A. Bricard, J. Caussin, N. Desreumaux, O. Dauchot, and D. Bartolo, Emergence of macroscopic directed motion in populations of motile colloids, Nature, vol.503, issue.5834, p.95, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01422384

C. Reichhardt and C. J. Olson-reichhardt, Active matter transport and jamming on disordered landscapes, Phys. Rev. E, vol.90, p.12701, 2014.

W. J. Thomson, Introduction to transport phenomenon, 2000.

S. R. Groot and P. Mazur, Non-equilibrium thermodynamics, 1962.

R. Piazza and . Parola, Thermophoresis in colloidal suspensions, Journal of Physics: Condensed Matter, vol.20, issue.15, p.153102, 2008.

L. and G. Leal, Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes. Cambridge Series in Chemical Engineering, 2007.

M. Cross and H. Greenside, Pattern Formation and Dynamics in Nonequilibrium Systems, 2009.

M. C. Cross and P. C. Hohenberg, Pattern formation outside of equilibrium, Rev. Mod. Phys, vol.65, pp.851-1112, 1993.

S. Jalal, S. Shi, V. Acharya, R. Huang, V. Viasnoff et al., Actin cytoskeleton self-organization in single epithelial cells and fibroblasts under isotropic confinement, Journal of Cell Science, vol.132, issue.5, 2019.

H. P. Zhang, A. Be'er, E. Florin, and H. L. Swinney, Collective motion and density fluctuations in bacterial colonies, Proceedings of the National Academy of Sciences, vol.107, issue.31, pp.13626-13630, 2010.

P. Galajda, J. Keymer, P. Chaikin, and R. Austin, A wall of funnels concentrates swimming bacteria, Journal of Bacteriology, vol.189, issue.23, pp.8704-8707, 2007.

J. Palacci, S. Sacanna, A. P. Steinberg, D. J. Pine, and P. M. Chaikin, Living crystals of light-activated colloidal surfers, Science, vol.339, pp.936-940, 2013.

R. Singh and R. Adhikari, Generalized stokes laws for active colloids and their applications, J. Phys. Commun, vol.2, issue.2, p.25025, 2018.

I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen, C. Bechinger et al., Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles, Phys. Rev. Lett, vol.110, p.238301, 2013.

S. Das, A. Garg, A. I. Campbell, J. Howse, A. Sen et al., Boundaries can steer active janus spheres, Nature Communications, vol.65, pp.851-1112, 2015.

C. Bechinger, R. D. Leonardo, H. Löwen, C. Reichhardt, G. Volpe et al., Active particles in complex and crowded environments, Rev. Mod. Phys, vol.88, p.45006, 2016.

W. E. Uspal, M. N. Popescu, S. Dietrich, and M. Tasinkevych, Self-propulsion of a catalytically active particle near a planar wall: from reflection to sliding and hovering, Soft Matter, vol.11, pp.434-438, 2015.

S. J. Ebbens, Active colloids: progress and challenges towards realising autonomous applications, Curr. Opin. Colloid Interface Sci, vol.21, pp.14-23, 2016.

P. Illien, R. Golestanian, and A. Sen, fuelled' motion: phoretic motility and collective behaviour of active colloids, Chem. Soc. Rev, vol.46, p.1, 2017.

J. L. Moran and J. D. Posner, Phoretic self-propulsion, Ann. Rev. of Fluid Mech, vol.49, issue.1, pp.511-540, 2017.

A. Kaiser, A. Snezhko, and I. S. , Aranson. Flocking ferromagnetic colloids. Sci. Adv, vol.3, issue.2, 2017.

A. Bricard, J. Caussin, D. Das, C. Savoie, V. Chikkadi et al., Emergent vortices in populations of colloidal rollers, Nat. Comm, vol.6, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01292102

M. Driscoll, B. Delmotte, S. Sacanna, A. Donev, and P. Chaikin, Unstable fronts and motile structures formed by microrollers, Nature, vol.375, issue.13, 2016.

I. Theurkauff, C. Cottin-bizonne, J. Palacci, C. Ybert, and B. L. , Dynamic clustering in active colloidal suspensions with chemical signaling, Phys. Rev. Lett, vol.108, p.268303, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01628778

C. Bechinger, R. D. Leonardo, H. Löwen, C. Reichhardt, G. Volpe et al., Active particles in complex and crowded environments, Rev. Mod. Phys, vol.88, p.1, 2016.

T. B. Jones, Quincke rotation of spheres, IEEE Transactions on Industry Applications, IA, vol.20, issue.4, pp.845-849, 1984.

F. Petersson, A. Lenaãberg, T. Swãrd-nilsson, and . Laurell, Free flow acoustophoresis:â microfluidic-based mode of particle and cell separation, Analytical Chemistry, vol.79, issue.14, pp.5117-5123, 2007.

J. R. Howse, R. A. Jones, A. J. Ryan, T. Gough, R. Vafabakhsh et al., Self-Motile Colloidal Particles: From Directed Propulsion to Random Walk, Phys. Rev. Lett, vol.99, issue.4, p.48102, 2007.

K. Drescher, R. E. Goldstein, N. Michel, M. Polin, and I. Tuval, Direct measurement of the flow field around swimming microorganisms, Phys. Rev. Lett, vol.105, p.168101, 2010.

J. B. Kirkegaard, A. O. Marron, and R. E. Goldstein, Motility of colonial choanoflagellates and the statistics of aggregate random walkers, Phys. Rev. Lett, vol.116, p.38102, 2016.

F. Jülicher, K. Kruse, J. Prost, and J. Joanny, Active behavior of the cytoskeleton, Phys. Rep, vol.449, issue.1, pp.3-28, 2007.

J. Bradley, . Nelson, K. Ioannis, J. J. Kaliakatsos, and . Abbott, Microrobots for minimally invasive medicine, Annual Review of Biomedical Engineering, vol.12, issue.1, pp.55-85, 2010.

C. Marangoni, Sull'espansione delle goccie d'un liquido galleggianti sulla superfice di altro liquido. Pavia tipografia dei Fratelli Fusi, p.1865

V. V-g-levich and . Krylov, Surface-tension-driven phenomena, Annual Review of Fluid Mechanics, vol.1, issue.1, pp.293-316, 1969.

C. V. Sternling and L. E. Scriven, Interfacial turbulence: Hydrodynamic instability and the marangoni effect, AIChE Journal, vol.5, issue.4, pp.514-523, 1959.

S. Thutupalli, R. Seemann, and S. Herminghaus, Swarming behavior of simple model squirmers, New J. Phys, vol.13, issue.073021, 2011.

S. Herminghaus, C. C. Maass, C. Krãåger, S. Thutupalli, L. Goehring et al., Interfacial mechanisms in active emulsions, Soft Matter, vol.10, pp.7008-7022, 2014.

E. Ruckenstein, Can phoretic motions be treated as interfacial tension gradient driven phenomena?, Journal of Colloid and Interface Science, vol.83, issue.1, pp.77-81, 1981.

O. Peter, J. Staffeld, and . Quinn, Diffusion-induced banding of colloid particles via diffusiophoresis: 1. electrolytes, Journal of Colloid and Interface Science, vol.130, issue.1, pp.69-87, 1989.

J. L. Anderson, Colloidal transport by interfacial forces, Annu. Rev. Fluid Mech, vol.21, pp.61-99, 1989.

B. V. Derjaguin, G. P. Sidorenkov, E. A. Zubashchenkov, and E. V. Kiseleva, Kinetic phenomena in boundary films of liquids, Kolloidn. Zh, vol.9, 1947.

G. Gerisch, Chemotaxis in dictyostelium, Annual Review of Physiology, vol.44, issue.1, pp.535-552, 1982.

J. Agudo-canalejo, P. Illien, and R. Golestanian, Phoresis and enhanced diffusion compete in enzyme chemotaxis, Nano Letters, vol.18, issue.4, pp.2711-2717, 2018.

S. Sengupta, K. K. Dey, H. S. Muddana, T. Tabouillot, M. E. Ibele et al., Enzyme molecules as nanomotors, Journal of the American Chemical Society, vol.135, issue.4, pp.1406-1414, 2013.

H. Hess, G. D. Bachand, and V. Vogel, Powering nanodevices with biomolecular motors, Chemistryâ A European Journal, vol.10, issue.9, pp.2110-2116, 2004.

J. L. Anderson, M. E. Lowell, and D. C. Prieve, Motion of a particle generated by chemical gradients part 1. non-electrolytes, Journal of Fluid Mechanics, vol.117, pp.107-121, 1982.

P. Staffeld and J. A. Quinn, Diffusion-induced banding of colloid particles via diffusiophoresis: 2. non-electrolytes, Journal of Colloid and Interface Science, vol.130, issue.1, pp.88-100, 1989.

F. Morrison, Electrophoresis of a particle of arbitrary shape, Journal of Colloid and Interface Science, vol.34, issue.2, pp.210-214, 1970.

D. Saville, Electrokinetic effects with small particles, Annual Review of Fluid Mechanics, vol.9, issue.1, pp.321-337, 1977.

S. Ebbens, M. Tu, J. R. Howse, and R. Golestanian, Size dependence of the propulsion velocity for catalytic janus-sphere swimmers, Phys. Rev. E, vol.85, p.20401, 2012.

J. Newman and K. E. Thomas-alyea, Electrochemical systems. Wiley and sons, 1973.

J. P. Ebel, J. L. Anderson, and D. C. Prieve, Diffusiophoresis of latex particles in electrolyte gradients, Langmuir, vol.4, issue.2, pp.396-406, 1988.

M. Mitchell, . Lin, and . Dennis-c-prieve, Electromigration of latex induced by a salt gradient, Journal of Colloid and Interface Science, vol.95, issue.2, pp.327-339, 1983.

H. Jiang, N. Yoshinaga, and M. Sano, Active motion of a janus particle by self-thermophoresis in a defocused laser beam, Phys. Rev. Lett, vol.105, p.268302, 2010.

L. Kremser, D. Blaas, and E. Kenndler, Capillary electrophoresis of biological particles: Viruses, bacteria, and eukaryotic cells, ELECTROPHORESIS, vol.25, issue.14, pp.2282-2291, 2004.

C. C. Maass, C. Krüger, S. Herminghaus, and C. Bahr, Swimming droplets, Annu. Rev. Condens. Matter Phys, vol.7, pp.171-193, 2016.

S. Michelin and E. Lauga, Phoretic self-propulsion at finite Péclet numbers, J. Fluid Mech, vol.747, pp.572-604, 2014.

R. Golestanian, T. B. Liverpool, and A. Ajdari, Designing phoretic micro-and nanoswimmers, N. J. Phys, vol.9, issue.5, p.126, 2007.

R. M. Erb, N. J. Jenness, R. L. Clark, and B. B. Yellen, Towards holonomic control of janus particles in optomagnetic traps, Advanced Materials, vol.21, issue.47, pp.4825-4829, 2009.

L. F. Valadares, Y. Tao, N. S. Zacharia, V. Kitaev, F. Galembeck et al., Catalytic nanomotors: Selfpropelled sphere dimers, Small, vol.6, issue.4, pp.565-572, 2010.

S. Michelin and E. Lauga, Autophoretic locomotion from geometric asymmetry, Eur. Phys. J. E, vol.38, issue.7, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01140759

R. Soto and R. Golestanian, Self-assembly of catalytically-active colloidal molecules: tailoring activity through surface chemistry, Phys. Rev. Lett, vol.112, p.68301, 2014.

S. Michelin and E. Lauga, A reciprocal theorem for boundary-driven channel flows, Physics of Fluids, vol.27, issue.11, p.111701, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02104863

S. Shklyaev, J. F. Brady, and M. Ubaldo, CÃ 3 rdova ? F igueroa. N on ? sphericalosmoticmotor : chemicalsailing, Journalof F luidM echanics, vol.748, pp.488-520, 2014.

E. Sébastien-michelin, D. Lauga, and . Bartolo, Spontaneous autophoretic motion of isotropic particles, Physics of Fluids, vol.25, issue.6, p.61701, 2013.

Z. Izri, N. Marjolein, S. Van-der-linden, O. Michelin, and . Dauchot, Self-propulsion of pure water droplets by spontaneous marangoni-stress-driven motion, Phys. Rev. Lett, vol.113, p.248302, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01114975

M. Morozov and S. Michelin, Nonlinear dynamics of a chemically-active drop: From steady to chaotic self-propulsion, The Journal of Chemical Physics, vol.150, issue.4, p.44110, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02104839

W. Wang, W. Duan, S. Ahmed, A. Sen, and T. E. Mallouk, From one to many: Dynamic assembly and collective behavior of self-propelled colloidal motors, Accounts of Chemical Research, vol.48, issue.7, pp.1938-1946, 2015.

W. Gao, A. Pei, R. Dong, and J. Wang, Catalytic iridium-based janus micromotors powered by ultralow levels of chemical fuels, Journal of the American Chemical Society, vol.136, issue.6, pp.2276-2279, 2014.

Y. Hong, M. Diaz, M. Ubaldo, A. Córdova-fteueroa, and . Sen, Lightdriven titanium-dioxide-based reversible microfireworks and micromotor/micropump systems, Advanced Functional Materials, vol.20, issue.10, pp.1568-1576, 2010.

R. A. Pavlick, S. Sengupta, T. Mcfadden, H. Zhang, and A. Sen, A polymerization-powered motor, Angewandte Chemie International Edition, vol.50, issue.40, pp.9374-9377, 2011.

G. Volpe, I. Buttinoni, and D. Vogt, Hans-JÃ 1 4 rgen KÃ 1 4 mmerer, and

C. Bechinger, Microswimmers in patterned environments, Soft Matter, vol.7, pp.8810-8815, 2011.

A. Würger, Thermophoresis in colloidal suspensions driven by marangoni forces, Phys. Rev. Lett, vol.98, p.138301, 2007.

A. Ghosh and P. Fischer, Controlled propulsion of artificial magnetic nanostructured propellers, Nano Lett, vol.9, issue.6, pp.2243-2245, 2009.

S. Tottori, L. Zhang, F. Qiu, K. Krzysztof, A. Krawczyk et al., Magnetic helical micromachines: Fabrication, controlled swimming, and cargo transport, Advanced Materials, vol.24, issue.6, pp.811-816

E. E. Keaveny and M. R. Maxey, Interactions between comoving magnetic microswimmers, Phys. Rev. E, vol.77, p.41910, 2008.

L. Baraban, M. Tasinkevych, M. N. Popescu, S. Sanchez, S. Dietrich et al., Transport of cargo by catalytic janus micro-motors, Soft Matter, vol.8, pp.48-52, 2012.

S. Sundararajan, P. E. Lammert, A. W. Zudans, V. H. Crespi, and A. Sen, Catalytic motors for transport of colloidal cargo, Nano Letters, vol.8, issue.5, pp.1271-1276, 2008.

R. Dreyfus, J. Baudry, M. L. Roper, M. Fermigier, H. A. Stone et al., Magnetic microswimmer, Nature, vol.108, p.38303, 2005.

C. J. Olson-reichhardt and C. Reichhardt, Ratchet effects in active matter systems, Annual Review of Condensed Matter Physics, vol.8, issue.1, pp.51-75, 2017.

R. D. Leonardo, L. Angelani, D. Dell'arciprete, G. Ruocco, V. Iebba et al., Bacterial ratchet motors, Proceedings of the National Academy of Sciences, vol.107, issue.21, pp.9541-9545, 2010.

C. Maggi, J. Simmchen, F. Saglimbeni, J. Katuri, M. Dipalo et al., Self-assembly of micromachining systems powered by janus micromotors, Small, vol.12, issue.4, pp.446-451, 2016.

A. Aubret, M. Youssef, S. Sacanna, and J. Ã. ?rã-c-?mie-palacci, Targeted assembly and synchronization of self-spinning microgears, Nature Physics, p.14, 2018.

S. Saha, R. Golestanian, and S. Ramaswamy, Clusters, asters, and collective oscillations in chemotactic colloids, Phys. Rev. E, vol.89, p.62316, 2014.

M. T?tulea-codrean and E. Lauga, Artificial chemotaxis of phoretic swimmers: instantaneous and long-time behaviour, J. Fluid Mech, vol.856, pp.921-957, 2018.

O. Pohl and H. Stark, Dynamic clustering and chemotactic collapse of selfphoretic active particles, Phys. Rev. Lett, vol.112, p.238303, 2014.

B. Liebchen, D. Marenduzzo, and M. E. Cates, Phoretic interactions generically induce dynamic clusters and wave patterns in active colloids, Phys. Rev. Lett, vol.118, p.268001, 2017.

M. Yang and M. Ripoll, A self-propelled thermophoretic microgear, Soft Matter, vol.10, pp.1006-1011, 2014.

G. Grosjean, M. Hubert, G. Lagubeau, and N. Vandewalle, Realization of the najafi-golestanian microswimmer, Phys. Rev. E, vol.94, p.21101, 2016.

A. Zöttl and H. Stark, Hydrodynamics determines collective motion and phase behavior of active colloids in quasi-two-dimensional confinement, Phys. Rev. Lett, vol.112, p.118101, 2014.

E. Lushi, H. Wioland, and R. E. Goldstein, Fluid flows created by swimming bacteria drive self-organization in confined suspensions, Proceedings of the National Academy of Sciences, vol.111, pp.9733-9738, 2014.

E. Lushi, R. E. Goldstein, and M. J. Shelley, Collective chemotactic dynamics in the presence of self-generated fluid flows, Phys. Rev. E, vol.86, p.40902, 2012.

I. Theurkauff, C. Cottin-bizonne, J. Palacci, C. Ybert, and B. L. , Dynamic clustering in active colloidal suspensions with chemical signaling, Phys. Rev. Lett, vol.108, p.268303, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01628778

P. Dhruv, U. Singh, P. Choudhury, A. G. Fischer, and . Mark, Non-equilibrium assembly of light-activated colloidal mixtures, Advanced Materials, vol.29, issue.32, p.1701328, 2017.

T. Mallouk, M. Ibele, and A. Sen, Schoolingbehaviour of light-powered micromotor, Phys. Rev. Lett, vol.110, p.238301, 2013.

R. D. Leonardo, F. Ianni, and G. Ruocco, Colloidal attraction induced by a temperature gradient, Langmuir, vol.25, issue.8, pp.4247-4250, 2009.

D. Kagan, S. Balasubramanian, and J. Wang, Chemically triggered swarming of gold microparticles, Angewandte Chemie International Edition, vol.50, issue.2, pp.503-506

T. Bickel, G. Zecua, and A. Würger, Polarization of active janus particles, Phys. Rev. E, vol.89, p.50303, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01078025

M. E. Cates and J. Tailleur, Motility-induced phase separation, Annual Review of Condensed Matter Physics, vol.6, issue.1, pp.219-244, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02393511

C. Dombrowski, L. Cisneros, S. Chatkaew, R. E. Goldstein, and J. O. Kessler, Self-concentration and large-scale coherence in bacterial dynamics, Phys. Rev. Lett, vol.93, p.98103, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00014870

N. Yoshinaga and T. B. Liverpool, From hydrodynamic lubrication to many-body interactions in dense suspensions of active swimmers, 2018.

T. Ishikawa, J. T. Locsei, and T. J. Pedley, Development of coherent structures in concentrated suspensions of swimming model micro-organisms, J. Fluid Mech, vol.615, pp.401-431, 2008.

F. Alarcòn and I. Pagonabarraga, Spontaneous aggregation and global polar ordering in squirmer suspensions, J. Mol. Liq, vol.185, pp.56-61, 2013.

B. Delmotte, E. E. Keaveny, F. Plouraboué, and E. Climent, Large-scale simulation of steady and time-dependent active suspensions with the force-coupling method, J. Comp. Phys, vol.302, pp.524-547, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01308042

R. , A. Simha, and S. Ramaswamy, Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles, Phys. Rev. Lett, vol.89, p.58101, 2002.

D. Saintillan and M. J. Shelley, Orientational order and instabilities in suspensions of self-locomoting rods, Phys. Rev. Lett, vol.99, p.58102, 2007.

K. Drescher, C. Kyriacos, I. Leptos, T. Tuval, T. J. Ishikawa et al., Dancing volvox: Hydrodynamic bound states of swimming algae, Phys. Rev. Lett, vol.102, p.168101, 2009.

J. Dunkel, S. Heidenreich, K. Drescher, H. Henricus, M. Wensink et al., Fluid dynamics of bacterial turbulence, Phys. Rev. Lett, vol.110, p.228102, 2013.

C. J. Miles, A. A. Evans, M. J. Shelley, and S. E. Spagnolie, Active matter invasion of a viscous fluid: Unstable sheets and a no-flow theorem, Phys. Rev. Lett, vol.122, p.98002, 2019.

M. Huang, J. Schofield, and R. Kapral, Chemotactic and hydrodynamic effects on collective dynamics of self-diffusiophoretic janus motors, New Journal of Physics, vol.19, issue.12, p.125003, 2017.

V. Kantsler, J. Dunkel, M. Polin, and R. E. Goldstein, Ciliary contact interactions dominate surface scattering of swimming eukaryotes, Proceedings of the National Academy of Sciences, vol.110, issue.4, pp.1187-1192, 2013.

S. E. Spagnolie and E. Lauga, Hydrodynamics of self-propulsion near a boundary: predictions and accuracy of far-field approximations, J. Fluid Mech, vol.700, pp.105-147, 2012.

T. Vicsek, A. Czirók, E. Ben-jacob, I. Cohen, and O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett, vol.75, pp.1226-1229, 1995.

J. Toner and Y. Tu, Long-range order in a two-dimensional dynamical XY model: How birds fly together, Phys. Rev. Lett, vol.75, pp.4326-4329, 1995.

J. Toner and Y. Tu, Flocks, herds, and schools: A quantitative theory of flocking, Phys. Rev. E, vol.58, pp.4828-4858, 1998.

B. Liebchen and H. Löwen, Synthetic chemotaxis and collective behavior in active matter, Acc. Chem. Res, vol.51, issue.12, 2018.

Y. Fily and M. Marchetti, Athermal phase separation of self-propelled particles with no alignment, Phys. Rev. Lett, vol.108, p.235702, 2012.

J. Stenhammar, A. Tiribocchi, R. J. Allen, D. Marenduzzo, and M. E. Cates, Continuum theory of phase separation kinetics for active brownian particles, Phys. Rev. Lett, vol.111, p.145702, 2013.

J. Bialké, L. Ã. Hartmut, and T. Speck, Microscopic theory for the phase separation of self-propelled repulsive disks, Europhysics Letters), vol.103, issue.3, p.30008, 2013.

G. S. Redner, M. F. Hagan, and A. Baskaran, Structure and dynamics of a phaseseparating active colloidal fluid, Phys. Rev. Lett, vol.110, p.55701, 2013.

H. Stark, Artificial chemotaxis of self-phoretic active colloids: Collective behavior, Accounts of Chemical Research, vol.51, issue.11, pp.2681-2688, 2018.

B. Liebchen and H. Löwen, Which interactions dominate in active colloids?, J. Chem. Phys, vol.150, issue.6, p.61102, 2019.

K. Drescher, J. Dunkel, L. H. Cisneros, S. Ganguly, and R. E. Goldstein, Fluid dynamics and noise in bacterial cell-cell and cell-surface scattering, Proc. Natl. Acad. Sci. USA, vol.108, pp.10940-10945, 2011.

E. Kanso and S. Michelin, Phoretic and hydrodynamic interactions of weakly confined autophoretic particles, J. of Chem. Phys, vol.150, issue.4, p.44902, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02104809

A. Zöttl and H. Stark, Emergent behavior in active colloids, J. Phys. Condens. Matter, vol.28, issue.25, p.253001, 2016.

M. Leoni and T. B. Liverpool, Dynamics and interactions of active rotors, EPL, vol.92, p.64004, 2010.

B. Nasouri and G. J. Elfring, Higher-order force moments of active particles, Phys. Rev. Fluids, vol.3, p.44101, 2018.

N. Yoshinaga and T. B. Liverpool, Hydrodynamic interactions in dense active suspensions: From polar order to dynamical clusters, Phys. Rev. E, vol.96, p.20603, 2017.

T. Ishikawa, M. P. Simmonds, and T. J. Pedley, Hydrodynamic interaction of two swimming model micro-organisms, J. Fluid Mech, vol.568, pp.119-160, 2006.

T. Ishikawa and T. J. Pedley, Coherent structures in monolayers of swimming particles, Phys. Rev. Lett, vol.100, p.88103, 2008.

S. Chen and G. D. Doolen, Lattice boltzmann method for fluid flows, Annual Review of Fluid Mechanics, vol.30, issue.1, pp.329-364, 1998.

G. Gompper, T. Ihle, D. M. Kroll, and R. G. Winkler, Multi-Particle Collision Dynamics: A Particle-Based Mesoscale Simulation Approach to the Hydrodynamics of Complex Fluids, 2009.

R. Kapral, Multiparticle Collision Dynamics: Simulation of Complex Systems on Mesoscales, 2008.

R. Mittal and G. Iaccarino, Immersed boundary methods, Annual Review of Fluid Mechanics, vol.37, issue.1, pp.239-261, 2005.

J. Zhang, P. C. Johnson, and A. S. Popel, An immersed boundary lattice boltzmann approach to simulate deformable liquid capsules and its application to microscopic blood flows, Phys. Biol, vol.4, issue.4, pp.285-295, 2007.

C. S. Peskin, The immersed boundary method, Acta Numerica, vol.11, pp.479-517, 2002.

T. D. Montenegro-johnson, S. Michelin, and E. Lauga, A regularised singularity approach to phoretic problems, Eur. Phys. J. E, vol.38, p.139, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01276172

A. Varma, T. D. Montenegro-johnson, and S. Michelin, Clustering-induced selfpropulsion of isotropic autophoretic particles, Soft Matter, vol.14, pp.7155-7173, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02104820

J. W. Swan, J. F. Brady, and R. S. Moore, Modeling hydrodynamic self-propulsion with stokesian dynamics. or teaching stokesian dynamics to swim, Phys. Fluids, vol.23, issue.7, p.71901, 2011.

L. Durlofsky, J. F. Brady, and G. Bossis, Dynamic simulation of hydrodynamically interacting particles, J. Fluid Mech, vol.180, pp.21-49, 1987.

S. Lomholt and M. R. Maxey, Force-coupling method for particulate two-phase flow: Stokes flow, J. Comp. Phys, vol.184, issue.2, pp.381-405, 2003.

R. Singh, R. Adhikari, and M. E. Cates, Competing chemical and hydrodynamic effects in autophoretic colloidal suspensions, 2019.

A. G. Mark, J. G. Gibbs, T. Lee, and P. Fischer, Hybrid nanocolloids with programmed three-dimensional shape and material composition, Nat. Materials, vol.12, 2015.

Z. Izri, M. N. Van-der-linden, S. Michelin, and O. Dauchot, Self-propulsion of pure water droplets by spontaneous marangoni-stress-driven motion, Phys. Rev. Lett, vol.113, p.248302, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01114975

E. Lauga and T. R. Powers, The hydrodynamics of swimming microorganisms, Rep. Prog. Phys, vol.72, issue.096601, 2009.

W. Stein, Transport And Diffusion Across Cell Membranes, 1986.

A. Fick, Ueber diffusion, Annalen der Physik, vol.170, issue.1, pp.59-86, 1855.

R. Brown, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies, The Philosophical Magazine, vol.4, issue.21, pp.161-173, 1827.

W. Sutherland, Lxxv. a dynamical theory of diffusion for non-electrolytes and the molecular mass of albumin. The London, Edinburgh, and Dublin Philosophical Magazine, Journal of Science, vol.9, issue.54, pp.781-785, 1905.

A. Einstein, Ãber die von der molekularkinetischen theorie der wÃrme geforderte bewegung von in ruhenden flà 1 4 ssigkeiten suspendierten teilchen, Annalen der Physik, vol.322, issue.8, pp.549-560, 1905.

M. Smoluchowski, Zur kinetischen theorie der brownschen molekularbewegung und der suspensionen, Annalen der Physik, vol.326, issue.14, pp.756-780, 1906.

E. M. Purcell, Life at low reynolds number, Am. J. Phys, vol.45, p.3, 1977.

C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow, 1992.

J. Happel and H. Brenner, Low Reynolds number hydrodynamics, 1965.

G. I. Taylor, Analysis of the swimming of microscopic organisms. Proceedings of the, Royal Society of London. Series A. Mathematical and Physical Sciences, vol.209, pp.447-461, 1099.

T. J. Pedley, D. R. Brumley, and R. E. Goldstein, Squirmers with swirl: a model for volvox swimming, Journal of Fluid Mechanics, vol.798, pp.165-186, 2016.

S. Kim and S. J. Karrila, Microhydrodynamics: Principles and Selected Applications. Butterworth-Heinemann, 1991.

Y. Man, L. Koens, and E. Lauga, Hydrodynamic interactions between nearby slender filaments, Europhysics Letters), vol.116, issue.2, p.24002, 2016.

G. K. Batchelor, An Introduction to Fluid Dynamics ), 2015.

M. J. Lighthill, On the squirming motion of nearly spherical deformable bodies through liquids at very small reynolds numbers, Communications on Pure and Applied Mathematics, vol.5, issue.2, pp.109-118, 1952.

J. R. Blake, A spherical envelope approach to ciliary propulsion, J. Fluid Mech, vol.46, issue.1, pp.199-208, 1971.

O. S. Pak and E. Lauga, Generalized squirming motion of a sphere, J. Eng. Math, vol.88, issue.1, pp.1-28, 2014.

E. Sã-c-?bastien-michelin and . Lauga, Efficiency optimization and symmetry-breaking in a model of ciliary locomotion, Physics of Fluids, vol.22, issue.11, p.111901, 2010.

H. A. Stone and A. D. Samuel, Propulsion of microorganisms by surface distortions, Phys. Rev. Lett, vol.77, p.4102, 1996.

E. E. Riley and E. Lauga, Enhanced active swimming in viscoelastic fluids, Europhysics Letters), vol.108, issue.3, p.34003, 2014.

H. Lamb and . Hydrodynamics, , 1932.

R. Cortez, L. Fauci, and A. Medovikov, The method of regularized stokeslets in three dimensions: Analysis, validation, and application to helical swimming, Phys. Fluids, vol.17, p.31504, 2005.

M. Smoluchowski, On the mutual action of spheres which move in a viscous liquid, Bull. Acad. Sci. Cracovie A, vol.1, pp.28-39, 1911.

H. A. Stone and A. D. Samuel, Propulsion of microorganisms by surface distortions, Phys. Rev. Lett, vol.77, p.4102, 1996.

M. Lisicki, S. Y. Reigh, and E. Lauga, Autophoretic motion in three dimensions, Soft Matter, vol.14, pp.3304-3314, 2018.

E. Yariv, Wall-induced self-diffusiophoresis of active isotropic colloids, Phys. Rev. Fluids, vol.1, p.32101, 2016.

N. Sharifi-mood, A. Mozaffari, and U. M. Cordova-figueroa, Pair interaction of catalytically active colloids: from assembly to escape, J. Fluid Mech, vol.798, pp.910-954, 2016.

G. M. Golusin, Auflösung eines ebenen wärmeleitungsproblems in einem von isolierender schichte umgebenen mehrfachzusammenhängenden kreisbereiche, Mat. Sb, vol.42, 1935.

J. H. Luke, Convergence of a multiple reflection method for calculating stokes flow in a suspension, SIAM J. Appl. Math, vol.49, issue.6, pp.1635-1651, 1989.

K. Ichiki and J. F. Brady, Many-body effects and matrix inversion in low-reynoldsnumber hydrodynamics, Physics of Fluids, vol.13, issue.1, pp.350-353, 2001.

S. Shklyaev, J. F. Brady, and U. M. Cordova-figueroa, Non-spherical osmotic motor: chemical sailing, J. Fluid Mech, vol.748, pp.488-520, 2014.

S. Michelin and E. Lauga, Autophoretic locomotion from geometric asymmetry, Eur. Phys. J. E, vol.38, issue.7, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01140759

A. Dominguez, P. Malgaretti, M. N. Popescu, and S. Dietrich, Collective dynamics of chemically active particles trapped at a fluid interface, Soft Matter, vol.12, pp.8398-8406, 2016.

R. Cortez, The method of regularized stokeslets, SIAM J. Sci. Comput, vol.23, issue.4, pp.1204-1225, 2001.

S. Shklyaev, Janus droplet as a catalytic micromotor, Europhys. Letters, vol.110, issue.5, p.54002, 2015.

G. Volpe, S. Gigan, and G. Volpe, Simulation of the active brownian motion of a microswimmer, Am. J. Phys, vol.82, p.659, 2014.

A. Zöttl and H. Stark, Emergent behavior in active colloids, J. Phys.: Condens. Matter, vol.28, issue.25, p.253001, 2016.

M. S. Davies-wykes, J. Palacci, T. Adachi, L. Ristroph, X. Zhong et al., Dynamic self-assembly of microscale rotors and swimmers, Soft Matter, vol.12, pp.4584-4589, 2016.

S. J. Ebbens and D. A. Gregory, Catalytic janus colloids: Controlling trajectories of chemical microswimmers, Acc. Chem. Res, vol.51, issue.9, 2018.

E. Lushi, R. E. Goldstein, and M. J. Shelley, Nonlinear concentration patterns and bands in autochemotactic suspensions, Phys. Rev. E, vol.98, p.52411, 2018.

S. Saha, S. Ramaswamy, and R. Golestanian, Pairing, waltzing and scattering of chemotactic active colloids, New Journal of Physics, vol.21, issue.6, p.63006, 2019.

F. B. Usabiaga, B. Kallemov, A. P. Singh-bhalla, B. Delmotte, B. E. Griffith et al., Hydrodynamics of suspensions of passive and active rigid particles: a rigid multiblob approach, Comp. App. Math and Comp. Sci, vol.11, pp.217-296, 2016.

T. N. Phung, J. F. Brady, and G. Bossis, Stokesian dynamics simulation of brownian suspensions, Journal of Fluid Mechanics, vol.313, pp.181-207, 1996.

J. Brady, Particle motion driven by solute gradients with application to autonomous motion: continuum and colloidal perspectives, J. Fluid Mech, vol.667, pp.216-259, 2011.

R. Benno-liebchen, T. Niu, H. Palberg, and . Löwen, Unraveling modular microswimmers: From self-assembly to ion-exchange-driven motors, Phys. Rev. E, vol.98, p.52610, 2018.

B. Rallabandi, F. Yang, and H. A. Stone, Motion of hydrodynamically interacting active particles. arXiv e-prints, 2019.

F. Schmidt, B. Liebchen, L. Ã. Hartmut, and G. Volpe, Lightcontrolled assembly of active colloidal molecules, The Journal of Chemical Physics, vol.150, issue.9, p.94905, 2019.

M. N. Popescu, M. Tasinkevych, D. , and S. , Pulling and pushing a cargo with a catalytically active carrier, EPL, vol.95, issue.2, p.28004, 2011.

R. Soto and R. Golestanian, Self-assembly of catalytically active colloidal molecules: Tailoring activity through surface chemistry, Phys. Rev. Lett, vol.112, p.68301, 2014.

C. Kyriacos, J. S. Leptos, J. P. Guasto, A. I. Gollub, R. E. Pesci et al., Dynamics of enhanced tracer diffusion in suspensions of swimming eukaryotic microorganisms, Phys. Rev. Lett, vol.103, 2009.

L. Ortlieb, S. Rafaï, P. Peyla, C. Wagner, and T. John, Statistics of colloidal suspensions stirred by microswimmers, Phys. Rev. Lett, vol.122, p.148101, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02383649

B. Delmotte and E. E. Keaveny, Eric Climent, and Franck Plourabouà c ?. Simulations of Brownian tracer transport in squirmer suspensions, IMA Journal of Applied Mathematics, vol.83, issue.4, pp.680-699, 2018.

M. Onofrio, P. H. Maragó, P. G. Jones, G. Gucciardi, A. C. Volpe et al., Optical trapping and manipulation of nanostructures, Nature Nanotechnology, vol.807, issue.8, pp.514-523, 2013.

N. Sharifi-mood, P. G. Díaz-hyland, and U. M. Córdova-figueroa, , 2017.

Y. Ibrahim and T. B. Liverpool, How walls affect the dynamics of self-phoretic microswimmers, The European Physical Journal Special Topics, vol.225, issue.8, pp.1843-1874, 2016.

A. Chamolly, T. Ishikawa, and E. Lauga, Active particles in periodic lattices, New Journal of Physics, vol.19, issue.11, p.115001, 2017.

P. Bayati, N. Mihail, W. E. Popescu, S. Uspal, A. Dietrich et al., Dynamics near planar walls for various model self-phoretic particles, Soft Matter, vol.15, pp.5644-5672, 2019.

Y. Shang, R. Reigh, and . Kapral, Catalytic dimer nanomotors: continuum theory and microscopic dynamics, Soft Matter, vol.11, pp.3149-3158, 2015.

M. Stimson and G. B. Jeffery, The motion of two spheres in a viscous fluid, Proc. Royal Soc. Lond. A, vol.111, p.757, 1926.

D. J. Smith, A boundary element regularized stokeslet method applied to cilia-and flagella-driven flow, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.465, p.68301, 2009.