, First, solve the dierential equation (L.1a) to work out p (l0) (c)

, Insert the obtained expression of p (l0) (c) in the right hand side of the radial Stokes equation (L.1c) and solve it to get v r

, Compute p I (l0) (c) and v I r, (l0) (c). Next, substitute their expressions into the right hand side of the polar Stokes equation (L.1d) and solve it to derive v ?

, To nish, solve separately the azimuthal Stokes equation (L.1e) to determine v ?, (l0) (c)

. Eq, We then repeat the above solving process up to the moment we need to derive a new dierential equation satised by v ?, (lm) (c). Indeed, the polar Stokes equation (4, ?, ? ; zq : One key trait of 2 F 1 p?, ?, ? ; zq is that the above series (M.1) stops if either ? or ? is a negative integer, in which case it simply reduces to a z dependent polynomial of degree l

A. Ashkin, Acceleration and Trapping of Particles by Radiation Pressure, Phys. Rev. Lett, vol.24, p.159, 1970.

A. Girot, N. Danné, A. Würger, T. Bickel, F. Ren et al., Motion of Optically Heated Spheres at the Water Air Interface, Langmuir, vol.32, pp.2687-2697, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01294298

A. Würger, Thermally driven Marangoni surfers, J. Fluid Mech, vol.752, p.601, 2014.

A. F. Pshenichnikov and S. S. Yatsenko, Convective Diusion from a Concentrated Source of a Surfactant, Proceedings of Perm State University. Fluids Dynamics, vol.5, p.175, 1974.

A. I. Mizev and A. I. Tromenko, Eect of an Insoluble Surfactant Film on the Stability of the Concentration Driven Marangoni Flow, Fluid Dynamics, vol.49, issue.1, p.36, 2014.

M. Roché, Z. Li, I. M. Griths, S. L. Roux, I. Cantat et al., Marangoni Flow of Soluble Amphiphiles, Phys. Rev. Lett, vol.112, p.208302, 2014.

S. L. Roux, M. Roché, I. Cantat, and A. Saint-jalmes, Soluble surfactant spreading : How the amphiphilicity sets the Marangoni hydrodynamics, Phys. Rev. E, vol.93, p.13107, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01252010

H. Kim, K. Muller, O. Shardt, S. Afkhami, and H. A. Stone, Solutal Marangoni ows of miscible liquids drive transport without surface contamination, Nature Phys, vol.13, p.1111, 2017.

Y. Uematsu, D. J. Bonthuis, and R. R. Netz, Impurity eects at hydrophobic surfaces, Curr. Opin. Electrochem, vol.13, p.173, 2019.

V. Levich, Physicochemical Hydrodynamics, 1962.

S. Takagi and Y. Matsumoto, Surfactant Eects on Bubble Motion and Bubbly Flows, Annu. Rev. Fluid Mech, vol.43, p.636, 2011.

R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel et al., Capillary ow as the cause of ring stains from dried liquid drops, Nature, vol.389, p.829, 1997.

H. Hu and R. G. Larson, Marangoni Eect Reverses Coee Ring Depositions, J. Phys. Chem. B, vol.110, pp.7090-7094, 2006.

H. Kim, F. Boulogne, E. Um, I. Jacobi, E. Button et al., Controlled Uniform Coating from the Interplay of Marangoni Flows and Surface Adsorbed Macromolecules, Phys. Rev. Lett, vol.116, p.124501, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01704121

J. C. Berg and A. Acrivos, The eect of surface active agents on convection cells induced by surface tension, Chem. Eng. Sci, vol.20, issue.8, p.745, 1965.

F. J. Peaudecerf, J. R. Landel, R. E. Goldstein, and P. Luzzatto--fegiz, Traces of surfactants can severely limit the drag reduction of superhydrophobic surfaces, PNAS, vol.114, issue.28, p.7259, 2017.

O. Manor, I. U. Vakarelski, X. Tang, S. J. Shea, G. W. Stevens et al., Hydrodynamic Boundary Conditions and Dynamic Forces between Bubbles and Surfaces, Phys. Rev. Lett, vol.101, p.24501, 2008.

A. Maali, R. Boisgard, H. Chraibi, Z. Zhang, H. Kellay et al., Viscoelastic Drag Forces and Crossover from No Slip to Slip Boundary Conditions for Flow near Air Water Interfaces, Phys. Rev. Lett, vol.118, p.84501, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01481369

B. Néel and E. Villermaux, The spontaneous puncture of thick liquid lms, J. Fluid Mech, vol.838, p.221, 2018.

W. A. Ducker, Contact Angle and Stability of Interfacial Nanobubbles, Langmuir, vol.25, issue.16, p.8910, 2009.

S. Das, J. H. Snoeijer, and D. Lohse, Eect of impurities in description of surface nanobubbles, Phys. Rev. E, vol.82, p.56310, 2010.

Y. Uematsu, D. J. Bonthuis, and R. R. Netz, Charged Surface Active Impurities at Nanomolar Concentration Induce Jones Ray Eect, J. Phys. Chem. Lett, vol.9, p.193, 2018.

, Thèse de doctorat de Sébastien Le Roux sous la direction de Arnaud Saint Jalmes et la codirection de Isabelle Cantat, Université Rennes, p.1, 2015.

P. G. De-gennes, F. Brochard, D. Wyart, and . Quéré, Gouttes, bulles, perles et ondes, 2002.

H. Butt, K. Graf, and M. Kappl, Physics and Chemistry of Interfaces, 2006.

J. Rowlinson and B. Widom, Molecular theory of capillarity, 1982.

J. W. Gibbs, On the Equilibrium of Heterogeneous Substances, Transactions of the Connecticut Academy of Arts and Sciences, 1878.

G. L. Van-der-mensbrugghe, Sur la tension supercielle des liquides considérée au point de vue de certains mouvements observés à leur surface. M. Hayez, imprimeur de l'Académie Royale de, 1869.

C. Marangoni, Sull'espansione delle goccie d'un liquido galleggianti sulla superce di altro liquido. Pavia tipograa dei Fratelli Fusi, 1865.

C. Tomlinson, On the Motions of Camphor on the Surface of Water, Proceedings of the Royal Society of London, 1862.

J. Thomson, On certain curious Motions observable at the Surfaces of Wine and other Alcoholic Liquors. The London, Edinburgh and Dublin Philosophical Magazine, Journal of Science, vol.10, p.333, 1855.

L. E. Scriven and C. V. Sternling, The Marangoni Eects, Nature, vol.187, p.188, 1960.

J. Fournier and A. Cazabat, Tears of Wine, Europhys. Lett, vol.20, issue.6, p.522, 1992.

J. D. Berry, M. J. Neeson, R. R. Dagastine, D. Y. Chan, and R. F. Tabor, Measurement of surface and interfacial tension using pendant drop tensiometry, Journal of Colloid and Interface Science, vol.454, p.237, 2015.

A. J. Prosser and E. I. Franses, Adsorption and surface tension of ionic surfactants at the air water interface : review and evaluation of equilibrium models, Colloids and Surfaces A: Physicochem. Eng. Aspects, vol.178, p.40, 2001.

E. J. Stamhuis, Basics and principles of particle image velocimetry (PIV) for mapping biogenic and biologically relevant ows, Aquatic Ecology, vol.40, issue.4, p.479, 2006.

H. Abdulmouti, Particle imaging velocimetry (PIV) technique : principles and applications, review. Yanbu Journal of Engineering and Science, vol.6, p.65, 2013.

M. Rael, C. E. Willert, and J. Kompenhans, Particle image velocimetry : a practical guide, 2007.

W. Thielicke and E. J. Stamhuis, PIVlab : Towards User endly, Aordable and Accurate Digital Particle Image Velocimetry in MATLAB, Journal of Open Research Software, vol.2, issue.1, 2014.

R. V. Birikh, V. A. Briskman, M. G. Velarde, and J. Legros, Liquid Interfacial Systems, 2003.

A. Pockels, On the Relative Contamination of the Water Surface by Equal Quantities of Dierent Substances, Nature, vol.46, p.419, 1892.

G. J. Elfring, L. G. Leal, and T. M. Squires, Surface viscosity and Marangoni stresses at surfactant laden interfaces, J. Fluid Mech, vol.792, p.739, 2016.

R. Palaparthi, D. T. Papageorgiou, and C. Maldarelli, Theory and experiments on the stagnant cap regime in the motion of spherical surfactant laden bubbles, J. Fluid Mech, vol.559, p.44, 2006.

C. Ybert and J. Di-meglio, Ascending air bubbles in protein solutions, Eur. Phys. J. B, vol.4, pp.313-319, 1998.
URL : https://hal.archives-ouvertes.fr/hal-01628735

T. Bickel, J. Loudet, G. Koleski, and B. Pouligny, Hydrodynamic response of a surfactant laden interface to a radial ow, Phys. Rev. Fluids, vol.4, p.124002, 2019.

H. Hu and R. G. Larson, Analysis of the Eects of Marangoni Stresses on the Microow in an Evaporating Sessile Droplet, Langmuir, vol.21, p.3980, 2005.

P. A. Kralchevsky, K. D. Danov, and N. D. Denkov, Chemical Physics of Colloid Systems and Interfaces in Handbook of Surface and Colloid Chemistry, 2015.

M. Arangalage, X. Li, F. Lequeux, and L. Talini, Dual Marangoni eects and detection of traces of surfactants, Soft Matter, vol.14, p.3386, 2018.

Y. Couder, J. Chomaz, and M. Rabaud, On the hydrodynamics of soap lms, Physica D, vol.37, p.405, 1989.

G. Liger-belair, C. Cilindre, F. Beaumont, P. Jeandet, and G. Polidori, Evidence for ascending bubble driven ow patterns in champagne glasses, and their impact on gaseous CO 2 and ethanol release under standard tasting conditions (review), Bubble Science, Engineering and Technology, vol.4, issue.1, pp.35-48, 2012.

F. Beaumont, G. L. Belair, and G. Polidori, Unveiling self organized two dimensional (2D) convective cells in champagne glasses, Journal of Food Engineering, vol.188, p.65, 2016.

G. Gaussorgues, Infrared Thermography, 1994.

M. Brewster, transitions de phases et défauts d'orientation dans des lms monomoléculaires. Thèse de doctorat de Sylvie Hénon sous la direction de Jacques Meunier, vol.6, 1993.

Y. Kamotani, S. Ostrach, and J. Masud, Oscillatory thermocapillary ows in open cylindrical containers induced by CO 2 laser heating, International Journal of Heat and Mass Transfer, vol.42, p.564, 1999.

Y. K. Bratukhin, S. O. Makarov, and A. I. Mizev, Oscillating thermocapillary convection regimes driven by a point heat source, Fluid Dynamics, vol.35, issue.2, p.241, 2000.

N. M. Kovalchuk, Spontaneous oscillations due to solutal Marangoni instability : air/water interface. Cent, Eur. J. Chem, vol.10, issue.5, pp.1423-1441, 2012.

A. B. Ezersky, A. Garcimartín, J. Burguete, H. L. Mancini, and C. Pérez-garcía, Hydrothermal waves in Marangoni convection in a cylindrical container, Phys. Rev. E, vol.47, issue.2, p.1131, 1993.

, Ondes non linéaires à une et deux dimensions dans une mince couche de uide. Thèse de doctorat de Nicolas Garnier sous la direction de Arnaud Chiaudel, Université Paris, vol.7, 2000.

V. Shtern and F. Hussain, Azimuthal instability of divergent ows, J. Fluid Mech, vol.256, p.560, 1993.

Y. K. Bratukhin and L. N. Maurin, Thermocapillary convection in a uid lling a half space, J. Appl. Math. Mech, vol.31, p.580, 1967.

H. Lamb, Hydrodynamics, 1945.

A. Girot, Flotteurs Marangoni auto propulsés dans un piège optique, 2015.

A. Cazabat and G. Guéna, Evaporation of macroscopic sessile droplets, Soft Matter, vol.6, p.2612, 2010.

M. Schmitt and H. Stark, Marangoni ow at droplet interfaces : Three dimensional solution and applications, Phys. Fluids, vol.28, p.12106, 2016.

O. Pak and E. Lauga, Generalized squirming motion of a sphere, J. Eng. Math, vol.88, issue.1, p.28, 2014.

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Applied Mathematics Series, vol.55, 1972.

M. M. Bandi, V. S. Akella, D. K. Singh, R. S. Singh, and S. Mandre, Hydrodynamic Signatures of Stationary Marangoni Driven Surfactant Transport, Physical Review Letters, vol.119, p.264501, 2017.

S. Mandre, Axisymmetric spreading of a surfactant driven by self imposed Marangoni stress under simplied transport, J. Fluid Mech, vol.832, p.792, 2017.

F. Wodlei, J. Sebilleau, J. Magnaudet, and V. Pimienta, Marangoni driven ower like patterning of an evaporating drop spreading on a liquid substrate, Nature Communications, vol.9, p.831, 2018.

L. Keiser, H. Bense, P. Colinet, J. Bico, and E. Reyssat, Marangoni Bursting : Evaporation Induced Emulsication of Binary Mixtures on a Liquid Layer, Physical Review Letters, vol.118, p.74504, 2017.

H. C. Kuhlmann and U. Schoisswohl, Flow instabilities in thermocapillary buoyant liquid pools, J. Fluid Mech, vol.644, p.535, 2010.

A. K. Sen and S. H. Davis, Steady thermocapillary ows in two dimensional slots, J. Fluid Mech, vol.121, p.186, 1982.

S. H. Davis, Thermocapillary Instabilities, Ann. Rev. Fluid Mech, vol.19, p.435, 1987.

, Convection thermocapillaire et thermogravitaire dans un uide chaué localement sur sa surface libre. Thèse de doctorat de Éric Favre sous la direction de Yves Fautrelle, réalisée à l, 1997.

A. Shmyrov, A. Mizev, V. Demin, M. Petukhov, and D. Bratsun, On the extent of surface stagnation produced jointly by insoluble surfactant and thermocapillary ow, Advances in Colloids and Interface Science, vol.255, p.17, 2017.

A. Mizev, Inuence of an adsorption layer on the structure and stability of surface tension driven ows, Physics of Fluids, vol.17, p.122107, 2005.

A. Thess, D. Spirn, and B. Jüttner, A two dimensional model for slow convection at innite Marangoni number, J. Fluid Mech, vol.331, p.312, 1997.

B. Carpenter and G. M. Homsy, The eect of surface contamination on thermocapillary ow in a two dimensional slot. Part 2. Partially contaminated interfaces, J. Fluid Mech, vol.155, p.439, 1985.

G. M. Homsy and E. Meiburg, The eect of surface contamination on thermocapillary ow in a two dimensional slot, J. Fluid Mech, vol.139, p.459, 1984.

S. N. Varanakkottu, S. D. George, T. Baier, S. Hardt, M. Ewald et al., Particle Manipulation Based on Optically Controlled Free Surface Hydrodynamics, Angew. Chem. Int. Ed, vol.52, p.7295, 2013.