R. W. Douglas, History of Glass Making. G T Foulis & Co Ltd, 1972.

B. A. Korgel, « Composite for smarter windows, Nature, vol.500, p.278, 2013.

J. Zarzycki, Les verres et l'état vitreux, 114, 1982.

J. Barton, C. Guillemet, and . Le-verre, Sci. Technol. EDP Sci, 2005.

W. H. Zachariasen, «. The, . Arrangement-in, and . Glass, J. Am. Chem. Soc, vol.54, issue.10, pp.3841-3851, 1932.

B. E. Warren, H. Krutter, O. Morningstar, «. Vitreous-sio2, and A. B2o2*-», J. Am. Ceram. Soc, vol.19, pp.202-206, 1936.

G. N. Greaves, « EXAFS and the structure of glass, Eff. Modes Form. Struct. Glass, vol.71, issue.1, pp.203-217, 1985.

C. P. Royall, S. R. Williams, T. Ohtsuka, and H. Tanaka, « Direct observation of a local structural mechanism for dynamic arrest, Nat. Mater, vol.7, issue.7, p.556, 2008.

D. R. Neuville, P. Florian, C. L. Losq, and E. D. Massiot, Structure et propriété des verres et des liquides: le rôle de l'aluminium, vol.98, pp.395-402, 2010.

J. F. Stebbins, P. Zhao, and E. S. Kroeker, « Non-bridging oxygens in borate glasses: characterization by 11B and 17O MAS and 3QMAS NMR », Solid State Nucl, Magn. Reson, vol.16, issue.1, pp.9-19, 2000.

S. Peuget, « Comparison of radiation and quenching rate effects on the structure of a sodium borosilicate glass, J. Non-Cryst. Solids, vol.378, pp.201-212, 2013.

K. Vignarooban, P. Boolchand, M. Micoulaut, M. Malki, and W. J. Bresser, Rigidity transitions in glasses driven by changes in network dimensionality and structural groupings, vol.108, p.56001, 2014.

H. L. Tuller, D. P. Button, and D. R. Uhlmann, « Fast ion transport in oxide glasses, Proc. Fifth Univ. Conf. Glass Sci, vol.40, pp.93-118, 1980.

S. Afyon, F. Krumeich, C. Mensing, A. Borgschulte, and R. Nesper, « New High Capacity Cathode Materials for Rechargeable Li-ion Batteries: Vanadate-Borate Glasses, Sci. Rep, vol.4, p.7113, 2014.

L. L. Hench, « The story of Bioglass®, J. Mater. Sci. Mater. Med, vol.17, issue.11, pp.967-978, 2006.

H. Aguiar, J. Serra, P. González, and B. León, « Structural study of sol-gel silicate glasses by IR and Raman spectroscopies, J. Non-Cryst. Solids, vol.355, issue.8, pp.475-480, 2009.

H. Tregouët, Structure and crystallization of boron and rare-earth rich oxide glasses », Theses, 2016.

F. Bloch, « Nuclear induction, Phys. Rev, vol.70, p.460, 1946.

E. M. Purcell, H. C. Torrey, and R. V. Pound, « Resonance Absorption by Nuclear Magnetic Moments in a Solid, Phys Rev, vol.69, issue.2, pp.37-38, 1946.

A. Abragam and A. Abragam, The principles of nuclear magnetism, 1961.

M. Mehring, High Resolution NMR Spectroscopy in Solids, 1976.

E. R. Andrew, A. Bradbury, and R. G. Eades, « Removal of Dipolar Broadening of Nuclear Magnetic Resonance Spectra of Solids by Specimen Rotation, Nature, vol.183, pp.1802-1803

M. J. Duer, Introduction to solid-state NMR spectroscopy, 2004.

M. H. Levitt, Spin dynamics: basics of nuclear magnetic resonance, 2001.

K. J. Mackenzie and M. E. Smith, Multinuclear solid-state nuclear magnetic resonance of inorganic materials, vol.6, 2002.

S. Kroeker, P. S. Neuhoff, and J. F. , Stebbins, « Enhanced resolution and quantitation from `ultrahigh' field NMR spectroscopy of glasses, 8th Int Conf Non-Cryst. Mater, pp.440-445, 2001.

A. Stamboulis, R. G. Hill, and R. V. Law, « Characterization of the structure of calcium alumino-silicate and calcium fluoro-alumino-silicate glasses by magic angle spinning nuclear magnetic resonance (MAS-NMR), J. Non-Cryst. Solids, vol.333, issue.1, pp.101-107, 2004.

E. Gambuzzi, A. Pedone, M. C. Menziani, F. Angeli, D. Caurant et al., « Probing silicon and aluminium chemical environments in silicate and aluminosilicate glasses by solid state NMR spectroscopy and accurate first-principles calculations, Geochim. Cosmochim. Acta, vol.125, pp.170-185, 2014.

D. S. Pytalev, D. Caurant, O. Majérus, H. Trégouët, T. Charpentier et al., « Structure and crystallization behavior of La2O3?3B2O3 metaborate glasses doped with Nd3+ or Eu3+ ions, J. Alloys Compd, vol.641, pp.43-55, 2015.

I. Hung, « Determination of the bond-angle distribution in vitreous B2O3 by 11B double rotation (DOR) NMR spectroscopy », J. Solid State Chem, vol.182, issue.9, pp.2402-2408, 2009.

A. Soleilhavoup, J. Delaye, F. Angeli, D. Caurant, and T. Charpentier, « Contribution of first-principles calculations to multinuclear NMR analysis of borosilicate glasses, Magn. Reson. Chem, vol.48, issue.1, pp.159-170, 2010.

M. Deschamps, F. Fayon, V. Montouillout, and D. Massiot, « Through-bond homonuclear correlation experiments in solid-state NMR applied to quadrupolar nuclei in Al-O-P-O-Al chains, Chem. Commun, vol.18, pp.1924-1925, 2006.

G. Czjzek, « Atomic coordination and the distribution of electric field gradients in amorphous solids, Phys. Rev. B, vol.23, issue.6, p.2513, 1981.

F. Vasconcelos, S. Cristol, J. Paul, L. Delevoye, F. Mauri et al., Extended Czjzek model applied to NMR parameter distributions in sodium metaphosphate glass, J. Phys. Condens. Matter, vol.25, p.255402, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00828448

C. J.-b.-d'espinose-de-lacaillerie, D. Fretigny, and . Massiot, « MAS NMR spectra of quadrupolar nuclei in disordered solids: The Czjzek model, J. Magn. Reson, vol.192, issue.2, pp.244-251, 2008.

E. L. Hahn, Spin Echoes, vol.80, pp.580-594, 1950.

A. Medek, J. S. Harwood, and L. Frydman, Multiple-Quantum Magic-Angle Spinning NMR: A New Method for the Study of Quadrupolar Nuclei in Solids, J. Am. Chem. Soc, vol.117, pp.12779-12787, 1995.

G. Wu, D. Rovnyak, and R. G. Griffin, « Quantitative Multiple-Quantum Magic-Angle-Spinning NMR Spectroscopy of Quadrupolar Nuclei in Solids, J. Am. Chem. Soc, vol.118, pp.9326-9332, 1996.

J. Amoureux, C. Fernandez, and E. S. Steuernagel, ZFiltering in MQMAS NMR, 1996.
URL : https://hal.archives-ouvertes.fr/hal-02280473

P. J. Grandinetti, « Pure-absorption-mode lineshapes and sensitivity in twodimensional dynamic-angle spinning NMR, J. Magn. Reson. A, vol.103, issue.1, pp.72-81, 1993.

T. Gullion and J. Schaefer, « Rotational-echo double-resonance NMR, J. Magn. Reson, vol.81, issue.1, pp.196-200, 1969.

U. Voigt, H. Lammert, H. Eckert, and E. A. Heuer, « Cation clustering in lithium silicate glasses: quantitative description by solid-state NMR and molecular dynamics simulations, Phys. Rev. B, vol.72, issue.6, p.64207, 2005.

H. J. Jakobsen, J. Skibsted, H. Bildsøe, and N. C. Nielsen, « Magic-angle spinning NMR spectra of satellite transitions for quadrupolar nuclei in solids, J. Magn. Reson, vol.85, issue.1, pp.173-180, 1969.

J. Skibsted, N. C. Nielsen, H. Bildsøe, and H. J. Jakobsen, « Satellite transitions in MAS NMR spectra of quadrupolar nuclei, J. Magn. Reson, vol.95, issue.1, pp.88-117, 1969.

D. Massiot, « Two-dimensional one pulse MAS of half-integer quadrupolar nuclei, J. Magn. Reson, vol.181, issue.2, pp.310-315, 2006.

T. Charpentier, C. Fermon, and J. Virlet, « Numerical and theoretical analysis of multiquantum magic-angle spinning experiments, J. Chem. Phys, vol.109, issue.8, pp.3116-3130, 1998.

K. H. Lim and C. P. Grey, Analysis of the anisotropic dimension in the RIACT (II) Multiple Quantum MAS NMR experiment for I=3/2 nuclei », Solid State Nucl, Magn. Reson, vol.13, issue.1, pp.101-112, 1998.

M. P. Allen and D. J. Tildesley, « Computer simulation of liquids, N. Y. Oxf, vol.385, 1987.

S. Tesson, « Un champ de force polarisable pour l'étude des argiles à l'échelle moléculaire, 2016.

M. P. Allen and D. J. Tildesley, Computer simulation of liquids, 2017.

P. P. Ewald and . Die-berechnung-optischer-und-elektrostatischer-gitterpotentiale, Ann. Phys, vol.369, issue.3, pp.253-287, 1921.

D. Fincham, « Optimisation of the Ewald sum for large systems, Mol. Simul, vol.13, issue.1, pp.1-9, 1994.

P. Hohenberg and W. Kohn, « Inhomogeneous electron gas, Phys. Rev, vol.136, p.864, 1964.

W. Kohn and L. J. Sham, « Self-consistent equations including exchange and correlation effects, Phys. Rev, vol.140, p.1133, 1965.

W. Kohn, Nobel Lecture: Electronic structure of matter-wave functions and density functionals, vol.71, p.1253, 1999.

S. Grimme, GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem, vol.27, pp.1787-1799, 2006.

S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, « A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu », J. Chem. Phys, vol.132, p.154104, 2010.

R. M. Dreizler and E. K. Gross, Density functional theory: an approach to the quantum many-body problem, 2012.

R. G. Parr, « Density functional theory of atoms and molecules, Horizons of Quantum Chemistry, pp.5-15, 1980.

G. Kresse and D. Joubert, « From ultrasoft pseudopotentials to the projector augmentedwave method, Phys. Rev. B, vol.59, issue.3, p.1758, 1999.

S. Goedecker, M. Teter, and J. Hutter, « Separable dual-space Gaussian pseudopotentials, Phys. Rev. B, vol.54, issue.3, p.1703, 1996.

D. Marx and J. Hutter, Ab initio molecular dynamics: basic theory and advanced methods, 2009.

T. D. Kühne, M. Krack, F. R. Mohamed, and M. Parrinello, « Efficient and Accurate Car-Parrinello-like Approach to Born-Oppenheimer Molecular Dynamics, Phys. Rev. Lett, vol.98, issue.6, p.66401, 2007.

H. J. Berendsen, J. P. Postma, W. F. Van-gunsteren, A. Dinola, and J. R. Haak, « Molecular dynamics with coupling to an external bath », J. Chem. Phys, vol.81, issue.8, p.3684, 1984.

C. G. Broyden and «. , The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations », IMA J. Appl. Math, vol.6, issue.1, pp.76-90, 1970.

J. Vandevondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing et al., Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach », Comput. Phys. Commun, vol.167, issue.2, pp.103-128, 2005.

T. Charpentier, « The PAW/GIPAW approach for computing NMR parameters: A new dimension added to NMR study of solids », Solid State Nucl. Magn. Reson, vol.40, issue.1, pp.1-20, 2011.

P. E. Blöchl, « Projector augmented-wave method, Phys. Rev. B, vol.50, pp.17953-17979, 1994.

H. M. Petrilli, P. E. Blöchl, P. Blaha, and K. Schwarz, Electric-field-gradient calculations using the projector augmented wave method, Phys. Rev. B, vol.57, issue.23, pp.14690-14697, 1998.

C. J. Pickard and F. Mauri, All-electron magnetic response with pseudopotentials: NMR chemical shifts, Phys. Rev. B -Condens. Matter Mater. Phys, vol.63, pp.2451011-2451013, 2001.

J. R. Yates, C. J. Pickard, and F. Mauri, « Calculation of NMR chemical shifts for extended systems using ultrasoft pseudopotentials, Phys. Rev. B, vol.76, issue.2, p.24401, 2007.

M. Profeta, M. Benoit, F. Mauri, and C. J. Pickard, « First-Principles Calculation of the 17O NMR Parameters in Ca Oxide and Ca Aluminosilicates: the Partially Covalent Nature of the Ca?O Bond, a Challenge for Density Functional Theory, J. Am. Chem. Soc, vol.126, pp.12628-12635, 2004.

P. Pyykkö, Mol. Phys, vol.116, issue.10, pp.1328-1338, 2018.

I. T. Todorov, W. Smith, K. Trachenko, and M. T. Dove, « DL_POLY_3: new dimensions in molecular dynamics simulations via massive parallelism, J. Mater. Chem, vol.16, pp.1911-1918, 2006.

Y. Yu, B. Stevensson, and M. Edén, « Direct Experimental Evidence for Abundant BO4-BO4 Motifs in Borosilicate Glasses From Double-Quantum 11B NMR Spectroscopy, J. Phys. Chem. Lett, vol.9, pp.6372-6376, 2018.

J. Delaye and D. Ghaleb, « Molecular dynamics simulation of SiO2 + B2O3 + Na2O + ZrO2 glass, J. Non-Cryst. Solids, vol.195, issue.3, pp.239-248, 1996.

B. Park and A. N. Cormack, « Molecular Dynamics Simulation of Alkali Borate Glass Using Coordination Dependent Potential, MRS Proc, vol.455, 1996.

M. Wang, N. M. Krishnan, B. Wang, M. M. Smedskjaer, J. C. Mauro et al., « A new transferable interatomic potential for molecular dynamics simulations of borosilicate glasses, J. Non-Cryst. Solids, vol.498, pp.294-304, 2018.

O. Majérus, L. Cormier, G. Calas, and B. Beuneu, « Temperature-induced boron coordination change in alkali borate glasses and melts, Phys. Rev. B, vol.67, issue.2, p.24210, 2003.

J. Hutter, M. Iannuzzi, F. Schiffmann, and J. Vandevondele, « cp2k: atomistic simulations of condensed matter systems, Wiley Interdiscip. Rev. Comput. Mol. Sci, vol.4, issue.1, pp.15-25, 2014.

J. Hafner, Ab-initio simulations of materials using VASP: Density-functional theory and beyond, J. Comput. Chem, vol.29, pp.2044-2078, 2008.

R. L. Mcgreevy and L. Pusztai, « Mol. Simul, 1988.

R. L. Mcgreevy, « Reverse monte carlo modelling, J. Phys. Condens. Matter, vol.13, p.877, 2001.

C. H. Henderson, Glass-making, J. Frankl. Inst, vol.124, issue.3, pp.199-224, 1887.

D. A. Keen, « Refining disordered structural models using reverse Monte Carlo methods: Application to vitreous silica, Phase Transit, vol.61, pp.109-124, 1997.

G. Opletal, T. C. Petersen, S. P. Russo, and «. Hrmc_2, 1: Hybrid Reverse Monte Carlo method with silicon, carbon, germanium and silicon carbide potentials, Comput. Phys. Commun, vol.185, issue.6, pp.1854-1855, 2014.

A. Carré, L. Berthier, J. Horbach, S. Ispas, and W. Kob, « Amorphous silica modeled with truncated and screened Coulomb interactions: A molecular dynamics simulation study, J. Chem. Phys, vol.127, issue.11, p.114512, 2007.

D. Wolf, P. Keblinski, S. R. Phillpot, and J. Eggebrecht, « Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r?1 summation, J. Chem. Phys, vol.110, pp.8254-8282, 1999.

G. , « Hybrid approach for generating realistic amorphous carbon structure using metropolis and reverse Monte Carlo, Mol. Simul, vol.28, pp.927-938, 2002.

C. Bousige, A. Bo?an, F. Ulm, R. J. , .. Pellenq et al., « Optimized molecular reconstruction procedure combining hybrid reverse Monte Carlo and molecular dynamics », J. Chem. Phys, vol.142, issue.11, p.114112, 2015.

R. Kaplow, T. A. Rowe, and B. L. Averbach, Atomic arrangement in vitreous selenium, Phys. Rev, vol.168, issue.3, p.1068, 1968.

C. G. Shull, « Early development of neutron scattering », Rev Mod Phys, vol.67, issue.4, pp.753-757, 1995.

E. Lorch, « Neutron diffraction by germania, silica and radiation-damaged silica glasses, J. Phys. C Solid State Phys, vol.2, issue.2, pp.229-237, 1969.

D. A. Keen, « A comparison of various commonly used correlation functions for describing total scattering, J. Appl. Crystallogr, vol.34, issue.2, pp.172-177, 2001.

G. Evrard and L. Pusztai, Reverse Monte Carlo modelling of the structure of disordered materials with RMC++: a new implementation of the algorithm in C++, J. Phys. Condens. Matter, vol.17, issue.5, p.1, 2005.

D. Ehrt and . Structure, properties and applications of borate glasses, vol.41, pp.182-185, 2000.

L. D. Pye, V. D. Fréchette, and N. J. Kreidl, Borate glasses: structure, properties, applications, vol.12, 2012.

I. Avramov, . Ts, E. I. Vassilev, and . Penkov, « The glass transition temperature of silicate and borate glasses, J. Non-Cryst. Solids, vol.351, issue.6, pp.472-476, 2005.

J. Zhong and P. J. Bray, « Change in boron coordination in alkali borate glasses, and mixed alkali effects, as elucidated by NMR », J. Non-Cryst. Solids, vol.111, issue.1, pp.67-76, 1989.

Y. D. Yiannopoulos, G. D. Chryssikos, and E. I. Kamitsos, « Structure and properties of alkaline earth borate glasses, Phys. Chem. Glas, vol.42, issue.3, pp.164-172, 2001.

W. J. Clarida, « Dependence of N-4 upon alkali modifier in binary borate glasses, 2003.

J. Krogh-moe, The structure of vitreous and liquid boron oxide, vol.1, pp.269-284, 1969.

W. L. Konijnendijk and J. M. Stevels, « The structure of borate glasses studied by Raman scattering, J. Non-Cryst. Solids, vol.18, issue.3, pp.307-331, 1975.

R. E. Youngman and J. W. Zwanziger, « Multiple boron sites in borate glass detected with dynamic angle spinning nuclear magnetic resonance, J. Non-Cryst. Solids, vol.168, issue.3, pp.293-297, 1994.

P. Umari and A. Pasquarello, « Fraction of Boroxol Rings in Vitreous Boron Oxide from a First-Principles Analysis of Raman and NMR Spectra », Phys. Rev. Lett, vol.95, issue.13, p.137401, 2005.

J. W. Zwanziger, The NMR response of boroxol rings: a density functional theory study, vol.27, pp.5-9, 2005.

S. Prabakar, K. J. Rao, and N. R. Rao, « 11B NMR spectra and structure of boric oxide and alkali borate glasses », Proc. R. Soc. Lond. Math. Phys. Eng. Sci, vol.429, pp.1-15, 1990.

G. E. Jellison and P. J. Bray, « A structural interpretation of B10 and B11 NMR spectra in sodium borate glasses, J. Non-Cryst. Solids, vol.29, issue.2, pp.187-206, 1978.

B. Chen, U. Werner-zwanziger, M. L. Nascimento, L. Ghussn, E. D. Zanotto et al., « Structural Similarity on Multiple Length Scales and Its Relation to Devitrification Mechanism: A Solid-State NMR Study of Alkali Diborate Glasses and Crystals », J. Phys. Chem. C, vol.113, pp.20725-20732, 2009.

M. Janssen and H. Eckert, « 11B{23Na} Rotational echo double resonance NMR: a new approach for studying the spatial cation distribution in sodium borate glasses, Solid State Ion, pp.1007-1014, 2000.

E. Ratai, M. Janssen, J. D. Epping, J. C. Chan, and H. Eckert, « Local and medium range order in alkali borate glasses: an overview of recent solid state NMR results, Phys. Chem. Glas, vol.44, issue.2, pp.45-53, 2003.

A. M. George, S. Sen, and J. F. , Stebbins, « 23Na chemical shifts and local structure in crystalline, glassy, and molten sodium borates and germanates », Solid State Nucl. Magn. Reson, vol.10, issue.1, pp.9-17, 1997.

V. K. Michaelis, P. M. Aguiar, and E. S. Kroeker, « Probing alkali coordination environments in alkali borate glasses by multinuclear magnetic resonance, J. Non-Cryst. Solids, vol.353, pp.2582-2590, 2007.

A. H. Verhoef and H. W. , den Hartog, « Structure and dynamics of alkali borate glasses: a molecular dynamics study, J. Non-Cryst. Solids, vol.182, issue.3, pp.235-247, 1995.

N. Sawaguchi, K. Yamaguchi, M. Sasaki, K. Kawamura, and «. , Interatomic Potential Model for Molecular Dynamics Simulation of Lithium Borate Melts/Glasses », J. Comput. Chem. Jpn, vol.14, issue.4, pp.139-146, 2015.

E. Kashchieva, B. Shivachev, and Y. Dimitriev, « Molecular dynamics studies of vitreous boron oxide, J. Non-Cryst. Solids, vol.351, pp.1158-1161, 2005.

A. , Verhoef et H. W. den Hartog, « A molecular dynamics study of B2O3 glass using different interaction potentials, J. Non-Cryst. Solids, vol.146, pp.267-278, 1992.

A. Takada, C. Catlow, and G. Price, « Computer modelling of B 2 O 3 . II. Molecular dynamics simulations of vitreous structures, J. Phys. Condens. Matter, vol.7, p.8693, 1995.

G. Ferlat, « Boroxol Rings in Liquid and Vitreous $\mathrmB_2\mathrmO_3$ from First Principles, Phys Rev Lett, vol.101, issue.6, p.65504, 2008.

F. Angeli, T. Charpentier, D. D. Ligny, and E. C. Cailleteau, « Boron speciation in sodalime borosilicate glasses containing zirconium, J. Am. Ceram. Soc, vol.93, issue.9, pp.2693-2704, 2010.

S. Kroeker, « Alkali dependence of tetrahedral boron in alkali borate glasses, Phys. Chem. Glas. -Eur. J. Glass Sci. AndTechnology Part B, vol.47, issue.4, pp.393-396, 2006.

W. J. Dell, P. J. Bray, and S. Z. Xiao, « 11B NMR studies and structural modeling of Na2O B2O3 SiO2 glasses of high soda content, J. Non-Cryst. Solids, vol.58, issue.1, pp.1-16, 1983.

L. Du and J. F. , Stebbins, « Solid-state NMR study of metastable immiscibility in alkali borosilicate glasses, J. Non-Cryst. Solids, vol.315, issue.3, pp.239-255, 2003.

B. Zhou, 11B MAS NMR and First-Principles Study of the [OBO3] Pyramids in Borates », vol.55, pp.1970-1977, 2016.

F. Angeli, O. Villain, S. Schuller, S. Ispas, and T. Charpentier, « Insight into sodium silicate glass structural organization by multinuclear NMR combined with firstprinciples calculations, Geochim. Cosmochim. Acta, vol.75, issue.9, pp.2453-2469, 2011.

F. Angeli, M. Gaillard, P. Jollivet, and T. Charpentier, « Contribution of 43Ca MAS NMR for probing the structural configuration of calcium in glass, Chem. Phys. Lett, vol.440, issue.4, pp.324-328, 2007.

E. Gambuzzi, T. Charpentier, M. C. Menziani, and A. Pedone, « Computational interpretation of 23Na MQMAS NMR spectra: A comprehensive investigation of the Na environment in silicate glasses », Chem. Phys. Lett, vol.612, pp.56-61, 2014.

A. Quintas, T. Charpentier, O. Majérus, D. Caurant, J. Dussossoy et al., « NMR Study of a Rare-Earth Aluminoborosilicate Glass with Varying CaO-to-Na2O Ratio, Appl. Magn. Reson, vol.32, issue.4, pp.613-634, 2007.

P. Florian, K. E. Vermulion, P. J. Grandinetti, I. Farnan, and J. F. , Stebbins, « Cation distribution in mixed alkali disilicate glasses, J. Am. Chem. Soc, vol.118, pp.3493-3497, 1996.

L. Shartsis, W. Capps, and E. S. Spinner, « Density and Expansivity of Alkali Borates and Density Characteristics of Some Other Binary Glasses, J. Am. Ceram. Soc, vol.36, issue.2, pp.35-43

L. Pedesseau, S. Ispas, and W. Kob, « First-principles study of a sodium borosilicate glass-former. II. The glass state, Phys. Rev. B, vol.91, issue.13, p.134202, 2015.

O. L. Alderman, « Liquid B 2 O 3 up to 1700 K: x-ray diffraction and boroxol ring dissolution, J. Phys. Condens. Matter, vol.27, p.455104, 2015.

T. Charpentier, P. Kroll, and F. Mauri, « First-Principles Nuclear Magnetic Resonance Structural Analysis of Vitreous Silica, J. Phys. Chem. C, vol.113, pp.7917-7929, 2009.

P. M. Aguiar and S. Kroeker, « Boron speciation and non-bridging oxygens in highalkali borate glasses, Struct. Non-Cryst. Mater, vol.10, pp.1834-1839, 2007.

J. W. Zwanziger, The NMR response of boroxol rings: a density functional theory study, vol.27, pp.5-9, 2005.

F. Neese, « Software update: the ORCA program system, Wiley Interdiscip. Rev. Comput. Mol. Sci, vol.8, issue.1, 2018.

S. V. Nemilov and «. , A structural investigation of glasses in the B 2 O 3-Na 2 O system by the viscosimetric method, Neorg Mater, vol.2, pp.349-359, 1966.

S. V. Stolyar, V. P. Klyuev, and A. V. Bulaeva, « Viscosity and thermal expansion of Na borate glasses in the T sub/ g/ range, Fiz. Khimiya Stekla, vol.10, issue.4, pp.447-54, 1984.

S. Suzuki, T. Kobayashi, M. Takahashi, and M. Imaoka, « Viscosity of some oxide glasses in the glass transition range, J Ceram Soc Jpn, vol.89, pp.252-259, 1981.

H. Trégouët, Structure and crystallization of boron and rare-earth rich oxide glasses, 2016.

I. N. Chakraborty, J. E. Shelby, and R. A. Condrate, Properties and Structure of Lanthanum Borate Glasses, vol.67, pp.782-785, 1984.

A. V. De-araujo, « Spectroscopy and crystallization behavior of Eu3+-doped La2O3: B2O3 binary glasses, J. Non-Cryst. Solids, vol.219, pp.160-164, 1997.

S. Kroeker and J. F. , Stebbins, « Three-Coordinated Boron-11 Chemical Shifts in Borates », Inorg. Chem, vol.40, pp.6239-6246, 2001.

A. E. Burns, D. W. Winslow, W. J. Clarida, M. Affatigato, S. A. Feller et al., Structure of binary neodymium borate glasses by infrared spectroscopy, vol.352, pp.2364-2366, 2006.

R. K. Brow, D. R. Tallant, and G. L. Turner, « Polyhedral arrangements in lanthanum aluminoborate glasses, J. Am. Ceram. Soc, vol.80, issue.5, pp.1239-1244, 1997.

I. N. Chakraborty, D. E. Day, J. C. Lapp, and J. E. Shelby, Structure-property relations in lanthanide borate glasses, vol.68, pp.368-371, 1985.

N. Mascaraque, K. Januchta, K. F. Frederiksen, R. E. Youngman, M. Bauchy et al., « Structural dependence of chemical durability in modified aluminoborate glasses, J. Am. Ceram. Soc, vol.102, issue.3, pp.1157-1168, 2019.

L. Du and J. F. , Stebbins, « Site connectivities in sodium aluminoborate glasses: multinuclear and multiple quantum NMR results », Solid State Nucl, Magn. Reson, vol.27, issue.1, pp.37-49, 2005.

M. Bertmer, L. Züchner, J. C. Chan, and H. Eckert, « Short and medium range order in sodium aluminoborate glasses. 2. Site connectivities and cation distributions studied by rotational echo double resonance NMR spectroscopy », J. Phys. Chem. B, vol.104, pp.6541-6553, 2000.

L. Züchner, J. C. Chan, W. Müller-warmuth, and H. Eckert, « Short-range order and site connectivities in sodium aluminoborate glasses: I. Quantification of local environments by high-resolution 11B, 23Na, and 27Al solid-state NMR », J. Phys. Chem. B, vol.102, issue.23, pp.4495-4506, 1998.

N. Ohtori, « MD study of sodium borate glasses containing Al2O3, Phys. Chem. Glas.-Eur. J. Glass Sci. Technol. Part B, vol.47, issue.4, pp.323-327, 2006.

A. A. Osipov, V. E. Eremyashev, A. S. Mazur, P. M. Tolstoi, and L. M. Osipova, « Coordination state of aluminum and boron in barium aluminoborate glass, Glass Phys. Chem, vol.42, issue.3, pp.230-237, 2016.

S. Kaneko, Y. Tokuda, and H. Masai, Additive effects of rare-earth ions in sodium aluminoborate glasses using 23Na and 27Al magic angle spinning nuclear magnetic resonance », New J. Glass Ceram, vol.7, p.58, 2017.

G. Gao, J. Wei, Y. Shen, M. Peng, and L. Wondraczek, « Heavily Eu 2 O 3-doped yttria-aluminoborate glasses for red photoconversion with a high quantum yield: luminescence quenching and statistics of cluster formation, J. Mater. Chem. C, vol.2, pp.8678-8682, 2014.

E. Nimerovsky and A. Goldbourt, « Efficient rotational echo double resonance recoupling of a spin-1/2 and a quadrupolar spin at high spinning rates and weak irradiation fields, J. Magn. Reson, vol.206, issue.1, pp.52-58, 2010.

T. Gullion and A. Vega, « Measuring heteronuclear dipolar couplings for I=1/2, S>1/2 spin pairs by REDOR and REAPDOR NMR », Prog. Nucl. Magn. Reson. Spectrosc. -PROG NUCL MAGN RESON SPECTROS, vol.47, pp.123-136, 2005.

M. Bak, J. T. Rasmussen, N. C. Nielsen, and «. Simpson, A General Simulation Program for Solid-State NMR Spectroscopy, J. Magn. Reson, vol.147, issue.2, pp.296-330, 2000.

T. Yano, N. Kunimine, S. Shibata, and M. Yamane, « Structural investigation of sodium borate glasses and melts by Raman spectroscopy.: I. Quantitative evaluation of structural units, J. Non-Cryst. Solids, vol.321, issue.3, pp.137-146, 2003.

T. Yano, N. Kunimine, S. Shibata, and M. Yamane, « Structural investigation of sodium borate glasses and melts by Raman spectroscopy. II. Conversion between BO4 and BO2O? units at high temperature, J. Non-Cryst. Solids, vol.321, issue.3, pp.147-156, 2003.

R. Car and M. Parrinello, Unified Approach for Molecular Dynamics and Density-Functional Theory, Phys. Rev. Lett, vol.55, pp.2471-2474, 1985.

D. Vanderbilt, « Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B, vol.41, issue.11, pp.7892-7895, 1990.

A. Jaworski, T. Charpentier, B. Stevensson, and M. Edén, « Scandium and Yttrium Environments in Aluminosilicate Glasses Unveiled by 45Sc/89Y NMR Spectroscopy and DFT Calculations: What Structural Factors Dictate the Chemical Shifts?, J. Phys. Chem. C, vol.121, pp.18815-18829, 2017.

A. L. Paterson, M. A. Hanson, U. Werner-zwanziger, and J. W. Zwanziger, « Relating 139La quadrupolar coupling constants to polyhedral distortion in crystalline structures, J. Phys. Chem. C, vol.119, pp.25508-25517, 2015.

A. L. Paterson, U. Werner-zwanziger, and J. W. Zwanziger, « Network Connectivity and Crystallization in the Transparent Ferroelectric Nanocomposite LaBGeO5, J. Phys. Chem. C, 2019.

M. Fábián, E. Sváb, T. Proffen, and E. E. Veress, « Neutron diffraction and reverse Monte Carlo modelling of v-B2O3 and 75B2O3-25Na2O glasses, J. Non-Cryst. Solids, vol.356, issue.9, pp.441-446, 2010.

J. Swenson, L. Börjesson, and W. S. Howells, « Structure of fast-ion-conducting lithium and sodium borate glasses by neutron diffraction and reverse Monte Carlo simulations, Phys. Rev. B, vol.57, p.13514, 1998.

M. Fábián and C. Araczki, Basic network structure of SiO 2 -B 2 O 3 -Na 2 O glasses from diffraction and reverse Monte Carlo simulation, Phys. Scr, vol.91, issue.5, p.54004, 2016.

M. Schuch, R. Christensen, C. Trott, P. Maass, and S. W. Martin, « Investigation of the Structures of Sodium Borophosphate Glasses by Reverse Monte Carlo Modeling to Examine the Origins of the Mixed Glass Former Effect », J. Phys. Chem. C, vol.116, issue.1, pp.1503-1511

J. D. Wicks, R. L. Mcgreevy, and L. Börjesson, « A network problem: modelling alkalisilicate glasses with RMC, Phase Transit, vol.61, pp.195-213, 1997.

D. M. Dawson, R. F. Moran, and S. E. , Ashbrook, « An NMR crystallographic investigation of the relationships between the crystal structure and 29Si isotropic chemical shift in silica zeolites, J. Phys. Chem. C, vol.121, pp.15198-15210, 2017.

D. M. Dawson and S. E. Ashbrook, « Investigating relationships between the crystal structure and 31P isotropic chemical shifts in calcined aluminophosphates, J. Phys. Chem. C, vol.118, pp.23285-23296, 2014.

Z. Chaker, M. Salanne, J. Delaye, and T. Charpentier, NMR shifts in aluminosilicate glasses via Machine Learning
URL : https://hal.archives-ouvertes.fr/cea-02265806