. .. Microsonde-de-castaing, 79 2.2.3 Microscope électronique à balayage, p.80

. .. Ebsd), 80 2.2.5 Microscope électronique à transmission, Diffraction des électrons rétrodiffusés, p.81

, Système de mesure des propriétés électriques, p.85

.. .. Conclusion,

, Dans ce contexte, une attention particulière a été portée sur l'élaboration de films cohérents ultraminces (< 8nm) de nitrure de niobium. Toutefois, la description des limites du procédé et son optimisation a révélé que le procédé recèle un formidable potentiel pour répondre à une grande variété de besoins en films minces épitaxiés et supraconducteurs. L'étude bibliographique a permis d'exposer la complexité du système Nb-N. Il présente 9 phases polymorphiques toutes issues de structures cubiques ou hexagonales. Elles s'obtiennent par l'introduction de défauts lacunaires ordonnés. Ces phases sont pour la plupart supraconductrices, mais la phase cubique face centrée Fm-3m ?-NbN possède les meilleures caractéristiques supraconductrices du système (T c = 17 K) et a été la phase d'intérêt de cette étude. Le système Nb-N est non stoechiométrique et plusieurs phases existent sous de grandes plages de composition. Ces phases sont composées de défauts lacunaires statistiques. Le ?-NbN x en particulier, L'objectif de cette thèse visait à développer une nouvelle voie d'élaboration des films de nitrure de niobium monocristallins par la technique de dépôt chimique en phase vapeur. L'application finale visée est la détection de photons uniques

. Le-?-nbn, Sa très faible longueur de cohérence (? 5 nm) permet son utilisation en couche ultra-mince. Le matériau est un supraconducteur de type II avec une longueur de pénétration ?, pp.170-370

, Le ?-NbN est polyvalent. Il peut former une solution solide de substitution avec différents métaux de, Le matériau est donc adapté aux applications qui requièrent l'utilisation de champs magnétiques

, Le ?-NbN est un matériau aux propriétés supraconductrices très variables

, Cette disparité des résultats observés dans la littérature a motivé l'étude des relations entre les caractéristiques structurales et les propriétés supraconductrices des films. La possibilité de former des films épitaxiés de très haute qualité cristalline a permis de s'affranchir de plusieurs artefacts provenant de la présence d'autres phases ou de polycristaux, cette étude, les mécanismes d'épitaxie du NbN ont été observés, discutés et modélisés. Une étude phénoménologique couplant des analyses de structure (DRX, TEM, EBSD) et de surface (MEB, AFM) a été réalisée

É. Dans-cette, il a été démontré la possibilité d'épitaxier la phase ?-NbN sur un substrat ?-Al 2 O 3 orienté selon l'axe c. Les analyses effectuées par MET Bibliographie

D. Gerstenberg and P. M. Hall, Superconducting thin films of niobium, tantalum, tantalum nitride, tantalum carbide, and niobium nitride, Journal of the Electrochemical Society, vol.111, issue.8, pp.936-942, 1964.

M. Jogueta, W. Lengauera, M. Bohnb, and J. Bauerc, Hightemperature reactive phase formation in the nb-n system, Journal of Alloys and Compounds, vol.269, pp.233-237, 1998.

N. N. Iosad, V. V. Roddatis, S. N. Polyakov, A. V. Varlashkin, B. D. Jackson et al., Superconducting transition metal nitride films for THz SIS mixers, IEEE Trans. App. Superconductivity, vol.11, issue.1, pp.3832-3835, 2001.

L. Yu, R. K. Singh, H. Liu, S. Y. Wu, R. Hu et al., Fabrication of niobium titanium nitride thin films with high superconducting transition temperatures and short penetration lengths, IEEE Transactions on Applied Superconductivity, vol.15, issue.1, pp.44-48, 2015.

M. J. Sowa, Y. Yemane, J. Zhang, J. C. Palmstrom, L. Ju et al., Plasma-enhanced atomic layer deposition of superconducting niobium nitride, Journal of Vacuum Science and Technology A : Vacuum, Surfaces, and Films, vol.35, issue.1, pp.1-9, 2017.

G. Oya and Y. Onodera, Transition temperatures and crystal structures of singlecrystal and polycrystalline NbN x films, Journal of applied physics, vol.45, issue.3, pp.1389-1397, 1974.

W. J. Skocpol and M. Tinkham, Fluctuations near superconducting phase transitions. Reports on Progress in physics, vol.38, pp.1049-1097, 1975.

X. Chen and Z. Jiao, Nonhomogeneous pressure effects on T c in HgBa 2 Ca 2 Cu 3 O 8+?, Physica C, vol.291, pp.249-256, 1997.

J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theory of superconductivity, Physical Review, vol.108, issue.5, pp.1176-1204, 1957.

D. Hazra, N. Tsavdaris, S. Jebari, A. Grimm, F. Blanchet et al., Superconducting properties of very high quality NbN thin films grown by high temperature chemical vapor deposition, Superconductor Science and Technology, vol.29, pp.1-5, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01451259

Y. Guo, Y. F. Zhang, X. Y. Bao, T. Z. Han, Z. Tang et al.,

. Xue, Superconductivity modulated by quantum size effects, Science, vol.306, 1915.

E. Maxwell, Isotope effect in the superconductivity of mercury, American Physical Society, vol.78, p.477, 1950.

L. Favre, Propriétés structurales et magnétiques d'agrégats mixtes Co x Pt 1?x et CoAg. Effets de proximité et blocage de Coulomb via un agrégat isolé, 2002.

W. Meissner and R. Ochsenfeld, Ein neuer effekt bei eintritt der supraleitfahigkeit, Naturwissenschaften, vol.21, issue.44, pp.787-788, 1933.

A. Gurevich, Enhancement of rf breakdown field of superconductors by multilayer coating, Applied Physics Letters, vol.88, pp.1-3, 2006.

D. E. Oates and A. C. Anderson, Surface-impedance measurements of superconducting NbN films, Physical Review B, vol.43, issue.10, pp.7655-7663, 1991.

P. Mangin, R. Kahn, and . Supraconductivité, Introduction. EDP Science, 2013.

D. Dew-hughes, Superconducting A-15 compounds : a review, Cryogenics, vol.15, issue.8, pp.435-454, 1975.

R. J. Cava, Superconductors beyond 1-2-3, Scientific American, vol.263, issue.2, pp.42-49, 1990.

R. J. Cava, Oxide superconductors, Journal of the American Ceramic Society, vol.83, issue.1, pp.5-28, 2000.

S. P. Chockalingam, M. Chand, J. Jesudasan, V. Tripathi, and P. Raychaudhuri, Superconducting properties and hall effect of epitaxial NbN thin films, Physical Review B, vol.77, pp.1-8, 2008.

A. Gurevich, Maximum screening fields of superconducting multilayer structures, vol.5, pp.1-7, 2015.

B. T. Matthias, Transition temperatures of superconductors, Physical Review, vol.92, issue.4, pp.874-876, 1953.

N. Pessall, R. E. Gold, and H. A. Johansen, A study of superconductivity in interstitial compounds, Journal of Physics and Chemistry of Solids, vol.29, pp.19-38, 1968.

I. R. Gomersall and B. L. Gyorffy, On the connection between high superconducting transition temperature, Tc, and lattice instability in transition metal compounds : NbN, Journal of Physics F : Metal physics, vol.3, pp.138-144, 1973.

I. Holzman and Y. Ivry, Superconducting nanowires for single-photon detection : progress, challenges, and opportunities, Advanced Quantum Technologies, vol.2, pp.1-28, 2019.

A. T. Fiory and A. F. Hebard, Electron mobility, conductivity, and superconductivity near the metal-insulator transition, Physical Review Letters, vol.52, issue.23, pp.2057-2060, 1984.

Y. Noat, V. Cherkez, C. Brun, T. Cren, C. Carbillet et al., Unconventional superconductivity in ultrathin superconducting NbN films studied by scanning tunneling spectroscopy, Physical Review B, vol.88, pp.1-9, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01233579

B. Sacépé, C. Chapelier, T. I. Baturina, V. M. Vinokur, M. R. Baklanov et al., Disorder-induced inhomogeneities of the superconducting state close to the superconductor-insulator transition, Physical Review Letters, vol.101, issue.157006, pp.1-4, 2008.

H. Moreira, Confinement quantique dans les nanocristaux supraconducteurs et transport électronique dans les réseaux de nanocristaux métalliques, 2009.

A. Shoji, Fabrication of all-NbN Josephson tunnel junctions using single crystal NbN films for the base electrodes, IEE Transaction on Magnetics, vol.27, issue.2, pp.3184-3187, 1991.

W. R. Mcgrath, J. A. Stern, H. H. Javadi, S. R. Cypher, B. D. Hunt et al., Performance of NbN superconductive tunnel junctions as SiS wixer at 205 GHz, IEEE Transaction on Magnetics, vol.27, issue.2, pp.2650-2653, 1991.

G. Vernet, J. C. Henaux, and R. Adde, The josephson self-oscillator mixer as a submillimeter and far-infrared detector, IEEE Transactions on Microwave Theory and Techniques, issue.6, pp.473-476, 1977.

J. R. Tucker and M. J. Feldrnan, Quantum detection at millimeter wavelengths, Reviews of modern physics, vol.57, issue.4, pp.1055-1113, 1985.

J. R. Tucker, Predicted conversion gain in superconductor-insulatorsuperconductor quasiparticle mixers, Applied Physics Letters, vol.36, issue.6, pp.477-479, 1980.

A. Grassellino, A. Romanenko, D. Sergatskov, O. Melnychuk, Y. Trenikhina et al., Nitrogen and argon doping of niobium for superconducting radio frequency cavities : a pathway to highly efficient accelerating structures, Superconductor Science and Technology, vol.26, pp.1-6, 2013.

F. Weiss, C. Jimenez, S. Pignard, M. Benz, E. Blanquet et al., Chemical vapor deposition techniques for the multilayer coating of superconducting RF cavities, Proceedings of SRF2013, pp.635-637, 2013.

G. N. Gol&apos;tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov et al., Picosecond superconducting single-photon optical detector, Physics Letters, vol.79, issue.6, pp.705-707, 2001.

Q. Guo, H. Li, L. You, W. Zhang, L. Zhang et al., Single photon detector with high polarization sensitivity, Sientific Reports, vol.5, issue.9616, pp.1-5, 2015.

J. J. Renema, R. Gaudio, Q. Wang, Z. Zhou, A. Gaggero et al., Experimental test of theories of the detection mechanism in a nanowire superconducting single photon detector, Physical Review Letters, vol.112, pp.1-5, 2014.

E. F. Driessen, F. R. Braakman, E. M. Reiger, S. N. Dorenbos, V. Zwiller et al., Impedance model for the polarizationdependent optical absorption of superconducting single-photon detectors, European Physical Journal Applied Physics, vol.47, pp.1-6, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00483310

A. Engel, J. J. Renema, K. , and A. Semenov, Detection mechanism of superconducting nanowire single-photon detectors, Superconductor Science and Technology, vol.28, pp.1-22, 2015.

Y. Cheng, C. Gu, and X. Hu, Inhomogeneity-induced timing jitter of superconducting nanowire single-photon detectors, Applied Physics Letters, vol.111, pp.1-5, 2017.

Q. Zhao, L. Zhang, T. Jia, L. Kang, W. Xu et al., Intrinsic timing jitter of superconducting nanowire single-photon detectors, Applied Physics B, vol.104, pp.673-678, 2011.

A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio et al., Reset dynamics and latching in niobium superconducting nanowire single-photon detectors, Journal of Applied Physics, vol.108, issue.084507, pp.1-7, 2010.

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. Yang, K. K. Berggren et al., Kinetic-inductance-limited reset time of superconducting nanowire photon counters, Applied Physics Letters, vol.88, pp.1-3, 2006.

R. Arpaia, M. Ejrnaes, L. Parlato, F. Tafuri, R. Cristiano et al., Hightemperature superconducting nanowires for photon detection, Physica C, 2014.

M. Ejrnaes, L. Parlato, R. Arpaia, T. Bauch, F. Lombardi et al., Observation of dark pulses in 10 nm thick YBCO nanostrips presenting hysteretic current voltage characteristics, 2017.

K. Smirnov, A. Divochiy, Y. Vakhtomin, P. Morozov, P. Zolotov et al., NbN single-photon detectors with saturated dependence of quantum efficiency, Superconductor Science and Technology, vol.31, issue.035011, pp.1-8, 2018.

W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv et al., Nbn superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature, Science China : Physics, Mechanics, vol.60, issue.12, pp.120314-120324, 2017.

W. J. Zhang, X. Y. Yang, H. Li, L. X. You, C. L. Lv et al., Fiber-coupled superconducting nanowire single-photon detectors integrated with a bandpass filter on the fiber end-face, Superconductor Science and Technology, vol.31, issue.035012, pp.1-8, 2018.

B. A. Korzh, Q. Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry et al., Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector. arXiv, pp.1804-06839, 2018.

J. Huang, W. Zhang, L. You, C. Zhang, C. Lv et al., High speed superconducting nanowire single-photon detector with nine interleaved nanowires, Superconductor Science and Technology, vol.31, issue.074001, pp.1-7, 2018.

L. Del-giudice, S. Adjama, D. L. Grange, O. Banakhb, A. Karimi et al., NbTiN thin films deposited by hybrid HiPIMS/DC magnetron co-sputtering, Surface and Coatings Technology, vol.295, pp.99-106, 2016.

M. Benkahoul, E. Martinez, A. Karimi, R. Sanjinés, and F. Lévy, Structural and mechanical properties of sputtered cubic and hexagonal NbN x thin films, Surface and Coatings Technology, vol.180, pp.178-183, 2004.

C. S. Sandu, M. Benkahoul, M. Parlinska-wojtan, R. Sanjinés, and F. Lévy, Morphological, structural and mechanical properties of NbN thin films deposited by reactive magnetron sputtering, Surface and Coating Technology, vol.200, pp.6544-6548, 2006.

L. Hiltunen, M. Leskelä, M. Mäkelä, L. Niinistö, and P. Soininen, Nitride of titanium, niobium, tantalum and molybdenum grown as thin films by the atomic layer epitaxy method, Thin Solide Films, vol.166, pp.149-154, 1988.

Y. Ohashi, T. Motohashi, Y. Masubuchi, and S. Kikkawa, Crystal structure and superconductive characteristics of Nb 0.89 A l0.11 oxynitrides, Journal of Solid State Chemistry, vol.183, pp.1710-1714, 2010.

Y. Ohashi, S. Kikkawa, I. Felner, M. I. Tsindlekht, D. Venkateshwarlu et al., Superconductivity in quaternary niobium oxynitrides containing main group elements (M=Mg, Al, Si), Journal of Solid State Chemistry, vol.188, pp.66-71, 2012.

R. E. Treece, J. S. Horwitz, D. B. Chrisey, E. P. Donovan, and S. , Qadri. Pulsed laser ablation synthesis of NbN x (0 < x < 1.3) thin films, Chemistry of Materials, vol.6, pp.2205-2207, 1994.

N. Terao, New phases of niobium nitride, Journal of the Less-Common Metals, vol.23, pp.59-68, 1971.

G. I. Oya and Y. Onodera, Preparation of single-crystalline NbN and Nb 4 N 5 films, Japanese Journal of Applied Physics, vol.10, pp.1485-1486, 1971.

V. I. Ivashchenko, P. E. Turchi, and E. I. Olifan, Phase stability and mechanical properties of niobium nitrides, Physical Review B, vol.82, issue.054109, pp.1-9, 2010.

R. Sanjinés, M. Benkahoul, M. Papagno, and F. Lévy, Electronic structure of Nb 2 N and NbN thin films, Journal of Applied Physics, vol.99, issue.044911, pp.1-5, 2006.

R. E. Treece, M. S. Osofsky, E. F. Skelton, S. B. Qadri, J. S. Horwitz et al., New phase of superconducting NbN stabilized by heteroepitaxial film growth, Physical Review B, vol.51, issue.14, pp.9356-9359, 1995.

S. Ögüt and K. M. Rabe, Polymorphism and metastability in NbN : Structural predictions from first principles, Physical Review B, vol.52, issue.12, pp.8585-8588, 1995.

N. Terao, Structure des nitrures de niobium, Japanese Journal of Applied Physics, vol.4, issue.5, pp.353-367, 1965.

R. E. Treece, J. S. Horwitz, S. B. Qadri, E. F. Skelton, E. P. Donovan et al., Metastable nitride synthesis by pulsed laser deposition : a new phase in the NbN x system, Journal of Solid State Chemistry, vol.117, pp.294-299, 1995.

A. I. Gusev, A. A. Rempel, and A. J. Magerl, Disorder and Order in Strongly Nonstoichiometric Compounds, Materials Science, vol.47, 2001.

A. I. Gusev and A. A. , Phase diagrams of metal-carbon and metal-nitrogen systems and ordering in strongly nonstoichiometric carbides and nitrides, Pysica Status Solidi, vol.163, pp.273-304, 1997.

W. Huang, Thermodynamic assessment of the Nb-N system. Metallurgical and Materials Transactions A, vol.27, pp.3591-3600, 1996.

W. Lengauer, M. Bohn, B. Wollein, and K. Lisak, Phase reactions in the Nb-N system below 1400°C, Acta Materialia, vol.48, pp.2633-2638, 2000.

G. Brauer, Nitride, carbonitrides and oxynitrides of niobium, Journal of the Less-Common Metals, vol.2, pp.131-137, 1960.

G. Von, W. Brauer, and . Kern, Zersetrungsdrucke und phasengrenzen von niobnitriden, Z. Anorg. Allg. Chem, vol.507, pp.127-141, 1983.

G. Von, W. Brauer, and . Kern, Gezielte praparation von niobnitridphasen, Z. Anorg. Allg. Chem, vol.512, pp.7-12, 1984.

T. H. Geballe, B. T. Matthias, J. P. Remeika, A. M. Clogston, V. B. Compton et al., High temperature SP-Band superconductors, Physics, vol.2, issue.6, pp.293-310, 1966.

G. Von, D. H. Brauer, and . Kirner, Drucksynthese von niobnitriden und konstitution von s-nbn. Zeitschrift fur anorganische und allgemeine Chemie, vol.328, pp.34-43, 1964.

A. V. Linde, R. M. Marin-ayral, D. Granier, F. Bosc-rouessac, and V. V. Grachev, Synthesis of cubic niobium nitride by reactive diffusion under nitrogen pressure, Materials Research Bulletin, vol.44, pp.1025-1030, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00595650

G. Horn and E. Saur, Präparation und supraleitungseigenschaften von niobnitrid sowie niobnitrid mit titan-, zirkon-und tantalzusatz. Zeitschrift für Physik, vol.210, pp.70-79, 1968.

J. Spitz, J. Chevallier, and A. Aubert, Propriétés et structrure des couches minces de nitrure de niobium élaborées par pulvérisation cathodique réactive, Journal of the Less-Common Metals, vol.35, pp.181-192, 1974.

W. Lengauer and P. Ettmayer, Preparation and properties of compact cubic ?-NbN 1?x . Monatshefte flit Chemic, vol.117, pp.275-286, 1986.

A. Nigro, G. Nobile, V. Palmieri, G. Rubino, and R. Vaglio, Superconducting and normal state properties of niobium-nitride thin films, Physica Scripta, vol.38, pp.483-485, 1988.

E. K. Storms, A. L. Giorgi, and E. G. Szklary, Atom vacancies and their effects on the properties of NbN containing carbon, oxygen or boron-II, Journal of Physics and Chemistry of Solids, vol.36, pp.689-694, 1974.

S. P. Chockalingam, M. Chand, A. Kamlapure, J. Jesudasan, A. Mishra et al., Tunneling studies in a homogeneously disordered s-wave superconductor : NbN, Physical Review B, vol.79, issue.094509, pp.1-5, 2009.

T. Shiino, S. Shiba, N. Sakai, T. Yamakura, L. Jiang et al., Improvement of the critical temperature of superconducting NbTiN and NbN thin films using the AlN buffer layer, Superconductor Sci. Tech, vol.23, issue.045004, pp.1-5, 2010.

H. W. Chang, C. L. Wang, Y. R. Huang, T. J. Chen, and M. J. Wang, Growth and characterization of few unit-cell NbN superconducting films on 3C-SiC/Si substrate, Superconductor Sci. Tech, vol.30, pp.1-7, 2017.

S. Miki, M. Takeda, M. Fujiwara1, M. Sasaki1, A. Otomo et al., Superconducting NbTiN nanowire single photon detectors with low kinetic inductance, Applied Physics Express, vol.2, issue.075002, pp.1-3, 2009.

G. Jouve, C. Séverac, and S. Cantacuzéne, XPS study of NbN and (NbTi)N superconducting coatings, Thin Solid Films, vol.287, pp.146-153, 1996.

R. P. Frankenthal, D. J. Siconolfi, W. R. Sinclair, and D. D. Bacon, Thermal oxidation of niobium nitride films at temperatures from 20°-400°C, Journal of Electrochemical Society, vol.130, issue.10, pp.2056-2060, 1983.

V. G. Brauer and R. Esselborn, Oxonitride des niobs. Zeitschrift fur Anorganische und Allgemeine Chemie, vol.308, pp.52-61, 1961.

B. A. Gurovich, K. E. Prihod&apos;ko, M. A. Tarkhov, E. A. Kuleshova, D. A. Komarov et al., The use of ion irradiation for converting superconducting thin-film NbN into niobium oxide Nb 2 O 5, Nanotechnologies in Russia, vol.10, issue.7-8, pp.530-536, 2015.

P. K. Gallagher, W. R. Sinclair, D. D. Bacon, and G. W. Kammlott, Oxidation of sputtered niobium nitride films, Journal of the Electrochemical Society, vol.130, issue.10, pp.2054-2056, 1983.

S. Krause, V. Afanas&apos;ev, V. Desmaris, D. Meledin, A. Pavolotsky et al., Ambient temperature growth of mono-and polycrystalline NbN nanofilms and their surface and composition analysis, IEEE Transactions on Applied Superconductivity, vol.26, issue.3, 2016.

P. Duwez and F. Odell, Phase relationships in the binary systems of nitrides and carbides of zirconium, columbium, titanium, and vanadium, Journal of the Electrochemical Society, vol.97, issue.10, pp.299-304, 1950.

Y. Ohashi, T. Motohashi, Y. Masubuchi, T. Moriga, K. Murai et al., Preparation, crystal structure , and superconductive characteristics of new oxynitrides (Nb 1?x M x )(N 1?y O y ) where M=Mg, Si,and x?y, Journal of Solid State Chemistry, vol.184, pp.2061-2065, 2011.

R. D. Leo, A. Nigro, G. Nobile, and R. Vaglio, Niobium-titanium nitride thin films for superconducting RF accelerator cavities, Journal of Low Temperature Physics, vol.78, pp.41-50, 1990.

N. Tsavdaris, D. Harza, S. Coindeau, G. Renou, F. Robaut et al., A chemical vapor deposition route to epitaxial superconducting NbTiN thin films, Chemistry of Materials, vol.29, pp.5824-5830, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01656288

L. Zhang, W. Peng, L. X. You, and Z. Wang, Superconducting properties and chemical composition of NbTiN thin films with different thickness, Applied Physics Letters, vol.107, pp.1-4, 2015.

K. Makise, H. Terai, M. Takeda, Y. Uzawaa, and Z. Wang, Characterization of NbTiN thin films deposited on various substrates, IEEE Transaction on Applied Superconductivity, vol.21, issue.3, pp.139-142, 2011.

T. L. Francavilla, S. A. Wolf, and E. F. Skelton, Superconducting properties of reactively sputtered NbCN thin films, IEEE Transaction on Magnetics, vol.17, issue.1, pp.569-572, 1981.

E. J. Cukauskas, The effects of methane in the deposition of superconducting niobium nitride thin films at ambient substrate temperature, Journal of Applied Physics, vol.54, issue.2, pp.1013-1017, 1998.

D. D. Bacon, A. T. English, S. Nakahara, F. G. Peters, H. Schreiber et al., Properties of NbN thin films deposited on ambient temperature substrates, Journal of Applied Physics, vol.54, issue.11, pp.6509-6516, 1983.

R. E. De-lamaëstre, P. Odier, and J. C. Villégier, Microstructure of NbN epitaxial ultrathin films grown on A-, M-, and R-plane sapphire, Applied Physics Letters, vol.91, pp.1-3, 2007.

A. Shoji, S. Kiryu, and S. Kohjiro, Epitaxial growth of NbN and NbC x N 1?x films on 3C-SiC film-covered Si wafers, IEEE Trans. App. Superconductivity, vol.5, issue.2, pp.2396-2399, 1995.

S. Bedorf, P. Munoz, T. Tils, C. E. Honingh, and K. Jacobs, Development of phonon-cooled NbTiN heb heterodyne mixers for GREAT, 16th International Symposium on Space Terahertz Technology, p.16, 2005.

B. V. , Kinetics and mechanism of thermal decomposition of GaN, Thermochimica Acta, vol.360, pp.85-91, 2000.

L. B. Freund and S. Suresh, Thin Film Materials : Stress, Defect Formation and Surface Evolution, 2004.

C. H. Hsueh, Thermal stresses in elastic multilayer systems, Thin Solid Films, vol.418, pp.182-188, 2002.

H. L. Ho, R. T. Kampwirth, K. E. Grayand, D. W. Capone, and L. S. Chumbley, Electron microscopy study of sputtered NbN films, Ultramicroscopy, vol.22, pp.297-304, 1987.

A. Nigro, G. Nobile, M. G. Rubino, and R. Vaglio, Electrical resistivity of polycrystalline niobium nitride films, Phys. Review B, vol.37, issue.8, pp.3970-3972, 1988.

S. Anderbouhr, Depot chimique en phase vapeur de couches minces de (Ti,Al)N à composition variable, 1999.

E. Blanquet and F. Schuster, Traitement de surface en phase vapeurchap. 4 depot chimique en phase vapeur, 2002.

J. Desmaison, C. Tixier, and P. Tristant, Traitement de surface en phase vapeur -chap. 5 depot chimique en phase vapeur assiste par plasma ou laser, 2002.

A. Claudel, Elaboration et caracterisation de couches de nitrure d'aluminium AlN par CVD haute temperature en chimie chlorée, 2009.

K. J. Sladek, The role of homogeneous reactions in chemical vapor deposition, Journal of the Electrochemical Society, vol.118, issue.4, pp.654-657, 1971.

J. Su, R. Boichot, E. Blanquet, F. Mercier, and M. Pons, Chemical vapor deposition of titanium nitride thin films : kinetics and experiments, CrystEngComm, pp.1-8, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02315144

W. A. Bryant, The fundamentals of chemical vapour deposition, Journal of Materials Science, vol.12, issue.7, pp.1285-1306, 1977.

A. V. Kostanovskii, M. G. Zeodinov, and M. E. Kostanovskaya, The determination of thermal conductivity and emissivity of graphite at high temperatures, High Temperature, vol.43, issue.5, pp.793-795, 2005.

R. Castaing, Application des sondes électroniques à une méthode d'analyse ponctuelle chimique et cristallographique, 1952.

E. F. Rauch and L. Dupuy, Rapid spot diffraction patterns identification through template matching, Archive of Metallurgy and Materials, vol.50, issue.1, pp.88-99, 2005.

J. Ayache, L. Beaunier, J. Boumendil, G. Ehret, and D. Laub, Guide de préparation des échantillons pour la microscopie électronique en transmission, volume Tome II techiques, 2007.

O. Kurnosikov, L. P. Van, and J. Cousty, About anisotropy of atomic-scale height step on (0001) sapphire surface, Surface Science, vol.459, pp.256-264, 2000.

R. Cavallotti, J. Goniakowski, R. Lazzari, J. Jupille, A. Koltsov et al., Role of surface hydroxyl groups on zinc adsorption characteristics on ?-al 2 o 3 (0001) surfaces : First-principles study, Physical Chemistry C, vol.118, pp.13578-13589, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01442822

Y. Shiratsuchi, M. Yamamoto, and Y. Kamada, Surface structure of self-organized sapphire (0001) substrates with various inclined angles, The Japan Society of Applied Physics, vol.41, issue.9, pp.5719-5725, 2002.

E. A. Soares, M. A. Van-hove, C. F. Walters, and K. F. Mccarty, Structure of the ?-al 2 o 3 (0001) surface from low-energy electron diffraction : Al termination and evidence for anomalously large thermal vibrations, Physical Review B, vol.65, pp.1-13, 2002.

O. Braaten, A. Kjekshus, and H. Kvande, The possible reduction of alumina to aluminum using hydrogen, The Journal of The Minerals, Metals and Materials Society, pp.47-48, 2000.

S. Curiotto and D. Chatain, Surface morphology and composition of c-, a-and m-sapphire surfaces in O 2 and H 2 environments, Surface Science, vol.603, pp.2688-2697, 2009.

F. Mercier, S. Coindeau, S. Lay, A. Crisci, M. Benz et al., Niobium nitride thin films deposited by high temperature chemical vapor deposition, Surface and Coatings Technology, vol.260, pp.126-132, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01138859

J. A. Klug, N. G. Becker, N. R. Groll, C. Cao, M. S. Weimer et al., Heteroepitaxy of group IV-VI nitrides by atomic layer deposition, Applied Physics Letters, vol.103, pp.1-4, 2013.

S. J. Lloyd, D. M. Tricker, Z. H. Barber, and M. G. Blamire, Growth of niobium nitride/aluminium nitride trilayers and multilayers. Philosophical Magazine A, vol.81, pp.2317-2335, 2001.

L. Priester, Approche géométrique des joints de grains, vol.15, pp.789-830, 1980.

N. A. Pangarov, On the crystal orientation of electrodeposited metals, Electrochimica Acta, vol.9, pp.721-726, 1964.

J. M. Cabrera-anaya, Growth of zinc whiskers, 2006.
URL : https://hal.archives-ouvertes.fr/tel-01298169

K. Ratter, Epitaxial Rhenium, a clean limit superconductor for superconducting Qbits, 2017.
URL : https://hal.archives-ouvertes.fr/tel-01759239

A. Claudel, V. Fellmanna, I. Gélarda, N. Coudurier, D. Sauvage et al., Influence of the V/III ratio in the gas phase on thin epitaxial AlN layers grown on (0001) sapphire by high temperature hydride vapor phase epitaxy, Thin Solid Films, vol.573, pp.140-147, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01121944

R. Boichot, A. Claudel, N. Baccar, A. Milet, E. Blanquet et al., Epitaxial and polycrystalline growth of aln by high temperature cvd : Experimental results and simulation, Surface and Coatings Technology, vol.205, pp.1294-1301, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01658032

C. Wang, M. Wen, Y. D. Su, L. Xu, C. Q. Qu et al., First-principles calculations on the mechanical properties of niobium nitrides, Solid State Communications, vol.149, pp.725-728, 2009.

R. Boichot, N. Coudurier, F. Mercier, S. Lay, A. Crisci et al., Epitaxial growth of AlN on c-plane sapphire by high temperature hydride vapor phase epitaxy : Influence of the gas phase N/Al ratio and low temperature protective layer, Surface and Coatings Technology, vol.237, pp.118-125, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00935041

C. Engström, J. Birch, L. Hultman, C. Lavoie, C. Cabral et al., Interdiffusion studies of single crystal tin/nbn superlattice thin films, Journal of Vacuum Science and Technology A : Vacuum, Surfaces, and Films, vol.17, issue.5, pp.2920-2927, 1999.