Skip to Main content Skip to Navigation

Rôles biologiques de l'histone désacétylase 8 chez le parasite Schistosoma mansoni

Abstract : Schistosoma mansoni is the major parasitic platyhelminth species causing intestinal schistosomiasis, for which around 200 million people are in need of treatment. The schistosome life cycle is complex and includes two hosts: a definitive mammalian host, mainly humans in the case of S. mansoni, and an intermediate snail host. Currently one drug, praziquantel, is the treatment of choice against all species of schistosomes, but tolerant/resistant strains have been isolated in endemic areas following its extensive use in mass treatment programs, as well as in laboratory studies. The need to find new drugs and new treatments is therefore imperative.Lysine deacetylases (KDACs) form a family of enzymes that are conserved in metazoans. They are attractive therapeutic targets in a variety of pathologies, particularly cancer, because they are involved in the regulation of gene transcription and several KDAC inhibitors have already been approved as drugs. Our previous studies identified and characterized three class I KDACS in Schistosoma mansoni: HDAC 1, 3 and 8. Invalidation of the transcription of SmHDAC8 by RNAi led to the impaired survival of the worms after the infection of mice, showing that it is a valid therapeutic target.The analysis of the 3D structure of SmHDAC8 by X-ray crystallography showed that the catalytic domain structure diverges significantly from that of human HDAC8 and this was exploited to identify selective inhibitors that induce apoptosis and death of the worms and are thus lead compounds for the development of novel anti-schistosomal drugs.The precise biological roles of mammalian or schistosomal HDAC8 are unknown and in order to determine why SmHDAC8 knockdown or inhibition causes apoptosis and death it is essential to study the cellular signaling pathways involving SmHDAC8. In the first part of the work described in this thesis, protein partners of SmHDAC8 were characterized by screening a yeast two-hybrid cDNA library and co-immunoprecipitation/mass spectrometry (MS) analysis. SmHDAC8 partners are involved in different processes, included transcriptional and translational regulation, cell cycle, metabolism, DNA repair, proteolysis or protein transport. Among the partners thus identified the schistosome orthologue of the human RhoAGTPase, suggesting that SmHDAC8 may be involved in the modulation of the organization of the cytoskeleton.The second part of the work focused on the interaction between SmHDAC8 and SmRho1. In adult worms and schistosomula S. mansoni, SmHDAC8 interacts with SmRho1 GTPase which is acetylated on lysine K136. Treatment with an SmHDAC8 inhibitor caused massive disruption of the worm and schistosomula actin cytoskeleton. We have also identified two closely related isoforms of SmRho1 (SmRho1.1 and SmRho1.2). By using two heterologous expression systems (the yeast two hybrid assay and Xenopus oocytes), we have demonstrated a specific interaction between SmHDAC8 and SmRho1.1 involving its C-terminal moiety. Our results show that SmHDAC8 is potentially involved in cytoskeleton organization via its interaction with the SmRho1.1 isoform.
Document type :
Complete list of metadatas

Cited literature [408 references]  Display  Hide  Download
Contributor : Abes Star :  Contact
Submitted on : Thursday, January 16, 2020 - 9:22:09 AM
Last modification on : Wednesday, October 14, 2020 - 4:14:46 AM
Long-term archiving on: : Friday, April 17, 2020 - 1:11:27 PM


Version validated by the jury (STAR)


  • HAL Id : tel-02441679, version 1



Lucile Pagliazzo. Rôles biologiques de l'histone désacétylase 8 chez le parasite Schistosoma mansoni. Médecine humaine et pathologie. Université du Droit et de la Santé - Lille II, 2018. Français. ⟨NNT : 2018LIL2S018⟩. ⟨tel-02441679⟩



Record views


Files downloads