref. [50] per-
formed some work in this direction, but requiring that the
Lorentz violating field be the Dark Energy; the resulting
bounds are therefore inapplicable to our case. Similarly,
Ref. [39] constrained 0 < X < 0.01 by using CMB obser-
vations, but assume o and 3 to be exactly zero.

In summary, a viable region of the parameter space of
khronometric gravity is given by |a| <1077, |3 < 10715
and 1077 < A < 0.01 — 0.1. This is indeed the region
that we will investigate in the following.

IIT. VIOLATIONS OF THE STRONG
EQUIVALENCE PRINCIPLE

In theories of gravity beyond GR, the strong equiva-
lence principle is typically violated. Indeed, such theo-
ries generally include additional degrees of freedom be-
sides the spin-2 gravitons of GR. Even if these additional
graviton polarizations do not couple directly to matter
at the level of the action, they are typically coupled non-
minimally to the spin-2 gravitons. As a result, effec-
tive interactions between these extra gravitational de-
grees of freedom and matter re-appear in strong-gravity
regimes, mediated by the spin-2 field (i.e. by the per-
turbations of the metric). This effective coupling is re-
sponsible, in particular, for the Nordtvedt effect, i.e. the
deviation of the motion of binary of strongly gravitat-
ing objects (such as neutron stars and BHs) away from
the general-relativistic trajectories. In more detail, these
deviations from GR can appear in both the conservative
sector (where they can be though of as “fifth forces”)
as well as in the dissipative one (where they can be un-
derstood as due to the radiation reaction of the extra
graviton polarizations), and they strongly depend on the
nature of the compact objects under consideration (e.g.
whether they are neutron stars or BHs) and their proper-
ties (e.g. compactness, spin, etc). The Nordtvedt effect
has indeed been studied thoroughly in theories such as
Fierz-Jordan-Brans-Dicke and other scalar tensor theo-
ries, and at least for neutron stars also in Einstein-aether
theory and khronometric gravity. In this section, we will
review the framework necessary to extend this treatment
to the case of BHs in khronometric gravity. We refer the
reader to Ref. [27] for more details.

A. The sensitivities and their physical effect

The dynamics of a compact object binary can be de-
scribed in the PN approximation as long as the char-



acteristic velocity of the system is much lower than the
speed of light. For khronometric gravity, one has to con-
sider two velocities, the relative velocity of the binary
v12, and the velocity of the center of mass relative to
the preferred frame V. The former is < 1 in the low-
frequency inspiral phase of the binary evolution. The
latter can instead be estimated by noting that the pre-
ferred frame needs to be almost aligned with the cosmic
microwave background [51], hence Vo is comparable to
the peculiar velocity of galaxies, i.e. Vo ~ 1073,

The binary components are typically described in PN
theory as point particles. To account for the effective
coupling to matter due to the Nordtvedt effect, the point-
particle action of GR is modified, in khronometric theory,
by making the mass vary with the body’s velocity relative
to the preferred frame [52]:

Spos = [ malua)dra, (21)

where d74 is the proper time along the body’s trajectory,
Y4 = uy4 - u is the projection of the body’s four-velocity
uy on the “sether” vector u, and A = 1,2 is an index
running on the binary components. Since both v12 and
Ve are < 1, we can expand the actionin y4 —1 < 1 as

SppA = _ThA /dTA{l + UA(l - ’VA)
+ 5041 =) +0[1 = 7a)")}
(22)

where m 4 = ma(1) is the body’s mass while at rest with
respect to the khronon, and where

dlnma(ya)
op=— ———~7
dlnvya va=1 (23)
o =ga 4+ o2 +d21HmA(7A)
A=0a+04 QA Jyact”

are the sensitivity parameters [27]. These parameters
encode the violations of the strong equivalence principle,
and depend on the nature of the bodies and their prop-
erties (they can be viewed as additional “gravitational
charges” distinct from the masses, or as “hairs” in the
special case of BHs).

Letting aside for the moment the problem of comput-
ing the sensitivities, one can use the action (22), together
with the modified Einstein equations (6) (expanded in
PN orders, i.e. in Voum, v12 < 1) to compute the bi-
nary’s motion. In particular, the sensitivities modify the
conservative gravitational dynamics already at Newto-
nian order, i.e. the Newtonian acceleration of body A is
given by

i Gmpn'
by = -4, (24)
"AB
where rap = |xa — x|, Ayg = (¥4 — 2%)/rap, and

where we have introduced the active gravitational masses

mBEThB(l—FO'B) (25)

and the “strong field” gravitational constant
Gn
(1+o0a)(1+40B)"

The sensitivities also enter at higher PN orders in the
conservative sector [27, 52].

Similarly, the sensitivities also enter in the dissipative
sector, i.e. in the GW fluxes. For quasi-circular orbits,
the sensitivities cause binaries of compact objects to emit
dipole gravitational radiation. This effect, absent in GR
(where the leading effect is quadrupole radiation), ap-
pears at —1PN order, i.e. it is enhanced by a factor
(v/e)~? relative to quadrupole radiation. In more de-
tail, the gravitational binding energy of a binary is given
(because of Eq. (24)) by

g=

(26)

E =
b 27”12 ’

(27)

with 712 the binary separation, y = mimso/m and m =
my + mg, and changes under GW emission according to
the balance law

By < (QG EALM

7 = g 2 2
B = 2 ’I’ilg ) { 5 (A1 4+ SAs + S“A3)v1,y

18 ; ;
+ (81 — 82)2 C+ €A3 VCJ«MVéM

6 S
+ <5A3 + 3683) (chanl2)2:| (28)
+ (51 — 82) [12(6’2 + 28B3) Vi ity vl ol

8 i i Y
+ 5(-/42 + 28 A3) Ve (3vig — 2"1271{2”{2)] }> ;

where we have defined the rescaled sensitivities

A= f:m ’ (29)

and we have introduced the coefficients
A nEad BT e -
By = 9 08(12 —a)’ = 3c3 04(42 —a)’ %2)
R N T e

B. Extracting the sensitivities from the asymptotic
metric

In principle, the actual values of the sensitivities for a
given body (e.g. a neutron star or a BH) may be com-
puted from their very definition, Eq. (23), provided that



one can obtain solutions to the field equations for bod-
ies in motion relative to the preferred frame, through
at least order v — 1 = O(v?), v being the body’s ve-
locity in the preferred frame (i.e. with respect to the
aether vector). Ref. [27] proposed however a simpler pro-
cedure, inspired by a similar calculation in scalar-tensor
theories [28], whereby the sensitivities can be extracted
from a solution to the field equation that is accurate only
through order O(v).

The idea is based on the fact that if one solves the field
equations for a single point particle (as described by the
action (22)) in motion relative to the preferred frame (or,
equivalently, the point particle is at rest and the khronon
moves), the sensitivities appear in the metric and in the
khronon field near spatial infinity already at order O(v),
i.e., in a suitable gauge,

2Gnm

r

ds? =dt* — dr? + { - (dt? + dr?)

— 7?2 (d92 + sin? 9d<p2)

Gym
r

—2v {(B + BT +4) } cos Odt dr

(34)

+ 2ur [(3 +B~—J) Gim} sin Odt de}

X {1—}—(9(1),1)} ,
,
uydat :(dt + v cos 8dr — vrsin 9d6’)

x {1 - Gﬁm +0 (:2)} +O0(?), (%)

where BT and J are defined as

Bt = ig + i(al —2as9) (1 + 2250;0)
—(2 + %al) (1+0), (36)

243X+ B)[2(6+0) — a(l +0)]

J= 2\ + B) (o — 2)

(37)

Therefore, the sensitivity can be read off a strong field
solution valid through order O(v), i.e. a solution de-
scribing a body moving slowly relative to the khronon.
Once such a strong-field solution is obtained, one can in-
deed extract them from the g;, and g9 components of
the metric, through the combinations 3 + B~ — J and
B~ + Bt 44, respectively. Both readings must of course
yield the same value, which we will use as a consistency
check of our strong-field solution in Sec. IV.

This was indeed the procedure used in [27] to estimate
the sensitivities of neutron stars. In the following, we
will tackle the problem of finding strong-field solutions
for BHs moving slowly relative to the preferred frame.

IV. BLACK HOLES IN LORENTZ VIOLATING
GRAVITY

To construct the slowly moving BH solutions needed to
extract the sensitivities, let us start from a static spheri-
cally symmetric solution at rest relative to the khronon.
We will then perturb this solution to account for the
(slow) motion of the BH relative to the preferred frame.

A. Spherical BHs at rest

Regular (outside the central singularity at r = 0),
spherically symmetric, static and asymptotically flat
BHs in khronometric theory coincide with those of
Einstein-sether theory [41] and were extensively stud-
ied in Ref. [19]. Their metric and acther vector take,
in Eddington-Finkelstein coordinates, the form

ds? = f(r)dv® — 2B(r)dvdr 4+ r2dQ? (38)

y L (AR

upde 2A(r)

dv — A(r)B(r)dr, (39)
where the exact functional form of the “potentials” f(r),
B(r) and A(r) depends on the coupling constants «, §
and A and is obtained by solving (in general numerically)
the field equations. Because of asymptotic flatness, all
three potentials asymptote to 1 at large radii, i.e. their
asymptotic solution is given by

2GNm _ CV(GN’ﬁL)S

fr)=1- 63 (40)
o CV(GNﬁ”L)2 QQ(GNTh)S
Br)=1+—" 5> ~-"33 (41)
A(r) =1+ GJ: = “2((’:}; )
(24az + o — 6) 7(@:?)3 - (42)

where the parameter as is determined (numerically) once
the mass m is fixed [19].

The causal structure of these solutions is highly non-
trivial. Besides a “matter horizon” for photons (and in
general for matter modes), defined as in GR by the con-
dition f = 0, these BHs also possess distinct horizons
for the gravitational spin-0 and spin-2 modes. Since the
characteristics of the evolution equations for these modes
correspond to null geodesics of the effective metrics

() _ 2

9ap = 9ap T (¢; = Duaug, (43)
where ¢; is the propagation speed of the mode under con-
sideration (c.f. eq. (16)), the spin-0 and spin-2 horizons
are defined by the conditions g\(,g,) =0 and g\(,%,) = 0, re-
spectively. These horizons are typically located inside
the matter horizon since the Cherenkov bound implies
g, c321—-10715.

While UV corrections — due to the fourth and sixth
order spatial derivative terms in the full Hofava gravity



action (1) — to the metric and sether solutions of Ref. [19]
are negligible for astrophysical BHs (c.f. discussion of the
L4 and Lg terms in Sec. II), their presence is crucial, at
least conceptually, for the causal structure of the solu-
tions. Indeed, because of the higher order spatial deriva-
tives, the dispersion relation for the gravitational modes
includes k* and kS terms (k being the wavenumber), i.e.
their frequency w is given by

W=k +ak* + bk, (44)

where a and b are coefficients with the right dimensions.
As a result, the phase velocity of these modes diverges
in the UV. Since matter is coupled to the gravitational
modes, similar non-linear dispersion relations will also
appear in the matter sector.

It would therefore appear that no event horizons
should exist in the UV limit. However, Ref. [19] iden-
tified the presence of a “universal horizon” for modes of
arbitrarily large speed. This horizon appears because the
preferred foliation of Hofava gravity becomes a compact
hypersurface in the strong field of the BH. Modes of any
speed need to move inwards at this hypersurface in order
to move in the future preferred-time direction (defined
by the preferred foliation). It can be shown to that the
location of this universal horizon, which lies within the
matter, spin-0 and spin-2 horizons, is defined by the con-
dition u, o< 1 + fA%2 = 0.

Even though the exact form of the functions f(r), B(r)
and A(r) can in general be given only numerically, an-
alytic solutions exist in a few special cases, e.g. in the
case a = (:

. QGNﬁ”L . ﬂTﬁr

f(’f‘) =1 r o B(T) =1, (453)
2 4
A(r):je(—:k;+\/f+7;§>, (45b)
Gori 1/4
Mo = — 5 (12—76> (45¢)

It can be easily checked that the universal horizon and
the spin-0 horizon coincide in this particular case, since
when o — 0 the spin-0 speed given by eq. (16a) diverges,
and are both located at ryn = %GNﬁL. Note also that
this solution does not depend on the coupling parameter
A, even though that is not assumed to vanish.

In the following, we will use spherically symmetric,
static and asymptotically flat BHs as as the starting
point for the construction of our slowly moving solutions.
These spherical BHs are either produced numerically as
in Ref. [19], or are given by the explicit solution (45) for
a=0.

B. Slowly moving BHs

Let us now construct ansétze for the metric and
khronon field of a (non-spinning) BH moving slowly rel-
ative to the preferred frame, based on the symmetries

of the problem. Let us first place ourselves in the ref-
erence frame comoving with the BH, i.e. consider the
physically equivalent situation where the BH is actually
at rest, while the khronon (which determines the pre-
ferred frame) is moving relative to it with small veloc-
ity —v’ (note the different script that differentiates this
velocity from the coordinate time v) along the z-axis.
In order for the metric to be asymptotically flat, one
will therefore have to impose g, = 1., + O(1/r) and
utd,, = Oy — vd, + O(v)? in cartesian coordinates (¢,z?).

To exploit the symmetry of the configuration under
rotations around the z axis, it is convenient to adopt
cylindrical isotropic coordinates (¢, p, z, ¢), in which the
background O(v)? spherical BHs of Sec. IV A can be writ-
ten as

ds? = f(r(7))dt? — b3 () (dp2 + p2d¢? + dzz) . (46)
updzt = A(r(7))dt + u, (F)dr. (47)

Here, 4, is determined by the normalization condition
u,ut = 1.; 7 = /p? + 22 is the radial isotropic coor-
dinate, which is related to the areal radius r used in
Egs. (38) by the relation r = 7b(7); and b(7) is related
to B(r) by the relation

B(r) b(r)

7o) () + 7 db(F) /d7 (48)

Also note that the time coordinate t¢ is related to the
Eddington-Finkelstein time coordinate v by t = v —

f;(r) B(r)/f(r)dr, where 7 is a reference radius.

The use of isotropic coordinates makes it now simple
to construct the ansétze for the O(v) perturbations. Fol-
lowing the idea briefly outlined in Appedix A of Ref. [27]
for stellar systems, we can observe that the perturbations
dgs¢ and duy; transform as scalars under spatial rotations;
0g¢; and u; transform as vectors; and dg;; transforms
as a tensor. Since we only have two 3-vectors, v’ and
n® = z'/|z|, to construct these quantities, we can write,
without loss of generality,

Ogu =on (7) 7i- ¥, (49a)
Su' =py(7) 7t - 7, (49b)
( 29” > =0 (F) (7 - V)71 + a3 (7)7, (49¢)
Gtz

SuP o B

( 552 ) =B2(r) (71 - V)i + B3 (r)v, (49d)
(S0 32 )~

+as(M(ART+TRR),  (49)
0916 =09p6 = 09pp = 0926 =0, (49f)

where we have introduced the potentials «;(7) for i =
1,2,3,4,5 and B; with i = 1,2, 3, which must depend only
on the radial coordinate 7 (and not on p and z singularly)
to ensure the right transformation properties under rota-
tions. Note that actually only six of these eight potentials



are independent, as the (perturbed) sether @* = u# +dut
must satisfy the normalization condition u# 4, = 1 and
be hypersurface orthogonal, i.e. €*A4,0,05 = 0 (c.f.
eq. (4)). Also note that dgte, 0ggs, 0gpe and dg., must
vanish because neither v¢ nor n’ possess a tangential com-
ponent in the ¢ direction. (One may in principle obtain
non-zero values for these components by introducing the
tangential pseudovector 71 x ¢/, but that would violate par-
ity, which would be incompatible with the symmetries of
the system, which does not rotate around the z-axis.)

Transforming now back to the original Eddington-
Finkelstein coordinates that we will use in this paper,
the most generic form of the metric and ssther vector
then becomes

Guvdatda? =f(r)dv? — 2B(r)drdv — r?dQ?
+wv {vaf(r)2 cos O(r) (50)
—2d0dr sin §[X(r) — B(r)x(r)]
+ 2drdv f(r) cos0[0(r) — B(r)u(r)]
+ dr?B(r) cos O[B(r)(r) — 26(r) + 2A(r)]

—2d6dv f(r) sin 9)((7”)} + O(v2) )

Gy det =uy (r)dv — A(r)B(r)dr + v {;f(r) cos O

2w (B2 ) i)
() ()] dv + % cos O
(2w

Uy (T)

_ 1/1(7“)uv(1")) + 2A(r)f(r)n(r)} dr

—26(r)u’”(r)

—sin 9H(r)uv(r)d9} + 0(7,2) 7 (51)

where the background sether components u, and u”
are given by Eq. (39), i.e. u, = (1 + fA?)/(2A) and
u" = (-1+A%f)/(2AB),

2(w (1) Br)*A(r) — 2(uy () "I (r)
2f(r)uy(r)
_ B(r)Puy(r)u”(r) (26(r)u” (r) + ¥ (r)uy(r))
2f(r)uv(r)

n(r) =

(52)

to ensure hypersurface orthogonality, and the six inde-
pendent potentials 0, x,, A, 3,11 are algebraically re-
lated to the potentials «; and 3; introduced above. This
ansatz can then be further simplified by noting that a
gauge transformation v/ = v — v II(r) cos @ + O(v?) sends

IT = 0, while leaving the form of the ansatz (51) un-
changed. A further gauge transformation with generator
€19, = Q(r)(—rcos 80, +sin#0y) can be used, by choos-
ing the function Q(r) appropriately, to set any one of five
remaining independent potentials to zero. In the follow-
ing, we will therefore set A = 0.

One is therefore left with four independent potentials
0, X,%, %, which near spatial infinity (r — 400) must
satisfy the boundary conditions ¢,% — 0, § — -1
and x/r — —1 in order to ensure asymptotic flatness.
Indeed, it is easy to see that these conditions lead to
ds? =~ dt? —dr? —r2dQ?+42vdtdz, where we have changed
time coordinate to t =~ v —r and z = rcosf. A further
coordinate change t' = ¢+ vz transforms the line element
to the flat one. As for the sether, the same coordinate
transformations yield @/, ~ 0; — vd. asymptotically,
i.e. near spatial infinity the sther moves with velocity
—u relative to the flat asymptotic metric. Another way of
checking these boundary conditions is to note that they
correspond to 83 — —1 and B2, 21,2345 — 0 in terms
of the potentials introduced in egs. (49).

As expected from the symmetries of the problem (see
also Appendix A of Ref. [27]) the field equations (6),
when evaluated with these ansétze, become ordinary dif-
ferential equations in the radial coordinate, i.e. the de-
pendence on the polar angle € drops out. This is a highly
non-trivial fact which simplifies the search for solutions —
to be compared for instance with the procedure followed
by Ref. [27], which involved projecting the field equa-
tions onto Legendre polynomials — and which is also an
a posteriori check of the procedure leading to the ansatz.

V. FIELD EQUATIONS AND NUMERICAL
SOLUTIONS

In this section, we will first analyze the structure of
the field equations for the O(v) potentials 6(r), x(r),
(r) and X(r) introduced in the previous section. We
will then analyze the boundary and regularity conditions
that those potentials must satisfy, and obtain numerical
solutions for them under various choices of those condi-
tions.

A. Structure of the field equations

By replacing the metric and aether ansétze, (50) and
(51), into the field equations and expanding in v, one ob-
tains ordinary differential equations for the background
potentials f, A and B at zeroth order, and for 6(r), x(r),
(r) and X(r) at first order. Since the background so-
lutions are known from previous work (c.f. Sec. IV), we
will focus here on the first order equations.

Naively, there appear to be six non-trivial field equa-
tions at first order, coming from the perturbations 6 EV,
SEYg, 6E",, 0E",., 0E g, and §E?j of eq. (14). However,
because of the generalized Bianchi identity eq. (13), only



four of these equations are actually independent, thus
providing a closed problem for the potentials 6(r), x(r),
¥(r) and 3(r). In more detail, eq. (13) has three non-
trivial components through linear order in v (the ¢ com-
ponent being trivial since both sides of the identity are
O(v)?). Since we are not solving the khronon equation
(12) (because that is automatically implied by the mod-
ified Einstein equations (14), as discussed in Sec. II and
as can also be seen, at least in vacuum, from the identity
eq. (13) itself), it is convenient to eliminate x from the
three non-trivial components of eq. (13). This leads to
the identities

upVy Bty —u,V, B!, = O?), (53a)

ugV  E*, — u,.V, Bty = O(v?), (53b)
which can in turn be rewritten as
V,.(ur E¥y —uy E¥,) =

E* Vu, — B Vyu, +0(0%),  (54)

V,.E" = O0(v?). (55)

where we have used (in the second equation) the fact that
up = O(v?) in our gauge.

By expanding the summations in these identities, it is
clear that the £"y and the combination v, K"y, — u, E",
and E"p must depend on the potentials f, A and B (at
zeroth order) and §(r), x(r), ¥(r) and X(r) (at first or-
der) through one less radial derivative than the highest
derivatives appearing in the rest of the field equations.
Moreover, from the same (expanded) identities it follows
that these two quantities are initial value constraints for
evolutions in the radial coordinate, i.e. if they are set to
zero at some radius, they remain zero at all other radii if
the remaining field equations (the “evolution equations”)
are solved. As can be seen, this follows from the general-
ized Bianchi identity in the same way in which in GR the
Bianchi identity allows splitting initial value problems in
energy and momentum constraints and evolution equa-
tions. The same procedure was also followed in Ref. [19]
to split the field equations of Einstein-aether gravity into
constraints and evolution equations (in the radial coor-
dinate) in static spherically symmetric configurations.

The explicit form of the equations for §(r), x(r), ¥ (r)
and 3(r) is too complicated to be given here, but its
schematic form is given as follows. The evolution equa-
tions take the form

7
e1 =0"(r) — Z wd (r)M,, =0,

(56a)
n:71
e =X"(r) — Z wX(r)M, =0, (56b)
7
es =y (r) = Y _wi(r)M, =0 (56¢)
7
eq =X (1) Z w (r)M, =0, (56d)
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where T = [5(r), x(r), (), £(r), (1), (), ' (r)] and
wd (1), wX(r), w? (r),ws(r) (with n = 1,7) are functions
of the radial coordinate, the background solution f, A, B
and the coupling constants. As for the constraints C (M )

and CQ(M ), they satisfy the conservation equations

2 4

=> wl()Cu+ Y wy%(r)en, i=1,2, (57)

n=1

dC;
dr

n=1

where again the coefficients wS (r) and w& i (r) (with
i = 1,2 and n = 1,4) depend on the background solu-
tion and the coupling constants. Note that at least at
large radii, the coefficients wS(r) are negative, which
contributes to damping potential violations of the con-
straints during our radial evolutions.

Finally, let us also note that because egs. (56)—(57)
are linear and homogeneous, one is free to rescale any
one solution by a constant factor, i.e. given a solution
[0(r), x(r),9(r), X(r)], also A[6(r), x(r), ¢(r), X(r)], with
A = const, is a solution. We will use this fact when set-
ting the initial/boundary conditions for the system given
by egs. (56) in the next section.

B. Solutions regular at the matter horizon

Before solving the system given by egs. (56), let us
comment on the boundary/initial conditions that the so-
lution needs to satisfy. Close inspection of the coeffi-
cients w? (), wX(r), w? (r),w>(r) shows that the system
presents at least three singular points (with r # 0) at
which at least one of the coefficients diverges. These
three singularities are located at the matter horizon, at
the spin-0 horizon, and at the universal horizon. Reg-
ularity at these radial positions need therefore to be
enforced. On top of this, physically relevant solutions
should asymptote to flat space and to a khronon moving
with velocity —v near spatial infinity, which translates
into the boundary conditions ,% — 0, § — —1 and
x/r — —1 as r — oo as shown in Sec. IV B.

Let us first attempt to impose regularity at the outer-
most of these positions, the matter horizon. If the po-
tentials are regular there3, they can be Taylor-expanded

30ne can show that analyticity of the potentials 8, x, ¥ and ¥ is
required to ensure finiteness of the invariants constructed with the
metric, the sether vector, and the Killing vectors dy and 9y (e.g. R,
Ry RMY Rypap RHv2B and scalars obtained by contracting among
themselves curvature tensors, Killing vectors and the aether).



as

5(r) =Y dkn (r— )",
k=0

X(r) =Y xen (r—m)*,

"o . (58)
G(r) = e (r— rh) ;

k=0

Z(T’) = i Zk,h (7" - ’I”h)k y
k=0

where 7, is the matter horizon’s position, and the coef-
ficients 6k 1, Xk,hs Yk,n and Xy, must be determined by
solving the field equations. Indeed, solving the evolution
and constraint equations perturbatively near r = r}, al-
lows one to express those coefficients as a function of dg 1,
and Xy 1, alone, i.e. the solution only has two indepedent
degrees of freedom near the matter horizon. Those can
then be reduced to just one by rescaling the solution by
a constant factor as described in the previous section,
whereby one can set e.g. Xon = 1 and maintain g1,
free.t

This parameter then needs to be determined by impos-
ing asymptotic flatness. We therefore use the perturba-
tive solution (58) to move slightly away from r = ry,, and
then integrate numerically the system given by eqs. (56)
up to large radii. The value of §p} is then determined
by imposing that § and x/r asymptote to the (same)
constant (which does not need to be -1 because we have
rescaled the solution by a global unknown factor) and
that ¥, — 0 at large radii. In practice, we perform
a bisection procedure on the value of dyp, according to
whether 0(r) diverges to positive or negative values as
r — 00, as was done in Ref. [19] for the static, spher-
ically symmetric and asymptotically flat solutions that
we employ as our background.

In more detail, solving the evolution equations per-
turbatively near spatial infinity and assuming that o(r)

4Rescaling Yo,n = 1 is only possible if ¥} # 0. However, setting
Yo,n = 0 does not allow for a solution that is asymptotically flat
at large radii.
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asymptotes to a constant there, one finds

2(8 + A\)(Gnmdo + 2x0)
(1-38-2N\)r

5(7") :50 +

+ O <:2> ; (59a)

x(r) =807+ x0 + O (i) , (59b)
) :sﬁ[:z(GNm)?g;faz}ao —2% ( Tis |

(59¢)

%(r) :% +0 (:2) : (594)

where g, X0, x2 and X1 are free parameters that can be
determined from our numerical solutions once the bisec-
tion has converged. Note that we use the consistency re-
lations between the coefficients of the higher-order terms
and these free parameters to test a posteriori our numer-
ical solutions.

Note also that if one inserts the solution (59) into the
metric ansdtz (50), the resulting metric can be put in
the same gauge as eq. (34) by the infinitesimal change of
coordinates t' = t + vr cos@ + O(v)?. By comparing the
metric obtained in this way to eq. (34), one can relate
the sensitivity of the solution to the two parameters dg
and yo:

_a—f—-3aB+58%+ X —2aX+ 36\
B (2—a)(1-38-2)\)
(I-=B)B+A)  Xxo

1-38—-2\ Gymdy

(60)

+

We have also checked this equation by solving directly
the field equations near spatial infinity for a point particle
described by the action (22), in the gauge of the metric
ansétz eq. (50), and then by comparing to the asymptotic
solution given by eq. (59).

Our numerical solutions confirm that if one imposes
regularity at the matter horizon and asymptotic bound-
ary conditions corresponding to a flat spacetime and a
khronon moving with velocity —v relative to the BH, the
sensitivities are non-vanishing. We did not investigate
the viable region of the parameter space described in
Sec. IT A, because of the difficulty of obtaining numer-
ical background solutions for the potentials f, A and B
for small but non-zero value of o and 5. We will how-
ever study later, in Sec. VI, solutions for « = 8 = 0
and A # 0, and extract their sensitivities. For the mo-
ment, let us mention that for values of o ~ 8 ~ 1072
and A ~ 0.1, we obtain o ~ 1073,

One important caveat, however, is that it is not at
all clear these solutions (and the corresponding values of
the sensitivities) are physically significant, as the numer-
ical solutions that we obtain diverge when integrating
inwards from the matter horizon to the spin-0 horizon.
We have also checked that this divergence extends to the



curvature invariants, i.e. these solutions seem to present
a finite-area curvature singularity at the spin-0 horizon.
Indeed, because all free parameters of the solution where
determined by imposing regularity at the metric hori-
zon and by the boundary conditions at spatial infinity,
that singularity, which was already visible in the field
equations (56) and (57), seems almost unavoidable, and
reminiscent of similar finite-area curvature singularities
appearing at the spin-1 horizon of slowly rotating BHs in
Einstein-aether theory [25]. Nevertheless, we will further
investigate this singularity, and in particular whether it
can be avoided thanks to a field redefinition, in the next
section.

C. Solutions regular at the matter and spin-0
horizon

Curvature singularities at the spin-0 horizon also ap-
pear when studying spherical BHs in Horava gravity and
Einstein- Ather theory. Indeed, Ref. [19] found a two-
parameter family of asymptotically flat, static and spher-
ically symmetric BH solutions in those theories. One of
the two free parameters is the mass of the BH, while the
second is a “hair” regulating whether the spin-0 horizon
is singular or not. Indeed, after imposing regularity at
the matter horizon, for generic values of this parameter
the spin-0 horizon is singular, and regularity at that lo-
cation is obtained only for one specific, “tuned” value of
that parameter. (That value is a function of the mass
and the coupling constants of the theory.)

As argued in the previous section, in our case we have
no free parameter to tune to impose regularity at the
spin-0 horizon, which we therefore expect to be singular.
Indeed, when we integrate inwards the asymptotically
flat and regular (at the matter horizon) solution, we find
that the curvature invariant diverge at the spin-0 hori-
zon, already in regions where our numerical scheme is
not yet breaking down. This is shown in Fig. 1, which
plots the fastest growing curvature invariant of the ge-
ometry, as well as the constraint violations occurring in
the numerical integration.

To verify even further the existence of a curvature sin-
gularity at the spin-0 horizon, one can follow Ref. [19]
and note that the action (5) is invariant under the field
redefinition [53]

g;w =g + (= Duyu,, T'=T, (61)
where ( is a constant, provided that the original «, 5 and
A are replaced by o/, 8’ and X satisfying

o =a,
B+ N =C(B+N), (62)
p—-1=C(B-1).

Choosing in particular ¢ = s3, the redefined metric g’
coincides with the spin-0 metric [c.f. eq. (43)]. This
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FIG. 1. O(v) contribution to the Ricci scalar near the spin-
0 horizon, for the asymptotically flat solution regular at the
matter horizon, and for « = 0.02, 8 = 0.01 and A = 0.1.

therefore allows one to cast the original problem, char-
acterized by the metric g and the couplings «, 3, A, into
one involving the spin-0 metric ¢’ = ¢g(®) and the new
couplings o/, 8’ and \. The advantage of this second
“spin-0 frame” is that the matter and spin-0 horizons
now coincide (as they are both defined in terms of char-
acteristics of the metric ¢’ = ¢(?), i.e. by the condition
g, = 0 in spherical symmetry), so one can easily impose
regularity at both. This is indeed the way Ref. [19] im-
poses regularity at both the matter and spin-0 horizon in
the spherical static case.

Working therefore in the spin-0 frame, we impose reg-
ularity at the matter/spin-0 horizon location rp, by solv-
ing the evolution and constraint equations perturbatively
with the ansétz given by Eq. (58). (Analyticity of the po-
tentials d, x, ¥ and X is again required to ensure finite-
ness of the invariants constructed with the metric, the
aether vector, and the Killing vectors.) The number of
free parameters of the resulting solution is however dif-
ferent than what we obtained in Sec. V B. This is because
in the spin-0 frame one has sy = 1 (this can be verified
explicitly by using the new coupling parameters given by
Eq. (62), with ¢ = s2, into Eq. (16a)), which changes
the structure of the equations because of the presence of
factors s2 — 1 as denominators. (The explicit form of the
equations is again too long to show and hardly enlight-
ening.) As a result, the perturbative solution described
by Eq. (58) has one, rather than two, free parameters.

Setting that parameter (say do 1) to zero yields the triv-
ial solution §(r) = x(r) = ¢(r) = X(r) = 0. If instead
0o # 0, homogeneity allows rescaling it to 6o, = 1, i.e.
the near-horizon solution has no free parameter which
can be tuned to ensure that the solution reduces to a
khronon moving with speed —v on flat space at spatial in-
finity. Indeed, we have verified that the solution obtained
by imposing regularity at the matter/spin-0 horizon and



integrating outwards is not asymptotically flat.

Moreover, as mentioned in Sec. V B, the field equations
for the potentials d, x, ¥ and ¥ also present a singular-
ity at the universal horizon. Therefore, even if one is
willing to accept as physically relevant a BH with non-
flat asymptotic boundary conditions, such a solution has
no free parameters to tune to impose regularity at the
universal horizon either. Indeed, we have verified that
integrating the solution inwards from the (regular) spin-
0/matter horizon, the curvature invariants blow up at
the universal horizon (c.f. Fig. 2, where we also show the
violations of the constraints).
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FIG. 2. O(v) contribution to the Ricci scalar near the uni-
versal horizon, in the spin-0 frame, for the solution regular
at both the matter and spin-0 horizon. The theory’s param-
eters are a = 0.02, f = 0.01 and A = 0.1, corresponding
to o = 0.02, f/ = —4.161 and X' = 4.735. Note that this
solution is not asymptotically flat, as discussed in the text,
and that it is determined up to a global rescaling. Because
of this, we normalize O(v) contribution to the Ricci scalar by
the value of § at the matter/spin-0 horizon.

To further validate this result, we have also tried to
first impose regularity at the universal horizon, and then
integrate outwards trying to match with the solution ob-
tained by imposing regularity at the spin-0/matter hori-
zon. In practice, we impose regularity at the universal
horizon by solving the field equations perturbatively with
the ansétz given by Eq. (58), where r, is now meant to
denote the universal horizon. (Barring cancellations, an-
alyticity of the potentials is once again required to ensure
that the sether, the two Killing vectors and the geometry
are generically regular, i.e. that invariants constructed
with the curvature tensors, the sether and the Killing
vectors remain finite.)

Rescaling the solution by exploiting again the homo-
geneity of the problem, we are left with just two free
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parameters®, which we try to tune by matching to the so-
lution that is regular at the spin-0/matter horizon. That
solution being completely determined, up to a global
rescaling, necessary conditions for matching include the
continuity conditions

! / /
2(5) -2 () -2 (0) -

g X G
where A(X’'/X) denotes the difference between X'/X
(with X = ¢, x,%) given by the two solutions, at some
reference point between the spin-0/matter horizon and
the universal horizon. Note that it does not make sense
to impose continuity of the two solutions (AX = 0),
since we have used the rescaling freedom of the prob-
lem to renormalize both. That rescaling clearly cancels
out when considering the ratios X’/X. Note also that it
does not make sense to impose continuity of ¥’'/¥; since

¥ satisfies a first order equation (c.f. Eq. (56d)).

Quite unsurprisingly, we have verified numerically that
for generic values of the coupling constants, the three
conditions of eq. (63) cannot be all satisfied by tuning
the two free parameters of the solutions regular at the
universal horizon. The conclusions is therefore that even
if one gives up asymptotic flatness, for generic values of
the coupling the universal horizon is a finite-area curva-
ture singularity. This is reminiscent of the occurence of
similar finite-area singularities at all but the outermost
spin-1 horizon of slowly rotating BHs in Einstein-aether
theory. Quite suggestively, Ref. [20] also finds that the
universal horizon is unstable at second order in pertur-
bation theory in khronometric theory and in the eikonal
limit, and conjectures that it will become a finite-area
curvature singularity. While our result is obtained in a
completely different framework, it is interesting that it
hints at the same conclusion.

(63)

VI. THE a=f3=0 CASE

The results of Sec. V on the non-existence of slowly
moving BH solutions regular everywhere outside r = 0
apply for generic values of the coupling constants, i.e.
a, B, # 0. As we have shown, it is possible to attain
regularity of the spin-0 and matter horizons (even though
at the cost of giving up asymptotic flatness), but regu-
larity of the universal horizon remains impossible.

5More precisely, if we assume Yo,n # 0, we can use the rescaling
freedom to set ¥g, = 1. This results in two free parameters, say
do,n and xo,n. If instead Xg 1 = 0, one is still left with two free
parameters, say g and Xo,n, and we can then use the rescaling
freedom to set either to 1. Therefore, if ¥, = 0 one has just one
free parameter, which makes the matching to the solution regular at
the spin-0/matter horizon even more difficult to achieve. We have
indeed verified that the matching is not possible if one assumes
Yo,n =0.



However, if the coupling constants are such that the
spin-0 speed sg diverges, the spin-0 horizon coincides
with the universal horizon (since the latter is the horizon
for modes of infinite speed). Therefore, imposing regular-
ity of the universal horizon, spin-0 and matter horizons
may become possible in that limit. From eq. (16a) it
follows that sy — oo when o« — 0. This limit is par-
ticularly attractive as |a] < 1077 experimentally (c.f.
Sec. ITA). Assuming o = 0 alone, however, does not
avoid the appearance of finite-area singularities at the
universal/metric horizon, as can be seen from Fig. 3,
where we show the divergence of the curvature invariants
of the asymptotically flat solution regular at the matter
horizon.
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FIG. 3. O(v) contribution to the Ricci scalar near the

universal/spin-0 horizon, for the asymptotically flat solution
regular at the matter horizon, and for « = 0, § = 0.01 and
A=0.1.

However, from the experimental limits presented in
Sec. ITA, it follows that |8] < 10715, so it is attractive
to also set 8 = 0 exactly. Indeed, spherical BH solutions
for « = B = 0 are very simple and known analytically
in this limit, and are given by egs. (45a)—(45¢c). Note
in particular that the metric matches the Schwarzschild
solution.

By solving the evolution and constraint equations near
the metric horizon r;, by imposing regularity there, i.e.
with the ansétz of eq. (58), one immediately finds that
Y and ¢ must be exactly zero near ry, i.e. ¥ = O(r —
)" and ¢ = O(r—rp,)"mex, where npay is the order at
which the series of eq. (58) is truncated. We have indeed
verified this for ny.x as large as 10 or more. One reaches
the same conclusions by considering series-expanded so-
lutions to the field equations around any other radius
(different from the metric horizon). Moreover, to fur-
ther verify that ¥ and 1 vanish, we have then replaced
Y(r) = (r) = 0 in the field equations (56a)—(56d). The
system is in principle overdetermined, but it turns out to

14

consist of just two independent equations:

4(8r* + 4G Nymr® — 27(Gym)?

' )
")+ 605 — 21G it + 27(Grinyir ")
32r2
" Term = aiGy e 1 Gyt X = 0:(64)
X' (r)—4(r)=0. (65)

Note that these equations do not depend on A, which we
have anyway kept different from zero.
Eliminating x from eqs. (64)—(65) then yields

2 _ o 21(Gam)t o,

N <2r _ 3Gnm 81(GN771)4>5/(T) + Mé(r) =0.

2 1673 8rd
(66)
Solving this equation near spatial infinity gives
03 1
o(r) :5O+r_3+0(r_4> , (67)

where dy and d3 are integration constants. This in turn
implies, through eq. (64), that x(r) behaves asymptoti-
cally as

J3 1
) =drx- g0 (%), 69

Gnm

where yo = — 00. Replacing this relation in eq. (60)

and evaluating for o = 8 = 0 gives a vanishing sensitivity
o = 0. This result had to be expected from the fact that
egs. (64)—(66) do not depend on A, and that o must go
to zero in the general-relativistic limit A — 0.

Moreover, one can push the argument even further,
and note that since it is independent of A and because it
must reduce to the Schwarzschild solution in the general-
relativistic limit A — 0, the solution to eqs. (64)—(65)
must be the Schwarzschild metric in a weird gauge. In-
deed, it is easy to check that the metric of eq. (50),
with ¢ = ¥ = 0, becomes the Schwarzschild metric in
Eddington-Finkelstein coordinates if one performs the
gauge transformation v/ = v+v x(r) cos@+ O(v)? (note
that we need to use eq. (65) to set x'(r) = d(r)).

In spite of this, the khronon field profile is non-trivial
(even though its stress energy must vanish through or-
der O(v) to allow for the metric to coincide with the
Schwarzschild solution, i.e. the khronon is a “stealth”
field). In more detail, even though it is clear that
the universal horizon is more a regular surface (since
the Schwarzschild metric has no curvature singularity
at r # 0), it is interesting to look for an approximate
solution to eq. (66) near the universal horizon position
run = 3GN™/2, at which the equations are singular. For
T & Tyh, €q. (66) becomes

226" (x) + 5x ' (x) +28(x) ~ 0, (69)



with * = r — run, which yields the general solution
§5(z) ~ Cy 2~ V20TV L o pV20-V2) - (70)

where Cp, and Cy are integration constants (we refer to
the mode with coefficient C}, as the “hard mode”, because
it diverges faster than the “soft mode” with coefficient
Cy).

While both the soft and hard modes diverge as r —
Tuh, it is easy to check that the curvature invariants R,
Rop R and R, 5,5 R are regular (which must be the
case since the metric is Schwarzschild in disguise). One
can look however also at curvature invariants constructed
with the ather vector and with the Killing vectors 0,
and Oy . The only non-trivial invariant (at order O(v))
of these invariants is

Ruvap ut u® (9y)” (9y)? o cos @ 2® 5(x).  (71)
Using eq. (70), this becomes

Ryuvap ut u® (9y)" (9y)? o< cos @ (Cy z™ + Cy ™) ,
(72)
with nj, =1 -2 < 0 and n, = 14 /2 > 0. Therefore,
the hard mode produces a singularity at the universal
horizon, while the soft mode is physically well-behaved.
One can therefore set C, = 0 in eq. (70), set C5 = 1
by rescaling the solution (without loss of generality),
and then use eq. (70) to provide initial conditions at
r = ran(l 4+ €) (with € < 1) for eq. (66). Integrating
that equation outwards and matching to eq. (67), one
can the extract the integration constants g and d3. Fi-
nally, one can rescale the obtained solution by a global
factor to impose the boundary condition §y = —1 (c.f.
Sec. IVB). Eq. (64) then allows one to obtain x. The
resulting solution for

Juy (L= A@)?f(r) (L+A()*f(r))

2

veosf 8A(r)3 5(7")(,73)
bup (14 A@)2f(r)°
veosf 4A(r) o), (74)

is shown in Fig. 4.

Note that both quantities are regular at the universal
horizon (as can also be verified analytically using the soft
mode of the solution given by eq. (70)), which confirms
that the khronon field is regular there.

VII. CONCLUSIONS

We have studied non-spinning BHs moving slowly com-
pared to the preferred foliation of khronometric theory
(the low energy limit of Hofava gravity). We have done
so by reducing the field equations (through first order
O(v) in the velocity relative to the preferred frame) to a
system of ordinary differential equations in the radial co-
ordinate, thanks to suitable ansétzen for the metric and
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FIG. 4. O(v) eether perturbations du, for the unique regular
solution of the &« = § = 0 case, outside the universal/spin-0
horizon.

khronon fields, inspired by the cylindrical symmetry of
the system. We have solved these equation numerically
trying to impose both asymptotic flatness, and regularity
at the multiple BH horizons that exist in Hofava gravity,
i.e. the matter horizon; the horizons for spin-0 and spin-
2 gravitons, and the universal horizon for modes whose
speed diverges in the UV. While regularity at the spin-2
horizon does not pose any particular issue (as expected
since spin-2 modes do no appear at order O(v)), regular-
ity at the other horizons is more problematic.

We have indeed found that if one imposes regularity at
the matter horizon and asymptotic flatness, slowly mov-
ing BHs necessarily present (for generic values of the di-
mensionless coupling parameters «, 8 and A) a curvature
singularity at the spin-0 horizon (which lies inside the
matter horizon for experimentally viable value of «, £
and \). By waiving the requirement of asymptotic flat-
ness, solutions that are regular at the matter and spin-0
horizons can be obtained, but those are singular further
inside, as they present a curvature singularity at the uni-
versal horizon. These pathological features cast doubts
on the viability of the theory for generic values of the
coupling parameters, although these curvature singulari-
ties strictly speaking signal simply that our slow-motion
approximate scheme (which assumes implicitly that the
“potentials” are small) breaks down. Also, these curva-
ture singularities will probably be smoothed out by the
higher energy UV corrections Ly and Lg in the Hofava
gravity action (c.f. eq. (1)).

Nevertheless, adopting generic values of the coupling
parameters o and [ is not necessarily justified. The ex-
perimental constraints that we have reviewed in Sec. IT A
imply || < 1077 and |3] < 107'°, hence it would be
quite natural to assume that « and 3 are exactly zero.
In that case, slowly moving BH solutions exist and are
regular everywhere outside the central r = 0 singularity.



More importantly, even though the gravitational theory
is different than GR. (because A # 0), the khronon is a
non-trivial “stealth” field in these BH solutions, whose
metric therefore reduces exactly to the Schwarzschild
one. This implies in particular that BH sensitivities are
exactly zero for a« = 8 = 0, hence BH binaries do not
emit dipolar radiation in this limit, nor they deviate from
GR at Newtonian order in the conservative sector (c.f.
eq. (26)).5 Indeed, these results confirm the conclusion
of Refs. [39], namely that vacuum asymptotically flat so-
lutions to khronometric theories with a = 8 = 0 coincide
with the general relativistic ones even though A # 0.

We therefore expect GW generation to agree exactly
with GR even at higher PN orders (quadrupolar emission
and higher) if « = 8 = 0. This is quite important from an
observational point of view, because it implies that even if
our results for the appearance of finite-area singularities
in moving BHs were just an artifact of the breakdown of
our approximation scheme, and moving BHs turned out
to be regular (away from r = 0), deviations from GR in
GW generation are bound to be small. Indeed, in such
a situation, deviations away from the GR predictions for
GW emission should be expected to be of (fractional) or-
der O[max(a, )] ~ 10=7 for viable values of a, 3 # 0.
Such small deviations are unlikely to be observable with
present and future GW detectors, although the viable
parameter space for a, 8 may further shrunk by obser-
vations of GW and electromagnetic-wave propagation in
multimessenger events.

However, if finite area singularities do indeed form in

16

moving BHs (though perhaps smoothed out by UV cor-
rections), they could produce firewall-like surfaces that
may in principle be tested with GW echos [54] or stochas-
tic background measurements from LIGO/Virgo. As
for A, it is likely that improved constraints on it may
come from cosmology. As mentioned, Ref. [39] showed
that CMB measurements constrain 0 # A < 1072 when
a = =0, and one would expect this bound to be ro-
bust against small but finite values of a and . Further
improvements may come from future CMB experiments
and/or from Euclid.
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