, Calcul du facteur de désaimantation d'un réseau hexagonal compact de nanofils, p.189

, Procédure d'acquisition et de traitement d'un jeu de FORC

. Références,

C. Achkar, Etudes de nanostructures magnétiques auto-organisées et épitaxiées par synthèse organométallique en solution sur des surfaces cristallines, 2014.

N. Liakakos, Organometallic approach to the growth of metallic magnetic nanoparticles in solution and on substrates, 2013.

E. P. Wohlfarth, A mechanism of magnetic hysteresis in heterogeneous alloys, Phil. Trans. R. Soc. Lond. A, vol.240, issue.826, pp.599-642, 1948.

J. A. Osborn, Demagnetizing Factors of the General Ellipsoid, Phys Rev, vol.67, issue.11-12, pp.351-357, 1945.

L. Sun, Y. Hao, C. Chien, and P. C. Searson, Tuning the properties of magnetic nanowires, IBM J. Res. Dev, vol.49, issue.1, pp.79-102, 2005.

D. Chen, J. A. Brug, and R. B. Goldfarb, Demagnetizing factors for cylinders, IEEE Trans. Magn, vol.27, issue.4, pp.3601-3619, 1991.

F. Ono and H. Maeta, Thermal expansion and magnetocrystalline anisotropy in hcp cobalt, Phys. B Condens. Matter, vol.161, issue.1-3, pp.134-138, 1990.

L. Néel, Anisotropie magnétique superficielle et surstructures d'orientation, J. Phys. Radium, vol.15, issue.4, pp.225-239, 1954.

M. Johnson, P. J. Bloemen, F. J. Broeder, and J. J. De-vries, Magnetic anisotropy in metallic multilayers, Rep. Prog. Phys, vol.59, issue.1409, 1996.

P. Bruno, Magnetic surface anisotropy of cobalt and surface roughness effects within Neel's model, J. Phys. F Met. Phys, vol.18, issue.6, p.1291, 1988.

C. Chappert and P. Bruno, Magnetic anisotropy in metallic ultrathin films and related experiments on cobalt films (invited), J. Appl. Phys, vol.64, issue.10, pp.5736-5741, 1988.

T. Blon, Anisotropie magnétique perpendiculaire de films ultraminces métal/cobalt/métal, maîtrise des interfaces : de l'épitaxie à l'irradiation ionique, 2005.

W. F. Brown, Thermal fluctuations of a single-domain particle, Phys. Rev, vol.130, issue.5, p.1677, 1963.

L. Néel, Théorie du traînage magnétique des substances massives dans le domaine de Rayleigh, J. Phys. Radium, vol.11, issue.2, pp.49-61, 1950.

R. H. Victora, Predicted time dependence of the switching field for magnetic materials, Phys. Rev. Lett, vol.63, issue.4, p.457, 1989.

P. Schio, Magnetic response of cobalt nanowires with diameter below 5 nm, Phys. Rev. B, vol.82, issue.9, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01240961

H. Zeng, R. Skomski, L. Menon, Y. Liu, S. Bandyopadhyay et al., Structure and magnetic properties of ferromagnetic nanowires in self-assembled arrays, Phys. Rev. B, vol.65, issue.13, 2002.

A. Aharoni, Thermal agitation of single domain particles, Phys. Rev, vol.135, issue.2A, p.447, 1964.

M. P. Sharrock, Time dependence of switching fields in magnetic recording media (invited), J. Appl. Phys, vol.76, issue.10, pp.6413-6418, 1994.

W. Wernsdorfer, Nucleation of magnetization reversal in individual nanosized nickel wires, Phys. Rev. Lett, vol.77, issue.9, p.1873, 1996.
URL : https://hal.archives-ouvertes.fr/hal-01659966

W. Wernsdorfer, Measurements of magnetization switching in individual nickel nanowires, Phys. Rev. B, vol.55, issue.17, p.11552, 1997.

W. Wernsdorfer, Experimental evidence of the Néel-Brown model of magnetization reversal, Phys. Rev. Lett, vol.78, issue.9, p.1791, 1997.

W. F. Brown, Criterion for Uniform Micromagnetization, Phys. Rev, vol.105, issue.60, pp.1479-82, 1956.

H. Forster, T. Schrefl, W. Scholz, D. Suess, V. Tsiantos et al., Micromagnetic simulation of domain wall motion in magnetic nano-wires, J. Magn. Magn. Mater, vol.249, issue.1-2, pp.181-186, 2002.

W. F. Brown, Theory of the approach to magnetic saturation, Phys. Rev, vol.58, issue.8, p.736, 1940.

E. H. Frei, S. Shtrikman, and D. Treves, Critical size and nucleation field of ideal ferromagnetic particles, Phys. Rev, vol.106, issue.3, p.446, 1957.

M. Vázquez and L. G. Vivas, Magnetization reversal in Co-base nanowire arrays, Phys. Status Solidi B, vol.248, issue.10, pp.2368-2381, 2011.

H. Kronmüller and M. Fähnle, Micromagnetism and the Microstructure of Ferromagnetic Solids, 2003.

A. Aharoni, Introduction to the Theory of Ferromagnetism, 2000.

A. Aharoni, Angular dependence of nucleation by curling in a prolate spheroid, J. Appl. Phys, vol.82, issue.3, pp.1281-1287, 1997.

A. Aharoni and S. Shtrikman, Magnetization curve of the infinite cylinder, Phys. Rev, vol.109, issue.5, p.1522, 1958.

R. Skomski and J. M. Coey, Permanent Magnetism, 1999.

A. Aharoni, Theoretical search for domain nucleation, Rev. Mod. Phys, vol.34, issue.2, p.227, 1962.

H. Kronmüller, Mikromagnetische berechnung der magnetisierung in der umgebung unmagnetischer einschlüsse in ferromagnetika, Z Phys, vol.168, issue.5, pp.478-494, 1962.

G. S. Abo, Y. Hong, J. Park, J. Lee, W. Lee et al., Definition of Magnetic Exchange Length, IEEE Trans. Magn, vol.49, issue.8, pp.4937-4939, 2013.

R. Skomski, Nanomagnetics, J. Phys. Condens. Matter, vol.15, issue.20, p.841, 2003.

T. Maurer, Magnetism of anisotropic nano-objects: Magnetic and neutron studies of Co (1-x) Ni (x) nanowires, 2009.
URL : https://hal.archives-ouvertes.fr/tel-00471180

G. Bertotti and E. , Hysteresis in Magnetism, 1998.

F. J. Bonilla, L. Lacroix, and T. Blon, Magnetic ground states in nanocuboids of cubic magnetocrystalline anisotropy, J. Magn. Magn. Mater, vol.428, pp.394-400, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01982612

C. Gatel, Size-Specific Spin Configurations in Single Iron Nanomagnet: From Flower to Exotic Vortices, Nano Lett, vol.15, issue.10, pp.6952-6957, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01707143

E. Snoeck, Magnetic Configurations of 30 nm Iron Nanocubes Studied by Electron Holography, Nano Lett, vol.8, issue.12, pp.4293-4298, 2008.

M. J. Donahue and D. G. Porter, OOMMF: Object Oriented MicroMagnetic Framework, 2016.

C. H. Stapper, Micromagnetic Solutions for Ferromagnetic Spheres, J. Appl. Phys, vol.40, issue.2, pp.798-802, 1969.

C. Garnero, Synthèse organométallique de nanoparticules de FeCo pour l'intégration sur inductance, 2016.

R. S. Sundar and S. C. Deevi, Soft magnetic FeCo alloys: alloy development, processing, and properties, Int. Mater. Rev, vol.50, issue.3, pp.157-192, 2005.

N. Nagaosa and Y. Tokura, Topological properties and dynamics of magnetic skyrmions, Nat. Nanotechnol, vol.8, issue.12, pp.899-911, 2013.

A. Arrott, B. Heinrich, and A. Aharoni, Point singularities and magnetization reversal in ideally soft ferromagnetic cylinders, IEEE Trans. Magn, vol.15, issue.5, pp.1228-1235, 1979.

S. Da-col, Observation of Bloch-point domain walls in cylindrical magnetic nanowires, Phys. Rev. B, vol.89, issue.18, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00911025

R. Hertel, Micromagnetic simulations of magnetostatically coupled Nickel nanowires, J. Appl. Phys, vol.90, issue.11, pp.5752-5758, 2001.

R. Hertel, Computational micromagnetism of magnetization processes in nickel nanowires, J. Magn. Magn. Mater, vol.249, issue.1, pp.251-256, 2002.

R. Hertel and J. Kirschner, Magnetization reversal dynamics in nickel nanowires, Phys. B Condens. Matter, vol.343, issue.1-4, pp.206-210, 2004.

P. Landeros, S. Allende, J. Escrig, E. Salcedo, D. Altbir et al., Reversal modes in magnetic nanotubes, Appl. Phys. Lett, vol.90, issue.10, p.102501, 2007.

R. Lavin, J. C. Denardin, J. Escrig, D. Altbir, A. Cortes et al., Magnetic Characterization of Nanowire Arrays Using First Order Reversal Curves, IEEE Trans. Magn, vol.44, issue.11, pp.2808-2811, 2008.

S. Allende, J. Escrig, D. Altbir, E. Salcedo, and M. Bahiana, Angular dependence of the transverse and vortex modesin magnetic nanotubes, Eur. Phys. J. B, vol.66, issue.1, pp.37-40, 2008.

H. J. Richter, The transition from longitudinal to perpendicular recording, J. Phys. Appl. Phys, vol.40, issue.9, pp.149-177, 2007.

L. Carignan, C. Lacroix, A. Ouimet, M. Ciureanu, A. Yelon et al., Magnetic anisotropy in arrays of Ni, CoFeB, and Ni/Cu nanowires, J. Appl. Phys, vol.102, issue.2, p.23905, 2007.

S. Vock, C. Hengst, Z. Sasvári, R. Schäfer, L. Schultz et al., The role of the inhomogeneous demagnetizing field on the reversal mechanism in nanowire arrays, J. Phys. Appl. Phys, vol.50, issue.47, p.475002, 2017.

I. Dumitru, F. Li, J. B. Wiley, D. Cimpoesu, A. Stancu et al., Study of magnetic interactions in metallic nanowire networks, IEEE Trans. Magn, vol.41, issue.10, pp.3361-3363, 2005.

J. D. Jackson, Classical electrodynamics, 2, 1975.

L. Clime, P. Ciureanu, and A. Yelon, Magnetostatic interactions in dense nanowire arrays, J. Magn. Magn. Mater, vol.297, issue.1, pp.60-70, 2006.

L. Carignan, &. Modelisation, and D. Hyperfrequences, , 2012.

K. M. Lebecki, M. J. Donahue, and M. W. Gutowski, Periodic boundary conditions for demagnetization interactions in micromagnetic simulations, J. Phys. Appl. Phys, vol.41, issue.17, p.175005, 2008.

T. Hauet, Reversal mechanism, switching field distribution, and dipolar frustrations in Co/Pt bit pattern media based on auto-assembled anodic alumina hexagonal nanobump arrays, Phys. Rev. B, vol.89, issue.17, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01282622

G. Möller and R. Moessner, Magnetic multipole analysis of kagome and artificial spin-ice dipolar arrays, Phys. Rev. B, vol.80, issue.14, 2009.

S. V. Isakov, R. Moessner, and S. L. Sondhi, Why Spin Ice Obeys the Ice Rules, Phys. Rev. Lett, vol.95, issue.21, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00298514

N. Rougemaille, Artificial Kagome Arrays of Nanomagnets: A Frozen Dipolar Spin Ice, Phys. Rev. Lett, vol.106, issue.5, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00566336

M. Pousthomis, Localized magnetization reversal processes in cobalt nanorods with different aspect ratios, Nano Res, vol.8, issue.7, pp.2231-2241, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02020343

R. G. Melko, B. C. Hertog, and M. J. Gingras, Long-Range Order at Low Temperatures in Dipolar Spin Ice, Phys. Rev. Lett, vol.87, issue.6, 2001.

M. J. Gingras, Spin ice, ArXiv Prepr, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01528212

F. Zighem, T. Maurer, F. Ott, and G. Chaboussant, Dipolar interactions in arrays of ferromagnetic nanowires: A micromagnetic study, J. Appl. Phys, vol.109, issue.1, p.13910, 2011.

I. Panagiotopoulos, Packing fraction dependence of the coercivity and the energy product in nanowire based permanent magnets, J. Appl. Phys, vol.114, issue.14, p.143902, 2013.

H. Li, Effects of dipolar interactions on magnetic properties of Co nanowire arrays, Chin. Phys. B, vol.26, issue.11, p.117503, 2017.

P. Sergelius, Statistical magnetometry on isolated NiCo nanowires and nanowire arrays: a comparative study, J. Phys. Appl. Phys, vol.49, issue.14, p.145005, 2016.

H. Fangohr, M. Albert, and M. Franchin, Nmag micromagnetic simulation tool: software engineering lessons learned, pp.1-7, 2016.

S. Umeki, H. Sugihara, Y. Taketomi, and Y. Imaoka, The dependence of the coercivity on the volume packing fraction for magnetic particles, IEEE Trans. Magn, vol.17, issue.6, pp.3014-3016, 1981.

C. Chang and J. Shyu, Nonlinear effect of small volume fraction on the coercivity for acicular particles, J. Appl. Phys, vol.73, issue.10, pp.6659-6661, 1993.

P. Toson, A. Asali, W. Wallisch, G. Zickler, and J. Fidler, Nanostructured Hard Magnets: A Micromagnetic Study, IEEE Trans. Magn, vol.51, issue.1, pp.1-4, 2015.

A. Berger, Y. Xu, B. Lengsfield, Y. Ikeda, and E. E. Fullerton, M ) method for the determination of intrinsic switching field distributions in perpendicular media, IEEE Trans. Magn, vol.41, issue.10, pp.3178-3180, 2005.

M. Winklhofer and G. T. Zimanyi, Extracting the intrinsic switching field distribution in perpendicular media: A comparative analysis, J. Appl. Phys, vol.99, issue.8, pp.8-710, 2006.

R. J. Van-de-veerdonk, X. Wu, and D. Weller, Determination of switching field distributions for perpendicular recording media, IEEE Trans. Magn, vol.39, issue.1, pp.590-593, 2003.

I. Tagawa and Y. Nakamura, Relationships between high density recording performance and particle coercivity distribution, IEEE Trans. Magn, vol.27, issue.6, pp.4975-4977, 1991.

Y. Liu, K. A. Dahmen, and A. Berger, Determination of intrinsic switching field distributions in perpendicular recording media: Numerical study of the ? H ( M , ? M ) method, Phys. Rev. B, vol.77, issue.5, 2008.

P. Postolache, M. Cerchez, L. Stoleriu, and A. Stancu, Experimental evaluation of the preisach distribution for magnetic recording media, IEEE Trans. Magn, vol.39, issue.5, pp.2531-2533, 2003.

F. Béron and &. Ordre, , 2008.

A. Berger, B. Lengsfield, and Y. Ikeda, Determination of intrinsic switching field distributions in perpendicular recording media (invited), J. Appl. Phys, vol.99, issue.8, pp.8-705, 2006.

F. Preisach, Über die magnetische Nachwirkung, Z. Für Phys, vol.94, issue.5-6, pp.277-302, 1935.

M. A. and A. V. Pokrovski?, Systems with Hysteresis, 1989.

I. D. Mayergoyz, Hysteresis models from the mathematical and control theory points of view, J. Appl. Phys, vol.57, issue.8, pp.3803-3805, 1985.

I. Mayergoyz, Mathematical models of hysteresis, IEEE Trans. Magn, vol.22, issue.5, pp.603-608, 1986.

G. Kadar, E. Kisdi-kszo, L. Kiss, I. Popocky, M. Zatroch et al., Bilinear product Preisach modeling of magnetic hysteresis curves, International Magnetics Conference, pp.4-4, 1989.

G. Biorci and D. Pescetti, Analytical theory of the behaviour of ferromagnetic materials, Il Nuovo Cimento, vol.7, issue.6, pp.829-842, 1955.

I. Bodale, L. Stoleriu, and A. Stancu, Reversible and Irreversible Components Evaluation in Hysteretic Processes Using First and Second-Order Magnetization Curves, IEEE Trans. Magn, vol.47, issue.1, pp.192-197, 2011.

E. and D. Torre, Effect of interaction on the magnetization of single-domain particles, IEEE Transactions on audio and electroacoustics, issue.2, pp.86-93, 1966.

E. , D. Torre, and F. Vajda, Parameter identification of the complete-moving-hysteresis model using major loop data, IEEE Trans. Magn, vol.30, issue.6, pp.4987-5000, 1994.

C. Papusoi, M. Desai, and R. Acharya, Evaluation of intergranular exchange coupling and magnetic domain size in CoCrPt-SiO X thin films with perpendicular anisotropy, J. Phys. Appl. Phys, vol.48, issue.21, p.215005, 2015.

T. Schrefl, T. Shoji, M. Winklhofer, H. Oezelt, M. Yano et al., First order reversal curve studies of permanent magnets, J. Appl. Phys, vol.111, issue.7, pp.7-728, 2012.

Y. Han and J. Zhu, Implementation procedure for the generalized moving Preisach model based on a first order reversal curve diagram, Rare Met, vol.28, issue.4, pp.355-360, 2009.

R. Tanasa and A. Stancu, Statistical Characterization of the FORC Diagram, IEEE Trans. Magn, vol.42, issue.10, pp.3246-3248, 2006.

L. Stoleriu, I. Bodale, A. Apetrei, and A. Stancu, Realistic Reversible Magnetization Component in Preisach-Type Models, IEEE Trans. Magn, vol.46, issue.6, pp.2341-2344, 2010.

A. Stancu and E. Macsim, Interaction Field Distribution in Longitudinal and Perpendicular Structured Particulate Media, IEEE Trans. Magn, vol.42, issue.10, pp.3162-3164, 2006.

S. Ruta, O. Hovorka, P. Huang, K. Wang, G. Ju et al., First order reversal curves and intrinsic parameter determination for magnetic materials; limitations of hysteronbased approaches in correlated systems, Sci. Rep, vol.7, p.45218, 2017.

C. R. Pike, A. P. Roberts, and K. L. Verosub, Characterizing interactions in fine magnetic particle systems using first order reversal curves, J. Appl. Phys, vol.85, issue.9, pp.6660-6667, 1999.

R. Egli, Theoretical aspects of dipolar interactions and their appearance in first-order reversal curves of thermally activated single-domain particles: INTERACTIONS IN FORCS, J. Geophys. Res. Solid Earth, vol.111, issue.B12, 2006.

A. R. Muxworthy, Assessing the ability of first-order reversal curve (FORC) diagrams to unravel complex magnetic signals, J. Geophys. Res, vol.110, issue.B1, 2005.

A. Muxworthy, D. Heslop, and W. Williams, Influence of magnetostatic interactions on firstorder-reversal-curve (FORC) diagrams: a micromagnetic approach: FORC diagrams and interactions, Geophys. J. Int, vol.158, issue.3, pp.888-897, 2004.

A. R. Muxworthy and D. J. Dunlop, First-order reversal curve (FORC) diagrams for pseudosingle-domain magnetites at high temperature, Earth Planet. Sci. Lett, vol.203, issue.1, pp.369-382, 2002.

A. Muxworthy and W. Williams, Magnetostatic interaction fields in first-order-reversal-curve diagrams, J. Appl. Phys, vol.97, issue.6, p.63905, 2005.

C. Carvallo, A. R. Muxworthy, D. J. Dunlop, and W. Williams, Micromagnetic modeling of first-order reversal curve (FORC) diagrams for single-domain and pseudo-single-domain magnetite, Earth Planet. Sci. Lett, vol.213, issue.3-4, pp.375-390, 2003.

C. R. Pike, A. P. Roberts, M. J. Dekkers, and K. L. Verosub, An investigation of multi-domain hysteresis mechanisms using FORC diagrams, Phys. Earth Planet. Inter, vol.126, issue.1-2, pp.11-25, 2001.

A. P. Roberts, C. R. Pike, and K. L. Verosub, First-order reversal curve diagrams: A new tool for characterizing the magnetic properties of natural samples, J. Geophys. Res. Solid Earth, vol.105, issue.B12, pp.28461-28475

C. Dobrot? and A. Stancu, What does a first-order reversal curve diagram really mean? A study case: Array of ferromagnetic nanowires, J. Appl. Phys, vol.113, issue.4, p.43928, 2013.

C. Dobrot? and A. Stancu, Tracking the individual magnetic wires' switchings in ferromagnetic nanowire arrays using the first-order reversal curves (FORC) diagram method, Phys. B Condens. Matter, vol.457, pp.280-286, 2015.

F. Béron, D. Ménard, and A. Yelon, First-order reversal curve diagrams of magnetic entities with mean interaction field: A physical analysis perspective, J. Appl. Phys, vol.103, issue.7, pp.7-908, 2008.

F. Béron, L. Carignan, D. Ménard, and A. Yelon, Extracting individual properties from global behaviour: first-order reversal curve method applied to magnetic nanowire arrays, Electrodeposited Nanowires and Their Applications, 2010.

L. Spinu, A. Stancu, C. Radu, F. Li, and J. B. Wiley, Method for Magnetic Characterization of Nanowire Structures, IEEE Trans. Magn, vol.40, issue.4, pp.2116-2118, 2004.

S. Samanifar, M. A. Kashi, and A. Ramazani, Study of reversible magnetization in FeCoNi alloy nanowires with different diameters by first order reversal curve (FORC) diagrams, Phys. C Supercond. Its Appl, vol.548, pp.72-74, 2018.

X. Kou, Memory Effect in Magnetic Nanowire Arrays, Adv. Mater, vol.23, issue.11, pp.1393-1397, 2011.

A. Rotaru, Interactions and reversal-field memory in complex magnetic nanowire arrays, Phys. Rev. B, vol.84, issue.13, 2011.

M. P. Proenca, C. T. Sousa, J. Ventura, J. Garcia, M. Vazquez et al., Identifying weakly-interacting single domain states in Ni nanowire arrays by FORC, J. Alloys Compd, vol.699, pp.421-429, 2017.

S. Samanifara, M. A. Kashia, and A. Ramazania, Magnetic Characterization of Fe0. 49Co0. 41Ni0. 10 Nanowire Arrays by First Order Reversal Curve Diagrams, Proc. of the 5rd Conference on Nanostructures, 2014.

L. C. Arzuza, R. López-ruiz, D. Salazar-aravena, M. Knobel, F. Béron et al., Domain wall propagation tuning in magnetic nanowires through geometric modulation, J. Magn. Magn. Mater, vol.432, pp.309-317, 2017.

A. Ramazani, V. Asgari, A. H. Montazer, and M. A. Kashi, Tuning magnetic fingerprints of FeNi nanowire arrays by varying length and diameter, Curr. Appl. Phys, vol.15, issue.7, pp.819-828, 2015.

V. Vega, Template-Assisted CoPd Nanowire Arrays: Magnetic Properties and FORC Analysis, J. Nanosci. Nanotechnol, vol.12, issue.6, pp.4736-4743, 2012.

T. R. Peixoto and D. R. Cornejo, Characterizing magnetic interactions in Ni nanowires by FORC analysis, J. Magn. Magn. Mater, vol.320, issue.14, pp.279-282, 2008.

M. P. Proenca, C. T. Sousa, J. Escrig, J. Ventura, M. Vazquez et al., Magnetic interactions and reversal mechanisms in Co nanowire and nanotube arrays, J. Appl. Phys, vol.113, issue.9, p.93907, 2013.

F. Béron, L. Clime, M. Ciureanu, D. Ménard, R. W. Cochrane et al., Magnetostatic Interactions and Coercivities of Ferromagnetic Soft Nanowires in Uniform Length Arrays, J. Nanosci. Nanotechnol, vol.8, issue.6, pp.2944-2954, 2008.

C. Papusoi, K. Srinivasan, and R. Acharya, Study of grain interactions in perpendicular magnetic recording media using first order reversal curve diagrams, J. Appl. Phys, vol.110, issue.8, p.83908, 2011.

E. M. Palmero, F. Béron, C. Bran, R. P. Del-real, and M. Vázquez, Magnetic interactions in compositionally modulated nanowire arrays, Nanotechnology, vol.27, issue.43, p.435705, 2016.

C. R. Pike, C. A. Ross, R. T. Scalettar, and G. Zimanyi, First-order reversal curve diagram analysis of a perpendicular nickel nanopillar array, Phys. Rev. B, vol.71, issue.13, 2005.

J. Dobson, Remote control of cellular behaviour with magnetic nanoparticles, Nat. Nanotechnol, vol.3, issue.3, p.139, 2008.

N. Liakakos, Solution Epitaxial Growth of Cobalt Nanowires on Crystalline Substrates for Data Storage Densities beyond 1 Tbit/in 2, Nano Lett, vol.14, issue.6, pp.3481-3486, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01707052

N. Liakakos, Oriented Metallic Nano-Objects on Crystalline Surfaces by Solution Epitaxial Growth, ACS Nano, vol.9, issue.10, pp.9665-9677, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01707151

N. Liakakos, The Big Impact of a Small Detail: Cobalt Nanocrystal Polymorphism as a Result of Precursor Addition Rate during Stock Solution Preparation, J. Am. Chem. Soc, vol.134, issue.43, pp.17922-17931, 2012.

K. Soulantica, Magnetism of single-crystalline Co nanorods, Appl. Phys. Lett, vol.95, issue.15, p.152504, 2009.

F. Wetz, K. Soulantica, A. Falqui, M. Respaud, E. Snoeck et al., Hybrid Co-Au Nanorods: Controlling Au Nucleation and Location, Angew. Chem. Int. Ed, vol.46, issue.37, pp.7079-7081, 2007.

P. Grütter and U. T. Dürig, Growth of vapor-deposited cobalt films on Pt (111) studied by scanning tunneling microscopy, Phys. Rev. B, vol.49, issue.3, p.2021, 1994.

B. Cormary, F. Dumestre, N. Liakakos, K. Soulantica, and B. Chaudret, Organometallic precursors of nano-objects, a critical view, Dalton Trans, vol.42, issue.35, p.12546, 2013.

B. Cormary, Concerted Growth and Ordering of Cobalt Nanorod Arrays as Revealed by Tandem in Situ SAXS-XAS Studies, J. Am. Chem. Soc, vol.138, issue.27, pp.8422-8431, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01988361

B. D. Cullity and C. D. Graham, Introduction to magnetic materials, 2, 2009.

S. Wirth, M. Field, D. D. Awschalom, and S. Von-molnár, Magnetization behavior of nanometer-scale iron particles, Phys. Rev. B, vol.57, issue.22, p.14028, 1998.

H. Tetsukawa and H. Kondo, Activation volume and interaction of metal particulate media, J. Magn. Magn. Mater, vol.295, issue.3, pp.191-196, 2005.

W. O. Rosa, L. G. Vivas, K. R. Pirota, A. Asenjo, and M. Vázquez, Influence of aspect ratio and anisotropy distribution in ordered CoNi nanowire arrays, J. Magn. Magn. Mater, vol.324, issue.22, pp.3679-3682, 2012.

L. G. Vivas, Magnetic anisotropy in CoNi nanowire arrays: Analytical calculations and experiments, Phys. Rev. B, vol.85, issue.3, 2012.

D. Hinzke and U. Nowak, Magnetization switching in nanowires: Monte Carlo study with fast Fourier transformation for dipolar fields, J. Magn. Magn. Mater, vol.221, issue.3, pp.365-372, 2000.

J. M. Huerta, J. De-la-torre-medina, L. Piraux, and A. Encinas, Self consistent measurement and removal of the dipolar interaction field in magnetic particle assemblies and the determination of their intrinsic switching field distribution, J. Appl. Phys, vol.111, issue.8, p.83914, 2012.

T. Schrefl, T. Shoji, M. Winklhofer, H. Oezelt, M. Yano et al., First order reversal curve studies of permanent magnets, J. Appl. Phys, vol.111, issue.7, pp.7-728, 2012.

G. T. Zimanyi and M. Winklhofer, The FORC ?. M2. S Method and its Applications, Electromagnetics in Advanced Applications, 2009. ICEAA'09. International Conference on, pp.979-982, 2009.

R. K. Dumas, C. Li, I. V. Roshchin, I. K. Schuller, and K. Liu, Magnetic fingerprints of sub-100 nm Fe dots, Phys. Rev. B, vol.75, issue.13, 2007.

M. Winklhofer, R. K. Dumas, and K. Liu, Identifying reversible and irreversible magnetization changes in prototype patterned media using first-and second-order reversal curves, J. Appl. Phys, vol.103, issue.7, pp.7-518, 2008.

J. E. Davies, O. Hellwig, E. E. Fullerton, and K. Liu, Temperature-dependent magnetization reversal in ( Co ? Pt ) ? Ru multilayers, Phys. Rev. B, vol.77, issue.1, 2008.

D. Navas, Microscopic reversal magnetization mechanisms in CoCrPt thin films with perpendicular magnetic anisotropy: Fractal structure versus labyrinth stripe domains, Phys. Rev. B, vol.96, issue.18, 2017.

J. B. Abugri, P. B. Visscher, S. Gupta, P. J. Chen, and R. D. Shull, FORC+ analysis of perpendicular magnetic tunnel junctions, J. Appl. Phys, vol.124, issue.4, p.43901, 2018.

Y. Cao, Hysteresis in single and polycrystalline iron thin films: Major and minor loops, first order reversal curves, and Preisach modeling, J. Magn. Magn. Mater, vol.395, pp.361-375, 2015.

T. R. Albrecht, Bit-Patterned Magnetic Recording: Theory, Media Fabrication, and Recording Performance, IEEE Trans. Magn, vol.51, issue.5, pp.1-42, 2015.

C. Dobrot? and A. Stancu, PKP simulation of size effect on interaction field distribution in highly ordered ferromagnetic nanowire arrays, Phys. B Condens. Matter, vol.407, issue.24, pp.4676-4685, 2012.

X. Wen, J. S. Andrew, and D. P. Arnold, Exchange-coupled hard magnetic Fe-Co/CoPt nanocomposite films fabricated by electro-infiltration, AIP Adv, vol.7, issue.5, p.56225, 2017.

H. G. Katzgraber, Reversal-Field Memory in the Hysteresis of Spin Glasses, Phys. Rev. Lett, vol.89, issue.25, 2002.

A. Markou, I. Panagiotopoulos, T. Bakas, P. Postolache, L. Stoleriu et al., Magnetization reversal in graded anisotropy Co/Pt multilayers: A first order reversal curve study, J. Appl. Phys, vol.112, issue.12, p.123914, 2012.

J. E. Davies, O. Hellwig, E. E. Fullerton, G. Denbeaux, J. B. Kortright et al., Magnetization reversal of Co ? Pt multilayers: Microscopic origin of high-field magnetic irreversibility, Phys. Rev. B, vol.70, issue.22, 2004.

K. Nielsch, High density hexagonal nickel nanowire array, J. Magn. Magn. Mater, vol.249, issue.1-2, pp.234-240, 2002.

K. Nielsch, Hexagonally ordered 100 nm period nickel nanowire arrays, Appl. Phys. Lett, vol.79, issue.9, pp.1360-1362, 2001.

A. Hubert and R. Schäfer, Magnetic domains: the analysis of magnetic microstructures, Corr. print, 2011.

D. Navas, Magnetic behavior of NixFe(100?x) (65?x?100) nanowire arrays, J. Magn. Magn. Mater, pp.191-194, 2005.

A. Asenjo, M. Jaafar, D. Navas, and M. Vázquez, Quantitative magnetic force microscopy analysis of the magnetization process in nanowire arrays, J. Appl. Phys, vol.100, issue.2, p.23909, 2006.

J. Yuan, Study on magnetization reversal of cobalt nanowire arrays by magnetic force microscopy, J. Magn. Magn. Mater, vol.320, issue.5, pp.736-741, 2008.

L. Cattaneo, Electrodeposition of hexagonal Co nanowires with large magnetocrystalline anisotropy, Electrochimica Acta, vol.85, pp.57-65, 2012.

M. R. Tabasum, F. Zighem, J. De-la-torre-medina, L. Piraux, and B. Nysten, Intrinsic Switching Field Distribution of Arrays of Ni80Fe20 Nanowires Probed by In Situ Magnetic Force Microscopy, J. Supercond. Nov. Magn, vol.26, issue.4, pp.1375-1379, 2013.

D. Pecko, M. S. Arshad, S. Sturm, S. Kobe, and K. Z. Rozman, Magnetization-Switching Study of fcc Fe-Pd Nanowire and Nanowire Arrays Studied by In-Field Magnetic Force Microscopy, IEEE Trans. Magn, vol.51, issue.10, pp.1-4, 2015.

I. S. Camara, Enhanced magnetocrystalline anisotropy in an ultra-dense array of airexposed crystalline cobalt nanowires, Appl. Phys. Lett, vol.109, issue.20, p.202406, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01989562

A. Bogdanov and A. Hubert, Thermodynamically stable magnetic vortex states in magnetic crystals, J. Magn. Magn. Mater, vol.138, issue.3, pp.255-269, 1994.

A. N. Bogdanov and D. A. Yablonskii, Thermodynamically stable 'vortices' in magnetically ordered crystals. The mixed state of magnets, Zh Eksp Teor Fiz, vol.95, issue.1, p.178, 1989.

B. Binz and A. Vishwanath, Chirality induced anomalous-Hall effect in helical spin crystals, Phys. B Condens. Matter, vol.403, issue.5-9, pp.1336-1340, 2008.

J. M. Kosterlitz and D. J. Thouless, Ordering, metastability and phase transitions in twodimensional systems, J. Phys. C Solid State Phys, vol.6, issue.7, p.1181, 1973.

?. Kooy and U. Enz, Experimental and theoretical study of the domain configuration in thin layer of BaFe12O19, Philips Res Repts, issue.15, pp.7-29, 1960.

S. D. Bader, Colloquium : Opportunities in nanomagnetism, Rev. Mod. Phys, vol.78, issue.1, pp.1-15, 2006.

A. P. Malozemoff and J. C. Slonczewski, Magnetic Domain Walls in Bubble Materials, 1979.

D. A. Gilbert, Realization of ground-state artificial skyrmion lattices at room temperature, Nat. Commun, vol.6, issue.1, 2015.

M. V. Sapozhnikov and O. L. Ermolaeva, Two-dimensional skyrmion lattice in a nanopatterned magnetic film, Phys. Rev. B, vol.91, issue.2, 2015.

L. Sun, Creating an Artificial Two-Dimensional Skyrmion Crystal by Nanopatterning, Phys. Rev. Lett, vol.110, issue.16, 2013.

I. Dzyaloshinsky, A thermodynamic theory of 'weak' ferromagnetism of antiferromagnetics, J. Phys. Chem. Solids, vol.4, issue.4, pp.241-255, 1958.

T. Moriya, Anisotropic superexchange interaction and weak ferromagnetism, Phys. Rev, vol.120, issue.1, p.91, 1960.

F. Ott, T. Maurer, G. Chaboussant, Y. Soumare, J. Piquemal et al., Effects of the shape of elongated magnetic particles on the coercive field, J. Appl. Phys, vol.105, issue.1, p.13915, 2009.

M. Saib, Imagerie Magnéto-optique du retournement de l'aimantation dans des couches minces de La_0, 2007.

Y. , Dynamic phase transition phenomena and magnetization reversal process in uniaxial ferromagnetic nanowires, J. Magn. Magn. Mater, vol.389, pp.34-39, 2015.

Y. Aharonov and D. Bohm, Significance of Electromagnetic Potentials in the Quantum Theory, Phys. Rev, vol.115, issue.3, pp.485-491, 1959.

M. R. Hestenes and E. Stiefel, Methods of Conjugate Gradients for Solving Linear Systems, Journal of Research of the National Bureau of Standards, vol.49, issue.6, pp.409-436, 1952.

, Pour =6nm, le taux de compacité maximal (lorsque la distance interfil d est nulle) est : ( = 6 ) = 0, p.907