. E1 and M. Cheng, Antitumor polycyclic acridines. 20. Search for DNA quadruplex binding selectivity in a series of 8,13-dimethylquino[4,3,2-kl]acridinium salts: telomeretargeted agents, J. Med. Chem, vol.51, pp.963-975, 2008.

T. Fujisawa and P. Filippakopoulos, Functions of bromodomain-containing proteins and their roles in homeostasis and cancer, Nat. Rev. Mol. Cell Biol, vol.18, issue.4, pp.246-262, 2017.

J. Lee, Brd4 binds to active enhancers to control cell identity gene induction in adipogenesis and myogenesis, Nat Commun, vol.8, issue.1, p.2217, 2017.

J. E. Delmore, BET bromodomain inhibition as a therapeutic strategy to target c-Myc, Cell, vol.146, issue.6, pp.904-917, 2011.

F. Gao, Y. Yang, Z. Wang, X. Gao, and B. Zheng, BRAD4 plays a critical role in germinal center response by regulating Bcl-6 and NF-?B activation, Cell. Immunol, vol.294, issue.1, pp.1-8, 2015.

A. Stanlie, A. S. Yousif, H. Akiyama, T. Honjo, and N. A. Begum, Chromatin reader Brd4 functions in Ig class switching as a repair complex adaptor of nonhomologous end-joining, Mol. Cell, vol.55, issue.1, pp.97-110, 2014.

Z. Xu, H. Zan, E. J. Pone, T. Mai, and P. Casali, Immunoglobulin class-switch DNA recombination: induction, targeting and beyond, Nat. Rev. Immunol, vol.12, issue.7, pp.517-531, 2012.

E. Pinaud, The IgH locus 3' regulatory region: pulling the strings from behind, Adv. Immunol, vol.110, pp.27-70, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00696444

B. K. Birshtein, Epigenetic Regulation of Individual Modules of the immunoglobulin heavy chain locus 3? Regulatory Region, Front Immunol, vol.5, 2014.

B. Chapuy, Discovery and Characterization of Super-Enhancer Associated Dependencies in Diffuse Large B-Cell Lymphoma, Cancer Cell, vol.24, issue.6, pp.777-790, 2013.

S. Péron, AID-driven deletion causes immunoglobulin heavy chain locus suicide recombination in B cells, Science, vol.336, issue.6083, pp.931-934, 2012.

A. C. Belkina, B. S. Nikolajczyk, and G. V. Denis, BET protein function is required for inflammation: Brd2 genetic disruption and BET inhibitor JQ1 impair mouse macrophage inflammatory responses, J. Immunol, vol.190, issue.7, pp.3670-3678, 2013.

C. Chung, Discovery and characterization of small molecule inhibitors of the BET family bromodomains, J. Med. Chem, vol.54, issue.11, pp.3827-3838, 2011.

F. Boyer, CSReport: A New Computational Tool Designed for Automatic Analysis of Class Switch Recombination Junctions Sequenced by High-Throughput Sequencing, J. Immunol, vol.198, issue.10, p.2017

A. Getahun, F. Hjelm, and B. Heyman, IgE enhances antibody and T cell responses in vivo via CD23+ B cells, J. Immunol, vol.175, issue.3, pp.1473-1482, 2005.

B. Heyman, Antibodies as natural adjuvants, Curr. Top. Microbiol. Immunol, vol.382, pp.201-219, 2014.

E. Pinaud, The IgH Locus 3? Regulatory Region, Advances in Immunology, vol.110, pp.27-70, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00696444

H. Hayashida, Concerted evolution of the mouse immunoglobulin gamma chain genes, EMBO J, vol.3, pp.2047-2053, 1984.

M. Hirano, S. Das, P. Guo, and M. D. Cooper, The evolution of adaptive immunity in vertebrates, Adv. Immunol, vol.109, pp.125-157, 2011.

P. Garred, J. Olsen, T. E. Mollnes, T. Bilde, and B. E. Glahn, Biocompatibility of urinary catheters. Effect on complement activation, Br J Urol, vol.63, pp.367-371, 1989.

P. H. Schur, IgG subclasses. A historical perspective, Monogr Allergy, vol.23, pp.1-11, 1988.

G. Vidarsson, G. Dekkers, and T. Rispens, IgG subclasses and allotypes: from structure to effector functions, Front Immunol, vol.5, p.520, 2014.

T. E. Michaelsen, B. Frangione, and E. C. Franklin, Primary structure of the 'hinge' region of human IgG3. Probable quadruplication of a 15-amino acid residue basic unit, J. Biol. Chem, vol.252, pp.883-889, 1977.

J. Ellison and L. Hood, Linkage and sequence homology of two human immunoglobulin gamma heavy chain constant region genes, Proc. Natl. Acad. Sci

U. S. , , vol.79, 1982.

J. G. Flanagan and T. H. Rabbitts, Arrangement of human immunoglobulin heavy chain constant region genes implies evolutionary duplication of a segment containing gamma, epsilon and alpha genes, Nature, vol.300, pp.709-713, 1982.

E. Pinaud, The IgH locus 3' regulatory region: pulling the strings from behind
URL : https://hal.archives-ouvertes.fr/hal-00696444

, Adv. Immunol, vol.110, pp.27-70, 2011.

N. Takahashi, Structure of human immunoglobulin gamma genes: implications for evolution of a gene family, Cell, vol.29, pp.671-679, 1982.

M. Bensmana, S. Huck, G. Lefranc, and M. P. Lefranc, The human immunoglobulin pseudo-gamma IGHGP gene shows no major structural defect, Nucleic Acids Res, vol.16, p.3108, 1988.
URL : https://hal.archives-ouvertes.fr/hal-01946233

F. Boyer, CSReport: A New Computational Tool Designed for Automatic Analysis of Class Switch Recombination Junctions Sequenced by High-Throughput Sequencing, J. Immunol, vol.198, pp.4148-4155, 2017.

G. M. Edelman, The covalent structure of an entire gammaG immunoglobulin molecule, Proc. Natl. Acad. Sci. U.S.A, vol.63, pp.78-85, 1969.

P. Bruhns and F. Jönsson, Mouse and human FcR effector functions, Immunol. Rev, vol.268, pp.25-51, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01281740

O. Vafa, An engineered Fc variant of an IgG eliminates all immune effector functions via structural perturbations, Methods, vol.65, pp.114-126, 2014.

P. Rouaud, Elucidation of the enigmatic IgD class-switch recombination via germline deletion of the IgH 3' regulatory region, J. Exp. Med, vol.211, pp.975-985, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01212566

M. Cogné, Locus Suicide Recombination actively occurs on the functionally rearranged IgH allele in B-cells from inflamed human lymphoid tissues, p.430215, 2018.

R. S. Blumberg and D. Lillicrap, IgG Fc Immune Tolerance Group. Tolerogenic properties of the Fc portion of IgG and its relevance to the treatment and management of hemophilia, Blood, vol.131, pp.2205-2214, 2018.

A. Bonaud, F. Lechouane, S. Le-noir, O. Monestier, M. Cogné et al., Efficient AID targeting of switch regions is not sufficient for optimal class switch recombination, Nature Communications, vol.6, p.7613, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01212525

A. Bonaud, F. Lechouane, S. Le-noir, O. Monestier, M. Cogné et al., Efficient AID targeting of switch regions is not sufficient for optimal class switch recombination, Nat Commun, vol.6, p.7613, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01212525

P. Brandtzaeg, Induction of secretory immunity and memory at mucosal surfaces, Vaccine, vol.25, pp.5467-5484, 2007.

S. Casola, K. L. Otipoby, M. Alimzhanov, S. Humme, N. Uyttersprot et al., B cell receptor signal strength determines B cell fate, Nat. Immunol, vol.5, pp.317-327, 2004.

S. Casola, K. L. Otipoby, M. Alimzhanov, S. Humme, N. Uyttersprot et al., B cell receptor signal strength determines B cell fate, Nature Immunology, vol.5, p.317, 2004.

A. Cerutti, The regulation of IgA class switching, Nat. Rev. Immunol, vol.8, pp.421-434, 2008.

T. Defrance, B. Vanbervliet, F. Brière, I. Durand, F. Rousset et al., , 1992.

, Interleukin 10 and transforming growth factor beta cooperate to induce anti-CD40-activated naive human B cells to secrete immunoglobulin A, J. Exp. Med, vol.175, pp.671-682

S. Duchez, R. Amin, N. Cogne, L. Delpy, C. Sirac et al., Premature replacement of with immunoglobulin chains impairs lymphopoiesis and mucosal homing but promotes plasma cell maturation, PNAS, vol.107, pp.3064-3069, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00454129

S. Duchez, R. Amin, N. Cogne, L. Delpy, C. Sirac et al., Premature replacement of with immunoglobulin chains impairs lymphopoiesis and mucosal homing but promotes plasma cell maturation, vol.107, pp.3064-3069, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00454129

I. Leduc, M. Drouet, M. C. Bodinier, A. Helal, and M. Cogné, Membrane isoforms of human immunoglobulins of the A1 and A2 isotypes: structural and functional study, vol.90, pp.330-336, 1997.

I. Leduc, M. Drouet, M. Bodinier, A. Helal, C. et al., Membrane isoforms of human immunoglobulins of the A1 and A2 isotypes: structural and functional study, Immunology, vol.90, pp.330-336, 1997.

M. Reth and J. Wienands, Initiation and processing of signals from the B cell antigen receptor, Annu. Rev. Immunol, vol.15, pp.453-479, 1997.

A. Rifai, K. Fadden, S. L. Morrison, and K. R. Chintalacharuvu, The N-glycans determine the differential blood clearance and hepatic uptake of human immunoglobulin (Ig)A1 and IgA2 isotypes, J. Exp. Med, vol.191, pp.2171-2182, 2000.

A. Rifai, K. Fadden, S. L. Morrison, and K. R. Chintalacharuvu, The N-Glycans Determine the Differential Blood Clearance and Hepatic Uptake of Human Immunoglobulin (Ig)a1 and Iga2, 2000.

. Isotypes, J Exp Med, vol.191, pp.2171-2182

T. Rispens, A. M. Davies, P. Ooijevaar-de-heer, S. Absalah, O. Bende et al., Dynamics of Inter-heavy Chain Interactions in Human Immunoglobulin G (IgG) Subclasses Studied by Kinetic Fab Arm Exchange, J Biol, vol.289, pp.6098-6109, 2014.

M. Vanderneutkolfschoten, J. Schuurman, M. Losen, W. Bleeker, and P. Martínez-martínez,

E. Vermeulen and T. H. Denbleker, Anti-Inflammatory Activity of Human IgG4 Antibodies by Dynamic Fab Arm Exchange, Science, vol.317, pp.1554-1557, 2007.

J. M. Woof and M. A. Kerr, IgA function--variations on a theme, Immunology, vol.113, pp.175-177, 2004.

J. M. Woof and M. A. Kerr, The function of immunoglobulin A in immunity, Frontiers in Immunology | www.frontiersin.org, vol.208, p.1277, 2006.

M. Muramatsu, K. Kinoshita, S. Fagarasan, S. Yamada, Y. Shinkai et al., Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme, Cell, vol.102, issue.5, pp.553-63, 2000.

P. Revy, T. Muto, Y. Levy, F. Geissmann, A. Plebani et al., Activationinduced cytidine deaminase (AID) deiciency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2), Cell, vol.102, issue.5, pp.565-75, 2000.

B. Laleur, N. Denis-lagache, S. Péron, C. Sirac, J. Moreau et al., AIDinduced remodeling of immunoglobulin genes and B cell fate, Oncotarget, vol.5, issue.5, pp.1118-1149, 2013.

K. Ishizaka and T. Ishizaka, Identiication of gamma-E-antibodies as a carrier of reaginic activity, J Immunol, issue.6, pp.1187-98, 1967.

D. R. Stanworth, J. H. Humphrey, H. Bennich, and S. G. Johansson, Speciic inhibition of the Prausnitz-Küstner reaction by an atypical human myeloma protein, Lancet, vol.2, issue.7511, pp.330-332, 1967.

G. W. Warr, K. E. Magor, and D. A. Higgins, IgY: clues to the origins of modern antibodies, Immunol Today, vol.16, issue.8, pp.392-400, 1995.

M. Vernersson, M. Aveskogh, and L. Hellman, Cloning of IgE from the echidna (Tachyglossus aculeatus) and a comparative analysis of epsilon chains from all three extant mammalian lineages, Dev Comp Immunol, vol.28, issue.1, pp.61-75, 2004.

L. C. Wu and A. A. Zarrin, he production and regulation of IgE by the immune system, Nat Rev Immunol, vol.14, issue.4, pp.247-59, 2014.

M. Capron and A. Capron, Immunoglobulin E and efector cells in schistosomiasis, Science, vol.264, issue.5167, pp.1876-1883, 1994.

T. Marichal, P. Starkl, L. L. Reber, J. Kalesnikof, H. C. Oettgen et al., A beneicial role for immunoglobulin E in host defense against honeybee venom, Immunity, vol.39, issue.5, pp.963-75, 2013.

N. W. Palm, R. K. Rosenstein, S. Yu, D. D. Schenten, E. Florsheim et al., Bee venom phospholipase A2 induces a primary type 2 response that is dependent on the receptor ST2 and confers protective, Immunity, vol.39, issue.5, pp.976-85, 2013.

B. Heyman, Antibodies as natural adjuvants, Curr Top Microbiol Immunol, vol.382, pp.201-220, 2014.

H. Xu, L. Van-mechelen, F. Henningsson, and B. Heyman, Antigen conjugated to anti-CD23 antibodies is rapidly transported to splenic follicles by recirculating B cells, Scand J Immunol, vol.81, issue.1, pp.39-45, 2015.

R. K. Martin, K. B. Brooks, F. Henningsson, B. Heyman, and D. H. Conrad, Antigen transfer from exosomes to dendritic cells as an explanation for the immune enhancement seen by IgE immune complexes, PLoS One, vol.9, issue.10, p.110609, 2014.

E. A. Nigro, A. T. Brini, E. Soprana, A. A. Dombrowicz, D. Siccardi et al., Antitumor IgE adjuvanticity: key role of Fc epsilon RI, J Immunol, vol.183, issue.7, pp.4530-4536, 2009.

E. Jensen-jarolim, M. C. Turner, and S. N. Karagiannis, AllergoOncology: IgE-and IgG4-mediated immune mechanisms linking allergy with cancer and their translational implications, J Allergy Clin Immunol, vol.140, issue.4, pp.982-84, 2017.

E. A. Nigro, A. T. Brini, V. A. Yenagi, L. M. Ferreira, G. Achatz-straussberger et al., Cutting edge: IgE plays an active role in tumor immunosurveillance in mice, J Immunol, vol.197, issue.7, pp.2583-2591, 2016.

D. Butt, T. D. Chan, K. Bourne, J. R. Hermes, A. Nguyen et al., FAS inactivation releases unconventional germinal center B cells that escape antigen control and drive IgE and autoantibody production, Immunity, vol.42, issue.5, pp.890-902, 2015.

M. A. Sanjuan, D. Sagar, and R. Kolbeck, Role of IgE in autoimmunity, J Allergy Clin Immunol, vol.137, issue.6, pp.1651-61, 2016.

R. S. Geha, H. H. Jabara, and S. R. Brodeur, he regulation of immunoglobulin E classswitch recombination, Nat Rev Immunol, vol.3, issue.9, pp.721-753, 2003.

M. Kudo, Y. Ishigatsubo, and I. Aoki, Pathology of asthma. Front Microbiol, vol.4, p.263, 2013.

C. De-lafaille, M. A. Muriglan, S. Sunshine, M. J. Lei, Y. Kutchukhidze et al., Hyper immunoglobulin E response in mice with monoclonal populations of B and T lymphocytes, J Exp Med, vol.194, issue.9, pp.1349-59, 2001.

K. Obayashi, T. Doi, and S. Koyasu, Dendritic cells suppress IgE production in B cells, Int Immunol, vol.19, issue.2, pp.217-243, 2007.

E. Pinaud, M. Marquet, R. Fiancette, S. Péron, C. Vincent-fabert et al., he IgH locus 3' regulatory region: pulling the strings from behind, Adv Immunol, vol.110, pp.27-70, 2011.

C. Vincent-fabert, R. Fiancette, E. Pinaud, V. Truinet, N. Cogné et al., Genomic deletion of the whole IgH 3' regulatory region (hs3a, hs1,2, hs3b, and hs4) dramatically afects class switch recombination and Ig secretion to all isotypes, Blood, issue.11, pp.1895-1903, 2010.

R. Casellas, U. Basu, W. T. Yewdell, J. Chaudhuri, D. F. Robbiani et al., Mutations, kataegis, and translocations in B lymphocytes: towards a mechanistic understanding of AID promiscuous activity, Nat Rev Immunol, vol.16, issue.3, pp.164-76, 2016.

R. Wuerfel, L. Wang, F. Grigera, J. Manis, E. Selsing et al., S-S synapsis during class switch recombination is promoted by distantly located transcriptional elements and activation-induced deaminase, Immunity, vol.27, issue.5, pp.711-733, 2007.

, Frontiers in Immunology | www.frontiersin.org November, vol.8, p.1277, 2017.

S. Monticelli and D. Vercelli, Molecular regulation of class switch recombination to IgE through epsilon germline transcription, Allergy, vol.56, issue.4, pp.270-278, 2001.

R. S. Geha, Allergy and hypersensitivity. Nature versus nurture in allergy and hypersensitivity, Curr Opin Immunol, vol.15, issue.6, pp.603-611, 2003.

T. Audzevich, G. Pearce, M. Breucha, G. Gunal, and R. Jessberger, Control of the STAT6-BCL6 antagonism by SWAP-70 determines IgE production, J Immunol, vol.190, issue.10, pp.4946-55, 2013.

M. Kashiwada, D. M. Levy, L. Mckeag, K. Murray, A. J. Schroder et al., IL-4-induced transcription factor NFIL3/E4BP4 controls IgE class switching, Proc Natl Acad Sci U S A, vol.107, issue.2, pp.821-827, 2010.

M. Sugai, H. Gonda, T. Kusunoki, T. Katakai, Y. Yokota et al., Essential role of Id2 in negative regulation of IgE class switching, Nat Immunol, vol.4, issue.1, pp.25-30, 2003.

P. Tong and D. R. Wesemann, Molecular mechanisms of IgE class switch recombination, Curr Top Microbiol Immunol, vol.388, pp.21-37, 2015.

A. Schafer, E. C. Kim, X. Wu, H. Zan, L. Testoni et al., Selective inhibition of class switching to IgG and IgE by recruitment of the HoxC4 and Oct-1 homeodomain proteins and Ku70/Ku86 to newly identiied ATTT cis-elements, J Biol Chem, vol.278, issue.25, pp.23141-50, 2003.

J. A. Hackney, S. Misaghi, K. Senger, C. Garris, Y. Sun et al., DNA targets of AID evolutionary link between antibody somatic hypermutation and class switch recombination, Adv Immunol, vol.101, pp.163-89, 2009.

S. Misaghi, K. Senger, T. Sai, Y. Qu, Y. Sun et al., Polyclonal hyper-IgE mouse model reveals mechanistic insights into antibody class switch recombination, Proc Natl Acad Sci U S A, vol.110, issue.39, pp.15770-15775, 2013.

W. Lübben, A. Turqueti-neves, A. Okhrimenko, C. Stöberl, V. Schmidt et al., IgE knock-in mice suggest a role for high levels of IgE in basophil-mediated active systemic anaphylaxis, Eur J Immunol, vol.43, issue.5, pp.1231-1273, 2013.

S. Dayal, J. Nedbal, P. Hobson, A. M. Cooper, H. J. Gould et al., High resolution analysis of the chromatin landscape of the IgE switch region in human B cells, PLoS One, vol.6, issue.9, p.24571, 2011.

N. Kuwabara, N. Kondo, O. Fukutomi, H. Agata, and T. Orii, Relationship between interferon-gamma, interleukin-4 and IgE production of lymphocytes from hen's egg-sensitive patients, J Investig Allergol Clin Immunol, vol.5, issue.4, pp.198-204, 1995.

D. R. Wesemann, J. M. Magee, C. Boboila, D. P. Calado, M. P. Gallagher et al., Immature B cells preferentially switch to IgE with increased direct Sµ to S? recombination, J Exp Med, vol.208, issue.13, pp.2733-2779, 2011.

K. Yoshida, M. Matsuoka, S. Usuda, A. Mori, K. Ishizaka et al., Immunoglobulin switch circular DNA in the mouse infected with Nippostrongylus brasiliensis: evidence for successive class switching from mu to epsilon via gamma 1, Proc Natl Acad Sci U S A, vol.87, pp.7829-7862, 1920.

H. Xiong, J. Dolpady, M. Wabl, C. De-lafaille, M. A. Lafaille et al., Sequential class switching is required for the generation of high ainity IgE antibodies, J Exp Med, vol.209, issue.2, pp.353-64, 2012.

Y. L. Wu, M. Stubbington, M. Daly, S. A. Teichmann, and C. Rada, Intrinsic transcriptional heterogeneity in B cells controls early class switching to IgE, J Exp Med, vol.214, issue.1, pp.183-96, 2017.

F. Ramadani, H. Bowen, N. Upton, P. S. Hobson, Y. C. Chan et al., Ontogeny of human IgE-expressing B cells and plasma cells, Allergy, vol.72, issue.1, pp.66-76, 2017.

G. Siebenkotten, C. Esser, A. Radbruch, and M. Wabl, he murine IgG1/IgE class switch program, Eur J Immunol, vol.22, issue.7, pp.1827-1861, 1992.

C. Peng, F. M. Davis, L. K. Sun, R. S. Liou, Y. W. Kim et al., A new isoform of human membrane-bound IgE, J Immunol, vol.148, issue.1, pp.129-165, 1992.

K. Zhang, A. Saxon, and E. E. Max, Two unusual forms of human immunoglobulin E encoded by alternative RNA splicing of epsilon heavy chain membrane exons, J Exp Med, vol.176, issue.1, pp.233-276, 1992.

K. Zhang, E. E. Max, H. K. Cheah, and A. Saxon, Complex alternative RNA splicing of epsilon-immunoglobulin transcripts produces mRNAs encoding four potential secreted protein isoforms, J Biol Chem, vol.269, issue.1, pp.456-62, 1994.

F. D. Batista, D. G. Efremov, T. Tkach, and O. R. Burrone, Characterization of the human immunoglobulin epsilon mRNAs and their polyadenylation sites, Nucleic Acids Res, vol.23, issue.23, pp.4805-4816, 1995.

F. D. Batista, D. G. Efremov, and O. R. Burrone, Characterization of a second secreted IgE isoform and identiication of an asymmetric pathway of IgE assembly

, Proc Natl Acad Sci U S A, vol.93, issue.8, pp.3399-404, 1996.

F. D. Batista, S. Anand, G. Presani, D. G. Efremov, and O. R. Burrone, he two membrane isoforms of human IgE assemble into functionally distinct B cell antigen receptors, J Exp Med, vol.184, issue.6, pp.2197-205, 1996.

S. Anand, F. D. Batista, T. Tkach, D. G. Efremov, and O. R. Burrone, Multiple transcripts of the murine immunoglobulin epsilon membrane locus are generated by alternative splicing and diferential usage of two polyadenylation sites, Mol Immunol, vol.34, issue.2, pp.175-83, 1997.

A. Karnowski, G. Achatz-straussberger, C. Klockenbusch, G. Achatz, and M. C. Lamers, Ineicient processing of mRNA for the membraneform of IgE is a genetic mechanism to limit recruitment of IgE-secreting cells, Eur J Immunol, vol.36, issue.7, pp.1917-1942, 2006.

O. Talay, D. Yan, H. D. Brightbill, E. Straney, M. Zhou et al., IgE + memory B cells and plasma cells generated through a germinal-center pathway, Nat Immunol, vol.13, issue.4, pp.396-404, 2012.

P. C. Wu, J. B. Chen, S. Kawamura, C. Roos, S. Merker et al., he IgE gene in primates exhibits extraordinary evolutionary diversity, Immunogenetics, vol.64, issue.4, pp.279-87, 2012.

S. W. Martin and C. C. Goodnow, Burst-enhancing role of the IgG membrane tail as a molecular determinant of memory, Nat Immunol, vol.3, issue.2, pp.182-190, 2002.

F. Lechouane, A. Bonaud, L. Delpy, S. Casola, Z. Oruc et al., B-cell receptor signal strength inluences terminal diferentiation: cellular immune response, Eur J Immunol, vol.43, issue.3, pp.619-647, 2013.

T. G. Phan and S. G. Tangye, Memory B cells: total recall, Curr Opin Immunol, vol.45, pp.132-172, 2017.

A. Erazo, N. Kutchukhidze, M. Leung, A. P. Christ, J. F. Urban et al., Unique maturation program of the IgE response in vivo, Immunity, vol.26, issue.2, pp.191-203, 2007.

Z. Yang, B. M. Sullivan, and C. Allen, Fluorescent in vivo detection reveals that IgE(+) B cells are restrained by an intrinsic cell fate predisposition, Immunity, vol.36, issue.5, pp.857-72, 2012.

T. Nojima, K. Haniuda, T. Moutai, M. Matsudaira, S. Mizokawa et al., In-vitro derived germinal centre B cells diferentially generate memory B or plasma cells in vivo, Nat Commun, vol.2, p.465, 2011.

Z. Yang, M. J. Robinson, X. Chen, G. A. Smith, J. Taunton et al., Regulation of B cell fate by chronic activity of the IgE B cell receptor, Elife, vol.5, p.21238, 2016.

K. Haniuda, S. Fukao, T. Kodama, H. Hasegawa, and D. Kitamura, Autonomous membrane IgE signaling prevents IgE-memory formation, Nat Immunol, vol.17, issue.9, pp.1109-1126, 2016.

B. Laleur, S. Duchez, K. Tarte, N. Denis-lagache, S. Péron et al., Self-restrained B cells arise following membrane IgE expression, Cell Rep, vol.10, issue.6, pp.900-909, 2015.

G. Achatz-straussberger, N. Zaborsky, S. Königsberger, E. O. Luger, M. Lamers et al., Migration of antibody secreting cells towards CXCL12 depends on the isotype that forms the BCR, Eur J Immunol, vol.38, issue.11, pp.3167-77, 2008.

E. O. Luger, V. Fokuhl, M. Wegmann, A. M. Tillack, K. Achatz et al., Induction of long-lived allergen-speciic plasma cells by mucosal allergen challenge, J Allergy Clin Immunol, vol.124, issue.4, pp.819-845, 2009.

T. S. Hallstrand, J. D. Sprenger, J. M. Agosti, G. M. Longton, R. P. Witherspoon et al., Long-term acquisition of allergen-speciic IgE and asthma Frontiers in Immunology | www, vol.8, p.1277, 2017.

, following allogeneic bone marrow transplantation from allergic donors, Blood, vol.104, issue.10, pp.3086-90, 2004.

G. Achatz-straussberger, N. Zaborsky, S. Königsberger, S. Feichtner, S. Lenz et al., Limited humoral immunoglobulin E memory inluences serum immunoglobulin E levels in blood, Clin Exp Allergy, vol.39, issue.9, pp.1307-1320, 2009.

G. Achatz, L. Nitschke, and M. C. Lamers, Efect of transmembrane and cytoplasmic domains of IgE on the IgE response, Science, vol.276, issue.5311, pp.409-420, 1997.

S. Feichtner, D. Inführ, G. Achatz-straussberger, D. Schmid, A. Karnowski et al., Targeting the extracellular membrane-proximal domain of membrane-bound IgE by passive immunization blocks IgE synthesis in vivo, J Immunol, vol.180, issue.8, pp.5499-505, 2008.

H. D. Brightbill, S. Jeet, Z. Lin, D. Yan, M. Zhou et al., Antibodies speciic for a segment of human membrane IgE deplete IgE-producing B cells in humanized mice, J Clin Invest, issue.6, pp.2218-2247, 2010.

T. Ota, M. Aoki-ota, B. H. Duong, and D. Nemazee, Suppression of IgE B cells and IgE binding to Fc(epsilon)RI by gene therapy with single-chain anti-IgE

, J Immunol, vol.182, issue.12, pp.8110-8117, 2009.

S. Y. Chu, H. M. Horton, E. Pong, I. W. Leung, H. Chen et al., Reduction of total IgE by targeted coengagement of IgE B-cell receptor and Fc?RIIb with Fc-engineered antibody, J Allergy Clin Immunol, vol.129, issue.4, pp.1102-1117, 2012.

D. Pinto, E. Montani, M. Bolli, G. Garavaglia, F. Sallusto et al., A functional BCR in human IgA and IgM plasma cells, Blood, vol.121, issue.20, pp.4110-4114, 2013.

P. Blanc, L. Moro-sibilot, L. Barthly, F. Jagot, S. His et al., Mature IgM-expressing plasma cells sense antigen and develop competence for cytokine production upon antigenic challenge, Nat Commun, vol.7, p.13600, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01439204

R. Geisberger, M. Prlic, G. Achatz-straussberger, I. Oberndorfer, E. Luger et al., Phage display based cloning of proteins interacting with the cytoplasmic tail of membrane immunoglobulins, Dev Immunol, vol.9, issue.3, pp.127-161, 2002.

I. Oberndorfer, D. Schmid, R. Geisberger, G. Achatz-straussberger, R. Crameri et al., HS1-associated protein X-1 interacts with membrane-bound IgE: impact on receptor-mediated internalization, J Immunol, vol.177, issue.2, pp.1139-1184, 2006.

S. Königsberger, D. Peckl-schmid, N. Zaborsky, I. Patzak, F. Kiefer et al., HPK1 associates with SKAP-HOM to negatively regulate Rap1-mediated B-lymphocyte adhesion, PLoS One, vol.5, p.9, 2010.

D. Peckl-schmid, S. Wolkerstorfer, S. Königsberger, G. Achatz-straussberger, S. Feichtner et al., HAX1 deiciency: impact on lymphopoiesis and B-cell development, Eur J Immunol, issue.11, pp.3161-72, 2010.

J. W. Shui, J. S. Boomer, J. Han, J. Xu, G. A. Dement et al., Hematopoietic progenitor kinase 1 negatively regulates T cell receptor signaling and T cell-mediated immune responses, Nat Immunol, vol.8, issue.1, pp.84-91, 2007.

M. Poggianella, M. Bestagno, and O. R. Burrone, he extracellular membrane-proximal domain of human membrane IgE controls apoptotic signaling of the B cell receptor in the mature B cell line A20, J Immunol, vol.177, issue.6, pp.3597-605, 2006.

N. Engels, L. M. König, C. Heemann, J. Lutz, T. Tsubata et al., Recruitment of the cytoplasmic adaptor Grb2 to surface IgG and IgE provides antigen receptor-intrinsic costimulation to class-switched B cells, Nat Immunol, vol.10, issue.9, pp.1018-1043, 2009.

M. Harada, K. Magara-koyanagi, H. Watarai, Y. Nagata, Y. Ishii et al., IL-21-induced bepsilon cell apoptosis mediated by natural killer T cells suppresses IgE responses, J Exp Med, issue.13, pp.2929-2966, 2006.

D. Rabah and D. H. Conrad, Efect of cell density on in vitro mouse immunoglobulin E production, Immunology, vol.106, issue.4, pp.503-513, 2002.

K. Matsuoka, C. Taya, S. Kubo, N. Toyama-sorimachi, F. Kitamura et al., Establishment of antigen-speciic IgE transgenic mice to study pathological and immunobiological roles of IgE in vivo, Int Immunol, vol.11, issue.6, pp.987-94, 1999.

K. D. Mccoy, N. L. Harris, P. Diener, S. Hatak, B. Odermatt et al., Natural IgE production in the absence of MHC class II cognate help, Immunity, vol.24, issue.3, pp.329-368, 2006.

A. Turqueti-neves, M. Otte, C. Schwartz, M. E. Schmitt, C. Lindner et al., he extracellular domains of IgG1 and T cell-derived IL-4/IL-13 are critical for the polyclonal memory IgE response in vivo, PLoS Biol, vol.13, issue.11, p.1002290, 2015.

J. S. He, M. Meyer-hermann, D. Xiangying, L. Y. Zuan, L. A. Jones et al., he distinctive germinal center phase of IgE+ B lymphocytes limits their contribution to the classical memory response, J Exp Med, vol.210, issue.12, pp.2755-71, 2013.

S. Duchez, R. Amin, N. Cogné, L. Delpy, C. Sirac et al., Premature replacement of mu with alpha immunoglobulin chains impairs lymphopoiesis and mucosal homing but promotes plasma cell maturation, Proc Natl Acad Sci U S A, issue.7, pp.3064-3073, 2010.

D. Metzger and P. Chambon, Site-and time-speciic gene targeting in the mouse, Methods, vol.24, issue.1, pp.71-80, 2001.

C. S. Lu, A. F. Hung, C. J. Lin, J. B. Chen, C. Chen et al., Generating allergen-speciic human IgEs for immunoassays by employing human ? gene knockin mice, Allergy, vol.70, issue.4, pp.384-90, 2015.

E. Volpe, M. Sambucci, L. Battistini, and G. Borsellino, Fas-fas ligand: checkpoint of T cell functions in multiple sclerosis, Front Immunol, vol.7, p.382, 2016.

M. Yamaguchi, C. S. Lantz, H. C. Oettgen, I. M. Katona, T. Fleming et al., IgE enhances mouse mast cell Fc(epsilon)RI expression in vitro and in vivo: evidence for a novel ampliication mechanism in IgEdependent reactions, J Exp Med, vol.185, issue.4, pp.663-72, 1997.

A. M. Greer, N. Wu, A. L. Putnam, P. G. Woodruf, P. Wolters et al., Serum IgE clearance is facilitated by human Fc?RI internalization, J Clin Invest, vol.124, issue.3, pp.1187-98, 2014.

L. Vangelista, E. Soprana, M. Cesco-gaspere, P. Mandiola, D. Lullo et al., Membrane IgE binds and activates Fc epsilon RI in an antigen-independent manner, J Immunol, vol.174, issue.9, pp.5602-5613, 2005.

R. G. Hibbert, P. Teriete, G. J. Grundy, R. L. Beavil, R. Reljic et al., he structure of human CD23 and its interactions with IgE and CD21, J Exp Med, vol.202, issue.6, pp.751-60, 2005.

P. Yu, M. Kosco-vilbois, M. Richards, G. Köhler, and M. C. Lamers, Negative feedback regulation of IgE synthesis by murine CD23, Nature, vol.369, issue.6483, pp.753-759, 1994.

M. Hirano, R. S. Davis, W. D. Fine, S. Nakamura, K. Shimizu et al., IgEb immune complexes activate macrophages through Fc?RIV binding, Nat Immunol, vol.8, issue.7, pp.762-71, 2007.

B. Platzer, F. Ruiter, J. Van-der-mee, and E. Fiebiger, Soluble IgE receptors-elements of the IgE network, Immunol Lett, issue.1, pp.36-44, 2011.

T. Niki, S. Tsutsui, S. Hirose, S. Aradono, Y. Sugimoto et al., Galectin-9 is a high ainity IgE-binding lectin with anti-allergic efect by blocking IgE-antigen complex formation, J Biol Chem, issue.47, pp.32344-52, 2009.

I. Dogan, B. Bertocci, V. Vilmont, F. Delbos, J. Mégret et al., Multiple layers of B cell memory with diferent efector functions, Nat Immunol, vol.10, issue.12, pp.1292-1301, 2009.

A. D. Gitlin, L. Boehmer, A. Gazumyan, Z. Shulman, T. Y. Oliveira et al., Independent roles of switching and hypermutation in the development and persistence of B lymphocyte memory, Immunity, vol.44, issue.4, pp.769-81, 2016.

B. A. Wurzburg and T. S. Jardetzky, Conformational lexibility in immunoglobulin E-Fc 3-4 revealed in multiple crystal forms, J Mol Biol, vol.393, issue.1, pp.176-90, 2009.

N. Drinkwater, B. Cossins, A. H. Keeble, M. Wright, K. Cain et al., Human immunoglobulin E lexes between acutely bent and extended conformations, Nat Struct Mol Biol, vol.21, issue.4, pp.397-404, 2014.

P. Tong, A. Granato, T. Zuo, N. Chaudhary, A. Zuiani et al., IgH isotype-speciic B cell receptor expression inluences B cell fate, Proc Natl Acad Sci U S A, vol.114, issue.40, pp.8411-8431, 2017.

M. Muramatsu, K. Kinoshita, S. Fagarasan, S. Yamada, Y. Shinkai et al., Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme, Cell, vol.102, pp.553-563, 2000.

G. Teng and F. N. Papavasiliou, Immunoglobulin somatic hypermutation, Annu. Rev. Genet, vol.41, pp.107-120, 2007.

P. Revy, T. Muto, Y. Levy, F. Geissmann, A. Plebani et al., Activationinduced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper-IgM syndrome (HIGM2), Cell, vol.102, pp.565-575, 2000.

J. Stavnezer, A. Björkman, L. Du, A. Cagigi, and Q. Pan-hammarström, Mapping of switch recombination junctions, a tool for studying DNA repair pathways during immunoglobulin class switching, Adv. Immunol, vol.108, pp.45-109, 2010.

P. Soulas-sprauel, G. L. Guyader, P. Rivera-munoz, V. Abramowski, C. Olivier-martin et al., Role for DNA repair factor XRCC4 in immunoglobulin class switch recombination, J. Exp. Med, vol.204, pp.1717-1727, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00167659

M. R. Ehrenstein and M. S. Neuberger, Deficiency in Msh2 affects the efficiency and local sequence specificity of immunoglobulin class-switch recombination: parallels with somatic hypermutation, EMBO J, vol.18, pp.3484-3490, 1999.

Q. Pan, H. Rabbani, F. C. Mills, E. Severinson, and L. Hammarström, Allotype-associated variation in the human g3 switch region as a basis for differences in IgG3 production, J. Immunol, vol.158, pp.5849-5859, 1997.

M. Nakamura, S. Kondo, M. Sugai, M. Nazarea, S. Imamura et al., High frequency class switching of an IgM+ B lymphoma clone CH12F3 to IgA+ cells, Int. Immunol, vol.8, pp.193-201, 1996.

Q. Pan, C. Petit-frére, S. Dai, P. Huang, H. C. Morton et al., Regulation of switching and production of IgA in human B cells in donors with duplicated alpha1 genes, Eur. J. Immunol, vol.31, pp.3622-3630, 2001.

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, Basic local alignment search tool, J. Mol. Biol, vol.215, pp.403-410, 1990.

Q. Pan-hammarström, A. Lähdesmäki, Y. Zhao, L. Du, Z. Zhao et al., Disparate roles of ATR and ATM in immunoglobulin class switch recombination and somatic hypermutation, J. Exp. Med, vol.203, pp.99-110, 2006.

B. Reina-san-martin, J. Chen, A. Nussenzweig, and M. C. Nussenzweig, Enhanced intra-switch region recombination during immunoglobulin class switch recombination in 53BP1 -/-B cells, Eur. J. Immunol, vol.37, pp.235-239, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00166263

Y. Safonova, A. Lapidus, and J. Lill, IgSimulator: a versatile immunosequencing simulator, Bioinformatics, vol.31, pp.3213-3215, 2015.

Q. Pan, C. Petit-frére, A. Lähdesmäki, H. Gregorek, K. H. Chrzanowska et al., Alternative end joining during switch recombination in patients with ataxia-telangiectasia, Eur. J. Immunol, vol.32, pp.1300-1308, 2002.

H. Ijspeert, P. A. Van-schouwenburg, D. Van-zessen, I. Pico-knijnenburg, A. P. Stubbs et al., Antigen Receptor Galaxy: a userfriendly, web-based tool for analysis and visualization of T and B cell receptor repertoire data, J. Immunol, vol.198, pp.4156-4165, 2017.

A. W. Langerak, M. Br?-uggemann, F. Davi, N. Darzentas, D. Gonzalez et al., High-throughput immunogenetics for clinical and research applications in immunohematology: potential and challenges, J. Immunol, vol.198, pp.3765-3774, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01516289

, Quantitative PCR was performed using SYBR ® qPCR green and premix Ex Taq (TAKARA)

, post-switch IgG1, membrane and secreted IgM transcripts were quantified after four days of B-cell stimulation with LPS or LPS+IL4. RNA from B-lymphocytes was extracted using GenElute Mammalian RNA miniprep Kit (Sigma Aldrich). cDNA was synthesized using the High Capacity cDNA Reverse Transcription kit (Thermo Fisher Scientific). Quantitative PCR primers used to study heavy chain expression for the secretory

, All transcripts were normalized to Glyceraldehyde-3-phosphate dehydrogenase (Gapdh) on LPS stimulated sorted CD43 neg spleen B-cells. Briefly, 15×10 6 cells were cross-linked at room temperature for 15 min in 15 mL PBS, 1% formaldehyde. The reaction was quenched with 2, IgM (mIgM qPCR For, mIgM qPCR SEC Rev), membrane IgM (mIgM qPCR for, mIgM qPCR MB Rev)

, chromatin was precleared by rotating for 2h at 4 °C with 50 mL of 50% protein A/G slurry (0.2 mg / mL sheared salmon sperm DNA, 0.5 mg/ mL BSA, 01% SDS, 1.1% Triton X-100, 1.2 mM EDTA, 16.7 mM Tris-HCl, pH 8.1, and 167 mM NaCl)

B. L. , D. J. Taatjes, M. Belakavadi, P. K. Pandey, R. Vijayvargia et al., Merck) or with anti-acetyl-histone H3(Lys27) (Abcam) polyclonal antibodies. Immune complexes were precipitated by the addition of protein A/G. Cross-linking was reversed by overnight incubation (70 °C) in TE References Allen, Cell equivalents (1×10 6 ) were saved as input, and the remaining cell equivalents were incubated overnight with anti-acetyl-histone H3(Lys9), vol.16, pp.3932-3942, 2008.

F. Boyer, H. Boutouil, I. Dalloul, Z. Dalloul, J. Cook-moreau et al., CSReport: A New Computational Tool Designed for Automatic Analysis of Class Switch Recombination Junctions Sequenced by High-Throughput Sequencing, The multitalented Mediator complex. Trends Biochem. Sci, vol.198, pp.531-537, 2013.

M. Cogné, R. Lansford, A. Bottaro, J. Zhang, J. Gorman et al., A class switch control region at the 3' end of the immunoglobulin heavy chain locus, Cell, vol.77, pp.737-747, 1994.

D. D. Dudley, J. Chaudhuri, C. H. Bassing, and F. W. Alt, Mechanism and control of V(D)J recombination versus class switch recombination: similarities and differences, Adv. Immunol, vol.86, pp.43-112, 2005.

J. L. Fahey and S. Sell, THE IMMUNOGLOBULINS OF MICE. V. THE METABOLIC (CATABOLIC) PROPERTIES OF FIVE IMMUNOGLOBULIN CLASSES, 1965.

, J. Exp. Med, vol.122, pp.41-58

L. Gaudot, A. Thomas-claudepierre, I. Robert, E. Schiavo, V. Heyer et al., Med1 deficiency alters the somatic hypermutation spectrum in murine B cells, 2018.

, Eur. J. Immunol, vol.48, pp.720-723

N. Ghazzaui, H. Issaoui, A. Saintamand, C. Oblet, C. Carrion et al., The immunoglobulin heavy chain 3' regulatory region superenhancer controls mouse B1 B-cell fate and late VDJ repertoire diversity, Proc. Natl. Acad. Sci, vol.2, pp.252-262, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01902204

S. , , vol.111, pp.2644-2649

M. Kingzette, H. Spieker-polet, P. C. Yam, S. K. Zhai, and K. L. Knight, Transchromosomal recombination within the Ig heavy chain switch region in B lymphocytes, Proc. Natl. Acad. Sci. U.S.A, vol.95, pp.11840-11845, 1998.

B. Laffleur, S. M. Bardet, A. Garot, M. Brousse, A. Baylet et al., Immunoglobulin genes undergo legitimate repair in human B cells not only after cis-but also frequent trans-class switch recombination, Genes Immun, vol.15, pp.341-346, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01112042

L. Noir, S. , B. Laffleur, C. Carrion, A. Garot et al., The IgH locus 3' cis-regulatory super-enhancer co-opts AID for allelic transvection, Oncotarget, 2017.

S. Péron, B. Laffleur, N. Denis-lagache, J. Cook-moreau, A. Tinguely et al., AID-driven deletion causes immunoglobulin heavy chain locus suicide recombination in B cells, Science, vol.336, pp.931-934, 2012.

E. Pinaud, M. Marquet, R. Fiancette, S. Péron, C. Vincent-fabert et al.,

, The IgH locus 3' regulatory region: pulling the strings from behind, Adv. Immunol, vol.110, pp.27-70

D. Reynaud, I. A. Demarco, K. L. Reddy, H. Schjerven, E. Bertolino et al., Interallelic class switch recombination contributes significantly to class switching in mouse B cells, Nat. Immunol, vol.9, pp.6176-6183, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00458866

P. Rouaud, C. Vincent-fabert, A. Saintamand, R. Fiancette, M. Marquet et al., The IgH 3' regulatory region controls somatic hypermutation in germinal center B cells, J. Exp. Med, vol.210, pp.1501-1507, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00903790

A. Saintamand, P. Rouaud, A. Garot, F. Saad, C. Carrion et al., The IgH 3' regulatory region governs ? chain transcription in mature B lymphocytes and the B cell fate, Oncotarget, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01212314

A. Saintamand, P. Rouaud, F. Saad, G. Rios, M. Cogné et al., Elucidation of IgH 3' region regulatory role during class switch recombination via germline deletion, Nat Commun, vol.6, p.7084, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01212563

J. Stavnezer, J. E. Guikema, and C. E. Schrader, Mechanism and Regulation of Class Switch Recombination, Annual Review of Immunology, vol.26, pp.261-292, 2008.

A. Thomas-claudepierre, I. Robert, P. P. Rocha, R. Raviram, E. Schiavo et al., Mediator facilitates transcriptional activation and dynamic long-range contacts at the IgH locus during class switch recombination, J. Exp. Med, vol.213, pp.303-312, 2016.

C. Vincent-fabert, R. Fiancette, E. Pinaud, V. Truffinet, N. Cogné et al.,

. Denizot, Genomic deletion of the whole IgH 3' regulatory region (hs3a, hs1,2, hs3b, and hs4) dramatically affects class switch recombination and Ig secretion to all isotypes, Blood, vol.116, pp.1895-1898, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00514236

D. Wang, I. Garcia-bassets, C. Benner, W. Li, X. Su et al., Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA, Nature, vol.474, pp.390-394, 2011.

W. A. Whyte, D. A. Orlando, D. Hnisz, B. J. Abraham, C. Y. Lin et al., S-S synapsis during class switch recombination is promoted by distantly located transcriptional elements and activation-induced deaminase, Immunity, vol.153, pp.711-722, 2007.

E. Pinaud, The IgH locus 3? regulatory region: pulling the strings from behind, Ad. Immunol, vol.110, pp.27-70, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00696444

C. Chauveau, E. Pinaud, and M. Cogne, Synergies between regulatory elements of the immunoglobulin heavy chain locus and its palindromic 3? locus control region, Eur. J. Immunol, vol.28, pp.3048-3056, 1998.

C. L. Morvan, E. Pinaud, C. Decourt, A. Cuvillier, and M. Cogné, The immunoglobulin heavy-chain locus hs3b and hs4 3? enhancers are dispensable for VDJ assembly and somatic hypermutation, Blood, vol.102, pp.1421-1427, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00023823

P. Rouaud, Enhancers located in heavy chain regulatory region (hs3a, hs1,2, hs3b, and hs4) are dispensable for diversity of VDJ recombination, J. Biol. Chem, vol.287, pp.8356-8360, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00696502

F. Z. Braikia, Developmental switch in the transcriptional activity of a longrange regulatory element, Mol. Cell. Biol, vol.3, pp.3370-3380, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01501824

C. Guo, CTCF-binding elements mediate control of V(D)J recombination, Nature, vol.477, pp.424-430, 2011.

M. O. Ashi, Physiological and druggable skipping of immunoglobulin variable exons in plasma cells, Cell Mol Immunol, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02048156

A. Thomas-claudepierre, Mediator facilitates transcriptional activation and dynamic long-range contacts at the IgH locus during class switch recombination, J. Exp. Med, vol.213, pp.303-312, 2016.

B. L. Allen and D. J. Taatjes, The Mediator complex: a central integrator of transcription, Nat. Rev. Mol. Cell Biol, vol.16, pp.155-166, 2015.

W. A. Whyte, Master transcription factors and mediator establish superenhancers at key cell identity genes, Cell, vol.153, pp.307-319, 2013.

M. Fuxa, Pax5 induces V-to-DJ rearrangements and locus contraction of the immunoglobulin heavy-chain gene, Genes Dev, vol.18, pp.411-422, 2004.

J. Verma-gaur, Noncoding transcription within the Igh distal VH region at PAIR elements affects the 3D structure of the Igh locus in pro-B cells, Proc. Natl Acad. Sci. USA, vol.109, pp.17004-17009, 2012.

C. Xu, L. Schaffer, S. R. Head, and A. J. Feeney, Reciprocal patterns of methylation of H3K36 and H3K27 on proximal vs. distal IgVH genes are modulated by IL-7 and Pax5, Proc. Natl Acad. Sci. USA, vol.105, pp.8685-8690, 2008.

, Annexe, vol.8

, Locus Suicide Recombination of the functionally rearranged IgH allele actively occurs in B-cells from inflamed human lymphoid tissues

I. Dalloul, F. Boyer, Z. Dalloul, A. Pignarre, G. Lacombe et al., Michel Cogné Manuscrit soumis à PLOS Genetics Ce papier montre la détection d'un nouveau type de remaniment qui touche le locus IgH

J. , expérimentation ayant conduit à la rédaction de cet article (preparation des PBMC à partir du sang total, tri cellulaire, stimulation in-vitro des cellules B humaines, préparation des librairies pour la NGS)

, Locus Suicide Recombination actively occurs on the functionally rearranged IgH allele in B-cells from inflamed human lymphoid tissues

, JeanClaude Aldigier, vol.1, p.4

. Cnrs, . Inserm, U. U1262, ;. Limoges, J. Mc et al., 3 Institut Imagine INSERM U1163, vol.87000

, AID promotes affinity maturation of Ig variable regions and class switch recombination (CSR) in mature B lymphocytes. In the IgH locus, these processes are under control by the 3' regulatory region (3'RR) super-enhancer, a region demonstrated in the mouse to be both transcribed and itself targeted by AID-mediated recombination. Alternatively to CSR, IgH deletions joining Sµ to "like-switch" DNA repeats that flank the 3' super-enhancer can thus accomplish so-called "locus suicide recombination" (LSR) in mouse B-cells. We now show that AID-mediated LSR also actively occurs in humans, and provides an activationinduced cell death pathway in multiple conditions of B-cell activation. LSR deletions either focus on the functional IgH allele or are bi-allelic, since they can only be detected when they are ongoing and their signature vanishes from fully differentiated plasma cells or from "resting" blood memory B-cells, but readily reappears when such memory Bcells are re-stimulated in vitro, Abstract: B-cell activation yields abundant cell death in parallel to clonal amplification and remodeling of immunoglobulin (Ig) genes by activation-induced deaminase (AID)

, Manuscript Click here to access/download;Manuscript;dalloul LSR manuscript

, Blood from healthy volunteers was collected, after obtaining written informed consent, from the CHU Dupuytren Hospital, ANSM: 2012-A00630-430) or from the Etablissement Français du Sang

. Helsinki, Blood from septic patients was collected from the Hematology department, CHU Dupuytren. The study was accepted by the Ethics Committee of CHU Dupuytren (n° 119-2013-19). The trial was registered under

, All were operative pieces. Bone marrow aspirates obtained from patients undergoing cardiac surgery. Subjects were recruited under institutional review board approval and informed consent according to the Declaration of Helsinki. Samples from AID-/-patients (3 PBMC samples and 1 sample of sorted tonsil B-cells) were provided by Pr Anne Durandy, ClinicalTrials.gov: NCT01995448. Tonsils were obtained from patients undergoing tonsillectomy performed in CHU de Rennes, while adenoids were obtained from CHU Dupuytren

, Human PBMC were obtained by density gradient centrifugation and human B-cells were negatively sorted from PBMC using EasySep Human B-cell Isolation Kit (StemCell) according to the manufacturer's instructions. Purified B-lymphocytes were seeded at 1 × 10 6 cells/ml in IMDM medium (Lonza) supplemented with 20% fetal bovine serum (Deutscher), 1% penicillin/streptomycin (Gibco) and stimulated for 4 days with 100 ng/ml human recombinant CD40L (Enzo Life Sciences) alone or with 50 ng/ml recombinant human IL-4 (Peprotech) or 2 µg/ml Gardiquimod (InvivoGen) or 2.5 µg/ml CpG oligodeoxynucleotide 2006 (InvivoGen) or 100 ng/ml IL-21 (R&D Systems) or 100ng/ml INF? (R&D Systems) or 50 ng/ml Pam3CSK4 (InvivoGen) or 0

, Sorting of memory, transitional, and naive B-cells, and generation of in vitro activated plasmablasts from cultured naive B-cells

, PBMCs from healthy volunteers were obtained after density centrifugation. Naive B-cells (NBCs) were purified by negative selection using magnetic cell separation (Naive B-cell Isolation Kit II

, Purified NBCs were labeled with 1 ?M CFSE (Thermofisher) at 37°C for 10 min and washed in complete medium consisting of RPMI 1640 supplemented with 10% FCS and antibiotics (all from Gibco, Thermofisher), Miltenyi Biotec), following the manufacturer's instructions, with the AutoMACS deplete-sensitive program. Purity of isolated CD19+CD27? NBCs was routinely >99%

P. A. Grove, At day-6, cells were separated by cell sorting (FACSAria cell sorter, BD Biosciences) into undifferentiated CFSE hi CD38 lo (bystander lymphocytes, 100 ng/ml recombinant human soluble CD40L (NCI), 2 ?g/ml CpG oligodeoxynucleotide 2006 (Miltenyi Biotec), and 50 U/ml recombinant IL-2 (SARL Pharmaxie)

, Miltenyi Biotec), we also purified transitional, naive and memory Bcells which were sorted as CD27+CD38 lo CD24 lo , CD27-CD38 lo CD24 lo and CD27-CD38 hi CD24 hi subsets, respectively. Isolated cells were stimulated 4 days with different combinations of 100 ng/ml CD40L, After B-cell isolation (B-cell isolation kit II

. Hipp, CD38 hi /CD138+ mature plasma cells were purified from bone marrow aspirates. RNAseq on activated human B-cells Human naive B-cells were purified and activated in vitro as described, Actively differentiating plasmablasts from tonsils were purified as previously described [21]as CD19+IgD-CD10-CD38 hi cells, 2017.

, Quality of sequencing data was monitored by FastQC. Residual adapters from sequencing were trimmed using Cutadapt 1.0. Potential PCR duplicates were removed using SAMtools 1.3. Reads were then aligned CSR-seq experiments DNA from B-cells was extracted using GenElute Mammalian Genomic DNA Miniprep Kit (Sigma), S?/S? junctions were amplified in triplicate by nested PCR with 200 ng DNA (Herculase II Fusion DNA Polymerase, Agilent

, Genomics) using the following consensus primers which amplify all four classes of human IgG junctions: PCR1: Sµ1a 5'-CCAGGTAGTGGAGGGTGGTA-3' and IgGa consensus reverse 5'-GGTCACCACGCTGCTGAG-3, Sµ1b forward 5'-CAGGGAACTGGGGTATCAAG-3' and IgGb consensus reverse: 5', vol.2

, S?/3'RR junctions were amplified under the same conditions as for Sµ/S? junctions using different primers located at different positions within the 3' RR. The forward primer located in the E? region (E?H1) was used with a reverse primer located downstream of Hs4 (3'FarHhs4 reverse) or with a primer located in Hs1.2 (Hs1.2 reverse1) or in Hs3 (Hs3 reverse 1)

, ) for a survey of direct repeats in window range set over 20bp, with a minimal identity threshold set at 90% (Fig. 1A). Five to six human LS regions stand in each of the human IgH 3'RR superenhancers. These LS regions are each 0.5 to 2 kb long, and are interspersed with core enhancer elements, which they do not overlap. Human 3'RR LS sequences additionally show 35-50% G-richness on one or the other DNA strand, and analysis using the G4, Architectures of human 3'RR1 and 3'RR2 elements were analyzed for the presence of direct and inverted repeats (Fig1)

, This is in contrast with IgH constant genes (see for example C? and the preceding S? region on Fig 1B), which are predominantly transcribed in the sense orientation. LSR occurs at multiple sites within the whole extent of both human 3'RR As previously described for mouse LSR, we identified human LSR junctions by nested PCR in DNA from B-cell samples [4]. The specificity of the read-out for these PCR assays was improved by replacing the final hybridization step of PCR products, initially done with specific probes[4]), with high-throughput sequencing adapted from our recently described CSR evaluation algorithm, CSReport [22]. Sequence determination thus precisely mapped the breakpoint sites. CSReport mapped LSR junctions linking Sµ to either the human 3'RR1 downstream of C?1 or 3'RR2 downstream of C?2. Although such an "LSR-seq" DNA amplification method, When checking RNA-seq data from activated human B-cells, we noticed that 3'RR transcription occurred in both the sense and antisense orientation in reference to IgH constant genes, and that, quantitatively, it revealed equivalent amounts of transcripts corresponding to either orientation (Fig. 1B)

C. T. Mayer, A. Gazumyan, E. E. Kara, A. D. Gitlin, J. Golijanin et al., The microanatomic segregation of selection by apoptosis in the germinal center, Science, vol.358, 2017.

S. Lebecque, O. De-bouteiller, C. Arpin, J. Banchereau, and Y. J. Liu, Germinal center founder cells display propensity for apoptosis before onset of somatic mutation, J Exp Med, vol.185, pp.563-571, 1997.

C. C. Goodnow, C. G. Vinuesa, K. L. Randall, F. Mackay, and R. Brink, Control systems and decision making for antibody production, Nat Immunol, vol.11, pp.681-688, 2010.

S. Péron, B. Laffleur, N. Denis-lagache, J. Cook-moreau, A. Tinguely et al., AID-driven deletion causes immunoglobulin heavy chain locus suicide recombination in B cells, Science, vol.336, pp.931-934, 2012.

E. Pinaud, M. Marquet, R. Fiancette, S. Péron, C. Vincent-fabert et al., The IgH locus 3' regulatory region: pulling the strings from behind, Adv Immunol, vol.110, pp.27-70, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00696444

M. Cogné, R. Lansford, A. Bottaro, J. Zhang, J. Gorman et al., A class switch control region at the 3' end of the immunoglobulin heavy chain locus, Cell, vol.77, pp.737-747, 1994.

E. Pinaud, A. A. Khamlichi, L. Morvan, C. Drouet, M. Nalesso et al., Localization of the 3' IgH locus elements that effect long-distance regulation of class switch recombination, Immunity, vol.15, pp.187-199, 2001.

P. Rouaud, C. Vincent-fabert, A. Saintamand, R. Fiancette, M. Marquet et al., The IgH 3' regulatory region controls somatic hypermutation in germinal center B cells, J Exp Med, vol.210, pp.1501-1507, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00903790

A. Saintamand, P. Rouaud, F. Saad, G. Rios, M. Cogné et al., Elucidation of IgH 3' region regulatory role during class switch recombination via germline deletion, Nat Commun, vol.6, p.7084, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01212563

C. Vincent-fabert, R. Fiancette, E. Pinaud, V. Truffinet, N. Cogné et al., Genomic deletion of the whole IgH 3' regulatory region (hs3a, hs1,2, hs3b, and hs4) dramatically affects class switch recombination and Ig secretion to all isotypes, Blood, vol.116, pp.1895-1898, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00514236

L. Noir, S. Laffleur, B. Carrion, C. Garot, A. Lecardeur et al., The IgH locus 3' cis-regulatory super-enhancer co-opts AID for allelic transvection, Oncotarget, 2017.

C. Chauveau and M. Cogné, Palindromic structure of the IgH 3'locus control region, Nat Genet, vol.14, pp.15-16, 1996.

C. Chauveau, E. Pinaud, and M. Cogne, Synergies between regulatory elements of the immunoglobulin heavy chain locus and its palindromic 3' locus control region, Eur J Immunol, vol.28, pp.3048-3056, 1998.

A. Saintamand, C. Vincent-fabert, A. Garot, P. Rouaud, Z. Oruc et al., Deciphering the importance of the palindromic architecture of the immunoglobulin heavy-chain 3' regulatory region, Nat Commun, vol.7, p.10730, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01442466

L. Noir, S. Boyer, F. Lecardeur, S. Brousse, M. Oruc et al., Functional anatomy of the immunoglobulin heavy chain 3? super-enhancer needs not only core enhancer elements but also their unique DNA context, Nucleic Acids Res, vol.45, pp.5829-5837, 2017.

E. Pinaud, C. Aupetit, C. Chauveau, and M. Cogné, Identification of a homolog of the C alpha 3'/hs3 enhancer and of an allelic variant of the 3'IgH/hs1,2 enhancer downstream of the human immunoglobulin alpha 1 gene, Eur J Immunol, vol.27, pp.2981-2985, 1997.

F. C. Mills, N. Harindranath, M. Mitchell, and E. E. Max, Enhancer complexes located downstream of both human immunoglobulin Calpha genes, J Exp Med, vol.186, pp.845-858, 1997.

M. L. Duquette, P. Handa, J. A. Vincent, A. F. Taylor, and N. Maizels, Intracellular transcription of G-rich DNAs induces formation of G-loops, novel structures containing G4 DNA, Genes Dev, vol.18, pp.1618-1629, 2004.

Q. Qiao, L. Wang, F. Meng, J. K. Hwang, F. W. Alt et al., AID Recognizes Structured DNA for Class Switch Recombination, Mol Cell, vol.67, pp.361-373, 2017.

G. Caron, M. Hussein, M. Kulis, C. Delaloy, F. Chatonnet et al., Cell-Cycle-Dependent Reconfiguration of the DNA Methylome during Terminal Differentiation of Human B Cells into Plasma Cells, Cell Reports, vol.13, pp.1059-1071, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01219671

G. Caron, L. Gallou, S. Lamy, T. Tarte, K. Fest et al., CXCR4 expression functionally discriminates centroblasts versus centrocytes within human germinal center B cells, J Immunol, vol.182, pp.7595-7602, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00869387

F. Boyer, H. Boutouil, I. Dalloul, Z. Dalloul, J. Cook-moreau et al., A New Computational Tool Designed for Automatic Analysis of Class Switch Recombination Junctions Sequenced by High-Throughput Sequencing, J Immunol, vol.198, pp.4148-4155, 2017.

A. Bedrat, L. Lacroix, and J. Mergny, Re-evaluation of G-quadruplex propensity with G4Hunter, Nucleic Acids Res, vol.44, pp.1746-1759, 2016.

A. A. Khamlichi, F. Glaudet, Z. Oruc, V. Denis, L. Bert et al., Immunoglobulin class-switch recombination in mice devoid of any S mu tandem repeat, Blood, vol.103, pp.3828-3836, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00023269

Z. Z. Zhang, N. R. Pannunzio, C. Hsieh, K. Yu, and M. R. Lieber, The role of G-density in switch region repeats for immunoglobulin class switch recombination, Nucleic Acids Res, vol.42, pp.13186-13193, 2014.

A. C. Vallur and N. Maizels, Activities of human exonuclease 1 that promote cleavage of transcribed immunoglobulin switch regions, Proc Natl Acad Sci USA, vol.105, pp.16508-16512, 2008.

Z. Dalloul, P. Chenuet, I. Dalloul, F. Boyer, J. Aldigier et al., G-quadruplex DNA targeting alters class-switch recombination in B cells and attenuates allergic inflammation, J Allergy Clin Immunol, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02343989

C. Ribeiro-de-almeida, S. Dhir, A. Dhir, A. E. Moghaddam, Q. Sattentau et al., RNA Helicase DDX1 Converts RNA G-Quadruplex Structures into R-Loops to Promote IgH Class Switch Recombination, Mol Cell, vol.70, pp.650-662, 2018.

, Tissue distribution and dependence of responsiveness of human antigen-specific memory B cells, 2018.

N. Gadol, M. A. Peacock, and K. A. Ault, Antigenic phenotype and functional characterization of human tonsil B cells, Blood, vol.71, pp.1048-1055, 1988.

P. Rouaud, A. Saintamand, F. Saad, C. Carrion, S. Lecardeur et al., Elucidation of the enigmatic IgD class-switch recombination via germline deletion of the IgH 3' regulatory region, J Exp Med, vol.211, pp.975-985, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01212566

, Références bibliographiques

Y. Akahori and Y. Kurosawa, Nucleotide Sequences of All the ? Gene Loci of Murine Immunoglobulin Heavy Chains, Genomics, vol.41, pp.100-104, 1997.

Y. Akamatsu and M. A. Oettinger, Distinct roles of RAG1 and RAG2 in binding the V(D)J recombination signal sequences, Mol. Cell. Biol, vol.18, pp.4670-4678, 1998.

A. Alessandrini and S. V. Desiderio, Coordination of immunoglobulin DJH transcription and D-to-JH rearrangement by promoter-enhancer approximation, Mol. Cell. Biol, vol.11, pp.2096-2107, 1991.

M. B. Almejun and M. Borge, Somatic Hypermutation Defects in Common Variable Immune Deficiency, Curr Allergy Asthma Rep, vol.17, p.76, 2017.

R. Ameratunga, S. Woon, D. Gillis, W. Koopmans, and R. Steele, New diagnostic criteria for common variable immune deficiency (CVID), which may assist with decisions to treat with intravenous or subcutaneous immunoglobulin, Clin Exp Immunol, vol.174, pp.203-211, 2013.

M. Bahjat and J. E. Guikema, The Complex Interplay between DNA Injury and Repair in Enzymatically Induced Mutagenesis and DNA Damage in B Lymphocytes, Int J Mol Sci, vol.18, 2017.

C. H. Bassing, W. Swat, A. , and F. W. , The mechanism and regulation of chromosomal V(D)J recombination, Cell, vol.109, pp.45-55, 2002.

A. Bébin, C. Carrion, M. Marquet, N. Cogné, S. Lecardeur et al., In vivo redundant function of the 3' IgH regulatory element HS3b in the mouse, J. Immunol, vol.184, pp.3710-3717, 2010.

A. C. Belkina, B. S. Nikolajczyk, and G. V. Denis, BET protein function is required for inflammation: Brd2 genetic disruption and BET inhibitor JQ1 impair mouse macrophage inflammatory responses, J. Immunol, vol.190, pp.3670-3678, 2013.

M. Bensmana, S. Huck, G. Lefranc, and M. P. Lefranc, The human immunoglobulin pseudo-gamma IGHGP gene shows no major structural defect, BET bromodomain inhibitor (JQ1) and tumor angiogenesis, vol.16, pp.316-317, 1988.
URL : https://hal.archives-ouvertes.fr/hal-01946233

R. S. Blumberg, D. Lillicrap, and I. Fc, Tolerogenic properties of the Fc portion of IgG and its relevance to the treatment and management of hemophilia, Tolerance Group, vol.131, pp.2205-2214, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02328264

A. Bottaro, F. Young, J. Chen, M. Serwe, F. Sablitzky et al., Deletion of the IgH intronic enhancer and associated matrix-attachment regions decreases, but does not abolish, class switching at the mu locus, Int. Immunol, vol.10, pp.799-806, 1998.

P. Bruhns, Properties of mouse and human IgG receptors and their contribution to disease models, Blood, vol.119, pp.5640-5649, 2012.

P. Bruhns, B. Iannascoli, P. England, D. A. Mancardi, N. Fernandez et al., Specificity and affinity of human Fcgamma receptors and their polymorphic variants for human IgG subclasses, Blood, vol.113, pp.3716-3725, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-00363931

M. Van-der-burg, T. Tümkaya, M. Boerma, S. De-bruin-versteeg, A. W. Langerak et al., Ordered recombination of immunoglobulin light chain genes occurs at the IGK locus but seems less strict at the IGL locus, Blood, vol.97, pp.1001-1008, 2001.

T. Cantaert, J. Schickel, J. M. Bannock, Y. Ng, C. Massad et al., Activation-Induced Cytidine Deaminase Expression in Human B Cell Precursors Is Essential for Central B Cell Tolerance, Immunity, vol.43, pp.884-895, 2015.

M. Capron, C. , and A. , Immunoglobulin E and effector cells in schistosomiasis, Science, vol.264, pp.1876-1877, 1994.

A. Cerutti, The regulation of IgA class switching, Nat. Rev. Immunol, vol.8, pp.421-434, 2008.

C. Chauveau and M. Cogné, Palindromic structure of the IgH 3'locus control region, Nat. Genet, vol.14, pp.15-16, 1996.

K. Chen, W. Xu, M. Wilson, B. He, N. W. Miller et al., Immunoglobulin D enhances immune surveillance by activating antimicrobial, proinflammatory and B cell-stimulating programs in basophils, Nat. Immunol, vol.10, pp.889-898, 2009.

C. Cobaleda, A. Schebesta, A. Delogu, and M. Busslinger, Pax5: the guardian of B cell identity and function, Nat. Immunol, vol.8, pp.463-470, 2007.

M. Cogné, I. Dalloul, F. Boyer, Z. Dalloul, A. Pignarre et al., Locus Suicide Recombination actively occurs on the functionally rearranged IgH allele in B-cells from inflamed human lymphoid tissues, 2018.

M. E. Conley and W. J. Koopman, Serum IgA1 and IgA2 in normal adults and patients with systemic lupus erythematosus and hepatic disease, Clin. Immunol. Immunopathol, vol.26, pp.390-397, 1983.

J. C. Cookson, R. A. Heald, and M. F. Stevens, Antitumor Polycyclic Acridines. 17. Synthesis and Pharmaceutical Profiles of Pentacyclic Acridinium Salts Designed To Destabilize Telomeric Integrity, J. Med. Chem, vol.48, pp.7198-7207, 2005.

S. L. Cree and M. A. Kennedy, Relevance of G-quadruplex structures to pharmacogenetics, Front Pharmacol, vol.5, p.160, 2014.

D. M. Czajkowsky and Z. Shao, The human IgM pentamer is a mushroom-shaped molecule with a flexural bias, Proc. Natl. Acad. Sci. U.S.A, vol.106, pp.14960-14965, 2009.

P. D'addabbo, M. Scascitelli, V. Giambra, M. Rocchi, and D. Frezza, Position and sequence conservation in Amniota of polymorphic enhancer HS1.2 within the palindrome of IgH 3'Regulatory Region, BMC Evol. Biol, vol.11, p.71, 2011.

J. M. Dal-porto, S. B. Gauld, K. T. Merrell, D. Mills, A. E. Pugh-bernard et al., B cell antigen receptor signaling 101, Mol. Immunol, vol.41, pp.599-613, 2004.

A. De-cian, L. Guittat, M. Kaiser, B. Saccà, S. Amrane et al., Fluorescence-based melting assays for studying quadruplex ligands, Methods, vol.42, pp.183-195, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00258193

J. E. Delmore, G. C. Issa, M. E. Lemieux, P. B. Rahl, J. Shi et al., BET bromodomain inhibition as a therapeutic strategy to target c-Myc, Cell, vol.146, pp.904-917, 2011.

Y. M. Deniz and N. Gupta, Safety and tolerability of omalizumab (Xolair), a recombinant humanized monoclonal anti-IgE antibody, Clin Rev Allergy Immunol, vol.29, pp.31-48, 2005.

M. Descatoire, S. Weller, S. Irtan, S. Sarnacki, J. Feuillard et al., Identification of a human splenic marginal zone B cell precursor with NOTCH2-dependent differentiation properties, J. Exp. Med, vol.211, pp.987-1000, 2014.

J. M. Di-noia and M. S. Neuberger, Molecular mechanisms of antibody somatic hypermutation, Annu. Rev. Biochem, vol.76, pp.1-22, 2007.

L. J. Dimenna and J. Chaudhuri, Regulating infidelity: RNA-mediated recruitment of AID to DNA during class switch recombination, European Journal of Immunology, vol.46, pp.523-530

D. Drygin, A. Siddiqui-jain, S. O'brien, M. Schwaebe, A. Lin et al., Anticancer activity of CX-3543: a direct inhibitor of rRNA biogenesis, Cancer Res, vol.69, pp.7653-7661, 2009.

S. Duchez, R. Amin, N. Cogne, L. Delpy, C. Sirac et al., Premature replacement of with immunoglobulin chains impairs lymphopoiesis and mucosal homing but promotes plasma cell maturation, Proceedings of the National Academy of Sciences, vol.107, pp.3064-3069, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00454129

D. K. Dunn-walters, P. G. Isaacson, and J. Spencer, Analysis of mutations in immunoglobulin heavy chain variable region genes of microdissected marginal zone (MGZ) B cells suggests that the MGZ of human spleen is a reservoir of memory B cells, J. Exp. Med, vol.182, pp.559-566, 1995.

M. L. Duquette, P. Handa, J. A. Vincent, A. F. Taylor, and N. Maizels, Intracellular transcription of G-rich DNAs induces formation of G-loops, novel structures containing G4 DNA, Genes Dev, vol.18, pp.1618-1629, 2004.

M. R. Ehrenstein and C. A. Notley, The importance of natural IgM: scavenger, protector and regulator, Nat. Rev. Immunol, vol.10, pp.778-786, 2010.

P. Ernst and S. T. Smale, Combinatorial regulation of transcription II: The immunoglobulin mu heavy chain gene, Immunity, vol.2, pp.427-438, 1995.

B. L. Esplin, R. S. Welner, Q. Zhang, L. A. Borghesi, and P. W. Kincade, A differentiation pathway for B1 cells in adult bone marrow, Proc. Natl. Acad. Sci. U.S.A, vol.106, pp.5773-5778, 2009.

K. Featherstone, A. L. Wood, A. J. Bowen, and A. E. Corcoran, The mouse immunoglobulin heavy chain V-D intergenic sequence contains insulators that may regulate ordered V(D)J recombination, J. Biol. Chem, vol.285, pp.9327-9338, 2010.

J. S. Fellah, M. V. Wiles, J. Charlemagne, and J. Schwager, Evolution of vertebrate IgM: complete amino acid sequence of the constant region of Ambystoma mexicanum mu chain deduced from cDNA sequence, Eur. J. Immunol, vol.22, pp.2595-2601, 1992.

A. Ferrante, L. J. Beard, and R. G. Feldman, IgG subclass distribution of antibodies to bacterial and viral antigens, Pediatr. Infect. Dis. J, vol.9, pp.16-24, 1990.

S. D. Fugmann, RAG1 and RAG2 in V(D)J recombination and transposition, Immunol. Res, vol.23, pp.23-39, 2001.

T. Fujisawa and P. Filippakopoulos, Functions of bromodomain-containing proteins and their roles in homeostasis and cancer, Nat. Rev. Mol. Cell Biol, vol.18, pp.246-262, 2017.

F. Gao, Y. Yang, Z. Wang, X. Gao, and B. Zheng, BRAD4 plays a critical role in germinal center response by regulating Bcl-6 and NF-?B activation, Cell. Immunol, vol.294, pp.1-8, 2015.

F. E. Garrett, A. V. Emelyanov, M. A. Sepulveda, P. Flanagan, S. Volpi et al., Chromatin architecture near a potential 3' end of the igh locus involves modular regulation of histone modifications during B-Cell development and in vivo occupancy at CTCF sites, Mol. Cell. Biol, vol.25, pp.1511-1525, 2005.

S. Gilgunn, S. Millán-martín, M. R. Wormald, J. Zapatero-rodríguez, P. J. Conroy et al., Comprehensive N-Glycan Profiling of, Avian Immunoglobulin Y. PLoS ONE, vol.11, 2016.

C. Gillis, A. Gouel-chéron, F. Jönsson, and P. Bruhns, Contribution of Human Fc?Rs to Disease with Evidence from Human Polymorphisms and Transgenic Animal Studies, 2014.

G. Girelli-zubani, M. Zivojnovic, A. De-smet, O. Albagli-curiel, F. Huetz et al., Pms2 and uracil-DNA glycosylases act jointly in the mismatch repair pathway to generate Ig gene mutations at A-T base pairs, J. Exp. Med, vol.214, pp.1169-1180, 2017.

V. Giudicelli, D. Chaume, and M. Lefranc, IMGT/GENE-DB: a comprehensive database for human and mouse immunoglobulin and T cell receptor genes, Nucleic Acids Res, vol.33, pp.256-261, 2005.

S. M. Gowan, R. Heald, M. F. Stevens, and L. R. Kelland, Potent inhibition of telomerase by small-molecule pentacyclic acridines capable of interacting with G-quadruplexes, Mol. Pharmacol, vol.60, pp.981-988, 2001.

Q. Guo, M. Lu, L. A. Marky, and N. R. Kallenbach, Interaction of the dye ethidium bromide with DNA containing guanine repeats, Biochemistry, vol.31, pp.2451-2455, 1992.

C. Gutzeit, G. Magri, and A. Cerutti, Intestinal IgA production and its role in host-microbe interaction, Immunol Rev, vol.260, pp.76-85, 2014.

Q. M. Hanson and A. W. Barb, A perspective on the structure and receptor binding properties of immunoglobulin G Fc, Biochemistry, vol.54, pp.2931-2942, 2015.

R. R. Hardy, P. W. Kincade, and K. Dorshkind, The protean nature of cells in the B lymphocyte lineage, Immunity, vol.26, pp.703-714, 2007.

S. Herzog, M. Reth, and H. Jumaa, Regulation of B-cell proliferation and differentiation by pre-B-cell receptor signalling, Nat. Rev. Immunol, vol.9, pp.195-205, 2009.

K. Hoogsteen, The crystal and molecular structure of a hydrogen-bonded complex between 1-methylthymine and 9-methyladenine, Acta Crystallogr, vol.16, pp.907-916, 1963.

M. Ichii, K. Oritani, and Y. Kanakura, Early B lymphocyte development: Similarities and differences in human and mouse, World J Stem Cells, vol.6, pp.421-431, 2014.

N. Ishioka, N. Takahashi, and F. W. Putnam, Analysis of the mechanism, rate, and sites of proteolytic cleavage of human immunoglobulin D by high-pressure liquid chromatography, Proc. Natl. Acad. Sci. U.S.A, vol.84, pp.61-65, 1987.

Y. Kaneko, F. Nimmerjahn, and J. V. Ravetch, Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation, Science, vol.313, pp.670-673, 2006.

H. Karasuyama, A. Rolink, and F. Melchers, A complex of glycoproteins is associated with VpreB/lambda 5 surrogate light chain on the surface of mu heavy chain-negative early precursor B cell lines, J. Exp. Med, vol.178, pp.469-478, 1993.

A. Karnowski, G. Achatz-straussberger, C. Klockenbusch, G. Achatz, and M. C. Lamers, Inefficient processing of mRNA for the membraneform of IgE is a genetic mechanism to limit recruitment of IgE-secreting cells, European Journal of Immunology, vol.36, pp.1917-1925, 2006.

A. A. Khamlichi, F. Glaudet, Z. Oruc, V. Denis, M. L. Bert et al., Immunoglobulin class-switch recombination in mice devoid of any S? tandem repeat, Blood, vol.103, pp.3828-3836, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00023269

U. Klein and R. Dalla-favera, Germinal centres: role in B-cell physiology and malignancy, Nat. Rev. Immunol, vol.8, pp.22-33, 2008.

V. B. Klimovich, IgM and its receptors: structural and functional aspects, Biochemistry Mosc, vol.76, pp.534-549, 2011.

K. D. Klonowski and M. Monestier, Heavy chain revision in MRL mice: a potential mechanism for the development of autoreactive B cell precursors, J. Immunol, vol.165, pp.4487-4493, 2000.

K. D. Klonowski, L. L. Primiano, and M. Monestier, Atypical VH-D-JH rearrangements in newborn autoimmune MRL mice, J. Immunol, vol.162, pp.1566-1572, 1999.

A. L. Kovalchuk, C. F. Qi, T. A. Torrey, L. Taddesse-heath, L. Feigenbaum et al., Burkitt lymphoma in the mouse, J. Exp. Med, vol.192, pp.1183-1190, 2000.

M. S. Krangel, Gene segment selection in V(D)J recombination: accessibility and beyond, Nat. Immunol, vol.4, pp.624-630, 2003.

U. C. Kucuksezer, C. Ozdemir, M. Akdis, and C. A. Akdis, Mechanisms of immune tolerance to allergens in children, Korean J Pediatr, vol.56, pp.505-513, 2013.

R. Kumar, L. Dimenna, N. Schrode, T. Liu, P. Franck et al., AID stabilizes stem-cell phenotype by removing epigenetic memory of pluripotency genes, Nature, vol.500, pp.89-92, 2013.

H. Kunimoto, A. S. Mckenney, C. Meydan, K. Shank, A. Nazir et al., Aid is a key regulator of myeloid/erythroid differentiation and DNA methylation in hematopoietic stem/progenitor cells, Blood, vol.129, pp.1779-1790, 2017.

B. Laffleur, S. Duchez, K. Tarte, N. Denis-lagache, S. Péron et al., Self-Restrained B Cells Arise following Membrane IgE Expression, Cell Reports, vol.10, pp.900-909, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01116949

B. Laffleur, O. Debeaupuis, Z. Dalloul, and M. Cogné, B Cell Intrinsic Mechanisms Constraining IgE Memory, 2017.

S. Lagah, I. Tan, P. Radhakrishnan, R. A. Hirst, J. H. Ward et al., RHPS4 G-Quadruplex Ligand Induces Anti-Proliferative Effects in Brain Tumor Cells, vol.9, 2014.

I. Leduc, M. Drouet, M. C. Bodinier, A. Helal, and M. Cogné, Membrane isoforms of human immunoglobulins of the A1 and A2 isotypes: structural and functional study, vol.90, pp.330-336, 1997.

C. Leonetti, S. Amodei, C. D'angelo, A. Rizzo, B. Benassi et al., Biological activity of the G-quadruplex ligand RHPS4 (3,11-difluoro-6,8,13-trimethyl-8H-quino[4,3,2-kl]acridinium methosulfate) is associated with telomere capping alteration, Mol. Pharmacol, vol.66, pp.1138-1146, 2004.

C. Leonetti, M. Scarsella, G. Riggio, A. Rizzo, E. Salvati et al., G-quadruplex ligand RHPS4 potentiates the antitumor activity of camptothecins in preclinical models of solid tumors, Clin. Cancer Res, vol.14, pp.7284-7291, 2008.

S. M. Lewis, P nucleotides, hairpin DNA and V(D)J joining: making the connection, Semin. Immunol, vol.6, pp.131-141, 1994.

D. Liu, P. Lin, Y. Hu, Y. Zhou, G. Tang et al., Immunophenotypic heterogeneity of normal plasma cells: comparison with minimal residual plasma cell myeloma, J. Clin. Pathol, vol.65, pp.823-829, 2012.

F. Loder, B. Mutschler, R. J. Ray, C. J. Paige, P. Sideras et al., B cell development in the spleen takes place in discrete steps and is determined by the quality of B cell receptor-derived signals, J. Exp. Med, vol.190, pp.75-89, 1999.

T. Lopes-carvalho and J. F. Kearney, Development and selection of marginal zone B cells, Immunol. Rev, vol.197, pp.192-205, 2004.

W. Lübben, A. Turqueti-neves, A. Okhrimenko, C. Stöberl, V. Schmidt et al., IgE knock-in mice suggest a role for high levels of IgE in basophil-mediated active systemic anaphylaxis, Eur. J. Immunol, vol.43, pp.1231-1242, 2013.

E. O. Luger, M. Wegmann, G. Achatz, M. Worm, H. Renz et al., Allergy for a lifetime?, Allergol Int, vol.59, pp.1-8, 2010.

E. T. Luning-prak, M. Monestier, and R. A. Eisenberg, B cell receptor editing in tolerance and autoimmunity, Ann. N. Y. Acad. Sci, vol.1217, pp.96-121, 2011.

N. Lycke, L. Erlandsson, L. Ekman, K. Schön, and T. Leanderson, Lack of J chain inhibits the transport of gut IgA and abrogates the development of intestinal antitoxic protection, J. Immunol, vol.163, pp.913-919, 1999.

N. Maizels and L. T. Gray, The G4 Genome, PLOS Genetics, vol.9, 2013.

N. Maizels and L. T. Gray, The G4 genome, PLoS Genet, vol.9, 2013.

R. Maki, W. Roeder, A. Traunecker, C. Sidman, M. Wabl et al., The role of DNA rearrangement and alternative RNA processing in the expression of immunoglobulin delta genes, Cell, vol.24, pp.353-365, 1981.

S. Malu, V. Malshetty, D. Francis, and P. Cortes, Role of non-homologous end joining in V(D)J recombination, Immunol. Res, vol.54, pp.233-246, 2012.

T. Marichal, P. Starkl, L. L. Reber, J. Kalesnikoff, H. C. Oettgen et al., A Beneficial Role for Immunoglobulin E in Host Defense against Honeybee Venom, Immunity, vol.39, pp.963-975, 2013.

F. Martin and J. F. Kearney, B1 cells: similarities and differences with other B cell subsets, Curr. Opin. Immunol, vol.13, pp.195-201, 2001.

K. T. Merrell, R. J. Benschop, S. B. Gauld, K. Aviszus, D. Decote-ricardo et al., Identification of anergic B cells within a wild-type repertoire, Immunity, vol.25, pp.953-962, 2006.

S. M. Mirkin, DNA Topology: Fundamentals. In ELS, 2001.

S. Misaghi, K. Senger, T. Sai, Y. Qu, Y. Sun et al., Polyclonal hyper-IgE mouse model reveals mechanistic insights into antibody class switch recombination, Proceedings of the National Academy of Sciences, vol.110, pp.15770-15775, 2013.

S. Monticelli and D. Vercelli, Molecular regulation of class switch recombination to IgE through epsilon germline transcription, Allergy, vol.56, pp.270-278, 2001.

S. Mujtaba, L. Zeng, and M. Zhou, Structure and acetyl-lysine recognition of the bromodomain, Oncogene, vol.26, pp.5521-5527, 2007.

M. Muramatsu, K. Kinoshita, S. Fagarasan, S. Yamada, Y. Shinkai et al., Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme, Cell, vol.102, pp.553-563, 2000.

C. Muvva, E. R. Singam, S. S. Raman, and V. Subramanian, Structure-based virtual screening of novel, high-affinity BRD4 inhibitors, Mol Biosyst, vol.10, pp.2384-2397, 2014.

H. Niiro and E. A. Clark, Regulation of B-cell fate by antigen-receptor signals, Nat. Rev. Immunol, vol.2, pp.945-956, 2002.

F. Nimmerjahn and J. V. Ravetch, Fcgamma receptors as regulators of immune responses, Nat. Rev. Immunol, vol.8, pp.34-47, 2008.

A. Ntranos and P. Casaccia, Bromodomains: Translating the words of lysine acetylation into myelin injury and repair, Neurosci. Lett, vol.625, pp.4-10, 2016.

S. L. Nutt, C. Thévenin, and M. Busslinger, Essential functions of Pax-5 (BSAP) in pro-B cell development, Immunobiology, vol.198, pp.227-235, 1997.

A. E. Oancea, M. Berru, and M. J. Shulman, Expression of the (recombinant) endogenous immunoglobulin heavy-chain locus requires the intronic matrix attachment regions, Mol. Cell. Biol, vol.17, pp.2658-2668, 1997.

V. H. Odegard and D. G. Schatz, Targeting of somatic hypermutation, Nat. Rev. Immunol, vol.6, pp.573-583, 2006.

D. C. Otero and R. C. Rickert, CD19 function in early and late B cell development. II. CD19 facilitates the pro-B/pre-B transition, J. Immunol, vol.171, pp.5921-5930, 2003.

D. J. Owen, P. Ornaghi, J. C. Yang, N. Lowe, P. R. Evans et al., The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p, EMBO J, vol.19, pp.6141-6149, 2000.

C. Ozdemir, M. Akdis, and C. A. Akdis, T regulatory cells and their counterparts: masters of immune regulation, Clin. Exp. Allergy, vol.39, pp.626-639, 2009.

O. Pabst, New concepts in the generation and functions of IgA, Nat. Rev. Immunol, vol.12, pp.821-832, 2012.

K. Paeschke, T. Simonsson, J. Postberg, D. Rhodes, and H. J. Lipps, Telomere endbinding proteins control the formation of G-quadruplex DNA structures in vivo, Nat. Struct. Mol. Biol, vol.12, pp.847-854, 2005.

N. W. Palm, R. K. Rosenstein, S. Yu, D. D. Schenten, E. Florsheim et al., , 2013.

, Bee Venom Phospholipase A2 Induces a Primary Type 2 Response that Is Dependent on the Receptor ST2 and Confers Protective, Immunity, vol.39, pp.976-985

J. W. Pavlicek, Y. L. Lyubchenko, C. , and Y. , Quantitative analyses of RAG-RSS interactions and conformations revealed by atomic force microscopy, Biochemistry, vol.47, pp.11204-11211, 2008.

I. Pawlitzky, C. V. Angeles, A. M. Siegel, M. L. Stanton, R. Riblet et al., Identification of a Candidate Regulatory Element within the 5? Flanking Region of the Mouse Igh Locus Defined by Pro-B Cell-Specific Hypersensitivity Associated with Binding of PU.1, Pax5, and E2A, The Journal of Immunology, vol.176, pp.6839-6851, 2006.

R. Pelayo, E. Dorantes-acosta, E. Vadillo, and E. Fuentes-pananá, From HSC to B-Lymphoid Cells in Normal and Malignant Hematopoiesis, Advances in Hematopoietic Stem Cell Research), p.p, 2012.

S. Péron, B. Laffleur, N. Denis-lagache, J. Cook-moreau, A. Tinguely et al., AID-driven deletion causes immunoglobulin heavy chain locus suicide recombination in B cells, Science, vol.336, pp.931-934, 2012.

P. Phatak, J. C. Cookson, F. Dai, V. Smith, R. B. Gartenhaus et al., Telomere uncapping by the G-quadruplex ligand RHPS4 inhibits clonogenic tumour cell growth in vitro and in vivo consistent with a cancer stem cell targeting mechanism, Br. J. Cancer, vol.96, pp.1223-1233, 2007.

K. Pieper, B. Grimbacher, and H. Eibel, B-cell biology and development, J. Allergy Clin. Immunol, vol.131, pp.959-971, 2013.

S. Pillai and A. Cariappa, The follicular versus marginal zone B lymphocyte cell fate decision, Nat. Rev. Immunol, vol.9, pp.767-777, 2009.

E. Pinaud, A. A. Khamlichi, C. Le-morvan, M. Drouet, V. Nalesso et al., Localization of the 3? IgH Locus Elements that Effect Long-Distance Regulation of Class Switch Recombination, Immunity, vol.15, pp.187-199, 2001.

E. Pinaud, M. Marquet, R. Fiancette, S. Péron, C. Vincent-fabert et al.,

, The IgH locus 3' regulatory region: pulling the strings from behind, Adv. Immunol, vol.110, pp.27-70

Q. Qiao, L. Wang, F. Meng, J. K. Hwang, F. W. Alt et al., AID Recognizes Structured DNA for Class Switch Recombination, Mol. Cell, vol.67, pp.361-373, 2017.

P. Revy, T. Muto, Y. Levy, F. Geissmann, A. Plebani et al., Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2), Cell, vol.102, pp.565-575, 2000.

C. Reynaud, M. Descatoire, I. Dogan, F. Huetz, S. Weller et al., IgM memory B cells: a mouse/human paradox, Cell. Mol. Life Sci, vol.69, pp.1625-1634, 2012.

D. Rhodes and H. J. Lipps, G-quadruplexes and their regulatory roles in biology, Nucleic Acids Res, vol.43, pp.8627-8637, 2015.

C. Ribeiro-de-almeida, S. Dhir, A. Dhir, A. E. Moghaddam, Q. Sattentau et al., RNA Helicase DDX1 Converts RNA G-Quadruplex Structures into R-Loops to Promote IgH Class Switch Recombination, Mol. Cell, vol.70, pp.650-662, 2018.

A. Rifai, K. Fadden, S. L. Morrison, and K. R. Chintalacharuvu, The N-glycans determine the differential blood clearance and hepatic uptake of human immunoglobulin (Ig)A1 and IgA2 isotypes, J. Exp. Med, vol.191, pp.2171-2182, 2000.

N. Rochereau, D. Drocourt, E. Perouzel, V. Pavot, P. Redelinghuys et al., Dectin-1 is essential for reverse transcytosis of glycosylated SIgA-antigen complexes by intestinal M cells, PLoS Biol, vol.11, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-02130264

K. K. Rodgers, Riches in RAGs: Revealing the V(D)J Recombinase through High-Resolution Structures, Trends Biochem. Sci, vol.42, pp.72-84, 2017.

D. B. Roth and S. Y. Roth, Unequal access: regulating V(D)J recombination through chromatin remodeling, Cell, vol.103, pp.699-702, 2000.

P. Rouaud, A. Saintamand, F. Saad, C. Carrion, S. Lecardeur et al., Elucidation of the enigmatic IgD class-switch recombination via germline deletion of the IgH 3' regulatory region, J. Exp. Med, vol.211, pp.975-985, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01212566

K. H. Roux, L. Strelets, and T. E. Michaelsen, Flexibility of human IgG subclasses, J. Immunol, vol.159, pp.3372-3382, 1997.

D. M. Russell, Z. Dembi?, G. Morahan, J. F. Miller, K. Bürki et al., Peripheral deletion of self-reactive B cells, Nature, vol.354, pp.308-311, 1991.

M. J. Sadofsky, The RAG proteins in V(D)J recombination: more than just a nuclease, Nucleic Acids Res, vol.29, pp.1399-1409, 2001.

E. Salvati, C. Leonetti, A. Rizzo, M. Scarsella, M. Mottolese et al., Telomere damage induced by the G-quadruplex ligand RHPS4 has an antitumor effect, J. Clin. Invest, vol.117, pp.3236-3247, 2007.

M. Schlissel, A. Constantinescu, T. Morrow, M. Baxter, and A. Peng, Double-strand signal sequence breaks in V(D)J recombination are blunt, 5'-phosphorylated, RAG-dependent, and cell cycle regulated, Genes Dev, vol.7, pp.2520-2532, 1993.

C. E. Schrader, E. K. Linehan, S. N. Mochegova, R. T. Woodland, and J. Stavnezer, , 2005.

, Inducible DNA breaks in Ig S regions are dependent on AID and UNG, J Exp Med, vol.202, pp.561-568

D. Sen, G. , and W. , Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis, Nature, vol.334, pp.364-366, 1988.

M. Shapiro-shelef, C. , and K. , Regulation of plasma-cell development, Nat. Rev. Immunol, vol.5, pp.230-242, 2005.

E. C. Sheppard, R. B. Morrish, M. J. Dillon, R. Leyland, and R. Chahwan, Epigenomic Modifications Mediating Antibody Maturation. Front Immunol 9, p.355, 2018.

J. M. Shim, J. S. Lee, K. E. Russell, C. H. Wiegman, P. J. Barnes et al., BET proteins are a key component of immunoglobulin gene expression, Epigenomics, vol.9, pp.393-406, 2017.

R. Shinkura, M. Tian, M. Smith, K. Chua, Y. Fujiwara et al., The influence of transcriptional orientation on endogenous switch region function, Nat. Immunol, vol.4, pp.435-441, 2003.

J. S. Smith, Q. Chen, L. A. Yatsunyk, J. M. Nicoludis, M. S. Garcia et al., , 2011.

, Rudimentary G-quadruplex-based telomere capping in Saccharomyces cerevisiae, Nat. Struct. Mol. Biol, vol.18, pp.478-485

K. G. Smith, T. D. Hewitson, G. J. Nossal, and D. M. Tarlinton, The phenotype and fate of the antibody-forming cells of the splenic foci, Eur. J. Immunol, vol.26, pp.444-448, 1996.

A. M. Stall, S. Adams, L. A. Herzenberg, and A. B. Kantor, Characteristics and development of the murine B-1b (Ly-1 B sister) cell population, Ann. N. Y. Acad. Sci, vol.651, pp.33-43, 1992.

A. Stanlie, A. S. Yousif, H. Akiyama, T. Honjo, and N. A. Begum, Chromatin reader Brd4 functions in Ig class switching as a repair complex adaptor of nonhomologous end-joining, Mol. Cell, vol.55, pp.97-110, 2014.

J. Stavnezer and C. E. Schrader, IgH chain class switch recombination: mechanism and regulation, J. Immunol, vol.193, pp.5370-5378, 2014.

J. Stavnezer, J. E. Guikema, and C. E. Schrader, Mechanism and regulation of class switch recombination, Annu. Rev. Immunol, vol.26, pp.261-292, 2008.

M. Sugai, H. Gonda, T. Kusunoki, T. Katakai, Y. Yokota et al., Essential role of Id2 in negative regulation of IgE class switching, Nat. Immunol, vol.4, pp.25-30, 2003.

W. I. Sundquist and A. Klug, Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops, Nature, vol.342, pp.825-829, 1989.

N. Takahashi, S. Ueda, M. Obata, T. Nikaido, S. Nakai et al., Structure of human immunoglobulin gamma genes: implications for evolution of a gene family, Cell, vol.29, pp.671-679, 1982.

D. Tarlinton, B-cell memory: are subsets necessary?, Nat. Rev. Immunol, vol.6, pp.785-790, 2006.

M. Tomana, R. Kulhavy, and J. Mestecky, Receptor-mediated binding and uptake of immunoglobulin A by human liver, Gastroenterology, vol.94, pp.762-770, 1988.

P. A. Toniolo, S. Liu, J. E. Yeh, P. M. Moraes-vieira, S. R. Walker et al., Inhibiting STAT5 by the BET bromodomain inhibitor JQ1 disrupts human dendritic cell maturation, J Immunol, vol.194, pp.3180-3190, 2015.

T. Tümkaya, M. Van-der-burg, R. Garcia-sanz, M. Gonzalez-diaz, A. W. Langerak et al., Immunoglobulin lambda isotype gene rearrangements in B cell malignancies, Leukemia, vol.15, pp.121-127, 2001.

O. Vafa, G. L. Gilliland, R. J. Brezski, B. Strake, T. Wilkinson et al., An engineered Fc variant of an IgG eliminates all immune effector functions via structural perturbations, Methods, vol.65, pp.114-126, 2014.

B. Vaidyanathan and J. Chaudhuri, Epigenetic Codes Programing Class Switch Recombination, Front Immunol, vol.6, 2015.

G. Vidarsson, G. Dekkers, and T. Rispens, IgG subclasses and allotypes: from structure to effector functions, Front Immunol, vol.5, p.520, 2014.

A. Waisman, M. Kraus, J. Seagal, S. Ghosh, D. Melamed et al., IgG1 B cell receptor signaling is inhibited by CD22 and promotes the development of B cells whose survival is less dependent on Ig?/?, J Exp Med, vol.204, pp.747-758, 2007.

X. Wang, M. Mathieu, and R. J. Brezski, IgG Fc engineering to modulate antibody effector functions, Protein Cell, vol.9, pp.63-73, 2018.

G. W. Warr, K. E. Magor, and D. A. Higgins, IgY: clues to the origins of modern antibodies, Immunol. Today, vol.16, pp.392-398, 1995.

J. D. Watson and F. H. Crick, Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid, Nature, vol.171, pp.737-738, 1953.

L. C. Watson, C. S. Moffatt-blue, R. Z. Mcdonald, E. Kompfner, D. Ait-azzouzene et al., Paucity of V-D-D-J rearrangements and VH replacement events in lupus prone and nonautoimmune TdT-/-and TdT+/+ mice, J. Immunol, vol.177, pp.1120-1128, 2006.

K. J. Woodford, R. M. Howell, and K. Usdin, A novel K(+)-dependent DNA synthesis arrest site in a commonly occurring sequence motif in eukaryotes, J. Biol. Chem, vol.269, pp.27029-27035, 1994.

J. M. Woof, Immunoglobulin A: Molecular Mechanisms of Function and Role in Immune Defence, Molecular and Cellular Mechanisms of Antibody Activity), p.p, 2013.

J. M. Woof and M. A. Kerr, IgA function--variations on a theme, Immunology, vol.113, pp.175-177, 2004.

J. M. Woof and M. A. Kerr, The function of immunoglobulin A in immunity, J. Pathol, vol.208, pp.270-282, 2006.

M. Wroblewski, M. Scheller-wendorff, F. Udonta, R. Bauer, J. Schlichting et al., BET-inhibition by JQ1 promotes proliferation and self-renewal capacity of hematopoietic stem cells, Haematologica, 2018.

Y. L. Wu, M. J. Stubbington, M. Daly, S. A. Teichmann, and C. Rada, Intrinsic transcriptional heterogeneity in B cells controls early class switching to IgE, J. Exp. Med, vol.214, pp.183-196, 2017.

X. Xiao, Y. Fan, J. Li, X. Zhang, X. Lou et al., Guidance of super-enhancers in regulation of IL-9 induction and airway inflammation, J. Exp. Med, vol.215, pp.559-574, 2018.

Z. Xu, H. Zan, E. J. Pone, T. Mai, and P. Casali, Immunoglobulin class-switch DNA recombination: induction, targeting and beyond, Nat. Rev. Immunol, vol.12, pp.517-531, 2012.

H. Yaku, T. Fujimoto, T. Murashima, D. Miyoshi, and N. Sugimoto, Phthalocyanines: a new class of G-quadruplex-ligands with many potential applications, Chem. Commun. (Camb.), vol.48, pp.6203-6216, 2012.

D. Yang and K. Okamoto, Structural insights into G-quadruplexes: towards new anticancer drugs, Future Med Chem, vol.2, pp.619-646, 2010.

K. Yoshida, M. Matsuoka, S. Usuda, A. Morit, K. Ishizakat et al., , 1990.

, Immunoglobulin switch circular DNA in the mouse infected with Nippostrongylus brasiliensis: Evidence for successive class switching from ,u to E via vi, Proc. Natl. Acad. Sci. USA 5

K. Yu, F. Chedin, C. Hsieh, T. E. Wilson, and M. R. Lieber, R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells, Nat. Immunol, vol.4, pp.442-451, 2003.

H. Zan, A. Cerutti, P. Dramitinos, A. Schaffer, and P. Casali, CD40 Engagement Triggers Switching to IgA1 and IgA2 in Human B Cells Through Induction of Endogenous TGF?: Evidence for TGF-? But Not IL-10-Dependent Direct S??S? and Sequential S??S?, S??S? DNA Recombination, J Immunol, vol.161, pp.5217-5225, 1998.

A. A. Zarrin, F. W. Alt, J. Chaudhuri, N. Stokes, D. Kaushal et al., An evolutionarily conserved target motif for immunoglobulin class-switch recombination, Nat. Immunol, vol.5, pp.1275-1281, 2004.

K. Zhang, A. Saxon, M. , and E. E. , Two unusual forms of human immunoglobulin E encoded by alternative RNA splicing of epsilon heavy chain membrane exons, J. Exp. Med, vol.176, pp.233-243, 1992.

M. Zhang, G. Srivastava, and L. Lu, The pre-B cell receptor and its function during B cell development, Cell. Mol. Immunol, vol.1, pp.89-94, 2004.

Z. Zhang, D. Zhang, Y. Liu, D. Yang, F. Ran et al., Targeting Bruton's tyrosine kinase for the treatment of B cell associated malignancies and autoimmune diseases: Preclinical and clinical developments of small molecule inhibitors, Arch. Pharm, p.1700369, 2018.

S. Zheng, B. Q. Vuong, B. Vaidyanathan, J. Lin, F. Huang et al., , 2015.

, Non-coding RNA Generated following Lariat Debranching Mediates Targeting of AID to DNA, Cell, vol.161, pp.762-773

X. Zou, T. A. Piper, J. A. Smith, N. D. Allen, J. Xian et al., Block in development at the pre-B-II to immature B cell stage in mice without Ig kappa and Ig lambda light chain, J. Immunol, vol.170, pp.1354-1361, 2003.