, We were not able to prove these conjectures, and more generally to obtain characterizations, in terms of the law of X 0 , of measures satisfying F ? (µ 0 ) = 0 (as (7.3) in the discrete case with integer-valued measures). However, we obtained the following partial answer

J. David, A. Aldous, and . Bandyopadhyay, A survey of max-type recursive distributional equations, Ann. Appl. Probab, vol.15, issue.2, pp.1047-1110, 2005.

L. Arguin, D. Belius, and P. Bourgade, Maximum of the characteristic polynomial of random unitary matrices, Comm. Math. Phys, vol.349, issue.2, pp.703-751, 2017.

D. Abb-+-19-;-louis-pierre-arguin, P. Belius, M. Bourgade, K. Radziwi??, and . Soundararajan, Maximum of the Riemann Zeta Function on a Short Interval of the Critical Line, Comm. Pure Appl. Math, vol.72, issue.3, pp.500-535, 2019.

E. Aïdékon, J. Berestycki, É. Brunet, and Z. Shi, Branching Brownian motion seen from its tip, Probab. Theory Related Fields, vol.157, issue.1, pp.405-451, 2013.

Y. Abe, Second order term of cover time for planar simple random walk, 2017.

L. Arguin, D. Belius, and A. J. Harper, Maxima of a randomized Riemann zeta function, and branching random walks, Ann. Appl. Probab, vol.27, issue.1, pp.178-215, 2017.

L. Arguin, A. Bovier, and N. Kistler, Genealogy of extremal particles of branching Brownian motion, Comm. Pure Appl. Math, vol.64, issue.12, pp.1647-1676, 2011.

A. Louis-pierre-arguin, N. Bovier, and . Kistler, The extremal process of branching Brownian motion, Probab. Theory Related Fields, vol.157, issue.3-4, pp.535-574, 2013.

A. Auffinger and W. Chen, Universality of chaos and ultrametricity in mixed p-spin models, Comm. Pure Appl. Math, vol.69, issue.11, pp.2107-2130, 2016.

J. Acosta, Tightness of the recentered maximum of log-correlated Gaussian fields, Electron. J. Probab, vol.19, issue.90, 2014.

E. Aïdékon, Convergence in law of the minimum of a branching random walk

, Ann. Probab, vol.41, issue.3A, pp.1362-1426, 2013.

E. Aïdékon and B. Jaffuel, Survival of branching random walks with absorption, Stochastic Process. Appl, vol.121, issue.9, pp.1901-1937, 2011.

S. Asmussen and N. Keiding, Martingale central limit theorems and asymptotic estimation theory for multitype branching processes, Advances in Appl. Probability, vol.10, issue.1, pp.109-129, 1978.

T. Alberts, K. Khanin, and J. Quastel, The intermediate disorder regime for directed polymers in dimension 1 + 1, Ann. Probab, vol.42, issue.3, pp.1212-1256, 2014.

K. S. Alexander, The effect of disorder on polymer depinning transitions

, Comm. Math. Phys, vol.279, issue.1, pp.117-146, 2008.

M. Aizenman, J. L. Lebowitz, and D. Ruelle, Some rigorous results on the Sherrington-Kirkpatrick spin glass model, Comm. Math. Phys, vol.112, issue.1, pp.3-20, 1987.

K. B. Athreya and P. E. Ney, Branching Processes, 1972.

T. Alberts and M. Ortgiese, The near-critical scaling window for directed polymers on disordered trees, Electron. J. Probab, vol.18, issue.19, p.24, 2013.

J. Aru, E. Powell, and A. Sepúlveda, Liouville measure as a multiplicative cascade via level sets of the Gaussian free field, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02080127

J. Aru, E. Powell, and A. Sepúlveda, Critical Liouville measure as a limit of subcritical measures, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02080123

L. Addario, -. Berry, and B. Reed, Minima in branching random walks
URL : https://hal.archives-ouvertes.fr/hal-00795281

, Ann. Probab, vol.37, issue.3, pp.1044-1079, 2009.

R. Allez, R. Rhodes, and V. Vargas, Lognormal -scale invariant random measures, Probab. Theory Related Fields, vol.155, issue.3-4, pp.751-788, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00561713

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, vol.55, 1964.

E. Aïdékon and Z. Shi, The Seneta-Heyde scaling for the branching random walk, Ann. Probab, vol.42, issue.3, pp.959-993, 2014.

W. Louis-pierre-arguin and . Tai, Is the Riemann zeta function in a short interval a 1-RSB spin glass ?, 2017.

K. Balasundaram and A. , Some results on multitype continuous time Markov branching processes, Ann. Math. Statist, vol.39, pp.347-357, 1968.

O. Louis-pierre-arguin and . Zindy, Poisson-Dirichlet statistics for the extremes of a log-correlated Gaussian field, Ann. Appl. Probab, vol.24, issue.4, pp.1446-1481, 2014.

O. Louis-pierre-arguin and . Zindy, Poisson-Dirichlet statistics for the extremes of the two-dimensional discrete Gaussian free field, Electron. J. Probab, vol.20, issue.59, 2015.

M. Bachmann, Limit theorems for the minimal position in a branching random walk with independent logconcave displacements, Adv. in Appl. Probab, vol.32, issue.1, pp.159-176, 2000.

G. Ben-arous, E. Subag, and O. Zeitouni, Geometry and temperature chaos in mixed spherical spin glasses at low temperature -the perturbative regime, 2018.

J. Berestycki, É. Brunet, and B. Derrida, A new approach to computing the asymptotics of the position of Fisher-KPP fronts, Europhys. Lett
URL : https://hal.archives-ouvertes.fr/hal-01723859

, EPL, vol.122, issue.1, p.10001, 2018.

J. Berestycki, É. Brunet, S. C. Harris, and P. Mi?o?, Branching Brownian motion with absorption and the all-time minimum of branching Brownian motion with drift, J. Funct. Anal, vol.273, issue.6, pp.2107-2143, 2017.

J. Berestycki, É. Brunet, S. C. Harris, and M. Roberts, Vanishing corrections for the position in a linear model of FKPP fronts, Comm. Math. Phys, vol.349, issue.3, pp.857-893, 2017.

J. Berestycki, N. Berestycki, and J. Schweinsberg, Survival of near-critical branching Brownian motion, J. Stat. Phys, vol.143, issue.5, pp.833-854, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00514779

J. Berestycki, N. Berestycki, and J. Schweinsberg, The genealogy of branching Brownian motion with absorption, Ann. Probab, vol.41, issue.2, pp.527-618, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00447444

J. Berestycki, N. Berestycki, and J. Schweinsberg, Critical branching Brownian motion with absorption: Survival probability, Probab. Theory Related Fields, vol.160, issue.3-4, pp.489-520, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01092743

E. Brunet and B. Derrida, Shift in the velocity of a front due to a cutoff, Phys. Rev. E, vol.56, issue.3, pp.2597-2604, 1997.

E. Brunet and B. Derrida, Microscopic models of traveling wave equations, Comput. Phys. Commun, pp.121-122, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00113730

É. Brunet and B. Derrida, Effect of microscopic noise on front propagation, J. Statist. Phys, vol.103, issue.1-2, pp.269-282, 2001.

E. Bolthausen, J. Deuschel, and G. Giacomin, Entropic repulsion and the maximum of the two-dimensional harmonic crystal

, Ann. Probab, vol.29, issue.4, pp.1670-1692, 2001.

E. Brunet, B. Derrida, A. H. Mueller, and S. Munier, Noisy traveling waves: Effect of selection on genealogies, Europhys. Lett, vol.76, issue.1, pp.1-7, 2006.

E. Brunet, B. Derrida, A. H. Mueller, and S. Munier, Phenomenological theory giving the full statistics of the position of fluctuating pulled fronts, Phys. Rev

E. , , vol.73, p.56126, 2006.

É. Brunet, B. Derrida, A. H. Mueller, and S. Munier, Effect of selection on ancestry: An exactly soluble case and its phenomenological generalization, Phys. Rev. E, vol.76, issue.3, p.20, 2007.

E. Bolthausen, J. D. Deuschel, and O. Zeitouni, Recursions and tightness for the maximum of the discrete, two dimensional Gaussian free field, Electron. Commun. Probab, vol.16, pp.114-119, 2011.

M. Bramson, J. Ding, and O. Zeitouni, Convergence in law of the maximum of the two-dimensional discrete Gaussian free field, Comm. Pure Appl. Math, vol.69, issue.1, pp.62-123, 2016.

N. Berestycki, An elementary approach to Gaussian multiplicative chaos, Electron. Commun. Probab, vol.22, issue.27, p.12, 2017.

J. Bertoin, Markovian growth-fragmentation processes, Bernoulli, vol.23, issue.2, pp.1082-1101, 2017.

N. H. Barton, A. M. Etheridge, and A. Véber, A new model for evolution in a spatial continuum, Electron. J. Probab, vol.15, issue.7, pp.162-216, 2010.

J. Bérard and J. Gouéré, Brunet-Derrida behavior of branchingselection particle systems on the line, Comm. Math. Phys, vol.298, issue.2, pp.323-342, 2010.

R. Bellman and T. E. Harris, On the theory of age-dependent stochastic branching processes, Proc. Nat. Acad. Sci. U. S. A, vol.34, pp.601-604, 1948.

A. Bovier and L. Hartung, Extended convergence of the extremal process of branching Brownian motion, Ann. Appl. Probab, vol.27, issue.3, pp.1756-1777, 2017.

I. Bienaymé, De la loi de multiplication et de la durée des familles

, Soc. Philomat. Paris Extraits, vol.5, pp.37-39, 1845.

J. D. Biggins, The first-and last-birth problems for a multitype age-dependent branching process, Advances in Appl. Probability, vol.8, issue.3, pp.446-459, 1976.

J. D. Biggins, Martingale convergence in the branching random walk, J. Appl. Probability, vol.14, issue.1, pp.25-37, 1977.

J. D. Biggins, Growth rates in the branching random walk, Z. Wahrsch. Verw

. Gebiete, , vol.48, pp.17-34, 1979.

J. D. Biggins, Uniform convergence of martingales in the one-dimensional branching random walk, Selected Proceedings of the Sheffield Symposium on Applied Probability, vol.18, pp.159-173, 1989.

J. D. Biggins, Uniform Convergence of Martingales in the Branching Random Walk, Ann. Probab, vol.20, issue.1, pp.137-151, 1992.

P. Billingsley, Convergence of Probability Measures. Wiley Series in Probability and Statistics: Probability and Statistics, 1999.

M. Biskup, Extrema of the two-dimensional Discrete Gaussian Free Field, 2017.

J. Barral, J. Xiong, and B. Mandelbrot, Convergence of complex multiplicative cascades, Ann. Appl. Probab, vol.20, issue.4, pp.1219-1252, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00790894

J. Barral, X. Jin, R. Rhodes, and V. Vargas, Gaussian multiplicative chaos and KPZ duality, Comm. Math. Phys, vol.323, issue.2, pp.451-485, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00673629

J. D. Biggins and A. E. Kyprianou, Seneta-Heyde norming in the branching random walk, Ann. Probab, vol.25, issue.1, pp.337-360, 1997.

J. D. Biggins and A. E. Kyprianou, Measure change in multitype branching

, Adv. in Appl. Probab, vol.36, issue.2, pp.544-581, 2004.

A. Bovier and I. Kurkova, Derrida's generalized random energy models

, Models with continuous hierarchies, Ann. Inst. H. Poincaré Probab. Statist, vol.40, issue.4, pp.481-495, 2004.

J. D. Biggins and A. E. Kyprianou, Fixed points of the smoothing transform: The boundary case, Electron. J. Probab, vol.10, issue.17, pp.609-631, 2005.

A. Bovier and A. Klimovsky, Fluctuations of the partition function in the generalized random energy model with external field, J. Math. Phys, vol.49, issue.12, p.27, 2008.

D. Belius and N. Kistler, The subleading order of two dimensional cover times, vol.167, pp.461-552, 2017.

A. Bovier, I. Kurkova, and M. Löwe, Fluctuations of the free energy in the REM and the p-spin SK models, Ann. Probab, vol.30, issue.2, pp.605-651, 2002.

M. Biskup and O. Louidor, Conformal symmetries in the extremal process of two-dimensional discrete Gaussian Free Field, 2014.

J. Baik and J. Lee, Fluctuations of the free energy of the spherical Sherrington-Kirkpatrick model, J. Stat. Phys, vol.165, issue.2, pp.185-224, 2016.

M. Biskup and O. Louidor, Extreme local extrema of two-dimensional discrete Gaussian free field, Comm. Math. Phys, vol.345, issue.1, pp.271-304, 2016.

M. Biskup and O. Louidor, On intermediate level sets of two-dimensional discrete Gaussian Free Field, 2016.

J. Baik and J. Lee, Fluctuations of the free energy of the spherical Sherrington-Kirkpatrick model with ferromagnetic interaction, Ann. Henri Poincaré, vol.18, issue.6, pp.1867-1917, 2017.

Q. Berger and H. Lacoin, Pinning on a defect line: Characterization of marginal disorder relevance and sharp asymptotics for the critical point shift
URL : https://hal.archives-ouvertes.fr/hal-01141691

, J. Inst. Math. Jussieu, vol.17, issue.2, pp.305-346, 2018.

M. Biskup and O. Louidor, Full extremal process, cluster law and freezing for the two-dimensional discrete Gaussian free field, Adv. Math, vol.330, pp.589-687, 2018.

A. J. Bray and M. A. Moore, Chaotic Nature of the Spin-Glass Phase, Phys. Rev. Lett, vol.58, issue.1, pp.57-60, 1987.

J. Barral, B. Benoît, and . Mandelbrot, Introduction to infinite products of independent random functions (Random multiplicative multifractal measures. I), Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot, vol.72, pp.3-16, 2004.

J. Bérard and P. Maillard, The limiting process of N -particle branching random walk with polynomial tails, Electron. J. Probab, vol.19, issue.22, 2014.

P. Boutaud and P. Maillard, A simple proof of the Seneta-Heyde norming for branching random walks under optimal assumptions, 2019.

E. Bolthausen, On a functional central limit theorem for random walks conditioned to stay positive, Ann. Probability, vol.4, issue.3, pp.480-485, 1976.

E. Bolthausen, A note on the diffusion of directed polymers in a random environment, Comm. Math. Phys, vol.123, issue.4, pp.529-534, 1989.

P. Bourgade, Mesoscopic fluctuations of the zeta zeros, Probab. Theory Related Fields, vol.148, issue.3-4, pp.479-500, 2010.

A. Bovier, Gaussian Processes on Trees, vol.163, 2017.

R. Benzi, G. Paladin, G. Parisi, and A. Vulpiani, On the multifractal nature of fully developed turbulence and chaotic systems, J. Phys. A: Math. Gen, vol.17, pp.3521-3531, 1984.

P. Berti, L. Pratelli, and P. Rigo, Almost sure weak convergence of random probability measures, Stochastics, vol.78, issue.2, pp.91-97, 2006.

M. D. Bramson, Maximal displacement of branching Brownian motion

, Comm. Pure Appl. Math, vol.31, issue.5, pp.531-581, 1978.

M. Bramson, Convergence of solutions of the Kolmogorov equation to travelling waves, Mem. Amer. Math. Soc, vol.44, issue.285, p.190, 1983.

J. Barral, R. Rhodes, and V. Vargas, Limiting laws of supercritical branching random walks, C. R. Math. Acad. Sci. Paris, vol.350, issue.9, pp.535-538, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00682212

D. Belius, J. Rosen, and O. Zeitouni, Tightness for the Cover Time of the two dimensional sphere, 2017.

E. Bolthausen and A. Sznitman, On Ruelle's probability cascades and an abstract cavity method, Comm. Math. Phys, vol.197, issue.2, pp.247-276, 1998.

A. N. Borodin and P. Salminen, Handbook of Brownian Motion-Facts and Formulae. Probability and Its Applications, 2002.

D. Buraczewski, On tails of fixed points of the smoothing transform in the boundary case, Stochastic Process. Appl, vol.119, issue.11, pp.3955-3961, 2009.

J. Bertoin and A. R. Watson, A probabilistic approach to spectral analysis of growth-fragmentation equations, J. Funct. Anal, vol.274, issue.8, pp.2163-2204, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01438422

N. Berestycki, C. Webb, and M. Wong, Random Hermitian matrices and Gaussian multiplicative chaos, vol.172, pp.103-189, 2018.

M. Bramson and O. Zeitouni, Tightness of the recentered maximum of the two-dimensional discrete Gaussian free field, Comm. Pure Appl. Math, vol.65, issue.1, pp.1-20, 2012.

F. Caravenna and L. Chaumont, Invariance principles for random walks conditioned to stay positive, Ann. Inst. Henri Poincaré Probab. Stat, vol.44, issue.1, pp.170-190, 2008.

F. Caravenna and L. Chaumont, An invariance principle for random walk bridges conditioned to stay positive, Electron. J. Probab, vol.18, issue.60, p.32, 2013.

L. Chen, N. Curien, and P. Maillard, The perimeter cascade in critical Boltzmann quadrangulations decorated by an O(n) loop model, 2017.

J. Cook and B. Derrida, Directed polymers in a random medium: 1/d expansion and the n<script>-tree approximation, J. Phys. A, vol.23, issue.9, pp.1523-1554, 1990.

V. +-19]-xinxing-chen, B. Dagard, Y. Derrida, M. Hu, Z. Lifshits et al., The Derrida-Retaux conjecture for recursive models, 2019.

B. +-17]-xinxing-chen, Y. Derrida, M. Hu, Z. Lifshits, and . Shi, A hierarchical renormalization model: Some properties and open questions, 2017.

P. Collet, J. Eckmann, V. Glaser, and A. Martin, Study of the iterations of a mapping associated to a spin glass model, Comm. Math. Phys, vol.94, issue.3, pp.353-370, 1984.

L. Chevillard, C. Garban, R. Rhodes, and V. Vargas, On a skewed and multifractal uni-dimensional random field, as a probabilistic representation of Kolmogorov's views on turbulence, 2017.

N. Curien and O. Hénard, Critical parking on a random tree, 2019.

B. Chauvin, Product martingales and stopping lines for branching Brownian motion, Ann. Probab, vol.19, issue.3, pp.1195-1205, 1991.

W. Chen, Chaos in the mixed even-spin models, Comm. Math. Phys, vol.328, issue.3, pp.867-901, 2014.

X. Chen, Scaling limit of the path leading to the leftmost particle in a branching random walk, Theory Probab. Appl, vol.59, issue.4, pp.567-589, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00827040

X. Chen, A necessary and sufficient condition for the nontrivial limit of the derivative martingale in a branching random walk, Adv. in Appl. Probab, vol.47, issue.3, pp.741-760, 2015.

A. Champneys, S. Harris, J. Toland, J. Warren, and D. Williams, Algebra, analysis and probability for a coupled system of reactiondiffusion equations, Philos. Trans. Roy. Soc. London Ser. A, vol.350, pp.69-112, 1692.

B. Chauvin, T. Klein, J. Marckert, and A. Rouault, Martingales and profile of binary search trees, Electron. J. Probab, vol.10, issue.12, pp.420-435, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00138808

F. Comets and Q. Liu, Rate of convergence for polymers in a weak disorder, J. Math. Anal. Appl, vol.455, issue.1, pp.312-335, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01705859

D. Carpentier and P. L. Doussal, Glass transition of a particle in a random potential, front selection in nonlinear renormalization group, and entropic phenomena in Liouville and sinh-Gordon models, Phys. Rev. E, vol.63, issue.2, p.26110, 2001.

S. Kenny, C. J. Crump, and . Mode, A general age-dependent branching process. I, J. Math. Anal. Appl, vol.24, pp.494-508, 1968.

J. , A. Cuesta, and C. Matrán, Notes on the Wasserstein metric in Hilbert spaces, Ann. Probab, vol.17, issue.3, pp.1264-1276, 1989.

A. Cortines and . Bastien-mallein, A N -branching random walk with random selection, ALEA Lat. Am. J. Probab. Math. Stat, vol.14, issue.1, pp.117-137, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01322468

A. Cortines and . Bastien-mallein, The genealogy of an exactly solvable Ornstein-Uhlenbeck type branching process with selection, Electron. Commun. Probab, vol.23, issue.98, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01790945

X. Chen, T. Madaule, and B. Mallein, On the trajectory of an individual chosen according to supercritical Gibbs measure in the branching random walk, Process. Appl, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01322499

R. Chhaibi, T. Madaule, and J. Najnudel, On the maximum of the c?e field, Duke Math. J, vol.167, issue.12, pp.2243-2345, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01976526

C. Cosco and S. Nakajima, Gaussian fluctuations for the directed polymer partition function for d 3 and in the whole L 2 -region, 2019.

F. Comets, Directed Polymers in Random Environments, Lecture Notes in Mathematics, vol.2175, 2017.

A. Cortines, The genealogy of a solvable population model under selection with dynamics related to directed polymers, Bernoulli, vol.22, issue.4, pp.2209-2236, 2016.

W. Chen and D. Panchenko, An approach to chaos in some mixed p-spin models, vol.157, pp.389-404, 2013.

W. Chen and D. Panchenko, Temperature chaos in some spherical mixed p-spin models, J. Stat. Phys, vol.166, issue.5, pp.1151-1162, 2017.

B. Chauvin and A. Rouault, KPP equation and supercritical branching Brownian motion in the subcritical speed area. Application to spatial trees

, Probab. Theory Related Fields, vol.80, issue.2, pp.299-314, 1988.

L. Chevillard, R. Robert, and V. Vargas, A stochastic representation of the local structure of turbulence, Europhys. Lett. EPL, vol.89, issue.5, p.54002, 2010.

F. Caravenna, R. Sun, and N. Zygouras, Polynomial chaos and scaling limits of disordered systems, J. Eur. Math. Soc. (JEMS), vol.19, issue.1, pp.1-65, 2017.

F. Caravenna, R. Sun, and N. Zygouras, Universality in marginally relevant disordered systems, Ann. Appl. Probab, vol.27, issue.5, pp.3050-3112, 2017.

F. Comets and N. Yoshida, Directed polymers in random environment are diffusive at weak disorder, Ann. Probab, vol.34, issue.5, pp.1746-1770, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00123957

O. Daviaud, Extremes of the discrete two-dimensional Gaussian free field

, Ann. Probab, vol.34, issue.3, pp.962-986, 2006.

D. A. Dawson, Stochastic evolution equations and related measure processes

, J. Multivariate Anal, vol.5, pp.1-52, 1975.

B. Derrida, Random-energy model: Limit of a family of disordered models

, Phys. Rev. Lett, vol.45, issue.2, pp.79-82, 1980.

B. Derrida, Random-energy model: An exactly solvable model of disordered systems, Phys. Rev. B, vol.24, issue.5, pp.2613-2626, 1981.

B. Derrida, A generalization of the Random Energy Model which includes correlations between energies, J. Physique Lett, vol.46, issue.9, pp.401-407, 1985.
URL : https://hal.archives-ouvertes.fr/jpa-00232535

B. Derrida, M. R. Evans, and E. R. Speer, Mean field theory of directed polymers with random complex weights, Comm. Math. Phys, vol.156, issue.2, pp.221-244, 1993.

L. Devroye, A note on the height of binary search trees, J. Assoc. Comput. Mach, vol.33, issue.3, pp.489-498, 1986.

B. Derrida and E. Gardner, Magnetic properties and the function q(x) of the generalised random-energy model, J. Phys. C: Solid State Phys, vol.19, issue.29, pp.5783-5798, 1986.

B. Derrida and E. Gardner, Solution of the generalised random energy model

, J. Phys. C: Solid State Phys, vol.19, issue.13, pp.2253-2274, 1986.

B. Derrida, G. Giacomin, H. Lacoin, and F. L. Toninelli, Fractional moment bounds and disorder relevance for pinning models
URL : https://hal.archives-ouvertes.fr/hal-00202700

, Comm. Math. Phys, vol.287, issue.3, pp.867-887, 2009.

B. Derrida, V. Hakim, and J. Vannimenus, Effect of disorder on two-dimensional wetting, J. Statist. Phys, vol.66, pp.1189-1213, 1992.

F. Delbaen, E. Kowalski, and A. Nikeghbali, Mod-? convergence, Int. Math. Res. Not. IMRN, issue.11, pp.3445-3485, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01976539

F. David, A. Kupiainen, R. Rhodes, and V. Vargas, Liouville quantum gravity on the Riemann sphere, Comm. Math. Phys, vol.342, issue.3, pp.869-907, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01081085

R. Durrett and T. M. Liggett, Fixed points of the smoothing transformation, Z. Wahrsch. Verw. Gebiete, vol.64, issue.3, pp.275-301, 1983.

A. De-masi, P. A. Ferrari, E. Presutti, and N. Soprano-loto, Hydrodynamics of the N -BBM process, 2017.

R. A. Doney, Conditional limit theorems for asymptotically stable random walks, Z. Wahrsch. Verw. Gebiete, vol.70, issue.3, pp.351-360, 1985.

R. A. Doney, Local behaviour of first passage probabilities, Probab. Theory Related Fields, vol.152, issue.3-4, pp.559-588, 2012.

F. Dumortier, N. Popovi?, and T. J. Kaper, The critical wave speed for the Fisher-Kolmogorov-Petrowskii-Piscounov equation with cut-off

, Nonlinearity, vol.20, issue.4, pp.855-877, 2007.

A. Dembo, Y. Peres, J. Rosen, and O. Zeitouni, Cover times for Brownian motion and random walks in two dimensions, Ann. of Math, vol.160, issue.2, pp.433-464, 2004.

R. Durrett and D. Remenik, Brunet-Derrida particle systems, free boundary problems and Wiener-Hopf equations, Ann. Probab, vol.39, issue.6, pp.2043-2078, 2011.

B. Derrida and M. Retaux, The Depinning Transition in Presence of Disorder: A Toy Model, J. Stat. Phys, vol.156, issue.2, pp.268-290, 2014.

B. Duplantier, R. Rhodes, S. Sheffield, and V. Vargas, Critical Gaussian multiplicative chaos: Convergence of the derivative martingale
URL : https://hal.archives-ouvertes.fr/hal-00705619

A. Probab, , vol.42, pp.1769-1808, 2014.

B. Duplantier, R. Rhodes, S. Sheffield, and V. Vargas, Renormalization of Critical Gaussian Multiplicative Chaos and KPZ Relation, Comm. Math. Phys, vol.330, issue.1, pp.283-330, 2014.

F. David, R. Rhodes, and V. Vargas, Liouville quantum gravity on complex tori, J. Math. Phys, vol.57, issue.2, p.25, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01161637

J. Ding, R. Roy, and O. Zeitouni, Convergence of the centered maximum of log-correlated Gaussian fields, Ann. Probab, vol.45, issue.6A, pp.3886-3928, 2017.

B. Derrida and H. Spohn, Polymers on disordered trees, spin glasses, and traveling waves, J. Statist. Phys, vol.51, issue.5, pp.817-840, 1988.

B. Derrida and Z. Shi, Large deviations for the branching Brownian motion in presence of selection or coalescence, J. Stat. Phys, vol.163, issue.6, pp.1285-1311, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02141550

J. Ding and O. Zeitouni, Extreme values for two-dimensional discrete Gaussian free field, Ann. Probab, vol.42, issue.4, pp.1480-1515, 2014.

A. Etheridge, N. Freeman, S. Penington, and D. Straulino, Branching Brownian motion and selection in the spatial ?-Fleming-Viot process

, Appl. Probab, vol.27, issue.5, pp.2605-2645, 2017.

M. Eckhoff and P. Mörters, Vulnerability of robust preferential attachment networks, Electron. J. Probab, vol.19, issue.57, p.47, 2014.

M. Eckhoff, P. Mörters, and M. Ortgiese, Near critical preferential attachment networks have small giant components, J. Stat. Phys, vol.173, issue.3-4, pp.663-703, 2018.

U. Ebert and . Wim-van-saarloos, Front propagation into unstable states: Universal algebraic convergence towards uniformly translating pulled fronts

. Phys, , vol.146, pp.1-99, 2000.

Y. V. Fyodorov and J. Bouchaud, Freezing and extreme-value statistics in a random energy model with logarithmically correlated potential

, J. Phys. A: Math. Gen, vol.41, issue.37, p.372001, 2008.

Y. V. Fyodorov and J. Bouchaud, Statistical mechanics of a single particle in a multiscale random potential: Parisi landscapes in finite-dimensional Euclidean spaces, J. Phys. A: Math. Gen, vol.41, issue.32, p.25, 2008.

W. Feller, An Introduction to Probability Theory and Its Applications, 1971.

S. Daniel, D. A. Fisher, and . Huse, Ordered Phase of Short-Range Ising Spin-Glasses, Phys. Rev. Lett, vol.56, issue.15, pp.1601-1604, 1986.

Y. V. Fyodorov, G. A. Hiary, and J. P. Keating, Freezing Transition, Characteristic Polynomials of Random Matrices, and the Riemann Zeta Function, Phys. Rev. Lett, vol.108, issue.17, p.170601, 2012.

R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugenics, vol.7, issue.4, pp.355-369, 1937.

M. E. Fisher, Walks, walls, wetting, and melting, J. Statist. Phys, vol.34, issue.5-6, pp.667-729, 1984.

Y. V. Fyodorov and J. P. Keating, Freezing transitions and extreme values: Random matrix theory, ?( 1 2 + it) and disordered landscapes

, Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci, vol.372, 2007.

Y. V. Fyodorov, B. A. Khoruzhenko, and N. J. Simm, Fractional Brownian motion with Hurst index H = 0 and the Gaussian unitary ensemble, Ann. Probab, vol.44, issue.4, pp.2980-3031, 2016.

Y. V. Fyodorov, P. L. Doussal, and A. Rosso, Statistical mechanics of logarithmic REM: Duality, freezing and extreme value statistics of 1/f noises generated by Gaussian free fields, J. Stat. Mech. Theory Exp, vol.32, issue.10, p.10005, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00423366

U. Frisch and G. Parisi, Turbulence and Predictability of Geophysical Fluid Dynamics and Climate Dynamics, Number LXXXVIII in Proceedings of Enrico Fermi Varenna Physics School. M. Ghil, 1985.

Y. V. Fyodorov and N. J. Simm, On the distribution of the maximum value of the characteristic polynomial of GUE random matrices, Nonlinearity, vol.29, issue.9, pp.2837-2855, 2016.

N. Gantert, Y. Hu, and Z. Shi, Asymptotics for the survival probability in a killed branching random walk, Ann. Inst. Henri Poincaré Probab
URL : https://hal.archives-ouvertes.fr/hal-00579979

. Stat, , vol.47, pp.111-129, 2011.

G. Giacomin, Random Polymer Models, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00155080

G. Giacomin, Disorder and Critical Phenomena through Basic Probability Models, Heidelberg, vol.2025, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00659170

G. Giacomin, H. Lacoin, and F. Toninelli, Marginal relevance of disorder for pinning models, Comm. Pure Appl. Math, vol.63, issue.2, pp.233-265, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00338985

G. Giacomin, H. Lacoin, and F. L. Toninelli, Hierarchical pinning models, quadratic maps and quenched disorder, Probab. Theory Related Fields, vol.147, issue.1-2, pp.185-216, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00202697

C. Goldschmidt and M. Przykucki, Parking on a Random Tree

, Combin. Probab. Comput, vol.28, issue.1, pp.23-45, 2019.

C. Graham, McKean-Vlasov Itô-Skorohod equations, and nonlinear diffusions with discrete jump sets, Stochastic Process. Appl, vol.40, issue.1, pp.69-82, 1992.

C. Graham, Precise asymptotics for Fisher-KPP fronts, 2017.

Y. Guivarc and &. , Sur une extension de la notion de loi semi-stable

H. Poincaré, Probab. Statist, vol.26, issue.2, pp.261-285, 1990.

F. Galton and H. W. Watson, On the probability of the extinction of families, J. Roy. Anthropol. Inst, vol.4, pp.138-144, 1874.

J. M. Hammersley, Postulates for subadditive processes, Ann. Probability, vol.2, issue.4, pp.652-680, 1974.

C. Simon and . Harris, Travelling-waves for the FKPP equation via probabilistic arguments, Proc. Roy. Soc. Edinburgh Sect. A, vol.129, issue.3, pp.503-517, 1999.

C. C. Heyde and B. M. Brown, An invariance principle and some convergence rate results for branching processes, Z. Wahrscheinlichkeitstheorie und Verw

. Gebiete, , vol.20, pp.271-278, 1971.

C. C. Heyde, A rate of convergence result for the super-critical Galton-Watson process, J. Appl. Probability, vol.7, pp.451-454, 1970.

C. C. Heyde, Some central limit analogues for supercritical Galton-Watson processes, J. Appl. Probability, vol.8, pp.52-59, 1971.

A. David, C. L. Huse, and . Henley, Pinning and Roughening of Domain Walls in Ising Systems Due to Random Impurities, Phys. Rev. Lett, vol.54, issue.25, pp.2708-2711, 1985.

J. W. Harris and S. C. Harris, Survival probabilities for branching Brownian motion with absorption, Electron. Comm. Probab, vol.12, pp.81-92, 2007.

R. Hardy and S. C. Harris, A spine approach to branching diffusions with applications to L p -convergence of martingales, Séminaire de Probabilités XLII, vol.1979, pp.281-330, 2009.

J. W. Harris, S. C. Harris, and A. E. Kyprianou, Further probabilistic analysis of the Fisher-Kolmogorov-Petrovskii-Piscounov equation: One sided travellingwaves, Ann. Inst. H. Poincaré Probab. Statist, vol.42, issue.1, pp.125-145, 2006.

S. C. Harris, M. Hesse, and A. E. Kyprianou, Branching Brownian motion in a strip: Survival near criticality, Ann. Probab, vol.44, issue.1, pp.235-275, 2016.

L. Hartung and A. Klimovsky, The glassy phase of the complex branching Brownian motion energy model, Electron. Commun. Probab, vol.20, issue.78, 2015.

L. Hartung and A. Klimovsky, The phase diagram of the complex branching Brownian motion energy model, Electron. J. Probab, vol.23, issue.127, 2018.

C. P. Hughes, J. P. Keating, and N. Connell, On the characteristic polynomial of a random unitary matrix, Comm. Math. Phys, vol.220, issue.2, pp.429-451, 2001.

Y. Hu, M. Bastien-mallein, and . Pain, An exactly solvable continuoustime Derrida-Retaux model, Comm. Math. Phys, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02133501

F. Hamel, J. Nolen, J. Roquejoffre, and L. Ryzhik, A short proof of the logarithmic Bramson correction in Fisher-KPP equations
URL : https://hal.archives-ouvertes.fr/hal-00815553

, Netw. Heterog. Media, vol.8, issue.1, pp.275-289, 2013.

P. Henry-labordère, N. Oudjane, X. Tan, N. Touzi, and X. Warin, Branching diffusion representation of semilinear PDEs and Monte Carlo approximation, Ann. Inst. Henri Poincaré Probab. Stat, vol.55, issue.1, pp.184-210, 2019.

C. Simon, M. I. Harris, and . Roberts, A strong law of large numbers for branching processes: Almost sure spine events, Electron. Commun. Probab, vol.19, issue.28, 2014.

C. Simon, M. I. Harris, and . Roberts, The many-to-few lemma and multiple spines, Ann. Inst. Henri Poincaré Probab. Stat, vol.53, issue.1, pp.226-242, 2017.

Y. Huang, R. Rhodes, and V. Vargas, Liouville quantum gravity on the unit disk, Ann. Inst. Henri Poincaré Probab. Stat, vol.54, issue.3, pp.1694-1730, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01161631

Y. Hu and Z. Shi, Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees, Ann. Probab, vol.37, issue.2, pp.742-789, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00414685

Y. Hu and Z. Shi, The slow regime of randomly biased walks on trees

A. Probab, , vol.44, pp.3893-3933, 2016.

Y. Hu and Z. Shi, The free energy in the Derrida-Retaux recursive model, J. Stat. Phys, vol.172, issue.3, pp.718-741, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01519983

P. Henry-labordère, X. Tan, and N. Touzi, A numerical algorithm for a class of BSDEs via the branching process, Stochastic Process. Appl, vol.124, issue.2, pp.1112-1140, 2014.

Y. Hu, How big is the minimum of a branching random walk?
URL : https://hal.archives-ouvertes.fr/hal-00826652

, Henri Poincaré Probab. Stat, vol.52, issue.1, pp.233-260, 2016.

D. L. Iglehart, Functional central limit theorems for random walks conditioned to stay positive, Ann. Probability, vol.2, issue.4, pp.608-619, 1974.

A. Iksanov and Z. Kabluchko, A central limit theorem and a law of the iterated logarithm for the Biggins martingale of the supercritical branching random walk, J. Appl. Probab, vol.53, issue.4, pp.1178-1192, 2016.

A. Iksanov, K. Kolesko, and M. Meiners, Fluctuations of Biggins' martingales at complex parameters, 2018.

A. Iksanov, K. Kolesko, and M. Meiners, Stable-like fluctuations of Biggins' martingales, Stochastic Process. Appl, 2018.

J. Imhof, Density factorizations for Brownian motion, meander and the threedimensional Bessel process, and applications, J. Appl. Probab, vol.21, issue.3, pp.500-510, 1984.

N. Ikeda, M. Nagasawa, and S. Watanabe, On branching Markov processes, Proc. Japan Acad, vol.41, pp.816-821, 1965.

J. Z. Imbrie and T. Spencer, Diffusion of directed polymers in a random environment, J. Statist. Phys, vol.52, issue.3-4, pp.609-626, 1988.

B. Jaffuel, The critical barrier for the survival of branching random walk with absorption, Ann. Inst. Henri Poincaré Probab. Stat, vol.48, issue.4, pp.989-1009, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00430791

P. Jagers, A general stochastic model for population development, Skand. Aktuarietidskr, vol.1, issue.2, pp.84-103, 1969.

J. Junnila and E. Saksman, Uniqueness of critical Gaussian chaos. Electron, J. Probab, vol.22, issue.11, p.31, 2017.

J. Kahane, Sur le chaos multiplicatif, Ann. Sci. Math. Québec, vol.9, issue.2, pp.105-150, 1985.

O. Kallenberg, of Probability Theory and Stochastic Modelling, vol.77, 2017.

A. N. Kolmogoroff and N. A. Dmitriev, Branching stochastic processes, C. R. (Doklady) Acad. Sci. URSS (N.S.), vol.56, pp.5-8, 1947.

D. G. Kendall, Branching processes since 1873, J. London Math. Soc, vol.41, pp.385-406, 1966.

D. G. Kendall, The genealogy of genealogy: Branching processes before (and after) 1873, Bull. London Math. Soc, vol.7, issue.3, pp.225-253, 1975.

H. Kesten, Branching Brownian motion with absorption, Stochastic Processes Appl, vol.7, issue.1, pp.9-47, 1978.

J. F. Kingman, The first birth problem for an age-dependent branching process, Ann. Probability, vol.3, issue.5, pp.790-801, 1975.

Z. Kabluchko and A. Klimovsky, Complex random energy model: Zeros and fluctuations, vol.158, pp.159-196, 2014.

K. Kolesko and M. Meiners, Convergence of complex martingales in the branching random walk: The boundary, Electron. Commun. Probab, vol.22, issue.18, p.14, 2017.

Z. Kabluchko, A. Marynych, and H. Sulzbach, General Edgeworth expansions with applications to profiles of random trees, Ann. Appl. Probab, vol.27, issue.6, pp.3478-3524, 2017.

M. V. Kozlov, The asymptotic behavior of the probability of non-extinction of critical branching processes in a random environment, Teor. Verojatnost. i Primenen, vol.21, issue.4, pp.813-825, 1976.

J. Kahane and J. Peyrière, Sur certaines martingales de Benoit Mandelbrot, Advances in Math, vol.22, issue.2, pp.131-145, 1976.

A. N. Kolmogorov, I. G. Petrovsky, and N. S. Piskunov, Etude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bull. Univ. État Moscou, vol.1, pp.1-26, 1937.

A. Krishnan and J. Quastel, Tracy-Widom fluctuations for perturbations of the log-gamma polymer in intermediate disorder, Ann. Appl. Probab, vol.28, issue.6, pp.3736-3764, 2018.

H. Kesten and B. P. Stigum, Additional limit theorems for indecomposable multidimensional Galton-Watson processes, Ann. Math. Statist, vol.37, pp.1463-1481, 1966.

H. Kesten and B. P. Stigum, A limit theorem for multidimensional Galton-Watson processes, Ann. Math. Statist, vol.37, pp.1211-1223, 1966.

J. P. Keating and N. C. Snaith, Random matrix theory and ?(1/2 + it), Comm. Math. Phys, vol.214, issue.1, pp.57-89, 2000.

J. M. Kosterlitz and D. J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, J. Phys. C: Solid State Phys, vol.6, issue.7, pp.1181-1203, 1973.

J. , M. Kosterlitz, and D. J. Thouless, Early work on defect driven phase transitions, 40 Years of Berezinskii-Kosterlitz-Thouless Theory, pp.1-67

J. Jorge and V. Singapore, , 2013.

I. Kurkova, Temperature dependence of the Gibbs state in the random energy model, J. Statist. Phys, vol.111, issue.1-2, pp.35-56, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00103949

A. E. Kyprianou, Travelling wave solutions to the K-P-P equation: Alternatives to Simon Harris' probabilistic analysis, Ann. Inst. H. Poincaré Probab. Statist, vol.40, issue.1, pp.53-72, 2004.

G. Lambert, The law of large numbers for the maximum of the characteristic polynomial of the Ginibre ensemble, 2019.

G. Lambert, Mesoscopic central limit theorem for the circular betaensembles and applications, 2019.

K. Lau, On the nonlinear diffusion equation of Kolmogorov, Petrovsky, and Piscounov, J. Differential Equations, vol.59, issue.1, pp.44-70, 1985.

Q. Liu, Fixed points of a generalized smoothing transformation and applications to the branching random walk, Adv. in Appl. Probab, vol.30, issue.1, pp.85-112, 1998.

F. Gregory, V. Lawler, and . Limic, Random Walk: A Modern Introduction, Cambridge Studies in Advanced Mathematics, vol.123, 2010.

M. R. Leadbetter, G. Lindgren, and H. Rootzén, Extremes and Related Properties of Random Sequences and Processes, Springer Series in Statistics, 1983.

G. Lambert, D. Ostrovsky, and N. Simm, Subcritical multiplicative chaos for regularized counting statistics from random matrix theory, Comm. Math. Phys, vol.360, issue.1, pp.1-54, 2018.

R. Lyons and R. Pemantle, Random walk in a random environment and first-passage percolation on trees, Ann. Probab, vol.20, issue.1, pp.125-136, 1992.

G. Lambert and E. Paquette, The law of large numbers for the maximum of almost Gaussian log-correlated fields coming from random matrices

, Probab. Theory Related Fields, vol.173, issue.1-2, pp.157-209, 2019.

R. Lyons, R. Pemantle, and Y. Peres, Conceptual proofs of L log L criteria for mean behavior of branching processes, Ann. Probab, vol.23, issue.3, pp.1125-1138, 1995.

R. Liu, Y. Ren, and R. Song, L log L condition for supercritical branching Hunt processes, J. Theoret. Probab, vol.24, issue.1, pp.170-193, 2011.

S. P. Lalley and T. Sellke, A conditional limit theorem for the frontier of a branching Brownian motion, Ann. Probab, vol.15, issue.3, pp.1052-1061, 1987.

A. Lambert and E. Schertzer, Coagulation-transport equations and the nested coalescents, 2018.

H. Lacoin and F. L. Toninelli, A smoothing inequality for hierarchical pinning models, Spin Glasses: Statics and Dynamics, vol.62, pp.271-278, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00483073

R. Lyons, A simple path to Biggins' martingale convergence for branching random walk, Classical and Modern Branching Processes, vol.84, pp.217-221, 1994.

T. Madaule, Maximum of a log-correlated Gaussian field

, Henri Poincaré Probab. Stat, vol.51, issue.4, pp.1369-1431, 2015.

T. Madaule, First order transition for the branching random walk at the critical parameter, Stochastic Process. Appl, vol.126, issue.2, pp.470-502, 2016.

T. Madaule, The tail distribution of the Derivative martingale and the global minimum of the branching random walk, 2016.

T. Madaule, Convergence in law for the branching random walk seen from its tip, J. Theoret. Probab, vol.30, issue.1, pp.27-63, 2017.

P. Maillard, Branching Brownian motion with selection, 2012.
URL : https://hal.archives-ouvertes.fr/tel-00741368

P. Maillard, A note on stable point processes occurring in branching Brownian motion, Electron. Commun. Probab, vol.18, issue.5, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00564630

P. Maillard, Speed and fluctuations of N -particle branching Brownian motion with spatial selection, vol.166, pp.1061-1173, 2016.

. Bastien-mallein, Asymptotic of the maximal displacement in a branching random walk, Grad. J. Math, vol.1, issue.2, pp.92-104, 2016.

B. Mallein, N -branching random walk with ?-stable spine, Theory Probab
URL : https://hal.archives-ouvertes.fr/hal-01322452

. Appl, , vol.62, pp.295-318, 2018.

. Bastien-mallein, Genealogy of the extremal process of the branching random walk, ALEA Lat. Am. J. Probab. Math. Stat, vol.15, issue.2, pp.1065-1087, 2018.

B. Mandelbrot, Multiplications aléatoires itérées et distributions invariantes par moyenne pondérée aléatoire, C. R. Acad. Sci. Paris Sér. A, vol.278, pp.289-292, 1974.

B. Mandelbrot, Multiplications aléatoires itérées et distributions invariantes par moyenne pondérée aléatoire: Quelques extensions, C. R. Acad. Sci

, Paris Sér. A, vol.278, pp.355-358, 1974.

B. Benoit and . Mandelbrot, Intermittent turbulence in self-similar cascades: Divergence of high moments and dimension of the carrier, J. Fluid Mech, vol.62, issue.2, pp.331-358, 1974.

H. P. Mckean, A class of Markov processes associated with nonlinear parabolic equations, Proc. Nat. Acad. Sci. U.S.A, vol.56, pp.1907-1911, 1966.

H. P. Mckean, Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov, Comm. Pure Appl. Math, vol.28, issue.3, pp.323-331, 1975.

H. P. Mckean, A correction to: Application of Brownian motion to the equation of Kolmogorov-Petrovski?-Piskonov, Comm. Pure Appl. Math, vol.29, issue.5, pp.553-554, 1976.

M. Mézard and A. Montanari, Information, Physics, and Computation. Oxford Graduate Texts, 2009.

A. H. Mueller and S. Munier, Phenomenological picture of fluctuations in branching random walks, Phys. Rev. E, vol.90, issue.4, p.42143, 2014.

C. Mueller, L. Mytnik, and J. Quastel, Effect of noise on front propagation in reaction-diffusion equations of KPP type, Invent. Math, vol.184, issue.2, pp.405-453, 2011.

H. L. Montgomery, The pair correlation of zeros of the zeta function, Proc

, Symp. Pure Math, vol.24, pp.181-193, 1973.

J. E. , Multiplicative population chains, Proc. Roy. Soc. Ser. A, vol.266, pp.518-526, 1962.

P. Maillard and M. Pain, 1-stable fluctuations in branching Brownian motion at critical temperature I: The derivative martingale, Probab, 2018.

P. Maillard and M. Pain, 1-stable fluctuations in branching Brownian motion at critical temperature II: The derivative Gibbs measure, 2019.

]. M. Mps-+-84a, G. Mézard, N. Parisi, G. Sourlas, M. Toulouse et al., Nature of the Spin-Glass Phase, Phys. Rev. Lett, vol.52, issue.13, pp.1156-1159, 1984.

]. M. +-84b, G. Mézard, N. Parisi, G. Sourlas, M. Toulouse et al., Replica symmetry breaking and the nature of the spin glass phase, J. Physique, vol.45, issue.5, pp.843-854, 1984.

B. Mallein and S. Ramassamy, Barak-Erd?s graphs and the infinitebin model, 2016.

T. Madaule, R. Rhodes, and V. Vargas, Continuity estimates for the complex cascade model on the phase boundary, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01161635

P. Maillard and O. Zeitouni, Slowdown in branching Brownian motion with inhomogeneous variance, Ann. Inst. Henri Poincaré Probab. Stat, vol.52, issue.3, pp.1144-1160, 2016.

J. Najnudel, On the extreme values of the Riemann zeta function on random intervals of the critical line, vol.172, pp.387-452, 2018.

J. Neveu, Arbres et processus de Galton-Watson, Ann. Inst. H. Poincaré Probab. Statist, vol.22, issue.2, pp.199-207, 1986.

J. Neveu, Multiplicative martingales for spatial branching processes, Seminar on Stochastic Processes, vol.15, pp.223-242, 1987.

J. Nolen, J. Roquejoffre, and L. Ryzhik, Refined long time asymptotics for Fisher-KPP fronts, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01978546

J. Nolen, J. Roquejoffre, and L. Ryzhik, Convergence to a single wave in the Fisher-KPP equation, Chin. Ann. Math. Ser. B, vol.38, issue.2, pp.629-646, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01978520

M. Nikula, E. Saksman, and C. Webb, Multiplicative chaos and the characteristic polynomial of the CUE: The L 1 -phase, 2018.

F. Ouimet, Poisson-Dirichlet statistics for the extremes of a randomized Riemann zeta function, Electron. Commun. Probab, vol.23, 2018.

, Velocity of the L-branching Brownian motion, Electron. J. Probab, vol.21, issue.28, 2016.

, Michel Pain. The near-critical Gibbs measure of the branching random walk

, Ann. Inst. Henri Poincaré Probab. Stat, vol.54, issue.3, pp.1622-1666, 2018.

D. Panchenko, The Parisi ultrametricity conjecture, Ann. of Math, vol.177, issue.2, pp.383-393, 2013.

D. Panchenko, The Sherrington-Kirkpatrick Model, Springer Monographs in Mathematics, 2013.

D. Panchenko, Chaos in Temperature in Generic 2p-Spin Models, Comm. Math. Phys, vol.346, issue.2, pp.703-739, 2016.

G. Parisi, Infinite Number of Order Parameters for Spin-Glasses, Phys. Rev. Lett, vol.43, issue.23, pp.1754-1756, 1979.

G. Parisi, A sequence of approximated solutions to the S-K model for spin glasses, J. Phys. A: Math. Gen, vol.13, issue.4, pp.115-121, 1980.

G. Parisi, Order parameter for spin-glasses, Phys. Rev. Lett, vol.50, issue.24, pp.1946-1948, 1983.

A. M. Polyakov, Quantum geometry of bosonic strings, Phys. Lett. B, vol.103, issue.3, pp.207-210, 1981.

E. Powell, Critical Gaussian chaos: Convergence and uniqueness in the derivative normalisation, Electron. J. Probab, vol.23, 2018.

D. Poland and H. A. Scheraga, Occurrence of a Phase Transition in Nucleic Acid Models, J. Chem. Phys, vol.45, issue.5, pp.1464-1469, 1966.

D. Poland and H. A. Scheraga, Phase Transitions in One Dimension and the Helix-Coil Transition in Polyamino Acids, J. Chem. Phys, vol.45, issue.5, pp.1456-1463, 1966.

D. Panchenko and M. Talagrand, On one property of Derrida-Ruelle cascades, C. R. Math. Acad. Sci. Paris, vol.345, issue.11, pp.653-656, 2007.

M. Pain and O. Zindy, Absence of temperature chaos for the 2D discrete Gaussian free field: An overlap distribution different from the random energy model, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01930937

E. Paquette and O. Zeitouni, The maximum of the CUE field, Int. Math. Res. Not. IMRN, issue.16, pp.5028-5119, 2018.

A. Ruzmaikina and M. Aizenman, Characterization of invariant measures at the leading edge for competing particle systems, Ann. Probab, vol.33, issue.1, pp.82-113, 2005.

G. Remy, The Fyodorov-Bouchaud formula and Liouville conformal field theory, 2017.

G. Remy, Liouville quantum gravity on the annulus, J. Math. Phys, vol.59, issue.8, pp.82303-82329, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01909283

T. Rizzo, Chaos in mean-field spin-glass models, Spin Glasses: Statics and Dynamics, vol.62, pp.143-157, 2009.

U. Rösler, V. A. Topchii, and V. A. Vatutin, The rate of convergence for weighted branching processes, Siberian Adv. Math, vol.12, issue.4, pp.57-82, 2002.

D. Ruelle, A mathematical reformulation of Derrida's REM and GREM

, Comm. Math. Phys, vol.108, issue.2, pp.225-239, 1987.

B. Rider and B. Virág, The noise in the circular law and the Gaussian free field, Art. ID rnm006, p.33, 2007.

R. Robert and V. Vargas, Gaussian multiplicative chaos revisited
URL : https://hal.archives-ouvertes.fr/hal-00293830

A. Probab, , vol.38, pp.605-631, 2010.

R. Rhodes and V. Vargas, Gaussian multiplicative chaos and applications: A review, Probab. Surv, vol.11, pp.315-392, 2014.

G. Remy and T. Zhu, The distribution of Gaussian multiplicative chaos on the unit interval, 2018.

A. I. Sakhanenko, Estimates in the invariance principle in terms of truncated power moments, Sibirsk. Mat. Zh, vol.47, issue.6, pp.1355-1371, 2006.

M. A. Schmidt, A Simple Proof of the DPRZ-Theorem for 2D Cover Times, 2018.

F. Schweiger, The maximum of the four-dimensional membrane model, 2019.

A. Selberg, Contributions to the theory of the Riemann zeta-function, Arch. Math. Naturvid, vol.48, issue.5, pp.89-155, 1946.

A. Shamov, On Gaussian multiplicative chaos, J. Funct. Anal, vol.270, issue.9, pp.3224-3261, 2016.

S. Sheffield, Gaussian free fields for mathematicians, vol.139, pp.521-541, 2007.

Z. Shi, Branching Random Walks, Lecture Notes in Mathematics, vol.2151, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01275563

B. Simon, The Statistical Mechanics of Lattice Gases. Vol. I. Princeton Series in Physics, 1993.

D. Sherrington and S. Kirkpatrick, Solvable Model of a Spin-Glass, Phys. Rev. Lett, vol.35, issue.26, pp.1792-1796, 1975.

M. V. Smoluchowski, Drei Vorträge über Diffusion, Brownsche Bewegung und Koagulation von Kolloidteilchen, Z. Phys, vol.17, pp.557-585, 1916.

G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian Random Processes. Stochastic Modeling, 1994.

C. Stone, A local limit theorem for nonlattice multi-dimensional distribution functions, Ann. Math. Statist, vol.36, pp.546-551, 1965.

E. Subag, The geometry of the Gibbs measure of pure spherical spin glasses, Invent. Math, vol.210, issue.1, pp.135-209, 2017.

E. Saksman and C. Webb, The Riemann zeta function and Gaussian multiplicative chaos: Statistics on the critical line, 2016.

M. Talagrand, The Parisi formula, Ann. of Math, vol.163, issue.2, pp.221-263, 2006.

M. Talagrand, Mean Field Models for Spin Glasses, Ergebnisse Der Mathematik Und Ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol.I, 2011.

M. Talagrand, Mean Field Models for Spin Glasses, Ergebnisse Der Mathematik Und Ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol.II, 2011.

H. Lei, H. Tang, and . Chaté, Rare-Event Induced Binding Transition of Heteropolymers, Phys. Rev. Lett, vol.86, issue.5, pp.830-833, 2001.

K. Uchiyama, Spatial growth of a branching process of particles living in R d, Ann. Probab, vol.10, issue.4, pp.896-918, 1982.

C. Bengt-von-bahr and . Esseen, Inequalities for the rth absolute moment of a sum of random variables, 1 r 2, Ann. Math. Statist, vol.36, pp.299-303, 1965.

S. Watanabe, A limit theorem of branching processes and continuous state branching processes, J. Math. Kyoto Univ, vol.8, pp.141-167, 1968.

C. Webb, Exact asymptotics of the freezing transition of a logarithmically correlated random energy model, J. Stat. Phys, vol.145, issue.6, pp.1595-1619, 2011.

C. Webb, The characteristic polynomial of a random unitary matrix and Gaussian multiplicative chaos-the L 2 -phase, Electron. J. Probab, vol.20, issue.104, 2015.

M. Yor, Some Aspects of Brownian Motion. Part I, Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, 1992.

T. Yang and Y. Ren, Limit theorem for derivative martingale at criticality w.r.t. branching Brownian motion, Statist. Probab. Lett, vol.81, issue.2, pp.195-200, 2011.

O. Zeitouni, . Gaussian, and . Fields, , 2017.