A. Grübler, Transitions in energy use, Encycl. Energy, vol.6, pp.163-177, 2004.

, Internation Energy Agency. Key world energy statistics 2018, 2018.

C. R. Milani, Les pays émergents dans l'actuel ordre mondial : changements et légitimité politique, Rev. Int. Strat, vol.82, p.52, 2011.

N. Unies, World population prospects the 2017 revision, vol.II, 2017.

T. R. Covert, M. Greenstone, and C. R. Knittel, Will we ever stop using fossil fuels?, J. Econ. Perspect, vol.30, pp.117-138, 2016.

J. Murray and D. King, Climate Change: Oil's tipping point has passed, Nature, vol.481, pp.433-435, 2012.

B. M. Tabak and D. O. Cajueiro, Are the crude oil markets becoming weakly efficient over time? A test for time-varying long-range dependence in prices and volatility, Energy Econ, vol.29, pp.28-36, 2007.

, IPCC. Global warming of 1.5°C, 2018.

O. Boucher, P. Friedlingstein, B. Collins, and K. P. Shine, The indirect global warming potential and global temperature change potential due to methane oxidation, Environ. Res. Lett, vol.4, 2009.

K. Haustein, A real-time global warming index, Sci. Rep, vol.7, pp.1-6, 2017.

P. Pfleiderer, C. Schleussner, M. Mengel, and J. Rogelj, Global mean temperature indicators linked to warming levels avoiding climate risks, Environ. Res. Lett, vol.13, pp.3-7, 2018.

H. Kurihara, Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates, Mar. Ecol. Prog. Ser, vol.373, pp.275-284, 2008.

I. Nagelkerken and S. D. Connell, Global alteration of ocean ecosystem functioning due to increasing human CO2 emissions, Proc. Natl. Acad. Sci, vol.112, pp.13272-13277, 2015.

J. Garciá-molinos, Climate velocity and the future global redistribution of marine biodiversity, Nat. Clim. Chang, vol.6, pp.83-88, 2016.

R. A. Betts, Changes in climate extremes, river flows and vulnerability to food insecurity projected at 1.5°C and 2°C global warming with a higher-resolution global climate model, Philos. Trans. R. Soc, vol.376, pp.1-27, 2018.

, 21ème Conférence des Parties, 2015.

S. Chu and A. Majumdar, Opportunities and challenges for a sustainable energy future, Nature, vol.488, pp.294-303, 2012.

N. Bento, La transition vers une économie de l'hydrogène : infrastructures et changement technique, 2010.

. Afhypac, Développons l'Hydrogène pour l'économie française, 2018.

G. W. Crabtree, M. S. Dresselhaus, and M. V. Buchanan, The hydrogen economy, Phys. Today, vol.39, p.45, 2004.

J. M. Ogden, Prospects for hydrogen in the future energy system, 2018.

P. P. Edwards, V. L. Kuznetsov, W. I. David, and N. P. Brandon, Hydrogen and fuel cells: Towards a sustainable energy future, Energy Policy, vol.36, pp.4356-4362, 2008.

, Comparison of fuel cell technologies, 2016.

L. Dubau, A review of PEM fuel cell durability: materials degradation, local, Chem. B, vol.103, pp.6978-6983, 1999.
URL : https://hal.archives-ouvertes.fr/hal-01418285

I. Ermanoski, K. Pelhos, W. Chen, J. S. Quinton, and T. E. Madey, Oxygen-induced nano-faceting of Ir(210), Surf. Sci, vol.549, pp.1-23, 2004.

I. Ermanoski, C. Kim, S. P. Kelty, and T. E. Madey, Atomic structure of O/Ir(210) nanofacets, Surf. Sci, vol.596, pp.89-97, 2005.

P. Kaghazchi, T. Jacob, I. Ermanoski, W. Chen, and T. E. Madey, First-principles studies on oxygen-induced faceting of Ir(210), ACS Nano, vol.2, pp.1280-1288, 2008.

K. A. Soliman, F. C. Simeone, and L. A. Kibler, Electrochemical behaviour of nanofaceted Ir(210), Electrochem. commun, vol.11, pp.31-33, 2009.

K. A. Soliman, D. M. Kolb, L. A. Kibler, and T. Jacob, Restructuring of an Ir(210) electrode surface by potential cycling, Beilstein J. Nanotechnol, vol.5, pp.1349-1356, 2014.

J. Bessot, Dépôts par pulvérisation cathodique, 1985.

A. Billard and F. Perry, Pulvérisation cathodique magnétron, 2005.

L. Bosio, R. Cortès, G. Folcher, and M. Oumezine, Dispositif d'étude des surfaces solides ou liquides par réflexion spéculaire des rayons, X. Rev. Phys. Appliquée, vol.20, pp.437-443, 1985.

J. Rivoal and C. Fretigny, Microscopie à force atomique (AFM), 2005.

G. Binning, H. Rohrer, C. Gerber, and E. Weibel, Surface study by scanning tunneling microscopy, Phys. Rev, vol.49, pp.57-61, 1982.

F. Salvan, Microscopie par effet tunnel, 1989.

J. P. Ibe, On the electrochemical etching of tips for scanning tunneling microscopy, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film, vol.8, pp.3570-3575, 1990.

F. Louchet, J. Verger-gaugry, J. Thibault-desseaux, and . Guyot-pierre, Microscopie électronique en transmission, 1988.

P. Malacrida, Alloys of Pt and rare earths for the oxygen electroreduction reaction, 2014.

S. Motoo and N. Furuya, Electrochemistry of iridium single crystal surfaces, J. Electroanal. Chem, vol.197, pp.209-218, 1986.

S. Motoo and N. Furuya, Hydrogen and oxygen adsorption on Ir

, J. Electroanal. Chem, vol.167, pp.309-315, 1984.

J. Augustynski, M. Koudelka, J. Sanchez, and B. E. Conway, ESCA study of the state of iridium and oxygen in electrochemically and thermally formed iridium oxide films, J. Electroanal. Chem, vol.160, pp.233-248, 1984.

H. Y. Hall and P. M. Sherwood, X-ray photoelectron spectroscopic studies of the iridium electrode system, J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases, vol.80, pp.135-152, 1984.

J. Mozota and B. E. Conway, Surface and bulk processes at oxidized iridium electrodes-I. Monolayer stage and transition to reversible multilayer oxide film behaviour, Electrochim. Acta, vol.28, pp.1-8, 1983.

B. E. Conway and J. Mozota, Surface and bulk processes at oxidized iridium electrodes-II. Conductivity-switched behaviour of thick oxide films, Electrochim. Acta, vol.28, pp.9-16, 1983.

E. J. Frazer and R. Woods, The oxygen evolution reaction on cycled iridium electrodes, J. Electroanal. Chem, vol.102, pp.127-130, 1979.

H. N. Nong, L. Gan, E. Willinger, D. Teschner, and P. Strasser, IrOx core-shell nanocatalysts for cost-and energy-efficient electrochemical water splitting, Chem. Sci, vol.5, pp.2955-2963, 2014.

C. Spöri, J. T. Kwan, A. Bonakdarpour, D. P. Wilkinson, and P. Strasser, The stability challenges of oxygen evolving catalysts: Towards a common fundamental understanding and mitigation of catalyst degradation, Angew. Chemie -Int. Ed, vol.56, pp.5994-6021, 2017.

C. Roy, Trends in activity and dissolution on RuO2 under oxygen evolution conditions: particles versus well-defined extended surfaces, ACS Energy Lett, vol.3, pp.2045-2051, 2018.

J. Diard, B. Le-gorrec, C. Montella, and . Cinétique-Électrochimique, , 1996.

A. S. Bandarenka, Exploring the interfaces between metal electrodes and aqueous electrolytes with electrochemical impedance spectroscopy, Analyst, vol.138, pp.5540-5554, 2013.

S. C. Creason, J. W. Hayes, and D. E. Smith, Fourier transform faradaic admittance measurements III. Comparison of measurement efficiency for various test signal waveforms, J. Electroanal. Chem, vol.47, pp.9-46, 1973.

J. Hazi, Microcomputer-based instrumentation for multi-frequency Fourier transform alternating current (admittance and impedance) voltammetry, J. Electroanal. Chem, vol.437, pp.1-15, 1997.

M. J. Walters, Weak adsorption of anions on gold: Measurement of partial charge transfer using Fast Fourier Transform electrochemical impedance spectroscopy, J. Electroanal. Chem, vol.499, pp.48-60, 2001.

A. M. Bond, R. J. O'halloran, I. Ruzic, and D. E. Smith, Cyclic voltammetry: A digital simulation study of the slow scan limit condition for a reversible electrode process, J. Electroanal. Chem, vol.90, pp.381-388, 1978.

R. J. Schwall, A. M. Bond, and D. E. Smith, On-line Fast Fourier Transform Faradaic admittance measurements: Real-time deconvolution of heterogeneous charge transfer kinetic effects for thermodynamic and analytical measurements, Anal. Chem, vol.49, pp.1805-1812, 1977.

M. E. Van-der-geest, N. J. Dangerfield, and D. A. Harrington, An ac voltammetry study of Pt oxide growth, J. Electroanal. Chem, vol.420, pp.89-100, 1997.

D. A. Harrington, Ac voltammetry for measurement of surface kinetics, J. Electroanal. Chem, vol.335, pp.21-35, 1993.

G. A. Ragoisha and A. S. Bondarenko, Potentiodynamic electrochemical impedance spectroscopy. Copper underpotential deposition on gold

, Electrochem. commun, vol.5, pp.392-395, 2003.

G. A. Ragoisha and A. S. Bondarenko, Potentiodynamic electrochemical impedance spectroscopy of silver on platinum in underpotential and overpotential deposition, Surf. Sci, vol.566, issue.568, pp.315-320, 2004.

G. A. Ragoisha and A. S. Bondarenko, Potentiodynamic electrochemical impedance spectroscopy, Electrochim. Acta, vol.50, pp.1553-1563, 2005.

R. L. Sacci and D. A. Harrington, Dynamic electrochemical impedance spectroscopy, Electrochem. Soc, vol.19, pp.31-42, 2009.

R. L. Sacci, F. Seland, and D. A. Harrington, Dynamic electrochemical impedance spectroscopy, for electrocatalytic reactions, Electrochim. Acta, vol.131, pp.13-19, 2014.

J. E. Garland, C. M. Pettit, and D. Roy, Analysis of experimental constraints and variables for time resolved detection of Fourier transform electrochemical impedance spectra, Electrochim. Acta, vol.49, pp.2623-2635, 2004.

N. Danilovic, Activity-stability trends for the oxygen evolution reaction on monometallic oxides in acidic environments, J. Phys. Chem. Lett, vol.5, pp.2474-2478, 2014.

O. Kasian, J. P. Grote, S. Geiger, S. Cherevko, and K. J. Mayrhofer, The common intermediates of oxygen evolution and dissolution reactions during water electrolysis on iridium, Angew. Chemie -Int. Ed, vol.57, pp.2488-2491, 2018.

V. A. Saveleva, Operando evidence for a universal oxygen evolution mechanism on thermal and electrochemical iridium oxides, J. Phys. Chem. Lett, vol.9, pp.3154-3160, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02360209

J. Augustynski, M. Koudelka, J. Sanchez, and B. E. Conway, ESCA study of the state of iridium and oxygen in electrochemically and thermally formed iridium oxide films, J. Electroanal. Chem, vol.160, pp.233-248, 1984.

H. Y. Hall and P. M. Sherwood, X-ray photoelectron spectroscopic studies of the iridium electrode system, J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases, vol.80, pp.135-152, 1984.

J. Mozota and B. E. Conway, Surface and bulk processes at oxidized iridium electrodes-I. Monolayer stage and transition to reversible multilayer oxide film behaviour, Electrochim. Acta, vol.28, pp.1-8, 1983.

E. J. Frazer and R. Woods, The oxygen evolution reaction on cycled iridium electrodes, J. Electroanal. Chem, vol.102, pp.127-130, 1979.

B. E. Conway and J. Mozota, Surface and bulk processes at oxidized iridium electrodes-II. Conductivity-switched behaviour of thick oxide films, Electrochim. Acta, vol.28, pp.9-16, 1983.

S. Cherevko, S. Geiger, O. Kasian, A. Mingers, and K. J. Mayrhofer, Oxygen evolution activity and stability of iridium in acidic media

, J. Electroanal. Chem, vol.773, pp.69-78, 2016.

S. Cherevko, S. Geiger, O. Kasian, A. Mingers, and K. J. Mayrhofer, Oxygen evolution activity and stability of iridium in acidic media. Part 2. -Electrochemically grown hydrous iridium oxide, J. Electroanal. Chem, vol.774, pp.102-110, 2016.

E. Özer, C. Spöri, T. Reier, P. Strasser, and . Iridium,

, Ruthenium(0001) single crystals as model catalysts for the oxygen evolution reaction: insights into the electrochemical oxide formation and electrocatalytic activity, ChemCatChem, vol.8, pp.1-8, 2017.

A. S. Bandarenka, Exploring the interfaces between metal electrodes and aqueous electrolytes with electrochemical impedance spectroscopy, Analyst, vol.138, pp.5540-5554, 2013.

S. C. Creason, J. W. Hayes, and D. E. Smith, Fourier transform faradaic admittance measurements III. Comparison of measurement efficiency for various test signal waveforms, J. Electroanal. Chem, vol.47, pp.9-46, 1973.

D. E. Smith, The Acquisition of electrochemical response spectra by on-line Fast Fourier Transform: Data processing in electrochemistry, Anal. Chem, vol.48, pp.221-240, 1976.

R. J. Schwall, A. M. Bond, and D. E. Smith, On-line Fast Fourier Transform Faradaic admittance measurements: Real-time deconvolution of heterogeneous charge transfer kinetic effects for thermodynamic and analytical measurements, Anal. Chem, vol.49, pp.1805-1812, 1977.

A. M. Bond, R. J. O'halloran, I. Ruzic, and D. E. Smith, Cyclic voltammetry: A digital simulation study of the slow scan limit condition for a reversible electrode process, J. Electroanal. Chem, vol.90, pp.381-388, 1978.

R. J. O'halloran, J. C. Schaar, and D. E. Smith, Rapid drop time on-line Fast Fourier Transform Faradaic admittance measurements, Anal. Chem, vol.50, pp.1073-1079, 1978.

J. Hazi, Microcomputer-based instrumentation for multi-frequency Fourier transform alternating current (admittance and impedance) voltammetry, J. Electroanal. Chem, vol.437, pp.1-15, 1997.

M. J. Walters, Weak adsorption of anions on gold: Measurement of partial charge transfer using Fast Fourier Transform electrochemical impedance spectroscopy, J. Electroanal. Chem, vol.499, pp.48-60, 2001.

M. E. Van-der-geest, N. J. Dangerfield, and D. A. Harrington, An ac voltammetry study of Pt oxide growth, J. Electroanal. Chem, vol.420, pp.89-100, 1997.

D. A. Harrington, Ac voltammetry for measurement of surface kinetics, J. Electroanal. Chem, vol.335, pp.21-35, 1993.

G. A. Ragoisha and A. S. Bondarenko, Potentiodynamic electrochemical impedance spectroscopy, Electrochim. Acta, vol.50, pp.1553-1563, 2005.

, Potentiodynamic electrochemical impedance spectroscopy of silver on platinum in underpotential and overpotential deposition, Surf. Sci, vol.566, pp.315-320, 2004.

G. A. Ragoisha and A. S. Bondarenko, Potentiodynamic electrochemical impedance spectroscopy. Copper underpotential deposition on gold

, Electrochem. commun, vol.5, pp.392-395, 2003.

J. E. Garland, C. M. Pettit, and D. Roy, Analysis of experimental constraints and variables for time resolved detection of Fourier transform electrochemical impedance spectra, Electrochim. Acta, vol.49, pp.2623-2635, 2004.

G. A. Ragoisha, Characterisation of the electrochemical redox behaviour of Pt electrodes by potentiodynamic electrochemical impedance spectroscopy, J. Solid State Electrochem, vol.14, pp.531-542, 2010.

C. M. Pettit, P. C. Goonetilleke, and D. Roy, Measurement of diffrential capacitance for faradaic systems under potentiodaynamic conditions: considerations of Fourier transform and phase-selective techniques, J. Electroanal. Chem, vol.589, pp.219-231, 2006.

R. L. Sacci and D. A. Harrington, Dynamic electrochemical impedance spectroscopy, Electrochem. Soc, vol.19, pp.31-42, 2009.

R. L. Sacci, F. Seland, and D. A. Harrington, Dynamic electrochemical impedance spectroscopy, for electrocatalytic reactions, Electrochim. Acta, vol.131, pp.13-19, 2014.

K. Darowicki, S. Krakowiak, and P. ?lepski, Evaluation of pitting corrosion by means of dynamic electrochemical impedance spectroscopy, Electrochimica Acta, vol.49, pp.2909-2918, 2004.

S. Krakowiak, K. Darowicki, and P. Slepski, Impedance investigation of passive 304 stainless steel in the pit pre-initiation state, Electrochim. Acta, vol.50, pp.2699-2704, 2005.

H. Gerengi, K. Darowicki, G. Bereket, and P. Slepski, Evaluation of corrosion inhibition of brass-118 in artificial seawater by benzotriazole using Dynamic EIS, Corros. Sci, vol.51, pp.2573-2579, 2009.

M. Darab, P. K. Dahlstrøm, M. S. Thomassen, F. Seland, and S. Sunde, Dynamic electrochemical impedance spectroscopy of Pt/C-based membrane-electrode assemblies subjected to cycling protocols, J. Power Sources, vol.242, pp.447-454, 2013.

T. Pajkossy, L. A. Kibler, and D. M. Kolb, Voltammetry and impedance measurements of Ir(111) electrodes in aqueous solutions, J. Electroanal. Chem, vol.582, pp.69-75, 2005.

, Chapitre 3 | Etude de l'OER sur Ir

S. Motoo and N. Furuya, Electrochemistry of platinum single crystal surfaces. Part I. Structural change of the Pt (111) surface followed by an electrochemical method

, J. Electroanal. Chem, vol.172, pp.339-358, 1984.

S. Motoo and N. Furuya, Hydrogen and oxygen adsorption on Ir (111), (100) and (110) planes, J. Electroanal. Chem, vol.167, pp.309-315, 1984.

S. Motoo and N. Furuya, Effect of anions on hydrogen and oxygen adsorption on iridium single cyrstal surfaces, J. Electroanal. Chem, vol.181, pp.301-305, 1984.

L. Wan, M. Hara, J. Inukai, and K. Itaya, In situ scanning tunneling microscopy of well-defined Ir(111) surface: high-resolution imaging of adsorbed sulfate, J. Phys. Chem. B, vol.103, pp.6978-6983, 1999.

J. Diard, B. Le-gorrec, &. Montella, C. Montero-ocampo, and C. , Calculation, simulation and interpretation of electrochemical impedance diagrams Part IV. Second-order electrochemical impedances, J. Electroanal. Chem. Elsevier Sequoia S.A, vol.352, pp.1-15, 1993.

E. Sibert, R. Faure, and R. Durand, High frequency impedance measurements on Pt(111) in sulphuric and perchlorique acids, J. Electroanal. Chem, vol.515, pp.71-81, 2001.

M. H. Martin and A. Lasia, Influence of experimental factors on the constant phase element behavior of Pt electrodes, Electrochim. Acta, vol.56, pp.8058-8068, 2011.

V. M. Huang, .. Vivier, V. Frateur, I. Orazem, M. E. Tribollet et al., The global and local impedance response of a blocking disk electrode with local constant-phaseelement behavior, J. Electrochem. Soc, vol.154, pp.89-98, 2007.

G. J. Brug, A. L. Van-den-eeden, M. Sluyters-rehbach, and J. Sluyters, The analysis of electrode impedances complicated by the presence of a constant phase element, J. Electroanal. Chem, vol.176, pp.275-295, 1984.

S. Gottesfeld and S. Srinivasan, Electrochemical and optical studies of thick oxide layers on iridium and their electrocatalytic activities for the oxygen evolution reaction, J. Electroanal. Chem, vol.86, pp.89-104, 1978.

S. J. Freakley, J. Ruiz-esquius, and D. J. Morgan, The X-ray photoelectron spectra of Ir, IrO2 and IrCl3 revisited, Surf. Interface Anal, vol.49, pp.794-799, 2017.

V. Pfeifer, The electronic structure of iridium oxide electrodes active in water splitting, Phys. Chem. Chem. Phys, vol.18, pp.2292-2296, 2016.

M. Peuckert, XPS study on thermally and electrochemically prepared oxidic Chapitre 3 | Etude de l'OER sur Ir(111) par EIS et DEIS 133 | adlayers on iridium, Surf. Sci, vol.144, pp.451-464, 1984.

V. I. Birss, C. Bock, and H. Elzanowska, Hydrous Ir oxide films: the mechanism of the anodic prepeak reaction, Can. J. Chem, vol.75, pp.1687-1693, 1997.

D. Whelan and L. D. Burke, A voltammetric investigation of the charge storage reactions of hydrous iridium oxide layers, J. Electroanal. Chem, vol.162, pp.121-141, 1984.

S. Geiger, Activity and stability of electrochemically and thermally treated iridium for the oxygen evolution reaction, J. Electrochem. Soc, vol.163, pp.3132-3138, 2016.

V. Pfeifer, In situ observation of reactive oxygen species forming on oxygenevolving iridium surfaces, Chem. Sci, vol.8, pp.2143-2149, 2017.

K. B. Oldham and N. P. Stevens, Uncompensated resistance. 2. The effect of reference electrode nonideality, Anal. Chem, vol.72, pp.3981-3988, 2000.

V. Pfeifer, Reactive oxygen species in iridium-based OER catalysts, Chem. Sci, vol.7, pp.6791-6795, 2016.

Y. T. Kim, Balancing activity, stability and conductivity of nanoporous coreshell iridium/iridium oxide oxygen evolution catalysts, Nat. Commun, vol.8, pp.1-8, 2017.

H. N. Nong, A unique oxygen ligand environment facilitates water oxidation in hole-doped IrNiOx core-shell electrocatalysts, Nat. Catal, vol.1, pp.841-851, 2018.

J. Diard, B. Le-gorrec, C. Montella, and . Cinétique-Électrochimique, , 1996.

T. Li, Atomic-scale insights into surface species of electrocatalysts in three dimensions, Nat. Catal, vol.1, pp.300-305, 2018.

O. Kasian, S. Geiger, K. J. Mayrhofer, and S. Cherevko, Electrochemical on-line ICP-MS in electrocatalysis research, Chem. Rec, vol.18, pp.1-14, 2018.

P. Jovanovi?, Electrochemical dissolution of iridium and iridium oxide particles in acidic media: transmission electron microscopy, electrochemical flow cell coupled to inductively coupled plasma mass spectrometry, and X-ray absorption spectroscopy study, J. Am. Chem. Soc, vol.139, pp.12837-12846, 2017.

S. Geiger, The stability number as a metric for electrocatalyst stability benchmarking, Nat. Catal, vol.1, pp.508-515, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02390894

J. P. Meyers, M. Doyle, R. M. Darling, and J. Newman, The impedance response of a porous electrode composed of intercalation particles, J. Electrochem. Soc, vol.147, p.2930, 2000.

, Chapitre 3 | Etude de l'OER sur Ir

D. Silva, L. A. Alves, V. A. Da-silva, M. A. Trasatti, S. Boodts et al., Oxygen evolution in acid solution on IrO2 + TiO2 ceramic films. A study by impedance, voltammetry and SEM, Electrochim. Acta, vol.42, pp.271-281, 1997.

J. O. Bockris, The electrocatalysis of oxygen evolution on perovskites, J. Electrochem. Soc, vol.131, pp.290-302, 1984.

A. Krasil'shchikov, Intermediate stages in the anodic evolution of oxygen, Zh. Fiz. Khim, vol.37, p.531, 1963.

E. Fabbri, A. Habereder, K. Waltar, R. Kötz, and T. J. Schmidt, Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction, Catalysis Science and Technology, vol.4, pp.3800-3821, 2014.

E. Rasten, G. Hagen, and R. Tunold, Electrocatalysis in water electrolysis with solid polymer electrolyte, Electrochim. Acta, vol.48, pp.3945-3952, 2003.

, Bibliographie 1

R. Tunold, Materials for electrocatalysis of oxygen evolution in PEM water electrolysis cells, 2010.

P. Millet, Electrochemical performances of PEM water electrolysis cells and perspectives, Int. J. Hydrogen Energy, vol.36, pp.4134-4142, 2011.

T. Reier, M. Oezaslan, and P. Strasser, Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and pt catalysts: A comparative study of nanoparticles and bulk materials, ACS Catal, vol.2, pp.1765-1772, 2012.

L. B. Hunt, A history of iridium, Platin. Met. Rev, vol.31, pp.32-41, 1987.

S. P. Chen and A. F. Voter, Reconstruction of the (310), (210) and (110) surfaces in fcc metals, Surf. Sci. Lett, vol.244, pp.107-112, 1991.

I. Ermanoski, K. Pelhos, W. Chen, J. S. Quinton, and T. E. Madey, Oxygen-induced nano-faceting of Ir(210), Surf. Sci, vol.549, pp.1-23, 2004.

I. Ermanoski, C. Kim, S. P. Kelty, and T. E. Madey, Atomic structure of O/Ir(210) nanofacets, Surf. Sci, vol.596, pp.89-97, 2005.

P. Kaghazchi, T. Jacob, I. Ermanoski, W. Chen, and T. E. Madey, First-principles studies on oxygen-induced faceting of Ir(210), ACS Nano, vol.2, pp.1280-1288, 2008.

K. A. Soliman, F. C. Simeone, and L. A. Kibler, Electrochemical behaviour of nanofaceted Ir(210), Electrochem. commun, vol.11, pp.31-33, 2009.

P. Kaghazchi, F. C. Simeone, K. A. Soliman, L. A. Kibler, and T. Jacob, Bridging the gap between nanoparticles and single crystal surfaces, Faraday Discuss, vol.140, pp.69-80, 2008.

K. A. Soliman, D. M. Kolb, L. A. Kibler, and T. Jacob, Restructuring of an Ir(210) electrode surface by potential cycling, Beilstein J. Nanotechnol, vol.5, pp.1349-1356, 2014.

S. Motoo and N. Furuya, Electrochemistry of iridium single crystal surfaces, J. Electroanal. Chem, vol.197, pp.209-218, 1986.

L. Wan, M. Hara, J. Inukai, and K. Itaya, In situ scanning tunneling microscopy of well-defined Ir(111) surface: high-resolution imaging of adsorbed sulfate, J. Phys. Chem. B, vol.103, pp.6978-6983, 1999.

, Chapitre 4 | Etude de la formation et dissolution des oxydes sur monocristaux d'iridium | 162

A. Ganassin, On the pH dependence of the potential of maximum entropy of Ir(111) electrodes, Sci. Rep, vol.7, 2017.

T. Senna, N. Ikemiya, and M. Ito, In situ IRAS and STM of adsorbate structures on an Ir(111) electrode in sulfuric acid electrolyte, J. Electroanal. Chem, vol.511, pp.115-121, 2001.

S. Cherevko, S. Geiger, O. Kasian, A. Mingers, and K. J. Mayrhofer, Oxygen evolution activity and stability of iridium in acidic media

, J. Electroanal. Chem, vol.773, pp.69-78, 2016.

S. Gottesfeld and S. Srinivasan, Electrochemical and optical studies of thick oxide layers on iridium and their electrocatalytic activities for the oxygen evolution reaction, J. Electroanal. Chem, vol.86, pp.89-104, 1978.

J. Augustynski, M. Koudelka, J. Sanchez, and B. E. Conway, ESCA study of the state of iridium and oxygen in electrochemically and thermally formed iridium oxide films, J. Electroanal. Chem, vol.160, pp.233-248, 1984.

H. Y. Hall and P. M. Sherwood, X-ray photoelectron spectroscopic studies of the iridium electrode system, J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases, vol.80, pp.135-152, 1984.

J. Mozota and B. E. Conway, Surface and bulk processes at oxidized iridium electrodes-I. Monolayer stage and transition to reversible multilayer oxide film behaviour, Electrochim. Acta, vol.28, pp.1-8, 1983.

E. J. Frazer and R. Woods, The oxygen evolution reaction on cycled iridium electrodes, J. Electroanal. Chem, vol.102, pp.127-130, 1979.

B. E. Conway and J. Mozota, Surface and bulk processes at oxidized iridium electrodes-II. Conductivity-switched behaviour of thick oxide films, Electrochim. Acta, vol.28, pp.9-16, 1983.

S. J. Freakley, J. Ruiz-esquius, and D. J. Morgan, The X-ray photoelectron spectra of Ir, IrO2 and IrCl3 revisited, Surf. Interface Anal, vol.49, pp.794-799, 2017.

V. Pfeifer, The electronic structure of iridium oxide electrodes active in water splitting, Phys. Chem. Chem. Phys, vol.18, pp.2292-2296, 2016.

A. Minguzzi, Easy accommodation of different oxidation states in Iridium oxide nanoparticles with different hydration degree as water oxidation electrocatalysts, ACS Catal, vol.5, pp.5104-5115, 2015.

R. Kötz, H. J. Lewerenz, P. Brüesch, and S. Stucki, Oxygen evolution on Ru and Ir electrodes. XPS-studies, J. Electroanal. Chem, vol.150, pp.209-216, 1983.

S. Geiger, Activity and stability of electrochemically and thermally treated iridium for the oxygen evolution reaction, J. Electrochem. Soc, vol.163, pp.3132-3138, 2016.

S. Cherevko, S. Geiger, O. Kasian, A. Mingers, and K. J. Mayrhofer, Oxygen evolution activity and stability of iridium in acidic media. Part 2. -Electrochemically grown hydrous iridium oxide, J. Electroanal. Chem, vol.774, pp.102-110, 2016.

R. Ko?z, Anodic iridium oxide films, J. Electrochem. Soc, vol.131, pp.72-77, 1984.

D. Whelan and L. D. Burke, A voltammetric investigation of the charge storage reactions of hydrous iridium oxide layers, J. Electroanal. Chem, vol.162, pp.121-141, 1984.

A. Minguzzi, Observing the oxidation state turnover in heterogeneous iridiumbased water oxidation catalysts, Chem. Sci, vol.5, pp.3591-3597, 2014.

A. Minguzzi, Fixed energy X-ray absorption voltammetry, Anal. Chem, vol.85, pp.7009-7013, 2013.

D. F. Abbott, Iridium oxide for the oxygen evolution reaction: Correlation between particle size, morphology, and the surface hydroxo layer from operando XAS, Chem. Mater, vol.28, pp.6591-6604, 2016.

H. G. Sanchez-casalongue, In situ observation of surface species on iridium oxide nanoparticles during the oxygen evolution reaction, Angew. Chemie -Int

E. , , vol.53, pp.7169-7172, 2014.

V. A. Saveleva, Operando evidence for a universal oxygen evolution mechanism on thermal and electrochemical iridium oxides, J. Phys. Chem. Lett, vol.9, pp.3154-3160, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02360209

F. Claudel, Degradation mechanisms of oxygen evolution reaction electrocatalysts: a combined identical-location transmission electron microscopy and X-ray photoelectron spectroscopy study, ACS Catal, vol.9, pp.4688-4698, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02351878

V. Pfeifer, Reactive oxygen species in iridium-based OER catalysts, Chem. Sci, vol.7, pp.6791-6795, 2016.

A. S. Bondarenko, The Pt(111)/electrolyte interface under oxygen reduction reaction conditions: An electrochemical impedance spectroscopy study, Langmuir, vol.27, pp.2058-2066, 2011.

J. X. Wang, N. M. Markovic, and R. R. Adzic, Kinetic analysis of oxygen reduction on

, Chapitre 4 | Etude de la formation et dissolution des oxydes sur monocristaux d'iridium | 164

, Pt(111) in acid solutions: intrinsic kinetic parameters and anion adsorption effects

, J. Phys. Chem. B, vol.108, pp.4127-4133, 2004.

V. Stamenkovic, N. M. Markovic, and P. N. Ross, Structure-relationships in electrocatalysis: Oxygen reduction and hydrogen oxidation reactions on Pt(111) and Pt(100) in solutions containing chloride ions, J. Electroanal. Chem, vol.500, pp.44-51, 2001.

T. Li, Atomic-scale insights into surface species of electrocatalysts in three dimensions, Nat. Catal, vol.1, pp.300-305, 2018.

O. Kasian, J. P. Grote, S. Geiger, S. Cherevko, and K. J. Mayrhofer, The common intermediates of oxygen evolution and dissolution reactions during water electrolysis on iridium, Angew. Chemie -Int. Ed, vol.57, pp.2488-2491, 2018.

P. Lettenmeier, Nanosized IrOx-Ir catalyst with relevant activity for anodes of proton exchange membrane electrolysis produced by a cost-effective procedure, Angew. Chemie -Int. Ed, vol.127, pp.1-6, 2015.

J. Rossmeisl, A. Logadottir, and J. K. Nørskov, Electrolysis of water on (oxidized) metal surfaces, Chem. Phys, vol.319, pp.178-184, 2005.

V. Pfeifer, In situ observation of reactive oxygen species forming on oxygenevolving iridium surfaces, Chem. Sci, vol.8, pp.2143-2149, 2017.

S. Fierro, T. Nagel, H. Baltruschat, and C. Comninellis, Investigation of the oxygen evolution reaction on Ti/IrO2 electrodes using isotope labelling and on-line mass spectrometry, Electrochem. commun, vol.9, pp.1969-1974, 2007.

S. Geiger, The stability number as a metric for electrocatalyst stability benchmarking, Nat. Catal, vol.1, pp.508-515, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02390894

A. Grimaud, W. Dachraoui, M. Duchamp, M. Doublet, and J. Tarascon, Activation of surface oxygen sites on an iridium-base model catalyst for the oxygen evolution reaction, vol.16189, pp.1-8, 2017.

A. Grimaud, Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution, Nat. Chem, vol.9, pp.457-465, 2017.

H. N. Nong, A unique oxygen ligand environment facilitates water oxidation in hole-doped IrNiOx core-shell electrocatalysts, Nat. Catal, vol.1, pp.841-851, 2018.

N. Danilovic, Activity-stability trends for the oxygen evolution reaction on monometallic oxides in acidic environments, J. Phys. Chem. Lett, vol.5, pp.2474-2478, 2014.

, Chapitre 4 | Etude de la formation et dissolution des oxydes sur monocristaux d'iridium

E. Willinger, C. Massué, R. Schlögl, and M. G. Willinger, Identifying key structural features of IrOx water splitting catalysts, J. Am. Chem. Soc, vol.139, pp.12093-12101, 2017.

M. Lopez-haro, Atomic-scale structure and composition of Pt3Co/C nanocrystallites during real PEMFC operation: A STEM-EELS study, Appl. Catal. B Environ, pp.300-308, 2014.

L. Gan, M. Heggen, S. Rudi, and P. Strasser, Core-shell compositional fine structures of dealloyed PtxNi1-x nanoparticles and their impact on oxygen reduction catalysis, Nano Lett, vol.12, pp.5423-5430, 2012.

L. Dubau, Tuning the performance and the stability of porous hollow PtNi/C nanostructures for the oxygen reduction reaction, ACS Catal, vol.5, pp.5333-5341, 2015.

T. Asset, Structure-activity relationships for the oxygen reduction reaction in porous hollow PtNi/C nanoparticles, vol.3, pp.1591-1600, 2016.

H. N. Nong, L. Gan, E. Willinger, D. Teschner, and P. Strasser, IrOx core-shell nanocatalysts for cost-and energy-efficient electrochemical water splitting, Chem. Sci, vol.5, pp.2955-2963, 2014.

J. Lim, Shaped Ir-Ni bimetallic nanoparticles for minimizing Ir utilization in oxygen evolution reaction, Chem. Commun, vol.52, pp.5641-5644, 2016.

F. Godínez-salomón, Self-supported hydrous Iridium-Nickel oxide twodimensional Nanoframes for high activity oxygen evolution electrocatalysts, ACS Catal, vol.8, pp.10498-10520, 2018.

S. M. Alia, S. Shulda, C. Ngo, S. Pylypenko, and B. S. Pivovar, Iridium-based nanowires as highly active, oxygen evolution reaction electrocatalysts, ACS Catal, vol.8, pp.2111-2120, 2018.

A. T. Marshall, S. Sunde, M. Tsypkin, and R. Tunold, Performance of a PEM water electrolysis cell using IrxRuyTazO2 electrocatalysts for the oxygen evolution electrode, Int. J. Hydrogen Energy, vol.32, pp.2320-2324, 2007.

J. M. Roller, Oxygen evolution during water electrolysis from thin films using bimetallic oxides of Ir-Pt and Ir-Ru, J. Electrochem. Soc, vol.160, pp.716-730, 2013.

Y. T. Kim, Balancing activity, stability and conductivity of nanoporous coreshell iridium/iridium oxide oxygen evolution catalysts, Nat. Commun, vol.8, pp.1-8, 2017.

L. Trotochaud, J. K. Ranney, K. N. Williams, and S. W. Boettcher, Solution-cast metal oxide thin film electrocatalysts for oxygen evolution, J. Am. Chem. Soc, vol.134, p.17261, 2012.

E. Lugscheider, C. Barimani, C. Wolff, S. Guerreiro, and G. Doepper, Comparison of the structure of PVD-thin films deposited with different deposition energies, Surf. Coatings Technol, pp.177-183, 1996.

S. J. Freakley, J. Ruiz-esquius, and D. J. Morgan, The X-ray photoelectron spectra of Ir, IrO2 and IrCl3 revisited, Surf. Interface Anal, vol.49, pp.794-799, 2017.

V. Pfeifer, The electronic structure of iridium oxide electrodes active in water splitting, Phys. Chem. Chem. Phys, vol.18, pp.2292-2296, 2016.

A. P. Grosvenor, M. C. Biesinger, R. S. Smart, and N. Mcintyre, New interpretations of XPS spectra of nickel metal and oxides, Surf. Sci, vol.600, pp.1771-1779, 2006.

H. W. Nesbitt, D. Legrand, and G. M. Bancroft, Interpretation of Ni2p XPS spectra of Ni conductors and Ni insulators, Phys. Chem. Miner, vol.27, pp.357-366, 2000.

T. Reier, M. Oezaslan, and P. Strasser, Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and pt catalysts: A comparative study of nanoparticles and bulk materials, ACS Catal, vol.2, pp.1765-1772, 2012.

S. Cherevko, S. Geiger, O. Kasian, A. Mingers, and K. J. Mayrhofer, Oxygen evolution activity and stability of iridium in acidic media

, J. Electroanal. Chem, vol.773, pp.69-78, 2016.

J. Mozota and B. E. Conway, Surface and bulk processes at oxidized iridium electrodes-I. Monolayer stage and transition to reversible multilayer oxide film behaviour, Electrochim. Acta, vol.28, pp.1-8, 1983.

B. Beverskog and I. Puigdomenech, Revised Pourbaix Diagrams for Nickel at 25°C-300°C, Corrosion Science, vol.39, 1997.

E. Özer, Ir-Ni bimetallic OER catalysts prepared by controlled Ni electrodeposition on Irpoly and Ir(111), Surfaces, vol.1, pp.165-186, 2018.

T. Reier, Molecular insight in structure and activity of highly efficient, low-Ir Ir-Ni oxide catalysts for electrochemical water splitting (OER), J. Am. Chem. Soc, vol.137, pp.13031-13040, 2015.

S. M. Alia, K. E. Hurst, S. S. Kocha, and B. S. Pivovar, Mercury underpotential deposition to determine iridium and iridium oxide electrochemical surface areas

, J. Electrochem. Soc, vol.163, pp.3051-3056, 2016.

V. Pfeifer, Reactive oxygen species in iridium-based OER catalysts, Chem. Sci, vol.7, pp.6791-6795, 2016.

A. Minguzzi, Observing the oxidation state turnover in heterogeneous iridiumbased water oxidation catalysts, Chem. Sci, vol.5, pp.3591-3597, 2014.

S. Cherevko, S. Geiger, O. Kasian, A. Mingers, and K. J. Mayrhofer, Oxygen evolution activity and stability of iridium in acidic media. Part 2. -Electrochemically grown hydrous iridium oxide, J. Electroanal. Chem, vol.774, pp.102-110, 2016.

A. Minguzzi, Easy accommodation of different oxidation states in Iridium oxide nanoparticles with different hydration degree as water oxidation electrocatalysts, ACS Catal, vol.5, pp.5104-5115, 2015.

A. Minguzzi, Fixed energy X-ray absorption voltammetry, Anal. Chem, vol.85, pp.7009-7013, 2013.

O. Kasian, S. Geiger, K. J. Mayrhofer, and S. Cherevko, Electrochemical on-line ICP-MS in electrocatalysis research, Chem. Rec, vol.18, pp.1-14, 2018.

O. Kasian, J. P. Grote, S. Geiger, S. Cherevko, and K. J. Mayrhofer, The common intermediates of oxygen evolution and dissolution reactions during water electrolysis on iridium, Angew. Chemie -Int. Ed, vol.57, pp.2488-2491, 2018.

S. Geiger, The stability number as a metric for electrocatalyst stability benchmarking, Nat. Catal, vol.1, pp.508-515, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02390894

P. Jovanovi?, Electrochemical dissolution of iridium and iridium oxide particles in acidic media: transmission electron microscopy, electrochemical flow cell coupled to inductively coupled plasma mass spectrometry, and X-ray absorption spectroscopy study, J. Am. Chem. Soc, vol.139, pp.12837-12846, 2017.

V. Pfeifer, In situ observation of reactive oxygen species forming on oxygenevolving iridium surfaces, Chem. Sci, vol.8, pp.2143-2149, 2017.

S. Geiger, Activity and stability of electrochemically and thermally treated iridium for the oxygen evolution reaction, J. Electrochem. Soc, vol.163, pp.3132-3138, 2016.

C. E. Carlton, S. Chen, P. J. Ferreira, L. F. Allard, and Y. Shao-horn, Sub-nanometerresolution elemental mapping of 'Pt3Co' nanoparticle catalyst degradation in proton-exchange membrane fuel cells, J. Phys. Chem. Lett, vol.3, pp.161-166, 2012.

J. Durst, Reversibility of Pt-skin and Pt-skeleton nanostructures in acidic media

, J. Phys. Chem. Lett, vol.5, pp.434-439, 2014.

, Chapitre 5 | Vers la conception de catalyseurs Ni@Ir

L. Dubau, Durability of Pt3Co/C cathodes in a 16 cell PEMFC stack: Macro/microstructural changes and degradation mechanisms, J. Electrochem

. Soc, , vol.157, p.1887, 2010.

S. Fierro, T. Nagel, H. Baltruschat, and C. Comninellis, Investigation of the oxygen evolution reaction on Ti/IrO2 electrodes using isotope labelling and on-line mass spectrometry, Electrochem. commun, vol.9, pp.1969-1974, 2007.

H. N. Nong, A unique oxygen ligand environment facilitates water oxidation in hole-doped IrNiOx core-shell electrocatalysts, Nat. Catal, vol.1, pp.841-851, 2018.