, Place du score SOFA dans la nouvelle définition du sepsis

. Ii, Parallèle entre sepsis et cancer

I. Chapitre, . Le-torque-teno, and . .. Virus,

. .. Objectifs,

. .. Résultats,

I. Chapitre and . .. Article,

I. I. Chapitre, Evaluation de l'immunodépression chez les patients septiques

I. Azzaoui, F. Uhel, D. Rossille, C. Pangault, J. Dulong et al., T-cell defect in diffuse large B-cell lymphomas involves expansion of myeloid-derived suppressor cells, Blood, vol.128, pp.1081-1092, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01394657

F. A. Bozza, J. I. Salluh, A. M. Japiassu, M. Soares, E. F. Assis et al., Cytokine profiles as markers of disease severity in sepsis: a multiplex analysis, Crit. Care, vol.11, p.49, 2007.

V. Bronte, S. Brandau, S. Chen, M. P. Colombo, A. B. Frey et al., Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards, Nat. Commun, vol.7, p.12150, 2016.

L. Brudecki, D. A. Ferguson, C. E. Mccall, and M. Gazzar, Myeloid-derived suppressor cells evolve during sepsis and can enhance or attenuate the systemic inflammatory response, Infect. Immun, vol.80, pp.2026-2034, 2012.

M. Cecconi, L. Evans, M. Levy, and A. Rhodes, Sepsis and septic shock, Lancet Lond. Engl, vol.392, pp.75-87, 2018.

T. Daix, E. Guerin, E. Tavernier, E. Mercier, V. Gissot et al., Multicentric Standardized Flow Cytometry Routine Assessment of Patients With Sepsis to Predict Clinical Worsening, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01881116

M. J. Delano, P. O. Scumpia, J. S. Weinstein, D. Coco, S. Nagaraj et al., MyD88-dependent expansion of an immature GR-1(+)CD11b(+) population induces T cell suppression and Th2 polarization in sepsis, J. Exp. Med, vol.204, pp.1463-1474, 2007.

A. M. Drewry, N. Samra, L. P. Skrupky, B. M. Fuller, S. M. Compton et al.,

, Persistent Lymphopenia after Diagnosis of Sepsis Predicts Mortality, Shock Augusta Ga, vol.42, pp.383-391

D. I. Gabrilovich, S. Ostrand-rosenberg, and V. Bronte, Coordinated regulation of myeloid cells by tumours, Nat. Rev. Immunol, vol.12, pp.253-268, 2012.

E. Guérin, M. Orabona, M. Raquil, B. Giraudeau, R. Bellier et al., Circulating immature granulocytes with Tcell killing functions predict sepsis deterioration*, Crit. Care Med, vol.42, pp.2007-2018, 2014.

R. S. Hotchkiss, P. E. Swanson, B. D. Freeman, K. W. Tinsley, J. P. Cobb et al., Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction, Crit. Care Med, vol.27, pp.1230-1251, 1999.

R. S. Hotchkiss, G. Monneret, and D. Payen, Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy, Nat. Rev. Immunol, vol.13, pp.862-874, 2013.

R. S. Hotchkiss, L. L. Moldawer, S. M. Opal, K. Reinhart, I. R. Turnbull et al.,

, Sepsis and septic shock, Nat. Rev. Dis. Primer, vol.2, p.16045

X. Huang, Y. Chen, C. Chung, Z. Yuan, S. F. Monaghan et al.,

, J. Immunol. Baltim. Md, pp.1091-1099, 1950192.

T. J. Loftus, A. M. Mohr, and L. L. Moldawer, Dysregulated myelopoiesis and hematopoietic function following acute physiologic insult, Curr. Opin. Hematol, vol.25, pp.37-43, 2018.

A. Luyckx, E. Schouppe, O. Rutgeerts, C. Lenaerts, S. Fevery et al., G-CSF stem cell mobilization in human donors induces polymorphonuclear and mononuclear myeloid-derived suppressor cells, Clin. Immunol, vol.143, pp.83-87, 2012.

I. Marigo, E. Bosio, S. Solito, C. Mesa, A. Fernandez et al., Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor, Immunity, vol.32, pp.790-802, 2010.

B. Mathias, A. L. Delmas, T. Ozrazgat-baslanti, E. L. Vanzant, B. E. Szpila et al., Human Myeloid-derived Suppressor Cells are Associated With Chronic Immune Suppression After Severe Sepsis/Septic Shock, Ann. Surg, vol.265, pp.827-834, 2017.

R. S. Munford and J. Pugin, Normal responses to injury prevent systemic inflammation and can be immunosuppressive, Am. J. Respir. Crit. Care Med, vol.163, pp.316-321, 2001.

A. Oberholzer, C. Oberholzer, and L. L. Moldawer, Interleukin-10: a complex role in the pathogenesis of sepsis syndromes and its potential as an anti-inflammatory drug, Crit. Care Med, vol.30, pp.58-63, 2002.

M. Ost, A. Singh, A. Peschel, R. Mehling, N. Rieber et al., Myeloid-Derived Suppressor Cells in Bacterial Infections, Front. Cell. Infect. Microbiol, vol.6, 2016.

A. C. Patera, A. M. Drewry, K. Chang, E. R. Beiter, D. Osborne et al.,

, Frontline Science: Defects in immune function in patients with sepsis are associated with PD-1 or PD-L1 expression and can be restored by antibodies targeting PD-1 or PD-L1, J. Leukoc. Biol, vol.100, pp.1239-1254

K. Reinhart, R. Daniels, N. Kissoon, F. R. Machado, R. D. Schachter et al., , 2017.

, Recognizing Sepsis as a Global Health Priority -A WHO Resolution, N. Engl. J. Med, vol.377, pp.414-417

P. C. Rodríguez and A. C. Ochoa, Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives, Immunol. Rev, vol.222, pp.180-191, 2008.

P. C. Rodriguez, A. H. Zea, K. S. Culotta, J. Zabaleta, J. B. Ochoa et al., Regulation of T Cell Receptor CD3? Chain Expression byl-Arginine, J. Biol. Chem, vol.277, pp.21123-21129, 2002.

E. Abraham, A. Anzueto, G. Gutierrez, S. Tessler, G. San-pedro et al., Double-blind randomised controlled trial of monoclonal antibody to human tumour necrosis factor in treatment of septic shock, Lancet Lond. Engl, vol.351, pp.929-933, 1998.

E. Albert, C. Solano, T. Pascual, I. Torres, L. Macera et al., Dynamics of Torque Teno virus plasma DNAemia in allogeneic stem cell transplant recipients, J. Clin. Virol. Off. Publ. Pan Am. Soc. Clin. Virol, vol.94, pp.22-28, 2017.

P. Allavena, L. Piemonti, D. Longoni, S. Bernasconi, A. Stoppacciaro et al., IL-10 prevents the differentiation of monocytes to dendritic cells but promotes their maturation to macrophages, Eur. J. Immunol, vol.28, pp.359-369, 1998.

M. K. Angele, S. Pratschke, W. J. Hubbard, and I. H. Chaudry, Gender differences in sepsis: cardiovascular and immunological aspects, Virulence, vol.5, pp.12-19, 2014.

D. Annane, P. Aegerter, M. C. Jars-guincestre, B. Guidet, and C. Network, Current epidemiology of septic shock: the CUB-Réa Network, Am. J. Respir. Crit. Care Med, vol.168, pp.165-172, 2003.

J. Austermann, S. Zenker, R. , and J. , S100-alarmins: potential therapeutic targets for arthritis, Expert Opin. Ther. Targets, vol.21, pp.739-751, 2017.

I. Azzaoui, F. Uhel, D. Rossille, C. Pangault, J. Dulong et al., T-cell defect in diffuse large B-cell lymphomas involves expansion of myeloid-derived suppressor cells, Blood, vol.128, pp.1081-1092, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01394657

M. Ballbach, A. Dannert, A. Singh, D. M. Siegmund, R. Handgretinger et al., Expression of checkpoint molecules on myeloid-derived suppressor cells, Immunol. Lett, vol.192, pp.1-6, 2017.

M. Bando, S. Ohno, K. Oshikawa, M. Takahashi, H. Okamoto et al., Infection of TT virus in patients with idiopathic pulmonary fibrosis, Respir. Med, vol.95, pp.935-942, 2001.

K. Béland, M. Dore-nguyen, M. Gagné, N. Patey, J. Brassard et al., Torque Teno virus in children who underwent orthotopic liver transplantation: new insights about a common pathogen, J. Infect. Dis, vol.209, pp.247-254, 2014.

C. Bergenfelz, C. Medrek, E. Ekström, K. Jirström, H. Janols et al., Wnt5a Induces a Tolerogenic Phenotype of Macrophages in Sepsis and Breast Cancer Patients, J. Immunol, vol.188, pp.5448-5458, 2012.

P. Biagini, D. Micco, and P. , The family Anelloviridae: Virus TTV and similar types, 2010.

M. Binsfeld, J. Muller, V. Lamour, K. De-veirman, H. De-raeve et al., , 2016.

E. Birben, U. M. Sahiner, C. Sackesen, S. Erzurum, and O. Kalayci, Oxidative stress and antioxidant defense, World Allergy Organ. J, vol.5, pp.9-19, 2012.

R. C. Bone, R. A. Balk, F. B. Cerra, R. P. Dellinger, A. M. Fein et al., Definitions for Sepsis and Organ Failure and Guidelines for the Use of Innovative Therapies in Sepsis, CHEST, vol.101, pp.1644-1655, 1992.

P. Boros, J. Ochando, and M. Zeher, Myeloid derived suppressor cells and autoimmunity, Hum. Immunol, vol.77, pp.631-636, 2016.

F. A. Bozza, J. I. Salluh, A. M. Japiassu, M. Soares, E. F. Assis et al., Cytokine profiles as markers of disease severity in sepsis: a multiplex analysis, Crit. Care, vol.11, p.49, 2007.

S. Brandau, C. A. Dumitru, L. , and S. , Protumor and antitumor functions of neutrophil granulocytes, Semin. Immunopathol, vol.35, pp.163-176, 2013.

V. Bronte, M. Wang, W. W. Overwijk, D. R. Surman, F. Pericle et al., Apoptotic Death of CD8+ T Lymphocytes After Immunization: Induction of a Suppressive Population of Mac-1+/Gr-1+ Cells, J. Immunol. Baltim. Md, vol.161, pp.5313-5320, 1950.

V. Bronte, D. B. Chappell, E. Apolloni, A. Cabrelle, M. Wang et al.,

, Unopposed Production of Granulocyte-Macrophage Colony-Stimulating Factor by Tumors Inhibits CD8+ T Cell Responses by Dysregulating Antigen-Presenting Cell Maturation, J. Immunol. Baltim. Md, vol.162, pp.5728-5737, 1950.

V. Bronte, S. Brandau, S. Chen, M. P. Colombo, A. B. Frey et al., Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards, Nat. Commun, vol.7, p.12150, 2016.

K. A. Brown, S. D. Brain, J. D. Pearson, J. D. Edgeworth, S. M. Lewis et al.,

, Neutrophils in development of multiple organ failure in sepsis, Lancet Lond. Engl, vol.368, pp.157-169

L. Brudecki, D. A. Ferguson, C. E. Mccall, and M. Gazzar, Myeloid-derived suppressor cells evolve during sepsis and can enhance or attenuate the systemic inflammatory response, Infect. Immun, vol.80, pp.2026-2034, 2012.

A. M. Bruger, A. Dorhoi, G. Esendagli, K. Barczyk-kahlert, P. Van-der-bruggen et al., How to measure the immunosuppressive activity of MDSC: assays, problems and potential solutions, Cancer Immunol. Immunother. CII, 2018.

C. Brun-buisson, F. Doyon, J. Carlet, P. Dellamonica, F. Gouin et al., Incidence, risk factors, and outcome of severe sepsis and septic shock in adults. A multicenter prospective study in intensive care units. French ICU Group for Severe Sepsis, JAMA, vol.274, pp.968-974, 1995.

S. C. Buessow, R. D. Paul, A. M. Miller, and D. M. Lopez, Lymphoreticular cells isolated by centrifugal elutriation from a mammary adenocarcinoma. I. Characterization of an in situ lymphocyte suppressor population by surface markers and functional reactivity, Int. J. Cancer, vol.33, pp.79-85, 1984.

S. Busani, E. Damiani, I. Cavazzuti, A. Donati, and M. Girardis, Intravenous immunoglobulin in septic shock: review of the mechanisms of action and meta-analysis of the clinical effectiveness, Minerva Anestesiol, vol.82, pp.559-572, 2016.

S. Calcaterra, M. S. Zaniratti, D. Serraino, M. Peroni, I. Abbate et al., Cervicovaginal shedding of TT virus in HIVinfected women, J. Hum. Virol, vol.4, pp.343-345, 2001.

J. Cavaillon and M. Adib-conquy, Bench-to-bedside review: endotoxin tolerance as a model of leukocyte reprogramming in sepsis, Crit. Care Lond. Engl, vol.10, p.233, 2006.

M. Cecconi, L. Evans, M. Levy, and A. Rhodes, Sepsis and septic shock, Lancet Lond. Engl, vol.392, pp.75-87, 2018.

K. Chang, C. Svabek, C. Vazquez-guillamet, B. Sato, D. Rasche et al., Targeting the programmed cell death 1: programmed cell death ligand 1 pathway reverses T cell exhaustion in patients with sepsis, Crit. Care Lond. Engl, vol.18, p.3, 2014.

K. C. Chang, C. Burnham, S. M. Compton, D. P. Rasche, R. J. Mazuski et al., Blockade of the negative co-stimulatory molecules PD-1 and CTLA-4 improves survival in primary and secondary fungal sepsis, Crit. Care Lond. Engl, vol.17, p.85, 2013.

M. Charlton, P. Adjei, J. Poterucha, N. Zein, B. Moore et al., TT-virus infection in North American blood donors, patients with fulminant hepatic failure, and cryptogenic cirrhosis, Hepatol. Baltim. Md, vol.28, pp.839-842, 1998.

P. Cheng, C. A. Corzo, N. Luetteke, B. Yu, S. Nagaraj et al., Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein, J. Exp. Med, vol.205, pp.2235-2249, 2008.

J. Chung, T. H. Han, J. W. Koo, S. W. Kim, J. K. Seo et al., Small anellovirus infections in Korean children, Emerg. Infect. Dis, vol.13, pp.791-793, 2007.

T. Condamine, J. Mastio, and D. I. Gabrilovich, Transcriptional regulation of myeloidderived suppressor cells, J. Leukoc. Biol, vol.98, pp.913-922, 2015.

C. A. Corzo, T. Condamine, L. Lu, M. J. Cotter, J. Youn et al., HIF-1? regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment, J. Exp. Med, vol.207, pp.2439-2453, 2010.

L. H. Da-costa, N. N. Júnior, C. H. Catalão, T. Sharshar, F. Chrétien et al., Vasopressin Impairment During Sepsis Is Associated with Hypothalamic Intrinsic Apoptotic Pathway and Microglial Activation, Mol. Neurobiol, vol.54, pp.5526-5533, 2017.

C. J. Cummings, T. R. Martin, C. W. Frevert, J. M. Quan, V. A. Wong et al., Expression and function of the chemokine receptors CXCR1 and CXCR2 in sepsis, J. Immunol. Baltim. Md, vol.162, pp.2341-2346, 1950.

T. Daix, E. Guerin, E. Tavernier, E. Mercier, V. Gissot et al., Multicentric Standardized Flow Cytometry Routine Assessment of Patients With Sepsis to Predict Clinical Worsening, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01881116

C. Dan, D. Adriana-ion, S. Spandole-dinu, P. Apostol, T. Mihai et al., Potential implication of genetic polymorphisms and Torque teno virus in sporadic breast cancer, 2013.

P. A. Danai, S. Sinha, M. Moss, M. J. Haber, and G. S. Martin, Seasonal variation in the epidemiology of sepsis, Crit. Care Med, vol.35, pp.410-415, 2007.

I. Davidson and L. M. Shulman, Unraveling the puzzle of human anellovirus infections by comparison with avian infections with the chicken anemia virus, Virus Res, vol.137, pp.1-15, 2008.

C. De-santo, M. Salio, S. H. Masri, L. Y. Lee, .. Dong et al., Invariant NKT cells reduce the immunosuppressive activity of influenza A virus-induced myeloid-derived suppressor cells in mice and humans, J. Clin. Invest, vol.118, pp.4036-4048, 2008.

I. De-vlaminck, K. K. Khush, C. Strehl, B. Kohli, H. Luikart et al., Temporal response of the human virome to immunosuppression and antiviral therapy, Cell, vol.155, pp.1178-1187, 2013.

M. J. Delano, P. O. Scumpia, J. S. Weinstein, D. Coco, S. Nagaraj et al., MyD88-dependent expansion of an immature GR-1(+)CD11b(+) population induces T cell suppression and Th2 polarization in sepsis, J. Exp. Med, vol.204, pp.1463-1474, 2007.

L. Y. Deng, Z. C. Yang, Y. L. Gong, G. T. Huang, S. P. Yin et al., , 2016.

, Zhonghua Shao Shang Za Zhi Zhonghua Shaoshang Zazhi Chin. J. Burns, vol.32, pp.523-528

U. Deotare, G. Al-dawsari, S. Couban, and J. H. Lipton, G-CSF-primed bone marrow as a source of stem cells for allografting: revisiting the concept, Bone Marrow Transplant, vol.50, pp.1150-1156, 2015.

M. Desai, R. Pal, R. Deshmukh, and D. Banker, Replication of TT virus in hepatocyte and leucocyte cell lines, J. Med. Virol, vol.77, pp.136-143, 2005.

J. Deshane, J. W. Zmijewski, R. Luther, A. Gaggar, R. Deshane et al., Free radical-producing myeloid-derived regulatory cells: potent activators and suppressors of lung inflammation and airway hyperresponsiveness, Mucosal Immunol, vol.4, pp.503-518, 2011.

J. S. Deshane, D. T. Redden, M. Zeng, M. L. Spell, J. W. Zmijewski et al., Subsets of airway myeloid-derived regulatory cells distinguish mild asthma from chronic obstructive pulmonary disease, J. Allergy Clin. Immunol, vol.135, pp.413-424, 2015.

C. M. Diaz-montero, J. Finke, and A. J. Montero, Myeloid-derived suppressor cells in cancer: therapeutic, predictive, and prognostic implications, Semin. Oncol, vol.41, pp.174-184, 2014.

O. Draghiciu, H. W. Nijman, B. N. Hoogeboom, T. Meijerhof, and T. Daemen, , 2015.

, Sunitinib depletes myeloid-derived suppressor cells and synergizes with a cancer vaccine to enhance antigen-specific immune responses and tumor eradication

A. M. Drewry, N. Samra, L. P. Skrupky, B. M. Fuller, S. M. Compton et al.,

, Persistent Lymphopenia after Diagnosis of Sepsis Predicts Mortality, Shock Augusta Ga, vol.42, pp.383-391

L. Drujont, L. Carretero-iglesia, L. Bouchet-delbos, G. Beriou, E. Merieau et al., Evaluation of the Therapeutic Potential of Bone Marrow-Derived Myeloid Suppressor Cell (MDSC) Adoptive Transfer in Mouse Models of Autoimmunity and Allograft Rejection, PLoS ONE, vol.9, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-02164512

S. Ebong, D. Call, J. Nemzek, G. Bolgos, D. Newcomb et al., , 1999.

, Immunopathologic alterations in murine models of sepsis of increasing severity, Infect. Immun, vol.67, pp.6603-6610

S. Erensoy, A. A. Sayiner, S. Türko?lu, D. Canatan, U. S. Akarca et al., TT virus infection and genotype distribution in blood donors and a group of patients from Turkey, Infection, vol.30, pp.299-302, 2002.

S. Esposito, G. De-simone, G. Boccia, F. De-caro, and P. Pagliano, Sepsis and septic shock: New definitions, new diagnostic and therapeutic approaches, J. Glob. Antimicrob. Resist, vol.10, pp.204-212, 2017.

S. Fekete, , 1968.

, Presse Med, vol.76, pp.1083-1085

N. Feldmeyer, G. Wabnitz, S. Leicht, C. Luckner-minden, M. Schiller et al., Arginine deficiency leads to impaired cofilin dephosphorylation in activated human T lymphocytes, Int. Immunol, vol.24, pp.303-313, 2012.

K. A. Felmet, M. W. Hall, R. S. Clark, R. Jaffe, and J. A. Carcillo, Prolonged lymphopenia, lymphoid depletion, and hypoprolactinemia in children with nosocomial sepsis and multiple organ failure, J. Immunol. Baltim. Md, vol.174, pp.3765-3772, 1950.

R. L. Ferris, B. Lu, and L. P. Kane, Too much of a good thing? Tim-3 and TCR signaling in T cell exhaustion, J. Immunol. Baltim. Md, pp.1525-1530, 2014.

C. Fleischmann, A. Scherag, N. K. Adhikari, C. S. Hartog, T. Tsaganos et al., and International Forum of Acute Care Trialists, 2016.

, Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations, Am. J. Respir. Crit. Care Med, vol.193, pp.259-272

D. Focosi, L. Macera, M. Pistello, M. , and F. , Torque Teno virus viremia correlates with intensity of maintenance immunosuppression in adult orthotopic liver transplant, J. Infect. Dis, vol.210, pp.667-668, 2014.

D. Focosi, L. Macera, U. Boggi, L. C. Nelli, M. et al., Short-term kinetics of torque teno virus viraemia after induction immunosuppression confirm T lymphocytes as the main replication-competent cells, J. Gen. Virol, vol.96, pp.115-117, 2015.

D. Focosi, G. Antonelli, M. Pistello, M. , and F. , Torquetenovirus: the human virome from bench to bedside, Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis, vol.22, pp.589-593, 2016.

M. Fogli, C. Torti, F. Malacarne, S. Fiorentini, M. Albani et al., Emergence of exhausted B cells in asymptomatic HIV-1-infected patients naïve for HAART is related to reduced immune surveillance, Clin. Dev. Immunol, p.829584, 2012.

J. Forel, L. Chiche, G. Thomas, J. Mancini, C. Farnarier et al., Phenotype and functions of natural killer cells in critically-ill septic patients, PloS One, vol.7, p.50446, 2012.

B. Francois, R. Jeannet, T. Daix, A. H. Walton, M. S. Shotwell et al., Interleukin-7 restores lymphocytes in septic shock: the IRIS-7 randomized clinical trial, JCI Insight, vol.3, 2018.

Z. G. Fridlender, J. Sun, S. Kim, V. Kapoor, G. Cheng et al., Polarization of tumor-associated neutrophil phenotype by TGF-beta, Cancer Cell, vol.16, pp.183-194, 2009.

Z. G. Fridlender, J. Sun, I. Mishalian, S. Singhal, G. Cheng et al., Transcriptomic analysis comparing tumor-associated neutrophils with granulocytic myeloid-derived suppressor cells and normal neutrophils, PloS One, vol.7, 2012.

D. J. Funk, J. E. Parrillo, and A. Kumar, Sepsis and Septic Shock: A History, Crit. Care Clin, vol.25, pp.83-101, 2009.

R. F. Gabitass, N. E. Annels, D. D. Stocken, H. A. Pandha, and G. W. Middleton, , 2011.

, Elevated myeloid-derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13, Cancer Immunol. Immunother. CII, vol.60, pp.1419-1430

D. I. Gabrilovich, Myeloid-Derived Suppressor Cells, Cancer Immunol. Res, vol.5, pp.3-8, 2017.

D. I. Gabrilovich and S. Nagaraj, Myeloid-derived-suppressor cells as regulators of the immune system, Nat. Rev. Immunol, vol.9, pp.162-174, 2009.

D. Gabrilovich, T. Ishida, T. Oyama, S. Ran, V. Kravtsov et al.,

D. I. Gabrilovich, V. Bronte, S. Chen, M. P. Colombo, A. Ochoa et al., The terminology issue for myeloid-derived suppressor cells, Cancer Res, vol.67, pp.425-426, 2007.

D. I. Gabrilovich, S. Ostrand-rosenberg, and V. Bronte, Coordinated regulation of myeloid cells by tumours, Nat. Rev. Immunol, vol.12, pp.253-268, 2012.

L. Gama, E. N. Shirk, J. N. Russell, K. I. Carvalho, M. Li et al., during SIV and HIV infection, J. Leukoc. Biol, vol.91, pp.803-816, 2012.

H. Gerlach, Agents to reduce cytokine storm, 2016.

E. J. Giamarellos-bourboulis, E. Apostolidou, M. Lada, I. Perdios, N. K. Gatselis et al., Kinetics of circulating immunoglobulin M in sepsis: relationship with final outcome, Crit. Care Lond. Engl, vol.17, p.247, 2013.

A. W. Girotti, Mechanisms of lipid peroxidation, J. Free Radic. Biol. Med, vol.1, pp.87-95, 1985.

C. Goh, S. Narayanan, and Y. S. Hahn, Myeloid derived suppressor cells: The Dark Knight or The Joker in viral infections?, Immunol. Rev, vol.255, pp.210-221, 2013.

A. Górski, E. Jo?czyk-matysiak, M. ?usiak-szelachowska, R. Mi?dzybrodzki, B. Weber-d?browska et al., The Potential of Phage Therapy in Sepsis, Front. Immunol, vol.8, 2017.

I. Görzer, M. Haloschan, P. Jaksch, W. Klepetko, and E. Puchhammer-stöckl, , 2014.

, Plasma DNA levels of Torque teno virus and immunosuppression after lung transplantation

, J. Heart Lung Transplant. Off. Publ. Int. Soc. Heart Transplant, vol.33, pp.320-323

Z. Granot and Z. G. Fridlender, Plasticity beyond cancer cells and the "immunosuppressive switch, Cancer Res, vol.75, pp.4441-4445, 2015.

D. Grimaldi, S. Louis, F. Pène, G. Sirgo, C. Rousseau et al., Profound and persistent decrease of circulating dendritic cells is associated with ICU-acquired infection in patients with septic shock, Intensive Care Med, vol.37, pp.1438-1446, 2011.

Q. Guan, S. Moreno, G. Qing, C. R. Weiss, L. Lu et al., The role and potential therapeutic application of myeloid-derived suppressor cells in TNBS-induced colitis, J. Leukoc. Biol, vol.94, pp.803-811, 2013.

E. Guérin, M. Orabona, M. Raquil, B. Giraudeau, R. Bellier et al., Circulating immature granulocytes with Tcell killing functions predict sepsis deterioration*, Crit. Care Med, vol.42, pp.2007-2018, 2014.

C. Guignant, A. Lepape, X. Huang, H. Kherouf, L. Denis et al., Programmed death-1 levels correlate with increased mortality, nosocomial infection and immune dysfunctions in septic shock patients, Crit. Care Lond. Engl, vol.15, p.99, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00698371

O. Guisset, M. Dilhuydy, R. Thiébaut, J. Lefèvre, F. Camou et al., Decrease in circulating dendritic cells predicts fatal outcome in septic shock, Intensive Care Med, vol.33, pp.148-152, 2007.

C. Guo, F. Hu, H. Yi, Z. Feng, C. Li et al., , 2016.

, Myeloid-derived suppressor cells have a proinflammatory role in the pathogenesis of autoimmune arthritis, Ann. Rheum. Dis, vol.75, pp.278-285

L. A. Haile, R. Von-wasielewski, J. Gamrekelashvili, C. Krüger, O. Bachmann et al., Myeloid-derived suppressor cells in inflammatory bowel disease: a new immunoregulatory pathway, Gastroenterology, vol.135, pp.1-5, 2008.

E. M. Hanson, V. K. Clements, P. Sinha, D. Ilkovitch, and S. Ostrand-rosenberg, , 2009.

, Myeloid-derived suppressor cells down-regulate L-selectin expression on CD4+ and CD8+ T cells, J. Immunol. Baltim. Md, vol.183, pp.937-944, 1950.

X. He, X. Liao, Z. Xie, L. Han, X. Yang et al., Pulmonary Infection Is an Independent Risk Factor for Long-Term Mortality and Quality of Life for Sepsis Patients, BioMed Res. Int, 2016.

K. Hestdal, F. W. Ruscetti, J. N. Ihle, S. E. Jacobsen, C. M. Dubois et al., Characterization and regulation of RB6-8C5 antigen expression on murine bone marrow cells, J. Immunol, vol.147, pp.22-28, 1991.

S. L. Highfill, P. C. Rodriguez, Q. Zhou, C. A. Goetz, B. H. Koehn et al., Bone marrow myeloidderived suppressor cells (MDSCs) inhibit graft-versus-host disease (GVHD) via an arginase-1-dependent mechanism that is up-regulated by interleukin-13, Blood, vol.116, pp.5738-5747, 2010.

B. Hoechst, L. A. Ormandy, M. Ballmaier, F. Lehner, C. Krüger et al., A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells, Gastroenterology, vol.135, pp.234-243, 2008.

B. Hoechst, T. Voigtlaender, L. Ormandy, J. Gamrekelashvili, F. Zhao et al., Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor, Hepatol. Baltim. Md, vol.50, pp.799-807, 2009.

B. Hoechst, J. Gamrekelashvili, M. P. Manns, T. F. Greten, and F. Korangy, Plasticity of human Th17 cells and iTregs is orchestrated by different subsets of myeloid cells, Blood, vol.117, pp.6532-6541, 2011.

J. L. Hood, R. S. San, and S. A. Wickline, Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis, Cancer Res, vol.71, pp.3792-3801, 2011.

R. S. Hotchkiss and L. L. Moldawer, Parallels between cancer and infectious disease, N. Engl. J. Med, vol.371, pp.380-383, 2014.

R. S. Hotchkiss, K. W. Tinsley, P. E. Swanson, K. C. Chang, J. P. Cobb et al., Prevention of lymphocyte cell death in sepsis improves survival in mice, Proc. Natl. Acad. Sci. U. S. A, vol.96, pp.14541-14546, 1999.

R. S. Hotchkiss, P. E. Swanson, B. D. Freeman, K. W. Tinsley, J. P. Cobb et al., Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction, Crit. Care Med, vol.27, pp.1230-1251, 1999.

R. S. Hotchkiss, R. E. Schmieg, P. E. Swanson, B. D. Freeman, K. W. Tinsley et al., Rapid onset of intestinal epithelial and lymphocyte apoptotic cell death in patients with trauma and shock, Crit. Care Med, vol.28, pp.3207-3217, 2000.

R. S. Hotchkiss, K. W. Tinsley, P. E. Swanson, R. E. Schmieg, J. J. Hui et al., Sepsis-induced apoptosis causes progressive profound depletion of B and CD4+ T lymphocytes in humans, J. Immunol. Baltim. Md, vol.166, pp.6952-6963, 1950.

R. S. Hotchkiss, G. Monneret, and D. Payen, Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy, Nat. Rev. Immunol, vol.13, pp.862-874, 2013.

R. S. Hotchkiss, L. L. Moldawer, S. M. Opal, K. Reinhart, I. R. Turnbull et al.,

, Sepsis and septic shock, Nat. Rev. Dis. Primer, vol.2, p.16045

M. D. Howell, D. Talmor, P. Schuetz, S. Hunziker, A. E. Jones et al., Proof of principle: the predisposition, infection, response, organ failure sepsis staging system, Crit. Care Med, vol.39, pp.322-327, 2011.

A. Huang, B. Zhang, B. Wang, F. Zhang, K. Fan et al., Increased CD14(+)HLA-DR (-/low) myeloid-derived suppressor cells correlate with extrathoracic metastasis and poor response to chemotherapy in non-small cell lung cancer patients, Cancer Immunol. Immunother. CII, vol.62, pp.1439-1451, 2013.

A. Huang, B. Zhang, W. Yan, B. Wang, H. Wei et al.,

, Myeloid-derived suppressor cells regulate immune response in patients with chronic hepatitis B virus infection through PD-1-induced IL-10, J. Immunol. Baltim. Md, pp.5461-5469, 1950193.

L. Y. Huang, T. Oystein-jonassen, O. Hungnes, and B. Grinde, High prevalence of TT virus-related DNA (90%) and diverse viral genotypes in Norwegian blood donors, J. Med. Virol, vol.64, pp.381-386, 2001.

X. Huang, Y. Chen, C. Chung, Z. Yuan, S. F. Monaghan et al.,

, J. Immunol. Baltim. Md, pp.1091-1099, 1950192.

Y. H. Huang, J. C. Wu, T. Y. Chiang, Y. J. Chan, T. I. Huo et al., Detection and viral nucleotide sequence analysis of transfusion-transmitted virus infection in acute fulminant and non-fulminant hepatitis, J. Viral Hepat, vol.7, pp.56-63, 2000.

W. J. Hubbard, M. Choudhry, M. G. Schwacha, J. D. Kerby, L. W. Rue et al., Cecal ligation and puncture, Shock Augusta Ga, vol.24, pp.52-57, 2005.

E. Hui, J. Cheung, J. Zhu, X. Su, M. J. Taylor et al., T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition, Science, vol.355, pp.1428-1433, 2017.

S. Inoue, J. Unsinger, C. G. Davis, J. T. Muenzer, T. A. Ferguson et al., IL-15 prevents apoptosis, reverses innate and adaptive immune dysfunction, and improves survival in sepsis, J. Immunol. Baltim. Md, vol.184, pp.1401-1409, 1950.

Y. Itoh, M. Takahashi, M. Fukuda, T. Shibayama, T. Ishikawa et al., Visualization of TT Virus Particles Recovered from the Sera and Feces of Infected Humans, Biochem. Biophys. Res. Commun, vol.279, pp.718-724, 2000.

T. Iwata, Y. Kondo, O. Kimura, T. Morosawa, Y. Fujisaka et al., PD-L1+MDSCs are increased in HCC patients and induced by soluble factor in the tumor microenvironment, Sci. Rep, vol.6, p.39296, 2016.

L. C. Jacobsen, K. Theilgaard-mönch, E. I. Christensen, and N. Borregaard, , 2007.

, Arginase 1 is expressed in myelocytes/metamyelocytes and localized in gelatinase granules of human neutrophils, Blood, vol.109, pp.3084-3087

H. Janols, C. Bergenfelz, R. Allaoui, A. Larsson, L. Rydén et al., A high frequency of MDSCs in sepsis patients, with the granulocytic subtype dominating in gram-positive cases, J. Leukoc. Biol, vol.96, pp.685-693, 2014.

Z. Jiao, S. Hua, W. Wang, H. Wang, J. Gao et al., Increased circulating myeloid-derived suppressor cells correlated negatively with Th17 cells in patients with rheumatoid arthritis, Scand. J. Rheumatol, vol.42, pp.85-90, 2013.

E. De-jong, J. A. Van-oers, A. Beishuizen, P. Vos, W. J. Vermeijden et al., Efficacy and safety of procalcitonin guidance in reducing the duration of antibiotic treatment in critically ill patients: a randomised, controlled, open-label trial, Lancet Infect. Dis, vol.16, pp.819-827, 2016.

Y. Joo, S. Lee, S. Lee, W. Lee, S. Lee et al., Granulocyte colony-stimulating factor-induced immature myeloid cells inhibit acute graft-versus-host disease lethality through an indoleamine dioxygenase-independent mechanism, Immunology, vol.128, pp.632-640, 2009.

I. Jorgensen, M. Rayamajhi, and E. A. Miao, Programmed cell death as a defence against infection, Nat. Rev. Immunol, vol.17, pp.151-164, 2017.

A. Kadayifci, C. Guney, A. Uygun, A. Kubar, S. Bagci et al., Similar frequency of TT virus infection in patients with liver enzyme elevations and healthy subjects, Int. J. Clin. Pract, vol.55, pp.434-436, 2001.

K. Kaukonen, M. Bailey, D. Pilcher, D. J. Cooper, and R. Bellomo, Systemic Inflammatory Response Syndrome Criteria in Defining Severe Sepsis, N. Engl. J. Med, vol.372, pp.1629-1638, 2015.

K. M. Kelly-scumpia, P. O. Scumpia, J. S. Weinstein, M. J. Delano, A. G. Cuenca et al., B cells enhance early innate immune responses during bacterial sepsis, J. Exp. Med, vol.208, pp.1673-1682, 2011.

C. H. Kim, Homeostatic and pathogenic extramedullary hematopoiesis, J. Blood Med, vol.1, pp.13-19, 2010.

R. P. Kincaid, J. M. Burke, J. C. Cox, E. De-villiers, and C. S. Sullivan, A human torque teno virus encodes a microRNA that inhibits interferon signaling, PLoS Pathog, vol.9, 2013.

M. Klemke, G. H. Wabnitz, F. Funke, B. Funk, H. Kirchgessner et al., , 2008.

J. K. Knaul, S. Jörg, D. Oberbeck-mueller, E. Heinemann, L. Scheuermann et al., Lung-Residing Myeloid-derived Suppressors Display Dual Functionality in Murine Pulmonary Tuberculosis, Am. J. Respir. Crit. Care Med, vol.190, pp.1053-1066, 2014.

J. S. Ko, A. H. Zea, B. I. Rini, J. L. Ireland, P. Elson et al., Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients, Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res, vol.15, pp.2148-2157, 2009.

M. Kujawski, M. Kortylewski, H. Lee, A. Herrmann, H. Kay et al., Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice, J. Clin. Invest, vol.118, pp.3367-3377, 2008.

D. Kulifaj, B. Durgueil-lariviere, F. Meynier, E. Munteanu, N. Pichon et al., Development of a standardized real time PCR for Torque teno viruses (TTV) viral load detection and quantification: A new tool for immune monitoring, J. Clin. Virol. Off. Publ. Pan Am. Soc. Clin. Virol, vol.105, pp.118-127, 2018.

S. Kusmartsev and D. I. Gabrilovich, Effect of tumor-derived cytokines and growth factors on differentiation and immune suppressive features of myeloid cells in cancer, Cancer Metastasis Rev, vol.25, pp.323-331, 2006.

S. Kusmartsev, F. Cheng, B. Yu, Y. Nefedova, E. Sotomayor et al., All-trans-retinoic acid eliminates immature myeloid cells from tumor-bearing mice and improves the effect of vaccination, Cancer Res, vol.63, pp.4441-4449, 2003.

S. Kusmartsev, S. Nagaraj, and D. I. Gabrilovich, Tumor associated CD8+ T-cell tolerance induced by bone marrow derived immature myeloid cells, J. Immunol. Baltim. Md, vol.175, pp.4583-4592, 1950.

J. D. Lambeth, NOX enzymes and the biology of reactive oxygen, Nat. Rev. Immunol, vol.4, pp.181-189, 2004.

C. Landelle, A. Lepape, N. Voirin, E. Tognet, F. Venet et al., Low monocyte human leukocyte antigen-DR is independently associated with nosocomial infections after septic shock, Intensive Care Med, vol.36, pp.1859-1866, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00539253

E. J. Lappat and M. Cawein, A STUDY OF THE LEUKEMOID RESPONSE TO TRANSPLANTABLE A-280 TUMOR IN MICE, Cancer Res, vol.24, pp.302-311, 1964.

L. Tulzo, Y. Pangault, C. Gacouin, A. Guilloux, V. Tribut et al., Early circulating lymphocyte apoptosis in human septic shock is associated with poor outcome, Shock Augusta Ga, vol.18, pp.487-494, 2002.

M. Y. Lee, R. , and C. , Depletion of lymphocyte subpopulations in primary and secondary lymphoid organs of mice by a transplanted granulocytosis-inducing mammary carcinoma, Cancer Res, vol.42, pp.1255-1260, 1982.

E. J. Lefkowitz, D. M. Dempsey, R. C. Hendrickson, R. J. Orton, S. G. Siddell et al., Virus taxonomy: the database of the International Committee on Taxonomy of Viruses (ICTV), Nucleic Acids Res, vol.46, pp.708-717, 2018.

J. A. Lekstrom-himes and J. I. Gallin, Immunodeficiency diseases caused by defects in phagocytes, N. Engl. J. Med, vol.343, pp.1703-1714, 2000.

M. Levi, M. Schultz, and T. Van-der-poll, Sepsis and thrombosis, Semin. Thromb. Hemost, vol.39, pp.559-566, 2013.

M. M. Levy, M. P. Fink, J. C. Marshall, E. Abraham, D. Angus et al., 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference, vol.29, pp.530-538, 2003.

H. Li, Y. Han, Q. Guo, M. Zhang, and X. Cao, Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1, J. Immunol. Baltim. Md, vol.182, pp.240-249, 1950.

L. Li, T. Zhang, W. Diao, F. Jin, L. Shi et al., Role of Myeloid-Derived Suppressor Cells in Glucocorticoid-Mediated Amelioration of FSGS, J. Am. Soc. Nephrol. JASN, vol.26, pp.2183-2197, 2015.

E. Limagne, R. Euvrard, M. Thibaudin, C. Rébé, V. Derangère et al., Accumulation of MDSC and Th17 Cells in Patients with Metastatic Colorectal Cancer Predicts the Efficacy of a FOLFOX-Bevacizumab Drug Treatment Regimen, Cancer Res, vol.76, pp.5241-5252, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01413261

T. J. Loftus, A. M. Mohr, and L. L. Moldawer, Dysregulated myelopoiesis and hematopoietic function following acute physiologic insult, Curr. Opin. Hematol, vol.25, pp.37-43, 2018.

J. M. López-alcorocho, L. F. Mariscal, S. De-lucas, E. Rodríguez-iñigo, M. Casqueiro et al., Presence of TTV DNA in serum, liver and peripheral blood mononuclear cells from patients with chronic hepatitis, J. Viral Hepat, vol.7, pp.440-447, 2000.

L. Luo, D. Li, Y. Wang, K. Wang, L. Gao et al., Tim3/galectin-9 alleviates the inflammation of TAO patients via suppressing Akt/NF-kB signaling pathway, Biochem. Biophys. Res. Commun, vol.491, pp.966-972, 2017.

A. Luyckx, E. Schouppe, O. Rutgeerts, C. Lenaerts, S. Fevery et al., G-CSF stem cell mobilization in human donors induces polymorphonuclear and mononuclear myeloid-derived suppressor cells, Clin. Immunol, vol.143, pp.83-87, 2012.

M. Lv, X. Zhao, Y. Hu, Y. Chang, X. Zhao et al., Monocytic and promyelocytic myeloid-derived suppressor cells may contribute to G-CSF-induced immune tolerance in haplo-identical allogeneic hematopoietic stem cell transplantation, Am. J. Hematol, vol.90, pp.9-16, 2015.

F. Maggi and M. Bendinelli, Immunobiology of the Torque teno viruses and other anelloviruses, Curr. Top. Microbiol. Immunol, vol.331, pp.65-90, 2009.

F. Maggi, M. Pifferi, C. Fornai, E. Andreoli, E. Tempestini et al., TT virus in the nasal secretions of children with acute respiratory diseases: relations to viremia and disease severity, J. Virol, vol.77, pp.2418-2425, 2003.

F. Maggi, D. Focosi, M. Albani, L. Lanini, M. L. Vatteroni et al., Role of Hematopoietic Cells in the Maintenance of Chronic Human Torquetenovirus Plasma Viremia, J. Virol, vol.84, pp.6891-6893, 2010.

F. Maggi, M. Pifferi, A. Michelucci, M. Albani, S. Sbranti et al., Torque teno virus viremia load size in patients with selected congenital defects of innate immunity, Clin. Vaccine Immunol. CVI, vol.18, pp.692-694, 2011.

K. J. Malmberg, V. Arulampalam, F. Ichihara, M. Petersson, K. Seki et al., Inhibition of activated/memory (CD45RO(+)) T cells by oxidative stress associated with block of NF-kappaB activation, J. Immunol. Baltim. Md, vol.167, pp.2595-2601, 1950.

I. Marigo, E. Bosio, S. Solito, C. Mesa, A. Fernandez et al., Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor, Immunity, vol.32, pp.790-802, 2010.

J. C. Marshall, Why have clinical trials in sepsis failed?, Trends Mol. Med, vol.20, pp.195-203, 2014.

G. S. Martin, D. M. Mannino, S. Eaton, and M. Moss, The epidemiology of sepsis in the United States from, N. Engl. J. Med, vol.348, pp.1546-1554, 1979.

G. S. Martin, D. M. Mannino, and M. Moss, The effect of age on the development and outcome of adult sepsis, Crit. Care Med, vol.34, pp.15-21, 2006.

N. M. Martínez, F. García, F. García, M. Alvarez, M. C. Bernal et al., TT virus DNA in serum, peripheral blood mononuclear cells and semen of patients infected by HIV, AIDS Lond. Engl, vol.14, pp.1464-1466, 2000.

L. Martínez-guinó, M. Ballester, J. Segalés, and T. Kekarainen, Expression profile and subcellular localization of Torque teno sus virus proteins, J. Gen. Virol, vol.92, pp.2446-2457, 2011.

D. Marvel and D. I. Gabrilovich, Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected, J. Clin. Invest, vol.125, pp.3356-3364, 2015.

B. Mathias, A. L. Delmas, T. Ozrazgat-baslanti, E. L. Vanzant, B. E. Szpila et al., Human Myeloid-derived Suppressor Cells are Associated With Chronic Immune Suppression After Severe Sepsis/Septic Shock, Ann. Surg, vol.265, pp.827-834, 2017.

H. Matsubara, K. Michitaka, N. Horiike, T. Kihana, M. Yano et al., Existence of TT virus DNA and TTV-like mini virus DNA in infant cord blood: mother-toneonatal transmission, Hepatol. Res, vol.21, pp.280-287, 2001.

C. Meisel, J. C. Schefold, R. Pschowski, T. Baumann, K. Hetzger et al., Granulocyte-macrophage colony-stimulating factor to reverse sepsis-associated immunosuppression: a double-blind, randomized, placebo-controlled multicenter trial, Am. J. Respir. Crit. Care Med, vol.180, pp.640-648, 2009.

M. Meisner, Update on procalcitonin measurements, Ann. Lab. Med, vol.34, pp.263-273, 2014.

J. D. Mezrich, J. H. Fechner, X. Zhang, B. P. Johnson, W. J. Burlingham et al., An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells, J. Immunol. Baltim. Md, vol.185, pp.3190-3198, 1950.

F. Miglietta, M. L. Faneschi, G. Lobreglio, C. Palumbo, A. Rizzo et al., Procalcitonin, C-reactive protein and serum lactate dehydrogenase in the diagnosis of bacterial sepsis, SIRS and systemic candidiasis, Infez. Med. Riv. Period. Eziologia Epidemiol. Diagn. Clin. E Ter. Delle Patol. Infett, vol.23, pp.230-237, 2015.

C. R. Millrud, C. Bergenfelz, and K. Leandersson, On the origin of myeloid-derived suppressor cells, Oncotarget, vol.8, pp.3649-3665, 2016.

A. Mohr, J. Polz, E. M. Martin, S. Griessl, A. Kammler et al., Sepsis leads to a reduced antigen-specific primary antibody response, Eur. J. Immunol, vol.42, pp.341-352, 2012.

B. Molon, S. Ugel, F. Del-pozzo, C. Soldani, S. Zilio et al., Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells, J. Exp. Med, vol.208, pp.1949-1962, 2011.

G. Monneret, A. Debard, F. Venet, J. Bohe, O. Hequet et al., Marked elevation of human circulating CD4+CD25+ regulatory T cells in sepsisinduced immunoparalysis, Crit. Care Med, vol.31, pp.2068-2071, 2003.

G. Monneret, M. Finck, F. Venet, A. Debard, J. Bohé et al., The anti-inflammatory response dominates after septic shock: association of low monocyte HLA-DR expression and high interleukin-10 concentration, Immunol. Lett, vol.95, pp.193-198, 2004.

M. Motallebnezhad, F. Jadidi-niaragh, E. S. Qamsari, S. Bagheri, T. Gharibi et al., The immunobiology of myeloid-derived suppressor cells in cancer, Tumour Biol. J. Int. Soc. Oncodevelopmental Biol. Med, vol.37, pp.1387-1406, 2016.

D. Mougiakakos, R. Jitschin, L. Von-bahr, I. Poschke, R. Gary et al., Immunosuppressive CD14+HLA-DRlow/neg IDO+ myeloid cells in patients following allogeneic hematopoietic stem cell transplantation, Leukemia, vol.27, pp.377-388, 2013.

K. Movahedi, M. Guilliams, J. Van-den-bossche, R. Van-den-bergh, C. Gysemans et al., Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cellsuppressive activity, Blood, vol.111, pp.4233-4244, 2008.

R. S. Munford and J. Pugin, Normal responses to injury prevent systemic inflammation and can be immunosuppressive, Am. J. Respir. Crit. Care Med, vol.163, pp.316-321, 2001.

Y. Narita, D. Wakita, T. Ohkur, K. Chamoto, and T. Nishimura, Potential differentiation of tumor bearing mouse CD11b+Gr-1+ immature myeloid cells into both suppressor macrophages and immunostimulatory dendritic cells, Biomed. Res. Tokyo Jpn, vol.30, pp.7-15, 2009.

K. Németh, A. Leelahavanichkul, P. S. Yuen, B. Mayer, A. Parmelee et al., Bone marrow stromal cells attenuate sepsis via prostaglandin E2-dependent reprogramming of host macrophages to increase their interleukin-10 production, Nat. Med, vol.15, pp.42-49, 2009.

J. A. Nemzek, K. M. Hugunin, and M. R. Opp, Modeling Sepsis in the Laboratory: Merging Sound Science with Animal Well-Being, Comp. Med, vol.58, pp.120-128, 2008.

J. S. Nielsen and K. M. Mcnagny, Novel functions of the CD34 family, J. Cell Sci, vol.121, pp.3683-3692, 2008.

M. Ninomiya, T. Nishizawa, M. Takahashi, F. R. Lorenzo, T. Shimosegawa et al., Identification and genomic characterization of a novel human torque teno virus of 3.2 kb, J. Gen. Virol, vol.88, pp.1939-1944, 2007.

T. Nishizawa, H. Okamoto, K. Konishi, H. Yoshizawa, Y. Miyakawa et al.,

, A novel DNA virus (TTV) associated with elevated transaminase levels in posttransfusion hepatitis of unknown etiology, Biochem. Biophys. Res. Commun, vol.241, pp.92-97

A. Oberholzer, C. Oberholzer, and L. L. Moldawer, Interleukin-10: a complex role in the pathogenesis of sepsis syndromes and its potential as an anti-inflammatory drug, Crit. Care Med, vol.30, pp.58-63, 2002.

N. Obermajer, R. Muthuswamy, J. Lesnock, R. P. Edwards, and P. Kalinski, , 2011.

, Positive feedback between PGE2 and COX2 redirects the differentiation of human dendritic cells toward stable myeloid-derived suppressor cells, Blood, vol.118, pp.5498-5505

H. Okamoto, T. Nishizawa, N. Kato, M. Ukita, H. Ikeda et al., Molecular cloning and characterization of a novel DNA virus, 1998.

H. Okamoto, T. Nishizawa, A. Tawara, M. Takahashi, J. Kishimoto et al., TT virus mRNAs detected in the bone marrow cells from an infected individual, Biochem. Biophys. Res. Commun, vol.279, pp.700-707, 2000.

H. Okamoto, M. Ukita, T. Nishizawa, J. Kishimoto, Y. Hoshi et al., Circular double-stranded forms of TT virus DNA in the liver, J. Virol, vol.74, pp.5161-5167, 2000.

H. Okamoto, T. Nishizawa, M. Takahashi, S. Asabe, F. Tsuda et al., , 2001.

, Heterogeneous Distribution of TT Virus of Distinct Genotypes in Multiple Tissues from Infected Humans, Virology, vol.288, pp.358-368

A. Okamura, M. Yoshioka, H. Kikuta, M. Kubota, X. Ma et al., Detection of TT virus sequences in children with liver disease of unknown etiology, J. Med. Virol, vol.62, pp.104-108, 2000.

S. M. Opal, C. J. Fisher, J. F. Dhainaut, J. L. Vincent, R. Brase et al., Confirmatory interleukin-1 receptor antagonist trial in severe sepsis: a phase III, randomized, double-blind, placebo-controlled, multicenter trial. The Interleukin-1 Receptor Antagonist Sepsis Investigator Group, Crit. Care Med, vol.25, pp.1115-1124, 1997.

A. Oseroff, S. Okada, and S. Strober, Natural suppressor (NS) cells found in the spleen of neonatal mice and adult mice given total lymphoid irradiation (TLI) express the null surface phenotype, J. Immunol. Baltim. Md, vol.132, pp.101-110, 1950.

M. Ost, A. Singh, A. Peschel, R. Mehling, N. Rieber et al., Myeloid-Derived Suppressor Cells in Bacterial Infections, Front. Cell. Infect. Microbiol, vol.6, 2016.

A. Page-mccaw, A. J. Ewald, and Z. Werb, Matrix metalloproteinases and the regulation of tissue remodelling, Nat. Rev. Mol. Cell Biol, vol.8, pp.221-233, 2007.

P. Pan, G. Ma, K. J. Weber, J. Ozao-choy, G. Wang et al., Immune stimulatory receptor CD40 is required for T-cell suppression and T regulatory cell activation mediated by myeloid-derived suppressor cells in cancer, Cancer Res, vol.70, pp.99-108, 2010.

A. D. Panopoulos and S. S. Watowich, GRANULOCYTE COLONY-STIMULATING FACTOR: MOLECULAR MECHANISMS OF ACTION DURING STEADY STATE AND 'EMERGENCY' HEMATOPOIESIS, vol.42, pp.277-288, 2008.

A. C. Patera, A. M. Drewry, K. Chang, E. R. Beiter, D. Osborne et al., , 2016.

, Frontline Science: Defects in immune function in patients with sepsis are associated with PD-1 or PD-L1 expression and can be restored by antibodies targeting PD-1 or PD-L1, J. Leukoc. Biol, vol.100, pp.1239-1254

N. K. Patil, J. K. Bohannon, and E. R. Sherwood, Immunotherapy: A Promising Approach to Reverse Sepsis-Induced Immunosuppression, Pharmacol. Res, vol.111, pp.688-702, 2016.

O. M. Pena, J. Pistolic, D. Raj, C. D. Fjell, and R. E. Hancock, , 2011.

, J. Immunol. Baltim. Md, vol.186, pp.7243-7254, 1950.

D. Peng, T. Tanikawa, W. Li, L. Zhao, L. Vatan et al., Myeloid-Derived Suppressor Cells Endow Stem-like Qualities to Breast Cancer Cells through IL6/STAT3 and NO/NOTCH Cross-talk Signaling, Cancer Res, vol.76, pp.3156-3165, 2016.

P. Piorry, M. Piorry on Exploration of the Thoracic and Abdominal Organs, by Means of Percussion, Medico-Chir. Rev, vol.20, pp.337-348, 1834.

M. Pifferi, F. Maggi, E. Andreoli, L. Lanini, E. D. Marco et al., Associations between nasal torquetenovirus load and spirometric indices in children with asthma, J. Infect. Dis, vol.192, pp.1141-1148, 2005.

M. Pifferi, F. Maggi, D. Caramella, E. De-marco, E. Andreoli et al., High torquetenovirus loads are correlated with bronchiectasis and peripheral airflow limitation in children, Pediatr. Infect. Dis. J, vol.25, pp.804-808, 2006.

J. Pillay, T. Tak, V. M. Kamp, and L. Koenderman, Immune suppression by neutrophils and granulocytic myeloid-derived suppressor cells: similarities and differences, Cell. Mol. Life Sci. CMLS, vol.70, pp.3813-3827, 2013.

H. Poehlmann, J. C. Schefold, H. Zuckermann-becker, H. Volk, and C. Meisel, Phenotype changes and impaired function of dendritic cell subsets in patients with sepsis: a prospective observational analysis, Crit. Care Lond. Engl, vol.13, p.119, 2009.

C. Porta, M. Rimoldi, G. Raes, L. Brys, P. Ghezzi et al., Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor kappaB, Proc. Natl. Acad. Sci. U. S. A, vol.106, pp.14978-14983, 2009.

I. Poschke and R. Kiessling, On the armament and appearances of human myeloidderived suppressor cells, Clin. Immunol. Orlando Fla, vol.144, pp.250-268, 2012.

I. Poschke, D. Mougiakakos, J. Hansson, G. V. Masucci, and R. Kiessling, , 2010.

, Immature immunosuppressive CD14+HLA-DR-/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign, Cancer Res, vol.70, pp.4335-4345

V. Prima, L. N. Kaliberova, S. Kaliberov, D. T. Curiel, and S. Kusmartsev, , 2017.

, COX2/mPGES1/PGE2 pathway regulates PD-L1 expression in tumor-associated macrophages and myeloid-derived suppressor cells, Proc. Natl. Acad. Sci. U. S. A, vol.114, pp.1117-1122

A. Przerwa, M. Zimecki, K. ?wita?a-jele?, K. D?browska, E. Krawczyk et al., Effects of bacteriophages on free radical production and phagocytic functions, Med. Microbiol. Immunol. (Berl.), vol.195, pp.143-150, 2006.

A. Qin, W. Cai, T. Pan, K. Wu, Q. Yang et al., Expansion of monocytic myeloid-derived suppressor cells dampens T cell function in HIV-1-seropositive individuals, J. Virol, vol.87, pp.1477-1490, 2013.

P. Qiu, X. Cui, A. Barochia, Y. Li, C. Natanson et al., The evolving experience with therapeutic TNF inhibition in sepsis: considering the potential influence of risk of death, Expert Opin. Investig. Drugs, vol.20, pp.1555-1564, 2011.

E. P. Raith, A. A. Udy, M. Bailey, S. Mcgloughlin, C. Macisaac et al., Prognostic Accuracy of the SOFA Score, SIRS Criteria, and qSOFA Score for In-Hospital Mortality Among Adults With Suspected Infection Admitted to the Intensive Care Unit, Intensive Care Society (ANZICS) Centre for Outcomes and Resource Evaluation, vol.317, pp.290-300, 2017.

K. Reinhart, R. Daniels, N. Kissoon, F. R. Machado, R. D. Schachter et al., , 2017.

, Recognizing Sepsis as a Global Health Priority -A WHO Resolution, N. Engl. J. Med, vol.377, pp.414-417

D. G. Remick, Pathophysiology of Sepsis, Am. J. Pathol, vol.170, pp.1435-1444, 2007.

D. G. Remick, D. E. Newcomb, G. L. Bolgos, and D. R. Call, Comparison of the mortality and inflammatory response of two models of sepsis: lipopolysaccharide vs. cecal ligation and puncture, Shock Augusta Ga, vol.13, pp.110-116, 2000.

A. Rhodes, L. E. Evans, W. Alhazzani, M. M. Levy, M. Antonelli et al., Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock, Intensive Care Med, vol.43, pp.304-377, 2016.

N. Rieber, A. Singh, H. Öz, M. Carevic, M. Bouzani et al., Pathogenic fungi regulate immunity by inducing neutrophilic myeloid-derived suppressor cells, Cell Host Microbe, vol.17, pp.507-514, 2015.

D. Rittirsch, L. M. Hoesel, and P. A. Ward, The disconnect between animal models of sepsis and human sepsis, J. Leukoc. Biol, vol.81, pp.137-143, 2007.

D. Rittirsch, M. S. Huber-lang, M. A. Flierl, and P. A. Ward, Immunodesign of experimental sepsis by cecal ligation and puncture, Nat. Protoc, vol.4, pp.31-36, 2009.

P. Rocheteau, L. Chatre, D. Briand, M. Mebarki, G. Jouvion et al., Sepsis induces long-term metabolic and mitochondrial muscle stem cell dysfunction amenable by mesenchymal stem cell therapy, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01246546

, Nat. Commun, vol.6, p.10145

P. C. Rodríguez and A. C. Ochoa, Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives, Immunol. Rev, vol.222, pp.180-191, 2008.

P. C. Rodriguez, A. H. Zea, K. S. Culotta, J. Zabaleta, J. B. Ochoa et al., Regulation of T Cell Receptor CD3? Chain Expression byl-Arginine, J. Biol. Chem, vol.277, pp.21123-21129, 2002.

P. C. Rodriguez, D. G. Quiceno, and A. C. Ochoa, L-arginine availability regulates Tlymphocyte cell-cycle progression, Blood, vol.109, pp.1568-1573, 2007.

R. K. Root, R. F. Lodato, W. Patrick, J. F. Cade, N. Fotheringham et al., Multicenter, double-blind, placebo-controlled study of the use of filgrastim in patients hospitalized with pneumonia and severe sepsis, Crit. Care Med, vol.31, pp.367-373, 2003.

R. S. Ross, S. Viazov, V. Runde, U. W. Schaefer, and M. Roggendorf, Detection of TT virus DNA in specimens other than blood, J. Clin. Virol. Off. Publ. Pan Am. Soc. Clin. Virol, vol.13, pp.181-184, 1999.

R. C. Russo, C. C. Garcia, M. M. Teixeira, and F. A. Amaral, The CXCL8/IL-8 chemokine family and its receptors in inflammatory diseases, Expert Rev. Clin. Immunol, vol.10, pp.593-619, 2014.

E. Safarzadeh, M. Orangi, H. Mohammadi, F. Babaie, and B. Baradaran, Myeloidderived suppressor cells: Important contributors to tumor progression and metastasis, J. Cell, 2017.

A. Sakula, Pierre Adolphe Piorry (1794-1879): pioneer of percussion and pleximetry, Thorax, vol.34, pp.575-581, 1979.

L. E. Sander, S. D. Sackett, U. Dierssen, N. Beraza, R. P. Linke et al., Hepatic acute-phase proteins control innate immune responses during infection by promoting myeloid-derived suppressor cell function, J. Exp. Med, vol.207, pp.1453-1464, 2010.

M. Schiemann, E. Puchhammer-stöckl, F. Eskandary, P. Kohlbeck, S. Rasoul-rockenschaub et al., , 2017.

, Torque Teno Virus Load-Inverse Association With Antibody-Mediated Rejection After Kidney Transplantation, Transplantation, vol.101, pp.360-367

M. J. Schultz, M. W. Dunser, A. M. Dondorp, N. K. Adhikari, S. Iyer et al., Current challenges in the management of sepsis in ICUs in resource-poor settings and suggestions for the future, Intensive Care Med, vol.43, pp.612-624, 2017.

S. Scrimini, J. Pons, A. Agustí, J. B. Soriano, B. G. Cosio et al., Differential effects of smoking and COPD upon circulating myeloid derived suppressor cells, Respir. Med, vol.107, pp.1895-1903, 2013.

S. Sendo, J. Saegusa, T. Okano, S. Takahashi, K. Akashi et al., , 2017.

, CD11b+Gr-1dim Tolerogenic Dendritic Cell-Like Cells Are Expanded in Interstitial Lung Disease in SKG Mice, Arthritis Rheumatol. Hoboken NJ, vol.69, pp.2314-2327

A. Sevko, T. Michels, M. Vrohlings, L. Umansky, P. Beckhove et al., Antitumor effect of paclitaxel is mediated by inhibition of myeloid-derived suppressor cells and chronic inflammation in the spontaneous melanoma model, J. Immunol. Baltim. Md, pp.2464-2471, 2013.

C. W. Seymour, V. X. Liu, T. J. Iwashyna, F. M. Brunkhorst, T. D. Rea et al., Assessment of Clinical Criteria for Sepsis, JAMA, vol.315, pp.762-774, 2016.

D. R. Sharda, S. Yu, M. Ray, M. L. Squadrito, M. De-palma et al., Regulation of macrophage arginase expression and tumor growth by the Ron receptor tyrosine kinase, J. Immunol. Baltim. Md, vol.187, pp.2181-2192, 1950.

T. Shibayama, G. Masuda, A. Ajisawa, M. Takahashi, T. Nishizawa et al., Inverse relationship between the titre of TT virus DNA and the CD4 cell count in patients infected with HIV, AIDS Lond. Engl, vol.15, pp.563-570, 2001.

H. Shime, A. Maruyama, S. Yoshida, Y. Takeda, M. Matsumoto et al., , 2017.

Y. Shindo, J. S. Mcdonough, K. C. Chang, M. Ramachandra, P. G. Sasikumar et al., Anti-PD-L1 peptide improves survival in sepsis, J. Surg. Res, vol.208, pp.33-39, 2017.

F. Simonetta, A. Pradier, S. Masouridi-levrat, C. Van-delden, E. Giostra et al., Torque Teno Virus Load and Acute Rejection After Orthotopic Liver Transplantation, Transplantation, vol.101, pp.219-221, 2017.

M. Singer, C. S. Deutschman, C. W. Seymour, M. Shankar-hari, D. Annane et al., The Third International Consensus Definitions for Sepsis and Septic Shock, vol.315, pp.801-810, 2016.

J. P. Sleeman, The metastatic niche and stromal progression, Cancer Metastasis Rev, vol.31, pp.429-440, 2012.

S. Solito, E. Falisi, C. M. Diaz-montero, A. Doni, L. Pinton et al., A human promyelocytic-like population is responsible for the immune suppression mediated by myeloid-derived suppressor cells, Blood, vol.118, pp.2254-2265, 2011.

F. Souza-fonseca-guimaraes, M. Parlato, F. Philippart, B. Misset, and J. Cavaillon, Toll-like receptors expression and interferon-? production by NK cells in human sepsis, Adib-Conquy, M., and Captain study group, vol.16, p.206, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-00766233

S. Spandole, D. Cimponeriu, L. M. Berca, and G. Mih?escu, Human anelloviruses: an update of molecular, epidemiological and clinical aspects, Arch. Virol, vol.160, pp.893-908, 2015.

S. Spandole-dinu, A. Tudor, L. Mariana-berca, M. Adascalului, O. Niculae et al., Torque teno viruses DNA found in meat products, 2013.

M. K. Srivastava, P. Sinha, V. K. Clements, P. Rodriguez, and S. Ostrand-rosenberg,

, Myeloid-Derived Suppressor Cells Inhibit T-Cell Activation by Depleting Cystine and Cysteine, Cancer Res, vol.70, pp.68-77

S. M. Opal, The Evolution of the Understanding of Sepsis, Infection, and the Host Response: A Brief History, Crit. Care Clin, vol.25, pp.637-663, 2009.

A. Suarez-de-la-rica, F. Gilsanz, and E. Maseda, Epidemiologic trends of sepsis in western countries, Ann. Transl. Med, vol.4, p.325, 2016.

K. Suzuki, S. Inoue, Y. Kametani, Y. Komori, S. Chiba et al., Reduced Immunocompetent B Cells and Increased Secondary Infection in Elderly Patients With Severe Sepsis, Shock Augusta Ga, vol.46, pp.270-278, 2016.

T. M. Therneau and P. M. Grambsch, Modeling Survival Data: Extending the Cox Model | Terry M, 2000.

R. S. Tacke, H. Lee, C. Goh, J. Courtney, S. J. Polyak et al.,

, Myeloid suppressor cells induced by hepatitis C virus suppress T-cell responses through the production of reactive oxygen species, Hepatol. Baltim. Md, vol.55, pp.343-353

K. Takahashi, Y. Iwasa, M. Hijikata, and S. Mishiro, Identification of a new human DNA virus (TTV-like mini virus, TLMV) intermediately related to TT virus and chicken anemia virus, Arch. Virol, vol.145, pp.979-993, 2000.

M. Takahashi, S. Asabe, Y. Gotanda, J. Kishimoto, F. Tsuda et al., TT virus is distributed in various leukocyte subpopulations at distinct levels, with the highest viral load in granulocytes, Biochem. Biophys. Res. Commun, vol.290, pp.242-248, 2002.

I. Takemura-uchiyama, J. Uchiyama, M. Osanai, N. Morimoto, T. Asagiri et al., Experimental phage therapy against lethal lung-derived septicemia caused by Staphylococcus aureus in mice, Microbes Infect, vol.16, pp.512-517, 2014.

J. E. Talmadge and D. I. Gabrilovich, History of myeloid derived suppressor cells (MDSCs), Nat. Rev. Cancer, vol.13, pp.739-752, 2013.

J. E. Talmadge, K. A. Uithoven, B. F. Lenz, C. , and M. , Immunomodulation and therapeutic characterization of thymosin fraction five, Cancer Immunol. Immunother. CII, vol.18, pp.185-194, 1984.

Y. Tanaka, J. Hayashi, I. Ariyama, N. Furusyo, Y. Etoh et al., , 2000.

, Seroepidemiology of TT virus infection and relationship between genotype and liver damage, Dig. Dis. Sci, vol.45, pp.2214-2220

P. Tattevin, D. Monnier, O. Tribut, J. Dulong, N. Bescher et al., Enhanced indoleamine 2,3-dioxygenase activity in patients with severe sepsis and septic shock, J. Infect. Dis, vol.201, pp.956-966, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00744207

M. F. Tavazoie, I. Pollack, R. Tanqueco, B. N. Ostendorf, B. S. Reis et al., LXR/ApoE Activation Restricts Innate Immune Suppression in Cancer, Cell, vol.172, pp.825-840, 2018.

J. Tay, J. Levesque, and I. G. Winkler, Cellular players of hematopoietic stem cell mobilization in the bone marrow niche, Int. J. Hematol, vol.105, pp.129-140, 2017.

K. Thom and J. Petrik, Progression towards AIDS leads to increased Torque teno virus and Torque teno minivirus titers in tissues of HIV infected individuals, J. Med. Virol, vol.79, pp.1-7, 2007.

J. Tjiu, J. Chen, C. Shun, S. Lin, Y. Liao et al., Tumor-associated macrophage-induced invasion and angiogenesis of human basal cell carcinoma cells by cyclooxygenase-2 induction, J. Invest. Dermatol, vol.129, pp.1016-1025, 2009.

B. Toh, X. Wang, J. Keeble, W. J. Sim, K. Khoo et al., Mesenchymal transition and dissemination of cancer cells is driven by myeloid-derived suppressor cells infiltrating the primary tumor, PLoS Biol, vol.9, p.1001162, 2011.

P. Toti, C. De-felice, R. Occhini, K. Schuerfeld, M. Stumpo et al., Spleen depletion in neonatal sepsis and chorioamnionitis, Am. J. Clin. Pathol, vol.122, pp.765-771, 2004.

S. Toussaint and H. Gerlach, Immunoglobulins in adult sepsis and septic shock, Curr. Infect. Dis. Rep, vol.14, pp.522-529, 2012.

S. Tu, G. Bhagat, G. Cui, S. Takaishi, E. A. Kurt-jones et al., Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice, Cancer Cell, vol.14, pp.408-419, 2008.

F. Uhel, I. Azzaoui, M. Grégoire, C. Pangault, J. Dulong et al., Early Expansion of Circulating Granulocytic Myeloid-derived Suppressor Cells Predicts Development of Nosocomial Infections in Septic Patients, Am. J. Respir. Crit. Care Med, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01480854

J. D. Van-belleghem, F. Clement, M. Merabishvili, R. Lavigne, and M. Vaneechoutte, Pro-and anti-inflammatory responses of peripheral blood mononuclear cells induced by Staphylococcus aureus and Pseudomonas aeruginosa phages, 2017.

J. A. Van-ginderachter, A. Beschin, P. De-baetselier, and G. Raes, Myeloid-derived suppressor cells in parasitic infections, Eur. J. Immunol, vol.40, pp.2976-2985, 2010.

E. V. Vasilyev, D. Y. Trofimov, A. G. Tonevitsky, V. V. Ilinsky, D. O. Korostin et al., Torque Teno Virus (TTV) distribution in healthy Russian population, Virol. J, vol.6, p.134, 2009.

F. Veglia, M. Perego, and D. Gabrilovich, Myeloid-derived suppressor cells coming of age, Nat. Immunol, vol.19, pp.108-119, 2018.

A. Vendramin, S. Gimondi, A. Bermema, P. Longoni, S. Rizzitano et al., Graft monocytic myeloid-derived suppressor cell content predicts the risk of acute graft-versus-host disease after allogeneic transplantation of granulocyte colonystimulating factor-mobilized peripheral blood stem cells, Biol. Blood Marrow Transplant. J. Am. Soc. Blood Marrow Transplant, vol.20, pp.2049-2055, 2014.

F. Venet, C. Chung, H. Kherouf, A. Geeraert, C. Malcus et al., Increased circulating regulatory T cells (CD4(+)CD25 (+)CD127 (-)) contribute to lymphocyte anergy in septic shock patients, Intensive Care Med, vol.35, pp.678-686, 2009.

F. Venet, F. Davin, C. Guignant, A. Larue, M. Cazalis et al., Early assessment of leukocyte alterations at diagnosis of septic shock, Shock Augusta Ga, vol.34, pp.358-363, 2010.

F. Venet, A. Foray, A. Villars-méchin, C. Malcus, F. Poitevin-later et al., IL-7 Restores Lymphocyte Functions in Septic Patients, J. Immunol, vol.189, pp.5073-5081, 2012.

F. Venet, O. Filipe-santos, A. Lepape, C. Malcus, F. Poitevin-later et al., Decreased T-cell repertoire diversity in sepsis: a preliminary study, Crit. Care Med, vol.41, pp.111-119, 2013.

E. M. De-villiers, D. Wagner, A. Schneider, H. Wesch, H. Miklaw et al., Human papillomavirus infections in women with and without abnormal cervical cytology, Lancet Lond. Engl, vol.2, pp.703-706, 1987.

,. De-villiers, R. Schmidt, H. Delius, and H. Zur-hausen, Heterogeneity of TT virus related sequences isolated from human tumour biopsy specimens, J. Mol. Med. Berl. Ger, vol.80, pp.44-50, 2002.

J. L. Vincent, R. Moreno, J. Takala, S. Willatts, A. De-mendonça et al., The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine, Intensive Care Med, vol.22, pp.707-710, 1996.

J. Vincent, J. C. Marshall, S. A. Namendys-silva, B. François, I. Martin-loeches et al., Assessment of the worldwide burden of critical illness: the intensive care over nations (ICON) audit, Lancet Respir. Med, vol.2, pp.380-386, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01952438

C. S. Vinodkumar, S. Kalsurmath, and Y. F. Neelagund, Utility of lytic bacteriophage in the treatment of multidrug-resistant Pseudomonas aeruginosa septicemia in mice, Indian J. Pathol. Microbiol, vol.51, pp.360-366, 2008.

A. H. Walton, J. T. Muenzer, D. Rasche, J. S. Boomer, B. Sato et al., Reactivation of multiple viruses in patients with sepsis, PloS One, vol.9, p.98819, 2014.

J. Wang, J. Li, Y. Zhao, W. Yi, J. Bian et al., Up-regulation of Programmed Cell Death 1 Ligand 1 on Neutrophils May Be Involved in Sepsis-induced ImmunosuppressionAn Animal Study and a Prospective Casecontrol Study, Anesthesiol. J. Am. Soc. Anesthesiol, vol.122, pp.852-863, 2015.

L. Wang, E. W. Chang, S. C. Wong, S. Ong, D. Q. Chong et al., Increased myeloid-derived suppressor cells in gastric cancer correlate with cancer stage and plasma S100A8/A9 proinflammatory proteins, J. Immunol. Baltim. Md, pp.794-804, 2013.

X. Wang, F. Teng, L. Kong, Y. , and J. , PD-L1 expression in human cancers and its association with clinical outcomes, OncoTargets Ther, vol.9, pp.5023-5039, 2016.

N. S. Ward, B. Casserly, and A. Ayala, The Compensatory Anti-inflammatory Response syndrome (CARS) in Critically ill patients, Clin. Chest Med, vol.29, p.617, 2008.

B. Weber-dbrowska, M. Mulczyk, and A. Górski, Bacteriophages as an efficient therapy for antibiotic-resistant septicemia in man, Transplant. Proc, vol.35, pp.1385-1386, 2003.

E. J. Wherry, T cell exhaustion, Nat. Immunol, vol.12, pp.492-499, 2011.

F. Whitfield-larry, J. Felton, J. Buse, and M. A. Su, , 2014.

, Diabetes Mellitus patients. Clin. Immunol. Orlando Fla, vol.153, pp.156-164

K. A. Wichterman, A. E. Baue, and I. H. Chaudry, Sepsis and septic shock--a review of laboratory models and a proposal, J. Surg. Res, vol.29, pp.189-201, 1980.

T. Wu, Y. Zhao, H. Wang, Y. Li, L. Shao et al., mTOR masters monocytic myeloid-derived suppressor cells in mice with allografts or tumors, Sci. Rep, vol.6, 2016.

W. Xiao, J. D. Klement, C. Lu, M. L. Ibrahim, and K. Liu, IFNAR1 Controls Autocrine Type I IFN Regulation of PD-L1 Expression in Myeloid-Derived Suppressor Cells, J. Immunol, vol.201, pp.264-277, 2018.

M. Yazici, M. R. Cömert, R. Mas, C. Guney, E. Cinar et al., Transfusiontransmitted virus prevalence in subjects at high risk of sexually transmitted infection in Turkey, Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis, vol.8, pp.363-367, 2002.

Z. Yin, C. Li, J. Wang, and L. Xue, Myeloid-derived suppressor cell: Roles in the tumor microenvironment and tumor radiotherapy, Int. J. Cancer, 2018.

J. Youn, S. Nagaraj, M. Collazo, and D. I. Gabrilovich, Subsets of myeloid-derived suppressor cells in tumor-bearing mice, J. Immunol. Baltim. Md, vol.181, pp.5791-5802, 1950.

J. Youn, M. Collazo, I. N. Shalova, S. K. Biswas, and D. I. Gabrilovich, Characterization of the nature of granulocytic myeloid-derived suppressor cells in tumorbearing mice, J. Leukoc. Biol, vol.91, pp.167-181, 2012.

M. R. Young, M. A. Wright, M. Coogan, M. E. Young, and J. Bagash, Tumor-derived cytokines induce bone marrow suppressor cells that mediate immunosuppression through transforming growth factor beta, Cancer Immunol. Immunother. CII, vol.35, pp.14-18, 1992.

J. Yu, W. Du, F. Yan, Y. Wang, H. Li et al.,

, Myeloid-derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancer, J. Immunol. Baltim. Md, pp.3783-3797, 1950190.

H. Zhang, Y. Huang, S. Wang, R. Fu, C. Guo et al., Myeloid-derived suppressor cells contribute to bone erosion in collagen-induced arthritis by differentiating to osteoclasts, J. Autoimmun, vol.65, pp.82-89, 2015.

Y. Zhang, M. Zhang, X. Li, Z. Tang, L. He et al., Expansion of CD11b+Ly-6C+ myeloid-derived suppressor cells (MDSCs) driven by galectin-9 attenuates CVB3-induced myocarditis, Mol. Immunol, vol.83, pp.62-71, 2017.

Y. Zhao, T. Wu, S. Shao, B. Shi, and Y. Zhao, Phenotype, development, and biological function of myeloid-derived suppressor cells, 2015.

H. Zheng, L. Ye, X. Fang, B. Li, Y. Wang et al., Torque teno virus (SANBAN isolate) ORF2 protein suppresses NF-kappaB pathways via interaction with IkappaB kinases, J. Virol, vol.81, pp.11917-11924, 2007.

S. Zhong, W. Yeo, C. K. Lin, X. R. Lin, M. W. Tang et al., Quantitative and genotypic analysis of TT virus infection in Chinese blood donors, Transfusion, vol.41, pp.1001-1007, 2001.

S. Zhong, W. Yeo, M. W. Tang, X. R. Lin, F. Mo et al.,

, Ces cellules ont des capacités immunosuppressives et peuvent exprimer le ligand PD-L1 induisant l'anergie des lymphocytes T qui expriment le marqueur PD-1. Au cours du sepsis, divers bouleversements immunologiques surviennent, et la fonction majeure des MDSC est probablement de réguler l'hyper-inflammation en participant à l'état d'immunodépression rencontré chez les patients. Ceux-ci ont alors un risque de développer des infections secondaires, et de réactiver des virus jusque-là en latence. Notre étude a pour objectifs de mettre en évidence l'origine des MDSC dans le sepsis, et d'approfondir leurs rôles dans l'état d'immunosuppression, notamment dans la réactivation du Torque Teno Virus (TTV). Nos résultats montrent tant ex vivo qu'in vitro, que dans le sepsis, les MDSC sont produites par la moelle osseuse, sous l'influence du G-CSF et de l'IL-6. Ces cellules exprimant PD-L1, Les Myeloid-Derived Suppressor Cells (MDSC) sont une population hétérogène de cellules myéloïdes immatures, regroupées en deux sous-populations : les monocytiques-MDSC (M-MDSC) et les polymorphonucléaires-MDSC (PMN-MDSC)

, L'augmentation de la charge virale du TTV est observée dans le sang périphérique des patients, mais n'est pas corrélée à la fréquence des MDSC. Ces résultats suggèrent que lors d'un sepsis, l'orage cytokinique stimule la production de MDSC exprimant PD-L1 par la moelle osseuse, qui une fois en périphérie

:. Mots-clés, . Mdsc, . Osseuse, and . Pd-l1, These cells have immunosuppressive capacities and mainly act on T cells. MDSC can express the ligand PD-L1 and induce PD-1 expressing-T cells exhaustion. During sepsis, several immunological changes occur, and MDSC probably downregulate the hyper-inflammatory state, contributing to the immunosuppression phase encountered in patients after a sepsis. Immunocompromised patients can develop secondary infections, and reactivate latent virus. The aims of our study were to highlight the origin of MDSC in sepsis, and to explore their roles in the immunosuppression state, especially in the Torque Teno Virus (TTV) reactivation. Our results show, both ex vivo and in vitro, that in sepsis, MDSC originate from bone marrow are induced by G-CSF and IL-6. These PD-L1 expressing-cells are increased in peripheral blood very early in sepsis, and persist during hospitalization. These MDSC are able to inhibit T cells in vitro. The increase of TTV viral load is observed in peripheral blood of patients but is not correlated with MDSC frequencies. These results suggest that during sepsis, the cytokine storm boosts PD-L1 expressing MDSC's production by bone marrow, cytokines, TTV Origin and roles of myeloid-derived suppressor cells during sepsis Myeloid-Derived Suppressor Cells (MDSC) are a heterogeneous population of immature myeloid cell, and are regrouped in two subsets: the monocytic-MDSC (M-MDSC) and the polymorphonuclear-MDSC (PMN-MDSC)