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Résumeé en francais

Contexte général L’objectif de la résolution d'un probléme de diffraction électromagnétique inverse
est de déterminer les caractéristiques d’inhomogénéités inconnues telles que leurs emplacements, formes
ou propriétés matérielles (par exemple, la permittivité, la perméabilité) a partir de données diffractées
collectées pour divers de champs électromagnétiques entrants. La résolution de problémes de diffraction
inverse est considérée comme un sujet de recherche intéressant pour les scientifiques et les ingénieurs,
car le domaine d’utilisation s’étend & de nombreux domaines trés liés & la vie humaine. Nous prenons
quelques exemples, tels que 1’évaluation non destructive (NDE) pour identifier les défauts (ex. vides
internes, objets ou fissures) a l'intérieur d’un pont ou d’un mur, I'imagerie biomédicale pour le diag-
nostic et la détection des accidents cérébrovasculaires et du cancer du sein, le radar de pénétration de
sol (GPR), l'ouverture synthétique radar (SAR) et I'imagerie sismique. Nous nous référons a certains
articles tels (YAMAN, YAKHNO et POTTHAST 2013 ; CHANDRA et al. 2015) pour plus d’investigations
des applications de tels problémes. Par conséquent, résoudre les problémes de diffraction inverse pose
de grands défis afin de développer toujours plus de nouveaux outils et techniques. Malheureusement,
il est difficile de les résoudre en raison du caractére mal posé et de la non-linéarité.

Au cours des derniéres décennies, diverses techniques d’inversion ont été développées pour résoudre
des problémes de diffraction inverse en surmontant 'inhérent caractére mal-posé et cette non-linéarité.
Elles peuvent étre classées en méthodes quantitatives et qualitatives en fonction de leur objectif. Le but
des méthodes quantitatives est de reconstruire la distribution de paramétres de matériaux tels que la
permittivité, la perméabilité, etc. L’objectif des méthodes qualitatives est de fournir des informations
sur le support des inhomogénéités, c’est-a-dire des formes, des emplacements et, dans le cas d’objets
multiples, également leur nombre.

Premiérement, ’approche générale pour résoudre les problémes de diffraction inverse dans les métho-
des quantitatives est basée sur un schéma d’itération de type Newton, c’est-a-dire 'obtention de la
solution minimisant une norme discréte (généralement norme L?) entre problémes de diffraction directe
et adjointe (fonction cott). Par exemple, la valeur du contraste x est estimée en résolvant une équation
intégrale non-linéaire a chaque étape d’'une méthode itérative de Born distordue et la densité de courant
induite J est en sus estimée en résolvant des équations intégrales de type source & chaque étape
d’une méthode d’inversion de contraste de source. Nous pouvons aussi faire référence 4 une méthode
d’ensembles de niveaux, & des techniques de reconstruction sous contrainte de parcimonie, etc. Mais
pour une application réussie de tels schémas itératifs, il faut tenir compte des points suivants :

(i) des cotits de calcul importants, en particulier une évaluation complexe du gradient (par exemple,

dérivée de Fréchet ou dérivée de domaine) est nécessaire a chaque pas d’itération,

(ii) le probléme de non-convergence et de minima locaux se pose, puisque la fonction coiit n’est pas

convexe,

(iii) une régularisation en tant que sélection de termes de régularisation appropriés qui dépendent de

X1
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maniére significative du probléme en question est requise,
(iv) des a priori sur les inhomogénéités inconnues sont nécessaires pour garantir la convergence.

Deuxiémement, les méthodes qualitatives, connues sous le nom de techniques d’inversion non itérative
ou en une étape, évitent de traiter le probléme dans sa non-linéarité entiére et considérent un modéle
mathématique simplifié avec un coiit de calcul inférieur. De plus, aucune information a priori sur
les inhomogénéités inconnues n’est requise. En raison de ces avantages, diverses techniques ont été
étudiées et appliquées avec succés & de nombreux problémes de diffraction inverse. Par exemple, afin
de fournir une image des inhomogénéités & partir de données diffractées, la classification multiple des
signaux (acronyme anglais MUSIC) caractérise le rang d’un opérateur auto-adjoint et le sous-espace
de bruit est orthogonal a ce rang; la méthode d’échantillonnage linéaire (LSM) consiste quant & elle
a résoudre approximativement I’équation intégrale de champ en chaque point de recherche dans la
région d’intérét ; les techniques de type migration (par exemple, migration de Kirchhoff, migration de
sous-espace, migration en retournement en temps) consistent a rétro-propager les champs incidents
et/ou observés complexes conjugués dans le milieu d’enfouissement. De telles techniques nécessitent
un nombre suffisamment grand de directions d’incidence et d’observation pour pouvoir visualiser cor-
rectement les inhomogénéités. Malheureusement, la configuration & pleine ouverture est impossible
dans diverses applications réelles telles que GPR (CATAPANO, SOLDOVIERI et CROCCO 2011), SAR
(T. ZHANG et XIA 2015) et I'imagerie sismique (XUE et al. 2015). Par conséquent, il est naturel de
développer une méthode qualitative alternative qui soit efficace avec un petit nombre de directions

d’incidence ou d’observation.

Obijet de la théese La méthode d’échantillonnage direct (DSM) est considérée dans divers problémes
de diffraction électromagnétique inverse 2D et 3D dans cette thése. Contrairement aux méthodes non
itératives existantes (telles que MUSIC, LSM et techniques de migration), la DSM n’a besoin que de
quelques champs d’incidence pour visualiser les inhomogénéités. De plus, elle est assez rapide car ne
nécessite aucune opération supplémentaire, telle qu'une décomposition en valeurs singuliéres ou une
projection, et elle est trés tolérante au bruit. La fonction indicatrice de la DSM a chaque point de
recherche est définie par le produit intérieur L? du champ diffracté (ou diagramme de champ lointain)
et de la fonction de test liée aux récepteurs. Plus précisément, la combinaison de la structure du champ
diffracte dispersé et de I'identité de Kirchhoff-Helmholtz implique que la fonction indicatrice peut étre
représentée par la partie imaginaire de la fonction de Green de ’équation de Helmholtz dans le cas
scalaire et de la fonction de Green dyadique des équations en régime harmonique de Maxwell dans le
cas vectoriel. Ainsi, les inhomogénéités peuvent étre reconstruites via la carte rue duite par la de DSM.

Depuis le développement de la DSM par (ITO, JIN et J. Zou 2012), sa faisabilité et sa robustesse
pour I'imagerie d’inhomogénéités ont été validées dans divers problémes de diffraction. Par exemple, le
probléme de mesure en champ lointain (L1 et Z. ZoU 2013), le cas électromagnétique tridimensionnel
(ITo, JiNn et J. Zou 2013), I'imagerie de fissures (W.-K. PARK 2018b), le probléme électrique transverse
(W.-K. PARK 2019b). Nous nous référons également a (CHOW, ITO et J. Zou 2014), (CHOW, ITO, K.
L1u et al. 2015) et & (BEKTAS et OZDEMIR 2016) pour les applications de la DSM a la tomographie
par impédance électrique, a la tomographie optique par diffusion et & I'imagerie radar mono-statique,
respectivement. Mais les limites de DSM ne peuvent pas étre expliquées par les résultats de tels travaux

aussi avancés. Par exemple :
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(i) la plus petite inhomogénéité est difficile a identifier s’il existe plusieurs inhomogénéités de tailles
différentes dans la région d’intérét, un phénomeéne similaire étant observé en présence de défauts
de méme taille mais de permittivités différentes,

(ii) l'imagerie via la DSM avec des données mono-statiques fournit une localisation erronée de l'in-
homogénéité,

(iii) la DSM multi-fréquence n’est pas efficace pour 'imagerie de petites inhomogénéités multiples,
(iv) les performances d’imagerie ne changent pas significativement par rapport au nombre total de
directions d’incidence,

(v) les inhomogénéités ne peuvent pas étre visualisées par la DSM dans le cas 3D (champ diffracté
vectoriel) si la polarisation de la fonction de test incorrecte est utilisée.

Pour expliquer les raisons de ces limitations, nous analysons la structure de la DSM en utilisant la

formule asymptotique de champ diffracté (ou diagramme de champ lointain) dans I'hypothése de faible

volume des inhomogénéités.

Probléme direct de diffraction électromagnétique et sa formule asymptotique (§ 2) Dans le cha-
pitre 2, nous présentons les résultats bien connus et/ou déja dérivés du probléme de diffraction électro-
magnétique directe dans diverses configurations 2D (cas de champ scalaire en mode TM) et 3D (cas de
champ vectoriel). Pour la fréquence considérée fj, nous supposons que les données électromagnétiques
diffractées générées par chaque source dipolaire y; € Tine, I = 1,2,--- , L sont collectées par les
récepteurs X, € Iops, n = 1,2,-+- | N, ou I'gps and Ty sont simplement des surfaces connectées (ou
courbes) dans R? d = 2,3. De maniére analogue, les diagrammes de champ lointain électromagnétique
sont mesurés avec les directions d’observation %, € S?, n = 1,2,--- , N pour chaque direction d’inci-
dence d; € S! en cas scalaire 2D et chaque direction de la source y; € S?, [ = 1,2,--- , L dans le cas
vectoriel 3D. Nous supposons également qu’il existe un nombre fini d’inhomogénéités dans la région
d’intérét supposée homogene et isotrope (ROI) © avec la permittivité de fond eg, la perméabilité pg
et le nombre d’onde kg. Ici, chaque inhomogénéité est notée 7,,, = ry, + @Dy € R?, d = 2,3. r,, est
le centre, a;, est la taille et D,, caractérise la forme de 7,,,. Notons 7 la collection de 7,,, c’est-a-dire,
7 = U, 7m- Sous I'hypothése de faibles volumes de toutes les inhomogénéités afin de négliger leurs
interactions, nous introduisons les formules asymptotiques du champ diffracté et du diagramme de
champ lointain dans les configurations 2D et 3D, formules qui jouent un role clé dans notre analyse de

structure.

Imagerie 2D d’inhomogénéités diélectriques avec données compléetes et a champ proche (§ 3)
Tout d’abord, nous étudions la DSM dans une configuration & vue compléte. Grace & notre analyse,
il peut étre montré que pour chaque point de recherche z € 2 et champ d’incidence fixé d, la DSM

posséde la formule de représentation suivante :
Ipsm(z, d; ko) Z 02, (em — £0) Dy 097 3o (kolz — 11,

ol Jg est la fonction de Bessel de premiére espéce et d’ordre zéro. Ensuite, il apparait que les perfor-
mances de la fonction d’indicateur DSM en matiére d’imagerie dépendent fortement de la permittivité,

de la taille et du nombre des inhomogénéités. Si I'une de celles-ci a une permittivité et/ou une taille
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FIGURE 1 : Configuration du probléme de diffraction pour M = 3 (a gauche) et sketch des inho-

mogénéités circulaires 7,,, (a droite).
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FIGURE 2 : Imagerie d’inhomogénéités diélectriques de différentes tailles en configuration vue

compléte.

significativement plus grande que les autres, elle peut étre la seule a étre identifiée, les autres restantes
n’étant pas ou seulement partiellement vues. Malheureusement, la limitation ne peut pas étre sur-
montée via la DSM, méme avec un grand nombre de directions d’incidence, en raison de sa définition
pour plusieurs directions incidentes. Pour remédier & cet inconvénient, nous suggérons une fonction
indicatrice alternative de la DSM (DSMA) en donnant un poids exponentiel lié & chaque champ d’inci-
dence. En suivant un chemin similaire dans la dérivation de ’analyse de structure de la DSM, la DSMA

est caractérisée par la formule de représentation suivante :

S

Tpsua(z ko) o< D ai(em — 20)| D lJo(kolz — 1),

m=1

A partir des propriétés d’oscillation de Jo(ko|z—1.,])? et Jo(ko|z —1y|), nous vérifions que la DSMA est
une version améliorée de la DSM si plusieurs incidences. Il est a noter que DSM et DSMA ont les mémes
performances d’imagerie dans le cas d’une direction d’incidence unique. Nos résultats théoriques sont
validés via diverses simulations numériques avec des données synthétiques et expérimentales. La Figure
2 montre les simulations numériques permettant d’imager les petites inhomogénéités diélectriques de
différentes tailles, ce qui est 'une de ces simulations. Il est & noter qu'un phénomeéne similaire sera
observé dans différents cas de permittivité. De plus, nous validons la relation forte qui existe entre la

DSM et la migration de Kirchhoff par 'analyse de structure.
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FIGURE 3 : Imagerie d’inhomogénéités diélectriques avec des données mono-statiques en configuration

A pleine ouverture.

Imagerie 2D des inhomogénéités diélectriques en configuration restreinte avec des données de
champ lointain (§ 4)

e Méthode d’échantillonnage directe en configuration mono-statique (§ 4.1) Dans di-
verses applications du monde réel telles que le radar a pénétration de sol, le radar & synthése
d’ouverture et I'imagerie sismique, une configuration a pleine ouverture n’est pas possible. En
d’autres termes, le mouvement d’un seul émetteur-récepteur ou les plages restreintes d’incidence
et d’observation doivent étre pris en compte dans de telles applications. Par conséquent, I'analyse
de structure et ’amélioration de la DSM dans des configurations mono-statiques et & ouverture

limitée sont considérées ici.

Dans la premiére partie, nous proposons la fonction indicatrice de la DSM en données mono-
statiques. Cependant, le résultat de la DSM explique mal la localisation des inhomogénéités, ce
qui se comprend par ’analyse de la fonction indicatrice & I'aide de la formule asymptotique du

diagramme de champ lointain qui conduit a :

M
BN (25 ko) o< Y ay(em — £0)| Dl Jo (ko |2 — 7).
m=1

c’ci montre que la raison pour laquelle la fonction indicatrice a atteint sa valeur maximale &
I’emplacement déplacé z = 2r,, conduit & une fonction indicatrice modifiée en adoptant une

nouvelle fonction de test fournissant la formule de représentation suivante :

Oé?n(é-fm — 60)|Dm|J0(2/€0|I'm — Z|)

NE

i 2 ko)
m=1

Le résultat signifie que notre proposition peut gérer le probléme de localisation imprécise de la
DSM dans la configuration mono-statique. En contraste, la DSM traditionnelle dans la confi-
guration multi-statique est proportionnelle a |Jo(ko|r,, — z|)|. Les propriétés d’oscillation de
Jo(ko|rm — z|) par rapport a celles de Jo(2ko|r,, — z|) conduisent & ce que le résultat de la
DSM modifiée en configuration mono-statique contient plus d’artefacts que celui de la DSM en
configuration multi-statique en raison du manque d’information. Un résultat typique est proposé

en Figure 3.
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Résumé en frangais

e Méthode d’échantillonnage direct en configuration & ouverture limitée (§ 4.2) En-
suite, nous étendons notre approche au probléme & ouverture limitée et validons sa structure
mathématique en suivant un chemin similaire a celui utilisé dans le cas d’une ouverture totale.

La fonction indicatrice de la DSM a la formule de représentation suivante :

T (z; d ko) o Zam‘Dm‘< — ) lkodrm{Jo(ko‘rm—Z‘)+A91’9N(ko,|1‘m—Z|)}

Ici, 61 et On sont respectivement ’angle minimal et maximal des directions d’observation. En
comparaison avec le cas de la vue compléte, le terme perturbatif Agl’eN (ko, |t — 2|) est apparu.
Sur la base de ce résultat, nous établissons la condition nécessaire d’'une gamme de directions
d’observation (par exemple Oy — 67 > 7 pour visualiser correctement les inhomogénéités. De
méme, la DSMA, qui est proposée dans le cas de la vue compléte, est également appliquée et
analysée pour améliorer les performances de I'imagerie en utilisant plusieurs champs d’incidence

comme dans ce qui suit :

a2 o) o Zam\Dm\( ¢_)[Jo<ko|rm—z|> + Jo(koler — 2])?

A (o, frm = 2) A (o, [t — )],

ou [¥1, 1] est la plage de directions d’incidence Cela montre qu’il faut encore faire appel a des
observations et/ou incidences a grandes ouvertures pour imager correctement les inhomogénéités,
méme si le résultat de la méthode DSMA présente moins d’oscillations. Les résultats théoriques

sont également vérifiés par diverses simulations numériques. Certains de ceux-ci sont présentés
vus dans la Figure 4.

1 1 1 1 1 1 1
0.8 0.8 0.8 0.8
: 05 05 05
0.6 0.6 0.6 0.6
0 0 0
0.4 0.4 04 04
0. 05 05 05
0.2 0.2 0.2 0.2
- 0 -1 0 -1 0 -1 0
-1 05 0 05 1 - 05 0 05 1 - 05 0 05 1 - 05 0 05 1

(a) DSM and DSMA (b) DSM and DSMA (c) DSM (d) DSMA

FIGURE 4 : Imagerie d’inhomogénéités diélectriques ot la ligne rouge et la ligne noire indiquent

I’étendue des directions d’observation et d’incidence.

Amélioration de la précision de I'imagerie 2D en utilisant plusieurs fréquences (§ 5) Nous appli-
quons également 'approche multi-réquence, qui est 'une des techniques populaires d’amélioration de
lefficacité de 'imagerie, a la DSM dans les problémes d’ouverture limitée. Contrairement & plusieurs
investigations (ESTATICO et al. 2015 ; JOoH et W.-K. PARK 2014), la DSM multi-fréquence (MDSM) est
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efficace pour I'imagerie d’une petite inhomogénéité mais ne I'est pas pour celle de plusieurs petites in-
homogénéités. Pour expliquer la raison de maniére théorique, la structure mathématique de la fonction

indicatrice multi-fréquence a été établie comme suit :

1 ki k k1 k
Tiiosu(z:d) Za o) lDol [ (P il = 31) + €5 e e~ 2D

+ A%\/[(kla kPa 91,‘9]\/) |rm|’ |rm - Z|):| ;

ou k1 et kp sont les nombres d’onde correspondants aux fréquences minimale et maximale des fréquences
considérées { f1, fa, -+, fr}. Ici, Cfl’kp(|rm|, v, —2]) et Cgl’kp(|rm|, |r), —z|) contribuent & reconstruire
les supports des inhomogénéités. Notre analyse de structure vérifie qu’ils ont les comportements de fonc-
tions hypergéométriques au centre des inhomogénéités. C’est ce qui explique le fait que la DSM multi-
fréquence n’est pas efficace pour I'imagerie de plusieurs petites inhomogénéités. Pour surmonter cette
limitation, nous suggérons une version multi-fréquence de la DSMA (MDSMA) en donnant des poids
par rapport & chaque fréquence et & la direction d’incidence Nous avons la formule de représentation

suivante :

M
—€ 1
TRipsua(@) < Y ap, < \/€—€0> {kp v [%(kP7 v — 2[) = H(k, [rm — 2])

m=1

kp
+/ 31 (Kl — 2|}k
k

1

+A:]5W(k17kP70170N7191719L7 ‘I‘m - ZD}’

ou H(k, |rm —z|) := k [Jo(k|rn, — z|)* + J1(k|rm — 2])?]. En raison de la propriété de H(k, |rp, —z|), les
pics MDSMA & tous les centres des inhomogénéités si leurs caractéristiques physiques (emplacement,
forme, taille, etc.) et permittivité) sont les mémes. Selon la Figure 5, nos résultats théoriques peuvent

étre validés. D’autres simulations numériques peuvent étre trouvées dans le corps de cette thése.

1 1 1 1 1
08 08 0.8
0.5 0.5 . .
06 06 06
0 0
04 04 04
-0.5 -0.5 -0.: 0.
02 02 02
-1 0 - 0 - 0
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

T 05 0 05 1
(a) MDSM (b) MDSMA (¢) MDSM (d) MDSMA

FIGURE 5 : Imagerie d’inhomogénéités diélectriques ot la ligne rouge et la ligne noire indiquent la
couverture des directions d’observation et d’incidence ((a) et (b) pour une seule cible et

(c) et (d) pour plusieurs cibles).

Imagerie 3D d’inhomogeneities diélectriques (§ 6) Enfin, nous étendons notre approche au probléme

de la diffraction électromagnétique inverse 3D. La différence principale entre DSM 2D et 3D réside dans
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le choix de la polarisation de la fonction de test. Cependant, le résultat dans (ITO, JIN et J. Zou 2013)
n’est pas suffisant pour expliquer 'effet du choix de cette fonction de test sur 'imagerie de la cible, bien
que leurs auteurs aient recommandé de la choisir avec le méme sens de polarisation que celui du dipole
incident (par exemple g = p'). Ainsi, Ianalyse compléte de la structure de la fonction indicatrice de
la DSM pour le cas vectoriel 3D est présentée grace a la formule asymptotique du champ vectoriel

diffracté comme suit :

M
Tpsmsn(z:Y,4) < Y Ap

— kot — 2| v, — 2|2

A el
‘. (J.O%‘rm_z‘)_m olr z|>> + o, f2hlr z|>]’

ot j, est une fonction de Bessel sphérique d’ordre entier s. Sur la base des formes explicites de C; et C
dans 'analyse de structure, nous vérifions théoriquement la validation du choix de la polarisation de
test proposée dans ces travaux. En outre, nous suggérons une autre méthode pour la choisir, telle que
I’optimisation de 'amplitude de la rétro-propagation a chaque point d’échantillonnage, conformément
a l'idée du travail pionnier (X. CHEN et ZHONG 2008) conduisant & un algorithme MUSIC amélioré.
Nous étendons également notre idée a la configuration en champ lointain et la fonction indicatrice
correspondante de la DSM est proposée. Grace a la formule de Funk-Hecke, la fonction indicatrice peut

étre analysée comme suit :

)

M - o | 87
5 Anettres |55 (A1) @) alboltn — 2D + (€1 + Ca)alhalrn — 7))

m=1

ou y est la direction de la source. Notre résultat théorique et notre proposition peuvent étre vérifiées
sur la Figure 6, qui est I'un des résultats parmi les diverses simulations numériques du corps de cette
thése.
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(a) I]%OSIWSD (Z7 Y, (i)7 where q = ﬁt (b) I]%OSIWSD (Z7 Y, (i)7 where q = Qmax

FIGURE 6 : Imagerie d’inhomogénéités diélectriques avec une isosurface p = 0.8

Conclusions et perspectives (§ 7) Dans cette thése, la méthode d’échantillonnage direct (DSM) a été
étudiée dans divers problémes de diffraction électromagnétique inverse 2D et 3D. Contrairement & de
nombreuses méthodes qualitatives existantes, la DSM n’a besoin que de quelques (un ou deux) champs
incidents pour une application réussie d’imagerie des inhomogénéités & partir de champs diffractés. De
par plusieurs études, il est également bien connu que la DSM est une méthode rapide et efficace de type

non-itératif pour résoudre les problémes de diffraction inverse. Malheureusement, les applications les
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plus avancées de la DSM restent heuristiques. L’objectif principal du travail était donc de déterminer
la structure mathématique de la fonction indicatrice de la DSM afin de vérifier la raison théorique des
phénomeénes observés et de concevoir une nouvelle méthode efficace non-itérative pour l'imagerie des
inhomogénéités (appelée DSMA dans ce travail). Les résultats théoriques ont été validés par diverses
simulations numériques avec des données synthétiques et expérimentales.

Meéme si cette thése traite de cas variés, la poursuite des études constitue un défi intéressant.
Améliorer les performances d’imagerie avec des données mono-statiques utilisant plusieurs fréquences,
améliorer les performances d’imagerie en adoptant des pondérations différentes pour chaque fréquence
introduite dans (JOH et W.-K. PARK 2014), imager les inhomogénéités enfouies par DSM, développer
d’une version 3D de la DSMA, vérifier la relation entre une technique de type migration et la DSM 3D

et imager 3D des inhomogénéités dans des configurations restreintes, etc.

Liste de mes publications (§ B) La liste des publications en lien avec ces travaux se trouve en

appendice.
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1.1 General context

The purpose of solving an inverse electromagnetic scattering problem is to determine the characteristics
of unknown inhomogeneities such as their locations, shapes, or material properties (e.g. permittivity,
permeability) from collected scattered data from incoming electromagnetic fields. We refer to Figure
1.1 for a sketch of scattering problems in the presence of four inhomogeneities in the homogeneous
medium (R?,d = 2,3). The inhomogeneities 7,,,m = 1,--- ,4 are located in the domain €, which is
a region of interest. The incoming electromagnetic field is generated at the transmitter denoted by y.
The fields scattered from each incoming field are measured by an array of receivers x,,,n =1,2,--- , N.

Solving inverse scattering problems has been regarded as an attractive research topic to scientists
and engineers because the utilization area has been expanded in many different fields that are highly
related to nowadays human life. We take some examples such as nondestructive evaluation (NDE) to
identify defects (e.g. internal voids, objects or cracks) inside a bridge or wall (Caorsi, Massa, Pastorino,
and Donelli 2004; Ploix et al. 2011; Volker and Shokouhi 2015), biomedical imaging for diagnosing brain
stroke (Scapaticci et al. 2012; Ireland, Bialkowski, and Abbosh 2013; Tournier et al. 2017) and breast
cancer detection (Fear et al. 2002; Rubaek et al. 2007; Irishina, Moscoso, and Dorn 2009; Haynes, Stang,
and Moghaddam 2012), Ground Penetrating Radar (GPR) (Catapano, Soldovieri, and Crocco 2011; X.
Liu, Serhir, and Lambert 2018; Torrione et al. 2014), Synthetic-Aperture Radar (SAR) (L. Zhang et al.
2010; Cetin et al. 2014; T. Zhang and Xia 2015), and seismic imaging (Tilmann, Ni, and INDEPTH
III Seismic Team 2003; Y. Chen et al. 2015; Xue et al. 2015). We refer to some review articles (Yaman,
Yakhno, and Potthast 2013; Chandra et al. 2015) for more investigations in the applications of such
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Figure 1.1: Sketch of scattering problems with 4 inhomogeneities in a homogeneous embedding medium

problems. Hence, solving inverse scattering problems poses great challenges to modern scientists for
developing novel tools and techniques. Unfortunately, it is difficult to solve them due to ill-posedness

and nonlinearity (refer to Appendix A.1 for more on those).

1.2 Inversion techniques

Over the past several decades, various inversion techniques have been developed to solve diverse inverse
scattering problems by overcoming the inherent ill-posedness and non-linearity. They can be classified
as quantitative and qualitative methods depending on their purpose. The aim of quantitative methods
is to recover the distribution of material parameters such as permittivity, permeability, and so on. On
the other hand, the aim of qualitative methods is to provide information about the support of the
inhomogeneities, i.e. shapes, locations and in case of multiple objects also their numbers.

First, the general approach for solving inverse scattering problems in quantitative methods is based
on a iteration scheme, i.e., obtaining the solution which minimizes a discrete norm (generally, L?—norm)

between direct and adjoint scattering problem (cost functional): find u to minimize
1 2
E(u) = SlIFu— Mlfe, (1.1)

where F denotes the forward operator and M contains measurements data. For instance, the value
of contrast y is estimated by solving a nonlinear integral equation at each step of a distorted Born
iterative method (Chew and Wang 1990; Remis and P. V. d. Berg 2000), and the induced current
density J is additionally estimated by solving source-type integral equations at each step of a contrast
source inversion method (P.M. Van Den Berg and Kleinman 1997; P. v. d. Berg, Broekhoven, and
Abubakar 1999). We also refer to a level-set method (Dorn and Lesselier 2006; Dorn and Lesselier
2009), joint sparse recovery techniques (Zaimaga, Fraysse, and Lambert 2017; Yoo et al. 2017) and
others (Caorsi, Massa, and Pastorino 2000; Nounouh et al. 2014; Voznyuk, Litman, and Tortel 2015;



1.2 Inversion techniques

Rubek et al. 2007; X. Chen 2018). Unfortunately, for a successful application of such iteration schemes,

one must consider the following matters:

1. large computation costs as in particular complex evaluation of the gradient (e.g. Fréchet or

domain derivative) is required for each iteration step,
2. non-convergence and local minima issue, since (1.1) is not convex,

3. regularization as selection of appropriate regularization terms that are significantly dependent

on the problem at hand is required,

4. prior information as estimation of a priori information of unknown inhomogeneities is needed to

guarantee the convergence.

Second, the qualitative methods, which are known as non-iterative or one-step inversion techniques,
avoid dealing with the problem in its full non-linearity and consider a simplified mathematical model
with a lower computational cost (Bevacqua and Palmeri 2019). Furthermore, any a priori information
of unknown inhomogeneities is not needed to apply. Because of such advantages, various techniques
have been investigated and applied successfully to many inverse scattering problems. We introduce

below some known techniques to discuss the pros and cons to give the motivation of current thesis.

MUSIC (MUItiple Signal Classification) The MUSIC algorithm is a well-known non-iterative tech-
nique for solving inverse scattering problems. Originally, it was used in signal processing problems
for estimating individual frequencies of multiple time-harmonic signals. In (Devaney 2000), MUSIC
is applied to identify location the point-like scatterers. According to (Cheney 2001), the main idea
of MUSIC in inverse scattering problems is characterizing the range of a self-adjoint operator and
noise subspace is orthogonal to the range. This means that a vector f(z) is in the range of self-adjoint

operator A if and only if its projection onto the noise subspace is zero, i.e.,
f(z) € Range(A) if and only if |Pf(z)| =0, (1.2)

where P is a projection onto the noise subspace. Based on this, the indicator function of MUSIC is

defined as )

Inausic(z) = Pra) °€ Q, (1.3)
where  denotes the region of interest. Then, Zyiusic(z) = +oo if the search point z is at the center
of each inhomogeneity. MUSIC is applied to various inverse scattering problems such as detection of
inhomogeneities buried in a half-space (Ammari, lakovleva, and Lesselier 2005), 3D electromagnetic
inhomogeneities (Ammari, Iakovleva, Lesselier, and Perrusson 2007), arbitrary shaped inhomogeneity
(Hou, Solna, and Zhao 2006), internal corrosion (Ammari, H. Kang, et al. 2008), 3D enhanced resolution
(X. Chen and Zhong 2008), crack-like defects (W.-K. Park and Lesselier 2009), eddy-current nonde-
structive evaluation (Henriksson, Lambert, and Lesselier 2011), radar imaging (Odendaal, Barnard, and
Pistorius 1994), and virtual electrical breast biopsy (Scholz 2002). According to such investigations, it
turned out that for a successful application of MUSIC, some conditions must be considered at early
stage, for example, (i) total number of incident and corresponding observation directions must be large
enough, and (ii) nonzero singular values to generate the projection operator P must be chosen carefully.

We also mention that MUSIC is not a suitable imaging technique for large volumetric inhomogeneities.
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Linear sampling method (LSM) The concept of LSM was first investigated in (Colton and Kirsch
1996) for reconstructing arbitrary-shaped inhomogeneities in homogeneous and scalar wave fields. The

main idea of LSM is to approximately solve the far-field integral equation for searching point z € {2:

(Faz)(f() = goo(f()' (1'4)

Here, a far-field operator F': L2(S?1) — L?(S%1) is defined by

(Fa,)(X) = /S L oo, d)a.(d)dS(d), x € %71, (1.5)
where d denotes the dimension, and go.(X) is the far-field pattern of the Green function. Recently,
the feasibility and applicability of LSM have been mathematically validated in (Arens 2003). Rigor-
ously, under proper assumptions, there exists an approximated solution a$ € L%(Q) of (1.4) satisfying
Zlirgg la%|| = oo, i.e., the solution gives a characterization of the inhomogeneities. LSM is now applied
to various inverse scattering problems, for example, isotropic medium problem (Cakoni, Colton, and
Haddar 2002), 3D electromagnetic case (Haddar and Monk 2002; Colton, Haddar, and Monk 2002),
imaging of crack with Dirichlet and mixed boundary conditions (Cakoni and Colton 2003), and limited
aperture problem (Audibert and Haddar 2017). We also refer to (Aramini, Brignone, and Piana 2006)
for LSM without sampling and (Audibert and Haddar 2014) for a generalized version of LSM. Through-
out the results, it has been known that the LSM is an effective and stable technique. Notice that (1.4)
must be solved very accurately in order to obtain a reliable result. This means that a sufficiently large
number of incident and observation directions must be applied. Moreover, solving the linear integral

equation (1.5) is ill-posed, so that selection of a proper regularization should be considered, refer to
(Audibert and Haddar 2014; Arens and Lechleiter 2009).

Migration techniques Migration techniques (e.g., Kirchhoff, subspace, and reverse-time migration)
are widely used in geophysical areas such as seismic inversion (Bleistein, Cohen, and John 2013) and
ground penetrating radar (GPR) (Moran et al. 2000; X. Liu, Serhir, and Lambert 2018). Such tech-
niques consist of back-propagating the complex conjugated incident and/or observation fields into the
background medium to provide the imaging of inhomogeneities. They are applied to several interesting
inverse scattering problems, for example, application of Kirchhoff migration without phase (Bardsley
and Vasquez 2016) and GPR (X. Liu, Serhir, and Lambert 2018), subspace migration for imaging of
cracks in full- and limited-view problem (W.-K. Park 2015), microwave imaging (W.-K. Park 2019a),
and extended inhomogeneities (Ammari, Garnier, H. Kang, Lim, and Sglna 2012), reverse-time mi-
grations for imaging of extended obstacles (J. Chen, Z. Chen, and Huang 2013a; J. Chen, Z. Chen,
and Huang 2013b). We also refer to (Ammari, Garnier, H. Kang, W.-K. Park, et al. 2011) for further
mathematical theory about Kirchhoff and subspace migrations. Similarly with MUSIC and LSM, a
sufficiently large number of incident and observation directions must be applied to guarantee a good
result, refer to (W.-K. Park 2016) as an example.

As we have seen, the total number of incident and observation directions must be large enough for
a successful application of the qualitative methods. Therefore, it is natural to develop an alternative

qualitative method with a small number of incident or observation directions.



1.3 Object of the thesis

1.3 Obiject of the thesis

The direct sampling method (DSM) is considered in various 2D and 3D inverse electromagnetic scatter-
ing problems in this thesis. On the contrary to the existing non-iterative methods (e.g. MUSIC, LSM
and migration techniques), the DSM only needs a few incident fields for imaging the inhomogeneities.
Furthermore, it is quite fast since it does not require any additional operation such as singular value
decomposition or projection, and it is highly tolerant to noise. We refer to (Ito, Jin, and J. Zou 2012;
Li and Z. Zou 2013) for 2D scalar problem and (Ito, Jin, and J. Zou 2013) for 3D vectorial case for
detail. Note that it is also introduced in chapter 3 (2D case) and chapter 6 (3D case), respectively.
Since the development of DSM in (Ito, Jin, and J. Zou 2012), its feasibility and robustness for
imaging of inhomogeneities have been validated in various scattering problems. For instance, the far-
field measurement problem (Li and Z. Zou 2013), 3D electromagnetic case (Ito, Jin, and J. Zou 2013),
imaging of crack (W.-K. Park 2018b), transverse electronic problem (W.-K. Park 2019b). We also refer
to (Chow, Ito, and J. Zou 2014), (Chow, Ito, K. Liu, et al. 2015) and (Bektas and Ozdemir 2016)
for applications of the DSM to electrical impedance tomography, diffusive optical tomography, and
mono-static radar imaging, respectively. Unfortunately, the limitations of DSM cannot be explained

through the results in such advanced works. For example:

1. the smallest inhomogeneity is hard to be identified if there are multiple inhomogeneities of dif-
ferent sizes in the region of interest, a similar phenomenon being observed in with different

permittivities,
2. the imaging via DSM with mono-static data provides a miss-location of inhomogeneity,
3. multi-frequency DSM is not effective for imaging small multiple inhomogeneities,
4. the imaging performance is not significantly relevant to the total number of incident directions,

5. the inhomogeneities cannot be visualized by DSM in 3D case (vector scattered field) if the

improper polarization of test function is used.

Thanks to the asymptotic formula of scattered field within the small obstacle hypothesis, the analytic
representations of the DSM indicator function are presented in 2D and 3D full-aperture configurations,
2D restricted configurations (mono-static and limited-aperture configuration) with single- and multi-
frequency. According to our theoretical results, we elucidate the theoretical reason of the limitations
and design an alternative indicator function of DSM (DSMA) to overcome them. The mathematical
structure of DSMA is also presented along a similar path of derivations as in traditional DSM case.
Then, multi-frequency DSM (MDSM) is introduced for further improvement of imaging performance.
On the contrary to the several investigations (Guzina, Cakoni, and Bellis 2010; Joh, Kwon, et al. 2013,;
Griesmaier and Schmiedecke 2017), the MDSM is effective only for imaging a small single inhomogene-
ity but is not effective for several small inhomogeneities. The reason of the limitation is investigated
by mathematical analysis and multi-frequency DSMA (MDSMA) is designed to handle the problem.
Finally, we extend our approach to 3D inverse electromagnetic scattering problems. The analytic rep-
resentation formula of the indicator function of 3D DSM is presented by establishing the relationship

of spherical Bessel functions with integer orders, the polarization of the incident wave and the test
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dipole, and information about inhomogeneities. Thanks to our mathematical analysis, we verify the
necessary condition for the choice of polarization of the test dipole and propose method to choose the

proper polarization.

1.4 Organization of the thesis

Chapter 2 The well-known results about the 2D and 3D direct electromagnetic scattering problems
in the presence of small dielectric inhomogeneities in a homogeneous medium are reviewed with our
notations. Especially, we introduce the asymptotic formulas of scattered field and far-field pattern

which play key roles in our mathematical analysis.

Chapter 3 We introduce the concepts of traditional DSM (in 2D near-field and full-view configuration)
and analyze its structure within the framework of the asymptotic hypothesis. Thanks to this analytical
expression, the limitation of the DSM is exhibited and illustrated. An improved DSM (DSMA) is
proposed to overcome the intrinsic limitation. Then, we show that both DSM and DSMA are closely

related to a normalized version of the Kirchhoff migration.

Chapter 4 The imaging of dielectric inhomogeneities via DSM in restricted configurations is studied.
First, we apply the DSM to mono-static data and verify the reason of miss-localizations of the inho-
mogeneities by mathematical analysis. To overcome them, a modified version of indicator function is
designed and its structure is identified. Next, the DSM and DSMA in limited-aperture configuration
are considered. Through mathematical analysis, we establish the relationship of imaging performance

and range of observation and/or incident directions.

Chapter 5 In this chapter, the multi-frequency DSM (MDSM) and DSMA (MDSMA) are investi-
gated. According to our analysis, the reason of the limitation of MDSM is elucidated by establishing
a correlation of imaging performance with the Bessel functions, Struve functions, Legendre polyno-
mials, generalized hypergeometric function, the range of incident and/or observation directions, and
the physical property of inhomogeneities. By adopting a exponential weighted function related to each
frequency, we design the indicator function of MDSMA and examine its adequacy for imaging the

inhomogeneities in a limited-aperture problem.

Chapter 6 This chapter presents the structure analysis of DSM in the 3D inverse electromagnetic
scattering problems by showing the relationship of imaging performance and polarization of the test
dipole. Based on our analysis, we suggest a way to choose a proper polarization of the test dipole for
imaging the inhomogeneities. We also extend our approach to the far-field configuration case. Moreover,
the 3D version of DSMA is proposed with some numerical simulations, its mathematical analysis being

verified to show up its structure.

Chapter 7 The achieved works and their perspectives are summarized in this chapter.
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It is worth mentioning that this chapter contributes the introduction of well-known and/or already

derived results just with our notations.

2.1 Problem formulations of electromagnetic scattering problem

Throughout this thesis, we assume that scattered electromagnetic data are collected at the receivers
x € I'gps and generated by a dipole source y € D'y, where I'gps and I'yye are simply connected surfaces
(or curve) in R%, d = 2, 3. Furthermore, there is a finite number of inhomogeneities in the homogeneous

and isotropic region of interest (ROI) €2 where each inhomogeneity is denoted by
T = I'm + amDm € R, d =2,3. (2.1)

Here, r,, is the center, «, is the size, and D,, characterizes the shape of 7,,. Let us denote 7 be the
collection of 7,,, i.e., 7 = ,,, Tm. We also assume that all inhomogeneities are well-separated to ignore

the interaction between them, i.e., there exists a positive constant dy such that
0<dy<|tym—rp| and 7, N7 =0, m#m (2.2)

Let €, and gy, be the electric permittivity and magnetic permeability of 7,,, respectively. The ¢g
and pg are analogously defined in the embedding medium. For the sake of simplicity, we assume that

all inhomogeneities are non-magnetic (u,, = po) so it is characterized by its electric permittivity at
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(a) Configuration (b) Circular inhomogeneity 7,

Figure 2.1: Configuration of the scattering problem for M = 3 (left) and sketch of the circular inho-

mogeneities 7, (right).

angular frequency wg = 2w fy where fy is the considered frequency in Hz. Now, we can define the

piece-wise constant electric permittivity € and wavenumber k such that

if x € R? ko = wo+/Eofio, if x € RY
E(X) — 60’ 1. X 6 \T’ and ]{:(X) — 0 WO 6OIIJ’O? 1 .X e \T? (23)
Em, If X € T, km = Wor/Empo, if X € T.

Then, the time-harmonic total electromagnetic fields (with e™* time convention) satisfy the follow-

ing Maxwell’s equations:

V x E = iwpugH,

V x H= —iweE +J,

v x E and v x H are continuous across 07, (2.4)
v-(eE)T =v-(¢E)” on 07y,

v (uoH)" = v (uoH)™ on 07,

where J is the point electrical current density, and v is the outward unit normal to 7,,. Here, the
scripts + and — indicate the limiting direction from outside 7;,, and inside 7,,, respectively. Since the

embedding medium is homogeneous and isotropic, we have
V x V x E - k’E = iwguoJd (2.5)

Due to the vector identity V x V x E = V(V - E) — V2E and the fact that V- E = 0, the electric

total field satisfies the following vector Helmholtz equation:

V2E + k*E = iwguod. (2.6)

2.2 2D direct scattering problem

Generally, the electromagnetic scattering problem is a 3D problem, i.e., the scattered field is a vector.
The 2D problem is a special case of 3D such as all parameters are invariant in one direction. We
assume that the direction is (0,0, 1), which is the standard basis in the z-axis. Here, we focus only on
2D transverse magnetic (TM) case, i.e., E, # 0 and H, = 0.



2.2 2D direct scattering problem

Let us denote the z-component of total, incident, and scattered field as u, u’, and u*, respectively.
We consider the following plane-wave illumination: let u’(x, a; ko) = elf0dx he the incident field with
propagation direction d € S', where S! denotes the two-dimensional unit circle. Then, TM polarized
total electric field E,(x,d; ko) = u(x,d; ko) satisfies the following Helmholtz equation:

V2u(x, d; ko) + K (x)u(x, d; ko) = iwopo] (2.7)

with appropriate transmission conditions on the boundary of 7, where J = J,. The total field u(x, d; ko)
can be decomposed into incident field u’(x, &; ko) and scattered field u®(x, a; ko) such as u(x, &; ko) =
ut(x, &; ko) + u®(x, d; ko). In order to guarantee the uniqueness of solution, the scattered field satisfies
Sommerfeld radiation condition

lim <M — ikou® (x, d; kzo)> =0 (2.8)

x| =00 ox

uniformly in all directions % = x/|x| € S!. It is well known that the scattered field u*(x, d; ko) can be

expressed by the following single-layer potential
M
u®(x,d; ko) = Z / 9(x, X" ) o (X', d)dx’ (2.9)
m=1"7Tm

with unknown density ¢,,(x’,d). Here, g(x,y) is the Green function of homogeneous Helmholtz equa-
tion such as ) )

9(x,y) = THb(kolx — X)) = T (Jolkolx = x']) + Yo (kolx — x'])) (2.10)
where Jg and Yy are the zeroth-order Bessel and Neumann function, respectively. We refer to (Colton
and Kress 1998; Ammari and H. Kang 2004; X. Chen 2018) for details. But it is not enough to analyze
the structure of numerical simulations due to the unknown density ¢,,(x’,d). Hence, we introduce the
following asymptotic formula of the scattered field explained in (Ammari and H. Kang 2004), which

holds under the small volume assumption of inhomogeneities to neglect their interaction.

Lemma 2.2.1 Assume that 7., are well separated from each other and that cy\/m /0 < 0.5, then,

us(x,a; ko) can be represented by the following asymptotic expansion:

. F2(141) Em — €0 oot -2
S(x,di ko) = 2 2 2 (2 D,, m)eFormd L 0 (3 2.11
wix, diko) = = mzlo‘m<\/m>‘ l96e,rm o7 4O (o) 211)

where |Dy,| denotes the area of Dy, and o := max {ayy,, m=1,2---  M}.

If the receivers or transmitters are located far from the region of interest, the directions of incidence
or observation can be used for imaging. Let us denote the directions of receivers as x = x/|x| € S!.

Then, the following far-field approximation holds in R?:

oilkox-+7/4)

R . 1 elkox ei7r/4 A 1
X,d _ e—1k0x~d +0 <_> -~ e—lkox.d +0 <_> , 2.12
g0x.d) \/8mko|x| x? Vx| | V8rko x?2 (2.12)

and
eikox R 1
wixdit) = = {uxdsh +0 () | (2.13)

[x] ]
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uniformly into all directions x and |x| — oo where the function u«, is called the far-field pattern of .

The combination with (2.9) leads to the integral representation
ei7r/4
N V8mky Ja

and the following asymptotic formula can be derived.

—ikoXx-x’

Uso (X, d; ko) o(x")dx', (2.14)

[§]

Lemma 2.2.2 (Far-field hypothesis) Assume that 7, are well separated from each other and that
am/Em/€0 K 0.5\, then, uoo(fc,a; ko) can be represented by the following asymptotic expansion:

. K2(1+1) e —€0> korm-(A—3
oo (X, d; o) = 12—~ i D, |eorm (7% 4 O (0?) . 2.15

See again (Ammari and H. Kang 2004) for the details.

2.3 3D direct scattering problem

Let E(x,y; ko) be the time-harmonic total electric field in the presence of set of inhomogeneities 7.

Then it is the solution of Maxwell’s equations (2.5):

{ V x V x E(x,y; ko) — k*(x)E(x,y; ko) = iwopod (x,y; ko)

v (eE(x,y; ko))" — v - (cE(x,y; ko))" =0 on a7, (2.16)

where v is the outward unit normal to 7,,. Here, the scripts + and — indicate the limiting direction from
outside 7, and from inside 7,,, respectively. The total electric field can be expressed as the sum of the
incident and scattered electric fields, i.e., E(x,y; ko) = Ei(x,y; ko) + E*(x,y; ko). Let us assume that
the incoming field E¢(x,y; ko) is generated by an electric dipole source located at y € iy, polarized
p’ € S?, and with current density Jo(x,y) = ptIl§(x —y), i.e.,

Ei(xa y; kO) = iwﬂo”ﬁ(’@ y) ’ f)t' (217)

Here, the constant 11 is the current moment and G(x,y) is the dyadic Green function of time-harmonic

Maxwell equations (2.5). Namely, the latter is the solution of

VxVxG(xy)—kGxy)=0dx—y]ls, (2.18)

and has the matrix form of )
Gxy) = (I + V) glxy) (2.19)

0

where I is the 3 x 3 identity matrix and g(x,y) is the Green function of three-dimensional Helmholtz

equation, i.e., .
elkolx—y|

g(x,y) = prm—r (2.20)

in order to guarantee the uniqueness of solution, the scattered electric field satisfies following the

Silver-Miiller radiation condition:

lim |x| [V x E*(x,y; ko) x X — ikoE*(x,y; ko)] =0, (2.21)

|x|—00

uniformly in all directions % = x/|x| € S2.

10



2.3 3D direct scattering problem

Lemma 2.3.1 Assume that all inhomogeneities are dielectric and sufficiently small (ctmr/em /€0 <K A/
2). Then the electric scattered field E*(x,y) has the following asymptotic formula for a generic incident

field B (ry,, y; ko)

M
B(x,yi ko) =i 3 [ (6 — 20) @) - M (24D, ) Biryiko)] +0(at)  (22)
m=1 0

where o := max {a,, m=1,2--- M} and M(g,,/e0; D) € C3*3 is a polarization tensor related to
D,,,. By combining (2.17) and (2.22) the electric scattered field E°(x,y; ko) in the case of an incident

field due to a dipole with a polarization direction pt placed in'y is given by

B (x, : ko) cz[ (%) @xrn) M (20D, ) (Glrny) 5| +0l), (229

£0
with C' = iwo,uokgll,

In (Ammari, Iakovleva, Lesselier, and Perrusson 2007; Griesmaier 2011; Ammari, Garnier, H. Kang,
Lim, and Yu 2014), the explicit form of M(e,, /eop; D,,) for various forms such as sphere, thin tube, or
sheet, is provided. For the sake of simplicity, we assume that all inhomogeneities are the spheres, so
M(e,, /e0; D) then has the following form

Em 3€0
M(—:D =—|D,|I 2.24
Ve (60 ) m) 260—|—€m’ m’_37 ( )

and the remainder of either (2.22) or (2.23) becomes O(a’) as shown in (Ammari and Volkov 2003). So
the field scattered by M small spheres illuminated by a single dipole under the asymptotic hypothesis

in near field is given by

3 3Em =) | Gl en) - (Gly.rm) P+ 007 (2:25)

M
E*(x,y; ko) = iwopokg ! Z P
m=1

Similar to the 2D case, the following far-field approximation also holds:

eikox 1
g(x, y) _ 47TX —1k0x Y4+0 <x2> (226)
and gl .
Glx.y) = S e REYAR) 1 0 (X—) , (2.27)

where A(x) = I3 — X ® X. Then the far-field pattern of G(x,y) is given by

G (X,y) := e RXYA(%). (2.28)

A~

Since A(y)p = —y X

A

(y x p), the incident plane wave can be expressed as
EL (%, 33 ko) := lwopolle ¥ *A() - p' = iwopollGo(x,3) - P, (2.29)

where ¥ is the source direction and p' is its polarization on S2. Hence, the total electric field E*(x,y)
has the far-field pattern Eo(%X,¥) such that

eikox

. . 1
E* (x, 9 ko) = Em(x,y)+0<;>, (2.30)

4rx

11
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uniformly into all directions X = x/|x| € S? as |x| — occ.
Following the same path than with the near-field formulation, E.(X,¥; ko) has the following asymp-

totic formula.

Lemma 2.3.2 (Far-field hypothesis) Assume that all inhomogeneities are dielectric and sufficiently
small (cm/em/e0 <K 0.5Xg). Then Eo(X,y; ko) has the following asymptotic formula:

M
A A A € i N
(k.3 ko) =6 3 (e — 0)Gac (1) M (24D, ) Bt i) +0(at)  (231)
m=1
where o := max {ay,, m=1,2---, M} for a generic incident field EL_ (v, ¥; ko). Let introduce (2.28)
and (2.29) in (2.31). Then, the field scattered by M spherical inhomogeneities can be expressed as

M
Eoo(%, 91 ko) = iwopokg I Y | Ape PN TmA(R,) - p! 4+ O(a?), (2.32)

m=1

for an incident plane wave of impinging direction y and polarization pt. Here, A,, is given in (2.25)

2.4 Conclusion

In this chapter, the direct electromagnetic scattering problem has been reviewed under the small volume
assumption of the well-separated inhomogeneities to neglect interactions between them. In particular,
we have introduced the asymptotic formula of scattered field with respect to near and far measurement
configuration. Because it will play a key role in our analysis of behavior of DSM indicator function
in each cases. The structure analysis of DSM under the various conditions will be derived using the
formulas presented in this chapter and validated via the numerical simulations with the synthetic and

experimental data in the next chapters.

12
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3.1 Introduction

In the present chapter, we analyze the structure of DSM in time-harmonic 2D inverse electromagnetic
scattering problem in the TM-mode. According to (Ito, Jin, and J. Zou 2012; Li and Z. Zou 2013; Ito,
Jin, and J. Zou 2013), DSM is fast and stable because it does not require any additional operation such
as singular-value decomposition (subspace migration), generating a projection operator onto the noise
space (MUSIC algorithm), solving ill-posed integral equations (linear sampling method) or adjoint
problems (topological derivatives), and is robust with respect to the random noise. However, DSM
might fail to identify an inhomogeneity that is much smaller than the others or whose permittivity is
much lower. This behavior can be explained in the framework of scattering asymptotic theory of small
inhomogeneities which, to our best knowledge, has not been done yet.

With the help of the expression of the scattered field obtained using the already mentioned asymp-

totic theory in section 2.2, the indicator function of DSM is expressed as a function of the number, the

13
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sizes and the permittivities of the inhomogeneities and the Bessel function of order zero. Thanks to
this analysis, the reasons of the limitations of the original DSM are exhibited and an improved version
is proposed. Then, we show that the original DSM and its alternative version are strongly connected
with a normalized version of the Kirchhoff migration, which is one of the most popular technique in geo-
physical imaging such as seismic inversion (Bleistein, Cohen, and John 2013) and ground penetrating
radar (GPR) imaging (Moran et al. 2000; X. Liu, Serhir, and Lambert 2018), etc. The mathematical
and statistical methods for multi-static imaging are described from a mathematical point of view in
(Ammari. et al. 2013) (including, among others methods, Kirchhoff migration, back-propagation and
MUSIC algorithms and theirs relations).

3.2 Introduction of the direct sampling method

To analyze the structure of DSM, we firstly investigate the notion of DSM in this section. According
to (Ito, Jin, and J. Zou 2012), the indicator function of DSM is defined as follows.

Single impinging direction For each sampling point z € 2 and fixed impinging direction d e S!, the

DSM indicator function with fixed frequency (corresponding wavenumber kg) is defined by

<u3(x, d; ko), g(x, Z)>

w(x,d: ko)

L2 (Fobs)

Ipsm(z, d; ko) = ‘ (3.1)

S) ||g(X’ Z) ||L2(Fobs)

L2 (Fob

where g(x,z) is the 2D Green function of Helmholtz equation given by (2.10) and the L?-inner product
() r2(r,,,) 18 defined by (A.2).

Multiple impinging directions For incident directions d; € S!, I = 1,2, , L, the indicator function
is given by
Ipsm(z; ko) 1= max {IDSM(Z;&IJ%);Z =12, ,L,z€ Q} ; (32)

where Zpgn(z; d,, ko) is the indicator function for the incident direction d;. Note that (3.2) also works
if L =1 and provides the same result as (3.1).
The definition (3.1) comes from the following relationships: (i) the integral representation of the

scattered field (2.9) can be expressed as
~ M A
uf(x,d; ko) & Y Win(d, rm)g(x, 1), (3.3)
m=1

where Wm(fl, r;,) denotes the weight function corresponding to 7,,, (i) the following approximation
derived in (Ito, Jin, and J. Zou 2012, (8)) holds:

/ 9(x,21)9(x,22)dS(x) ~ kilm(g(Z1,Z2)). (3.4)
T 0

obs

14
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The combination with (3.3) and (3.4) leads to

(w(x,ds ko), g(x.2) )

M
1 R
~ g Wm(d,rm)lm (g(rm’z))
L2(Tops) kO m—1

(3.5)
i N
~ T mzl Win(d, 1) J0 (Ko|tm — 2|)

and thanks to the Holder’s inequality, we have

M

z > Z Win(d, 1) Jo(ko|rm — 2|)
q L2(Tops m=

Ipsm(z,d; ko) = Tone) = L . (3.6)

3 M
S(x,d; k N
Hu (Xa 3 0)‘ ) ||g(x7z)||L2(Fobs) Z Wm(dvrm)JO(kOIrm _ Z’)

m=1

2( obs max

Hence, if a point z is in the support of one of the inhomogeneities (i.e., z ~ r,, € 7) then Zpgn(z, d; ko) ~
1; otherwise, if z & 7 then ZDSM(z,a; ko) # 1 which allows the localization r,, of 7, via the map of
Ipsm(z, d; ko). The details of such evaluations can be found in (Ito, Jin, and J. Zou 2012).

3.3 Structure analysis of the direct sampling method and alternative direct
sampling method

3.3.1 Analysis of the direct sampling method in the asymptotic hypothesis

Thanks to the asymptotic formula of the scattered field introduced in Lemma 2.2.1, the following

analysis can be derived under the small volume assumption of inhomogeneities.

Theorem 3.3.1 Assume that the total number N of measurement points is sufficiently large. Then,

for fized incident direction d, IDSM(X,a; ko) can be represented as

N |\I/1(Z,(i; k‘o)| 3 - ikod-rm
Ipsm(z, d; ko) = o [0 (. k)| where Uy (z,d; ko) = Z Ape Jo(kolz — rpnl). (3.7)
poares 14, &, o m=1
Here, Ay = a2, (em — 0)|Dinl.
Proof Combining (2.11) and (3.4) leads to
<US(X,a;ko),g(Z,X)>L2(FObS)
N
= Zus(xn,d7 ko)g(z,x)
n=1
K(141) <& (am—ao> ikod:
~ —_— Dm o tm my I dS
/ v e () Pl e xS
RO+ < <m—> e [
=——" o, D,,| e 0% tm g(rm,x)g(z,x)dS(x
4/ kom mz:l VEoMo | | Tobs ) ) )
M
ko(i—1) 2 [E€m — €0 ikod-
~ D, | #0943 (ko |z — 1y]).
167/ mzz:lam Zolio | |e o(kolz — 1)
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Applying Holder’s inequality gives

(wedibogtex) < [wdm)|, oD, 69
which implies neglecting constant lgf;—l) so (3.7) is derived. 0

Remark 3.3.2 Theorem 3.5.1 shows that the imaging performance of the DSM indicator function is
highly dependent on the permittivity, size, and number of the inhomogeneities. If one of those has a
permittivity and/or a size which is significantly larger than of the others, it might be the only one to be

identified, the remaining others being not or only partially seen.

Remark 3.3.3 If the radii and permittivities of all circular inhomogeneities are the same (i.e., a, = «,

D,.| =7, and &,y = € form =1,2,--- , M), and knowing that [e*094Tm| =1 and o2, (e — €0)|Dm| =

a?(e — eo)7 then Ipsm(z,d; ko) becomes
Tpsm(z, d; ko) o

(kolrm — zl) (3.10)

which is the same as (3.6) derived in (Ito, Jin, and J. Zou 2012).

Remark 3.3.4 (Multiple impinging directions) By combining (3.2) and (3.7), it is easy to see
that

Ipsm(z; ko) o< max {

M
> ar(em — c0) D] o Jo (kolz — 1) |1
m=1

=1,...,L:z¢€ Q} (3.11)
for which Remark 3.53.2 and Remark 3.3.3 are also verified.

3.3.2 Introduction and analysis of an alternative direct sampling method

Thanks to our analysis of Zpgn(z, d; ko) and, in particular, W(z, d; ko) (3.7), it can be seen that the

latter (3.11) contains a factor of the form of eikodiTm which generates artifacts due to the oscillating
nature of the exponential function. To reduce such a behavior, an alternative indicator function of

DSM, Ipsma(z; ko), is proposed

L

Z o—ikod; -z <u8(x, di; ko), g(x, 2) > L2(r

=1

I ) .
Z o—ikod; z <u8(x, dy; ko) 9(x,2) > L2(r

obs)

Ipsma(z; ko) = (3.12)

max

zeQ) obs)

Theorem 3.3.5 Assume that the number N of measurement points and the number L of incident

fields are sufficiently large. Then, Ipsma(z; ko) can be represented as

M
|Wa(z; ko) 9
T -k S Sah St R 24— h Us(z: ko) = mJo(kolz — rp])”. 1
DsMA (2; ko) = ma§>2<|\1’2( ko) where Vo(z; ko) §1A Jo(ko|z — riml) (3.13)
zE m=

Here, Ay, = a2, (em — €0)| Dl
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3.3 Structure analysis of the direct sampling method and alternative direct sampling method

Proof Let us note that if L is sufficiently large, the following relationship holds (see (W.-K. Park 2015)
and (Li and Z. Zou 2013)):

L - ~ 3 . 3 ~
Z ethodiTm gikod; 2 /S1 ethodrmo=ikod 2 G(d) = 27 (ko|r), — 2])). (3.14)
=1

Hence, by combining (3.8) and (3.14), we obtain

L
Wa(z; ko) = Y o (' (. dy), (2, %2) )

=1 LQ(Fobs)
L M
A ko(i—l) <€ —€0> ikod, -
= eihodva | et N 0l (== [Dyn| 0T g (ko |z — 1)
boli— 1) " . (3.15)
o\l — 2 [(Em — €0 ikod; Tm ikod,-
= ——= « D,,|Jo(kolz — r el Tm gikod; -z
v 2 oo () ol otk ) (lz )
. M
ko(i— 1)m 2 <5m_50> 2
N —— « D,,| Jo(kglz — r .
Finally, applying Holder’s inequality, (3.13) is derived which completes the proof. 0
Remark 3.3.6 Based on the result in Theorem 3.3.5, we see that
Tpsm(z; ko) o< |Jo(ko |z — )| and  TIpsma(z; ko) oc Jo(ko |2 — rm))> (3.16)

One-dimensional plots of (3.16) are shown in Figure 3.1 and illustrate that Ipgma(z; ko) would yield
better images because its oscillations are smaller than those of Ipgm(z; ko). Hence, any unexpected
artifact in the plot of Ipsma(2z; ko) is mitigated by having a sufficiently large number L of incident fields.
This result explains theoretically why Ipsma(z; ko) with large L offers better results than Ipsm(z; ko).

— | Jo(kol|)]
— [ Jo(kolz])|?

0.8

Figure 3.1: One-dimensional plots of |Jo(ko|z|)| and |Jo(ko|z|)|? for ko = 27/0.4.
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Chapter 3 2D imaging of dielectric inhomogeneities with full-view and near-field data

3.4 Comparison between Kirchhoff migration and direct sampling method

In the following, the structures of Kirchhoff migration, DSM and DSMA are compared. Let us assume
that the total numbers of measurement /N and of incident fields L are sufficiently large and let us define
the Multi-Static Response (MSR) matrix K € CV*F as

[ wf(xq,dis ko) uS(xy,dasko) oo w(xy,dp;ko) |
u(x2,dis ko) u®(x2,dasko) - uS(xa,dz;ko)
K = . (3.17)
| w(xy,disko) uf(xn,daiko) - wi(xy,dpsko) |

For z € Q, the indicator function of Kirchhoff migration is defined as (e.g., see (Ammari, Garnier, H.
Kang, W.-K. Park, et al. 2011))

Tini(z; ko) == [W1(2) KWy (z)| (3.18)

where

Wi(z) = [Q(XhZ%g(Xz’Z)'“ 79(XN7Z)}T,

. . X T (3.19)
WQ(Z) — |:eikod1-z, eikon-z’ . ,eikodL-z:| ]
A normalized version of (3.18) is defined as
Wl Z TKWQ 7z
Tuaziko) 1= — Vi AL ) (3.20)
max |W1(z) KWQ(z)‘
z€

and will be used for our purpose. Then, the following statement is proposed:

Theorem 3.4.1 Suppose that the total numbers L of incident fields and N of measurement points are

sufficiently large. Then, Inkm(2z; ko) can be represented as

M
|W3(2; ko) 5
NKM(2Z; ko) o [V (2 ko)l where W3(z; ko) ZlAmJo(k:o |z — 1)) (3.21)
ze) m=
Here, A,, = oz?n(em —£0)|Dim-
Proof From (3.18) it can be shown that
_ -T ~ . . . -
9(z,x1) v’ (xy,dys ko) w®(xy,dosko) - w’(xq,dr;ko)
o 9(z,x2) u®(xa,d1;ko)  uf(x2,dasko) - ud(xa,dr;ko)
Wl(Z)TK =
(3.22)
| 9(z,xn) | | wi(xn.disko) wf(xn,dosko) - uf(xn,driko) |
— Ul <Zaa1> 5U2 (Z,a2> s " T aUL (ZaaL):| ::U(Z)7
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3.5 Numerical experiments

where
(z dl> Zg (z,xp)u xn,dl) I=1,---,L. (3.23)

Combining the latter with (3.8) leads to

. k o o
Ui <Z’dl) Pt~ Z n <€\/€0/j)0> B ot Jo (ko|z — xn)). (3.24)

Rewriting (3.18) with the use of (3.24) and (3.14) gives

Tinm(z; ko) = W1 (2) T K1 Wo(z) = U (z) Wo(z)
~ . ~ . ~ T
= |:U1 <Z, al) 3 U2 (Za 612> I UL <Z; aL) :| |:eik0d1-z, e*lkodg-z, o ,elkodl‘.z:|
. M
~ —— E B J k — Iy E 10 1"(rm— Z
16+/kom Ym Eo o ‘ ‘ O O’Z r ’ ¢

. M
~ Joll_ U > am <€m > Bl Jo(ko |z — rn])?,
VEOHO

which completes the proof. 0

Remark 3.4.2 The comparison of (3.13) and (3.21) shows that the alternative DSM and normalized
Kirchhoff migration are identical when the number of incident fields becomes sufficiently large. Further-
more, for a single impinging direction, DSM can be regarded as normalized Kirchhoff migration since
|eikoa'rm| = |eik°a'(rm_z)| =1, Ipsm(z; ko) (3.7) can then be rewritten as
(W, (Z)TK{ _ W, (Z)TKWQ(Z){
max {Wl (Z)TK{ B max (W, (Z)TKWQ(Z)‘

Ipsm(z; ko) = = Inini(z; o). (3.26)
where W1(z) and Wy(z) are defined in (3.19).
In summary the relationship between Inkm(2z; ko), Zpsm(z; ko) and Ipsma(z; ko) is given by
Ipsm(z; ko) (= Zpsma(z; ko)) when L =1

Inkm(z; ko) = (3.27)
Ipsma(z; ko) when L > 2.

3.5 Numerical experiments

In this section, some numerical experiments are provided in order to support our theoretical proposal.
Throughout this section, the applied wavenumber kg is of the form kg = 27/ with A\g = 0.4m
(corresponding frequency fy = 750 MHz), the measurement curve Iy is chosen as a circle with radius
7.5A0 = 3m centered at the origin, and the total number of measurement points is set to N = 36.
The search domain 2 is a square of side length 3A\g(= 1.2m) divided into squares ot equal side
h =0.612)\g = 0.0245 m.

The scattered fields u®(xy,, &l; ko) due to planar incident waves are generated by FEKO (EM simula-
tion software) and a 20dB white Gaussian random noise is added using the MATLAB function awgn.
Furthermore, in order to compare the accuracy of the results, we adopt the Jaccard index explained

in Appendix A.3.
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Chapter 3 2D imaging of dielectric inhomogeneities with full-view and near-field data

Example 3.5.1 (Small disks with the same radius and permittivity) First, let us consider the
small dielectric disks 1p,, m = 1,2,3 located at r1 = (0.75X9,—0.75)9) = (0.3m,—0.3m), ro =
(—X0, —0.5)9) = (—0.4m, —0.2m), and r3 = (—0.75Xp, N\g) = (—0.3m,0.4m), respectively. In this ex-
ample, we consider the identification of T,, with constant radius and permittivity oy, = 0.075A¢ = 0.03 m

and e, = beq, respectively.

Figure 3.2 shows the map of Zpgm(z; ko) for a single incident wave with d= (—1,0). As shown by the
previous results (Ito, Jin, and J. Zou 2012) and the discussion in Remark 3.3.3, the locations of each
inhomogeneity 7, are identified even though the Jaccard index has not a high value. It can be explained
by the fact that a lot of artifacts are present in the image and a high s threshold is needed to better
identify the location of the defect. Then the imaging performance of Zpgm(z; ko) and Zpsma (z; ko) is
compared as a function of the number of incident fields L (Figure 3.2 with L = 1, 2, 12, and 36).
As stated in Remark 3.3.6 and confirmed by the comparison of the Jaccard index, Zpsma (z; ko) is an
improved version of Zpgm(z; ko).

Hereafter, Remark 3.4.2 is verified by comparing Zpsma (z; ko) and Znkw(z; ko) (Figure 3.3), only the
maps and the corresponding Jaccard indexes for L = 1 and L = 36 incident fields being presented for
brevity. As expected, the maps of Zpsma (z; ko) and Inkwm(z; ko) and their corresponding Jaccard index
are identical whatever the number of incidences. From now on, only the Jaccard index of Znk(z; ko)

will be provided.

Example 3.5.2 (Small disks with different radii but same permittivities) Now, the imaging
of T with different radii but the same permittivity €, = beg is dealt with. The values of oy, are
a1 = 0.0875)g = 0.035m, as = 0.075)y = 0.03m, and ag = 0.0625)\g = 0.025 m. The locations r,,
of T, are chosen as ri = (0.75 0, —0.75\) = (0.3 m, —0.3m), ro = (—Ag, —0.5X¢) = (=0.4m, —0.2m),
and r3 = (—0.75 0, Ao) = (—0.3m, 0.4 m).

As illustrated in Figure 3.4, when using the original DSM (Figure 3.4, left column) the location of the
inhomogeneity with the largest radius (71) is well identified whereas the others (7o and 73) are not.
Even when the number of sources is increased, the location of the inhomogeneity 73 is still difficult
to be identified due to the presence of important artifacts in the image. The use of DSMA (Figure
3.4, centered column) improves the quality of the image thanks to the smoothing of the artifacts. This
illustrates the statement proposed in Theorem 3.3.1 and the discussions in Remark 3.3.2 and Remark
3.3.6.

Note that some numerical experiments (not presented in the following) have been performed in the
closely related case of small disks with the same radius but different permittivities and the conclusions

are the same, DSMA performs better than DSM when the number of incident fields increases.

Example 3.5.3 (Large disk) In order to verify that our proposal still behaves properly when the
small obstacle hypothesis is no longer verified, we are considering the case of a large circular single
inhomogeneity T with radius o = 1\g = 0.4m and permittivity € = beg. A location is chosen as
r = (=0.75)\p, —0.75)¢) = (—0.3m, —0.3m). In this example, the search domain ) is a square with
side of 2.5 (= 1m), which is divided into small squares with side h = 0.102Ag = 0.0408 m.
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3.5 Numerical experiments
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Figure 3.2: (Example 3.5.1) Map of Zpgm(2; ko) (left column) Zpgnia (z; ko) (center column), and Jac-

card index (right column).

According to Figure 3.5, the exact location and shape of 7 with a few incident waves (one or two) are
difficult to be obtained via both DSM and DSMA. But, as the number of incident waves increases, the
image of 7 is improving with Zpgn(z; ko) and with Zpgma(z;; ko). From the Jaccard index it can be

seen that DSMA has better performance than DSM even if we are no more within the small obstacle

hypothesis.
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Chapter 3 2D imaging of dielectric inhomogeneities with full-view and near-field data
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Figure 3.3: (Example 3.5.1) Map of Zpsma(z; ko) (first column), Znkwm(z; ko) (second column), and

Jaccard index (last column).

3.6 lllustration with some experimental data

In the following both approaches are applied to experimental data available at http://www.fresnel.
fr/3Ddatabase/database.php and described in (Belkebir and Saillard 2001). In order to be as close
as possible to the framework of the theoretical results, the frequency is chosen as fy = 4 GHz, which
corresponds to a wavelength A\g = 0.0749 m. The measurement configuration is as follows, L = 36
sources are at a distance of al ~ 9.87\g evenly distributed from 10° to 350° and N = 49 receivers are
placed at x, ~ 10.14\g and evenly distributed from 5° to 355°. €2 is a square area of 2\g X 2Ag and
has been discretized in 51 x 51 pixels. It is worth to note that

e due to experimental set-up limitations the full Multi-Static Response is not available;

e since the sources are located far from the center of our region of interest, they can be regarded

as a plane wave approximately.

Example 3.6.1 (Two dielectric cylinders, file name is twodielTM_8f.exp) The chosen tar-
get is the set of two dielectric cylinders with radius o, ~ A\/10,m = 1,2 and permittivity e, =
(3.0 £0.3) eg. They are located at ri ~ (—2X/30, —3X\/10 m) and ra =~ (0m,3X/10 m), respectively.

The results are displayed in Figure 3.6. For the case of a single source (figure 3.6, first line) neither DSM
nor DSMA provides a good localization of the defect even though the two maps are almost identical.
Some discrepancies can be seen between the two, thanks to the Jaccard index comparison. They are

related to the fact that, as already mentioned, the incident field is approximately the same as a plane
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3.7 Conclusion

elkodx| — 1 When the number of incident fields L is increasing (figure 3.6, second and

wave, i.e., ‘
third line) the improvement provided by Zpgyma compared to Zpgy is still valid up to a threshold of
k = 80 %.

Example 3.6.2 (Metallic rectangle pole, file name is rectTM _dece.exp) Here, we apply the
algorithms to a non-circular target with metallic square shape. It has side lengths 0.0127 m and 0.0245 m

and is located at r ~ (0m,0.04m).

Figure 3.7 shows that the center of the target is identified via DSM and DSMA. The artifacts in the
maps of Zpsm(z; ko) and Zpsma(z; ko) decrease as the total number of incident fields increases and
accuracy of DSMA is better than DSM. However, it seems to be almost a circle not a rectangle. In
other words, the edges of the target are hard to be identified via both DSM and DSMA.

Example 3.6.3 (Metallic U-shaped pole, file name is uTM _shaped.exp) Now, a complez tar-
get (metallic U-shape) with the size 0.05m x 0.08 m is considered.

The results are presented in Figure 3.8. In this case, it is not sufficient to identify the exact shape and
location of the target with the data from a single incident field. On the other hand, the target can be
reconstructed by both DSM and DSMA with a lot of sources (L = 12, 36). DSMA also has a better
result than DSM as stated in Remark 3.3.6.

3.7 Conclusion

In this chapter, the direct sampling method (DSM) is analyzed in the case of small obstacles thanks
to the asymptotic formula of the scattered field. Some drawbacks of the classical DSM are exhibited
and DSMA which improves the performance of the former in the case of multiple transmitters is
proposed. Once the DSMA indicator function has been derived a strong connection between Kirchhoff
migration and traditional and alternative DSM has been identified. Numerical simulations under various
conditions are provided to support our theoretical results either with synthetic or with experimental
data.

In the next chapter, we study the DSM in restricted configurations such as mono-static and limited-

aperture configuration.
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Figure 3.4: (Example 3.5.2) Map of Zpsm(z; ko) (left column) Zpgma (z; ko) (center column), and Jac-
card index (right column).
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Figure 3.5: (Example 3.5.3) Map of Zpgm(z; ko) (left column) Zpgnia (z; ko) (center column), and Jac-
card index (right column).
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Figure 3.6: (Example 3.6.1) Map of Zpgm(z; ko) (left column) Zpsama(z; ko) (center column), and
Jaccard index (right column) using the experimental data at 4 GHz.
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Figure 3.7: (Example 3.6.2) Map of Zpsm(z; ko) (left column) Zpgma(z; ko) (center column), and

Jaccard index (right column) using the experimental data at 4 GHz.
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Figure 3.8: (Example 3.6.3) Map of Zpsm(z; ko) (left column) Zpgma(z; ko) (center column), and

Jaccard index (right column) using the experimental data at 4 GHz.
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4.1 Introduction

In the previous chapter, we have verified the mathematical structure of DSM and DSMA with near-field
data in multi-static and full-aperture configuration. Unfortunately, in various real-world applications
such as ground penetrating radar (GPR) (Catapano, Soldovieri, and Crocco 2011; X. Liu, Serhir, and
Lambert 2018; Torrione et al. 2014), synthetic aperture radar (SAR) (L. Zhang et al. 2010; Cetin et al.
2014; T. Zhang and Xia 2015), and seismic imaging (Tilmann, Ni, and INDEPTH III Seismic Team
2003; Y. Chen et al. 2015; Xue et al. 2015), a full aperture set-up is not possible. In other words, the
motion of a single transducer or the restricted ranges of incident and observation directions must be
considered in such applications. Hence, we consider the DSM in a mono-static and limited-aperture

configuration for identifying small or extended dielectric inhomogeneities in this chapter.
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Chapter 4 2D imaging of dielectric inhomogeneities in restricted configuration with far-field data

In the first part of this chapter, we propose the indicator function of DSM with mono-static data.
Thanks to the asymptotic formula introduced in chapter 2, the mathematical structure of the indicator
function of DSM and its limitation in the mono-static configuration are identified. According to our
analysis, a new indicator function of the DSM is introduced and analyzed in order to improve the
imaging performance of DSM in this mono-static configuration. Next, we extend our approach to
limited-aperture problem and validate its mathematical structure with a similar path as in the mono-
static case. We investigate the structure of DSM by establishing a relationship with a Bessel function
of integer order of the first kind, the range of observation directions and properties of inhomogeneities
(location, shape, size, etc.), and explain unexplored intrinsic properties of DSM. The alternative DSM
(DSMA), proposed in the previous chapter, is also applied here to improve performance by using
multiple incident fields. Simulation results with synthetic data corrupted by random noise and real data
are exhibited for supporting theoretical results and demonstrating the effectiveness and limitations.

This chapter is organized as follows. In section 4.2, the DSM and its modified version in a mono-
static configuration are designed and analyzed to explain and overcome the limitation. The study of
DSM and DSMA in a limited-aperture problem is presented in section 4.3. Our theoretical results are

validated with diverse numerical simulations in section 4.2.4 and 4.3.3, respectively.

4.2 Direct sampling method in mono-static configuration

According to (Li and Z. Zou 2013), for a fixed incident direction d, the indicator function of DSM with
far-field data F = {uoo(fcn,fl) 1%, €SY, n=1,2,--- N} is defined as

<UOO (Xn, d; ko), e_ikofcn-z>

L2 (Sl)

IBsu (2, d; ko) :=

- ~ 3 . ~ 9 (41)
|[too (R, )| £2(s1)l|€7F0%n 2] 1o 1)

where the L2-inner product (-, r2sty and ||| 21y are defined by (A.2). The combination of the

integral representation for far-field pattern (2.14) and of the following known lemma:

Lemma 4.2.1 (See (W.-K. Park 2015) and (Li and Z. Zou 2013)) For sufficiently large N, X, X,, €
S, and z € R?, the following relation holds:

N

Zeikof(n-z ~ / eikof(-zds(f() — 27TJO(]€0|Z|), (42)
n=1 st
leads to
M
Tsm(z, d; ko) o Y Windo(kolrm — 2)), , (4.3)

m=1
which is the same relation as with DSM with near-field data described in (3.5). Namely, the result
of ZB%M(Z,&; ko) has maximum amplitude if z = r,,, so the location of each inhomogeneity can be
identified via Zp3y\(z, d; ko) even with far-field data.
Now, we design the indicator function of the direct sampling method with data measured in a
mono-static configuration motivated by the fact that DSM needs only one (or a few) incident field

for imaging. Let us consider the mono-static configuration in which an antenna acts as receiver and
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4.2 Direct sampling method in mono-static configuration

transmitter (transducer), implying d, = —X,, and is successively set at IV locations, then giving a set

of measured far-field pattern data denoted by

A~

IEI‘Inono - {uoo(f(naaTHkO)a n= 1727 T 7N}7 dn - _)A(n

The indicator function ZE§\F (2; ko) is directly deduced from (4.1) and defined as

<uoo (Xn, an; ko), e_ikOﬁn.Z>L2(Sl)

mono

DSM (z; ko) :=

S A —ikoXn -z ’ (44)
maXHUOO(XnadmkO)HLQ(Sl)He " HLQ(Sl)
z€Q)

However, as exemplified in (Bektas and Ozdemir 2016), the DSM in such a configuration failed to
provide a proper localization of the defects (see also Figure 4.1). So further analysis and improvement

are the main work in this section.

4.2.1 Analysis of indicator function

In (Bektas and Ozdemir 2016), a modified indicator involving a heuristic factor is proposed to solve the

problem, yet no theoretical explanation is provided. In the following, we analyze the indicator function

DS (25 ko) to explain the reason of such an inaccurate localization in the mono-static configuration.

Theorem 4.2.2 Assume that the total number N of incident and observation directions is sufficiently

large. Then, Z&C(z; ko) can be represented as:

S

‘\Ill(Z;ko)’ 9
————————= — where ¥y(z; k) ~ m — D..|Jo(ko|2r), — 2|). 4.
max | Wy (z; ko)’ where 01 (z; ko) Zam(e €0)|Diml|Jo(ko|2rm — 2) (4.5)

zeN m=1

THE (2 o) =

Proof Since d,, = —%,,, applying (2.15) and Lemma 4.2.1 to (4.4), we can evaluate

<u (% d.: k ) e—ilmfcn.z> ~ M i o2 <€m —€0> D, ie_iko,}n.(grm_z)
oco\An, Un, MO ), LQ(Sl) 4 /_]{)7'(' m ’—50,&0 m

n=1

2 1 3 M —
~ Ko+ D S e (am 80) 1Dy Jo(ko|2rm — 2]).

Finally, applying Holder’s inequality

~

<uoo(>2n,d;k0),e’ik°*"'z> < Huoo(fcn,&;ko)‘

‘ —iko&n -2z

L2 (Sl) LQ(Sl) L2 (Sl)

leads to (4.5), which completes the proof. 0

The structure of (4.5) explains that DSM within the mono-static configuration is no longer propor-
tional to [Jo(ko|r,, — 2[)| but to |Jo(ko|2r,, — z|)|. This means that ZZS\r (2; ko) reaches its maximum
value at shifted locations z = 2r,,. Due to this reason, a traditional application of DSM will lead
to miss-localization of the inhomogeneities. Hence, further improvement is needed to overcome the

limitation.
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Chapter 4 2D imaging of dielectric inhomogeneities in restricted configuration with far-field data

4.2.2 Modified indicator function of DSM to overcome the limitation

Thanks to (4.5), a modified indicator function of DSM I3 (z) can be proposed: for z € €,

A J . —2ikoXn-
<uoo(xnadnak0)7e thox Z>

L2 (Sl)

mono Zko 46
MDSi(23 o) = ttoo (R Ao Ko )| 1251 [l 2050 2 | o gy (4.6)

Following the same path (omitted here) as for Theorem 4.2.2 leads to

Theorem 4.2.3 Assume that the total number N of incident and observation directions is sufficiently

large. Then, I{iX&\(2; ko) can be represented as:

M
|Wa(z; ko) 5
Tmono (. B e G ) Wa(z: ko) —&))ID 2 —z). (4.
MDeM (25 ko) = maé(‘%( ko)’7wh€7“€ 3(2; ko) Elam(ﬁm €0)|Dm|Jo(2ko[rm — 2[).  (4.7)
zE m=

Proof The combination of (2.15) and Lemma 4.2.1 leads to

. A “2iko%n 2 k(1 +1) ZM 2 (E€m — €0 ZN 2iko&n-(tm—2)
<uoo(xnadn;k0)ae >L2(Sl) ~ 4\/% A, oo ‘Dm‘ e
m=1 n=1

Nk8(1+i)l EM o? < = >]D | Jo(2ko |y, — 2|).
~ —k; m \/0— 0 0ltm
k2(i—1)7r

Finally, the constant Vo is eliminated by applying Holder’s inequality and the proof is completed.

m=1

O

As shown in (4.7), I8 (2; ko) is proportional to |Jo(2ko|r,, — 2|)| which, on the contrary of (4.5),
has its maximum values at z = r,,,, m = 1,2,--- , M, which corresponds to the localization of the
defects to be identified.

4.2.3 Comparison of the imaging performance between mono-static and multi-static data

Now, we analyze the indicator function of DSM with multi-static data to compare the imaging per-
formance of MDSM. With the same derivations as in previous theorem, the DSM in the multi-static

configuration has the following representation formula.

Theorem 4.2.4 Assume that the total number of receiving (N ) directions is sufficiently large. Then,
for a fixed incident direction of propagation de St I3 (2, &; ko) can be represented as:

‘\113(Z7a; kO)‘
II%OSM(Z’ d; kO) =

. where U3(z,d; ko) ~ Z a2, (em — €0)| D |Jo(ko|rm — 2z|). (4.8)

I?eaé( ‘\Ilg(Z, d; ko)

Proof We apply the asymptotic formula (2.2.2) and Lemma 4.2.1 to the indicator function of DSM
(4.1):

< (A E[k) 7ik0ﬁn'z> ~ M f: 2 [E€m — |D | ikod T iv: ikoXn-(z2—rm)
uoo Xn; s O ?e L2(S1) ~ 4 koﬂ' 1 am \/m nzle

m
21 +1) Em — €0 hod.
RIS ot} < :;m ) D, [0 T (ko |z — 1)

(4.9)
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4.2 Direct sampling method in mono-static configuration

Combining eikodTm | — 1 and Holder’s inequality leads to the result of Theorem (4.2.4). 0

Our analysis shows that the DSM with far-field data has the same efficiency and properties as the DSM
using near-field data stated in Remark 3.3.3. For multiple impinging directions (al, l=1,2,---,L),
the indicator function Zpgn(z) is defined as

IRam(z; ko) := max {Z]%%M(z,al;ko), 1=1,2,--- L; z¢€ Q} , (4.10)

where Z3%\(z, d; ko) is the indicator function for the direction of incident field d;, as defined in (4.1).
So it is easy to see that

M
3 a2 (em — £0) Dyl 09T 3o (o |z — 1,0])

m=1

II%%M(Z§kO)O<maX{ ,lzl,...,L:zeQ}. (4.11)

It is interesting to observe that, according to (Ito, Jin, and J. Zou 2012; Li and Z. Zou 2013; W.-K.
Park 2018a; W.-K. Park 2018b), the traditional DSM in the multi-static configuration is proportional
to |Jo(ko|rm — 2z|)|. By comparing the oscillation property of Jo(ko|z|) and Jo(2ko|x|), it can be shown
that ZY2&\(2; ko) will contain more artifacts than Z5y,(2; ko).

4.2.4 Numerical simulations

Numerical experiments are provided to support the results presented in Theorems 4.2.4 and 4.2.2. For
the simulation, a fixed frequency fo = co/Xo ~ 749.481 MHz, where ¢y = 1/,/Eofig is the speed of light
and A\g = 0.4m, is considered. The number of incident and observation directions is set to N = 36,
the latter being uniformly distributed on S' except stated otherwise. We set © as a square of side
length 4)\¢ uniformly discretized with 51 x 51 square pixels. The far-field patterns uso(Xp, &n; ko) are

generated via FEKO (EM simulation software), where

2 -1 2 -1
X, = <cos m(n ),sin m(n )>

N N
with N = 36. A 20dB white Gaussian random noise is added to unperturbed data using MATLAB

function awgn included in the signal processing package.

To compare the accuracy of the results, the Jaccard index in Appendix A is used. For each example
the map of the indicator function is presented in the multi-static case (4.1) using the N2 collected data
and in the mono-static case using the N collected data thanks to either (4.4) or (4.6).

Example 4.2.5 (Small disks of same radii and permittivity) First, we consider the small di-
electric disks T, with o, = 0.075Xg and €, = Heg, m = 1,2,3. The locations v, of 1, are ri =
(0.75)\0, —0.75)\0), ro = (—)\0, —0.5)\0), and rg = (—0.75)\0,)\0).

According to the results in Fig. 4.1, the location of r,, € 7, can be identified using the classical
DSM indicator function I3 ,(2; ko) (3.1) when using the multi-static data (Figure 4.1(a)) but it fails
when using the mono-static ones (Figure 4.1(b)), whereas more accurate locations are retrieved via the
map of Ty (z; ko) (Fig. 4.1(c)); however, due to the intrinsic lack of information of the mono-static
configuration, only two of the three defects are properly identified. As expected in the mono-static

configuration a number of artifacts are also included in the map as discussed at the end of section 4.2.1.
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Chapter 4 2D imaging of dielectric inhomogeneities in restricted configuration with far-field data
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Figure 4.1: Simulation results of Example 4.2.5
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Figure 4.2: Simulation results of Example 4.2.6

Example 4.2.6 (Large disk) In order to verify that our approach still behaves properly when the
small obstacle hypothesis is no longer verified, we are considering the identification of an extended
target designed as a single disk circle T located at v = (—0.75Xg, —0.75)\) with radius o = 1X\g and
permittivity € = Seg.

Here also the shifting problem occurs in Z5§P(2; ko) as shown in Figure 4.2(b) whereas, when using

VD& (Z; ko), a better localization of the center of the target is obtained (Figure 4.2(c)) even if none
of them is able to estimate the shape and size of this target. As expected, better results are obtained

when using the multi-static data (Figure 4.2(a)).

Example 4.2.7 (Limited aperture) Motivated by the application in GPR and SAR, we apply the
designed indicator function I{[3&(2; ko) when the range of incident and observation directions is lim-
ited. It is important to emphasize that due to the use of the far-field hypothesis such a configuration
s mot directly related to a GPR configuration, even if the influence of the limited aspect of the data is
exemplified.

The configuration is the same as for Example 4.2.5 except the range of incident and observation direc-
tions which is limited to the upper half-circle with only N = 19 collected far-field data. The simulation
results are displayed in Figure 4.3. As for the two previous examples the results using the multi-static
scattered field provide the best localizations (Figure 4.3(a)) whereas the mono-static case using the clas-
sical DSM does not provide any good results since the shifting problem still occurs (Figure 4.3(b)). As
expected the mono-static modified DSM is able to localize two obstacles among the three (Figure 4.3(c))

as it was the case with full-view aperture (Figure 4.1(c)).
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Figure 4.3: Simulation results in Example 4.2.7. The red-colored solid line indicates the limited range

of incident and observation directions.

4.3 Direct sampling method in limited-aperture configuration

Here, we focus on the structure analysis of DSM in limited-aperture problem as shown in Example

4.2.7. We define a finite set of observation directions S(l)bs such as
-1
Sébs = {fcn = (cosOy,sinb,) : 0, = 61 + (On — 91)%, n=12--- ,N} c st (4.12)

for a fixed wavenumber kg and propagation direction d € S'. The corresponding set of far-field pattern
data [F can also be defined by

F, := {tioo(Xn, d; ko) : X, € SL. ). (4.13)

Based on traditional DSM defined by (4.1), the indicator function of DSM in limited-aperture config-

uration can be introduced as follows: for z € €,

<uoo (%, d; ko), e—ikog.z>

He—lkoxz

L2(SL )

obs

T (2 d, ko) : (4.14)

a Huoo(fc,&; kO)H

L(Scl)bs) L2 (le)bs)

According to the previous work presented in Theorem 4.2.4, the result from Zgyy;(z; &, ko) should be
I]%OSM(Z;EI,I{:O) = 1if z € 7 while I35 # 1 if z € 7 due to the oscillation properties of the Bessel
function. So the location of each inhomogeneity should be identified in the map of II%%M(Z;a,ko),
but other phenomena are observed in the limited-aperture configuration case, refer to Figure 4.7 for

instance, so a new analysis and interpretation are needed to handle them.

4.3.1 Analysis of the indicator function for single and several incident fields

In this section, we derive the mathematical structure of indicator function Zgg,,(z; &, ko). Before start-
ing, recall a useful result derived in (W.-K. Park 2015, Theorem 4.1) that demonstrates a relationship

between exponential function and an infinite series of Bessel functions of integer order.
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Chapter 4 2D imaging of dielectric inhomogeneities in restricted configuration with far-field data

Lemma 4.3.1 Letz = |z| (cos ¢,sin @) € R? andx € S, .. Then, for sufficiently large N, the following

relations holds uniformly
Z elkoxn z 1 / ikoﬁ-zds(f{)
N QN 91 ol bs

g 22 St cos (N2 ) i ()

where Js denotes the Bessel function of first kind with order s.

(4.15)
= Jo(k()’Z‘) +

4.3.1.1 Single impinging direction

In the following, the mathematical structure of the DSM indicator function (Theorem 4.3.2) is derived

thanks to the asymptotic formula (2.15) and a relationship (4.15).

Theorem 4.3.2 Assume that the total number of observation directions N is sufficiently large. Let

Iy — 2 = |ty — 2](COS @, it ). Then, the DSM indicator function can be represented as

|L1(z,d; ko)

T (z: d, ko) ~ - ,
psu( 0) max |£1(z,d; ko)

(4.16)

where

L1 s ko) : Zoﬂ |Dm|( < ) lkodrm{Jo<ko|rm—z|>+A§1’9N<ko,|rm—z|>} (4.17)

with

4 K
AZI’GN(km ’I'm _ Z‘) = Z ng(ko‘I‘m - Z‘)

On — 01 =
X COs <S (O + 921 - 290m)> sin <S(9N2_ 91)) . (4.18)

Proof Applying the asymptotic formula of far-field pattern (2.15) to the indicator function (4.14), we

can evaluate

s q. —iko%x-z
<uoo(x,d,k0),e 0 >L2 s

N
Em — ikoa-rm ikoXn- (rm—2)
m\Dm\ < e Z e
VEOMO >

n=1

m|Dm| <€m€;u )eikoa.rm /S1 1k05<-(rmfz)d5(§() ]

obs

(4.19)

The combination of (4.15) and (4.19) yields

i M
HN 91 /{?0 Z ( — 50) eiko&rm
N VEoHo

m=

~
~

<u@o (%, d; ko), e—ik‘of(.z> o

Scl)bs)

X{Mm%—m+@w%ﬁmﬂ@‘@m

where Agl’eN (ko, |rm — z|) is given by (4.18). Finally, applying Holder’s inequality completes the proof
and leads to the final result (4.16). 0
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4.3 Direct sampling method in limited-aperture configuration

Remark 4.3.3 (Properties of indicator function)

1. Based on the analyzed structure (4.16), the terms Jo(ko|r,, — z|) and Agl’eN (ko, |t — z|) con-
tribute to and disturb the imaging performance, respectively, because Jo(ko|ry, — z|]) = 1 and
Agl’eN(k:O, ), — z]) = 0 when z = vy, € Ty, This means that it will be possible to identify the
location of T, via the map of I3\ (2; ko). Notice that, due to the oscillating property of the Bessel

function, the map of I3g\(2; ko) should contain artifacts.

2. It is worth mentioning that the term Jo(ko|ry, — z|) is independent from the range of observation
directions, but AZ}’GN(ICO, v, — z|) significantly depends on the range of such directions. This
means that eliminating or lowering the magnitude of the disturbing term AZ}’GN(ICO, |ty — 2|) is

important to improve the imaging accuracy.

3. If the range of observation directions is large, the effect of the term Ag}’GN (ko, |tm — 2|) becomes
negligible, so that the imaging result will be good. In contrast, if the range of such directions

becomes small, the term Agl’eN(ko, v, — 2z|) will significantly affect the imaging performance.

Remark 4.3.4 (Methods for improving imaging performance) Based on the structure estab-
lished in Theorem 4.3.2 and the discussion in Remark 4.3.3, further improvement is still required

to improve itmaging performance.

1. A way to improve the imaging performance of DSM in the limited-aperture configuration is to
eliminate the disturbing term Agl’eN (ko, |tm —2|). An optimal solution would be to choose 61 and
On such as AZ}’GN(ICO, |ry, —z|) = 0. Since z is arbitrary and ry, is unknown, we cannot handle

the value of Js(ko|ry, — z|) so that the condition on the range has to be set on:

0 01— 2pm, On — 0
cos (S( Al 21 7 )>sin (W) =0, seN. (4.21)
a) One possible selection is Oy — 01 = 27, i.e., full-view case. Based on Theorem 4.2.4, it turns
out that R
; £1(z,d; ko)|
I3am(z; d, ko) ~ . , 4.22
DSM( 0) max[ﬁl(z,d7k0)] ( )
where

L1(z,d; ko) : Zoﬂ |Dm|< — ) etkodTm 30 (ko e, — z)). (4.23)

Therefore, since there is no disturbing term, one will obtain good imaging results.

b) Except the full-view case, the other way to satisfy (4.21) is to have O + 01 — 2, = ™ and
On — 61 = m. One possible solution is to choose 01 = @, and Oy = 7+ ©.,, that satisfies
(4.21). This means that one must know a priori information about T, (i.e., value of @, ) for
all m =1,2,--- , M. Based on this observation, it is possible to examine that if the range
of the observation directions is wider than mw, one can obtain an acceptable result, refer to
Figure 4.5.
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Chapter 4 2D imaging of dielectric inhomogeneities in restricted configuration with far-field data

2. Notice that since

(9]\[ — 91)\/k30|1’m — Z|

another way to eliminate the disturbing term Agl’eN (ko |tm — 2z|) is to apply sufficiently high

1
AL (ko [t — 2]) = O ( ) , (4.24)

frequency such as kg — +oo. However, this is an ideal assumption.

4.3.1.2 Multiple impinging directions

Based on several investigations, it is obvious that application of several direction of incident field is
another way of improve imaging accuracy. Now, let us introduce a finite set of incident directions Smc

such as

1
S1nc

N -1
= {dl = (cos Uy, sinvy) : ¥ = 91 + (79L — 791)%, [=1,2,--- ’L} c st (4.25)

On the basis of (Ito, Jin, and J. Zou 2012; Li and Z. Zou 2013), the indicator function of DSM with

multiple impinging directions has been introduced by
Tpsm(z; ko) := max {IDSM(Z; d1, ko), Zosm(z; da, ko), -+, Ipsm(z: dy, ko)} : (4.26)

Remark 4.3.5 (Some properties) We can observe several properties of I3g\(2; ko) of (4.26) which

can be summarized as follows.

1. Based on the result in Theorem 4.3.2, we can observe that

M
2 €m — €0\ ikod;r 61,0
E as | Dol <7> elfod m{Jo(ko\rm —z|) + Ag"N (ko, |t —z\)} .
— VEolo
(4.27)

Thus, the imaging result will be similar to the one via I3y (z;d, ko) even with many incident

fields.

Ipam(z; ko) o< max

2. Assume that the total number of observation directions is equal to one, i.e., N = 1. Then, since

the following Jacobi-Anger expansion holds uniformly
elzeost — )+ 2 Z i°Js(z) cos(sb), (4.28)

we can derive

lim /191’91\’(/{0, It — z|)
9N~>91

s(ON+ 01 —20m)\ . [s(On—61)
oJm, 9N 0 Z J (ko|tm — 2|) cos < 5 sin 5 (4.29)

= lim

=2 ZiSJS(/ﬂo\rm — 7)) cos(spp,) = elkolrm=zlcosem _ g0 (kolr, — 7).
s=1

Thus, we arrive at

M
| Em = €0\ _iko(dp-Tm-tlrm—z] cos o)
T (Z’ ko)  max CY2 |D | <m7> etroldy ¥ . (430)
DSM 2€Q mzzzl mETE Veoko
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4.3 Direct sampling method in limited-aperture configuration

The relation indicates that in the case of a single observation direction, we have
Ipgm(z3 ko) =1 forall z € Q. (4.31)

and it will be impossible to identify the location of T, via I3g\;(2; ko).

4.3.2 Alternative indicator function of DSM to improve imaging performance

Based on Remark 4.3.5, the accuracy of the indicator function Z3yy(2; ko) is not significantly increased
even though the total number of incident directions is getting large. Therefore, we must consider an
alternative method for a further improvement. For the multiple incident directions within the full
aperture case (S. Kang, Lambert, and W.-K. Park 2018b; W.-K. Park 2018b), it has been shown that
an alternative indicator function (DSMA) defined by (4.32) yields a better imaging result than the
traditional DSM given by (4.26).

A~ A_ —ik &n'z ik &-z
‘<<uoo(xadﬂk0)7e ’ >L2(S1 )76 O >L2(Sl )

obs
inc

max <<uoo(§<,a; k0)7e—iko&n~Z> 7eiko&~z>
L2(Sy,5) L2(St )

inc

Ipsma(z, ko) == : (4.32)

where the inner product (-, ->L2(S1b ) and norm || - ||L2(Slb ) are defined with (A.2).
Fortunately, Z24y4 (2, ko) is still an improved version of Z34(z; ko) of (4.26) in the limited aperture

configuration. The theorem is as follows.

Theorem 4.3.6 Assume that the total number of observation directions N and incident directions L

is sufficiently large. Then, the indicator function Ipsma(z, ko) can be represented as

|L2(z; ko)

, 4.33
< | £2(2: o) (4.33)

Tpsma (25 ko) =

where

M

Em — &

Lo(z; ko) ==Y o2 |Dy| ( Eouo()) [Jo(ko|rm, —z|)% + <A951’9N(k:0, It — 2]) + S (Ko, [t — z|)>
m=1

x Jo(ko[tm — 2]) + A%V (ko, [ty — 2) AG 2 (Ko, |t — 2])]. (4.34)
Here, Ag’ﬁ(k‘o, vy, —2|) is given by (4.18).

Proof By combining (4.20) and (4.32),

s Aa. —ikok-z —ikod-z
'<<uoo(x7d7k0)7e 0 >L2(Sl )7e 0 >L2(Sl )

obs
inc

(1 +1)
Wi 27 (/S

inc

. (4.35)

eiko&(rm—z)ds(a)) Oy — 91){Jo(ko|rm —z|) + Ag‘}
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Chapter 4 2D imaging of dielectric inhomogeneities in restricted configuration with far-field data

where A, := a2,|D,,| (Em_ao) and Agl’eN (ko, |rsm — z|) is given by (4.18). The Lemma 4.3.1 yields

<u (5( —1k0x z> —1koa-z _
00 =
’ obs 7 L2 (Sl )

NG

M
K2(L+1)
(0, — 92) (O — 0,y 01D ZAm
=1

inc

X {Jo(k0|rm_Z|)+Ag’1,ﬁL(k0a|rm_Z|)}{J0(k0|rm_Z|) + A (ko, [t — 2) H (4.36)

Then, applying Holder inequality leads to (4.33), which completes the proof. 0

Remark 4.3.7 (Properties of indicator function) On the basis of the identified structure (4.33),

we can examine some properties of DSMA.

40

1. Similar to the properties of II%%M(z,a;ko) stated in Remark 4.3.3, Jo(ko|rm — 2|)? contributes

to, and AGSI’GN(IC, Ity —2z|) and Agl’ﬂL(k‘, v, — z|) disturb the retrieval of the location of T, via
I35 (2 ko). The map of Ig\a (2; ko) will have peaks at the center of 7, due to the properties
of Jo(ko|rm — z|)?, which means that the location of each inhomogeneity can be identified by the

map of IRga(2; ko).

. It is worth noticing that the contributing term Jo(ko|r,, — z|)? is independent upon the range

of incident and/or observation directions like in the case of DSM. So it is sufficient to compare

contributing terms of I3\ (2; ko) and I3\ (2; ko) to compare their imaging performance:
Tma (x5 ko) o< |Jo(kolrm — 2)?|  and TR (x; ko) o< |Jo(ko|rm — 2])] (4.37)

Note that |Jo(ko|z|)|* has many less oscillations than |Jo(ko|z|)| (see Figure 4.4 for illustration).
This means that IR\ A (2; ko) ts an improved version of IR\ (2; ko), which is the same result as

in chapter 3 (full-aperture case).

1 1 1 1
0.8 0.8
0.5 0.5
0.6 0.6
0 0
0.4 0.4
-0.5 -0.5
0.2 0.2
-1 0 -1 0
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

(a) [Jo(kolz])| (b) |Jo(kolz])?|

Figure 4.4: Two-dimensional plots of |Jo(ko|z|)| and |J0(k:0|z|)2| using fo = 1 GHz



4.3 Direct sampling method in limited-aperture configuration

Remark 4.3.8 (Improving imaging performance) Since the disturbing terms Agl’GN (k,|tm — 2|)
and Agl’ﬁL(k, v, —2|) are significantly depending on the range of incident and/or observation directions,
we have to choose the ranges [01,0n] and [V1,01] satisfying AZ}’GN(IC, |y, —z|) =0 and Agl’ﬁL(k, |ty —

z|) = 0, respectively. In other words, we must find a condition of incident and observation directions

to satisfy
cos <s(79N+791 —QLPm))Sin (M) =0, (4.38)
2 2
and
N <t (O + 921 - 2som)> “in (M) o, (4.39)

respectively for integers s and t. Similar to the Remark 4.3.4, we can say that (i) full-aperture of
observation (On — 01 = 27) and incident (91, —91 = 27) and (i) the ranges of observation and incident

directions wider than 7 will provide a good imaging performance of DSMA.

4.3.3 Numerical simulations

We validate our theoretical results via various numerical simulations with synthetic and experimental
data. To compare the imaging efficiency, the Jaccard index A.3 is again adopted here. Note that the

red line and black line indicate the x,, and —&l, respectively.

Synthetic data A fixed frequency fy = co/\o = 1 GHz is considered where ¢y = 1/,/opq is the speed
of light and A\g ~ 0.3 m. The far-field patterns are measured at N observation directions uniformly
distributed on S})bs for each of the L incident directions d € St here, S})bs and Siln

mc’

. are the simply
connected subsets of S!.

The range and number of observation directions are defined by [0;,60x] and N, respectively, the
angle between two adjacent directions being as Af = (O — 61)/(N — 1). The various acquisition
configurations are shown in Table 4.1. The cases for the incident directions are given by Table 4.2

analogously, where [1,9] and L are the range and number of incident directions, respectively.

Cases 01 Oy N Description
Case A1 | 180° 180° 1 Single receiver direction
Case A2 | 135° 225° 19 Narrow, limited observation directions
Case A3 | 90° 270° 37 Semi-circular range, limited observation directions
Case A4 | 45° 315° 55 Wide, limited observation directions

Table 4.1: Values of 01, 6, and N used to obtained the synthetic data

The region of interest €2 is a square of side length 20)\y/3 = 2m uniformly discretized in 51 x 51
pixels. The far-field patterns uoo(fcn,al; ko), n =1,2,--- /N, I = 1,2,--- , L are generated by FEKO
(EM simulation software) as previously and a 20 dB white Gaussian random noise is added using the

MATLAB function awgn included in signal processing package.

Example 4.3.9 (Small dielectric disk) First, a single small dielectric disk with radius o« = 0.1\g =
0.03m and permittivity € = beg is considered. It is located atr = (—0.3333Xg, 0.6667X9) = (—0.1m,0.2m)
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Chapter 4 2D imaging of dielectric inhomogeneities in restricted configuration with far-field data

Cases % 9, L Description
Case B1 | 180° 180° 1 Single incident direction
Case B2 | 135° 225° 19 Narrow, limited incident directions
Case B3 | 90° 270° 37 Semi-circular range, limited incident directions
Case B4 | 45° 315° 55 Wide, limited incident directions

Table 4.2: Values of 91, 97, and L used to obtained the synthetic data

All the results obtained from the combination of the configurations presented in Tables 4.1 and
4.2 are gathered in Figure 4.5 for DSM and in Figure 4.6 for DSMA. According to Remark 4.3.5,
DSM is unable to identify the inhomogeneities when using only one receiver whatever the number
of sources as shown in Figure 4.5 (first line). The targets 7,,, m = 1,2,3 cannot be identified if the
observation range is too narrow (0; — Oy < 2m) as exemplified in case Al and A2 (first and second
rows, respectively) via DSM with single-frequency even though incident directions are increased. On the
other hand, imaging efficiencies are improved when the total number of incident directions is increased
via the maps of Zpsna (z; ko), see cases Al and A2 in Figure 4.6. In cases A3, A4, and A5 which verify
m < Oy — 01 < 27, the targets 7, can be identified via the maps of T3g(z; ko) and Z3gy;a(2; ko).
According to the Jaccard index (bottom row), it can be shown, as expected, that the larger the range

of observation directions, the better the results.

Example 4.3.10 (Small three dielectric disks with same size and permittivity) The small di-
electric disks 1, with a., = 0.1X\g = 0.03m and &, = Heg, m = 1,2,3 are considered. Their locations
of Tm are r1 = (—8X0/3,0) = (—0.8m,0), ro = (4\o/3,—2X9) = (0.4m,—0.6m), and r3 = (Ao/
3,2)0) = (0.1m, 0.6 m).

Figure 4.7 and 4.8 display the results with respect to cases of ranges of incident and observation
directions in Tables 4.1 and 4.2. Even though more oscillations are observed in both maps of T3y (z; ko)
and Z3g\a (2; ko) because of the interaction between inhomogeneities, the results are almost similar to

those of Example 4.3.9 (single target case).

Example 4.3.11 (Large dielectric disk) In order to verify that our proposal still behaves properly
when the small obstacle hypothesis is no longer verified, we are considering the case of a large circu-
lar single inhomogeneity of location v = (—Xg, —Ao) and radius o, = Ao, respectively, the dielectric

permittivity being given by € = Heg.

As shown in Figure 4.9, in contrast with results of Example 4.3.10, we cannot identify exact shape
and location from the map of I3, (2, d; ko) even with broad (i.e., O — 61 > ) ranges of observation
directions but with the narrow range of incident directions. On the contrary, by using the indicator
function of DSMA instead of DSM, the location of the inhomogeneity can be identified even with a

narrow range of observation directions when the range of incident directions is increased.

Experimental data In the following, the efficiency of the DSM algorithm and of our theoretical de-

velopments are verified using the Fresnel experimental data (Belkebir and Saillard 2001). The cases
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4.3 Direct sampling method in limited-aperture configuration

of two dielectric disks, square, and metallic U-shaped target are considered using the 4 GHz results,
which corresponds to the following wavelength \g ~ 0.075m. The region of interest 2 := [1)\g] is a
square of side length 2A\g ~ 0.15 m uniformly discretized with 51 x 51 pixels. It is worth to note that

e due to experimental set-up limitations the full-view problem is not available. More specifically,

the maximum range or observation directions is #; = 60° and 0y = 300° for N = 49.

e the scattered field has been measured within the near-field configuration but the antennas are

located far from the region of interest. Hence, it can be approximated by the far-field pattern.

e the cases depend on the range of observation direction for limited-ranged of incident direction are
unavailable since the locations of observation direction are changed for each incident direction.
Therefore, the DSM is only applied since it has same performance as DSMA as is already stated
in Remark 3.4.2.

We refer (Belkebir and Saillard 2001) for additional details about the experimental set-up and various

cases shown in Table 4.3 will be used.

Cases 04 Oy N Description

Case 1 | 150° 210° 12 Narrow, limited-aperture problem

Case 2 | 135° 225° 18 Narrow, limited-aperture problem

Case 3 | 120° 240° 24 Not narrow, limited-aperture problem

Case 4 | 90° 270° 36 Semi-circular range, limited-aperture problem
Case 5 | 60° 300° 54 Wide, limited-aperture problem but maximum range

Table 4.3: Values of #; and 65, and N for numerical simulations with experimental data

Example 4.3.12 (Small two dielectric disks with same size and permittivity) The radius and
dielectric permittivity being 0.015m and € x 3gg, where g is the background permittivity, respectively.
The locations of the targets are (—0.012m, —0.045m) and (0m,0.045m).

According to Figure 4.11 and as expected, the results are similar with those obtained in Example 4.3.10
so the same conclusions can be drawn, the imaging performance of the DSM increases with respect to

the range of the acquisition angle, which verifies again our theoretical results and the related remarks
(Remarks 4.3.4 and 4.3.8).

Example 4.3.13 (Small metallic square) Now, we consider a metallic and quadrangular target
which is non-circular. It is located at r ~ (0m,0.04 m) and has side lengths 0.0127 m and 0.0245 m.

The results are displayed in Figure 4.12. They show that the accuracy of the localization of the
target via DSM is getting better as the range of observation directions is wider. But the maps of DSM
have a maximum value at the right side of target, which is the direction of the incident field, even
with a wide range of observation directions. Therefore, it is essential to use a wider range of incident

directions to achieve a better accuracy of imaging.
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Chapter 4 2D imaging of dielectric inhomogeneities in restricted configuration with far-field data

Example 4.3.14 (Metallic U-shape) More complex U-shaped metal is considered here. Its size is
0.05m x 0.08 m with thickness 0.005m.

Figure 4.13 shows that we cannot reconstruct the shape and location of the target using a single
incident direction even with a wide range of observation directions. As already shown in Example 3.6.3,

more incident directions are necessary to get a proper reconstruction.

4.4 Conclusions

In this chapter, we considered the direct sampling method in restricted configurations (mono-static
and limited-aperture configurations). Thanks to the use of the asymptotic expansion formula of far-
field pattern in the presence of small inhomogeneities and the far-field hypothesis, the mathematical
structures of the indicator function of the traditional DSM and its improved versions (MDSM in the
mono-static case and DSMA in limited-aperture case) are established. Especially, the reason for which
it fails to image the targets is clearly identified in the mono-static configuration and MDSM is proposed
to overcome the miss-localization. In the limited-aperture problem, we explored that DSM and DSMA
are related to infinite series of Bessel functions of integer orders, range of observation and incident
directions, and physical information of targets (e.g., location, shape, size, and dielectric permittivity),
and the relation between accuracy of algorithms and the measurement set-up is also verified. Various
numerical simulations with synthetic and experimental data are presented to support our theoretical
results.

Nevertheless, some improvements are still required to improve imaging performance with restricted
ranges of observation and incident directions. So the multi-frequency approach of DSM in the limited

aperture scattering problem will be treated to that effect in the next chapter.
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Figure 4.5: (Example 4.3.9) Maps of Z3%\(2; ko) and Jaccard index
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Figure 4.6: (Example 4.3.9) Maps of Z24\ (2; ko) and Jaccard index
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Figure 4.7: (Example 4.3.10) Maps of Z3,,(2; ko) and Jaccard index
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5.1 Introduction

In this chapter, we apply the multi-frequency approach, which is one of the popular techniques to
improve the imaging efficiency, to DSM. In (W.-K. Park 2018b) (TM-mode) and (W.-K. Park 2019b)
(TE-mode), the author has validated that multi-frequency of DSM is an improved version of DSM with
a fixed frequency in full-view configuration. So we focus only onto the multi-frequency of DSM in a
limited-aperture scattering problem.

From the mathematical analysis of DSM and DSMA with fixed frequency presented in chapter 4,
we have verified the relation between accuracy of algorithms and the measurement set-up. However,
another approach is needed to improve the imaging performance when the ranges of observation and
incident directions are narrow (e.g., Oy — 01 < 7 and ¥ — 97 < 7). Hence, multi-frequency indica-
tor function of DSM is introduced for further improvement. Contrarily to the several investigations
(Estatico et al. 2015; Joh and W.-K. Park 2014), multi-frequency DSM is effective only for imaging a
small single inhomogeneity but is not effective for several small inhomogeneities. To explain the reason
theoretically, we derive below the mathematical structure of the multi-frequency indicator function by

establishing a relationship with Bessel functions, Struve functions, Legendre polynomials, generalized

93



Chapter 5 Improvement of 2D imaging accuracy using multiple frequencies

hypergeometric function, the range of incident and observation directions, and physical characteristics
of targets. We then examine undiscovered properties of multi-frequency DSM, design an alternative
indicator function based on an exponential weight with respect to each frequency for further improve-
ment, and analyze its mathematical structure. Same as for the single-frequency case in section 4.3,
the multi-frequency indicator functions are compared via numerical simulations with synthetic and
experimental data.

The multi-frequency versions of DSM and DSMA are proposed and analyzed based on asymptotic
formula of scattered field in the sections 5.2.1 and 5.2.2; respectively. Various numerical simulations

are presented in section 5.3 to validate our theoretical results. Conclusions follow in section 5.4.

5.2 Multi-frequency indicator function

Let us consider the multi-frequency DSM for obtaining better results. Based on several investiga-
tions (W.-K. Park 2018b; Guzina, Cakoni, and Bellis 2010; Joh, Kwon, et al. 2013; Griesmaier and
Schmiedecke 2017; W.-K. Park 2019b), we introduce an indicator function operated at several frequen-

cies fp, p=1,2,---, P, as follows

P
Iyipsm(z = Z oo

where U (X,d; k,) € F, denotes the far-field pattern defined in (2.13) with wavenumber k,, p =
1,2,--- , P with ky < kg <--- ,kp, and I, is the set of measurement data such that

(Uso Xn,d k ) 1kp5<n-z>L2(Sobs) (5.1)
X, d; k )2y, lle” thpXn 2| o (SL,.) ,

Fp = {uoo(fcruaa kp) p= 17 st P7 Xn € S } (52)

5.2.1 Analysis of the indicator function for single and several incident fields

Single impinging direction For the sake of simplicity, let us consider the imaging of a single inhomo-

geneity with radius «, permittivity e, and location r. The result is dealt with in Theorem 5.2.1.

Theorem 5.2.1 (Single inhomogeneity case) Assume that the total number of applied frequencies
P s large enough. Let us denote v —z = |r — z|(cos ¢, sing). Then, for a fized incident direction d,

the Iyinam (2 a) can be represented as follows.

5 M (z;d)]
Iir z;d 5.3
Mpsm (23 d) ~ max | M (z: d)| (5.3)
z€)
where
N 1

Ml(Z, ) = kp — /{)1 <S(kp, ‘I‘ — Z‘) — S(k)l, ‘I‘ — Z‘)) + /1}\4(]{1, l{tp, 91, QN, ’I‘ — Z‘) (54)

Here,

S(k,|r —z|) = kJo(k|r — z]) + %T (Jl(k:]r —z|)Ho(k|r — z|) — Jo(k|r — z|) Hy (k|r — z])), (5.5)

where H,, is the Struve function of n integer order and

1 1
gy (kr,kp,01,0N, v —2|) = — / AGON (e, r = z])dk = O <6 0 > : (5.6)
p—ki N — b1

o4



5.2 Multi-frequency indicator function

Proof Let us recall the single frequency result from Theorem 4.3.2,

(Uoo (Xn, a, kp)’ eiikpf(n.z>L2(S<l)bs)

k‘2(1—|—i)ﬂ' € —¢€ A
= (On — 01) Z — a2< EOM?))e‘de'r]D\[Jo(kp\r—z])+/1?51’0N(/<:,]rm—z\) . (57)
P \%

where Agl’eN(k, |r, — z|) is given by (4.18). This leads us to

(oo (Xn, d, kp), €7 F0%0 %) o g1 x Jo(kplr — 2z|) + A2V (k. |1, — 2])
ttso (R, k)| 21 [R50 2] 2 o(ky DN (ke |t — 7).

obs

Thus, the multi-frequency extension is given by

1 & <u00(§(mavkp)aeiikpkn-z>L2(Sl )

— obs
P

. 4 ik -z x byt P,
p=1 Huoo(xmd,kp)HL2(Sgbs)He P HLQ(S})bS)

where ®; and ®5 are defined as

S P
1 1 01,0
¢ =5 Z;Jo(kphr —z|) and &, = F;A; N(k, |t — 2|), (5.8)
p: —_=

respectively.

First, ®; can be expressed as

1< 1 kp
b = — Jolkylr — z|) = / Jo(klr — z|)dk
1 sz; 0( p‘ ’) kP_kl o 0(‘ ‘)

(5.9)

1
— g Stk = al) = S 2D),

where S(k,|r — z|) is given by (5.5). The latter is obtained thanks to the hypothesis that the total
number of frequencies P is large enough, and considering the following indefinite integral of the Bessel
function (see (Rosenheinrich 2019, p.7))

/ Jo(z)da = 2Jo(z) + % (Jl(a:) Ho(z) — Jo(2) Hl(:r:)).

Based on the uniform convergence of the Jacobi-Anger expansion, it is clear that ®5 is convergent

uniformly, so for every positive real number ¢, there exists a sufficiently large N7 € N such that

N1 . P
4 i* . [s(On —6h) s(On + 61 — 2¢) 1
Oy — - ;;sm <72 cos 5 F;Js(kp]r—z]) <e. (5.10)

This means that

M. P
- 4 % S(QN—Hl) 8(9N+91 —2(,0) 1
Qs ~ - SE ~ sin <f> cos ( 5 Iz pgl Js(kplr —2|)

- 4 S i (M) cos <8(9N+91 _2“’)> /:P 3, (Kt — 2)dk.

2 2 )
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Chapter 5 Improvement of 2D imaging accuracy using multiple frequencies

Now, assume that z is close to r. Then since Js(k|r — z|) — 0 for all s = 1,2,--- | N7, the term P9
becomes negligible. Assume that z is located away from r such that k;|r —z| > N2 —0.25. Then, since
the following asymptotic form holds for s = 1,2,--- , N7,

/ 2 sTT
Js(kJ|I'—Z|) ~ mcos (ki7T|I'—Z| _7_2) ,

M k
4 1 [ke 42\
byl < g - Js(klr — z])|dk <
el = (On = 01)(kp — k1) = 5 /’fl . ) (On — 01)\/ Fam|r — 2|

we can observe that

(5.11)
44/2 44/2 1
< var, < vz <O <7> .
(On — 01) /(N2 —0.25)r — Ni(On — 01)V/7 On — b1
Applying the structures ®; and ®9, we can obtain (5.3), which completes the proof. 0

Remark 5.2.2 (Properties of indicator function) Now, we discuss some properties of the multi-
frequency indicator function Iyiyan (2: a) and compare the imaging performance with the single-frequency
one I3y (2; d, ko) based on the results in Theorem 4.3.2 and 5.2.1.

1. From the observations such as (S(kp, |r — z|) — S(k1,|r — z|)) /(kp—k1) = 1 (see Figure 5.1) and
AL (k1,kp,61,0n,|r —z]) = 0 when z =t € 7, the map of IySpan(2; ko) will exhibit mazimum
amplitude at the center of T. However, some artifacts are still existing in the map of Iyfnen(2: ko).
Notice that their appearance is highly depending the range of observation directions and total
number of applied frequencies. If the range of observation directions is narrow or the total number
of applied frequencies P is small, artifacts should disturb the recognition of location of targets while

good imaging results will be retrieved if the range is wide and the total number is large enough.

2. Similar with the properties of single-frequency DSM as discussed in Remark 4.3.3, the contributing
term of MDSM (S(kp,|r —z|) — S(k1,|r —z|)) /(kp — k1) is also independent of the range of
observation directions while the disturbing term is not. This means that we have to reduce the

effect of AL;(k1,kp,01,0N,|r — z|) in order to improve the imaging performance.

3. In the full-view configuration (On — 01 = 2m), we can compare the imaging accuracy between
DSM operated as single- and multi-frequency by focusing only on each contributing term of DSM
and MDSM represented in Theorem 4.3.2, and 5.2.1, respectively. Namely, if z =r € T, we have
Agl’g’v(k, It —2z|) =0 and A}, (k1,kp, 61, 0N, |r —z|) = 0. Hence,

Tni (23 d, ko) o< |Jo(kolr — )] (5.12)

and
1

T—— (5(kp, v —2|) — S(ky, |r - z|)>

which means that MDSM exhibits better imaging performance than single-frequency DSM due to
the lesser oscillations of |(S(kp,|r — z|) — S(k1,|r — z|)) /(kp — k1)| than those of Jo(ko|r — z|),
refer to Figure 5.1.

Titpsm(z: d) o ; (5.13)
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Figure 5.1: Two-dimensional plots of |Jo(ko|z|)| for fo = 1 GHz and |(S(kp, |z|) — S(k1,|2z]))/(kp — k1)|
for fi = 700 MHz and fp = 1.3 GHz.

Unfortunately, identifying all inhomogeneities is generally impossible via Zgfyq(2; &) if there exist

more than 2, refer to Figure 5.5. The theoretical reason is as follows.

Theorem 5.2.3 (Multiple inhomogeneities case) Assume that the total numbers of receivers N
and frequencies P is large enough. Let d - r,, = |ty | cos ¥y, and vy, — 2z = |ry, — z|(COS @, sin vy,).

Then, Zyipsn (2; &) can be represented as follows:

(Mo(z;d)|
max [My(z;d)|’

IRtpsm(z: d) ~ (5.14)

where
M 1
~ k1,k k1,k
Ma(aid) = 3 (e = 20) Do [m (O (], [1m — 2]) + CE (1, e — 7))}
+ Bk, 1.0 e — 2D (515
Here,

H(kr, b, [t — 1) + [ To(klram — 2D)dk i (] = 1 — 7,
k1,k .
C 0 (feml, [rm — 2]) == ¢ P(leml, [rm — 2l kp) = P(|rml, [tm — 2|, k1) if [t > [tm — 2], (5.16)
P(’I’m - Z‘7 ’rmlakp) - IP(‘rm - Z’a ‘rm‘7k1) Zf ‘rm’ < ‘I‘m - Z‘7

) kp
R ([ b — 2]) = chos(wm)/ Jo(kltm — 2))J,(E[rm])dk, (5.17)
t=1 k1

and

1

kp
A3y, K, 01,08 [l om = 2) 1= 5 /k AGN (kv = 21){ o (Rl o))
1

+2)° cos(t¢m)Jt(k|rm|)}dk, (5.18)

t=1
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Chapter 5 Improvement of 2D imaging accuracy using multiple frequencies

where

H(kr, kp, [t — 2|) := kp [Jo(kp|rn, — 2|)* + J1(kp[rm — 2[)?]
—]Cl [Jo(k‘1|rm—z|)2—|—J1(k:1|rm—z|)2] (519)

and Ps is a Legendre polynomial of order s,

Pla, B,k) == L(oﬂ — 6%)P, <Zz J_“52> 2T for B < a. (5.20)

= (! )245(2s + 1) 52
Furthermore,
1 kp
/ J1(K|r, — z|)2dk < O(1) (5.21)
kp — k1 Ji,
and )
‘A?\/[(kl,kp,al,HN,ﬁl,ﬁL,’I‘m—Z’)‘ =0 . (5.22)
On — 61

Proof The combination of Theorem 4.3.2 and Jacobi-Anger expansion leads to

C <u00(§<n’ a’ kp)’ e_ikp;(n.z>L2 St M
Cod o 37 a2 (6 — 20) Do {®1 + By + B3+ Da}. (5.23)

Here,

- z (k) Jo ks — 7).

o P
Oy = QZCOS(tl/Jm) %ZJO(/ﬂp\rm —z|)J¢(kp|rm))
t=1 p=1 (5.24)

P
1 01,60
®3 = P E:Jo(kp\rm’)/lsh *(kp, [tm — 2),
p=l

KA
W~

oo P
1 01,0
=2 g cos(tthp,) Iz E A (kp, v — 2]) It (kp[rm])
t=1 p=1

where d - £, = |1y| cos th, and Ag(k, 01,02, v, — 2|) is defined by (4.18). Since the total number of

frequencies P is sufficiently large,

1 kp
Py ~ / Jo(k|rm))Jo(k|rm — z|)dk (5.25)
kp — k1 Ji,
and
2 - kp
Dy ~ Zcos(wm)/ Jo k|t — z)Js (k|rm|)dE. (5.26)
kp — k1 & 'y

According to the indefinite integrals of Bessel function of zero order in (Rosenheinrich 2019, p.214)):

/Jo(az)de = z[Jo(x)? + J1(x)?] + /Jl(:n)de, (5.27)
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and in (Rosenheinrich 2019, p.277):

’ e (=1)° 2 2 o+ 8%\ aei
/0 Jo(at)Jo(Bt)dt = ; m(a - %P, <a2 — ﬁ2> 22t for B < a, (5.28)

we have ‘131 = ‘ny/(/{?p — /{?1)

kp
H(ky, kep, [t — 2)) +/ Tolkltm — 2Ddk if [rpa] = [t — 2], (5.202)
* " k1
PTX N P(leml, [t — 21, kp) — Pty [ — 2, k1) 3 eyl > v — 2], (5.20b)
P(lrm — zl, [tm|, kp) — P(lrm — 2|, [tm |, k1) if |rp| < |rm — 2], (5.29¢)

where Py is a Legendre polynomial of order s, and P(|rp,|, |ty — 2|, ) and H(k, |r,, — z|) are defined
by (5.20) and (5.19), respectively. Here,

1
kp — k1

/kP Ty([rm — 2])2dk < O(1). (5.30)
k1

Since the following relation is holding:

|z ]?

by applying Holder inequality, we can obtain
kp |I' _ Z|8 kp (ks—i—l _ k:S'H)‘I‘ _ Z‘s
Jo(k|rp|)Js (k| — z|)dk < —— kl*dk < ~L L om : 5.32
L ot — sk < P [ ppar < S (5.32)

Now, based on (5.10), there exists a large number N € N such that

1
kp — ki

kp
/ To([rml) As (k. 01, 02, [t — 2)dlk
k1

4 N s s(On + 601 —20m)\ . [ s(On —61)
~ hp — k1) (O — 01) Z P ( 21 ) sin (%) (5.33)

1

kp

></ To(kltm )Ty (ko — 2])dk
k1

Assume that z is sufficiently close to r,, such that kp|z — r,,| < /N, + 1. Then,

kp (k,erl _ ks+1)|r _ Z|S kp 1
Jo(k|tm|)Is(klry, — z|)dk < ~L£ L n L
L otbtmal) bl - )k < S 2R < 25;3:; o

(5.34)

If z is far away from r,, such that ki|z — r,,| > N2 — 0.25, then, the following asymptotic form
holds for s =1,2,--- | N,

2 st 1
s(klvy, —2z|) ~ /| ————cos | klry, — 2| — — — — —_ . .
Js(klrm — z|) e E—— CO&( |t — 2| 5 1 +O<k|rm—z|>> (5.35)

This yields that

kp
Jo(k|ry, klr,, —z|)dk < k ™ - - —
JARTCERRT / V=g eos (ke =2 = F =) ak
\/k: —Vk) <k
- \/ W]rm F P\/ kpﬂrm \/ \./\/2 —0.25|

(5.36)
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Chapter 5 Improvement of 2D imaging accuracy using multiple frequencies

Due to the uniform convergence of the Jacobi-Anger expansion, there exists a large number AV € N

such that .
P3| < .
| 3I—O<9N_91>, (5.37)
Analogously, for a large number N5 € N, we have
@y <02 (5.38)
="y -0,) '

Then, we can choose the constant N/ = min{N7, N3}, and Holder’s inequality implies the conclusion

(5.14)
O

Now, based on our structure analysis verified in Theorem 5.2.3, let us elucidate the reason of unex-

pected phenomena displayed in Figure 5.5 as follows.

Remark 5.2.4 (Reason of limitation of Z{f,q\(2: d) when M > 2) On the contrary to the result
of Titpsm (2 d) for imaging a single inhomogeneity, Triosm (2 d) consists of the three terms Cfl’kp(]rm], v, —
z)), C3" P (|t l, [t —2l), and A% (k1 kp, 61, 0N, [t ], [tm—2]). Notice that A3, (k1, kp,01,0N, |tml, [rm—

z)) =0ifz=r,.
Let us focus on the behavior of Cfl’kp(\rm], v, — z|) and Cfl’kp(\rm], |r, — z|) when z = r,,. Since

r'y, 1S a fized constant, Cfl’kP(\rm],O) has the form of (5.16) for |rp,| > |rm — 2| and we have

k1kp _ S (=1)° 2s 25+1 _ 7.2s+1
Cr (el ,0) =) s T e P DR — k),
=0 (5.39)

13 |rpl?k3 1 3 |rp|*k?
g F —'1 — — F —'1 — .
1 2(27 S kp —1F» 515 k1

The integral formula of the Bessel function in (Luke 2014, § 2.3, (1)) leads to the representation formula
ofcgl’kp(]rm\,O) as

00 kp
Cé‘l,kP(‘rm”O) ZQZCOS(tTZJm)/ Jt(k‘rm’)dk
t=1

k1
> cos(tihy) t+1 t+3 1
= _m\rm . . 2 2
_Z 2t71F(7f—|— 2) {1F2 ( ) 7t+ 1’ Ta _ZkP I'm| ) kP (540)
t=1
t+1 t+3 1
_1F2 <T7t+17 2 7_Zk%‘rm’2> k1}7

where Fy is the generalized hypergeometric function of orders a and b. Hence, the combination of
(5.39) and (5.40) leads to

Tpsn(z = tim; d) # Ipsn(z = Ty d)  if m # m/ (5.41)

due to the properties of hypergeometric functions. In other words, the map of If/fDSM(Z;cAl) has a dif-
ferent amplitude at each center of the inhomogeneities even though their physical properties (e.g. per-
mittivity, size, shape, etc.) are the same. This is the theoretical reason why we cannot identify all
inhomogeneities via the map of If/fDSM(z;El). Hence, we need further improvement to overcome the

limitation of Tyipey(2: d).
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5.2 Multi-frequency indicator function

Multiple impinging directions To improve the imaging performance, we may apply incident fields
with various propagation directions. On the basis of the definition of the DSM indicator function
operated at fixed frequency (4.26), we define the indicator function of MDSM with multiple impinging
directions (&l, l=1,2,--- L) by

Inipsm (z) == max {If/fDSM(z; d):1=1,2,-- ,L} . (5.42)
zc

The properties of Zyipgm(z) (5.42) can be observed and summarized as follows. According to the
results in Theorem 5.2.1 and 5.2.3,

max | M (z;
max |Ma(z;

)| i M =1,

5.43
)| it M > 2, (5:43)

d
Iyipsm(z) { d
where M (z;d) and Ms(z;d) are defined by (5.4) and (5.15), respectively. So this method does not
improve the imaging performance significantly, so that the fundamental limitation discussed in Re-
mark 5.2.4 via Z{ihgy(2) is still remaining even with sufficiently many incident fields. Hence, another

improvement is essential to deal with it.

5.2.2 Multi-frequency alternative direct sampling method

In the previous section, we could not handle the limitation of Zfq\(z) by considering multiple im-
pinging directions. So we suggest a multi-frequency version of DSMA (say, MDSMA) by giving weights

with respect to each frequency and incident direction such that

P <<UOO(5\(77,7 a-l7 kp)a e*ikpf(n'Z>L2(Sl ) 9 eikp&l-z>
obs L2 (Sllnc)
MDsMA (2) == Z : (5.44)

! max <<uoo(§(n7(;ll;k0)’eikp5<n-z> elkp&l.z>
L2(Sgpe) L2(SL )

inc

Note that for the single impinging direction case, the indicator function is given by

~

—ikpd-z o . —ikpkn -z
e <uoo(xn, d;kp),e >L2(S(1)bs)

P
1
IMDSMA Z; d = Z (545)

p=1 max

e—ikpd-z <Uoo ()A(n, d; kip), efikp&n.z>

L2 (Scl)bs)

According to (W.-K. Park 2018b), the structure of I&ODSMA(Z;EI) has been verified that it is an
improved version of DSM operated at fixed frequency (4.14) in full-view configuration. Here, we analyze
the structure of MDSMA in limited-aperture problem. Same as in the single-frequency case, assume
that the data are generated from the L multiple impinging directions which are located in S} of
(4.25).

Theorem 5.2.5 Assume that the total number of observation direction N, incident directions L, and
frequencies P is sufficiently large. Let vy, — z = |ry, — z|(cO8 @, sin @y, ). Then, the indicator function
of MDSMA has the following asymptotic formula.

00 |M3(Z)|
IMDSMA(Z) ~ hax IMa(z)| |/\/l3(z)|’

L

(5.46)
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Chapter 5 Improvement of 2D imaging accuracy using multiple frequencies

where

M 90 [ Em — €0 1
Ms(z) =Y a2, ( — ) { — [H(kp, [t —2l) = k1, | — 2])

m=1

kp
+/ J1(Kk|ry, — z|)dk +A§’M(k1,kp,91,9N,q91,q9L,|rm—z|)} (5.47)
k1

Here,
H(k, [ — 2]) = & [Jo(kltm — 2])? + T3 (krm — 2))?] (5.48)
and
3 1 br 01,0n
A8, (ko ke, O1, O, 01, O, [ 1 — 2]) = / Jo(klrm — 2) [AZ9% (&, [ — 2])
kp — k1 Ji,

+ A (e, e — 2])] + AGE (K, [ — 2])ADON (K, |1, — z|)}dl<:, (5.49)

where Ag’ﬁ(k, v, — z|) is given by (4.18). Furthermore, for sufficiently large N € N,

1 kp
/ Ty (K[rm — 2))%dk < O(1), (5.50)
kp — k1 Ji,

and

| A3 (K1, kp,01,0n, 91,91, [t — 2))]

1 1 1
=0 (max {MHN "0, Nz —01) Ny —61)(0; —01) }> - (551)

Proof According to (5.44), we have

1 L2(SL.) L2(8L,)
2.
p=1 max <u % a -k e—ikpfcn-z> eikp&l'z
< oo( ny Ay p)a L2(81 ), LQ(Sl :

obs
mc

M kp

9 Em — €0 1

xS 02D, ( > / (@1 + By + By)dk, (5.52)
— Veoro ) kp — ki Ji,

where &, s =1,2,3 are given by

Oy = Jo(k|ry, — z])2,
Dy = | AGIN (ko — 21) + 4G (R, e, — 2])| Jo(Klrm — 20), (5.53)

O3 = ALV (K, vy — 2])AD N (K, o — 2)),

The indefinite integral of 1st kind Bessel function of zero order, see (Rosenheinrich 2019, p. 214)):

/Jo(az)de = z[Jo(x)? + J1(x)?] + /Jl(:n)de, (5.54)
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5.2 Multi-frequency indicator function

leads to
L [ e = b oGl a4 Gl a1
= ry — Z ry, — Z
ey 1 — P |Jo(kp 1(kp
kp
— k1 [Jo(Ka|rm — 2[)* + J1 (k1 |rm — 2[)?] + / Jy(k|r, — z])Qdk}, (5.55)
k1
where
1 kp )
J1(klry, — z])°dk < O(1). (5.56)
kp — k1 Ji,

Furthermore, due to uniform convergence of Jacobi-Anger expansion, it is obvious that the remaining

terms are convergent. Namely, there exist large numbers N7 and A5 such that

kp kp
/ ALON (K, ey, — 2))Jo(K|r,, — 2])dk — (/ Jo(k|rm — 2)Js(klrm — z\)dk>
kl kl

X <9N691 igcos <S(9N +921 - 290m)> sin <M)) <e (5.57)
and
kp kp
/k1 AL (e, ey, — 2])Jo (K|, — 2[)dk — (/kl Jo(klrm — 2))J5 (k|rm — z\)dk>
1 Ly t(0L+V1 —20m)\ . [t —V1)
X <19L—191;?COS< 5 )sm <f)> <e (5.58)

Then, there exists a large number A" = max{N7, N2} such that

kp N i’ 4 8(9N+91 —2(,07”) . S(QN—Hl)
/kl ®2dk—gg{<9N_91>cos< 5 >sm<f>

. (ﬁLi&) (s(ﬁL a —wm)) “n (s(ﬁLQ—m)) }

kp
></ To(kltm — 2]) T (K[rm — 2|)dk
k1

<e, (5.59)

According to (Abramowitz and Stegun 1964, p.362, 9.1.62), for x € R, the following relation is holding;:

L
Js(z) < 5.60
() < (5.60)
Then, applying Holder inequality, we can obtain
kp |8 rkp k8+1 _ k8+1 s
/ Jo(k|tm — 2)Js (k|rm — z)dk < M/ prar < Be_ M )’rj” il (5.61)
k1 25s k1 28(8 + 1)
Assume that z is sufficiently close to r,, such that kp|z — r;,,| < VAN + 1. Then,
kp (ks—i—l _ ks—l—l)’r _ Z‘S k N—|— 1
_ _ < P 1 m P ) .62
/kl Jo(kltm — 2)J(klrm — 2)dk < e <o (5.62)
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Chapter 5 Improvement of 2D imaging accuracy using multiple frequencies

If z is far away from r,, such that kp|z — r,,,| > |N? — 0.25|, then, for s = 1,2,--- , A/, the following

asymptotic form of the Bessel function of integer order is holding:

2 st 1
Js(k]rm — Z’) ~ m COS (k\rm - Z‘ - ? - Z + 0 (m)) . (563)

This yields that

< /ﬂr 2 \/g_\/a (5.64)

and

1 1
d . .
| 2|<<O<6N_91>+O<79L_791 (5.65)

Analogously, we see that

(5.66)

O

Remark 5.2.6 (Properties of MDSMA) The following properties can be examined through the re-
sult in Theorem 5.2.5.

1. The term (H(kp, |tm —2|) —H(k1, |tm —2]))/ (kp — k1) is independent of the range of observation
and incident directions, and its value is equal to 1 while the term A‘?’M(kl, kp,01,0n,91,9L, |tm —
z|) = 0 when z = r,,. Therefore, we can say that terms (H(kp,|tm — z|) — H(k1,|rm — 2]))/
(kp — k1) and A3, (k1,kp,01,0N,01,9L, |tm — 2|) contributes to and disturbs the imaging perfor-

mance, respectively, in both single impinging and multiple impinging directions.

2. On the basis of the behavior of (H(kp,|rm — 2|) — H(k1, |tm — 2|))/ (kp — k1) displayed in Fig-
ure 5.2(b), we can observe that in contrast with I&ODSM(Z,(Ai) in Remark 5.2.4, the map of
I&ODSMA(Z,EI) contains peaks of large magnitudes at the location of all inhomogeneities. Thus,

it will be possible to recognize every locations.

3. To improve the imaging performance of MDSMA, the range of observation directions and incident
directions should be chosen such as A?’V[(kl,kpp,Hl,HN,ﬁl,ﬁL, |t,, — 2z]) = 0 for every z € Q.
According to (5.49), we have to choose the ranges [01,0n] and [91,01] satisfying Agl’e’v(k, |ty —
z|) = 0 and Agl’ﬂL (k,|rm — z]) = 0 as alike with the single-frequency DSMA case discussed in
Remark 4.3.4, even though multiple frequencies are considered. For instance, Oy — 01 > w and
"9L — 91 Z .

Remark 5.2.7 (Structure of I&ODSMA(Z,&) with single impinging direction) To compare the imag-
ing performance of If/fDSM(z,(Ai) and Ihena (2, &), we consider the single impinging direction case.

64



5.3 Numerical simulations

1. If a single impinging direction is considered, i.e., L =1, we have

. 'ﬂl,’ﬂL _ — :S _
ﬁthlﬂl AG (k| —2]) =2 ;1 Js(k|rm — 2|) cos(s@m), (5.67)
and
1 X [k
Ay (kK Or. Oy 1,91 e — ) = S [ [z costspm (el ~ 2
kP o kl s=17k
+ ADON (ke ey — z|)} Jo(k|rm —2|) + [2i5 cos(s@m ) Je(k|rm — z|)} AN (ke ey, — z|)}dk.
(5.68)
Therefore,

M
A — 1
Ms(z:d) = 3L<€m 60) H(kp, [t — 2|) — H(k1, [T —
o) = 3 (B2 ) 4 e = ) = W 2

kp
+/ Ji (K|t — 2z])dE
k

1

+ A3y (k1  kp, 01,0, 91,91, o — Z‘)}a (5.69)
which means that the efficiency becomes worse compared to MDSMA with multiple impinging
directions since

|A%/[(k1a kp,01,0n,01,79L, |rm - Z|)| < |A§)\/[(k1’ kp,01,0n,01,01, |I’m - Z|)| (5'70)
Note that it has same structure in the single receiver case (61 = 0y ), analogously.

2. The representation formulas (5.3) and (5.69) show that

1
kp — k1

If/[ODSM(Z; El) X

(S(hp. | —2]) — S(hy, e — z|>>', (5.71)

and
1
kp — k1

where S(k, |r —z|) and H(k,|r —z|) are given by (5.5) and (5.19), respectively. Two-dimensional

Tipsua (2 d) o (H(kp, |r —z) = H(ky, v —2]) |, (5.72)

plots of each function are exhibited in Figure 5.2. Based on this figure, we can observe that the
map of IK’EDSMA(Z,(AI) has less oscillations than those of Iﬁ’/fDSM(z;&) so that MDSMA can be
regarded as an improved version of MDSM. However, because of the disturbing terms, a wide

range of observation directions (e.g. ¥y — 01 > ) is essential to get a better imaging efficiency
via MDSMA as stated already in Remark 5.2.6.

5.3 Numerical simulations

To validate our theoretical results, we present numerical simulations where the configuration settings
are exactly the same as in Examples in section 4.3.3 with multiple frequencies. The accuracy of the
methods is compared again using Jaccard index A.3. For the various cases of limited-aperture problem,
we recall the Table 4.1 and 4.2 for simulations with synthetic data and Table 4.3 for simulations with

experimental data. Note that the red line and black line indicate the x,, and —fll, respectively.
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Chapter 5 Improvement of 2D imaging accuracy using multiple frequencies

1
0.5 '
0 .
05 |
-1
-1 05 0 05 1

(a) [(S(kp,|z]) = S(k1, |2]))/(kp — k1) (b) |(H(kp, |2]) — H(k,[2])/(kp — k1)

T 0.5 0 05 1

Figure 5.2: Two-dimensional plots of |(S(kp,|z|) — S(ki,|z]))/(kp — ki1)|, and [(H(kp,|2z|) —
H(ki,|z]))/(kp — k1)| for fi = 700 MHz and fp = 1.3 GHz

Synthetic data Here, the collected data are again calculated by FEKO with 7 frequencies from 700 MHz
to 1.3 GHz, and a step size of 100 MHz.

Example 5.3.1 (Small dielectric disk) Here, we reconstruct the small dielectric disk with radius
a = 0.1\g = 0.03m and permittivity € = beg, where its location is r = (—0.333X¢,0.666)\g) =
(=0.1m,0.2m)

The reconstructions of the location of the inhomogeneity via Zyfnqy(2z) and Z3fhgya (2) are presented
in Figure 5.3 and 5.4, respectively. They show that both Z{f g\ (z) and Z3fg\a (2) are working well to
localize the location of 7. Furthermore, the results of Jaccard index prove that they are the improved
version of DSM and DSMA operated at fixed frequency (see Figure 4.5 and 4.6) as stated in Remark
5.2.2 and Remark 5.2.6. However, the result of Zgfyq\(z) is not significantly improved as the total
number and range of incident fields is increased. On the other hand, the imaging performance of

I¥ipsma (z) is improved when a higher number and a wider rage incident fields are considered.

Example 5.3.2 (Small three dielectric disks with same size and permittivity) We remind the
information about inhomogeneities T, with a,;, = 0.1\g = 0.03m and €, = beg, m = 1,2,3. The lo-
cations Ty, of Ty are r1 = (—8X0/3,0) = (—=0.8m,0), ro = (4\o/3,—2X0) = (0.4m,—0.6m), and
ro = (Ao/3,2X0) = (0.1m, 0.6 m).

According to Figures 5.5 and 5.6, we observe that Zyfyq\(2z) cannot be applied in multiple inhomo-
geneities imaging even with a wide range of incident directions as already stated in Remark 5.2.4, but
Tiosma (2, d) can be as already stated in Remark 5.2.6. The 7,, are not easy to be identified in Case A1
and A2 with Case B1, but can be with more incident directions (Case B2, B3, and B4) contrarily to the
result of single frequency DSM (see Figure 4.7 and 4.8). Furthermore, Zginq\ 4 (2) has less oscillations
and better results than Zgg,,(z, d; ko) and Z3gy 4 (2; ko). Namely, our proposal is an improved version
of traditional DSM and DSMA as demonstrated in Remark 5.2.6.
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5.3 Numerical simulations

Example 5.3.3 (Large dielectric disk) The location and size of a large inhomogeneity are r =
(=X, —A0) = (—=0.3m, —0.3m) and oy, = A\g = 0.3m, respectively. The dielectric permittivity is given
by € = bey.

Even though a single small target can be visualized in the map of Z3{,q\;(2), a large target cannot,
even with a wide range of incident directions, see Figure 5.7. On the other hand, we can identify the
location and shape of the target by Zyinqy(z) with wide ranges of incident and observation directions
(e.g. Oy — 61 > 7 and ¥ — ¥ > 7). However, similarly with the single-frequency numerical simulations
in Example 4.3.11, the exact location and/or shape is hard to be reconstructed via Zgfpqya(z) with a
single incident direction and wide ranges of observation directions (analogously with single observation
direction and wide incident directions range) even though multi-frequencies are used. Nevertheless, our
proposal Zyfhava(2z) has better accuracy than with the single-frequency approach according to the

Jaccard index.

Experimental data Now, our theoretical results are validated by numerical simulations with experi-
mental data. Here, the MDSMA is only considered because MDSM cannot be applied in general cases
(e.g. multiple targets in Example 5.3.2 and large target in Example 5.3.3). Furthermore, the single im-
pinging direction cases are only available due to the limitation of experimental setup stated in section
4.3.3.

We consider the 8 frequencies ranged from 1 GHz to 8 GHz with a step size of 1 GHz for Example
5.3.4, and from 2 GHz to 16 GHz with a step size of 2 GHz for Example 5.3.5, Example 5.3.6.

Example 5.3.4 (Small two dielectric disks with same size and permittivity) Two disks are
located at (—0.012m, —0.045m) and (0m,0.045 m). Their radius and electrical permittivity are 0.015m

and € x 3gy.

According to Figure 5.9, the results seem to be similar to Example 5.3.2, i.e, the inhomogeneities can be
visualized by Zyfhqva (2, d) if 05 — 6, > 7. Hence, our proposal TRipsma (2, d) is an improved version
of 34w (2, d; ko) and our theoretical results still hold with experimental data.

Example 5.3.5 (Small metallic square) Now, we consider metallic and quadrangular target which
is mon-circular. It is located at r ~ (0m,0.04 m) and has the side lengths 0.0127 m and 0.0245 m.

The results are presented in Figures 5.10. It shows that the location of the target is identified on the
right side of the exact center which is similar with the single frequency case displayed in Figure 4.12

even though the oscillations are decreased by using multiple frequencies.

Example 5.3.6 (Metallic U-shape) A more complex U-shaped metal is considered here. Its size is
0.05m x 0.08 m with thickness 0.005 m.

Figure 5.11 means that the target cannot be properly reconstructed by MDSMA with a single source
even though multiple frequencies are considered. Hence, the wide range of incident directions is neces-

sary to image the U-shape target.
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Chapter 5 Improvement of 2D imaging accuracy using multiple frequencies

5.4 Conclusions

In this chapter, the representation formulas for DSM and DSMA using multi-frequency in limited-
aperture problem are identified thanks to the asymptotic formula of far-field pattern. The indicator
function of multi-frequency DSM is suggested and analyzed when only a single small homogeneity
exists in the medium and theoretically proves that it can be represented by infinite series of Bessel
functions of first kind with integer order and Struve function. However, the indicator function cannot
be applied in the case of several well-separated inhomogeneities so that an alternative multi-frequency
is proposed to overcome this limitation. Various numerical simulations with synthetic and experimental
data are presented to support our theoretical results.

In the next chapter, the direct sampling method in 3D inverse electromagnetic scattering problem

will be considered with the similar approach using the asymptotic formula of the scattered field.
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5.4 Conclusions
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6.1 Introduction

In this chapter, we extend our approach to the 3D inverse electromagnetic scattering problem. The
DSM has been extended to two- and three-dimensional inverse electromagnetic scattering problem in
(Ito, Jin, and J. Zou 2013) with the same conclusions: DSM is fast, robust and efficient technique for
imaging the targets with only a few incident fields. The main difference between 2D and 3D DSM is the
choice of the polarization of the test function. However, the result in (Ito, Jin, and J. Zou 2013) is not
sufficient to explain the effect of the choice of test function for imaging the target. So the full analysis of
the structure of the DSM indicator function for the 3D vectorial case is presented here. In the following,
the analytical formulation of the DSM indicator is established within the framework of the asymptotic
formula of scattered field for small targets in near- and far-field configuration. This analytical solution
is expressed as a function of spherical Bessel functions of integer order and polarization tensor of
the targets which carry the information about targets (e.g. location, size, shape, permittivity, etc.).
Following (X. Chen and Zhong 2008) which dealt with the improvement of the accuracy of the MUSIC
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imaging algorithm via a proper selection of the polarization test vector, the direct sampling method
with proper test dipole (DSMP) is proposed to handle the choice of the polarization of the test function
in near-field and far-field configurations.

The remainder of the study is structured as follows. The structure analysis of the direct sampling
method, and corresponding numerical simulations are dealt with near-field and far-field data in section
6.2 and section 6.3, respectively. Additional numerical simulations using Fresnel experimental data are

presented in section 6.4. Finally, section 6.6 provides conclusions and perspectives.

6.2 Direct sampling method with near-field data

6.2.1 Introduction of direct sampling method and its structure analysis

The direct sampling method has been introduced in (Ito, Jin, and J. Zou 2013) and only the main
equations with our notation will be re-called. On the basis of the relation ((15) in (Ito, Jin, and J. Zou

2013))
(ES(X’ Y k‘o), Q(X, Z)Q>L2(Fobs) ~ Z Wi I'm, ( (G(Z’ rm)) ’ Q) ’ (6'1)

the indicator function of DSM ((16) in (Ito, Jin, and J. Zou 2013)) in the case of a single source located

at y with p’ as polarization direction is defined by

(E*(x,y;k0), G(%,2) - Q) p2p,, )
1B (%, ¥ ko)l 1210 G0 2) | 21

Ipsmsp(z:y,q) ==

obs obs

and for L dipoles, it is given by

L
1
Ipsmap(z) == 17 Z Dsm3D (Z; Y1, A1) (6.3)

by taking into account each incident field. Here, G(x,z)-q is a test dipole polarized by ¢ and related to
receivers. In (6.1), W, can be seen as the strength of the induced current J(r,,,y). The latter depends
upon the geometric and electrical parameters of the targets and of the incident field, but its analytical
expression is not available in the general case. So further analysis is needed to verify the full structure
of the DSM indicator function.

Equation (6.1) shows that Zpsmsp(z;y,q) =~ 1 if z = r,,, € Ty, otherwise Zpsmsp(z;y, q) % 1 thanks
to the oscillation property of the dyadic Green function. However, in the 3D vectorial case, the choice
of the test polarization vector q is a key parameter to proper retrieve the targets. Note that the authors
of (Ito, Jin, and J. Zou 2013) proposed a guideline for choosing ¢ such that = p’, but no theoretical
reason was provided.

Thanks to the use of the asymptotic formula of the scattered field introduced in Lemma 2.3.2, an
analytical expression of J(y,r,,) can be obtained which leads to the representation formula of the
DSM indicator function Zpgmsp(z;y, ) in the case of an incident field due to a dipole placed in y and

polarized along p. Its derivation is as follows.
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6.2 Direct sampling method with near-field data

Theorem 6.2.1 Assume that the total number of receiver directions N is sufficiently large and each
inhomogeneity is small enough (mr/em /€9 < X). Then, the DSM indicator function has the following

representation formula.

’51(Z§y7(i)‘ (64)

1 y.q) =
DSM3D(Za Yy, q) I;leag}f |£1(Z, y, q)| )

where

M
Li(zy,4) =) Am

m=1

1 (i — ) - R ER L) ol — 2] Z’)]. (65)

ko|rm, — 2| v, — z|?

where j4 is a spherical Bessel function of integer order s and A, is defined in (2.25), and Cy and Co

are given by

[ (rm =) &~ (rm — ¥)]
tm — vy

C, = [f)t ’ éﬂ Ql(ya I'm) - QQ(ya I'm) (66)

and

0 [@- (rm —2)] [P (r|r:m—_y;]|2[(rm —y) - (v —2)] Qs(y.1m)

vy —
respectively. Here, Q1(y,rm) and Qa2(y,rm) are defined by
9(y:Tm) ig(y,Tm)
yIm) = yI'm) — 3 6.8
Q1(y;rm) = 9(y,rm) Rlom — yP | Foltm — ] (6.8)
and
39(y,rm 3ig(y,rm
Qaly. ) = g(y,r) — o LoTm) SO, 1) (69)

Klrm —y|2  kolrm —y|

Proof Using the asymptotic formula of the scattered field (2.25) within the denominator of (6.2) leads

to

M
<ES(X7 y; kO)a Q(X, Z) : é1>L2(I‘Obs) = IW(],U,O]C?]IZ Z Am <Q(X, I'm) : (g(rm, Y) : f)t)a Q(X, Z) : q>L2(Fobs)

m=1

(6.10)
M

~ iwopokoll Y Am(G(rm,y) - B') - (Im(G(2,1)) - @). (6.11)
m=1

To go from (6.10) to (6.11), the corollary of the Helmholtz—Kirchhoff identity (see (Ito, Jin, and J. Zou
2013, (7)) and (J. Chen, Z. Chen, and Huang 2013b, Lemma 3.2) for the demonstration)

(G(x,21)p) (G(x,22) q)dS(x) ~ kio {p-Im(G(z1,22) -q)}
(6.12)

(G(x,21) P, G(x,22) - Q) 210, = /

LCobs

is used, where p € C3, q € S? where S? is a unit sphere in R3.
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Chapter 6 3D imaging of dielectric inhomogeneities

The explicit form of G(ry,,y) - p' can be represented by

(©rny) - B = 1l | gly1) — 0Ty ig(y’rm)]

szrm y,Q kolrm —y|

6.13
o), B [ ) oty o1
" s yl2 Ck2rm —y2 koltm —
~t o
(rpm —y
ZéQﬂ%nﬂ—Om—Y) = ‘QNmem>s=Lz& (6.14)

where Q1(y,r) and Qq(y,r,,) are defined in (6.8) and (6.9), respectively. Similarly, the form of
Im(G(z,r,,))q is as follows

N ds ) sin(ko|ry, —2z])  cos(ko|ry, — 2))
I = — _
(Im (G(z,rm)) 4), e r— [Sln(k:o\rm z|) [omm—— + [ ES—
q-(rm —z)
(1~ 2), S Ee (6.15)
) 3sin(ko|ry, —z|)  3cos(ko|rm, — 2z|)
S k‘ m — - ’
X [5111( olr z|) Rm—s + Foltm — 7]
=qsf1(tm, 2) = (tm — 2) (4" (tm — 2)) fo(rm,2) (6.16)
where
sin(ko|ry, —2z|)  cos(ko|rm, — z|) 1
my 2 k m ) 6.17
(x sin(kolrm = 20) = =1 "R Foltm —2] | 47|ty — 2| (6.17)
ko |. j1(kolrm — z|)
0 kolr,, — _ 1
o bdoh 2 - Lol — (6.18)
3sin(ko|ry, —z|)  3cos(ko|rm — z) 1
T (Ko|tm — 2) — 1
(x [“n ole Rltm—22 | holtm—2] | dnfrn, — 2P (6.19)
_ _@JQ(ko!rm—Z!)_ (6.20)

At vy, — 2|

Here, the definitions of the spherical Bessel functions of first kind are used to go from (6.17) to (6.18)
and from (6.19) to (6.20), respectively.
The combination of (6.14) and (6.16) for s = 1,2, 3, leads to

3
(G(rm.y) - B') - (Im(G(z,r)) - @) = Y (G(rm,y)D")s (Im (G(z, 1)) 4),
s=1
:{[f)t ’ q] Ql(y’rm) - [f) ( | )] [2|2(rm y)]Q (Yarm)}fl(rmaz)

(6.21)

+{m-mn—wuw-@m—wn@m—w-@m—n]

QQ y,r
Fp—— ¥ m)

[ )] @ ()]

tm — y?

Q1(y, rm)}fz(rm, z).

After some manipulations and with the expansion of fi(r,,z) and fa(r,,, z) as combination of spherical
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6.2 Direct sampling method with near-field data

Bessel functions as defined in (6.18) and (6.20) the final expression is obtained as

~
~

(Ko[rm —Z|)>

s . : ]
(E*(x,¥; ko), G(x,2) - @) 121, ) Cy <J0(k0|rm —z|) — 1k0|rm i

M
> Am
m=1

io(kolr,,, — 2
[t — 2

” (6.22)

. 2
where C} and Cy are given by (6.6) and (6.7) and where the constant % is omitted since canceled

in the final expression thanks to the Holder inequality

’ <f7g>L2(Fobs) | < HfHL2(robs) HgHLQ(Fobs) ) (6.23)

which completes the proof. O

Remark 6.2.2 (Properties of DSM with near-field data) The properties of Ipsmsp(z;y, Q) are
investigated through the result in Theorem 6.2.1 as follows.

1. Due to the properties of spherical Bessel functions of integer orders, we have jy(ko|rm — z|) = 1,
ji(k1|rm — z|) = 0 and jy(kolrm, —2|) = 0 if 2z = vy, m = 1,2,--- | M. In other words, each
inhomogeneity can be identified via Ipsmsp(z;y,q) due to the term of jo(ko|rm —2|). But artifacts

will show up in the map of Ipsmsp(z;y,q) because of the remaining terms j;(ko|ry, — z|) and

ja(ko[rm — z).

2. The physical characteristic of the inhomogeneities, e.g., permittivity and size (which have been
concatenated within the complex amplitude A, for target numbered m), have an important role
in the map of Ipsmsp(z;y, Q). More specifically, the latter has its mazimum value at the location
of the inhomogeneity having a highest complex amplitude A,, so that the one with the smallest
amplitude might be difficult to be identified. It is an inherent limitation of the DSM approach as

it has been shown in detail for the 2D case in chapter 3.

According to Theorem 6.2.1, we can know that the choice of q has important role for proper recon-
struction of the support of the inhomogeneities. So further discussion about choosing q is essential to
apply the DSM.

Remark 6.2.3 (Investigation of choice of a proper q)

1. The results provided by Ipswmsp(z;y,q) are highly dependent on the choice of the test dipole
polarization q € S? because the disturbing term could not have effect for imaging if C1 = 0 where
Cy given by (6.6), which means that Ipsmsp(z;y,q) # 1 when z = vy, € 7, Hence, we have to
choose q at least satisfying C1 # 0, i.e,

Nt

| S (rm - Y)] [q (rm - }’)]

It — y2 Q2(y,Tm).- (6.24)

5+ 4] 1y rm) # L

So (6.24) is a necessary condition to identify the inhomogeneities via Ipsmsp(z;y, Q).
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Chapter 6 3D imaging of dielectric inhomogeneities

2. On the basis of our theoretical result (6.4), the best choice of q for imaging unknown targets with
good performance is to select q making a large magnitude of C1 and a small magnitude of Cs at
the same time. Unfortunately, it is impossible to select it analytically without information about

Tm because both C1 and Coy depend on the unknown information r,,.

3. Following the pioneer work (X. Chen and Zhong 2008) leading to an enhanced MUSIC algorithm,
the polarization of the test dipole Qmax was chosen in order to maximize the back-propagation
amplitude at a each sampling point z € ). So we suggest an alternative method to choose q

without any a priori information such as follows:

Qmax 1= argmax {‘(Es(x, Y),G(x,2) - Q) r2r,, } . (6.25)

q

even though more computational cost is required. For the sake of clarity, DSM with Qmax s denoted
by DSMP in this contribution.

Now, we theoretically verify the validation of the guideline for choosing q proposed from the authors

of (Ito, Jin, and J. Zou 2013) (q = p') through our structure analysis.

Corollary 6.2.4 Letr, #y, m=1,2,--- ,M and §q = p* € S?. Then, the necessary condition (6.24)
holds.

Proof Assume that the condition (6.24) is no longer satisfied when q = p’, i.e.,

[f’t : 61] Q1(y, ) = [f) - |_ry)]_[3|2(rm —v)) Q2(y, ), where g = p. (6.26)

Then, since |p’| = 1 and p’ - p’ =1,

Ql(y’rm) = (COS2 ﬂ)QQ(yarm)’ (627)

where 9 is the angle between of two vectors p’ and r,, —y. The definitions of Q1 (y,r) and Q2(y,r)
in (6.8) and (6.9), respectively, lead to

9(y;tm) [1— ! + i ]
’ k8|rm_3’|2 kolrm — ]|
=g(y,rm) [1 - 5 + i cos® 1, (6.28)
7 k%’rm -yI>  koltm — ] ’

which is equivalent to the case that the real and imaginary parts are simultaneously null. Namely,

_ 7k3|rm1— e = [1 - 7]€(2]|I‘m3— y|2] cos? ¥, (6.29)
and
! = [ & } cos® 9. (6.30)
kolrm — ¥ kolrm — ¥
Since |1y, —y| # 0, the imaginary part (6.30) implies to cos? ¢ = 1. By introducing the latter to (6.29),
1

=3, (6.31)
which is a contradiction. Therefore, C; # 0 if § = p’ which completes the proof. 0

The above observation shows that the necessary condition (6.24) is satisfied if ¢ = p’, so the spherical

inhomogeneities can be identified via DSM with ¢ = p’ where the targets are small.
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6.2 Direct sampling method with near-field data

6.2.2 Numerical simulations

In this section, our theoretical result and efficiency of our method is examined through various numer-
ical simulations. We consider a fixed frequency fo = 749.481 MHz = ¢y/\g where \g = 0.4m is the
wavelength and ¢y the speed of light. FEKO is used to compute the fields scattered by various obstacles
illuminated by a single fixed dipole placed at y = (2.5\g,90°,0°) and polarized by z-axis, where (7,0, ¢)
indicate the radial distance, polar angle, and azimuthal angle and polarized along 6. The three compo-
nents z,y, z of the scattered fields are measured at the receiver location defined as x = (v",6",¢"), i.e.,
E*(x,y;ko) = [E3(x,y; ko), By (X, y; ko), EZ(x,y; ko)]. Here, r" = 2.5Xo, 0, = 10np°,ng = 1,2, ,17,
f% =10(ng—1)°,ny =1,2,---,36, i.e., the total number of receivers is N = Ny x Ny = 612. A 20-dB
white Gaussian random noise is added using the MATLAB function awgn. The region of interest (ROI)
is defined as a 2.5\g-side length cube evenly discretized in 41 x 41 x 41 voxels. To apply our proposal
DSMP, we calculate all the results of ‘(Es(x, ¥),G(x,2) - Qi) 2, )| for each g € $%, t=1,2,---,201

and select the qQuax satisfying (6.25), where q; are evenly distributed by (Deserno 2004).
The reconstructions are visualized using volume slice planes and/or isosurfaces, the latter being

defined as

V, ={z € QZ(z) > v}, (6.32)

where v is an isosurface parameter and Z is either Zpgm(z;y, q) or Zpsmp(z;y). According to (Bazan

et al. 2015), we choose the parameter v such as

=minZ Z(z) —minZ 1 .
v = min (z) +p max (z) min (z)|, 0<p<l, (6.33)

and p is chosen based upon the quality of the reconstructions, i.e., p involves the accuracy of imaging

performance where the performance is measured with Jaccard index.

Example 6.2.5 (Single small sphere) A small spherical dielectric inhomogeneity of location <%, %, 2
radius i‘—g and electric permittivity € = beg is considered.

Figure 6.1 shows that the accuracy of DSM is highly dependent on the choice of the test dipole
polarization as stated in Remark 6.2.3. For example when changing the test dipole polarization in the
range of q in 0° < 6 < 140° for fixed ¢ = 45°, the DSM results evolves from a good localization to a
bad one. We can identify the inhomogeneity via DSM when the polarization is chosen either ¢ = p’
(by the guideline in (Ito, Jin, and J. Zou 2013)) or @ = Qmax (by our proposal in (6.25)), See Figure
6.2 and Figure 6.3, respectively. The results show that their accuracy seems to be similar by Figure
6.4. But additional information (e.g. polarization of incident dipole) is not used in our proposal with

a slightly higher computational cost.

Example 6.2.6 (Two small spheres with different radii but same permittivity) In the follow-
ing, the case of two dielectric spheres with different radii oy = 0.12X\g, as = 0.1\g but same electric
permittivity €, = 5eg, m = 1,2, located at r1 = (%, %, %) and vy = (=22, —20 o) regpectively

20 40 4>
1s dealt with.

According to Figure 6.5, the proper choice of the test dipole polarization is a key parameter for the
efficiency of DSM also in the multiple-target case. Figures 6.6, 6.7 and 6.8 show that both selections
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Figure 6.1: (Example 6.2.5) Maps of Zpsmsp(z;y, ) using isosurface with p = 0.8, where q = (1,6, ¢)

of polarization provide a good result. Note that the isosurface representation has been drawn using
p = 0.4 (instead of p = 0.8) in order to exhibit the localization of 7. As a matter of fact that 7o
having a lower size and being further away from the impinging dipole, its signature has a lower value
that the one of 7 as stated in Remark 6.2.2, which is an inherent limitation of DSM. We also note
that the same phenomenon would have happened in the case of scatterers with same radii but different

permittivities.

6.3 Direct sampling method analysis: far-field case

6.3.1 Introduction of direct sampling method and its structure analysis

In the following, we will treat the far field configuration in which the incident field is now a single
plane wave E!_(X,¥) having impinging direction —y and polarization p?, and the collected data are
the far-field pattern Eo(%,y) as defined by (2.30). The DSM indicator function then is

IB%MBD(Z; y, q) — <:€}OOA()A(7 97 k0)7goo ()27 ZA) . 61>LAQ(SQ . (634)
[E* (%, 35 ko)l 22y |G oo (X, 2) - | 12(s2)
As usual the DSM indicator function with L multiple impinging directions is given by
1 X
Ipsmsp(2) = I ZII%%MBD(Z§S’I7€11)7 (6.35)
1=1

where Z3%\1sp(2; Y1, q;) is given in (6.34) for each y;, [ =1,2,--- , L (note that (6.35) is equivalent to
(6.34) if L=1).
Following the same steps than for the near-field case, an analytical formulation of the DSM indicator

function is proposed in Theorem 6.3.4 thanks to the use of the asymptotic formulation of the far-field
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Figure 6.2: (Example 6.2.5) Maps of Zpsmsp(z;y,q), where ¢ = (1,0°,45°) = p'
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Figure 6.3: (Example 6.2.5) Maps of Zpsmpsp(z;y)

pattern (2.30). However, some preliminary results have to be introduced first in order to deal with the
following integral equation, which is a key point to establish an analytical formulation of the DSM

indicator function.

[ (Cnlim) ) (Com) - S (x), (6.36)

Let us first introduce the well-known Funk-Hecke formula (Lemma 6.3.1) involving the spherical har-
monic functions. We will have to deal with a new lemma (Lemma 6.3.2) involving either the real part
or the imaginary part of the spherical harmonic function (the demonstration of the latter is provided
in the Appendix A .4)

Lemma 6.3.1 (Funk-Hecke formula) For any f € L?(—1,1) and 2, X € S2, the following formula
holds.

1
F(2- %) Y™(R)AS(X) = Ap Y™ (2) where A, = 27 / FOPL(t)dt (6.37)
S2 -1
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Figure 6.4: (Example 6.2.5) Jaccard index of Zpsmsp(z;y,q = p') and Zpsmpsp(z;y)
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Figure 6.5: (Example 6.2.6) Maps of Zpsmsp(z;y, q) using isosurface with p = 0.4, where q = (1,6, ¢)

for alln € N and m = —n,...,n. Here, Y, is a spherical harmonic and P,, is a Legendre polynomial.

The details can be found in (Colton and Kress 1998; Kirsch and Hettlich 2009) and references therein.
Following the same path as in the Funk-Hecke formula proof found in (Kirsch and Hettlich 2009,
Theorem 2.16), the related results can be derived.

Lemma 6.3.2 For any f € L?>(—1,1) and z,% € S, the following formulas hold.
[, @ 50Re (Y70 dS(5) = ARe (Y7(2)
s? (6.38)
[ 50mm (V730 dSG) = A (Y7'(2)).
SQ
where A, has been defined in (6.37).

Proof See the Appendix. 0

Let us focus on the special variant of Lemma 6.3.1 and Lemma 6.3.2 for which f(z - %) = e~ olzlz* —
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Figure 6.6: (Example 6.2.6) Maps of Zpsmsp(z;y,q), where @ = (1,0°,45°) = p
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Figure 6.7: (Example 6.2.6) Maps of Zpsmpsp(z;y)
e~ 0zX Then ), is given by
1
Ap = 2m / e WX P, (5. %)d(2 - %).
-1
Since z - X = cos ¢ where ¢ is the angle between two vectors z and X, we have
™
An = 277/ e~kolzlcose b (cos ) (— sin )dy
0
a7
= s in(kolzl)
thanks to the integral representation of the spherical Bessel function j, of order n € Z
. (_i)n " i cos :
jn(a) = — ] e ¥ P, (cos @) sin pdep.
0

So, in our specific case, the results provided by Lemmas 6.3.1 and 6.3.2 can be rewritten as
a7

e a8 R) = T (hola)) Y (2),
[ Re (V2(60) 45 (R) = il Re (¥7(2)

/SQ X m (Y] (%)) dS(%) = 4—”m(kalzlﬂrn(Y (2)),

(6.39)

(6.40)

(6.41)

(6.42)

(6.43)
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Figure 6.8: (Example 6.2.6) Jaccard index of Zpsmsp(z;y,q = p') and Zpsmpsp(z;y)

The next step is now to establish an analytical solution of (6.36) with the help of (6.43).

Lemma 6.3.3 For p € C? and q € S?, the following relation holds

8

S2

(P~ a)jo(ko|z1 — 2z2|) + (C1 + Ca)ja(ko|z1 — 22]), (6.44)
where Cy and Co are given by

8

T 0/
Cr = SVE Y(2)(p1q1 + pagz — 2p3q3) (6.45)

and

Gy = _877\/%[Re (Y3(2)) (p1as + psqr) + Im (Y3(2)) (p2gs + ps3qz)
—Re (Y%(i)) (P11 — p2g2) — Im (Y%(i)) (p1g2 + p2q1)|. (6.46)
Here, z = (z1 — 22) /|21 — z2|.

Proof The introduction of the expression of the far-field approximation of the dyadic Green function
(2.27) in (6.36) leads to

[ (i) p)- @] - a)dS() = [ e 9 (AR) - p) - FF(AR) - @)dSG) (647
- /S ek (m-m)p (A(%) - q)dS (%) (6.48)
—p- /S 2 (e*“fo*-@l*mm(;z) : q)) dS(%) (6.49)

where the following relations A(%x)? = A(x) and A(%)? = A(%) are used to go from (6.47) to (6.48)
and the fact that p is a complex constant vector to go from (6.48) to (6.49). The next step is to
establish an explicit form of A(x)q. The definition A(x) := I3 — X ® x leads to

(AX)-q), = qs — Zs(q- %), s =1,2,3. (6.50)
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6.3 Direct sampling method analysis: far-field case

Using the expressions of the unit vector X = (sin 6 cos ¢, sin 6 sin ¢, cos H)T and of the spherical harmon-

ics Y, as a function of the spherical coordinates

Y9 (9,0) = 1\/3(3008 6—-1),

15 :
—= sin 6 cos fe'?, (6.51)
27
1 /15 :
Y2(0,¢) = 1\ 5 sin? g
we can express the first component of A(X)q as
(A(x)-q); = q1 —sinfcos ¢ ( q1 8in 6 cos ¢ + ga sin fsin ¢ + g3 cos 0) (6.52)
=q — 2 sin? 0 — 2 sin?  cos 20 — q—2 sin? 0 sin 2¢) — g5 sin 6 cos 6 cos ¢ (6.53)

— —(h 4= Q1\/7 \/7 que Y2 + goIm (YQ( )) — g3Re (YQ( )) } (6.54)

Similarly, the other components are obtained by

. 2 2
(A6 @2 = 50+ Sy [T Y460 -2/ 3% [ (Y3(50) — e (¥305) ~ aslm (3% ]
; (6.55)
(A)-a)s = 503 — —qs\[YO +2\/ que (Y3(%)) + golm (Y3(% ))}
The combination of (6.43) and the fact that YJ(%) = \/%—W leads to
/ e R (21722) 4 §(R) = Ao (k|21 — 22]). (6.56)
S2

Combining either (6.54) or (6.55) with (6.43), for z = (z1 — 2z2) /|21 — 22|, gives the following analytical

expressions

[ e () @50 = Fanolholsr — 22D — Sary £ VY(@)atholss — 52
27 . - - -
+ 8%\/%J2(k‘0|Z1 — o)) [1Re (Y3(2)) + g2Im (Y3(2)) — gsRe (Y3(2))], (6.57)

—ikoX-(z1—2 S N 8 8 .
[ e 50 @S5 = Faalholss — 52 - ;cpﬁ Y(@)jakolz: — 22])

s 2 ia(ho bz — ) inIm (Y3(2)) — goRe (V3(2)) — gl (V3(2)] . (659

and

—ikox-(z1—2 S S 8w 67 T 2\
/s2 o R ETR) (A(R) - q)3d S (%) = ?Q3J0(1€0|Z1 —z2|) + ?%\/;Yg(z)tlz(kdzl — z2])

- 87r\/%2<ko!zl — 22]) [@1Re (Y3(2)) + qoIm (Y5(2))] . (6.59)
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They lead to
—ikoX-(z1-22) A\ (% dS(x) = 87 i (k C C9)ia(k 6.60
Sgp‘ (e (x)'q)) (X)—?(P'Q)Jo( 0lz1 — 2z2]) + (C1 + Ca)ja(k|z1 — z2]), (6.60)

which completes the lemma. Here C and Cy are given by (6.45) and (6.46), respectively. 0
Now, under the small volume and spherical shape assumptions for the inhomogeneities, the DSM

indicator function (6.34) is derived thanks to the Lemma 6.3.3 and asymptotic formula (2.32).

Theorem 6.3.4 Assume that the total number of receiver directions N is sufficiently large and each
inhomogeneity is small enough (amr/€m/e0 <K A). Then, the DSM indicator function has the following

representation formula.

AAN |£2(Z’$’,Q)|
Ipsmsp(z:y, Q) = 1;1ea5%<|£2(z,y,61)|’ (6.61)
where
M 8T
L2(2,5,q) Z Apethorm: y[ 3 ((A@®) - P") - 4) jo(kolrm —2|) + (C1 + C2) ja(ko|rm —ZD} ‘ (6.62)
m=1
Here, for z,, = (vrym —2) /|tm — 2|
O = =3 T 1AG) - D + (AG) - D)o~ 2AA) B )ods] V) (663
and
Oy = 8m\[ 22 [~ Re (Y4(2) {(AG) - Brds + (AF) - D)sin}
—Im (Y3(2)) {(A(F) - ")2d3 + (A(F) - P')ada} + Re (Y3(2)) {(A 5’) D141 — (A(Y) - D)2z}
+Im (Y3(2) {(A@) - Brde + (AF) - B)ain } |- (6:64)

Proof According to the asymptotic formula of far-field pattern (2.31),

<EOO()A(? y? kO)a goo(xa Z) : q>L2(S2)

)

M N
k% Z Am Zgoo(rma )A(n)Ei(rma y) ’ <goo(za )A(n) ’ él)
m=1 n=1

M
~ 2 Am/ G (r R)E (1, 9) - (G (2,%) - @) dS()|.
m=1 §2
(6.65)
By substituting p! = El_(r,,,y) = iwopoe™™YA(y) - p* and q = q in Lemma 6.3.3,
M . A~
(Boo(%, 93 k0), Goo (%,2) - @) [2(s2)| = iwopto 1G] Y Apelorm
m=1
8w N A\ . :
x [? ((A@) - D) - a) jo(kolrm — 2]) + (C1 + C2) ja(ko|rm — Z|)] , (6.66)

where C7 and Cj are given by (6.63) and (6.64), respectively. Thanks to the Holder’s inequality (6.23),
the constant iwgpuollk3 is canceled and the proof is completed. 0
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6.3 Direct sampling method analysis: far-field case

In the following, the structure properties of the DSM indicator function are discussed. Note that
due to similarity between the formulations in the near-field and in the far-field configurations some

remarks will be redundant.

Remark 6.3.5 (Properties of DSM with far-field data) According to Theorem 6.3.4, the follow-

ing properties of DSM indicator function in the far-field configuration can be investigated.

1. As for Remark 6.2.2, IR4\sp(2) has a mazimum of magnitude at z = r,, € Ty, since jo(ko|rm —

z|) = 1 and ja(ko|rm — 2|) = 0 in that case. However, the artifacts will be show up in the maps

of ITBsmsp (2 Q) due to ja(kolrm —2z|) > 0 if 2 & .

2. According to Remark 6.2.2, all targets cannot be identified through the maps of I3g\sp(2: Q)
when dealing with multiple targets having relative different physical properties (e.g. size and/or

permittivity, etc.) in the medium .

Now, we investigate the method to choose proper polarization of the test dipole based on Theorem

6.3.4 as following remark.

Remark 6.3.6 (Investigation of a choice of the proper q) Since jo(ko|r,,—z|) contributes to re-
trieve the information of the target in the map of I3g\sp(2; Q), it is necessary to choose the polarization
q at least satisfying the condition (A(y) . f)t) -q#0, i.e,

A A

p'-a#(y-a

<>

-p"), (6.67)

which is similar to Remark 6.2.3. On the contrary to (6.24), the condition (6.67) does not involve

information about the localization of the target.

1. Nevertheless, it is tmpossible to get an analytic solution of q without a priori information about
Tm because the latter is essential to eliminate the disturbing terms ja(ko|ry, — z|) by making
C1 + Cy = 0. Hence, we can again obtain the proper polarization of test dipole with the same

process in near-field case proposed in (6.25) by

e = arg max { | (Boo (%, ko), G (%,2) - @) p2(e2) |1 € 82} (6.68)

Note that the DSM indicator function with qgs,, will be denoted as I3y psp(2:Y) to distinguish
the indicator function of traditional DSM I3g\iap(2;¥,q)-

2. Similarly with near-field case in Corollary 6.2.4, to select q as pt will be a proper way to image

the target via I3%\1sp(2; Q). Because if @ = p',

pl-q—(¥y-a)(y-p') =1—cos?¥, (6.69)

where 9 is the angle between p' and y. Since y } p' and cos ¥ # 1, the necessary condition (6.67)
holds.
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Chapter 6 3D imaging of dielectric inhomogeneities

6.3.2 Numerical simulations with far-field data

Our analysis and proposal are verified through numerical simulations using synthetic far-field data
obtained by FEKO to which a 20dB white Gaussian random noise using the MATLAB function awgn
is added. The configurations are the same to Example 6.2.5 and Example 6.2.6 in section 6.2.2 but in
the far-field configuration.

The spherical coordinate system is again used to present the information about direction and po-
larization of source and observation. A single incident impinging wave of direction (—1,90°,0°) and
polarization p’ = (1,0°,0°) (= (0,0,1) in Cartesian coordinate system) is considered. The observation
directions are evenly distributed with 8" varying from 0° to 350° with 10°-step and ¢" varying from 10°
to 170° with 10°-step. Since the far-field configuration is considered, only the 6"- and ¢"-components
of the far-field pattern are obtained. Then, a transformed far-field pattern f)oo(x, y) = PE(x,y) is
used to adjust our theoretical approach (using three components of scattered field along x, y and z)
where the transition matrix is defined by P = [#";0"; ¢"] € R3*® with

7" = (sin@" cos ¢",sin 0" sin ¢", cos HT)T,
0" = (cos @ cos ¢", cos O” sin ¢, cos 0) 7, (6.70)
¢" = (—sin¢", cos ¢",0)7.

As in the section 6.2.2, we obtain the qmayx by considering evenly distributed ¢; € S, t = 1,2, --- ,201.
Also, the results are visualized using volume slice planes and isosurfaces using isosurface parameter v

given in (6.33).

Example 6.3.7 (Single small sphere) Let us remind the information about the inhomogeneity T

with r = (0.1m,0.1m,0.1m), « = 0.1\ = 0.04dm, and & = bey, respectively.

As shown in Figures 6.9, 6.10 and 6.11, the results are similar with the ones obtained within the near-
field configuration (Example 6.2.5). The DSM results are getting worse as the direction q is changed in
0° < 0 < 70° for fixed ¢ = 45°. But the inhomogeneity is properly identified via DSM if the polarization
is selected by either p or 55 . Hence, we can validate that both p’ and g%, would be good choice
for imaging the target, but our proposal DSMP does not need to use the information of polarization

of incident field even with more computational cost.

Example 6.3.8 (Two small spheres with same radii and different permittivity) Similarly with
example 6.2.6, two small spherical dielectric inhomogeneities with same radii oy, = 0.1\ = 0.04m but
different permittivities 1 = 3eg, €2 = beg are considered. They are located at r1 = (0.1 m,0.1 m, 0.1 m)

and rg = (—0.2m, —0.1m, —0.1 m), respectively.

Figure 6.13 shows that the issue of choosing proper polarization of test dipole still occurs as in
the previous example. Choosing polarization as p! (Figure 6.14) or ¢, (Figure 6.15) handles it as
expected. However, as stated in Remark 6.3.5, the inhomogeneity having the smaller permittivity is
difficult to identify with both DSM and DSMP, which is similar with the different radii case in Example
6.2.6.
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6.4 Illustration with experimental far-field data
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Figure 6.9: (Example 6.3.7) Maps of I3\ 1sp(2; ¥, q) using isosurface with p = 0.8, where q = (1,0, ¢)

08 0.5

0.5
0

0

-0.5 -0.5

y 05 -05 X y X

(a) Volume slice with x = 0.1 and y = 0.1 planes (b) Isosurface with p = 0.6

Figure 6.10: (Example 6.3.7) Maps of Z3%\1sp(z;¥,4), where q = (1,0°,45°) = (0,0,1) = p’

6.4 lllustration with experimental far-field data

Additional results obtained using experimental data are presented with Fresnel experimental data
(http://www.fresnel.fr/3Ddatabase/index.php). The frequency is chosen as fy = 3GHz to be
close to the our theoretical condition, the corresponding wavelength being A\g = 0.09993 m ~ 0.1 m.
Among various types of targets, two small dielectric spheres of same radii «y, ~ 0.25)\g, permittivity
Em = 2.6e9 with r; = (0.25X¢,0,0) and ro = (—0.25X9,0,0) are selected (experimental file name are
TwoSpheres_PP.exp and TwoSpheres_TP.exp). The region of interest € is a cube of 2.5\ side length

evenly discretized in 41 x 41 x 41 cubical voxels.

It is worth note that
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(a) Volume slice with x = 0.1 and y = 0.1 planes
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(b) Isosurface with p = 0.6

Figure 6.11: (Example 6.3.7) Maps of Z24\ipsp(2;y)
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Figure 6.12: (Example 6.3.7) Jaccard index of Z34\sp(z; ¥, 4 = P') and Z3%\psp(2;Y)

e Since the locations of receivers and transmitters are far from the center (1.796 m) in the experi-

0.8 1

mental configuration, the scattered electric field can be regarded as far-field pattern.

e Due to the limitation of experimental setup, 27 observation directions and 81 incident fields can

be used. However, thanks to reciprocity, the roles of the source and the receiver can be exchanged

(Geflrin et al. 2008), i.e., N = 81 and L = 27.

e to adjust our theoretical approach, the transformed scattered field Eoo(x, y) = PE(x,y) is

used for imaging. Here P = [f";0"; ¢"] € R3*3 is the transition matrix in (6.70).

The results are presented Figures 6.17, 6.18, 6.19, and 6.20. The choice of the test dipole as g = p?
or q = Qmax provides good results. But our proposal (DSMP) has slightly better imaging performance

because the artifacts are eliminated in the map of Z3gp(2;y).
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6.4 Illustration with experimental far-field data
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Figure 6.13: (Example 6.3.8) Maps of Z3%\sp(2; ¥, Q) using isosurface with p = 0.5, where q = (1,0, ¢)
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Figure 6.14: (Example 6.3.8) Maps of Z3%\1sp(2; ¥, q), where q = (1,0°,45°) = p
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Figure 6.15: (Example 6.3.8) Maps of ZR4\psp(2;¥)

95



Chapter 6 3D imaging of dielectric inhomogeneities

100

80

60

40

Jaccard Index(%)

20

Figure 6.16: (Example

6=110" and ¢=45

6=120" and ¢=45

0.1 0.1 0.1
N 0. N O N 0.#
we' Y A |
0.1 0.1 0.1
01 . ‘/ow 0.1 % . ‘/ow 0.1
0 s : 0 ™ s ’ o
. 0 < 0 "
0.1 0.1 0.1 7 04 0.1
X X
0=150" and ¢=45" 0=160" and ¢=45"
0.1 0.1 0.1
Y !
N OO () ‘ \ N OO ' \ N OO
0.1 0.1 0.1
. S "
01 ™ ~ ’\I) ] 01 ™ - ’\I) ] 0.1 ™
N N 0 L
0.1 0.1 0.1 0.1 0.1

6=130" and ¢=45

—o-DSM with ¢ = p'
DSMP
:Jn;gf;gsiuu
0-0-0-0-0-0-0-0-C ot S .
0 0.2 0.4 0.6 0.8 1
Threshold

6.3.8) Jaccard index of Z3%\isp(z; ¥, 4 = P*) and I\ psp (2; Y)

6=140" and ¢=45

0.1
1
N 0.7
¢ .
0.1
L
01 ey
0 e
0.1 0.1
X
0=180" and ¢=45"
0.1
'
NI ’ |
0.1
.
01 ™ ~ ’\231
0~
0.1 0.1

Figure 6.17: Maps of Z3%\1sp(2; ¥, q) using isosurface with p = 0.8, where q = (1,6, ¢)
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Figure 6.18: (Example 6.2.6) Maps of Z8%\1sp(2;y,q), where g = (1,180°,45°) = (0,0, 1) =

96

f)t



6.5 Further study about improvement imaging performance with multiple impinging directions
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Figure 6.19: Maps of Z24\psp(2;Y)
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Figure 6.20: Jaccard index of DSM and DSMA

6.5 Further study about improvement imaging performance with multiple
impinging directions

According to (6.3) (in near-field) and (6.35) (in far-field), the indicator function of traditional DSM for
multiple impinging directions is given by an average value of the result for each impinging direction.
However, it is difficult to improve the imaging performance because the definition does not consider the
information about incident fields which is also generally known information like observation directions
(or receivers). In 2D cases (Chapter 3, 4,and 5), we have already proposed DSMA by considering an
additional test function related to each incident field and verified that DSMA has better accuracy than
DSM for imaging the target with multiple sources. Hence, we extend our approach to 3D case and
define the indicator function of DSMA by

‘<<ES(X7 Yy k0)7g(xa Z) : q)LZ(Fobs) ’ (g(y’ Z) . pt) ' a>L2(Finc)

Ipsmasp(z; ko) ==

. (6.71)

max

((B2(x,y:h0), G(x,2) - &) o r,,,)  (G(y,2) - P) -2 )

L2 (Finc)
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Chapter 6 3D imaging of dielectric inhomogeneities

and

L2(S?)

‘<<EOO(>A(7$’7 kO)agoo(f(’ Z) ' qOO>L2(SQ) ) (goo(ya Z) : pt) ' a>
. (6.72)

TIPsmasp(z; ko) =
max

<<Eoo(§(7y7 kO)agoo(fca Z) : qOO>L2(S2) ) (goo(ya Z) : pt) : a>

L2(S?)

for near- and far-field cases, respectively. Here, a € R? is constant which indicates the weight of
each component of G(y,z) or G (¥,2). Simple application in Figures 6.21 and 6.22 display that our
proposal might be an improved version of DSM. To theoretically verify it, the structure analysis is
essential but it is not yet completed. Hence, we only present the results of numerical simulations and
compare them with traditional DSM.

We recall the setting of numerical simulations with far-field data in section 6.4. But we consider the
multiple incident plane waves that are evenly distributed with #* = 90° and ¢! varying from 0° to 350°
with 10°-step. In other word, L = 36 (the total number of incident directions). Also, we apply DSM
and DSMA with a = [1,1,1]/v/3 and ™ = p’. Figures 6.21 and 6.22 show that the artifacts can be
reduced by using our proposal DSMA.
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B 00,
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X y ' X
(a) DSM with xy-plane (b) Isosurface with p = 0.8

y
0.1
0.8
0.05 ’
- 0.6
N 0 N
0.4
-0.05 -
0.2
-0.1
0

-01 005 0 005 01

(c) DSMA with xy-plane (d) Isosurface with p = 0.8

Figure 6.21: Numerical results of DSM (top) and DSMA (bottom)
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Figure 6.22: Jaccard index of DSM and DSMA

6.6 Conclusion

In this chapter, we analyze the indicator function of the DSM in the 3D inverse electromagnetic
scattering problem in both near-field and far-field configurations. With such an analysis, the reasons
for which DSM is able to localized the targets is explained and the reasons for which some artifacts
might appear also. The key role of the choice of the test dipole polarization in the efficiency of the
method is exhibited and a method to provide a better choice is proposed with a theoretical validation.
The approach is validated using synthetic data and experimental data when available.

At the end of this chapter, we additionally introduce the indicator function of 3D alternative di-
rect sampling method with some numerical simulations, but no structure analysis. It seems to be an
improved version of traditional DSM like in the 2D case, so its structure analysis will be interesting

future work.
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7.1 Conclusion

In this thesis, the direct sampling method (DSM) has been studied in various 2D and 3D inverse
electromagnetic scattering problems. The total number of incident and observation directions must be
large enough for a successful application of many existing qualitative methods. On the other hand,
throughout several studies, it is well known that the DSM is a fast and effective non-iterative type
method to reconstruct the support of targets with only a few incident fields. Unfortunately, most
applications of DSM are heuristic. Hence, the main aim of the work was to derive the mathematical
structure of indicator function of DSM for verifying the theoretical reason of observed phenomena and
to design an new effective non-iterative method for imaging the target (being called DSMA in this
work). The theoretical results have been validated via various numerical simulations with synthetic
and experimental data.

In the first part, we analyzed the mathematical structure of traditional DSM operated at a fixed
frequency. Under the 2D full-aperture configuration, the indicator function can be represented by a
first-kind Bessel function of order zero and information of target (e.g./ location, size, and permittivity,
etc.). This shows the intrinsic limitation of DSM such that it is difficult to identify all targets when
one of them is relatively small or its permittivity is lower than others. To overcome the limitation, we
considered multiple impinging directions but the imaging performance is not significantly increased. So
we designed the DSMA to handle the limitation and examine that the DSMA is an improved version of
traditional DSM with the similar path of derivations as in traditional DSM case. We also established
the relationship of DSM, DSMA and Kirchhoff migration through our structure analysis.

Next, we studied the DSM in the restricted inverse scattering problem because a full aperture set-up is

not possible in various real-world applications. More specifically, the mono-static and limited-aperture
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measurement data were treated to image the target in a 2D scalar configuration. In the application
of DSM in the mono-static configuration, the mathematical structure of the indicator function of the
traditional DSM has been established and the reason for which it fails to image the targets was clearly
identified. To overcome this miss-localization of the target, a modified DSM has been proposed and
its efficiency was theoretically shown. Then, the application of DSM in the limited-aperture scattering
problem was studied. We first investigated the mathematical structure of the indicator function of
DSM by establishing the relationship by infinite series of Bessel functions of integer orders, the range
of observation directions, and physical properties about inhomogeneities to explain unexplored intrinsic
properties of DSM. The DSMA for limited-aperture problem has been designed to improve the imaging
performance. Its mathematical structure has also been exhibited by showing the relationship of infinite
series of Bessel functions of integer orders and the range of incident and observation and incident
directions, and physical properties of targets. Unfortunately, it is still difficult to identify targets via
DSM when a narrow range of incident and/or observation directions is considered.

To improve the imaging accuracy when the range of incident and /or observation directions is narrow,
a multi-frequency indicator function of DSM has been introduced in the third part. On the contrary to
several investigations, multi-frequency DSM is effective only for imaging a small single inhomogeneity
but is not effective for several small inhomogeneities. To explain why, the mathematical structure of
a multi-frequency indicator function has been derived by establishing the relationship of the Bessel
functions, Struve functions, Legendre polynomials, generalized hypergeometric function, the range of
incident and observation directions, and physical characteristics of targets. We then examined undiscov-
ered properties of multi-frequency DSM, design alternative indicator function based on an exponential
weight with respect to each frequency for further improvement, and analyzed its mathematical struc-
ture.

Finally, in the 3D inverse electromagnetic scattering problem, the mathematical structure of DSM
has been presented in near- and far-field configurations. The main difference between 2D and 3D DSM
is the choice of the polarization of the test function. We showed that the indicator function of DSM
can be represented as the combination of spherical Bessel functions of integer order, polarization of
test dipole, and polarization tensors of the targets which carry the information about them. Based on
our analysis, we verified how the imaging from DSM is changed according the choice of polarization
of test dipole, and proposed our way to choose proper the polarization for exact imaging. Moreover,
we examined the adequacy of the guideline in (Ito, Jin, and J. Zou 2013) about the choice of the test

polarization.

7.2 Perspectives

In this thesis, we have validated the behavior of 2D and 3D DSM through mathematical analysis
in various 2D and 3D inverse electromagnetic scattering problem. However, further studies are still

required.

2D inverse scattering problem

e According to section 4.2.1, the accuracy of DSM with mono-static data is lower than one with

102



7.2 Perspectives

multi-static data due to the lack of information. To improve mono-static radar imaging, the

application and analysis of multi-frequency DSM and DSMA should be an interesting challenge.

e By (Joh and W.-K. Park 2014), the imaging accuracy of non-iterative reconstruction method with
multi-frequency can be improved by adopting different weights with respect to each frequency.
Hence, we might improve the imaging accuracy of multi-frequency DSM and DSMA if the proper

weight is found.

e Throughout our analysis, DSM and DSMA is effective techniques to imaging unknown inhomo-
geneities. So we expect that DSM and DSMA can be extended to the reconstruction of buried

inhomogeneities also.

e In (Baronian et al. 2018), LSM is applied to 2D ultrasonic Non Destructive Testing of an elastic
waveguide. So, the application of DSM to this problem should be interesting since the DSM is
also a sampling-type method similar with LSM.

3D inverse scattering problem

e In section 6.5, we have proposed a 3D version of alternative indicator function of DSM (DSMA)
with the similar approach in 2D case demonstrated in section 3.3.2. Even though the mathematical
analysis has not yet been provided, we have shown that the DSMA is an improved version of
DSM through various numerical simulations. Hence, the structure analysis should be a future

work.

e Section 3.4 has indicated that 2D DSMA has strong relation with Kirchhoff migration. So veri-
fication of the relation between 3D version of DSMA and migration-type technique in (J. Chen,
Z. Chen, and Huang 2013b) would be interesting.

e In the present works, we only consider the 3D version of DSM in full-aperture inverse scattering
problem. But, a full measurement setup is impossible in many real applications such as GPR,

SAR, etc. Hence, structure analysis in limited-aperture configuration is needed.

103






Appendix

A.1 lll-posedness and nonlinear system
Solving an inverse scattering problem can be formulated according to the following general form
F(u) =, (A.1)

where u and v represent the information about the unknown inhomogeneity and the measurement data,
respectively, and F denotes the forward operator. The problem (A.1) is called well-posed in the sense
of Hadamard (Hadamard 2003) if it satisfies the following conditions.

(i) Existence: there exists a solution of the problem.
(ii) Uniqueness: there is at most one solution of the problem.
(iii) Stability: the solution depends continuously on the data.

It is called ill-posed otherwise. Note that, if the operator F satisfies the following two conditions, it is

called a linear operator
(1) Fluy +ug) = Flur) + L(ug)
(ii) F(eu) = cF(u)

where ¢ is a constant. Generally, the operator F is ill-posed and nonlinear.

A.2 The definition of L2 inner product and norm

For a simply connected surface (or curve) 0Q € R d = 2,3, the L?-inner product is defined by

N N
<f(xn)vg(xn)>L2(aQ) = nzlf(xn) - g(xn) = ; ; fi(xn)gi(xn) = /E)Q f(x)g(x)dS(x) (A.2)

1/ )l 290y = (E(xn), £(xn)) 1250 -
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A.3 Jaccard index

Throughout our work, we adopt the notion of Jaccard index in order to compare the accuracy of the
results as objectively as possible. The Jaccard index (Jaccard 1912; Rosin and Ioannidis 2003; Gupta

et al. 2014) measures the similarity between two finite samples sets A and B, and it is defined as

|AN B
J(A,B = 100. A3
(4B = {1 5] * (A.3)
In our case the Jaccard index is calculated by comparing Z%,, .. (z; ko) with various index maps Z" (z; ko)

defined as

7 (z; h that 7 (z; >
I"‘(z;ko):{ (z;ko), Vz such that Z(z;ko) > Kk (A)

0 Vz such that 7 (z; ko) < k

where x varies from 0 to 1 and where Z (z; ko) can be Zpsm(z; ko), Zpsma(z; ko) or Inkwm(z; ko) and
where Zoyact (z) is defined as
|k (2) — kol

Zexac iko) = :
¢ (2: ko) max |k(z) — kol

(A.5)

Here, k(z) is the wavenumber at the searching point z € 2. The kg is analogously defined in the

background medium.

A.4 Proof of Lemma 6.3.2

For fixed 2, choose an orthogonal matrix A depending on z such that A='z = ATz = 2’ = (0,0,1)7,

i.e., z’ is "north pole". Then the transformation x = AX’ leads that

/ £ %) Y (%)ds(%) = / f (3 AR) YT (AR) ds(X) = / F(E %)Y (AR) ds(x)  (A6)
S2 S2 S2

Because the orthonormal matrix A is isometry, the function Y]'(Ax) is again a spherical harmonic of

order n and it can be expressed as

Yo (ax) = 3 a4y YE(), (A7)

k=—n

where aj, = [o Y7 (AX) Y F(%)dS(%x). We know that

ke (A.8)
Im (Y] (A%)) = Y Re(ay) Im (Yn(fc)) + Im (az) Re (Y';(fc))
k=—n
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A.4 Proof of Lemma 6.3.2

From them and spherical coordinates % = (sin 6 cos ¢, sin #sin ¢, cos )7 (note that 2’ - X = cos#),
f (z-%)Re (Y} (%)) dS(x)

Z /S2 7' -x) |Re (ag) Re <Yk( )) — Im (ay) Im (YZ(&))} ds(x)

(A.9)

and

f(z-3)Im (Y;' (%)) ds(%)

SQ

Z /S2 7 X e (ax)Im (Yk( )> + Im (ar) Re (Yﬁ(f{))} ds(x)

dr(n + |k|!)
1
=1Im (ag) 1/ 2n4;: <27r/0 f(cos0)P,(cos 8) sin 9d9> .

By substituting x = % in (A.7) and from Y*(2') = 0 for k # 0,

2n+1 2n+1
m k _
Y (z) =Y (AZ) g ar Yy, ( agy/ y P,(1) = apy/ e (A.11)

. 2
Z \/ T / / J(cos 6) Pl (cos 0) [Re (ar) sin (ko) + Im (ay) cos(ke)] do sin 619

(A.10)

k=—n
so that
2 1 2 1
Re (Y™(2)) = Re (a0) {| 2= and  Tm (Y™'(2)) = Tm (ag) |/ 2. (A.12)
4 4m
Finally, (A.9), (A.10), and (A.12) imply (6.38) which is the completeness of the proof. 0
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Titre : Imagerie non itérative en probléme inverse de diffraction des ondes : méthode DSM

Mots clés : Méthode d’échantillonnage direct, probléme de diffusion électromagnétique inverse, anal-

yse mathématique

Résumé : Le probléme de I'imagerie non itérative
dans le cadre de la diffraction électromagnétique
inverse utilisant la méthode d’échantillonnage di-
rect (DSM) est considéré.

Gréace & une combinaison de l’expression asymp-
totique du champ proche ou du champ lointain
diffracté et de I’hypothése de petits obstacles, les
expressions analytiques de la fonction d’indicateur
DSM sont présentées dans diverses configurations
telles que des configurations 2D /3D, mono-/multi-
configurations statiques, a vue limitée /compléte et
fréquence unique/ diversité en fréquence. Une fois
I’expression analytique obtenue, sa structure est
analysée et des améliorations proposées. Notre ap-
proche est validée & l'aide de données de simula-

tion, et d’expériences le cas échéant.

Premiérement, la structure mathématique du
DSM a fréquence fixe en 2D dans divers problémes
de diffusion est établie, permettant une anal-
yse théorique de son efficacité et de ses lim-
ites. Pour surmonter les limitations connues,
une méthode alternative d’échantillonnage direct
(DSMA) est proposée. Puis le cas multi-fréquence
est investigué en introduisant et en analysant
le DSM multi-fréquence (MDSM) et le DSMA
multi-fréquence (MDSMA). Enfin, notre approche
est étendue aux problémes de diffraction électro-
magnétique inverse 3D pour lesquels le choix de
la polarisation du dipéle de test est un paramétre
clé. De par notre approche analytique, ce choix
peut étre effectué sur la base de la polarisation du

champ incident.

Title: Direct sampling method in inverse electromagnetic scattering problem

Keywords: Direct sampling method, Inverse electromagnetic scattering problem, Mathematical anal-

ysis

Abstract: The non iterative imaging problem
within the inverse electromagnetic scattering
framework using the direct sampling method
(DSM) is considered. Thanks to the combination
of the asymptotic expression of the scattered near-
field or far-field and of the small obstacle hypoth-
esis the analytical expressions of the DSM indi-
cator function are presented in various configura-
tions such as 2D /3D configurations and/or mono-
/multi-static configurations and/or limited- /full-
view case and/or mono-/multi-frequency case.
Once the analytical expression obtained, its struc-
ture is analyzed and improvements proposed. Our
approach is validated using synthetic data and ex-

perimental ones when available. First, the math-

ematical structure of DSM at fixed frequency in
2D various scattering problems is established al-
lowing a theoretical analysis of its efficiency and
limitations. To overcome the known limitations
an alternative direct sampling method (DSMA) is
proposed. Next, the multi-frequency case is inves-
tigated by introducing and analyzing the multi-
frequency DSM (MDSM) and the multi-frequency
DSMA (MDSMA). Finally, our approach is ex-
tended to 3D inverse electromagnetic scattering
problems for which the choice of the polarization
of the test dipole is a key parameter. Thanks to
our analytical analysis it can be made based on

the polarization of the incident field.
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